x86/fpu, sched: Dynamically allocate 'struct fpu'
[deliverable/linux.git] / net / netlink / af_netlink.c
1 /*
2 * NETLINK Kernel-user communication protocol.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6 * Patrick McHardy <kaber@trash.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14 * added netlink_proto_exit
15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16 * use nlk_sk, as sk->protinfo is on a diet 8)
17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18 * - inc module use count of module that owns
19 * the kernel socket in case userspace opens
20 * socket of same protocol
21 * - remove all module support, since netlink is
22 * mandatory if CONFIG_NET=y these days
23 */
24
25 #include <linux/module.h>
26
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70
71 #include "af_netlink.h"
72
73 struct listeners {
74 struct rcu_head rcu;
75 unsigned long masks[0];
76 };
77
78 /* state bits */
79 #define NETLINK_S_CONGESTED 0x0
80
81 /* flags */
82 #define NETLINK_F_KERNEL_SOCKET 0x1
83 #define NETLINK_F_RECV_PKTINFO 0x2
84 #define NETLINK_F_BROADCAST_SEND_ERROR 0x4
85 #define NETLINK_F_RECV_NO_ENOBUFS 0x8
86 #define NETLINK_F_LISTEN_ALL_NSID 0x10
87
88 static inline int netlink_is_kernel(struct sock *sk)
89 {
90 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
91 }
92
93 struct netlink_table *nl_table __read_mostly;
94 EXPORT_SYMBOL_GPL(nl_table);
95
96 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
97
98 static int netlink_dump(struct sock *sk);
99 static void netlink_skb_destructor(struct sk_buff *skb);
100
101 /* nl_table locking explained:
102 * Lookup and traversal are protected with an RCU read-side lock. Insertion
103 * and removal are protected with per bucket lock while using RCU list
104 * modification primitives and may run in parallel to RCU protected lookups.
105 * Destruction of the Netlink socket may only occur *after* nl_table_lock has
106 * been acquired * either during or after the socket has been removed from
107 * the list and after an RCU grace period.
108 */
109 DEFINE_RWLOCK(nl_table_lock);
110 EXPORT_SYMBOL_GPL(nl_table_lock);
111 static atomic_t nl_table_users = ATOMIC_INIT(0);
112
113 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
114
115 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
116
117 static DEFINE_SPINLOCK(netlink_tap_lock);
118 static struct list_head netlink_tap_all __read_mostly;
119
120 static const struct rhashtable_params netlink_rhashtable_params;
121
122 static inline u32 netlink_group_mask(u32 group)
123 {
124 return group ? 1 << (group - 1) : 0;
125 }
126
127 int netlink_add_tap(struct netlink_tap *nt)
128 {
129 if (unlikely(nt->dev->type != ARPHRD_NETLINK))
130 return -EINVAL;
131
132 spin_lock(&netlink_tap_lock);
133 list_add_rcu(&nt->list, &netlink_tap_all);
134 spin_unlock(&netlink_tap_lock);
135
136 __module_get(nt->module);
137
138 return 0;
139 }
140 EXPORT_SYMBOL_GPL(netlink_add_tap);
141
142 static int __netlink_remove_tap(struct netlink_tap *nt)
143 {
144 bool found = false;
145 struct netlink_tap *tmp;
146
147 spin_lock(&netlink_tap_lock);
148
149 list_for_each_entry(tmp, &netlink_tap_all, list) {
150 if (nt == tmp) {
151 list_del_rcu(&nt->list);
152 found = true;
153 goto out;
154 }
155 }
156
157 pr_warn("__netlink_remove_tap: %p not found\n", nt);
158 out:
159 spin_unlock(&netlink_tap_lock);
160
161 if (found)
162 module_put(nt->module);
163
164 return found ? 0 : -ENODEV;
165 }
166
167 int netlink_remove_tap(struct netlink_tap *nt)
168 {
169 int ret;
170
171 ret = __netlink_remove_tap(nt);
172 synchronize_net();
173
174 return ret;
175 }
176 EXPORT_SYMBOL_GPL(netlink_remove_tap);
177
178 static bool netlink_filter_tap(const struct sk_buff *skb)
179 {
180 struct sock *sk = skb->sk;
181
182 /* We take the more conservative approach and
183 * whitelist socket protocols that may pass.
184 */
185 switch (sk->sk_protocol) {
186 case NETLINK_ROUTE:
187 case NETLINK_USERSOCK:
188 case NETLINK_SOCK_DIAG:
189 case NETLINK_NFLOG:
190 case NETLINK_XFRM:
191 case NETLINK_FIB_LOOKUP:
192 case NETLINK_NETFILTER:
193 case NETLINK_GENERIC:
194 return true;
195 }
196
197 return false;
198 }
199
200 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
201 struct net_device *dev)
202 {
203 struct sk_buff *nskb;
204 struct sock *sk = skb->sk;
205 int ret = -ENOMEM;
206
207 dev_hold(dev);
208 nskb = skb_clone(skb, GFP_ATOMIC);
209 if (nskb) {
210 nskb->dev = dev;
211 nskb->protocol = htons((u16) sk->sk_protocol);
212 nskb->pkt_type = netlink_is_kernel(sk) ?
213 PACKET_KERNEL : PACKET_USER;
214 skb_reset_network_header(nskb);
215 ret = dev_queue_xmit(nskb);
216 if (unlikely(ret > 0))
217 ret = net_xmit_errno(ret);
218 }
219
220 dev_put(dev);
221 return ret;
222 }
223
224 static void __netlink_deliver_tap(struct sk_buff *skb)
225 {
226 int ret;
227 struct netlink_tap *tmp;
228
229 if (!netlink_filter_tap(skb))
230 return;
231
232 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
233 ret = __netlink_deliver_tap_skb(skb, tmp->dev);
234 if (unlikely(ret))
235 break;
236 }
237 }
238
239 static void netlink_deliver_tap(struct sk_buff *skb)
240 {
241 rcu_read_lock();
242
243 if (unlikely(!list_empty(&netlink_tap_all)))
244 __netlink_deliver_tap(skb);
245
246 rcu_read_unlock();
247 }
248
249 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
250 struct sk_buff *skb)
251 {
252 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
253 netlink_deliver_tap(skb);
254 }
255
256 static void netlink_overrun(struct sock *sk)
257 {
258 struct netlink_sock *nlk = nlk_sk(sk);
259
260 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
261 if (!test_and_set_bit(NETLINK_S_CONGESTED,
262 &nlk_sk(sk)->state)) {
263 sk->sk_err = ENOBUFS;
264 sk->sk_error_report(sk);
265 }
266 }
267 atomic_inc(&sk->sk_drops);
268 }
269
270 static void netlink_rcv_wake(struct sock *sk)
271 {
272 struct netlink_sock *nlk = nlk_sk(sk);
273
274 if (skb_queue_empty(&sk->sk_receive_queue))
275 clear_bit(NETLINK_S_CONGESTED, &nlk->state);
276 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
277 wake_up_interruptible(&nlk->wait);
278 }
279
280 #ifdef CONFIG_NETLINK_MMAP
281 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
282 {
283 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
284 }
285
286 static bool netlink_rx_is_mmaped(struct sock *sk)
287 {
288 return nlk_sk(sk)->rx_ring.pg_vec != NULL;
289 }
290
291 static bool netlink_tx_is_mmaped(struct sock *sk)
292 {
293 return nlk_sk(sk)->tx_ring.pg_vec != NULL;
294 }
295
296 static __pure struct page *pgvec_to_page(const void *addr)
297 {
298 if (is_vmalloc_addr(addr))
299 return vmalloc_to_page(addr);
300 else
301 return virt_to_page(addr);
302 }
303
304 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
305 {
306 unsigned int i;
307
308 for (i = 0; i < len; i++) {
309 if (pg_vec[i] != NULL) {
310 if (is_vmalloc_addr(pg_vec[i]))
311 vfree(pg_vec[i]);
312 else
313 free_pages((unsigned long)pg_vec[i], order);
314 }
315 }
316 kfree(pg_vec);
317 }
318
319 static void *alloc_one_pg_vec_page(unsigned long order)
320 {
321 void *buffer;
322 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
323 __GFP_NOWARN | __GFP_NORETRY;
324
325 buffer = (void *)__get_free_pages(gfp_flags, order);
326 if (buffer != NULL)
327 return buffer;
328
329 buffer = vzalloc((1 << order) * PAGE_SIZE);
330 if (buffer != NULL)
331 return buffer;
332
333 gfp_flags &= ~__GFP_NORETRY;
334 return (void *)__get_free_pages(gfp_flags, order);
335 }
336
337 static void **alloc_pg_vec(struct netlink_sock *nlk,
338 struct nl_mmap_req *req, unsigned int order)
339 {
340 unsigned int block_nr = req->nm_block_nr;
341 unsigned int i;
342 void **pg_vec;
343
344 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
345 if (pg_vec == NULL)
346 return NULL;
347
348 for (i = 0; i < block_nr; i++) {
349 pg_vec[i] = alloc_one_pg_vec_page(order);
350 if (pg_vec[i] == NULL)
351 goto err1;
352 }
353
354 return pg_vec;
355 err1:
356 free_pg_vec(pg_vec, order, block_nr);
357 return NULL;
358 }
359
360 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
361 bool closing, bool tx_ring)
362 {
363 struct netlink_sock *nlk = nlk_sk(sk);
364 struct netlink_ring *ring;
365 struct sk_buff_head *queue;
366 void **pg_vec = NULL;
367 unsigned int order = 0;
368 int err;
369
370 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
371 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
372
373 if (!closing) {
374 if (atomic_read(&nlk->mapped))
375 return -EBUSY;
376 if (atomic_read(&ring->pending))
377 return -EBUSY;
378 }
379
380 if (req->nm_block_nr) {
381 if (ring->pg_vec != NULL)
382 return -EBUSY;
383
384 if ((int)req->nm_block_size <= 0)
385 return -EINVAL;
386 if (!PAGE_ALIGNED(req->nm_block_size))
387 return -EINVAL;
388 if (req->nm_frame_size < NL_MMAP_HDRLEN)
389 return -EINVAL;
390 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
391 return -EINVAL;
392
393 ring->frames_per_block = req->nm_block_size /
394 req->nm_frame_size;
395 if (ring->frames_per_block == 0)
396 return -EINVAL;
397 if (ring->frames_per_block * req->nm_block_nr !=
398 req->nm_frame_nr)
399 return -EINVAL;
400
401 order = get_order(req->nm_block_size);
402 pg_vec = alloc_pg_vec(nlk, req, order);
403 if (pg_vec == NULL)
404 return -ENOMEM;
405 } else {
406 if (req->nm_frame_nr)
407 return -EINVAL;
408 }
409
410 err = -EBUSY;
411 mutex_lock(&nlk->pg_vec_lock);
412 if (closing || atomic_read(&nlk->mapped) == 0) {
413 err = 0;
414 spin_lock_bh(&queue->lock);
415
416 ring->frame_max = req->nm_frame_nr - 1;
417 ring->head = 0;
418 ring->frame_size = req->nm_frame_size;
419 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
420
421 swap(ring->pg_vec_len, req->nm_block_nr);
422 swap(ring->pg_vec_order, order);
423 swap(ring->pg_vec, pg_vec);
424
425 __skb_queue_purge(queue);
426 spin_unlock_bh(&queue->lock);
427
428 WARN_ON(atomic_read(&nlk->mapped));
429 }
430 mutex_unlock(&nlk->pg_vec_lock);
431
432 if (pg_vec)
433 free_pg_vec(pg_vec, order, req->nm_block_nr);
434 return err;
435 }
436
437 static void netlink_mm_open(struct vm_area_struct *vma)
438 {
439 struct file *file = vma->vm_file;
440 struct socket *sock = file->private_data;
441 struct sock *sk = sock->sk;
442
443 if (sk)
444 atomic_inc(&nlk_sk(sk)->mapped);
445 }
446
447 static void netlink_mm_close(struct vm_area_struct *vma)
448 {
449 struct file *file = vma->vm_file;
450 struct socket *sock = file->private_data;
451 struct sock *sk = sock->sk;
452
453 if (sk)
