be6665ab7f409f0b8e5856c3abf893a9232492a8
[deliverable/linux.git] / net / netlink / af_netlink.c
1 /*
2 * NETLINK Kernel-user communication protocol.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6 * Patrick McHardy <kaber@trash.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14 * added netlink_proto_exit
15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16 * use nlk_sk, as sk->protinfo is on a diet 8)
17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18 * - inc module use count of module that owns
19 * the kernel socket in case userspace opens
20 * socket of same protocol
21 * - remove all module support, since netlink is
22 * mandatory if CONFIG_NET=y these days
23 */
24
25 #include <linux/module.h>
26
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70
71 #include "af_netlink.h"
72
73 struct listeners {
74 struct rcu_head rcu;
75 unsigned long masks[0];
76 };
77
78 /* state bits */
79 #define NETLINK_S_CONGESTED 0x0
80
81 /* flags */
82 #define NETLINK_F_KERNEL_SOCKET 0x1
83 #define NETLINK_F_RECV_PKTINFO 0x2
84 #define NETLINK_F_BROADCAST_SEND_ERROR 0x4
85 #define NETLINK_F_RECV_NO_ENOBUFS 0x8
86 #define NETLINK_F_LISTEN_ALL_NSID 0x10
87
88 static inline int netlink_is_kernel(struct sock *sk)
89 {
90 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
91 }
92
93 struct netlink_table *nl_table;
94 EXPORT_SYMBOL_GPL(nl_table);
95
96 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
97
98 static int netlink_dump(struct sock *sk);
99 static void netlink_skb_destructor(struct sk_buff *skb);
100
101 /* nl_table locking explained:
102 * Lookup and traversal are protected with an RCU read-side lock. Insertion
103 * and removal are protected with per bucket lock while using RCU list
104 * modification primitives and may run in parallel to RCU protected lookups.
105 * Destruction of the Netlink socket may only occur *after* nl_table_lock has
106 * been acquired * either during or after the socket has been removed from
107 * the list and after an RCU grace period.
108 */
109 DEFINE_RWLOCK(nl_table_lock);
110 EXPORT_SYMBOL_GPL(nl_table_lock);
111 static atomic_t nl_table_users = ATOMIC_INIT(0);
112
113 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
114
115 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
116
117 static DEFINE_SPINLOCK(netlink_tap_lock);
118 static struct list_head netlink_tap_all __read_mostly;
119
120 static const struct rhashtable_params netlink_rhashtable_params;
121
122 static inline u32 netlink_group_mask(u32 group)
123 {
124 return group ? 1 << (group - 1) : 0;
125 }
126
127 int netlink_add_tap(struct netlink_tap *nt)
128 {
129 if (unlikely(nt->dev->type != ARPHRD_NETLINK))
130 return -EINVAL;
131
132 spin_lock(&netlink_tap_lock);
133 list_add_rcu(&nt->list, &netlink_tap_all);
134 spin_unlock(&netlink_tap_lock);
135
136 __module_get(nt->module);
137
138 return 0;
139 }
140 EXPORT_SYMBOL_GPL(netlink_add_tap);
141
142 static int __netlink_remove_tap(struct netlink_tap *nt)
143 {
144 bool found = false;
145 struct netlink_tap *tmp;
146
147 spin_lock(&netlink_tap_lock);
148
149 list_for_each_entry(tmp, &netlink_tap_all, list) {
150 if (nt == tmp) {
151 list_del_rcu(&nt->list);
152 found = true;
153 goto out;
154 }
155 }
156
157 pr_warn("__netlink_remove_tap: %p not found\n", nt);
158 out:
159 spin_unlock(&netlink_tap_lock);
160
161 if (found && nt->module)
162 module_put(nt->module);
163
164 return found ? 0 : -ENODEV;
165 }
166
167 int netlink_remove_tap(struct netlink_tap *nt)
168 {
169 int ret;
170
171 ret = __netlink_remove_tap(nt);
172 synchronize_net();
173
174 return ret;
175 }
176 EXPORT_SYMBOL_GPL(netlink_remove_tap);
177
178 static bool netlink_filter_tap(const struct sk_buff *skb)
179 {
180 struct sock *sk = skb->sk;
181
182 /* We take the more conservative approach and
183 * whitelist socket protocols that may pass.
