Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / net / netlink / af_netlink.c
1 /*
2 * NETLINK Kernel-user communication protocol.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6 * Patrick McHardy <kaber@trash.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14 * added netlink_proto_exit
15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16 * use nlk_sk, as sk->protinfo is on a diet 8)
17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18 * - inc module use count of module that owns
19 * the kernel socket in case userspace opens
20 * socket of same protocol
21 * - remove all module support, since netlink is
22 * mandatory if CONFIG_NET=y these days
23 */
24
25 #include <linux/module.h>
26
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70
71 #include "af_netlink.h"
72
73 struct listeners {
74 struct rcu_head rcu;
75 unsigned long masks[0];
76 };
77
78 /* state bits */
79 #define NETLINK_S_CONGESTED 0x0
80
81 /* flags */
82 #define NETLINK_F_KERNEL_SOCKET 0x1
83 #define NETLINK_F_RECV_PKTINFO 0x2
84 #define NETLINK_F_BROADCAST_SEND_ERROR 0x4
85 #define NETLINK_F_RECV_NO_ENOBUFS 0x8
86 #define NETLINK_F_LISTEN_ALL_NSID 0x10
87
88 static inline int netlink_is_kernel(struct sock *sk)
89 {
90 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
91 }
92
93 struct netlink_table *nl_table __read_mostly;
94 EXPORT_SYMBOL_GPL(nl_table);
95
96 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
97
98 static int netlink_dump(struct sock *sk);
99 static void netlink_skb_destructor(struct sk_buff *skb);
100
101 /* nl_table locking explained:
102 * Lookup and traversal are protected with an RCU read-side lock. Insertion
103 * and removal are protected with per bucket lock while using RCU list
104 * modification primitives and may run in parallel to RCU protected lookups.
105 * Destruction of the Netlink socket may only occur *after* nl_table_lock has
106 * been acquired * either during or after the socket has been removed from
107 * the list and after an RCU grace period.
108 */
109 DEFINE_RWLOCK(nl_table_lock);
110 EXPORT_SYMBOL_GPL(nl_table_lock);
111 static atomic_t nl_table_users = ATOMIC_INIT(0);
112
113 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
114
115 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
116
117 static DEFINE_SPINLOCK(netlink_tap_lock);
118 static struct list_head netlink_tap_all __read_mostly;
119
120 static const struct rhashtable_params netlink_rhashtable_params;
121
122 static inline u32 netlink_group_mask(u32 group)
123 {
124 return group ? 1 << (group - 1) : 0;
125 }
126
127 int netlink_add_tap(struct netlink_tap *nt)
128 {
129 if (unlikely(nt->dev->type != ARPHRD_NETLINK))
130 return -EINVAL;
131
132 spin_lock(&netlink_tap_lock);
133 list_add_rcu(&nt->list, &netlink_tap_all);
134 spin_unlock(&netlink_tap_lock);
135
136 __module_get(nt->module);
137
138 return 0;
139 }
140 EXPORT_SYMBOL_GPL(netlink_add_tap);
141
142 static int __netlink_remove_tap(struct netlink_tap *nt)
143 {
144 bool found = false;
145 struct netlink_tap *tmp;
146
147 spin_lock(&netlink_tap_lock);
148
149 list_for_each_entry(tmp, &netlink_tap_all, list) {
150 if (nt == tmp) {
151 list_del_rcu(&nt->list);
152 found = true;
153 goto out;
154 }
155 }
156
157 pr_warn("__netlink_remove_tap: %p not found\n", nt);
158 out:
159 spin_unlock(&netlink_tap_lock);
160
161 if (found)
162 module_put(nt->module);
163
164 return found ? 0 : -ENODEV;
165 }
166
167 int netlink_remove_tap(struct netlink_tap *nt)
168 {
169 int ret;
170
171 ret = __netlink_remove_tap(nt);
172 synchronize_net();
173
174 return ret;
175 }
176 EXPORT_SYMBOL_GPL(netlink_remove_tap);
177
178 static bool netlink_filter_tap(const struct sk_buff *skb)
179 {
180 struct sock *sk = skb->sk;
181
182 /* We take the more conservative approach and
183 * whitelist socket protocols that may pass.
184 */
185 switch (sk->sk_protocol) {
186 case NETLINK_ROUTE:
187 case NETLINK_USERSOCK:
188 case NETLINK_SOCK_DIAG:
189 case NETLINK_NFLOG:
190 case NETLINK_XFRM:
191 case NETLINK_FIB_LOOKUP:
192 case NETLINK_NETFILTER:
193 case NETLINK_GENERIC:
194 return true;
195 }
196
197 return false;
198 }
199
200 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
201 struct net_device *dev)
202 {
203 struct sk_buff *nskb;
204 struct sock *sk = skb->sk;
205 int ret = -ENOMEM;
206
207 dev_hold(dev);
208 nskb = skb_clone(skb, GFP_ATOMIC);
209 if (nskb) {
210 nskb->dev = dev;
211 nskb->protocol = htons((u16) sk->sk_protocol);
212 nskb->pkt_type = netlink_is_kernel(sk) ?
213 PACKET_KERNEL : PACKET_USER;
214 skb_reset_network_header(nskb);
215 ret = dev_queue_xmit(nskb);
216 if (unlikely(ret > 0))
217 ret = net_xmit_errno(ret);
218 }
219
220 dev_put(dev);
221 return ret;
222 }
223
224 static void __netlink_deliver_tap(struct sk_buff *skb)
225 {
226 int ret;
227 struct netlink_tap *tmp;
228
229 if (!netlink_filter_tap(skb))
230 return;
231
232 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
233 ret = __netlink_deliver_tap_skb(skb, tmp->dev);
234 if (unlikely(ret))
235 break;
236 }
237 }
238
239 static void netlink_deliver_tap(struct sk_buff *skb)
240 {
241 rcu_read_lock();
242
243 if (unlikely(!list_empty(&netlink_tap_all)))
244 __netlink_deliver_tap(skb);
245
246 rcu_read_unlock();
247 }
248
249 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
250 struct sk_buff *skb)
251 {
252 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
253 netlink_deliver_tap(skb);
254 }
255
256 static void netlink_overrun(struct sock *sk)
257 {
258 struct netlink_sock *nlk = nlk_sk(sk);
259
260 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
261 if (!test_and_set_bit(NETLINK_S_CONGESTED,
262 &nlk_sk(sk)->state)) {
263 sk->sk_err = ENOBUFS;
264 sk->sk_error_report(sk);
265 }
266 }
267 atomic_inc(&sk->sk_drops);
268 }
269
270 static void netlink_rcv_wake(struct sock *sk)
271 {
272 struct netlink_sock *nlk = nlk_sk(sk);
273
274 if (skb_queue_empty(&sk->sk_receive_queue))
275 clear_bit(NETLINK_S_CONGESTED, &nlk->state);
276 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
277 wake_up_interruptible(&nlk->wait);
278 }
279
280 #ifdef CONFIG_NETLINK_MMAP
281 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
282 {
283 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
284 }
285
286 static bool netlink_rx_is_mmaped(struct sock *sk)
287 {
288 return nlk_sk(sk)->rx_ring.pg_vec != NULL;
289 }
290
291 static bool netlink_tx_is_mmaped(struct sock *sk)
292 {
293 return nlk_sk(sk)->tx_ring.pg_vec != NULL;
294 }
295
296 static __pure struct page *pgvec_to_page(const void *addr)
297 {
298 if (is_vmalloc_addr(addr))
299 return vmalloc_to_page(addr);
300 else
301 return virt_to_page(addr);
302 }
303
304 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
305 {
306 unsigned int i;
307
308 for (i = 0; i < len; i++) {
309 if (pg_vec[i] != NULL) {
310 if (is_vmalloc_addr(pg_vec[i]))
311 vfree(pg_vec[i]);
312 else
313 free_pages((unsigned long)pg_vec[i], order);
314 }
315 }
316 kfree(pg_vec);
317 }
318
319 static void *alloc_one_pg_vec_page(unsigned long order)
320 {
321 void *buffer;
322 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
323 __GFP_NOWARN | __GFP_NORETRY;
324
325 buffer = (void *)__get_free_pages(gfp_flags, order);
326 if (buffer != NULL)
327 return buffer;
328
329 buffer = vzalloc((1 << order) * PAGE_SIZE);
330 if (buffer != NULL)
331 return buffer;
332
333 gfp_flags &= ~__GFP_NORETRY;
334 return (void *)__get_free_pages(gfp_flags, order);
335 }
336
337 static void **alloc_pg_vec(struct netlink_sock *nlk,
338 struct nl_mmap_req *req, unsigned int order)
339 {
340 unsigned int block_nr = req->nm_block_nr;
341 unsigned int i;
342 void **pg_vec;
343
344 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
345 if (pg_vec == NULL)
346 return NULL;
347
348 for (i = 0; i < block_nr; i++) {
349 pg_vec[i] = alloc_one_pg_vec_page(order);
350 if (pg_vec[i] == NULL)
351 goto err1;
352 }
353
354 return pg_vec;
355 err1:
356 free_pg_vec(pg_vec, order, block_nr);
357 return NULL;
358 }
359
360
361 static void
362 __netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, bool tx_ring, void **pg_vec,
363 unsigned int order)
364 {
365 struct netlink_sock *nlk = nlk_sk(sk);
366 struct sk_buff_head *queue;
367 struct netlink_ring *ring;
368
369 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
370 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
371
372 spin_lock_bh(&queue->lock);
373
374 ring->frame_max = req->nm_frame_nr - 1;
375 ring->head = 0;
376 ring->frame_size = req->nm_frame_size;
377 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
378
379 swap(ring->pg_vec_len, req->nm_block_nr);
380 swap(ring->pg_vec_order, order);
381 swap(ring->pg_vec, pg_vec);
382
383 __skb_queue_purge(queue);
384 spin_unlock_bh(&queue->lock);
385
386 WARN_ON(atomic_read(&nlk->mapped));
387
388 if (pg_vec)
389 free_pg_vec(pg_vec, order, req->nm_block_nr);
390 }
391
392 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
393 bool tx_ring)
394 {
395 struct netlink_sock *nlk = nlk_sk(sk);
396 struct netlink_ring *ring;
397 void **pg_vec = NULL;
398 unsigned int order = 0;
399
400 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
401
402 if (atomic_read(&nlk->mapped))
403 return -EBUSY;
404 if (atomic_read(&ring->pending))
405 return -EBUSY;
406
407 if (req->nm_block_nr) {
408 if (ring->pg_vec != NULL)
409 return -EBUSY;
410
411 if ((int)req->nm_block_size <= 0)
412 return -EINVAL;
413 if (!PAGE_ALIGNED(req->nm_block_size))
414 return -EINVAL;
415 if (req->nm_frame_size < NL_MMAP_HDRLEN)
416 return -EINVAL;
417 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
418 return -EINVAL;
419
420 ring->frames_per_block = req->nm_block_size /
421 req->nm_frame_size;
422 if (ring->frames_per_block == 0)
423 return -EINVAL;
424 if (ring->frames_per_block * req->nm_block_nr !=
425 req->nm_frame_nr)
426 return -EINVAL;
427
428 order = get_order(req->nm_block_size);
429 pg_vec = alloc_pg_vec(nlk, req, order);
430 if (pg_vec == NULL)
431 return -ENOMEM;
432 } else {
433 if (req->nm_frame_nr)
434 return -EINVAL;
435 }
436
437 mutex_lock(&nlk->pg_vec_lock);
438 if (atomic_read(&nlk->mapped) == 0) {
439 __netlink_set_ring(sk, req, tx_ring, pg_vec, order);
440 mutex_unlock(&nlk->pg_vec_lock);
441 return 0;
442 }
443
444 mutex_unlock(&nlk->pg_vec_lock);
445
446 if (pg_vec)
447 free_pg_vec(pg_vec, order, req->nm_block_nr);
448
449 return -EBUSY;
450 }
451
452 static void netlink_mm_open(struct vm_area_struct *vma)
453 {
454 struct file *file = vma->vm_file;
455 struct socket *sock = file->private_data;
456 struct sock *sk = sock->sk;
457
458 if (sk)
459 atomic_inc(&nlk_sk(sk)->mapped);
460 }
461