454 atomic_dec(&nlk_sk(sk)->mapped);
455 }
456
457 static const struct vm_operations_struct netlink_mmap_ops = {
458 .open = netlink_mm_open,
459 .close = netlink_mm_close,
460 };
461
462 static int netlink_mmap(struct file *file, struct socket *sock,
463 struct vm_area_struct *vma)
464 {
465 struct sock *sk = sock->sk;
466 struct netlink_sock *nlk = nlk_sk(sk);
467 struct netlink_ring *ring;
468 unsigned long start, size, expected;
469 unsigned int i;
470 int err = -EINVAL;
471
472 if (vma->vm_pgoff)
473 return -EINVAL;
474
475 mutex_lock(&nlk->pg_vec_lock);
476
477 expected = 0;
478 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
479 if (ring->pg_vec == NULL)
480 continue;
481 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
482 }
483
484 if (expected == 0)
485 goto out;
486
487 size = vma->vm_end - vma->vm_start;
488 if (size != expected)
489 goto out;
490
491 start = vma->vm_start;
492 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
493 if (ring->pg_vec == NULL)
494 continue;
495
496 for (i = 0; i < ring->pg_vec_len; i++) {
497 struct page *page;
498 void *kaddr = ring->pg_vec[i];
499 unsigned int pg_num;
500
501 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
502 page = pgvec_to_page(kaddr);
503 err = vm_insert_page(vma, start, page);
504 if (err < 0)
505 goto out;
506 start += PAGE_SIZE;
507 kaddr += PAGE_SIZE;
508 }
509 }
510 }
511
512 atomic_inc(&nlk->mapped);
513 vma->vm_ops = &netlink_mmap_ops;
514 err = 0;
515 out:
516 mutex_unlock(&nlk->pg_vec_lock);
517 return err;
518 }
519
520 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
521 {
522 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
523 struct page *p_start, *p_end;
524
525 /* First page is flushed through netlink_{get,set}_status */
526 p_start = pgvec_to_page(hdr + PAGE_SIZE);
527 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
528 while (p_start <= p_end) {
529 flush_dcache_page(p_start);
530 p_start++;
531 }
532 #endif
533 }
534
535 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
536 {
537 smp_rmb();
538 flush_dcache_page(pgvec_to_page(hdr));
539 return hdr->nm_status;
540 }
541
542 static void netlink_set_status(struct nl_mmap_hdr *hdr,
543 enum nl_mmap_status status)
544 {
545 smp_mb();
546 hdr->nm_status = status;
547 flush_dcache_page(pgvec_to_page(hdr));
548 }
549
550 static struct nl_mmap_hdr *
551 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
552 {
553 unsigned int pg_vec_pos, frame_off;
554
555 pg_vec_pos = pos / ring->frames_per_block;
556 frame_off = pos % ring->frames_per_block;
557
558 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
559 }
560
561 static struct nl_mmap_hdr *
562 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
563 enum nl_mmap_status status)
564 {
565 struct nl_mmap_hdr *hdr;
566
567 hdr = __netlink_lookup_frame(ring, pos);
568 if (netlink_get_status(hdr) != status)
569 return NULL;
570
571 return hdr;
572 }
573
574 static struct nl_mmap_hdr *
575 netlink_current_frame(const struct netlink_ring *ring,
576 enum nl_mmap_status status)
577 {
578 return netlink_lookup_frame(ring, ring->head, status);
579 }
580
581 static struct nl_mmap_hdr *
582 netlink_previous_frame(const struct netlink_ring *ring,
583 enum nl_mmap_status status)
584 {
585 unsigned int prev;
586
587 prev = ring->head ? ring->head - 1 : ring->frame_max;
588 return netlink_lookup_frame(ring, prev, status);
589 }
590
591 static void netlink_increment_head(struct netlink_ring *ring)
592 {
593 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
594 }
595
596 static void netlink_forward_ring(struct netlink_ring *ring)
597 {
598 unsigned int head = ring->head, pos = head;
599 const struct nl_mmap_hdr *hdr;
600
601 do {
602 hdr = __netlink_lookup_frame(ring, pos);
603 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
604 break;
605 if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
606 break;
607 netlink_increment_head(ring);
608 } while (ring->head != head);
609 }
610
611 static bool netlink_dump_space(struct netlink_sock *nlk)
612 {
613 struct netlink_ring *ring = &nlk->rx_ring;
614 struct nl_mmap_hdr *hdr;
615 unsigned int n;
616
617 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
618 if (hdr == NULL)
619 return false;
620
621 n = ring->head + ring->frame_max / 2;
622 if (n > ring->frame_max)
623 n -= ring->frame_max;
624
625 hdr = __netlink_lookup_frame(ring, n);
626
627 return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
628 }
629
630 static unsigned int netlink_poll(struct file *file, struct socket *sock,
631 poll_table *wait)
632 {
633 struct sock *sk = sock->sk;
634 struct netlink_sock *nlk = nlk_sk(sk);
635 unsigned int mask;
636 int err;
637
638 if (nlk->rx_ring.pg_vec != NULL) {
639 /* Memory mapped sockets don't call recvmsg(), so flow control
640 * for dumps is performed here. A dump is allowed to continue
641 * if at least half the ring is unused.
642 */
643 while (nlk->cb_running && netlink_dump_space(nlk)) {
644 err = netlink_dump(sk);
645 if (err < 0) {
646 sk->sk_err = -err;
647 sk->sk_error_report(sk);
648 break;
649 }
650 }
651 netlink_rcv_wake(sk);
652 }
653
654 mask = datagram_poll(file, sock, wait);
655
656 spin_lock_bh(&sk->sk_receive_queue.lock);
657 if (nlk->rx_ring.pg_vec) {
658 netlink_forward_ring(&nlk->rx_ring);
659 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
660 mask |= POLLIN | POLLRDNORM;
661 }
662 spin_unlock_bh(&sk->sk_receive_queue.lock);
663
664 spin_lock_bh(&sk->sk_write_queue.lock);
665 if (nlk->tx_ring.pg_vec) {
666 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
667 mask |= POLLOUT | POLLWRNORM;
668 }
669 spin_unlock_bh(&sk->sk_write_queue.lock);
670
671 return mask;
672 }
673
674 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
675 {
676 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
677 }
678
679 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
680 struct netlink_ring *ring,
681 struct nl_mmap_hdr *hdr)
682 {
683 unsigned int size;
684 void *data;
685
686 size = ring->frame_size - NL_MMAP_HDRLEN;
687 data = (void *)hdr + NL_MMAP_HDRLEN;
688
689 skb->head = data;
690 skb->data = data;
691 skb_reset_tail_pointer(skb);
692 skb->end = skb->tail + size;
693 skb->len = 0;
694
695 skb->destructor = netlink_skb_destructor;
696 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
697 NETLINK_CB(skb).sk = sk;
698 }
699
700 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
701 u32 dst_portid, u32 dst_group,
702 struct scm_cookie *scm)
703 {
704 struct netlink_sock *nlk = nlk_sk(sk);
705 struct netlink_ring *ring;
706 struct nl_mmap_hdr *hdr;
707 struct sk_buff *skb;
708 unsigned int maxlen;
709 int err = 0, len = 0;
710
711 mutex_lock(&nlk->pg_vec_lock);
712
713 ring = &nlk->tx_ring;
714 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
715
716 do {
717 unsigned int nm_len;
718
719 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
720 if (hdr == NULL) {
721 if (!(msg->msg_flags & MSG_DONTWAIT) &&
722 atomic_read(&nlk->tx_ring.pending))
723 schedule();
724 continue;
725 }
726
727 nm_len = ACCESS_ONCE(hdr->nm_len);
728 if (nm_len > maxlen) {
729 err = -EINVAL;
730 goto out;
731 }
732
733 netlink_frame_flush_dcache(hdr, nm_len);
734
735 skb = alloc_skb(nm_len, GFP_KERNEL);
736 if (skb == NULL) {
737 err = -ENOBUFS;
738 goto out;
739 }
740 __skb_put(skb, nm_len);
741 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
742 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
743
744 netlink_increment_head(ring);
745
746 NETLINK_CB(skb).portid = nlk->portid;
747 NETLINK_CB(skb).dst_group = dst_group;
748 NETLINK_CB(skb).creds = scm->creds;
749
750 err = security_netlink_send(sk, skb);
751 if (err) {
752 kfree_skb(skb);
753 goto out;
754 }
755
756 if (unlikely(dst_group)) {
757 atomic_inc(&skb->users);
758 netlink_broadcast(sk, skb, dst_portid, dst_group,
759 GFP_KERNEL);
760 }
761 err = netlink_unicast(sk, skb, dst_portid,
762 msg->msg_flags & MSG_DONTWAIT);
763 if (err < 0)
764 goto out;
765 len += err;
766
767 } while (hdr != NULL ||
768 (!(msg->msg_flags & MSG_DONTWAIT) &&
769 atomic_read(&nlk->tx_ring.pending)));
770
771 if (len > 0)
772 err = len;
773 out:
774 mutex_unlock(&nlk->pg_vec_lock);
775 return err;
776 }
777
778 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
779 {
780 struct nl_mmap_hdr *hdr;
781
782 hdr = netlink_mmap_hdr(skb);
783 hdr->nm_len = skb->len;
784 hdr->nm_group = NETLINK_CB(skb).dst_group;
785 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
786 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
787 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
788 netlink_frame_flush_dcache(hdr, hdr->nm_len);
789 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
790
791 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
792 kfree_skb(skb);
793 }
794
795 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
796 {
797 struct netlink_sock *nlk = nlk_sk(sk);
798 struct netlink_ring *ring = &nlk->rx_ring;
799 struct nl_mmap_hdr *hdr;
800
801 spin_lock_bh(&sk->sk_receive_queue.lock);
802 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
803 if (hdr == NULL) {
804 spin_unlock_bh(&sk->sk_receive_queue.lock);
805 kfree_skb(skb);
806 netlink_overrun(sk);
807 return;
808 }
809 netlink_increment_head(ring);
810 __skb_queue_tail(&sk->sk_receive_queue, skb);
811 spin_unlock_bh(&sk->sk_receive_queue.lock);
812
813 hdr->nm_len = skb->len;
814 hdr->nm_group = NETLINK_CB(skb).dst_group;
815 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
816 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
817 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
818 netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
819 }
820
821 #else /* CONFIG_NETLINK_MMAP */
822 #define netlink_skb_is_mmaped(skb) false
823 #define netlink_rx_is_mmaped(sk) false
824 #define netlink_tx_is_mmaped(sk) false
825 #define netlink_mmap sock_no_mmap
826 #define netlink_poll datagram_poll
827 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0
828 #endif /* CONFIG_NETLINK_MMAP */
829
830 static void netlink_skb_destructor(struct sk_buff *skb)
831 {
832 #ifdef CONFIG_NETLINK_MMAP
833 struct nl_mmap_hdr *hdr;
834 struct netlink_ring *ring;
835 struct sock *sk;
836
837 /* If a packet from the kernel to userspace was freed because of an
838 * error without being delivered to userspace, the kernel must reset
839 * the status. In the direction userspace to kernel, the status is
840 * always reset here after the packet was processed and freed.