184 */
185 switch (sk->sk_protocol) {
186 case NETLINK_ROUTE:
187 case NETLINK_USERSOCK:
188 case NETLINK_SOCK_DIAG:
189 case NETLINK_NFLOG:
190 case NETLINK_XFRM:
191 case NETLINK_FIB_LOOKUP:
192 case NETLINK_NETFILTER:
193 case NETLINK_GENERIC:
194 return true;
195 }
196
197 return false;
198 }
199
200 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
201 struct net_device *dev)
202 {
203 struct sk_buff *nskb;
204 struct sock *sk = skb->sk;
205 int ret = -ENOMEM;
206
207 dev_hold(dev);
208 nskb = skb_clone(skb, GFP_ATOMIC);
209 if (nskb) {
210 nskb->dev = dev;
211 nskb->protocol = htons((u16) sk->sk_protocol);
212 nskb->pkt_type = netlink_is_kernel(sk) ?
213 PACKET_KERNEL : PACKET_USER;
214 skb_reset_network_header(nskb);
215 ret = dev_queue_xmit(nskb);
216 if (unlikely(ret > 0))
217 ret = net_xmit_errno(ret);
218 }
219
220 dev_put(dev);
221 return ret;
222 }
223
224 static void __netlink_deliver_tap(struct sk_buff *skb)
225 {
226 int ret;
227 struct netlink_tap *tmp;
228
229 if (!netlink_filter_tap(skb))
230 return;
231
232 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
233 ret = __netlink_deliver_tap_skb(skb, tmp->dev);
234 if (unlikely(ret))
235 break;
236 }
237 }
238
239 static void netlink_deliver_tap(struct sk_buff *skb)
240 {
241 rcu_read_lock();
242
243 if (unlikely(!list_empty(&netlink_tap_all)))
244 __netlink_deliver_tap(skb);
245
246 rcu_read_unlock();
247 }
248
249 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
250 struct sk_buff *skb)
251 {
252 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
253 netlink_deliver_tap(skb);
254 }
255
256 static void netlink_overrun(struct sock *sk)
257 {
258 struct netlink_sock *nlk = nlk_sk(sk);
259
260 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
261 if (!test_and_set_bit(NETLINK_S_CONGESTED,
262 &nlk_sk(sk)->state)) {
263 sk->sk_err = ENOBUFS;
264 sk->sk_error_report(sk);
265 }
266 }
267 atomic_inc(&sk->sk_drops);
268 }
269
270 static void netlink_rcv_wake(struct sock *sk)
271 {
272 struct netlink_sock *nlk = nlk_sk(sk);
273
274 if (skb_queue_empty(&sk->sk_receive_queue))
275 clear_bit(NETLINK_S_CONGESTED, &nlk->state);
276 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
277 wake_up_interruptible(&nlk->wait);
278 }
279
280 #ifdef CONFIG_NETLINK_MMAP
281 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
282 {
283 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
284 }
285
286 static bool netlink_rx_is_mmaped(struct sock *sk)
287 {
288 return nlk_sk(sk)->rx_ring.pg_vec != NULL;
289 }
290
291 static bool netlink_tx_is_mmaped(struct sock *sk)
292 {
293 return nlk_sk(sk)->tx_ring.pg_vec != NULL;
294 }
295
296 static __pure struct page *pgvec_to_page(const void *addr)
297 {
298 if (is_vmalloc_addr(addr))
299 return vmalloc_to_page(addr);
300 else
301 return virt_to_page(addr);
302 }
303
304 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
305 {
306 unsigned int i;
307
308 for (i = 0; i < len; i++) {
309 if (pg_vec[i] != NULL) {
310 if (is_vmalloc_addr(pg_vec[i]))
311 vfree(pg_vec[i]);
312 else
313 free_pages((unsigned long)pg_vec[i], order);
314 }
315 }
316 kfree(pg_vec);
317 }
318
319 static void *alloc_one_pg_vec_page(unsigned long order)
320 {
321 void *buffer;
322 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
323 __GFP_NOWARN | __GFP_NORETRY;
324
325 buffer = (void *)__get_free_pages(gfp_flags, order);
326 if (buffer != NULL)
327 return buffer;
328
329 buffer = vzalloc((1 << order) * PAGE_SIZE);
330 if (buffer != NULL)
331 return buffer;
332
333 gfp_flags &= ~__GFP_NORETRY;
334 return (void *)__get_free_pages(gfp_flags, order);
335 }
336
337 static void **alloc_pg_vec(struct netlink_sock *nlk,
338 struct nl_mmap_req *req, unsigned int order)
339 {
340 unsigned int block_nr = req->nm_block_nr;
341 unsigned int i;
342 void **pg_vec;
343