462 static void netlink_mm_close(struct vm_area_struct *vma)
463 {
464 struct file *file = vma->vm_file;
465 struct socket *sock = file->private_data;
466 struct sock *sk = sock->sk;
467
468 if (sk)
469 atomic_dec(&nlk_sk(sk)->mapped);
470 }
471
472 static const struct vm_operations_struct netlink_mmap_ops = {
473 .open = netlink_mm_open,
474 .close = netlink_mm_close,
475 };
476
477 static int netlink_mmap(struct file *file, struct socket *sock,
478 struct vm_area_struct *vma)
479 {
480 struct sock *sk = sock->sk;
481 struct netlink_sock *nlk = nlk_sk(sk);
482 struct netlink_ring *ring;
483 unsigned long start, size, expected;
484 unsigned int i;
485 int err = -EINVAL;
486
487 if (vma->vm_pgoff)
488 return -EINVAL;
489
490 mutex_lock(&nlk->pg_vec_lock);
491
492 expected = 0;
493 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
494 if (ring->pg_vec == NULL)
495 continue;
496 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
497 }
498
499 if (expected == 0)
500 goto out;
501
502 size = vma->vm_end - vma->vm_start;
503 if (size != expected)
504 goto out;
505
506 start = vma->vm_start;
507 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
508 if (ring->pg_vec == NULL)
509 continue;
510
511 for (i = 0; i < ring->pg_vec_len; i++) {
512 struct page *page;
513 void *kaddr = ring->pg_vec[i];
514 unsigned int pg_num;
515
516 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
517 page = pgvec_to_page(kaddr);
518 err = vm_insert_page(vma, start, page);
519 if (err < 0)
520 goto out;
521 start += PAGE_SIZE;
522 kaddr += PAGE_SIZE;
523 }
524 }
525 }
526
527 atomic_inc(&nlk->mapped);
528 vma->vm_ops = &netlink_mmap_ops;
529 err = 0;
530 out:
531 mutex_unlock(&nlk->pg_vec_lock);
532 return err;
533 }
534
535 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
536 {
537 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
538 struct page *p_start, *p_end;
539
540 /* First page is flushed through netlink_{get,set}_status */
541 p_start = pgvec_to_page(hdr + PAGE_SIZE);
542 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
543 while (p_start <= p_end) {
544 flush_dcache_page(p_start);
545 p_start++;
546 }
547 #endif
548 }
549
550 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
551 {
552 smp_rmb();
553 flush_dcache_page(pgvec_to_page(hdr));
554 return hdr->nm_status;
555 }
556
557 static void netlink_set_status(struct nl_mmap_hdr *hdr,
558 enum nl_mmap_status status)
559 {
560 smp_mb();
561 hdr->nm_status = status;
562 flush_dcache_page(pgvec_to_page(hdr));
563 }
564
565 static struct nl_mmap_hdr *
566 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
567 {
568 unsigned int pg_vec_pos, frame_off;
569
570 pg_vec_pos = pos / ring->frames_per_block;
571 frame_off = pos % ring->frames_per_block;
572
573 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
574 }
575
576 static struct nl_mmap_hdr *
577 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
578 enum nl_mmap_status status)
579 {
580 struct nl_mmap_hdr *hdr;
581
582 hdr = __netlink_lookup_frame(ring, pos);
583 if (netlink_get_status(hdr) != status)
584 return NULL;
585
586 return hdr;
587 }
588
589 static struct nl_mmap_hdr *
590 netlink_current_frame(const struct netlink_ring *ring,
591 enum nl_mmap_status status)
592 {
593 return netlink_lookup_frame(ring, ring->head, status);
594 }
595
596 static struct nl_mmap_hdr *
597 netlink_previous_frame(const struct netlink_ring *ring,
598 enum nl_mmap_status status)
599 {
600 unsigned int prev;
601
602 prev = ring->head ? ring->head - 1 : ring->frame_max;
603 return netlink_lookup_frame(ring, prev, status);
604 }
605
606 static void netlink_increment_head(struct netlink_ring *ring)
607 {
608 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
609 }
610
611 static void netlink_forward_ring(struct netlink_ring *ring)
612 {
613 unsigned int head = ring->head, pos = head;
614 const struct nl_mmap_hdr *hdr;
615
616 do {
617 hdr = __netlink_lookup_frame(ring, pos);
618 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
619 break;
620 if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
621 break;
622 netlink_increment_head(ring);
623 } while (ring->head != head);
624 }
625
626 static bool netlink_dump_space(struct netlink_sock *nlk)
627 {
628 struct netlink_ring *ring = &nlk->rx_ring;
629 struct nl_mmap_hdr *hdr;
630 unsigned int n;
631
632 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
633 if (hdr == NULL)
634 return false;
635
636 n = ring->head + ring->frame_max / 2;
637 if (n > ring->frame_max)
638 n -= ring->frame_max;
639
640 hdr = __netlink_lookup_frame(ring, n);
641
642 return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
643 }
644
645 static unsigned int netlink_poll(struct file *file, struct socket *sock,
646 poll_table *wait)
647 {
648 struct sock *sk = sock->sk;
649 struct netlink_sock *nlk = nlk_sk(sk);
650 unsigned int mask;
651 int err;
652
653 if (nlk->rx_ring.pg_vec != NULL) {
654 /* Memory mapped sockets don't call recvmsg(), so flow control
655 * for dumps is performed here. A dump is allowed to continue
656 * if at least half the ring is unused.
657 */
658 while (nlk->cb_running && netlink_dump_space(nlk)) {
659 err = netlink_dump(sk);
660 if (err < 0) {
661 sk->sk_err = -err;
662 sk->sk_error_report(sk);
663 break;
664 }
665 }
666 netlink_rcv_wake(sk);
667 }
668
669 mask = datagram_poll(file, sock, wait);
670
671 spin_lock_bh(&sk->sk_receive_queue.lock);
672 if (nlk->rx_ring.pg_vec) {
673 netlink_forward_ring(&nlk->rx_ring);
674 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
675 mask |= POLLIN | POLLRDNORM;
676 }
677 spin_unlock_bh(&sk->sk_receive_queue.lock);
678
679 spin_lock_bh(&sk->sk_write_queue.lock);
680 if (nlk->tx_ring.pg_vec) {
681 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
682 mask |= POLLOUT | POLLWRNORM;
683 }
684 spin_unlock_bh(&sk->sk_write_queue.lock);
685
686 return mask;
687 }
688
689 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
690 {
691 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
692 }
693
694 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
695 struct netlink_ring *ring,
696 struct nl_mmap_hdr *hdr)
697 {
698 unsigned int size;
699 void *data;
700
701 size = ring->frame_size - NL_MMAP_HDRLEN;
702 data = (void *)hdr + NL_MMAP_HDRLEN;
703
704 skb->head = data;
705 skb->data = data;
706 skb_reset_tail_pointer(skb);
707 skb->end = skb->tail + size;
708 skb->len = 0;
709
710 skb->destructor = netlink_skb_destructor;
711 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
712 NETLINK_CB(skb).sk = sk;
713 }
714
715 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
716 u32 dst_portid, u32 dst_group,
717 struct scm_cookie *scm)
718 {
719 struct netlink_sock *nlk = nlk_sk(sk);
720 struct netlink_ring *ring;
721 struct nl_mmap_hdr *hdr;
722 struct sk_buff *skb;
723 unsigned int maxlen;
724 int err = 0, len = 0;
725
726 mutex_lock(&nlk->pg_vec_lock);
727
728 ring = &nlk->tx_ring;
729 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
730
731 do {
732 unsigned int nm_len;
733
734 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
735 if (hdr == NULL) {
736 if (!(msg->msg_flags & MSG_DONTWAIT) &&
737 atomic_read(&nlk->tx_ring.pending))
738 schedule();
739 continue;
740 }
741
742 nm_len = ACCESS_ONCE(hdr->nm_len);
743 if (nm_len > maxlen) {
744 err = -EINVAL;
745 goto out;
746 }
747
748 netlink_frame_flush_dcache(hdr, nm_len);
749
750 skb = alloc_skb(nm_len, GFP_KERNEL);
751 if (skb == NULL) {
752 err = -ENOBUFS;
753 goto out;
754 }
755 __skb_put(skb, nm_len);
756 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
757 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
758
759 netlink_increment_head(ring);
760
761 NETLINK_CB(skb).portid = nlk->portid;
762 NETLINK_CB(skb).dst_group = dst_group;
763 NETLINK_CB(skb).creds = scm->creds;
764
765 err = security_netlink_send(sk, skb);
766 if (err) {
767 kfree_skb(skb);
768 goto out;
769 }
770
771 if (unlikely(dst_group)) {
772 atomic_inc(&skb->users);
773 netlink_broadcast(sk, skb, dst_portid, dst_group,
774 GFP_KERNEL);
775 }
776 err = netlink_unicast(sk, skb, dst_portid,
777 msg->msg_flags & MSG_DONTWAIT);
778 if (err < 0)
779 goto out;
780 len += err;
781
782 } while (hdr != NULL ||
783 (!(msg->msg_flags & MSG_DONTWAIT) &&
784 atomic_read(&nlk->tx_ring.pending)));
785
786 if (len > 0)
787 err = len;
788 out:
789 mutex_unlock(&nlk->pg_vec_lock);
790 return err;
791 }
792
793 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
794 {
795 struct nl_mmap_hdr *hdr;
796
797 hdr = netlink_mmap_hdr(skb);
798 hdr->nm_len = skb->len;
799 hdr->nm_group = NETLINK_CB(skb).dst_group;
800 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
801 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
802 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
803 netlink_frame_flush_dcache(hdr, hdr->nm_len);
804 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
805
806 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
807 kfree_skb(skb);
808 }
809
810 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
811 {
812 struct netlink_sock *nlk = nlk_sk(sk);
813 struct netlink_ring *ring = &nlk->rx_ring;
814 struct nl_mmap_hdr *hdr;
815
816 spin_lock_bh(&sk->sk_receive_queue.lock);
817 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
818 if (hdr == NULL) {
819 spin_unlock_bh(&sk->sk_receive_queue.lock);
820 kfree_skb(skb);
821 netlink_overrun(sk);
822 return;
823 }
824 netlink_increment_head(ring);
825 __skb_queue_tail(&sk->sk_receive_queue, skb);
826 spin_unlock_bh(&sk->sk_receive_queue.lock);
827
828 hdr->nm_len = skb->len;
829 hdr->nm_group = NETLINK_CB(skb).dst_group;
830 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
831 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
832 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
833 netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
834 }
835
836 #else /* CONFIG_NETLINK_MMAP */
837 #define netlink_skb_is_mmaped(skb) false
838 #define netlink_rx_is_mmaped(sk) false
839 #define netlink_tx_is_mmaped(sk) false
840 #define netlink_mmap sock_no_mmap
841 #define netlink_poll datagram_poll
842 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0
843 #endif /* CONFIG_NETLINK_MMAP */
844
845 static void netlink_skb_destructor(struct sk_buff *skb)
846 {
847 #ifdef CONFIG_NETLINK_MMAP
848 struct nl_mmap_hdr *hdr;
849 struct netlink_ring *ring;
850 struct sock *sk;
851
852 /* If a packet from the kernel to userspace was freed because of an
853 * error without being delivered to userspace, the kernel must reset
854 * the status. In the direction userspace to kernel, the status is
855 * always reset here after the packet was processed and freed.