841 */
842 if (netlink_skb_is_mmaped(skb)) {
843 hdr = netlink_mmap_hdr(skb);
844 sk = NETLINK_CB(skb).sk;
845
846 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
847 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
848 ring = &nlk_sk(sk)->tx_ring;
849 } else {
850 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
851 hdr->nm_len = 0;
852 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
853 }
854 ring = &nlk_sk(sk)->rx_ring;
855 }
856
857 WARN_ON(atomic_read(&ring->pending) == 0);
858 atomic_dec(&ring->pending);
859 sock_put(sk);
860
861 skb->head = NULL;
862 }
863 #endif
864 if (is_vmalloc_addr(skb->head)) {
865 if (!skb->cloned ||
866 !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
867 vfree(skb->head);
868
869 skb->head = NULL;
870 }
871 if (skb->sk != NULL)
872 sock_rfree(skb);
873 }
874
875 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
876 {
877 WARN_ON(skb->sk != NULL);
878 skb->sk = sk;
879 skb->destructor = netlink_skb_destructor;
880 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
881 sk_mem_charge(sk, skb->truesize);
882 }
883
884 static void netlink_sock_destruct(struct sock *sk)
885 {
886 struct netlink_sock *nlk = nlk_sk(sk);
887
888 if (nlk->cb_running) {
889 if (nlk->cb.done)
890 nlk->cb.done(&nlk->cb);
891
892 module_put(nlk->cb.module);
893 kfree_skb(nlk->cb.skb);
894 }
895
896 skb_queue_purge(&sk->sk_receive_queue);
897 #ifdef CONFIG_NETLINK_MMAP
898 if (1) {
899 struct nl_mmap_req req;
900
901 memset(&req, 0, sizeof(req));
902 if (nlk->rx_ring.pg_vec)
903 netlink_set_ring(sk, &req, true, false);
904 memset(&req, 0, sizeof(req));
905 if (nlk->tx_ring.pg_vec)
906 netlink_set_ring(sk, &req, true, true);
907 }
908 #endif /* CONFIG_NETLINK_MMAP */
909
910 if (!sock_flag(sk, SOCK_DEAD)) {
911 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
912 return;
913 }
914
915 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
916 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
917 WARN_ON(nlk_sk(sk)->groups);
918 }
919
920 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
921 * SMP. Look, when several writers sleep and reader wakes them up, all but one
922 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
923 * this, _but_ remember, it adds useless work on UP machines.
924 */
925
926 void netlink_table_grab(void)
927 __acquires(nl_table_lock)
928 {
929 might_sleep();
930
931 write_lock_irq(&nl_table_lock);
932
933 if (atomic_read(&nl_table_users)) {
934 DECLARE_WAITQUEUE(wait, current);
935
936 add_wait_queue_exclusive(&nl_table_wait, &wait);
937 for (;;) {
938 set_current_state(TASK_UNINTERRUPTIBLE);
939 if (atomic_read(&nl_table_users) == 0)
940 break;
941 write_unlock_irq(&nl_table_lock);
942 schedule();
943 write_lock_irq(&nl_table_lock);
944 }
945
946 __set_current_state(TASK_RUNNING);
947 remove_wait_queue(&nl_table_wait, &wait);
948 }
949 }
950
951 void netlink_table_ungrab(void)
952 __releases(nl_table_lock)
953 {
954 write_unlock_irq(&nl_table_lock);
955 wake_up(&nl_table_wait);
956 }
957
958 static inline void
959 netlink_lock_table(void)
960 {
961 /* read_lock() synchronizes us to netlink_table_grab */
962
963 read_lock(&nl_table_lock);
964 atomic_inc(&nl_table_users);
965 read_unlock(&nl_table_lock);
966 }
967
968 static inline void
969 netlink_unlock_table(void)
970 {
971 if (atomic_dec_and_test(&nl_table_users))
972 wake_up(&nl_table_wait);
973 }
974
975 struct netlink_compare_arg
976 {
977 possible_net_t pnet;
978 u32 portid;
979 };
980
981 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
982 #define netlink_compare_arg_len \
983 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
984
985 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
986 const void *ptr)
987 {
988 const struct netlink_compare_arg *x = arg->key;
989 const struct netlink_sock *nlk = ptr;
990
991 return nlk->portid != x->portid ||
992 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
993 }
994
995 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
996 struct net *net, u32 portid)
997 {
998 memset(arg, 0, sizeof(*arg));
999 write_pnet(&arg->pnet, net);
1000 arg->portid = portid;
1001 }
1002
1003 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1004 struct net *net)
1005 {
1006 struct netlink_compare_arg arg;
1007
1008 netlink_compare_arg_init(&arg, net, portid);
1009 return rhashtable_lookup_fast(&table->hash, &arg,
1010 netlink_rhashtable_params);
1011 }
1012
1013 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
1014 {
1015 struct netlink_compare_arg arg;
1016
1017 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
1018 return rhashtable_lookup_insert_key(&table->hash, &arg,
1019 &nlk_sk(sk)->node,
1020 netlink_rhashtable_params);
1021 }
1022
1023 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1024 {
1025 struct netlink_table *table = &nl_table[protocol];
1026 struct sock *sk;
1027
1028 rcu_read_lock();
1029 sk = __netlink_lookup(table, portid, net);
1030 if (sk)
1031 sock_hold(sk);
1032 rcu_read_unlock();
1033
1034 return sk;
1035 }
1036
1037 static const struct proto_ops netlink_ops;
1038
1039 static void
1040 netlink_update_listeners(struct sock *sk)
1041 {
1042 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1043 unsigned long mask;
1044 unsigned int i;
1045 struct listeners *listeners;
1046
1047 listeners = nl_deref_protected(tbl->listeners);
1048 if (!listeners)
1049 return;
1050
1051 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1052 mask = 0;
1053 sk_for_each_bound(sk, &tbl->mc_list) {
1054 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1055 mask |= nlk_sk(sk)->groups[i];
1056 }
1057 listeners->masks[i] = mask;
1058 }
1059 /* this function is only called with the netlink table "grabbed", which
1060 * makes sure updates are visible before bind or setsockopt return. */
1061 }
1062
1063 static int netlink_insert(struct sock *sk, u32 portid)
1064 {
1065 struct netlink_table *table = &nl_table[sk->sk_protocol];
1066 int err;
1067
1068 lock_sock(sk);
1069
1070 err = -EBUSY;
1071 if (nlk_sk(sk)->portid)
1072 goto err;
1073
1074 err = -ENOMEM;
1075 if (BITS_PER_LONG > 32 &&
1076 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
1077 goto err;
1078
1079 nlk_sk(sk)->portid = portid;
1080 sock_hold(sk);
1081
1082 err = __netlink_insert(table, sk);
1083 if (err) {
1084 if (err == -EEXIST)
1085 err = -EADDRINUSE;
1086 nlk_sk(sk)->portid = 0;
1087 sock_put(sk);
1088 }
1089
1090 err:
1091 release_sock(sk);
1092 return err;
1093 }
1094
1095 static void netlink_remove(struct sock *sk)
1096 {
1097 struct netlink_table *table;
1098
1099 table = &nl_table[sk->sk_protocol];
1100 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
1101 netlink_rhashtable_params)) {
1102 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1103 __sock_put(sk);
1104 }
1105
1106 netlink_table_grab();
1107 if (nlk_sk(sk)->subscriptions) {
1108 __sk_del_bind_node(sk);
1109 netlink_update_listeners(sk);
1110 }
1111 if (sk->sk_protocol == NETLINK_GENERIC)
1112 atomic_inc(&genl_sk_destructing_cnt);
1113 netlink_table_ungrab();
1114 }
1115
1116 static struct proto netlink_proto = {
1117 .name = "NETLINK",
1118 .owner = THIS_MODULE,
1119 .obj_size = sizeof(struct netlink_sock),
1120 };
1121
1122 static int __netlink_create(struct net *net, struct socket *sock,
1123 struct mutex *cb_mutex, int protocol,
1124 int kern)
1125 {
1126 struct sock *sk;
1127 struct netlink_sock *nlk;
1128
1129 sock->ops = &netlink_ops;
1130
1131 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
1132 if (!sk)
1133 return -ENOMEM;
1134
1135 sock_init_data(sock, sk);
1136
1137 nlk = nlk_sk(sk);
1138 if (cb_mutex) {
1139 nlk->cb_mutex = cb_mutex;
1140 } else {
1141 nlk->cb_mutex = &nlk->cb_def_mutex;
1142 mutex_init(nlk->cb_mutex);
1143 }
1144 init_waitqueue_head(&nlk->wait);
1145 #ifdef CONFIG_NETLINK_MMAP
1146 mutex_init(&nlk->pg_vec_lock);
1147 #endif
1148
1149 sk->sk_destruct = netlink_sock_destruct;
1150 sk->sk_protocol = protocol;
1151 return 0;
1152 }
1153
1154 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1155 int kern)
1156 {
1157 struct module *module = NULL;
1158 struct mutex *cb_mutex;
1159 struct netlink_sock *nlk;
1160 int (*bind)(struct net *net, int group);
1161 void (*unbind)(struct net *net, int group);
1162 int err = 0;
1163
1164 sock->state = SS_UNCONNECTED;
1165
1166 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1167 return -ESOCKTNOSUPPORT;
1168
1169 if (protocol < 0 || protocol >= MAX_LINKS)
1170 return -EPROTONOSUPPORT;
1171
1172 netlink_lock_table();
1173 #ifdef CONFIG_MODULES
1174 if (!nl_table[protocol].registered) {
1175 netlink_unlock_table();
1176 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1177 netlink_lock_table();
1178 }
1179 #endif
1180 if (nl_table[protocol].registered &&
1181 try_module_get(nl_table[protocol].module))
1182 module = nl_table[protocol].module;
1183 else
1184 err = -EPROTONOSUPPORT;
1185 cb_mutex = nl_table[protocol].cb_mutex;
1186 bind = nl_table[protocol].bind;
1187 unbind = nl_table[protocol].unbind;
1188 netlink_unlock_table();
1189
1190 if (err < 0)
1191 goto out;
1192
1193 err = __netlink_create(net, sock, cb_mutex, protocol, kern);
1194 if (err < 0)
1195 goto out_module;
1196
1197 local_bh_disable();
1198 sock_prot_inuse_add(net, &netlink_proto, 1);
1199 local_bh_enable();
1200
1201 nlk = nlk_sk(sock->sk);
1202 nlk->module = module;
1203 nlk->netlink_bind = bind;
1204 nlk->netlink_unbind = unbind;
1205 out:
1206 return err;
1207
1208 out_module:
1209 module_put(module);
1210 goto out;
1211 }
1212
1213 static void deferred_put_nlk_sk(struct rcu_head *head)
1214 {
1215 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
1216
1217 sock_put(&nlk->sk);
1218 }
1219
1220 static int netlink_release(struct socket *sock)
1221 {
1222 struct sock *sk = sock->sk;
1223 struct netlink_sock *nlk;
1224
1225 if (!sk)
1226 return 0;
1227
1228 netlink_remove(sk);
1229 sock_orphan(sk);
1230 nlk = nlk_sk(sk);
1231
1232 /*
1233 * OK. Socket is unlinked, any packets that arrive now
1234 * will be purged.