344 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
345 if (pg_vec == NULL)
346 return NULL;
347
348 for (i = 0; i < block_nr; i++) {
349 pg_vec[i] = alloc_one_pg_vec_page(order);
350 if (pg_vec[i] == NULL)
351 goto err1;
352 }
353
354 return pg_vec;
355 err1:
356 free_pg_vec(pg_vec, order, block_nr);
357 return NULL;
358 }
359
360 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
361 bool closing, bool tx_ring)
362 {
363 struct netlink_sock *nlk = nlk_sk(sk);
364 struct netlink_ring *ring;
365 struct sk_buff_head *queue;
366 void **pg_vec = NULL;
367 unsigned int order = 0;
368 int err;
369
370 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
371 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
372
373 if (!closing) {
374 if (atomic_read(&nlk->mapped))
375 return -EBUSY;
376 if (atomic_read(&ring->pending))
377 return -EBUSY;
378 }
379
380 if (req->nm_block_nr) {
381 if (ring->pg_vec != NULL)
382 return -EBUSY;
383
384 if ((int)req->nm_block_size <= 0)
385 return -EINVAL;
386 if (!PAGE_ALIGNED(req->nm_block_size))
387 return -EINVAL;
388 if (req->nm_frame_size < NL_MMAP_HDRLEN)
389 return -EINVAL;
390 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
391 return -EINVAL;
392
393 ring->frames_per_block = req->nm_block_size /
394 req->nm_frame_size;
395 if (ring->frames_per_block == 0)
396 return -EINVAL;
397 if (ring->frames_per_block * req->nm_block_nr !=
398 req->nm_frame_nr)
399 return -EINVAL;
400
401 order = get_order(req->nm_block_size);
402 pg_vec = alloc_pg_vec(nlk, req, order);
403 if (pg_vec == NULL)
404 return -ENOMEM;
405 } else {
406 if (req->nm_frame_nr)
407 return -EINVAL;
408 }
409
410 err = -EBUSY;
411 mutex_lock(&nlk->pg_vec_lock);
412 if (closing || atomic_read(&nlk->mapped) == 0) {
413 err = 0;
414 spin_lock_bh(&queue->lock);
415
416 ring->frame_max = req->nm_frame_nr - 1;
417 ring->head = 0;
418 ring->frame_size = req->nm_frame_size;
419 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
420
421 swap(ring->pg_vec_len, req->nm_block_nr);
422 swap(ring->pg_vec_order, order);
423 swap(ring->pg_vec, pg_vec);
424
425 __skb_queue_purge(queue);
426 spin_unlock_bh(&queue->lock);
427
428 WARN_ON(atomic_read(&nlk->mapped));
429 }
430 mutex_unlock(&nlk->pg_vec_lock);
431
432 if (pg_vec)
433 free_pg_vec(pg_vec, order, req->nm_block_nr);
434 return err;
435 }
436
437 static void netlink_mm_open(struct vm_area_struct *vma)
438 {
439 struct file *file = vma->vm_file;
440 struct socket *sock = file->private_data;
441 struct sock *sk = sock->sk;
442
443 if (sk)
444 atomic_inc(&nlk_sk(sk)->mapped);
445 }
446
447 static void netlink_mm_close(struct vm_area_struct *vma)
448 {
449 struct file *file = vma->vm_file;
450 struct socket *sock = file->private_data;
451 struct sock *sk = sock->sk;
452
453 if (sk)
454 atomic_dec(&nlk_sk(sk)->mapped);
455 }
456
457 static const struct vm_operations_struct netlink_mmap_ops = {
458 .open = netlink_mm_open,
459 .close = netlink_mm_close,
460 };
461
462 static int netlink_mmap(struct file *file, struct socket *sock,
463 struct vm_area_struct *vma)
464 {
465 struct sock *sk = sock->sk;
466 struct netlink_sock *nlk = nlk_sk(sk);
467 struct netlink_ring *ring;
468 unsigned long start, size, expected;
469 unsigned int i;
470 int err = -EINVAL;
471
472 if (vma->vm_pgoff)
473 return -EINVAL;
474
475 mutex_lock(&nlk->pg_vec_lock);
476
477 expected = 0;
478 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
479 if (ring->pg_vec == NULL)
480 continue;
481 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
482 }
483
484 if (expected == 0)
485 goto out;
486
487 size = vma->vm_end - vma->vm_start;
488 if (size != expected)
489 goto out;
490
491 start = vma->vm_start;
492 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
493 if (ring->pg_vec == NULL)
494 continue;
495
496 for (i = 0; i < ring->pg_vec_len; i++) {