856 */
857 if (netlink_skb_is_mmaped(skb)) {
858 hdr = netlink_mmap_hdr(skb);
859 sk = NETLINK_CB(skb).sk;
860
861 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
862 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
863 ring = &nlk_sk(sk)->tx_ring;
864 } else {
865 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
866 hdr->nm_len = 0;
867 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
868 }
869 ring = &nlk_sk(sk)->rx_ring;
870 }
871
872 WARN_ON(atomic_read(&ring->pending) == 0);
873 atomic_dec(&ring->pending);
874 sock_put(sk);
875
876 skb->head = NULL;
877 }
878 #endif
879 if (is_vmalloc_addr(skb->head)) {
880 if (!skb->cloned ||
881 !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
882 vfree(skb->head);
883
884 skb->head = NULL;
885 }
886 if (skb->sk != NULL)
887 sock_rfree(skb);
888 }
889
890 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
891 {
892 WARN_ON(skb->sk != NULL);
893 skb->sk = sk;
894 skb->destructor = netlink_skb_destructor;
895 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
896 sk_mem_charge(sk, skb->truesize);
897 }
898
899 static void netlink_sock_destruct(struct sock *sk)
900 {
901 struct netlink_sock *nlk = nlk_sk(sk);
902
903 if (nlk->cb_running) {
904 if (nlk->cb.done)
905 nlk->cb.done(&nlk->cb);
906
907 module_put(nlk->cb.module);
908 kfree_skb(nlk->cb.skb);
909 }
910
911 skb_queue_purge(&sk->sk_receive_queue);
912 #ifdef CONFIG_NETLINK_MMAP
913 if (1) {
914 struct nl_mmap_req req;
915
916 memset(&req, 0, sizeof(req));
917 if (nlk->rx_ring.pg_vec)
918 __netlink_set_ring(sk, &req, false, NULL, 0);
919 memset(&req, 0, sizeof(req));
920 if (nlk->tx_ring.pg_vec)
921 __netlink_set_ring(sk, &req, true, NULL, 0);
922 }
923 #endif /* CONFIG_NETLINK_MMAP */
924
925 if (!sock_flag(sk, SOCK_DEAD)) {
926 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
927 return;
928 }
929
930 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
931 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
932 WARN_ON(nlk_sk(sk)->groups);
933 }
934
935 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
936 * SMP. Look, when several writers sleep and reader wakes them up, all but one
937 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
938 * this, _but_ remember, it adds useless work on UP machines.
939 */
940
941 void netlink_table_grab(void)
942 __acquires(nl_table_lock)
943 {
944 might_sleep();
945
946 write_lock_irq(&nl_table_lock);
947
948 if (atomic_read(&nl_table_users)) {
949 DECLARE_WAITQUEUE(wait, current);
950
951 add_wait_queue_exclusive(&nl_table_wait, &wait);
952 for (;;) {
953 set_current_state(TASK_UNINTERRUPTIBLE);
954 if (atomic_read(&nl_table_users) == 0)
955 break;
956 write_unlock_irq(&nl_table_lock);
957 schedule();
958 write_lock_irq(&nl_table_lock);
959 }
960
961 __set_current_state(TASK_RUNNING);
962 remove_wait_queue(&nl_table_wait, &wait);
963 }
964 }
965
966 void netlink_table_ungrab(void)
967 __releases(nl_table_lock)
968 {
969 write_unlock_irq(&nl_table_lock);
970 wake_up(&nl_table_wait);
971 }
972
973 static inline void
974 netlink_lock_table(void)
975 {
976 /* read_lock() synchronizes us to netlink_table_grab */
977
978 read_lock(&nl_table_lock);
979 atomic_inc(&nl_table_users);
980 read_unlock(&nl_table_lock);
981 }
982
983 static inline void
984 netlink_unlock_table(void)
985 {
986 if (atomic_dec_and_test(&nl_table_users))
987 wake_up(&nl_table_wait);
988 }
989
990 struct netlink_compare_arg
991 {
992 possible_net_t pnet;
993 u32 portid;
994 };
995
996 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
997 #define netlink_compare_arg_len \
998 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
999
1000 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
1001 const void *ptr)
1002 {
1003 const struct netlink_compare_arg *x = arg->key;
1004 const struct netlink_sock *nlk = ptr;
1005
1006 return nlk->portid != x->portid ||
1007 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
1008 }
1009
1010 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
1011 struct net *net, u32 portid)
1012 {
1013 memset(arg, 0, sizeof(*arg));
1014 write_pnet(&arg->pnet, net);
1015 arg->portid = portid;
1016 }
1017
1018 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1019 struct net *net)
1020 {
1021 struct netlink_compare_arg arg;
1022
1023 netlink_compare_arg_init(&arg, net, portid);
1024 return rhashtable_lookup_fast(&table->hash, &arg,
1025 netlink_rhashtable_params);
1026 }
1027
1028 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
1029 {
1030 struct netlink_compare_arg arg;
1031
1032 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
1033 return rhashtable_lookup_insert_key(&table->hash, &arg,
1034 &nlk_sk(sk)->node,
1035 netlink_rhashtable_params);
1036 }
1037
1038 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1039 {
1040 struct netlink_table *table = &nl_table[protocol];
1041 struct sock *sk;
1042
1043 rcu_read_lock();
1044 sk = __netlink_lookup(table, portid, net);
1045 if (sk)
1046 sock_hold(sk);
1047 rcu_read_unlock();
1048
1049 return sk;
1050 }
1051
1052 static const struct proto_ops netlink_ops;
1053
1054 static void
1055 netlink_update_listeners(struct sock *sk)
1056 {
1057 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1058 unsigned long mask;
1059 unsigned int i;
1060 struct listeners *listeners;
1061
1062 listeners = nl_deref_protected(tbl->listeners);
1063 if (!listeners)
1064 return;
1065
1066 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1067 mask = 0;
1068 sk_for_each_bound(sk, &tbl->mc_list) {
1069 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1070 mask |= nlk_sk(sk)->groups[i];
1071 }
1072 listeners->masks[i] = mask;
1073 }
1074 /* this function is only called with the netlink table "grabbed", which
1075 * makes sure updates are visible before bind or setsockopt return. */
1076 }
1077
1078 static int netlink_insert(struct sock *sk, u32 portid)
1079 {
1080 struct netlink_table *table = &nl_table[sk->sk_protocol];
1081 int err;
1082
1083 lock_sock(sk);
1084
1085 err = -EBUSY;
1086 if (nlk_sk(sk)->portid)
1087 goto err;
1088
1089 err = -ENOMEM;
1090 if (BITS_PER_LONG > 32 &&
1091 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
1092 goto err;
1093
1094 nlk_sk(sk)->portid = portid;
1095 sock_hold(sk);
1096
1097 err = __netlink_insert(table, sk);
1098 if (err) {
1099 /* In case the hashtable backend returns with -EBUSY
1100 * from here, it must not escape to the caller.
1101 */
1102 if (unlikely(err == -EBUSY))
1103 err = -EOVERFLOW;
1104 if (err == -EEXIST)
1105 err = -EADDRINUSE;
1106 nlk_sk(sk)->portid = 0;
1107 sock_put(sk);
1108 }
1109
1110 err:
1111 release_sock(sk);
1112 return err;
1113 }
1114
1115 static void netlink_remove(struct sock *sk)
1116 {
1117 struct netlink_table *table;
1118
1119 table = &nl_table[sk->sk_protocol];
1120 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
1121 netlink_rhashtable_params)) {
1122 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1123 __sock_put(sk);
1124 }
1125
1126 netlink_table_grab();
1127 if (nlk_sk(sk)->subscriptions) {
1128 __sk_del_bind_node(sk);
1129 netlink_update_listeners(sk);
1130 }
1131 if (sk->sk_protocol == NETLINK_GENERIC)
1132 atomic_inc(&genl_sk_destructing_cnt);
1133 netlink_table_ungrab();
1134 }
1135
1136 static struct proto netlink_proto = {
1137 .name = "NETLINK",
1138 .owner = THIS_MODULE,
1139 .obj_size = sizeof(struct netlink_sock),
1140 };
1141
1142 static int __netlink_create(struct net *net, struct socket *sock,
1143 struct mutex *cb_mutex, int protocol,
1144 int kern)
1145 {
1146 struct sock *sk;
1147 struct netlink_sock *nlk;
1148
1149 sock->ops = &netlink_ops;
1150
1151 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
1152 if (!sk)
1153 return -ENOMEM;
1154
1155 sock_init_data(sock, sk);
1156
1157 nlk = nlk_sk(sk);
1158 if (cb_mutex) {
1159 nlk->cb_mutex = cb_mutex;
1160 } else {
1161 nlk->cb_mutex = &nlk->cb_def_mutex;
1162 mutex_init(nlk->cb_mutex);
1163 }
1164 init_waitqueue_head(&nlk->wait);
1165 #ifdef CONFIG_NETLINK_MMAP
1166 mutex_init(&nlk->pg_vec_lock);
1167 #endif
1168
1169 sk->sk_destruct = netlink_sock_destruct;
1170 sk->sk_protocol = protocol;
1171 return 0;
1172 }
1173
1174 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1175 int kern)
1176 {
1177 struct module *module = NULL;
1178 struct mutex *cb_mutex;
1179 struct netlink_sock *nlk;
1180 int (*bind)(struct net *net, int group);
1181 void (*unbind)(struct net *net, int group);
1182 int err = 0;
1183
1184 sock->state = SS_UNCONNECTED;
1185
1186 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1187 return -ESOCKTNOSUPPORT;
1188
1189 if (protocol < 0 || protocol >= MAX_LINKS)
1190 return -EPROTONOSUPPORT;
1191
1192 netlink_lock_table();
1193 #ifdef CONFIG_MODULES
1194 if (!nl_table[protocol].registered) {
1195 netlink_unlock_table();
1196 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1197 netlink_lock_table();
1198 }
1199 #endif
1200 if (nl_table[protocol].registered &&
1201 try_module_get(nl_table[protocol].module))
1202 module = nl_table[protocol].module;
1203 else
1204 err = -EPROTONOSUPPORT;
1205 cb_mutex = nl_table[protocol].cb_mutex;
1206 bind = nl_table[protocol].bind;
1207 unbind = nl_table[protocol].unbind;
1208 netlink_unlock_table();
1209
1210 if (err < 0)
1211 goto out;
1212
1213 err = __netlink_create(net, sock, cb_mutex, protocol, kern);
1214 if (err < 0)
1215 goto out_module;
1216
1217 local_bh_disable();
1218 sock_prot_inuse_add(net, &netlink_proto, 1);
1219 local_bh_enable();
1220
1221 nlk = nlk_sk(sock->sk);
1222 nlk->module = module;
1223 nlk->netlink_bind = bind;
1224 nlk->netlink_unbind = unbind;
1225 out:
1226 return err;
1227
1228 out_module:
1229 module_put(module);
1230 goto out;
1231 }
1232
1233 static void deferred_put_nlk_sk(struct rcu_head *head)
1234 {
1235 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
1236
1237 sock_put(&nlk->sk);
1238 }
1239
1240 static int netlink_release(struct socket *sock)
1241 {
1242 struct sock *sk = sock->sk;
1243 struct netlink_sock *nlk;
1244
1245 if (!sk)
1246 return 0;
1247
1248 netlink_remove(sk);
1249 sock_orphan(sk);
1250 nlk = nlk_sk(sk);
1251
1252 /*
1253 * OK. Socket is unlinked, any packets that arrive now
1254 * will be purged.