1235 */
1236
1237 /* must not acquire netlink_table_lock in any way again before unbind
1238 * and notifying genetlink is done as otherwise it might deadlock
1239 */
1240 if (nlk->netlink_unbind) {
1241 int i;
1242
1243 for (i = 0; i < nlk->ngroups; i++)
1244 if (test_bit(i, nlk->groups))
1245 nlk->netlink_unbind(sock_net(sk), i + 1);
1246 }
1247 if (sk->sk_protocol == NETLINK_GENERIC &&
1248 atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1249 wake_up(&genl_sk_destructing_waitq);
1250
1251 sock->sk = NULL;
1252 wake_up_interruptible_all(&nlk->wait);
1253
1254 skb_queue_purge(&sk->sk_write_queue);
1255
1256 if (nlk->portid) {
1257 struct netlink_notify n = {
1258 .net = sock_net(sk),
1259 .protocol = sk->sk_protocol,
1260 .portid = nlk->portid,
1261 };
1262 atomic_notifier_call_chain(&netlink_chain,
1263 NETLINK_URELEASE, &n);
1264 }
1265
1266 module_put(nlk->module);
1267
1268 if (netlink_is_kernel(sk)) {
1269 netlink_table_grab();
1270 BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1271 if (--nl_table[sk->sk_protocol].registered == 0) {
1272 struct listeners *old;
1273
1274 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1275 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1276 kfree_rcu(old, rcu);
1277 nl_table[sk->sk_protocol].module = NULL;
1278 nl_table[sk->sk_protocol].bind = NULL;
1279 nl_table[sk->sk_protocol].unbind = NULL;
1280 nl_table[sk->sk_protocol].flags = 0;
1281 nl_table[sk->sk_protocol].registered = 0;
1282 }
1283 netlink_table_ungrab();
1284 }
1285
1286 kfree(nlk->groups);
1287 nlk->groups = NULL;
1288
1289 local_bh_disable();
1290 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1291 local_bh_enable();
1292 call_rcu(&nlk->rcu, deferred_put_nlk_sk);
1293 return 0;
1294 }
1295
1296 static int netlink_autobind(struct socket *sock)
1297 {
1298 struct sock *sk = sock->sk;
1299 struct net *net = sock_net(sk);
1300 struct netlink_table *table = &nl_table[sk->sk_protocol];
1301 s32 portid = task_tgid_vnr(current);
1302 int err;
1303 s32 rover = -4096;
1304 bool ok;
1305
1306 retry:
1307 cond_resched();
1308 rcu_read_lock();
1309 ok = !__netlink_lookup(table, portid, net);
1310 rcu_read_unlock();
1311 if (!ok) {
1312 /* Bind collision, search negative portid values. */
1313 if (rover == -4096)
1314 /* rover will be in range [S32_MIN, -4097] */
1315 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
1316 else if (rover >= -4096)
1317 rover = -4097;
1318 portid = rover--;
1319 goto retry;
1320 }
1321
1322 err = netlink_insert(sk, portid);
1323 if (err == -EADDRINUSE)
1324 goto retry;
1325
1326 /* If 2 threads race to autobind, that is fine. */
1327 if (err == -EBUSY)
1328 err = 0;
1329
1330 return err;
1331 }
1332
1333 /**
1334 * __netlink_ns_capable - General netlink message capability test
1335 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1336 * @user_ns: The user namespace of the capability to use
1337 * @cap: The capability to use
1338 *
1339 * Test to see if the opener of the socket we received the message
1340 * from had when the netlink socket was created and the sender of the
1341 * message has has the capability @cap in the user namespace @user_ns.
1342 */
1343 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1344 struct user_namespace *user_ns, int cap)
1345 {
1346 return ((nsp->flags & NETLINK_SKB_DST) ||
1347 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1348 ns_capable(user_ns, cap);
1349 }
1350 EXPORT_SYMBOL(__netlink_ns_capable);
1351
1352 /**
1353 * netlink_ns_capable - General netlink message capability test
1354 * @skb: socket buffer holding a netlink command from userspace
1355 * @user_ns: The user namespace of the capability to use
1356 * @cap: The capability to use
1357 *
1358 * Test to see if the opener of the socket we received the message
1359 * from had when the netlink socket was created and the sender of the
1360 * message has has the capability @cap in the user namespace @user_ns.
1361 */
1362 bool netlink_ns_capable(const struct sk_buff *skb,
1363 struct user_namespace *user_ns, int cap)
1364 {
1365 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1366 }
1367 EXPORT_SYMBOL(netlink_ns_capable);
1368
1369 /**
1370 * netlink_capable - Netlink global message capability test
1371 * @skb: socket buffer holding a netlink command from userspace
1372 * @cap: The capability to use
1373 *
1374 * Test to see if the opener of the socket we received the message
1375 * from had when the netlink socket was created and the sender of the
1376 * message has has the capability @cap in all user namespaces.
1377 */
1378 bool netlink_capable(const struct sk_buff *skb, int cap)
1379 {
1380 return netlink_ns_capable(skb, &init_user_ns, cap);
1381 }
1382 EXPORT_SYMBOL(netlink_capable);
1383
1384 /**
1385 * netlink_net_capable - Netlink network namespace message capability test
1386 * @skb: socket buffer holding a netlink command from userspace
1387 * @cap: The capability to use
1388 *
1389 * Test to see if the opener of the socket we received the message
1390 * from had when the netlink socket was created and the sender of the
1391 * message has has the capability @cap over the network namespace of
1392 * the socket we received the message from.
1393 */
1394 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1395 {
1396 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1397 }
1398 EXPORT_SYMBOL(netlink_net_capable);
1399
1400 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1401 {
1402 return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1403 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1404 }
1405
1406 static void
1407 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1408 {
1409 struct netlink_sock *nlk = nlk_sk(sk);
1410
1411 if (nlk->subscriptions && !subscriptions)
1412 __sk_del_bind_node(sk);
1413 else if (!nlk->subscriptions && subscriptions)
1414 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1415 nlk->subscriptions = subscriptions;
1416 }
1417
1418 static int netlink_realloc_groups(struct sock *sk)
1419 {
1420 struct netlink_sock *nlk = nlk_sk(sk);
1421 unsigned int groups;
1422 unsigned long *new_groups;
1423 int err = 0;
1424
1425 netlink_table_grab();
1426
1427 groups = nl_table[sk->sk_protocol].groups;
1428 if (!nl_table[sk->sk_protocol].registered) {
1429 err = -ENOENT;
1430 goto out_unlock;
1431 }
1432
1433 if (nlk->ngroups >= groups)
1434 goto out_unlock;
1435
1436 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1437 if (new_groups == NULL) {
1438 err = -ENOMEM;
1439 goto out_unlock;
1440 }
1441 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1442 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1443
1444 nlk->groups = new_groups;
1445 nlk->ngroups = groups;
1446 out_unlock:
1447 netlink_table_ungrab();
1448 return err;
1449 }
1450
1451 static void netlink_undo_bind(int group, long unsigned int groups,
1452 struct sock *sk)
1453 {
1454 struct netlink_sock *nlk = nlk_sk(sk);
1455 int undo;
1456
1457 if (!nlk->netlink_unbind)
1458 return;
1459
1460 for (undo = 0; undo < group; undo++)
1461 if (test_bit(undo, &groups))
1462 nlk->netlink_unbind(sock_net(sk), undo + 1);
1463 }
1464
1465 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1466 int addr_len)
1467 {
1468 struct sock *sk = sock->sk;
1469 struct net *net = sock_net(sk);
1470 struct netlink_sock *nlk = nlk_sk(sk);
1471 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1472 int err;
1473 long unsigned int groups = nladdr->nl_groups;
1474
1475 if (addr_len < sizeof(struct sockaddr_nl))
1476 return -EINVAL;
1477
1478 if (nladdr->nl_family != AF_NETLINK)
1479 return -EINVAL;
1480
1481 /* Only superuser is allowed to listen multicasts */
1482 if (groups) {
1483 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1484 return -EPERM;
1485 err = netlink_realloc_groups(sk);
1486 if (err)
1487 return err;
1488 }
1489
1490 if (nlk->portid)
1491 if (nladdr->nl_pid != nlk->portid)
1492 return -EINVAL;
1493
1494 if (nlk->netlink_bind && groups) {
1495 int group;
1496
1497 for (group = 0; group < nlk->ngroups; group++) {
1498 if (!test_bit(group, &groups))
1499 continue;
1500 err = nlk->netlink_bind(net, group + 1);
1501 if (!err)
1502 continue;
1503 netlink_undo_bind(group, groups, sk);
1504 return err;
1505 }
1506 }
1507
1508 if (!nlk->portid) {
1509 err = nladdr->nl_pid ?
1510 netlink_insert(sk, nladdr->nl_pid) :
1511 netlink_autobind(sock);
1512 if (err) {
1513 netlink_undo_bind(nlk->ngroups, groups, sk);
1514 return err;
1515 }
1516 }
1517
1518 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1519 return 0;
1520
1521 netlink_table_grab();
1522 netlink_update_subscriptions(sk, nlk->subscriptions +
1523 hweight32(groups) -
1524 hweight32(nlk->groups[0]));
1525 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1526 netlink_update_listeners(sk);
1527 netlink_table_ungrab();
1528
1529 return 0;
1530 }
1531
1532 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1533 int alen, int flags)
1534 {
1535 int err = 0;
1536 struct sock *sk = sock->sk;
1537 struct netlink_sock *nlk = nlk_sk(sk);
1538 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1539
1540 if (alen < sizeof(addr->sa_family))
1541 return -EINVAL;
1542
1543 if (addr->sa_family == AF_UNSPEC) {
1544 sk->sk_state = NETLINK_UNCONNECTED;
1545 nlk->dst_portid = 0;
1546 nlk->dst_group = 0;
1547 return 0;
1548 }
1549 if (addr->sa_family != AF_NETLINK)
1550 return -EINVAL;
1551
1552 if ((nladdr->nl_groups || nladdr->nl_pid) &&
1553 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1554 return -EPERM;
1555
1556 if (!nlk->portid)
1557 err = netlink_autobind(sock);
1558
1559 if (err == 0) {
1560 sk->sk_state = NETLINK_CONNECTED;
1561 nlk->dst_portid = nladdr->nl_pid;
1562 nlk->dst_group = ffs(nladdr->nl_groups);
1563 }
1564
1565 return err;
1566 }
1567
1568 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1569 int *addr_len, int peer)
1570 {
1571 struct sock *sk = sock->sk;
1572 struct netlink_sock *nlk = nlk_sk(sk);
1573 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1574
1575 nladdr->nl_family = AF_NETLINK;
1576 nladdr->nl_pad = 0;
1577 *addr_len = sizeof(*nladdr);
1578
1579 if (peer) {
1580 nladdr->nl_pid = nlk->dst_portid;
1581 nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1582 } else {
1583 nladdr->nl_pid = nlk->portid;
1584 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1585 }
1586 return 0;
1587 }
1588
1589 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1590 {
1591 struct sock *sock;
1592 struct netlink_sock *nlk;
1593
1594 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1595 if (!sock)
1596 return ERR_PTR(-ECONNREFUSED);
1597
1598 /* Don't bother queuing skb if kernel socket has no input function */
1599 nlk = nlk_sk(sock);
1600 if (sock->sk_state == NETLINK_CONNECTED &&
1601 nlk->dst_portid != nlk_sk(ssk)->portid) {
1602 sock_put(sock);
1603 return ERR_PTR(-ECONNREFUSED);
1604 }
1605 return sock;
1606 }
1607
1608 struct sock *netlink_getsockbyfilp(struct file *filp)
1609 {
1610 struct inode *inode = file_inode(filp);
1611 struct sock *sock;
1612
1613 if (!S_ISSOCK(inode->i_mode))
1614 return ERR_PTR(-ENOTSOCK);
1615
1616 sock = SOCKET_I(inode)->sk;
1617 if (sock->sk_family != AF_NETLINK)
1618 return ERR_PTR(-EINVAL);
1619
1620 sock_hold(sock);
1621 return sock;
1622 }
1623
1624 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1625 int broadcast)
1626 {
1627 struct sk_buff *skb;
1628 void *data;
1629
1630 if (size <= NLMSG_GOODSIZE || broadcast)
1631 return alloc_skb(size, GFP_KERNEL);
1632
1633 size = SKB_DATA_ALIGN(size) +
1634 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1635
1636 data = vmalloc(size);
1637 if (data == NULL)
1638 return NULL;
1639
1640 skb = __build_skb(data, size);
1641 if (skb == NULL)
1642 vfree(data);
1643 else
1644 skb->destructor = netlink_skb_destructor;
1645
1646 return skb;
1647 }
1648
1649 /*
1650 * Attach a skb to a netlink socket.