497 struct page *page;
498 void *kaddr = ring->pg_vec[i];
499 unsigned int pg_num;
500
501 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
502 page = pgvec_to_page(kaddr);
503 err = vm_insert_page(vma, start, page);
504 if (err < 0)
505 goto out;
506 start += PAGE_SIZE;
507 kaddr += PAGE_SIZE;
508 }
509 }
510 }
511
512 atomic_inc(&nlk->mapped);
513 vma->vm_ops = &netlink_mmap_ops;
514 err = 0;
515 out:
516 mutex_unlock(&nlk->pg_vec_lock);
517 return err;
518 }
519
520 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
521 {
522 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
523 struct page *p_start, *p_end;
524
525 /* First page is flushed through netlink_{get,set}_status */
526 p_start = pgvec_to_page(hdr + PAGE_SIZE);
527 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
528 while (p_start <= p_end) {
529 flush_dcache_page(p_start);
530 p_start++;
531 }
532 #endif
533 }
534
535 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
536 {
537 smp_rmb();
538 flush_dcache_page(pgvec_to_page(hdr));
539 return hdr->nm_status;
540 }
541
542 static void netlink_set_status(struct nl_mmap_hdr *hdr,
543 enum nl_mmap_status status)
544 {
545 smp_mb();
546 hdr->nm_status = status;
547 flush_dcache_page(pgvec_to_page(hdr));
548 }
549
550 static struct nl_mmap_hdr *
551 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
552 {
553 unsigned int pg_vec_pos, frame_off;
554
555 pg_vec_pos = pos / ring->frames_per_block;
556 frame_off = pos % ring->frames_per_block;
557
558 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
559 }
560
561 static struct nl_mmap_hdr *
562 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
563 enum nl_mmap_status status)
564 {
565 struct nl_mmap_hdr *hdr;
566
567 hdr = __netlink_lookup_frame(ring, pos);
568 if (netlink_get_status(hdr) != status)
569 return NULL;
570
571 return hdr;
572 }
573
574 static struct nl_mmap_hdr *
575 netlink_current_frame(const struct netlink_ring *ring,
576 enum nl_mmap_status status)
577 {
578 return netlink_lookup_frame(ring, ring->head, status);
579 }
580
581 static struct nl_mmap_hdr *
582 netlink_previous_frame(const struct netlink_ring *ring,
583 enum nl_mmap_status status)
584 {
585 unsigned int prev;
586
587 prev = ring->head ? ring->head - 1 : ring->frame_max;
588 return netlink_lookup_frame(ring, prev, status);
589 }
590
591 static void netlink_increment_head(struct netlink_ring *ring)
592 {
593 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
594 }
595
596 static void netlink_forward_ring(struct netlink_ring *ring)
597 {
598 unsigned int head = ring->head, pos = head;
599 const struct nl_mmap_hdr *hdr;
600
601 do {
602 hdr = __netlink_lookup_frame(ring, pos);
603 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
604 break;
605 if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
606 break;
607 netlink_increment_head(ring);
608 } while (ring->head != head);
609 }
610
611 static bool netlink_dump_space(struct netlink_sock *nlk)
612 {
613 struct netlink_ring *ring = &nlk->rx_ring;
614 struct nl_mmap_hdr *hdr;
615 unsigned int n;
616
617 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
618 if (hdr == NULL)
619 return false;
620
621 n = ring->head + ring->frame_max / 2;
622 if (n > ring->frame_max)
623 n -= ring->frame_max;
624
625 hdr = __netlink_lookup_frame(ring, n);
626
627 return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
628 }
629
630 static unsigned int netlink_poll(struct file *file, struct socket *sock,
631 poll_table *wait)
632 {
633 struct sock *sk = sock->sk;
634 struct netlink_sock *nlk = nlk_sk(sk);
635 unsigned int mask;
636 int err;
637
638 if (nlk->rx_ring.pg_vec != NULL) {
639 /* Memory mapped sockets don't call recvmsg(), so flow control
640 * for dumps is performed here. A dump is allowed to continue
641 * if at least half the ring is unused.