1255 */
1256
1257 /* must not acquire netlink_table_lock in any way again before unbind
1258 * and notifying genetlink is done as otherwise it might deadlock
1259 */
1260 if (nlk->netlink_unbind) {
1261 int i;
1262
1263 for (i = 0; i < nlk->ngroups; i++)
1264 if (test_bit(i, nlk->groups))
1265 nlk->netlink_unbind(sock_net(sk), i + 1);
1266 }
1267 if (sk->sk_protocol == NETLINK_GENERIC &&
1268 atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1269 wake_up(&genl_sk_destructing_waitq);
1270
1271 sock->sk = NULL;
1272 wake_up_interruptible_all(&nlk->wait);
1273
1274 skb_queue_purge(&sk->sk_write_queue);
1275
1276 if (nlk->portid) {
1277 struct netlink_notify n = {
1278 .net = sock_net(sk),
1279 .protocol = sk->sk_protocol,
1280 .portid = nlk->portid,
1281 };
1282 atomic_notifier_call_chain(&netlink_chain,
1283 NETLINK_URELEASE, &n);
1284 }
1285
1286 module_put(nlk->module);
1287
1288 if (netlink_is_kernel(sk)) {
1289 netlink_table_grab();
1290 BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1291 if (--nl_table[sk->sk_protocol].registered == 0) {
1292 struct listeners *old;
1293
1294 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1295 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1296 kfree_rcu(old, rcu);
1297 nl_table[sk->sk_protocol].module = NULL;
1298 nl_table[sk->sk_protocol].bind = NULL;
1299 nl_table[sk->sk_protocol].unbind = NULL;
1300 nl_table[sk->sk_protocol].flags = 0;
1301 nl_table[sk->sk_protocol].registered = 0;
1302 }
1303 netlink_table_ungrab();
1304 }
1305
1306 kfree(nlk->groups);
1307 nlk->groups = NULL;
1308
1309 local_bh_disable();
1310 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1311 local_bh_enable();
1312 call_rcu(&nlk->rcu, deferred_put_nlk_sk);
1313 return 0;
1314 }
1315
1316 static int netlink_autobind(struct socket *sock)
1317 {
1318 struct sock *sk = sock->sk;
1319 struct net *net = sock_net(sk);
1320 struct netlink_table *table = &nl_table[sk->sk_protocol];
1321 s32 portid = task_tgid_vnr(current);
1322 int err;
1323 s32 rover = -4096;
1324 bool ok;
1325
1326 retry:
1327 cond_resched();
1328 rcu_read_lock();
1329 ok = !__netlink_lookup(table, portid, net);
1330 rcu_read_unlock();
1331 if (!ok) {
1332 /* Bind collision, search negative portid values. */
1333 if (rover == -4096)
1334 /* rover will be in range [S32_MIN, -4097] */
1335 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
1336 else if (rover >= -4096)
1337 rover = -4097;
1338 portid = rover--;
1339 goto retry;
1340 }
1341
1342 err = netlink_insert(sk, portid);
1343 if (err == -EADDRINUSE)
1344 goto retry;
1345
1346 /* If 2 threads race to autobind, that is fine. */
1347 if (err == -EBUSY)
1348 err = 0;
1349
1350 return err;
1351 }
1352
1353 /**
1354 * __netlink_ns_capable - General netlink message capability test
1355 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1356 * @user_ns: The user namespace of the capability to use
1357 * @cap: The capability to use
1358 *
1359 * Test to see if the opener of the socket we received the message
1360 * from had when the netlink socket was created and the sender of the
1361 * message has has the capability @cap in the user namespace @user_ns.
1362 */
1363 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1364 struct user_namespace *user_ns, int cap)
1365 {
1366 return ((nsp->flags & NETLINK_SKB_DST) ||
1367 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1368 ns_capable(user_ns, cap);
1369 }
1370 EXPORT_SYMBOL(__netlink_ns_capable);
1371
1372 /**
1373 * netlink_ns_capable - General netlink message capability test
1374 * @skb: socket buffer holding a netlink command from userspace
1375 * @user_ns: The user namespace of the capability to use
1376 * @cap: The capability to use
1377 *
1378 * Test to see if the opener of the socket we received the message
1379 * from had when the netlink socket was created and the sender of the
1380 * message has has the capability @cap in the user namespace @user_ns.
1381 */
1382 bool netlink_ns_capable(const struct sk_buff *skb,
1383 struct user_namespace *user_ns, int cap)
1384 {
1385 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1386 }
1387 EXPORT_SYMBOL(netlink_ns_capable);
1388
1389 /**
1390 * netlink_capable - Netlink global message capability test
1391 * @skb: socket buffer holding a netlink command from userspace
1392 * @cap: The capability to use
1393 *
1394 * Test to see if the opener of the socket we received the message
1395 * from had when the netlink socket was created and the sender of the
1396 * message has has the capability @cap in all user namespaces.
1397 */
1398 bool netlink_capable(const struct sk_buff *skb, int cap)
1399 {
1400 return netlink_ns_capable(skb, &init_user_ns, cap);
1401 }
1402 EXPORT_SYMBOL(netlink_capable);
1403
1404 /**
1405 * netlink_net_capable - Netlink network namespace message capability test
1406 * @skb: socket buffer holding a netlink command from userspace
1407 * @cap: The capability to use
1408 *
1409 * Test to see if the opener of the socket we received the message
1410 * from had when the netlink socket was created and the sender of the
1411 * message has has the capability @cap over the network namespace of
1412 * the socket we received the message from.
1413 */
1414 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1415 {
1416 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1417 }
1418 EXPORT_SYMBOL(netlink_net_capable);
1419
1420 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1421 {
1422 return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1423 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1424 }
1425
1426 static void
1427 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1428 {
1429 struct netlink_sock *nlk = nlk_sk(sk);
1430
1431 if (nlk->subscriptions && !subscriptions)
1432 __sk_del_bind_node(sk);
1433 else if (!nlk->subscriptions && subscriptions)
1434 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1435 nlk->subscriptions = subscriptions;
1436 }
1437
1438 static int netlink_realloc_groups(struct sock *sk)
1439 {
1440 struct netlink_sock *nlk = nlk_sk(sk);
1441 unsigned int groups;
1442 unsigned long *new_groups;
1443 int err = 0;
1444
1445 netlink_table_grab();
1446
1447 groups = nl_table[sk->sk_protocol].groups;
1448 if (!nl_table[sk->sk_protocol].registered) {
1449 err = -ENOENT;
1450 goto out_unlock;
1451 }
1452
1453 if (nlk->ngroups >= groups)
1454 goto out_unlock;
1455
1456 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1457 if (new_groups == NULL) {
1458 err = -ENOMEM;
1459 goto out_unlock;
1460 }
1461 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1462 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1463
1464 nlk->groups = new_groups;
1465 nlk->ngroups = groups;
1466 out_unlock:
1467 netlink_table_ungrab();
1468 return err;
1469 }
1470
1471 static void netlink_undo_bind(int group, long unsigned int groups,
1472 struct sock *sk)
1473 {
1474 struct netlink_sock *nlk = nlk_sk(sk);
1475 int undo;
1476
1477 if (!nlk->netlink_unbind)
1478 return;
1479
1480 for (undo = 0; undo < group; undo++)
1481 if (test_bit(undo, &groups))
1482 nlk->netlink_unbind(sock_net(sk), undo + 1);
1483 }
1484
1485 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1486 int addr_len)
1487 {
1488 struct sock *sk = sock->sk;
1489 struct net *net = sock_net(sk);
1490 struct netlink_sock *nlk = nlk_sk(sk);
1491 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1492 int err;
1493 long unsigned int groups = nladdr->nl_groups;
1494
1495 if (addr_len < sizeof(struct sockaddr_nl))
1496 return -EINVAL;
1497
1498 if (nladdr->nl_family != AF_NETLINK)
1499 return -EINVAL;
1500
1501 /* Only superuser is allowed to listen multicasts */
1502 if (groups) {
1503 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1504 return -EPERM;
1505 err = netlink_realloc_groups(sk);
1506 if (err)
1507 return err;
1508 }
1509
1510 if (nlk->portid)
1511 if (nladdr->nl_pid != nlk->portid)
1512 return -EINVAL;
1513
1514 if (nlk->netlink_bind && groups) {
1515 int group;
1516
1517 for (group = 0; group < nlk->ngroups; group++) {
1518 if (!test_bit(group, &groups))
1519 continue;
1520 err = nlk->netlink_bind(net, group + 1);
1521 if (!err)
1522 continue;
1523 netlink_undo_bind(group, groups, sk);
1524 return err;
1525 }
1526 }
1527
1528 if (!nlk->portid) {
1529 err = nladdr->nl_pid ?
1530 netlink_insert(sk, nladdr->nl_pid) :
1531 netlink_autobind(sock);
1532 if (err) {
1533 netlink_undo_bind(nlk->ngroups, groups, sk);
1534 return err;
1535 }
1536 }
1537
1538 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1539 return 0;
1540
1541 netlink_table_grab();
1542 netlink_update_subscriptions(sk, nlk->subscriptions +
1543 hweight32(groups) -
1544 hweight32(nlk->groups[0]));
1545 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1546 netlink_update_listeners(sk);
1547 netlink_table_ungrab();
1548
1549 return 0;
1550 }
1551
1552 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1553 int alen, int flags)
1554 {
1555 int err = 0;
1556 struct sock *sk = sock->sk;
1557 struct netlink_sock *nlk = nlk_sk(sk);
1558 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1559
1560 if (alen < sizeof(addr->sa_family))
1561 return -EINVAL;
1562
1563 if (addr->sa_family == AF_UNSPEC) {
1564 sk->sk_state = NETLINK_UNCONNECTED;
1565 nlk->dst_portid = 0;
1566 nlk->dst_group = 0;
1567 return 0;
1568 }
1569 if (addr->sa_family != AF_NETLINK)
1570 return -EINVAL;
1571
1572 if ((nladdr->nl_groups || nladdr->nl_pid) &&
1573 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1574 return -EPERM;
1575
1576 if (!nlk->portid)
1577 err = netlink_autobind(sock);
1578
1579 if (err == 0) {
1580 sk->sk_state = NETLINK_CONNECTED;
1581 nlk->dst_portid = nladdr->nl_pid;
1582 nlk->dst_group = ffs(nladdr->nl_groups);
1583 }
1584
1585 return err;
1586 }
1587
1588 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1589 int *addr_len, int peer)
1590 {
1591 struct sock *sk = sock->sk;
1592 struct netlink_sock *nlk = nlk_sk(sk);
1593 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1594
1595 nladdr->nl_family = AF_NETLINK;
1596 nladdr->nl_pad = 0;
1597 *addr_len = sizeof(*nladdr);
1598
1599 if (peer) {
1600 nladdr->nl_pid = nlk->dst_portid;
1601 nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1602 } else {
1603 nladdr->nl_pid = nlk->portid;
1604 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1605 }
1606 return 0;
1607 }
1608
1609 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1610 {
1611 struct sock *sock;
1612 struct netlink_sock *nlk;
1613
1614 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1615 if (!sock)
1616 return ERR_PTR(-ECONNREFUSED);
1617
1618 /* Don't bother queuing skb if kernel socket has no input function */
1619 nlk = nlk_sk(sock);
1620 if (sock->sk_state == NETLINK_CONNECTED &&
1621 nlk->dst_portid != nlk_sk(ssk)->portid) {
1622 sock_put(sock);
1623 return ERR_PTR(-ECONNREFUSED);
1624 }
1625 return sock;
1626 }
1627
1628 struct sock *netlink_getsockbyfilp(struct file *filp)
1629 {
1630 struct inode *inode = file_inode(filp);
1631 struct sock *sock;
1632
1633 if (!S_ISSOCK(inode->i_mode))
1634 return ERR_PTR(-ENOTSOCK);
1635
1636 sock = SOCKET_I(inode)->sk;
1637 if (sock->sk_family != AF_NETLINK)
1638 return ERR_PTR(-EINVAL);
1639
1640 sock_hold(sock);
1641 return sock;
1642 }
1643
1644 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1645 int broadcast)
1646 {
1647 struct sk_buff *skb;
1648 void *data;
1649
1650 if (size <= NLMSG_GOODSIZE || broadcast)
1651 return alloc_skb(size, GFP_KERNEL);
1652
1653 size = SKB_DATA_ALIGN(size) +
1654 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1655
1656 data = vmalloc(size);
1657 if (data == NULL)
1658 return NULL;
1659
1660 skb = __build_skb(data, size);
1661 if (skb == NULL)
1662 vfree(data);
1663 else
1664 skb->destructor = netlink_skb_destructor;
1665
1666 return skb;
1667 }
1668
1669 /*
1670 * Attach a skb to a netlink socket.