1651 * The caller must hold a reference to the destination socket. On error, the
1652 * reference is dropped. The skb is not send to the destination, just all
1653 * all error checks are performed and memory in the queue is reserved.
1654 * Return values:
1655 * < 0: error. skb freed, reference to sock dropped.
1656 * 0: continue
1657 * 1: repeat lookup - reference dropped while waiting for socket memory.
1658 */
1659 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1660 long *timeo, struct sock *ssk)
1661 {
1662 struct netlink_sock *nlk;
1663
1664 nlk = nlk_sk(sk);
1665
1666 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1667 test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1668 !netlink_skb_is_mmaped(skb)) {
1669 DECLARE_WAITQUEUE(wait, current);
1670 if (!*timeo) {
1671 if (!ssk || netlink_is_kernel(ssk))
1672 netlink_overrun(sk);
1673 sock_put(sk);
1674 kfree_skb(skb);
1675 return -EAGAIN;
1676 }
1677
1678 __set_current_state(TASK_INTERRUPTIBLE);
1679 add_wait_queue(&nlk->wait, &wait);
1680
1681 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1682 test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1683 !sock_flag(sk, SOCK_DEAD))
1684 *timeo = schedule_timeout(*timeo);
1685
1686 __set_current_state(TASK_RUNNING);
1687 remove_wait_queue(&nlk->wait, &wait);
1688 sock_put(sk);
1689
1690 if (signal_pending(current)) {
1691 kfree_skb(skb);
1692 return sock_intr_errno(*timeo);
1693 }
1694 return 1;
1695 }
1696 netlink_skb_set_owner_r(skb, sk);
1697 return 0;
1698 }
1699
1700 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1701 {
1702 int len = skb->len;
1703
1704 netlink_deliver_tap(skb);
1705
1706 #ifdef CONFIG_NETLINK_MMAP
1707 if (netlink_skb_is_mmaped(skb))
1708 netlink_queue_mmaped_skb(sk, skb);
1709 else if (netlink_rx_is_mmaped(sk))
1710 netlink_ring_set_copied(sk, skb);
1711 else
1712 #endif /* CONFIG_NETLINK_MMAP */
1713 skb_queue_tail(&sk->sk_receive_queue, skb);
1714 sk->sk_data_ready(sk);
1715 return len;
1716 }
1717
1718 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1719 {
1720 int len = __netlink_sendskb(sk, skb);
1721
1722 sock_put(sk);
1723 return len;
1724 }
1725
1726 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1727 {
1728 kfree_skb(skb);
1729 sock_put(sk);
1730 }
1731
1732 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1733 {
1734 int delta;
1735
1736 WARN_ON(skb->sk != NULL);
1737 if (netlink_skb_is_mmaped(skb))
1738 return skb;
1739
1740 delta = skb->end - skb->tail;
1741 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1742 return skb;
1743
1744 if (skb_shared(skb)) {
1745 struct sk_buff *nskb = skb_clone(skb, allocation);
1746 if (!nskb)
1747 return skb;
1748 consume_skb(skb);
1749 skb = nskb;
1750 }
1751
1752 if (!pskb_expand_head(skb, 0, -delta, allocation))
1753 skb->truesize -= delta;
1754
1755 return skb;
1756 }
1757
1758 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1759 struct sock *ssk)
1760 {
1761 int ret;
1762 struct netlink_sock *nlk = nlk_sk(sk);
1763
1764 ret = -ECONNREFUSED;
1765 if (nlk->netlink_rcv != NULL) {
1766 ret = skb->len;
1767 netlink_skb_set_owner_r(skb, sk);
1768 NETLINK_CB(skb).sk = ssk;
1769 netlink_deliver_tap_kernel(sk, ssk, skb);
1770 nlk->netlink_rcv(skb);
1771 consume_skb(skb);
1772 } else {
1773 kfree_skb(skb);
1774 }
1775 sock_put(sk);
1776 return ret;
1777 }
1778
1779 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1780 u32 portid, int nonblock)
1781 {
1782 struct sock *sk;
1783 int err;
1784 long timeo;
1785
1786 skb = netlink_trim(skb, gfp_any());
1787
1788 timeo = sock_sndtimeo(ssk, nonblock);
1789 retry:
1790 sk = netlink_getsockbyportid(ssk, portid);
1791 if (IS_ERR(sk)) {
1792 kfree_skb(skb);
1793 return PTR_ERR(sk);
1794 }
1795 if (netlink_is_kernel(sk))
1796 return netlink_unicast_kernel(sk, skb, ssk);
1797
1798 if (sk_filter(sk, skb)) {
1799 err = skb->len;
1800 kfree_skb(skb);
1801 sock_put(sk);
1802 return err;
1803 }
1804
1805 err = netlink_attachskb(sk, skb, &timeo, ssk);
1806 if (err == 1)
1807 goto retry;
1808 if (err)
1809 return err;
1810
1811 return netlink_sendskb(sk, skb);
1812 }
1813 EXPORT_SYMBOL(netlink_unicast);
1814
1815 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1816 u32 dst_portid, gfp_t gfp_mask)
1817 {
1818 #ifdef CONFIG_NETLINK_MMAP
1819 struct sock *sk = NULL;
1820 struct sk_buff *skb;
1821 struct netlink_ring *ring;
1822 struct nl_mmap_hdr *hdr;
1823 unsigned int maxlen;
1824
1825 sk = netlink_getsockbyportid(ssk, dst_portid);
1826 if (IS_ERR(sk))
1827 goto out;
1828
1829 ring = &nlk_sk(sk)->rx_ring;
1830 /* fast-path without atomic ops for common case: non-mmaped receiver */
1831 if (ring->pg_vec == NULL)
1832 goto out_put;
1833
1834 if (ring->frame_size - NL_MMAP_HDRLEN < size)
1835 goto out_put;
1836
1837 skb = alloc_skb_head(gfp_mask);
1838 if (skb == NULL)
1839 goto err1;
1840
1841 spin_lock_bh(&sk->sk_receive_queue.lock);
1842 /* check again under lock */
1843 if (ring->pg_vec == NULL)
1844 goto out_free;
1845
1846 /* check again under lock */
1847 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1848 if (maxlen < size)
1849 goto out_free;
1850
1851 netlink_forward_ring(ring);
1852 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1853 if (hdr == NULL)
1854 goto err2;
1855 netlink_ring_setup_skb(skb, sk, ring, hdr);
1856 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1857 atomic_inc(&ring->pending);
1858 netlink_increment_head(ring);
1859
1860 spin_unlock_bh(&sk->sk_receive_queue.lock);
1861 return skb;
1862
1863 err2:
1864 kfree_skb(skb);
1865 spin_unlock_bh(&sk->sk_receive_queue.lock);
1866 netlink_overrun(sk);
1867 err1:
1868 sock_put(sk);
1869 return NULL;
1870
1871 out_free:
1872 kfree_skb(skb);
1873 spin_unlock_bh(&sk->sk_receive_queue.lock);
1874 out_put:
1875 sock_put(sk);
1876 out:
1877 #endif
1878 return alloc_skb(size, gfp_mask);
1879 }
1880 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1881
1882 int netlink_has_listeners(struct sock *sk, unsigned int group)
1883 {
1884 int res = 0;
1885 struct listeners *listeners;
1886
1887 BUG_ON(!netlink_is_kernel(sk));
1888
1889 rcu_read_lock();
1890 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1891
1892 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1893 res = test_bit(group - 1, listeners->masks);
1894
1895 rcu_read_unlock();
1896
1897 return res;
1898 }
1899 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1900
1901 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1902 {
1903 struct netlink_sock *nlk = nlk_sk(sk);
1904
1905 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1906 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
1907 netlink_skb_set_owner_r(skb, sk);
1908 __netlink_sendskb(sk, skb);
1909 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1910 }
1911 return -1;
1912 }
1913
1914 struct netlink_broadcast_data {
1915 struct sock *exclude_sk;
1916 struct net *net;
1917 u32 portid;
1918 u32 group;
1919 int failure;
1920 int delivery_failure;
1921 int congested;
1922 int delivered;
1923 gfp_t allocation;
1924 struct sk_buff *skb, *skb2;
1925 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1926 void *tx_data;
1927 };
1928
1929 static void do_one_broadcast(struct sock *sk,
1930 struct netlink_broadcast_data *p)
1931 {
1932 struct netlink_sock *nlk = nlk_sk(sk);
1933 int val;
1934
1935 if (p->exclude_sk == sk)
1936 return;
1937
1938 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1939 !test_bit(p->group - 1, nlk->groups))
1940 return;
1941
1942 if (!net_eq(sock_net(sk), p->net)) {
1943 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
1944 return;
1945
1946 if (!peernet_has_id(sock_net(sk), p->net))
1947 return;
1948
1949 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
1950 CAP_NET_BROADCAST))
1951 return;
1952 }
1953
1954 if (p->failure) {
1955 netlink_overrun(sk);
1956 return;
1957 }
1958
1959 sock_hold(sk);
1960 if (p->skb2 == NULL) {
1961 if (skb_shared(p->skb)) {
1962 p->skb2 = skb_clone(p->skb, p->allocation);
1963 } else {
1964 p->skb2 = skb_get(p->skb);
1965 /*
1966 * skb ownership may have been set when
1967 * delivered to a previous socket.
1968 */
1969 skb_orphan(p->skb2);
1970 }
1971 }
1972 if (p->skb2 == NULL) {
1973 netlink_overrun(sk);
1974 /* Clone failed. Notify ALL listeners. */
1975 p->failure = 1;
1976 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
1977 p->delivery_failure = 1;
1978 goto out;
1979 }
1980 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1981 kfree_skb(p->skb2);
1982 p->skb2 = NULL;
1983 goto out;
1984 }
1985 if (sk_filter(sk, p->skb2)) {
1986 kfree_skb(p->skb2);
1987 p->skb2 = NULL;
1988 goto out;
1989 }
1990 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
1991 NETLINK_CB(p->skb2).nsid_is_set = true;
1992 val = netlink_broadcast_deliver(sk, p->skb2);
1993 if (val < 0) {
1994 netlink_overrun(sk);
1995 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
1996 p->delivery_failure = 1;
1997 } else {
1998 p->congested |= val;
1999 p->delivered = 1;
2000 p->skb2 = NULL;
2001 }
2002 out:
2003 sock_put(sk);
2004 }
2005
2006 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
2007 u32 group, gfp_t allocation,
2008 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
2009 void *filter_data)
2010 {
2011 struct net *net = sock_net(ssk);
2012 struct netlink_broadcast_data info;
2013 struct sock *sk;
2014
2015 skb = netlink_trim(skb, allocation);
2016
2017 info.exclude_sk = ssk;
2018 info.net = net;
2019 info.portid = portid;
2020 info.group = group;
2021 info.failure = 0;
2022 info.delivery_failure = 0;
2023 info.congested = 0;
2024 info.delivered = 0;
2025 info.allocation = allocation;
2026 info.skb = skb;
2027 info.skb2 = NULL;
2028 info.tx_filter = filter;
2029 info.tx_data = filter_data;
2030
2031 /* While we sleep in clone, do not allow to change socket list */
2032
2033 netlink_lock_table();
2034
2035 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2036 do_one_broadcast(sk, &info);
2037
2038 consume_skb(skb);
2039
2040 netlink_unlock_table();
2041
2042 if (info.delivery_failure) {
2043 kfree_skb(info.skb2);
2044 return -ENOBUFS;
2045 }
2046 consume_skb(info.skb2);
2047
2048 if (info.delivered) {
2049 if (info.congested && (allocation & __GFP_WAIT))
2050 yield();
2051 return 0;
2052 }
2053 return -ESRCH;
2054 }
2055 EXPORT_SYMBOL(netlink_broadcast_filtered);
2056
2057 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2058 u32 group, gfp_t allocation)
2059 {
2060 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2061 NULL, NULL);
2062 }
2063 EXPORT_SYMBOL(netlink_broadcast);
2064
2065 struct netlink_set_err_data {
2066 struct sock *exclude_sk;
2067 u32 portid;
2068 u32 group;
2069 int code;
2070 };
2071
2072 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2073 {
2074 struct netlink_sock *nlk = nlk_sk(sk);
2075 int ret = 0;
2076
2077 if (sk == p->exclude_sk)
2078 goto out;
2079
2080 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2081 goto out;
2082
2083 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2084 !test_bit(p->group - 1, nlk->groups))
2085 goto out;
2086
2087 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
2088 ret = 1;
2089 goto out;
2090 }
2091
2092 sk->sk_err = p->code;
2093 sk->sk_error_report(sk);
2094 out:
2095 return ret;
2096 }
2097
2098 /**
2099 * netlink_set_err - report error to broadcast listeners
2100 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2101 * @portid: the PORTID of a process that we want to skip (if any)
2102 * @group: the broadcast group that will notice the error
2103 * @code: error code, must be negative (as usual in kernelspace)
2104 *
2105 * This function returns the number of broadcast listeners that have set the
2106 * NETLINK_NO_ENOBUFS socket option.