642 */
643 while (nlk->cb_running && netlink_dump_space(nlk)) {
644 err = netlink_dump(sk);
645 if (err < 0) {
646 sk->sk_err = -err;
647 sk->sk_error_report(sk);
648 break;
649 }
650 }
651 netlink_rcv_wake(sk);
652 }
653
654 mask = datagram_poll(file, sock, wait);
655
656 spin_lock_bh(&sk->sk_receive_queue.lock);
657 if (nlk->rx_ring.pg_vec) {
658 netlink_forward_ring(&nlk->rx_ring);
659 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
660 mask |= POLLIN | POLLRDNORM;
661 }
662 spin_unlock_bh(&sk->sk_receive_queue.lock);
663
664 spin_lock_bh(&sk->sk_write_queue.lock);
665 if (nlk->tx_ring.pg_vec) {
666 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
667 mask |= POLLOUT | POLLWRNORM;
668 }
669 spin_unlock_bh(&sk->sk_write_queue.lock);
670
671 return mask;
672 }
673
674 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
675 {
676 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
677 }
678
679 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
680 struct netlink_ring *ring,
681 struct nl_mmap_hdr *hdr)
682 {
683 unsigned int size;
684 void *data;
685
686 size = ring->frame_size - NL_MMAP_HDRLEN;
687 data = (void *)hdr + NL_MMAP_HDRLEN;
688
689 skb->head = data;
690 skb->data = data;
691 skb_reset_tail_pointer(skb);
692 skb->end = skb->tail + size;
693 skb->len = 0;
694
695 skb->destructor = netlink_skb_destructor;
696 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
697 NETLINK_CB(skb).sk = sk;
698 }
699
700 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
701 u32 dst_portid, u32 dst_group,
702 struct scm_cookie *scm)
703 {
704 struct netlink_sock *nlk = nlk_sk(sk);
705 struct netlink_ring *ring;
706 struct nl_mmap_hdr *hdr;
707 struct sk_buff *skb;
708 unsigned int maxlen;
709 int err = 0, len = 0;
710
711 mutex_lock(&nlk->pg_vec_lock);
712
713 ring = &nlk->tx_ring;
714 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
715
716 do {
717 unsigned int nm_len;
718
719 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
720 if (hdr == NULL) {
721 if (!(msg->msg_flags & MSG_DONTWAIT) &&
722 atomic_read(&nlk->tx_ring.pending))
723 schedule();
724 continue;
725 }
726
727 nm_len = ACCESS_ONCE(hdr->nm_len);
728 if (nm_len > maxlen) {
729 err = -EINVAL;
730 goto out;
731 }
732
733 netlink_frame_flush_dcache(hdr, nm_len);
734
735 skb = alloc_skb(nm_len, GFP_KERNEL);
736 if (skb == NULL) {
737 err = -ENOBUFS;
738 goto out;
739 }
740 __skb_put(skb, nm_len);
741 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
742 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
743
744 netlink_increment_head(ring);
745
746 NETLINK_CB(skb).portid = nlk->portid;
747 NETLINK_CB(skb).dst_group = dst_group;
748 NETLINK_CB(skb).creds = scm->creds;
749
750 err = security_netlink_send(sk, skb);
751 if (err) {
752 kfree_skb(skb);
753 goto out;
754 }
755
756 if (unlikely(dst_group)) {
757 atomic_inc(&skb->users);
758 netlink_broadcast(sk, skb, dst_portid, dst_group,
759 GFP_KERNEL);
760 }
761 err = netlink_unicast(sk, skb, dst_portid,
762 msg->msg_flags & MSG_DONTWAIT);
763 if (err < 0)
764 goto out;
765 len += err;
766
767 } while (hdr != NULL ||
768 (!(msg->msg_flags & MSG_DONTWAIT) &&
769 atomic_read(&nlk->tx_ring.pending)));
770
771 if (len > 0)
772 err = len;
773 out:
774 mutex_unlock(&nlk->pg_vec_lock);
775 return err;
776 }
777
778 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
779 {
780 struct nl_mmap_hdr *hdr;
781
782 hdr = netlink_mmap_hdr(skb);
783 hdr->nm_len = skb->len;
784 hdr->nm_group = NETLINK_CB(skb).dst_group;
785 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
786 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
787 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
788 netlink_frame_flush_dcache(hdr, hdr->nm_len);
789 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
790
791 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
792 kfree_skb(skb);
793 }
794
795 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
796 {
797 struct netlink_sock *nlk = nlk_sk(sk);