1671 * The caller must hold a reference to the destination socket. On error, the
1672 * reference is dropped. The skb is not send to the destination, just all
1673 * all error checks are performed and memory in the queue is reserved.
1674 * Return values:
1675 * < 0: error. skb freed, reference to sock dropped.
1676 * 0: continue
1677 * 1: repeat lookup - reference dropped while waiting for socket memory.
1678 */
1679 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1680 long *timeo, struct sock *ssk)
1681 {
1682 struct netlink_sock *nlk;
1683
1684 nlk = nlk_sk(sk);
1685
1686 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1687 test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1688 !netlink_skb_is_mmaped(skb)) {
1689 DECLARE_WAITQUEUE(wait, current);
1690 if (!*timeo) {
1691 if (!ssk || netlink_is_kernel(ssk))
1692 netlink_overrun(sk);
1693 sock_put(sk);
1694 kfree_skb(skb);
1695 return -EAGAIN;
1696 }
1697
1698 __set_current_state(TASK_INTERRUPTIBLE);
1699 add_wait_queue(&nlk->wait, &wait);
1700
1701 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1702 test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1703 !sock_flag(sk, SOCK_DEAD))
1704 *timeo = schedule_timeout(*timeo);
1705
1706 __set_current_state(TASK_RUNNING);
1707 remove_wait_queue(&nlk->wait, &wait);
1708 sock_put(sk);
1709
1710 if (signal_pending(current)) {
1711 kfree_skb(skb);
1712 return sock_intr_errno(*timeo);
1713 }
1714 return 1;
1715 }
1716 netlink_skb_set_owner_r(skb, sk);
1717 return 0;
1718 }
1719
1720 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1721 {
1722 int len = skb->len;
1723
1724 netlink_deliver_tap(skb);
1725
1726 #ifdef CONFIG_NETLINK_MMAP
1727 if (netlink_skb_is_mmaped(skb))
1728 netlink_queue_mmaped_skb(sk, skb);
1729 else if (netlink_rx_is_mmaped(sk))
1730 netlink_ring_set_copied(sk, skb);
1731 else
1732 #endif /* CONFIG_NETLINK_MMAP */
1733 skb_queue_tail(&sk->sk_receive_queue, skb);
1734 sk->sk_data_ready(sk);
1735 return len;
1736 }
1737
1738 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1739 {
1740 int len = __netlink_sendskb(sk, skb);
1741
1742 sock_put(sk);
1743 return len;
1744 }
1745
1746 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1747 {
1748 kfree_skb(skb);
1749 sock_put(sk);
1750 }
1751
1752 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1753 {
1754 int delta;
1755
1756 WARN_ON(skb->sk != NULL);
1757 if (netlink_skb_is_mmaped(skb))
1758 return skb;
1759
1760 delta = skb->end - skb->tail;
1761 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1762 return skb;
1763
1764 if (skb_shared(skb)) {
1765 struct sk_buff *nskb = skb_clone(skb, allocation);
1766 if (!nskb)
1767 return skb;
1768 consume_skb(skb);
1769 skb = nskb;
1770 }
1771
1772 if (!pskb_expand_head(skb, 0, -delta, allocation))
1773 skb->truesize -= delta;
1774
1775 return skb;
1776 }
1777
1778 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1779 struct sock *ssk)
1780 {
1781 int ret;
1782 struct netlink_sock *nlk = nlk_sk(sk);
1783
1784 ret = -ECONNREFUSED;
1785 if (nlk->netlink_rcv != NULL) {
1786 ret = skb->len;
1787 netlink_skb_set_owner_r(skb, sk);
1788 NETLINK_CB(skb).sk = ssk;
1789 netlink_deliver_tap_kernel(sk, ssk, skb);
1790 nlk->netlink_rcv(skb);
1791 consume_skb(skb);
1792 } else {
1793 kfree_skb(skb);
1794 }
1795 sock_put(sk);
1796 return ret;
1797 }
1798
1799 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1800 u32 portid, int nonblock)
1801 {
1802 struct sock *sk;
1803 int err;
1804 long timeo;
1805
1806 skb = netlink_trim(skb, gfp_any());
1807
1808 timeo = sock_sndtimeo(ssk, nonblock);
1809 retry:
1810 sk = netlink_getsockbyportid(ssk, portid);
1811 if (IS_ERR(sk)) {
1812 kfree_skb(skb);
1813 return PTR_ERR(sk);
1814 }
1815 if (netlink_is_kernel(sk))
1816 return netlink_unicast_kernel(sk, skb, ssk);
1817
1818 if (sk_filter(sk, skb)) {
1819 err = skb->len;
1820 kfree_skb(skb);
1821 sock_put(sk);
1822 return err;
1823 }
1824
1825 err = netlink_attachskb(sk, skb, &timeo, ssk);
1826 if (err == 1)
1827 goto retry;
1828 if (err)
1829 return err;
1830
1831 return netlink_sendskb(sk, skb);
1832 }
1833 EXPORT_SYMBOL(netlink_unicast);
1834
1835 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1836 u32 dst_portid, gfp_t gfp_mask)
1837 {
1838 #ifdef CONFIG_NETLINK_MMAP
1839 struct sock *sk = NULL;
1840 struct sk_buff *skb;
1841 struct netlink_ring *ring;
1842 struct nl_mmap_hdr *hdr;
1843 unsigned int maxlen;
1844
1845 sk = netlink_getsockbyportid(ssk, dst_portid);
1846 if (IS_ERR(sk))
1847 goto out;
1848
1849 ring = &nlk_sk(sk)->rx_ring;
1850 /* fast-path without atomic ops for common case: non-mmaped receiver */
1851 if (ring->pg_vec == NULL)
1852 goto out_put;
1853
1854 if (ring->frame_size - NL_MMAP_HDRLEN < size)
1855 goto out_put;
1856
1857 skb = alloc_skb_head(gfp_mask);
1858 if (skb == NULL)
1859 goto err1;
1860
1861 spin_lock_bh(&sk->sk_receive_queue.lock);
1862 /* check again under lock */
1863 if (ring->pg_vec == NULL)
1864 goto out_free;
1865
1866 /* check again under lock */
1867 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1868 if (maxlen < size)
1869 goto out_free;
1870
1871 netlink_forward_ring(ring);
1872 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1873 if (hdr == NULL)
1874 goto err2;
1875 netlink_ring_setup_skb(skb, sk, ring, hdr);
1876 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1877 atomic_inc(&ring->pending);
1878 netlink_increment_head(ring);
1879
1880 spin_unlock_bh(&sk->sk_receive_queue.lock);
1881 return skb;
1882
1883 err2:
1884 kfree_skb(skb);
1885 spin_unlock_bh(&sk->sk_receive_queue.lock);
1886 netlink_overrun(sk);
1887 err1:
1888 sock_put(sk);
1889 return NULL;
1890
1891 out_free:
1892 kfree_skb(skb);
1893 spin_unlock_bh(&sk->sk_receive_queue.lock);
1894 out_put:
1895 sock_put(sk);
1896 out:
1897 #endif
1898 return alloc_skb(size, gfp_mask);
1899 }
1900 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1901
1902 int netlink_has_listeners(struct sock *sk, unsigned int group)
1903 {
1904 int res = 0;
1905 struct listeners *listeners;
1906
1907 BUG_ON(!netlink_is_kernel(sk));
1908
1909 rcu_read_lock();
1910 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1911
1912 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1913 res = test_bit(group - 1, listeners->masks);
1914
1915 rcu_read_unlock();
1916
1917 return res;
1918 }
1919 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1920
1921 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1922 {
1923 struct netlink_sock *nlk = nlk_sk(sk);
1924
1925 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1926 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
1927 netlink_skb_set_owner_r(skb, sk);
1928 __netlink_sendskb(sk, skb);
1929 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1930 }
1931 return -1;
1932 }
1933
1934 struct netlink_broadcast_data {
1935 struct sock *exclude_sk;
1936 struct net *net;
1937 u32 portid;
1938 u32 group;
1939 int failure;
1940 int delivery_failure;
1941 int congested;
1942 int delivered;
1943 gfp_t allocation;
1944 struct sk_buff *skb, *skb2;
1945 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1946 void *tx_data;
1947 };
1948
1949 static void do_one_broadcast(struct sock *sk,
1950 struct netlink_broadcast_data *p)
1951 {
1952 struct netlink_sock *nlk = nlk_sk(sk);
1953 int val;
1954
1955 if (p->exclude_sk == sk)
1956 return;
1957
1958 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1959 !test_bit(p->group - 1, nlk->groups))
1960 return;
1961
1962 if (!net_eq(sock_net(sk), p->net)) {
1963 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
1964 return;
1965
1966 if (!peernet_has_id(sock_net(sk), p->net))
1967 return;
1968
1969 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
1970 CAP_NET_BROADCAST))
1971 return;
1972 }
1973
1974 if (p->failure) {
1975 netlink_overrun(sk);
1976 return;
1977 }
1978
1979 sock_hold(sk);
1980 if (p->skb2 == NULL) {
1981 if (skb_shared(p->skb)) {
1982 p->skb2 = skb_clone(p->skb, p->allocation);
1983 } else {
1984 p->skb2 = skb_get(p->skb);
1985 /*
1986 * skb ownership may have been set when
1987 * delivered to a previous socket.
1988 */
1989 skb_orphan(p->skb2);
1990 }
1991 }
1992 if (p->skb2 == NULL) {
1993 netlink_overrun(sk);
1994 /* Clone failed. Notify ALL listeners. */
1995 p->failure = 1;
1996 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
1997 p->delivery_failure = 1;
1998 goto out;
1999 }
2000 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
2001 kfree_skb(p->skb2);
2002 p->skb2 = NULL;
2003 goto out;
2004 }
2005 if (sk_filter(sk, p->skb2)) {
2006 kfree_skb(p->skb2);
2007 p->skb2 = NULL;
2008 goto out;
2009 }
2010 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
2011 NETLINK_CB(p->skb2).nsid_is_set = true;
2012 val = netlink_broadcast_deliver(sk, p->skb2);
2013 if (val < 0) {
2014 netlink_overrun(sk);
2015 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
2016 p->delivery_failure = 1;
2017 } else {
2018 p->congested |= val;
2019 p->delivered = 1;
2020 p->skb2 = NULL;
2021 }
2022 out:
2023 sock_put(sk);
2024 }
2025
2026 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
2027 u32 group, gfp_t allocation,
2028 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
2029 void *filter_data)
2030 {
2031 struct net *net = sock_net(ssk);
2032 struct netlink_broadcast_data info;
2033 struct sock *sk;
2034
2035 skb = netlink_trim(skb, allocation);
2036
2037 info.exclude_sk = ssk;
2038 info.net = net;
2039 info.portid = portid;
2040 info.group = group;
2041 info.failure = 0;
2042 info.delivery_failure = 0;
2043 info.congested = 0;
2044 info.delivered = 0;
2045 info.allocation = allocation;
2046 info.skb = skb;
2047 info.skb2 = NULL;
2048 info.tx_filter = filter;
2049 info.tx_data = filter_data;
2050
2051 /* While we sleep in clone, do not allow to change socket list */
2052
2053 netlink_lock_table();
2054
2055 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2056 do_one_broadcast(sk, &info);
2057
2058 consume_skb(skb);
2059
2060 netlink_unlock_table();
2061
2062 if (info.delivery_failure) {
2063 kfree_skb(info.skb2);
2064 return -ENOBUFS;
2065 }
2066 consume_skb(info.skb2);
2067
2068 if (info.delivered) {
2069 if (info.congested && (allocation & __GFP_WAIT))
2070 yield();
2071 return 0;
2072 }
2073 return -ESRCH;
2074 }
2075 EXPORT_SYMBOL(netlink_broadcast_filtered);
2076
2077 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2078 u32 group, gfp_t allocation)
2079 {
2080 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2081 NULL, NULL);
2082 }
2083 EXPORT_SYMBOL(netlink_broadcast);
2084
2085 struct netlink_set_err_data {
2086 struct sock *exclude_sk;
2087 u32 portid;
2088 u32 group;
2089 int code;
2090 };
2091
2092 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2093 {
2094 struct netlink_sock *nlk = nlk_sk(sk);
2095 int ret = 0;
2096
2097 if (sk == p->exclude_sk)
2098 goto out;
2099
2100 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2101 goto out;
2102
2103 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2104 !test_bit(p->group - 1, nlk->groups))
2105 goto out;
2106
2107 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
2108 ret = 1;
2109 goto out;
2110 }
2111
2112 sk->sk_err = p->code;
2113 sk->sk_error_report(sk);
2114 out:
2115 return ret;
2116 }
2117
2118 /**
2119 * netlink_set_err - report error to broadcast listeners
2120 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2121 * @portid: the PORTID of a process that we want to skip (if any)
2122 * @group: the broadcast group that will notice the error
2123 * @code: error code, must be negative (as usual in kernelspace)
2124 *
2125 * This function returns the number of broadcast listeners that have set the
2126 * NETLINK_NO_ENOBUFS socket option.