2107 */
2108 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2109 {
2110 struct netlink_set_err_data info;
2111 struct sock *sk;
2112 int ret = 0;
2113
2114 info.exclude_sk = ssk;
2115 info.portid = portid;
2116 info.group = group;
2117 /* sk->sk_err wants a positive error value */
2118 info.code = -code;
2119
2120 read_lock(&nl_table_lock);
2121
2122 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2123 ret += do_one_set_err(sk, &info);
2124
2125 read_unlock(&nl_table_lock);
2126 return ret;
2127 }
2128 EXPORT_SYMBOL(netlink_set_err);
2129
2130 /* must be called with netlink table grabbed */
2131 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2132 unsigned int group,
2133 int is_new)
2134 {
2135 int old, new = !!is_new, subscriptions;
2136
2137 old = test_bit(group - 1, nlk->groups);
2138 subscriptions = nlk->subscriptions - old + new;
2139 if (new)
2140 __set_bit(group - 1, nlk->groups);
2141 else
2142 __clear_bit(group - 1, nlk->groups);
2143 netlink_update_subscriptions(&nlk->sk, subscriptions);
2144 netlink_update_listeners(&nlk->sk);
2145 }
2146
2147 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2148 char __user *optval, unsigned int optlen)
2149 {
2150 struct sock *sk = sock->sk;
2151 struct netlink_sock *nlk = nlk_sk(sk);
2152 unsigned int val = 0;
2153 int err;
2154
2155 if (level != SOL_NETLINK)
2156 return -ENOPROTOOPT;
2157
2158 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2159 optlen >= sizeof(int) &&
2160 get_user(val, (unsigned int __user *)optval))
2161 return -EFAULT;
2162
2163 switch (optname) {
2164 case NETLINK_PKTINFO:
2165 if (val)
2166 nlk->flags |= NETLINK_F_RECV_PKTINFO;
2167 else
2168 nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
2169 err = 0;
2170 break;
2171 case NETLINK_ADD_MEMBERSHIP:
2172 case NETLINK_DROP_MEMBERSHIP: {
2173 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2174 return -EPERM;
2175 err = netlink_realloc_groups(sk);
2176 if (err)
2177 return err;
2178 if (!val || val - 1 >= nlk->ngroups)
2179 return -EINVAL;
2180 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2181 err = nlk->netlink_bind(sock_net(sk), val);
2182 if (err)
2183 return err;
2184 }
2185 netlink_table_grab();
2186 netlink_update_socket_mc(nlk, val,
2187 optname == NETLINK_ADD_MEMBERSHIP);
2188 netlink_table_ungrab();
2189 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2190 nlk->netlink_unbind(sock_net(sk), val);
2191
2192 err = 0;
2193 break;
2194 }
2195 case NETLINK_BROADCAST_ERROR:
2196 if (val)
2197 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
2198 else
2199 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
2200 err = 0;
2201 break;
2202 case NETLINK_NO_ENOBUFS:
2203 if (val) {
2204 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
2205 clear_bit(NETLINK_S_CONGESTED, &nlk->state);
2206 wake_up_interruptible(&nlk->wait);
2207 } else {
2208 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
2209 }
2210 err = 0;
2211 break;
2212 #ifdef CONFIG_NETLINK_MMAP
2213 case NETLINK_RX_RING:
2214 case NETLINK_TX_RING: {
2215 struct nl_mmap_req req;
2216
2217 /* Rings might consume more memory than queue limits, require
2218 * CAP_NET_ADMIN.
2219 */
2220 if (!capable(CAP_NET_ADMIN))
2221 return -EPERM;
2222 if (optlen < sizeof(req))
2223 return -EINVAL;
2224 if (copy_from_user(&req, optval, sizeof(req)))
2225 return -EFAULT;
2226 err = netlink_set_ring(sk, &req, false,
2227 optname == NETLINK_TX_RING);
2228 break;
2229 }
2230 #endif /* CONFIG_NETLINK_MMAP */
2231 case NETLINK_LISTEN_ALL_NSID:
2232 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
2233 return -EPERM;
2234
2235 if (val)
2236 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
2237 else
2238 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
2239 err = 0;
2240 break;
2241 default:
2242 err = -ENOPROTOOPT;
2243 }
2244 return err;
2245 }
2246
2247 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2248 char __user *optval, int __user *optlen)
2249 {
2250 struct sock *sk = sock->sk;
2251 struct netlink_sock *nlk = nlk_sk(sk);
2252 int len, val, err;
2253
2254 if (level != SOL_NETLINK)
2255 return -ENOPROTOOPT;
2256
2257 if (get_user(len, optlen))
2258 return -EFAULT;
2259 if (len < 0)
2260 return -EINVAL;
2261
2262 switch (optname) {
2263 case NETLINK_PKTINFO:
2264 if (len < sizeof(int))
2265 return -EINVAL;
2266 len = sizeof(int);
2267 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
2268 if (put_user(len, optlen) ||
2269 put_user(val, optval))
2270 return -EFAULT;
2271 err = 0;
2272 break;
2273 case NETLINK_BROADCAST_ERROR:
2274 if (len < sizeof(int))
2275 return -EINVAL;
2276 len = sizeof(int);
2277 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
2278 if (put_user(len, optlen) ||
2279 put_user(val, optval))
2280 return -EFAULT;
2281 err = 0;
2282 break;
2283 case NETLINK_NO_ENOBUFS:
2284 if (len < sizeof(int))
2285 return -EINVAL;
2286 len = sizeof(int);
2287 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
2288 if (put_user(len, optlen) ||
2289 put_user(val, optval))
2290 return -EFAULT;
2291 err = 0;
2292 break;
2293 case NETLINK_LIST_MEMBERSHIPS: {
2294 int pos, idx, shift;
2295
2296 err = 0;
2297 netlink_table_grab();
2298 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
2299 if (len - pos < sizeof(u32))
2300 break;
2301
2302 idx = pos / sizeof(unsigned long);
2303 shift = (pos % sizeof(unsigned long)) * 8;
2304 if (put_user((u32)(nlk->groups[idx] >> shift),
2305 (u32 __user *)(optval + pos))) {
2306 err = -EFAULT;
2307 break;
2308 }
2309 }
2310 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
2311 err = -EFAULT;
2312 netlink_table_ungrab();
2313 break;
2314 }
2315 default:
2316 err = -ENOPROTOOPT;
2317 }
2318 return err;
2319 }
2320
2321 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2322 {
2323 struct nl_pktinfo info;
2324
2325 info.group = NETLINK_CB(skb).dst_group;
2326 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2327 }
2328
2329 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
2330 struct sk_buff *skb)
2331 {
2332 if (!NETLINK_CB(skb).nsid_is_set)
2333 return;
2334
2335 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
2336 &NETLINK_CB(skb).nsid);
2337 }
2338
2339 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2340 {
2341 struct sock *sk = sock->sk;
2342 struct netlink_sock *nlk = nlk_sk(sk);
2343 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2344 u32 dst_portid;
2345 u32 dst_group;
2346 struct sk_buff *skb;
2347 int err;
2348 struct scm_cookie scm;
2349 u32 netlink_skb_flags = 0;
2350
2351 if (msg->msg_flags&MSG_OOB)
2352 return -EOPNOTSUPP;
2353
2354 err = scm_send(sock, msg, &scm, true);
2355 if (err < 0)
2356 return err;
2357
2358 if (msg->msg_namelen) {
2359 err = -EINVAL;
2360 if (addr->nl_family != AF_NETLINK)
2361 goto out;
2362 dst_portid = addr->nl_pid;
2363 dst_group = ffs(addr->nl_groups);
2364 err = -EPERM;
2365 if ((dst_group || dst_portid) &&
2366 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2367 goto out;
2368 netlink_skb_flags |= NETLINK_SKB_DST;
2369 } else {
2370 dst_portid = nlk->dst_portid;
2371 dst_group = nlk->dst_group;
2372 }
2373
2374 if (!nlk->portid) {
2375 err = netlink_autobind(sock);
2376 if (err)
2377 goto out;
2378 }
2379
2380 /* It's a really convoluted way for userland to ask for mmaped
2381 * sendmsg(), but that's what we've got...
2382 */
2383 if (netlink_tx_is_mmaped(sk) &&
2384 msg->msg_iter.type == ITER_IOVEC &&
2385 msg->msg_iter.nr_segs == 1 &&
2386 msg->msg_iter.iov->iov_base == NULL) {
2387 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2388 &scm);
2389 goto out;
2390 }
2391
2392 err = -EMSGSIZE;
2393 if (len > sk->sk_sndbuf - 32)
2394 goto out;
2395 err = -ENOBUFS;
2396 skb = netlink_alloc_large_skb(len, dst_group);
2397 if (skb == NULL)
2398 goto out;
2399
2400 NETLINK_CB(skb).portid = nlk->portid;
2401 NETLINK_CB(skb).dst_group = dst_group;
2402 NETLINK_CB(skb).creds = scm.creds;
2403 NETLINK_CB(skb).flags = netlink_skb_flags;
2404
2405 err = -EFAULT;
2406 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2407 kfree_skb(skb);
2408 goto out;
2409 }
2410
2411 err = security_netlink_send(sk, skb);
2412 if (err) {
2413 kfree_skb(skb);
2414 goto out;
2415 }
2416
2417 if (dst_group) {
2418 atomic_inc(&skb->users);
2419 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2420 }
2421 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2422
2423 out:
2424 scm_destroy(&scm);
2425 return err;
2426 }
2427
2428 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2429 int flags)
2430 {
2431 struct scm_cookie scm;
2432 struct sock *sk = sock->sk;
2433 struct netlink_sock *nlk = nlk_sk(sk);
2434 int noblock = flags&MSG_DONTWAIT;
2435 size_t copied;
2436 struct sk_buff *skb, *data_skb;
2437 int err, ret;
2438
2439 if (flags&MSG_OOB)
2440 return -EOPNOTSUPP;
2441
2442 copied = 0;
2443
2444 skb = skb_recv_datagram(sk, flags, noblock, &err);
2445 if (skb == NULL)
2446 goto out;
2447
2448 data_skb = skb;
2449
2450 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2451 if (unlikely(skb_shinfo(skb)->frag_list)) {
2452 /*
2453 * If this skb has a frag_list, then here that means that we
2454 * will have to use the frag_list skb's data for compat tasks
2455 * and the regular skb's data for normal (non-compat) tasks.
2456 *
2457 * If we need to send the compat skb, assign it to the
2458 * 'data_skb' variable so that it will be used below for data
2459 * copying. We keep 'skb' for everything else, including
2460 * freeing both later.
2461 */
2462 if (flags & MSG_CMSG_COMPAT)
2463 data_skb = skb_shinfo(skb)->frag_list;
2464 }
2465 #endif
2466
2467 /* Record the max length of recvmsg() calls for future allocations */
2468 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2469 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2470 16384);
2471
2472 copied = data_skb->len;
2473 if (len < copied) {
2474 msg->msg_flags |= MSG_TRUNC;
2475 copied = len;
2476 }
2477
2478 skb_reset_transport_header(data_skb);
2479 err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2480
2481 if (msg->msg_name) {
2482 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2483 addr->nl_family = AF_NETLINK;
2484 addr->nl_pad = 0;
2485 addr->nl_pid = NETLINK_CB(skb).portid;
2486 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
2487 msg->msg_namelen = sizeof(*addr);
2488 }
2489
2490 if (nlk->flags & NETLINK_F_RECV_PKTINFO)
2491 netlink_cmsg_recv_pktinfo(msg, skb);
2492 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
2493 netlink_cmsg_listen_all_nsid(sk, msg, skb);
2494
2495 memset(&scm, 0, sizeof(scm));
2496 scm.creds = *NETLINK_CREDS(skb);
2497 if (flags & MSG_TRUNC)
2498 copied = data_skb->len;
2499
2500 skb_free_datagram(sk, skb);
2501
2502 if (nlk->cb_running &&
2503 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2504 ret = netlink_dump(sk);
2505 if (ret) {
2506 sk->sk_err = -ret;
2507 sk->sk_error_report(sk);
2508 }
2509 }
2510
2511 scm_recv(sock, msg, &scm, flags);
2512 out:
2513 netlink_rcv_wake(sk);
2514 return err ? : copied;
2515 }
2516
2517 static void netlink_data_ready(struct sock *sk)
2518 {
2519 BUG();
2520 }
2521
2522 /*
2523 * We export these functions to other modules. They provide a
2524 * complete set of kernel non-blocking support for message
2525 * queueing.
2526 */
2527
2528 struct sock *
2529 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2530 struct netlink_kernel_cfg *cfg)
2531 {
2532 struct socket *sock;
2533 struct sock *sk;
2534 struct netlink_sock *nlk;
2535 struct listeners *listeners = NULL;
2536 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2537 unsigned int groups;
2538
2539 BUG_ON(!nl_table);
2540
2541 if (unit < 0 || unit >= MAX_LINKS)
2542 return NULL;
2543
2544 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2545 return NULL;
2546
2547 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
2548 goto out_sock_release_nosk;
2549
2550 sk = sock->sk;
2551
2552 if (!cfg || cfg->groups < 32)
2553 groups = 32;
2554 else
2555 groups = cfg->groups;
2556
2557 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2558 if (!listeners)
2559 goto out_sock_release;
2560
2561 sk->sk_data_ready = netlink_data_ready;
2562 if (cfg && cfg->input)
2563 nlk_sk(sk)->netlink_rcv = cfg->input;
2564
2565 if (netlink_insert(sk, 0))
2566 goto out_sock_release;
2567
2568 nlk = nlk_sk(sk);
2569 nlk->flags |= NETLINK_F_KERNEL_SOCKET;
2570
2571 netlink_table_grab();
2572 if (!nl_table[unit].registered) {
2573 nl_table[unit].groups = groups;
2574 rcu_assign_pointer(nl_table[unit].listeners, listeners);
2575 nl_table[unit].cb_mutex = cb_mutex;
2576 nl_table[unit].module = module;
2577 if (cfg) {
2578 nl_table[unit].bind = cfg->bind;
2579 nl_table[unit].unbind = cfg->unbind;
2580 nl_table[unit].flags = cfg->flags;
2581 if (cfg->compare)
2582 nl_table[unit].compare = cfg->compare;
2583 }
2584 nl_table[unit].registered = 1;
2585 } else {
2586 kfree(listeners);
2587 nl_table[unit].registered++;
2588 }
2589 netlink_table_ungrab();
2590 return sk;
2591
2592 out_sock_release:
2593 kfree(listeners);
2594 netlink_kernel_release(sk);
2595 return NULL;
2596
2597 out_sock_release_nosk:
2598 sock_release(sock);
2599 return NULL;
2600 }
2601 EXPORT_SYMBOL(__netlink_kernel_create);
2602
2603 void
2604 netlink_kernel_release(struct sock *sk)
2605 {
2606 if (sk == NULL || sk->sk_socket == NULL)
2607 return;
2608
2609 sock_release(sk->sk_socket);
2610 }
2611 EXPORT_SYMBOL(netlink_kernel_release);
2612
2613 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2614 {
2615 struct listeners *new, *old;
2616 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2617
2618 if (groups < 32)
2619 groups = 32;
2620
2621 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2622 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2623 if (!new)
2624 return -ENOMEM;
2625 old = nl_deref_protected(tbl->listeners);
2626 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2627 rcu_assign_pointer(tbl->listeners, new);
2628
2629 kfree_rcu(old, rcu);
2630 }
2631 tbl->groups = groups;
2632
2633 return 0;
2634 }
2635
2636 /**
2637 * netlink_change_ngroups - change number of multicast groups
2638 *
2639 * This changes the number of multicast groups that are available
2640 * on a certain netlink family. Note that it is not possible to
2641 * change the number of groups to below 32. Also note that it does
2642 * not implicitly call netlink_clear_multicast_users() when the
2643 * number of groups is reduced.
2644 *
2645 * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2646 * @groups: The new number of groups.
2647 */
2648 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2649 {
2650 int err;
2651
2652 netlink_table_grab();
2653 err = __netlink_change_ngroups(sk, groups);
2654 netlink_table_ungrab();
2655
2656 return err;
2657 }
2658
2659 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2660 {
2661 struct sock *sk;
2662 struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2663
2664 sk_for_each_bound(sk, &tbl->mc_list)
2665 netlink_update_socket_mc(nlk_sk(sk), group, 0);
2666 }
2667
2668 struct nlmsghdr *
2669 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2670 {
2671 struct nlmsghdr *nlh;
2672 int size = nlmsg_msg_size(len);
2673
2674 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2675 nlh->nlmsg_type = type;
2676 nlh->nlmsg_len = size;
2677 nlh->nlmsg_flags = flags;
2678 nlh->nlmsg_pid = portid;
2679 nlh->nlmsg_seq = seq;
2680 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2681 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2682 return nlh;
2683 }
2684 EXPORT_SYMBOL(__nlmsg_put);
2685
2686 /*
2687 * It looks a bit ugly.
2688 * It would be better to create kernel thread.
2689 */
2690
2691 static int netlink_dump(struct sock *sk)
2692 {
2693 struct netlink_sock *nlk = nlk_sk(sk);
2694 struct netlink_callback *cb;
2695 struct sk_buff *skb = NULL;
2696 struct nlmsghdr *nlh;
2697 int len, err = -ENOBUFS;
2698 int alloc_size;
2699
2700 mutex_lock(nlk->cb_mutex);
2701 if (!nlk->cb_running) {
2702 err = -EINVAL;
2703 goto errout_skb;
2704 }
2705
2706 cb = &nlk->cb;
2707 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2708
2709 if (!netlink_rx_is_mmaped(sk) &&
2710 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2711 goto errout_skb;
2712
2713 /* NLMSG_GOODSIZE is small to avoid high order allocations being
2714 * required, but it makes sense to _attempt_ a 16K bytes allocation
2715 * to reduce number of system calls on dump operations, if user
2716 * ever provided a big enough buffer.
2717 */
2718 if (alloc_size < nlk->max_recvmsg_len) {
2719 skb = netlink_alloc_skb(sk,
2720 nlk->max_recvmsg_len,
2721 nlk->portid,
2722 GFP_KERNEL |
2723 __GFP_NOWARN |
2724 __GFP_NORETRY);
2725 /* available room should be exact amount to avoid MSG_TRUNC */
2726 if (skb)
2727 skb_reserve(skb, skb_tailroom(skb) -
2728 nlk->max_recvmsg_len);
2729 }
2730 if (!skb)
2731 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2732 GFP_KERNEL);
2733 if (!skb)
2734 goto errout_skb;
2735 netlink_skb_set_owner_r(skb, sk);
2736
2737 len = cb->dump(skb, cb);
2738
2739 if (len > 0) {
2740 mutex_unlock(nlk->cb_mutex);
2741
2742 if (sk_filter(sk, skb))
2743 kfree_skb(skb);
2744 else
2745 __netlink_sendskb(sk, skb);
2746 return 0;
2747 }
2748
2749 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2750 if (!nlh)
2751 goto errout_skb;
2752
2753 nl_dump_check_consistent(cb, nlh);
2754
2755 memcpy(nlmsg_data(nlh), &len, sizeof(len));
2756
2757 if (sk_filter(sk, skb))
2758 kfree_skb(skb);
2759 else
2760 __netlink_sendskb(sk, skb);
2761
2762 if (cb->done)
2763 cb->done(cb);
2764
2765 nlk->cb_running = false;
2766 mutex_unlock(nlk->cb_mutex);
2767 module_put(cb->module);
2768 consume_skb(cb->skb);
2769 return 0;
2770
2771 errout_skb:
2772 mutex_unlock(nlk->cb_mutex);
2773 kfree_skb(skb);
2774 return err;
2775 }
2776
2777 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2778 const struct nlmsghdr *nlh,
2779 struct netlink_dump_control *control)
2780 {
2781 struct netlink_callback *cb;
2782 struct sock *sk;
2783 struct netlink_sock *nlk;
2784 int ret;
2785
2786 /* Memory mapped dump requests need to be copied to avoid looping
2787 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2788 * a reference to the skb.
2789 */
2790 if (netlink_skb_is_mmaped(skb)) {
2791 skb = skb_copy(skb, GFP_KERNEL);
2792 if (skb == NULL)
2793 return -ENOBUFS;
2794 } else
2795 atomic_inc(&skb->users);
2796
2797 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2798 if (sk == NULL) {
2799 ret = -ECONNREFUSED;
2800 goto error_free;
2801 }
2802
2803 nlk = nlk_sk(sk);
2804 mutex_lock(nlk->cb_mutex);
2805 /* A dump is in progress... */
2806 if (nlk->cb_running) {
2807 ret = -EBUSY;
2808 goto error_unlock;
2809 }
2810 /* add reference of module which cb->dump belongs to */
2811 if (!try_module_get(control->module)) {
2812 ret = -EPROTONOSUPPORT;
2813 goto error_unlock;
2814 }
2815
2816 cb = &nlk->cb;
2817 memset(cb, 0, sizeof(*cb));
2818 cb->dump = control->dump;
2819 cb->done = control->done;
2820 cb->nlh = nlh;
2821 cb->data = control->data;
2822 cb->module = control->module;
2823 cb->min_dump_alloc = control->min_dump_alloc;
2824 cb->skb = skb;
2825
2826 nlk->cb_running = true;
2827
2828 mutex_unlock(nlk->cb_mutex);
2829
2830 ret = netlink_dump(sk);
2831 sock_put(sk);
2832
2833 if (ret)
2834 return ret;
2835
2836 /* We successfully started a dump, by returning -EINTR we
2837 * signal not to send ACK even if it was requested.