2127 */
2128 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2129 {
2130 struct netlink_set_err_data info;
2131 struct sock *sk;
2132 int ret = 0;
2133
2134 info.exclude_sk = ssk;
2135 info.portid = portid;
2136 info.group = group;
2137 /* sk->sk_err wants a positive error value */
2138 info.code = -code;
2139
2140 read_lock(&nl_table_lock);
2141
2142 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2143 ret += do_one_set_err(sk, &info);
2144
2145 read_unlock(&nl_table_lock);
2146 return ret;
2147 }
2148 EXPORT_SYMBOL(netlink_set_err);
2149
2150 /* must be called with netlink table grabbed */
2151 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2152 unsigned int group,
2153 int is_new)
2154 {
2155 int old, new = !!is_new, subscriptions;
2156
2157 old = test_bit(group - 1, nlk->groups);
2158 subscriptions = nlk->subscriptions - old + new;
2159 if (new)
2160 __set_bit(group - 1, nlk->groups);
2161 else
2162 __clear_bit(group - 1, nlk->groups);
2163 netlink_update_subscriptions(&nlk->sk, subscriptions);
2164 netlink_update_listeners(&nlk->sk);
2165 }
2166
2167 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2168 char __user *optval, unsigned int optlen)
2169 {
2170 struct sock *sk = sock->sk;
2171 struct netlink_sock *nlk = nlk_sk(sk);
2172 unsigned int val = 0;
2173 int err;
2174
2175 if (level != SOL_NETLINK)
2176 return -ENOPROTOOPT;
2177
2178 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2179 optlen >= sizeof(int) &&
2180 get_user(val, (unsigned int __user *)optval))
2181 return -EFAULT;
2182
2183 switch (optname) {
2184 case NETLINK_PKTINFO:
2185 if (val)
2186 nlk->flags |= NETLINK_F_RECV_PKTINFO;
2187 else
2188 nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
2189 err = 0;
2190 break;
2191 case NETLINK_ADD_MEMBERSHIP:
2192 case NETLINK_DROP_MEMBERSHIP: {
2193 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2194 return -EPERM;
2195 err = netlink_realloc_groups(sk);
2196 if (err)
2197 return err;
2198 if (!val || val - 1 >= nlk->ngroups)
2199 return -EINVAL;
2200 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2201 err = nlk->netlink_bind(sock_net(sk), val);
2202 if (err)
2203 return err;
2204 }
2205 netlink_table_grab();
2206 netlink_update_socket_mc(nlk, val,
2207 optname == NETLINK_ADD_MEMBERSHIP);
2208 netlink_table_ungrab();
2209 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2210 nlk->netlink_unbind(sock_net(sk), val);
2211
2212 err = 0;
2213 break;
2214 }
2215 case NETLINK_BROADCAST_ERROR:
2216 if (val)
2217 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
2218 else
2219 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
2220 err = 0;
2221 break;
2222 case NETLINK_NO_ENOBUFS:
2223 if (val) {
2224 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
2225 clear_bit(NETLINK_S_CONGESTED, &nlk->state);
2226 wake_up_interruptible(&nlk->wait);
2227 } else {
2228 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
2229 }
2230 err = 0;
2231 break;
2232 #ifdef CONFIG_NETLINK_MMAP
2233 case NETLINK_RX_RING:
2234 case NETLINK_TX_RING: {
2235 struct nl_mmap_req req;
2236
2237 /* Rings might consume more memory than queue limits, require
2238 * CAP_NET_ADMIN.
2239 */
2240 if (!capable(CAP_NET_ADMIN))
2241 return -EPERM;
2242 if (optlen < sizeof(req))
2243 return -EINVAL;
2244 if (copy_from_user(&req, optval, sizeof(req)))
2245 return -EFAULT;
2246 err = netlink_set_ring(sk, &req,
2247 optname == NETLINK_TX_RING);
2248 break;
2249 }
2250 #endif /* CONFIG_NETLINK_MMAP */
2251 case NETLINK_LISTEN_ALL_NSID:
2252 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
2253 return -EPERM;
2254
2255 if (val)
2256 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
2257 else
2258 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
2259 err = 0;
2260 break;
2261 default:
2262 err = -ENOPROTOOPT;
2263 }
2264 return err;
2265 }
2266
2267 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2268 char __user *optval, int __user *optlen)
2269 {
2270 struct sock *sk = sock->sk;
2271 struct netlink_sock *nlk = nlk_sk(sk);
2272 int len, val, err;
2273
2274 if (level != SOL_NETLINK)
2275 return -ENOPROTOOPT;
2276
2277 if (get_user(len, optlen))
2278 return -EFAULT;
2279 if (len < 0)
2280 return -EINVAL;
2281
2282 switch (optname) {
2283 case NETLINK_PKTINFO:
2284 if (len < sizeof(int))
2285 return -EINVAL;
2286 len = sizeof(int);
2287 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
2288 if (put_user(len, optlen) ||
2289 put_user(val, optval))
2290 return -EFAULT;
2291 err = 0;
2292 break;
2293 case NETLINK_BROADCAST_ERROR:
2294 if (len < sizeof(int))
2295 return -EINVAL;
2296 len = sizeof(int);
2297 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
2298 if (put_user(len, optlen) ||
2299 put_user(val, optval))
2300 return -EFAULT;
2301 err = 0;
2302 break;
2303 case NETLINK_NO_ENOBUFS:
2304 if (len < sizeof(int))
2305 return -EINVAL;
2306 len = sizeof(int);
2307 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
2308 if (put_user(len, optlen) ||
2309 put_user(val, optval))
2310 return -EFAULT;
2311 err = 0;
2312 break;
2313 case NETLINK_LIST_MEMBERSHIPS: {
2314 int pos, idx, shift;
2315
2316 err = 0;
2317 netlink_table_grab();
2318 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
2319 if (len - pos < sizeof(u32))
2320 break;
2321
2322 idx = pos / sizeof(unsigned long);
2323 shift = (pos % sizeof(unsigned long)) * 8;
2324 if (put_user((u32)(nlk->groups[idx] >> shift),
2325 (u32 __user *)(optval + pos))) {
2326 err = -EFAULT;
2327 break;
2328 }
2329 }
2330 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
2331 err = -EFAULT;
2332 netlink_table_ungrab();
2333 break;
2334 }
2335 default:
2336 err = -ENOPROTOOPT;
2337 }
2338 return err;
2339 }
2340
2341 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2342 {
2343 struct nl_pktinfo info;
2344
2345 info.group = NETLINK_CB(skb).dst_group;
2346 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2347 }
2348
2349 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
2350 struct sk_buff *skb)
2351 {
2352 if (!NETLINK_CB(skb).nsid_is_set)
2353 return;
2354
2355 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
2356 &NETLINK_CB(skb).nsid);
2357 }
2358
2359 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2360 {
2361 struct sock *sk = sock->sk;
2362 struct netlink_sock *nlk = nlk_sk(sk);
2363 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2364 u32 dst_portid;
2365 u32 dst_group;
2366 struct sk_buff *skb;
2367 int err;
2368 struct scm_cookie scm;
2369 u32 netlink_skb_flags = 0;
2370
2371 if (msg->msg_flags&MSG_OOB)
2372 return -EOPNOTSUPP;
2373
2374 err = scm_send(sock, msg, &scm, true);
2375 if (err < 0)
2376 return err;
2377
2378 if (msg->msg_namelen) {
2379 err = -EINVAL;
2380 if (addr->nl_family != AF_NETLINK)
2381 goto out;
2382 dst_portid = addr->nl_pid;
2383 dst_group = ffs(addr->nl_groups);
2384 err = -EPERM;
2385 if ((dst_group || dst_portid) &&
2386 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2387 goto out;
2388 netlink_skb_flags |= NETLINK_SKB_DST;
2389 } else {
2390 dst_portid = nlk->dst_portid;
2391 dst_group = nlk->dst_group;
2392 }
2393
2394 if (!nlk->portid) {
2395 err = netlink_autobind(sock);
2396 if (err)
2397 goto out;
2398 }
2399
2400 /* It's a really convoluted way for userland to ask for mmaped
2401 * sendmsg(), but that's what we've got...
2402 */
2403 if (netlink_tx_is_mmaped(sk) &&
2404 iter_is_iovec(&msg->msg_iter) &&
2405 msg->msg_iter.nr_segs == 1 &&
2406 msg->msg_iter.iov->iov_base == NULL) {
2407 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2408 &scm);
2409 goto out;
2410 }
2411
2412 err = -EMSGSIZE;
2413 if (len > sk->sk_sndbuf - 32)
2414 goto out;
2415 err = -ENOBUFS;
2416 skb = netlink_alloc_large_skb(len, dst_group);
2417 if (skb == NULL)
2418 goto out;
2419
2420 NETLINK_CB(skb).portid = nlk->portid;
2421 NETLINK_CB(skb).dst_group = dst_group;
2422 NETLINK_CB(skb).creds = scm.creds;
2423 NETLINK_CB(skb).flags = netlink_skb_flags;
2424
2425 err = -EFAULT;
2426 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2427 kfree_skb(skb);
2428 goto out;
2429 }
2430
2431 err = security_netlink_send(sk, skb);
2432 if (err) {
2433 kfree_skb(skb);
2434 goto out;
2435 }
2436
2437 if (dst_group) {
2438 atomic_inc(&skb->users);
2439 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2440 }
2441 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2442
2443 out:
2444 scm_destroy(&scm);
2445 return err;
2446 }
2447
2448 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2449 int flags)
2450 {
2451 struct scm_cookie scm;
2452 struct sock *sk = sock->sk;
2453 struct netlink_sock *nlk = nlk_sk(sk);
2454 int noblock = flags&MSG_DONTWAIT;
2455 size_t copied;
2456 struct sk_buff *skb, *data_skb;
2457 int err, ret;
2458
2459 if (flags&MSG_OOB)
2460 return -EOPNOTSUPP;
2461
2462 copied = 0;
2463
2464 skb = skb_recv_datagram(sk, flags, noblock, &err);
2465 if (skb == NULL)
2466 goto out;
2467
2468 data_skb = skb;
2469
2470 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2471 if (unlikely(skb_shinfo(skb)->frag_list)) {
2472 /*
2473 * If this skb has a frag_list, then here that means that we
2474 * will have to use the frag_list skb's data for compat tasks
2475 * and the regular skb's data for normal (non-compat) tasks.
2476 *
2477 * If we need to send the compat skb, assign it to the
2478 * 'data_skb' variable so that it will be used below for data
2479 * copying. We keep 'skb' for everything else, including
2480 * freeing both later.
2481 */
2482 if (flags & MSG_CMSG_COMPAT)
2483 data_skb = skb_shinfo(skb)->frag_list;
2484 }
2485 #endif
2486
2487 /* Record the max length of recvmsg() calls for future allocations */
2488 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2489 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2490 16384);
2491
2492 copied = data_skb->len;
2493 if (len < copied) {
2494 msg->msg_flags |= MSG_TRUNC;
2495 copied = len;
2496 }
2497
2498 skb_reset_transport_header(data_skb);
2499 err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2500
2501 if (msg->msg_name) {
2502 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2503 addr->nl_family = AF_NETLINK;
2504 addr->nl_pad = 0;
2505 addr->nl_pid = NETLINK_CB(skb).portid;
2506 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
2507 msg->msg_namelen = sizeof(*addr);
2508 }
2509
2510 if (nlk->flags & NETLINK_F_RECV_PKTINFO)
2511 netlink_cmsg_recv_pktinfo(msg, skb);
2512 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
2513 netlink_cmsg_listen_all_nsid(sk, msg, skb);
2514
2515 memset(&scm, 0, sizeof(scm));
2516 scm.creds = *NETLINK_CREDS(skb);
2517 if (flags & MSG_TRUNC)
2518 copied = data_skb->len;
2519
2520 skb_free_datagram(sk, skb);
2521
2522 if (nlk->cb_running &&
2523 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2524 ret = netlink_dump(sk);
2525 if (ret) {
2526 sk->sk_err = -ret;
2527 sk->sk_error_report(sk);
2528 }
2529 }
2530
2531 scm_recv(sock, msg, &scm, flags);
2532 out:
2533 netlink_rcv_wake(sk);
2534 return err ? : copied;
2535 }
2536
2537 static void netlink_data_ready(struct sock *sk)
2538 {
2539 BUG();
2540 }
2541
2542 /*
2543 * We export these functions to other modules. They provide a
2544 * complete set of kernel non-blocking support for message
2545 * queueing.
2546 */
2547
2548 struct sock *
2549 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2550 struct netlink_kernel_cfg *cfg)
2551 {
2552 struct socket *sock;
2553 struct sock *sk;
2554 struct netlink_sock *nlk;
2555 struct listeners *listeners = NULL;
2556 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2557 unsigned int groups;
2558
2559 BUG_ON(!nl_table);
2560
2561 if (unit < 0 || unit >= MAX_LINKS)
2562 return NULL;
2563
2564 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2565 return NULL;
2566
2567 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
2568 goto out_sock_release_nosk;
2569
2570 sk = sock->sk;
2571
2572 if (!cfg || cfg->groups < 32)
2573 groups = 32;
2574 else
2575 groups = cfg->groups;
2576
2577 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2578 if (!listeners)
2579 goto out_sock_release;
2580
2581 sk->sk_data_ready = netlink_data_ready;
2582 if (cfg && cfg->input)
2583 nlk_sk(sk)->netlink_rcv = cfg->input;
2584
2585 if (netlink_insert(sk, 0))
2586 goto out_sock_release;
2587
2588 nlk = nlk_sk(sk);
2589 nlk->flags |= NETLINK_F_KERNEL_SOCKET;
2590
2591 netlink_table_grab();
2592 if (!nl_table[unit].registered) {
2593 nl_table[unit].groups = groups;
2594 rcu_assign_pointer(nl_table[unit].listeners, listeners);
2595 nl_table[unit].cb_mutex = cb_mutex;
2596 nl_table[unit].module = module;
2597 if (cfg) {
2598 nl_table[unit].bind = cfg->bind;
2599 nl_table[unit].unbind = cfg->unbind;
2600 nl_table[unit].flags = cfg->flags;
2601 if (cfg->compare)
2602 nl_table[unit].compare = cfg->compare;
2603 }
2604 nl_table[unit].registered = 1;
2605 } else {
2606 kfree(listeners);
2607 nl_table[unit].registered++;
2608 }
2609 netlink_table_ungrab();
2610 return sk;
2611
2612 out_sock_release:
2613 kfree(listeners);
2614 netlink_kernel_release(sk);
2615 return NULL;
2616
2617 out_sock_release_nosk:
2618 sock_release(sock);
2619 return NULL;
2620 }
2621 EXPORT_SYMBOL(__netlink_kernel_create);
2622
2623 void
2624 netlink_kernel_release(struct sock *sk)
2625 {
2626 if (sk == NULL || sk->sk_socket == NULL)
2627 return;
2628
2629 sock_release(sk->sk_socket);
2630 }
2631 EXPORT_SYMBOL(netlink_kernel_release);
2632
2633 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2634 {
2635 struct listeners *new, *old;
2636 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2637
2638 if (groups < 32)
2639 groups = 32;
2640
2641 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2642 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2643 if (!new)
2644 return -ENOMEM;
2645 old = nl_deref_protected(tbl->listeners);
2646 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2647 rcu_assign_pointer(tbl->listeners, new);
2648
2649 kfree_rcu(old, rcu);
2650 }
2651 tbl->groups = groups;
2652
2653 return 0;
2654 }
2655
2656 /**
2657 * netlink_change_ngroups - change number of multicast groups
2658 *
2659 * This changes the number of multicast groups that are available
2660 * on a certain netlink family. Note that it is not possible to
2661 * change the number of groups to below 32. Also note that it does
2662 * not implicitly call netlink_clear_multicast_users() when the
2663 * number of groups is reduced.
2664 *
2665 * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2666 * @groups: The new number of groups.
2667 */
2668 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2669 {
2670 int err;
2671
2672 netlink_table_grab();
2673 err = __netlink_change_ngroups(sk, groups);
2674 netlink_table_ungrab();
2675
2676 return err;
2677 }
2678
2679 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2680 {
2681 struct sock *sk;
2682 struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2683
2684 sk_for_each_bound(sk, &tbl->mc_list)
2685 netlink_update_socket_mc(nlk_sk(sk), group, 0);
2686 }
2687
2688 struct nlmsghdr *
2689 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2690 {
2691 struct nlmsghdr *nlh;
2692 int size = nlmsg_msg_size(len);
2693
2694 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2695 nlh->nlmsg_type = type;
2696 nlh->nlmsg_len = size;
2697 nlh->nlmsg_flags = flags;
2698 nlh->nlmsg_pid = portid;
2699 nlh->nlmsg_seq = seq;
2700 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2701 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2702 return nlh;
2703 }
2704 EXPORT_SYMBOL(__nlmsg_put);
2705
2706 /*
2707 * It looks a bit ugly.
2708 * It would be better to create kernel thread.
2709 */
2710
2711 static int netlink_dump(struct sock *sk)
2712 {
2713 struct netlink_sock *nlk = nlk_sk(sk);
2714 struct netlink_callback *cb;
2715 struct sk_buff *skb = NULL;
2716 struct nlmsghdr *nlh;
2717 int len, err = -ENOBUFS;
2718 int alloc_size;
2719
2720 mutex_lock(nlk->cb_mutex);
2721 if (!nlk->cb_running) {
2722 err = -EINVAL;
2723 goto errout_skb;
2724 }
2725
2726 cb = &nlk->cb;
2727 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2728
2729 if (!netlink_rx_is_mmaped(sk) &&
2730 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2731 goto errout_skb;
2732
2733 /* NLMSG_GOODSIZE is small to avoid high order allocations being
2734 * required, but it makes sense to _attempt_ a 16K bytes allocation
2735 * to reduce number of system calls on dump operations, if user
2736 * ever provided a big enough buffer.
2737 */
2738 if (alloc_size < nlk->max_recvmsg_len) {
2739 skb = netlink_alloc_skb(sk,
2740 nlk->max_recvmsg_len,
2741 nlk->portid,
2742 GFP_KERNEL |
2743 __GFP_NOWARN |
2744 __GFP_NORETRY);
2745 /* available room should be exact amount to avoid MSG_TRUNC */
2746 if (skb)
2747 skb_reserve(skb, skb_tailroom(skb) -
2748 nlk->max_recvmsg_len);
2749 }
2750 if (!skb)
2751 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2752 GFP_KERNEL);
2753 if (!skb)
2754 goto errout_skb;
2755 netlink_skb_set_owner_r(skb, sk);
2756
2757 len = cb->dump(skb, cb);
2758
2759 if (len > 0) {
2760 mutex_unlock(nlk->cb_mutex);
2761
2762 if (sk_filter(sk, skb))
2763 kfree_skb(skb);
2764 else
2765 __netlink_sendskb(sk, skb);
2766 return 0;
2767 }
2768
2769 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2770 if (!nlh)
2771 goto errout_skb;
2772
2773 nl_dump_check_consistent(cb, nlh);
2774
2775 memcpy(nlmsg_data(nlh), &len, sizeof(len));
2776
2777 if (sk_filter(sk, skb))
2778 kfree_skb(skb);
2779 else
2780 __netlink_sendskb(sk, skb);
2781
2782 if (cb->done)
2783 cb->done(cb);
2784
2785 nlk->cb_running = false;
2786 mutex_unlock(nlk->cb_mutex);
2787 module_put(cb->module);
2788 consume_skb(cb->skb);
2789 return 0;
2790
2791 errout_skb:
2792 mutex_unlock(nlk->cb_mutex);
2793 kfree_skb(skb);
2794 return err;
2795 }
2796
2797 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2798 const struct nlmsghdr *nlh,
2799 struct netlink_dump_control *control)
2800 {
2801 struct netlink_callback *cb;
2802 struct sock *sk;
2803 struct netlink_sock *nlk;
2804 int ret;
2805
2806 /* Memory mapped dump requests need to be copied to avoid looping
2807 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2808 * a reference to the skb.
2809 */
2810 if (netlink_skb_is_mmaped(skb)) {
2811 skb = skb_copy(skb, GFP_KERNEL);
2812 if (skb == NULL)
2813 return -ENOBUFS;
2814 } else
2815 atomic_inc(&skb->users);
2816
2817 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2818 if (sk == NULL) {
2819 ret = -ECONNREFUSED;
2820 goto error_free;
2821 }
2822
2823 nlk = nlk_sk(sk);
2824 mutex_lock(nlk->cb_mutex);
2825 /* A dump is in progress... */
2826 if (nlk->cb_running) {
2827 ret = -EBUSY;
2828 goto error_unlock;
2829 }
2830 /* add reference of module which cb->dump belongs to */
2831 if (!try_module_get(control->module)) {
2832 ret = -EPROTONOSUPPORT;
2833 goto error_unlock;
2834 }
2835
2836 cb = &nlk->cb;
2837 memset(cb, 0, sizeof(*cb));
2838 cb->dump = control->dump;
2839 cb->done = control->done;
2840 cb->nlh = nlh;
2841 cb->data = control->data;
2842 cb->module = control->module;
2843 cb->min_dump_alloc = control->min_dump_alloc;
2844 cb->skb = skb;
2845
2846 nlk->cb_running = true;
2847
2848 mutex_unlock(nlk->cb_mutex);
2849
2850 ret = netlink_dump(sk);
2851 sock_put(sk);
2852
2853 if (ret)
2854 return ret;
2855
2856 /* We successfully started a dump, by returning -EINTR we
2857 * signal not to send ACK even if it was requested.