2838 */
2839 return -EINTR;
2840
2841 error_unlock:
2842 sock_put(sk);
2843 mutex_unlock(nlk->cb_mutex);
2844 error_free:
2845 kfree_skb(skb);
2846 return ret;
2847 }
2848 EXPORT_SYMBOL(__netlink_dump_start);
2849
2850 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2851 {
2852 struct sk_buff *skb;
2853 struct nlmsghdr *rep;
2854 struct nlmsgerr *errmsg;
2855 size_t payload = sizeof(*errmsg);
2856
2857 /* error messages get the original request appened */
2858 if (err)
2859 payload += nlmsg_len(nlh);
2860
2861 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2862 NETLINK_CB(in_skb).portid, GFP_KERNEL);
2863 if (!skb) {
2864 struct sock *sk;
2865
2866 sk = netlink_lookup(sock_net(in_skb->sk),
2867 in_skb->sk->sk_protocol,
2868 NETLINK_CB(in_skb).portid);
2869 if (sk) {
2870 sk->sk_err = ENOBUFS;
2871 sk->sk_error_report(sk);
2872 sock_put(sk);
2873 }
2874 return;
2875 }
2876
2877 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2878 NLMSG_ERROR, payload, 0);
2879 errmsg = nlmsg_data(rep);
2880 errmsg->error = err;
2881 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2882 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2883 }
2884 EXPORT_SYMBOL(netlink_ack);
2885
2886 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2887 struct nlmsghdr *))
2888 {
2889 struct nlmsghdr *nlh;
2890 int err;
2891
2892 while (skb->len >= nlmsg_total_size(0)) {
2893 int msglen;
2894
2895 nlh = nlmsg_hdr(skb);
2896 err = 0;
2897
2898 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2899 return 0;
2900
2901 /* Only requests are handled by the kernel */
2902 if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2903 goto ack;
2904
2905 /* Skip control messages */
2906 if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2907 goto ack;
2908
2909 err = cb(skb, nlh);
2910 if (err == -EINTR)
2911 goto skip;
2912
2913 ack:
2914 if (nlh->nlmsg_flags & NLM_F_ACK || err)
2915 netlink_ack(skb, nlh, err);
2916
2917 skip:
2918 msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2919 if (msglen > skb->len)
2920 msglen = skb->len;
2921 skb_pull(skb, msglen);
2922 }
2923
2924 return 0;
2925 }
2926 EXPORT_SYMBOL(netlink_rcv_skb);
2927
2928 /**
2929 * nlmsg_notify - send a notification netlink message
2930 * @sk: netlink socket to use
2931 * @skb: notification message
2932 * @portid: destination netlink portid for reports or 0
2933 * @group: destination multicast group or 0
2934 * @report: 1 to report back, 0 to disable
2935 * @flags: allocation flags
2936 */
2937 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2938 unsigned int group, int report, gfp_t flags)
2939 {
2940 int err = 0;
2941
2942 if (group) {
2943 int exclude_portid = 0;
2944
2945 if (report) {
2946 atomic_inc(&skb->users);
2947 exclude_portid = portid;
2948 }
2949
2950 /* errors reported via destination sk->sk_err, but propagate
2951 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2952 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2953 }
2954
2955 if (report) {
2956 int err2;
2957
2958 err2 = nlmsg_unicast(sk, skb, portid);
2959 if (!err || err == -ESRCH)
2960 err = err2;
2961 }
2962
2963 return err;
2964 }
2965 EXPORT_SYMBOL(nlmsg_notify);
2966
2967 #ifdef CONFIG_PROC_FS
2968 struct nl_seq_iter {
2969 struct seq_net_private p;
2970 struct rhashtable_iter hti;
2971 int link;
2972 };
2973
2974 static int netlink_walk_start(struct nl_seq_iter *iter)
2975 {
2976 int err;
2977
2978 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti);
2979 if (err) {
2980 iter->link = MAX_LINKS;
2981 return err;
2982 }
2983
2984 err = rhashtable_walk_start(&iter->hti);
2985 return err == -EAGAIN ? 0 : err;
2986 }
2987
2988 static void netlink_walk_stop(struct nl_seq_iter *iter)
2989 {
2990 rhashtable_walk_stop(&iter->hti);
2991 rhashtable_walk_exit(&iter->hti);
2992 }
2993
2994 static void *__netlink_seq_next(struct seq_file *seq)
2995 {
2996 struct nl_seq_iter *iter = seq->private;
2997 struct netlink_sock *nlk;
2998
2999 do {
3000 for (;;) {
3001 int err;
3002
3003 nlk = rhashtable_walk_next(&iter->hti);
3004
3005 if (IS_ERR(nlk)) {
3006 if (PTR_ERR(nlk) == -EAGAIN)
3007 continue;
3008
3009 return nlk;
3010 }
3011
3012 if (nlk)
3013 break;
3014
3015 netlink_walk_stop(iter);
3016 if (++iter->link >= MAX_LINKS)
3017 return NULL;
3018
3019 err = netlink_walk_start(iter);
3020 if (err)
3021 return ERR_PTR(err);
3022 }
3023 } while (sock_net(&nlk->sk) != seq_file_net(seq));
3024
3025 return nlk;
3026 }
3027
3028 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
3029 {
3030 struct nl_seq_iter *iter = seq->private;
3031 void *obj = SEQ_START_TOKEN;
3032 loff_t pos;
3033 int err;
3034
3035 iter->link = 0;
3036
3037 err = netlink_walk_start(iter);
3038 if (err)
3039 return ERR_PTR(err);
3040
3041 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
3042 obj = __netlink_seq_next(seq);
3043
3044 return obj;
3045 }
3046
3047 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3048 {
3049 ++*pos;
3050 return __netlink_seq_next(seq);
3051 }
3052
3053 static void netlink_seq_stop(struct seq_file *seq, void *v)
3054 {
3055 struct nl_seq_iter *iter = seq->private;
3056
3057 if (iter->link >= MAX_LINKS)
3058 return;
3059
3060 netlink_walk_stop(iter);
3061 }
3062
3063
3064 static int netlink_seq_show(struct seq_file *seq, void *v)
3065 {
3066 if (v == SEQ_START_TOKEN) {
3067 seq_puts(seq,
3068 "sk Eth Pid Groups "
3069 "Rmem Wmem Dump Locks Drops Inode\n");
3070 } else {
3071 struct sock *s = v;
3072 struct netlink_sock *nlk = nlk_sk(s);
3073
3074 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3075 s,
3076 s->sk_protocol,
3077 nlk->portid,
3078 nlk->groups ? (u32)nlk->groups[0] : 0,
3079 sk_rmem_alloc_get(s),
3080 sk_wmem_alloc_get(s),
3081 nlk->cb_running,
3082 atomic_read(&s->sk_refcnt),
3083 atomic_read(&s->sk_drops),
3084 sock_i_ino(s)
3085 );
3086
3087 }
3088 return 0;
3089 }
3090
3091 static const struct seq_operations netlink_seq_ops = {
3092 .start = netlink_seq_start,
3093 .next = netlink_seq_next,
3094 .stop = netlink_seq_stop,
3095 .show = netlink_seq_show,
3096 };
3097
3098
3099 static int netlink_seq_open(struct inode *inode, struct file *file)
3100 {
3101 return seq_open_net(inode, file, &netlink_seq_ops,
3102 sizeof(struct nl_seq_iter));
3103 }
3104
3105 static const struct file_operations netlink_seq_fops = {
3106 .owner = THIS_MODULE,
3107 .open = netlink_seq_open,
3108 .read = seq_read,
3109 .llseek = seq_lseek,
3110 .release = seq_release_net,
3111 };
3112
3113 #endif
3114
3115 int netlink_register_notifier(struct notifier_block *nb)
3116 {
3117 return atomic_notifier_chain_register(&netlink_chain, nb);
3118 }
3119 EXPORT_SYMBOL(netlink_register_notifier);
3120
3121 int netlink_unregister_notifier(struct notifier_block *nb)
3122 {
3123 return atomic_notifier_chain_unregister(&netlink_chain, nb);
3124 }
3125 EXPORT_SYMBOL(netlink_unregister_notifier);
3126
3127 static const struct proto_ops netlink_ops = {
3128 .family = PF_NETLINK,
3129 .owner = THIS_MODULE,
3130 .release = netlink_release,
3131 .bind = netlink_bind,
3132 .connect = netlink_connect,
3133 .socketpair = sock_no_socketpair,
3134 .accept = sock_no_accept,
3135 .getname = netlink_getname,
3136 .poll = netlink_poll,
3137 .ioctl = sock_no_ioctl,
3138 .listen = sock_no_listen,
3139 .shutdown = sock_no_shutdown,
3140 .setsockopt = netlink_setsockopt,
3141 .getsockopt = netlink_getsockopt,
3142 .sendmsg = netlink_sendmsg,
3143 .recvmsg = netlink_recvmsg,
3144 .mmap = netlink_mmap,
3145 .sendpage = sock_no_sendpage,
3146 };
3147
3148 static const struct net_proto_family netlink_family_ops = {
3149 .family = PF_NETLINK,
3150 .create = netlink_create,
3151 .owner = THIS_MODULE, /* for consistency 8) */
3152 };
3153
3154 static int __net_init netlink_net_init(struct net *net)
3155 {
3156 #ifdef CONFIG_PROC_FS
3157 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3158 return -ENOMEM;
3159 #endif
3160 return 0;
3161 }
3162
3163 static void __net_exit netlink_net_exit(struct net *net)
3164 {
3165 #ifdef CONFIG_PROC_FS
3166 remove_proc_entry("netlink", net->proc_net);
3167 #endif
3168 }
3169
3170 static void __init netlink_add_usersock_entry(void)
3171 {
3172 struct listeners *listeners;
3173 int groups = 32;
3174
3175 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3176 if (!listeners)
3177 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3178
3179 netlink_table_grab();
3180
3181 nl_table[NETLINK_USERSOCK].groups = groups;
3182 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3183 nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3184 nl_table[NETLINK_USERSOCK].registered = 1;
3185 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3186
3187 netlink_table_ungrab();
3188 }
3189
3190 static struct pernet_operations __net_initdata netlink_net_ops = {
3191 .init = netlink_net_init,
3192 .exit = netlink_net_exit,
3193 };
3194
3195 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
3196 {
3197 const struct netlink_sock *nlk = data;
3198 struct netlink_compare_arg arg;
3199
3200 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
3201 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
3202 }
3203
3204 static const struct rhashtable_params netlink_rhashtable_params = {
3205 .head_offset = offsetof(struct netlink_sock, node),
3206 .key_len = netlink_compare_arg_len,
3207 .obj_hashfn = netlink_hash,
3208 .obj_cmpfn = netlink_compare,
3209 .automatic_shrinking = true,
3210 };
3211
3212 static int __init netlink_proto_init(void)
3213 {
3214 int i;
3215 int err = proto_register(&netlink_proto, 0);
3216
3217 if (err != 0)
3218 goto out;
3219
3220 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3221
3222 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3223 if (!nl_table)
3224 goto panic;
3225
3226 for (i = 0; i < MAX_LINKS; i++) {
3227 if (rhashtable_init(&nl_table[i].hash,
3228 &netlink_rhashtable_params) < 0) {
3229 while (--i > 0)
3230 rhashtable_destroy(&nl_table[i].hash);
3231 kfree(nl_table);
3232 goto panic;
3233 }
3234 }
3235
3236 INIT_LIST_HEAD(&netlink_tap_all);
3237
3238 netlink_add_usersock_entry();
3239
3240 sock_register(&netlink_family_ops);
3241 register_pernet_subsys(&netlink_net_ops);
3242 /* The netlink device handler may be needed early. */
3243 rtnetlink_init();
3244 out:
3245 return err;
3246 panic:
3247 panic("netlink_init: Cannot allocate nl_table\n");
3248 }
3249
3250 core_initcall(netlink_proto_init);
This page took 0.145025 seconds and 5 git commands to generate.