2858 */
2859 return -EINTR;
2860
2861 error_unlock:
2862 sock_put(sk);
2863 mutex_unlock(nlk->cb_mutex);
2864 error_free:
2865 kfree_skb(skb);
2866 return ret;
2867 }
2868 EXPORT_SYMBOL(__netlink_dump_start);
2869
2870 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2871 {
2872 struct sk_buff *skb;
2873 struct nlmsghdr *rep;
2874 struct nlmsgerr *errmsg;
2875 size_t payload = sizeof(*errmsg);
2876
2877 /* error messages get the original request appened */
2878 if (err)
2879 payload += nlmsg_len(nlh);
2880
2881 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2882 NETLINK_CB(in_skb).portid, GFP_KERNEL);
2883 if (!skb) {
2884 struct sock *sk;
2885
2886 sk = netlink_lookup(sock_net(in_skb->sk),
2887 in_skb->sk->sk_protocol,
2888 NETLINK_CB(in_skb).portid);
2889 if (sk) {
2890 sk->sk_err = ENOBUFS;
2891 sk->sk_error_report(sk);
2892 sock_put(sk);
2893 }
2894 return;
2895 }
2896
2897 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2898 NLMSG_ERROR, payload, 0);
2899 errmsg = nlmsg_data(rep);
2900 errmsg->error = err;
2901 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2902 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2903 }
2904 EXPORT_SYMBOL(netlink_ack);
2905
2906 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2907 struct nlmsghdr *))
2908 {
2909 struct nlmsghdr *nlh;
2910 int err;
2911
2912 while (skb->len >= nlmsg_total_size(0)) {
2913 int msglen;
2914
2915 nlh = nlmsg_hdr(skb);
2916 err = 0;
2917
2918 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2919 return 0;
2920
2921 /* Only requests are handled by the kernel */
2922 if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2923 goto ack;
2924
2925 /* Skip control messages */
2926 if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2927 goto ack;
2928
2929 err = cb(skb, nlh);
2930 if (err == -EINTR)
2931 goto skip;
2932
2933 ack:
2934 if (nlh->nlmsg_flags & NLM_F_ACK || err)
2935 netlink_ack(skb, nlh, err);
2936
2937 skip:
2938 msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2939 if (msglen > skb->len)
2940 msglen = skb->len;
2941 skb_pull(skb, msglen);
2942 }
2943
2944 return 0;
2945 }
2946 EXPORT_SYMBOL(netlink_rcv_skb);
2947
2948 /**
2949 * nlmsg_notify - send a notification netlink message
2950 * @sk: netlink socket to use
2951 * @skb: notification message
2952 * @portid: destination netlink portid for reports or 0
2953 * @group: destination multicast group or 0
2954 * @report: 1 to report back, 0 to disable
2955 * @flags: allocation flags
2956 */
2957 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2958 unsigned int group, int report, gfp_t flags)
2959 {
2960 int err = 0;
2961
2962 if (group) {
2963 int exclude_portid = 0;
2964
2965 if (report) {
2966 atomic_inc(&skb->users);
2967 exclude_portid = portid;
2968 }
2969
2970 /* errors reported via destination sk->sk_err, but propagate
2971 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2972 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2973 }
2974
2975 if (report) {
2976 int err2;
2977
2978 err2 = nlmsg_unicast(sk, skb, portid);
2979 if (!err || err == -ESRCH)
2980 err = err2;
2981 }
2982
2983 return err;
2984 }
2985 EXPORT_SYMBOL(nlmsg_notify);
2986
2987 #ifdef CONFIG_PROC_FS
2988 struct nl_seq_iter {
2989 struct seq_net_private p;
2990 struct rhashtable_iter hti;
2991 int link;
2992 };
2993
2994 static int netlink_walk_start(struct nl_seq_iter *iter)
2995 {
2996 int err;
2997
2998 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti);
2999 if (err) {
3000 iter->link = MAX_LINKS;
3001 return err;
3002 }
3003
3004 err = rhashtable_walk_start(&iter->hti);
3005 return err == -EAGAIN ? 0 : err;
3006 }
3007
3008 static void netlink_walk_stop(struct nl_seq_iter *iter)
3009 {
3010 rhashtable_walk_stop(&iter->hti);
3011 rhashtable_walk_exit(&iter->hti);
3012 }
3013
3014 static void *__netlink_seq_next(struct seq_file *seq)
3015 {
3016 struct nl_seq_iter *iter = seq->private;
3017 struct netlink_sock *nlk;
3018
3019 do {
3020 for (;;) {
3021 int err;
3022
3023 nlk = rhashtable_walk_next(&iter->hti);
3024
3025 if (IS_ERR(nlk)) {
3026 if (PTR_ERR(nlk) == -EAGAIN)
3027 continue;
3028
3029 return nlk;
3030 }
3031
3032 if (nlk)
3033 break;
3034
3035 netlink_walk_stop(iter);
3036 if (++iter->link >= MAX_LINKS)
3037 return NULL;
3038
3039 err = netlink_walk_start(iter);
3040 if (err)
3041 return ERR_PTR(err);
3042 }
3043 } while (sock_net(&nlk->sk) != seq_file_net(seq));
3044
3045 return nlk;
3046 }
3047
3048 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
3049 {
3050 struct nl_seq_iter *iter = seq->private;
3051 void *obj = SEQ_START_TOKEN;
3052 loff_t pos;
3053 int err;
3054
3055 iter->link = 0;
3056
3057 err = netlink_walk_start(iter);
3058 if (err)
3059 return ERR_PTR(err);
3060
3061 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
3062 obj = __netlink_seq_next(seq);
3063
3064 return obj;
3065 }
3066
3067 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3068 {
3069 ++*pos;
3070 return __netlink_seq_next(seq);
3071 }
3072
3073 static void netlink_seq_stop(struct seq_file *seq, void *v)
3074 {
3075 struct nl_seq_iter *iter = seq->private;
3076
3077 if (iter->link >= MAX_LINKS)
3078 return;
3079
3080 netlink_walk_stop(iter);
3081 }
3082
3083
3084 static int netlink_seq_show(struct seq_file *seq, void *v)
3085 {
3086 if (v == SEQ_START_TOKEN) {
3087 seq_puts(seq,
3088 "sk Eth Pid Groups "
3089 "Rmem Wmem Dump Locks Drops Inode\n");
3090 } else {
3091 struct sock *s = v;
3092 struct netlink_sock *nlk = nlk_sk(s);
3093
3094 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3095 s,
3096 s->sk_protocol,
3097 nlk->portid,
3098 nlk->groups ? (u32)nlk->groups[0] : 0,
3099 sk_rmem_alloc_get(s),
3100 sk_wmem_alloc_get(s),
3101 nlk->cb_running,
3102 atomic_read(&s->sk_refcnt),
3103 atomic_read(&s->sk_drops),
3104 sock_i_ino(s)
3105 );
3106
3107 }
3108 return 0;
3109 }
3110
3111 static const struct seq_operations netlink_seq_ops = {
3112 .start = netlink_seq_start,
3113 .next = netlink_seq_next,
3114 .stop = netlink_seq_stop,
3115 .show = netlink_seq_show,
3116 };
3117
3118
3119 static int netlink_seq_open(struct inode *inode, struct file *file)
3120 {
3121 return seq_open_net(inode, file, &netlink_seq_ops,
3122 sizeof(struct nl_seq_iter));
3123 }
3124
3125 static const struct file_operations netlink_seq_fops = {
3126 .owner = THIS_MODULE,
3127 .open = netlink_seq_open,
3128 .read = seq_read,
3129 .llseek = seq_lseek,
3130 .release = seq_release_net,
3131 };
3132
3133 #endif
3134
3135 int netlink_register_notifier(struct notifier_block *nb)
3136 {
3137 return atomic_notifier_chain_register(&netlink_chain, nb);
3138 }
3139 EXPORT_SYMBOL(netlink_register_notifier);
3140
3141 int netlink_unregister_notifier(struct notifier_block *nb)
3142 {
3143 return atomic_notifier_chain_unregister(&netlink_chain, nb);
3144 }
3145 EXPORT_SYMBOL(netlink_unregister_notifier);
3146
3147 static const struct proto_ops netlink_ops = {
3148 .family = PF_NETLINK,
3149 .owner = THIS_MODULE,
3150 .release = netlink_release,
3151 .bind = netlink_bind,
3152 .connect = netlink_connect,
3153 .socketpair = sock_no_socketpair,
3154 .accept = sock_no_accept,
3155 .getname = netlink_getname,
3156 .poll = netlink_poll,
3157 .ioctl = sock_no_ioctl,
3158 .listen = sock_no_listen,
3159 .shutdown = sock_no_shutdown,
3160 .setsockopt = netlink_setsockopt,
3161 .getsockopt = netlink_getsockopt,
3162 .sendmsg = netlink_sendmsg,
3163 .recvmsg = netlink_recvmsg,
3164 .mmap = netlink_mmap,
3165 .sendpage = sock_no_sendpage,
3166 };
3167
3168 static const struct net_proto_family netlink_family_ops = {
3169 .family = PF_NETLINK,
3170 .create = netlink_create,
3171 .owner = THIS_MODULE, /* for consistency 8) */
3172 };
3173
3174 static int __net_init netlink_net_init(struct net *net)
3175 {
3176 #ifdef CONFIG_PROC_FS
3177 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3178 return -ENOMEM;
3179 #endif
3180 return 0;
3181 }
3182
3183 static void __net_exit netlink_net_exit(struct net *net)
3184 {
3185 #ifdef CONFIG_PROC_FS
3186 remove_proc_entry("netlink", net->proc_net);
3187 #endif
3188 }
3189
3190 static void __init netlink_add_usersock_entry(void)
3191 {
3192 struct listeners *listeners;
3193 int groups = 32;
3194
3195 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3196 if (!listeners)
3197 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3198
3199 netlink_table_grab();
3200
3201 nl_table[NETLINK_USERSOCK].groups = groups;
3202 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3203 nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3204 nl_table[NETLINK_USERSOCK].registered = 1;
3205 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3206
3207 netlink_table_ungrab();
3208 }
3209
3210 static struct pernet_operations __net_initdata netlink_net_ops = {
3211 .init = netlink_net_init,
3212 .exit = netlink_net_exit,
3213 };
3214
3215 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
3216 {
3217 const struct netlink_sock *nlk = data;
3218 struct netlink_compare_arg arg;
3219
3220 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
3221 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
3222 }
3223
3224 static const struct rhashtable_params netlink_rhashtable_params = {
3225 .head_offset = offsetof(struct netlink_sock, node),
3226 .key_len = netlink_compare_arg_len,
3227 .obj_hashfn = netlink_hash,
3228 .obj_cmpfn = netlink_compare,
3229 .automatic_shrinking = true,
3230 };
3231
3232 static int __init netlink_proto_init(void)
3233 {
3234 int i;
3235 int err = proto_register(&netlink_proto, 0);
3236
3237 if (err != 0)
3238 goto out;
3239
3240 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3241
3242 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3243 if (!nl_table)
3244 goto panic;
3245
3246 for (i = 0; i < MAX_LINKS; i++) {
3247 if (rhashtable_init(&nl_table[i].hash,
3248 &netlink_rhashtable_params) < 0) {
3249 while (--i > 0)
3250 rhashtable_destroy(&nl_table[i].hash);
3251 kfree(nl_table);
3252 goto panic;
3253 }
3254 }
3255
3256 INIT_LIST_HEAD(&netlink_tap_all);
3257
3258 netlink_add_usersock_entry();
3259
3260 sock_register(&netlink_family_ops);
3261 register_pernet_subsys(&netlink_net_ops);
3262 /* The netlink device handler may be needed early. */
3263 rtnetlink_init();
3264 out:
3265 return err;
3266 panic:
3267 panic("netlink_init: Cannot allocate nl_table\n");
3268 }
3269
3270 core_initcall(netlink_proto_init);
This page took 0.133883 seconds and 5 git commands to generate.