798 struct netlink_ring *ring = &nlk->rx_ring;
799 struct nl_mmap_hdr *hdr;
800
801 spin_lock_bh(&sk->sk_receive_queue.lock);
802 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
803 if (hdr == NULL) {
804 spin_unlock_bh(&sk->sk_receive_queue.lock);
805 kfree_skb(skb);
806 netlink_overrun(sk);
807 return;
808 }
809 netlink_increment_head(ring);
810 __skb_queue_tail(&sk->sk_receive_queue, skb);
811 spin_unlock_bh(&sk->sk_receive_queue.lock);
812
813 hdr->nm_len = skb->len;
814 hdr->nm_group = NETLINK_CB(skb).dst_group;
815 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
816 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
817 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
818 netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
819 }
820
821 #else /* CONFIG_NETLINK_MMAP */
822 #define netlink_skb_is_mmaped(skb) false
823 #define netlink_rx_is_mmaped(sk) false
824 #define netlink_tx_is_mmaped(sk) false
825 #define netlink_mmap sock_no_mmap
826 #define netlink_poll datagram_poll
827 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0
828 #endif /* CONFIG_NETLINK_MMAP */
829
830 static void netlink_skb_destructor(struct sk_buff *skb)
831 {
832 #ifdef CONFIG_NETLINK_MMAP
833 struct nl_mmap_hdr *hdr;
834 struct netlink_ring *ring;
835 struct sock *sk;
836
837 /* If a packet from the kernel to userspace was freed because of an
838 * error without being delivered to userspace, the kernel must reset
839 * the status. In the direction userspace to kernel, the status is
840 * always reset here after the packet was processed and freed.
841 */
842 if (netlink_skb_is_mmaped(skb)) {
843 hdr = netlink_mmap_hdr(skb);
844 sk = NETLINK_CB(skb).sk;
845
846 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
847 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
848 ring = &nlk_sk(sk)->tx_ring;
849 } else {
850 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
851 hdr->nm_len = 0;
852 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
853 }
854 ring = &nlk_sk(sk)->rx_ring;
855 }
856
857 WARN_ON(atomic_read(&ring->pending) == 0);
858 atomic_dec(&ring->pending);
859 sock_put(sk);
860
861 skb->head = NULL;
862 }
863 #endif
864 if (is_vmalloc_addr(skb->head)) {
865 if (!skb->cloned ||
866 !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
867 vfree(skb->head);
868
869 skb->head = NULL;
870 }
871 if (skb->sk != NULL)
872 sock_rfree(skb);
873 }
874
875 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
876 {
877 WARN_ON(skb->sk != NULL);
878 skb->sk = sk;
879 skb->destructor = netlink_skb_destructor;
880 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
881 sk_mem_charge(sk, skb->truesize);
882 }
883
884 static void netlink_sock_destruct(struct sock *sk)
885 {
886 struct netlink_sock *nlk = nlk_sk(sk);
887
888 if (nlk->cb_running) {
889 if (nlk->cb.done)
890 nlk->cb.done(&nlk->cb);
891
892 module_put(nlk->cb.module);
893 kfree_skb(nlk->cb.skb);
894 }
895
896 skb_queue_purge(&sk->sk_receive_queue);
897 #ifdef CONFIG_NETLINK_MMAP
898 if (1) {
899 struct nl_mmap_req req;
900
901 memset(&req, 0, sizeof(req));
902 if (nlk->rx_ring.pg_vec)
903 netlink_set_ring(sk, &req, true, false);
904 memset(&req, 0, sizeof(req));
905 if (nlk->tx_ring.pg_vec)
906 netlink_set_ring(sk, &req, true, true);
907 }
908 #endif /* CONFIG_NETLINK_MMAP */
909
910 if (!sock_flag(sk, SOCK_DEAD)) {
911 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
912 return;
913 }
914
915 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
916 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
917 WARN_ON(nlk_sk(sk)->groups);
918 }
919
920 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
921 * SMP. Look, when several writers sleep and reader wakes them up, all but one
922 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
923 * this, _but_ remember, it adds useless work on UP machines.
924 */
925
926 void netlink_table_grab(void)
927 __acquires(nl_table_lock)
928 {
929 might_sleep();
930
931 write_lock_irq(&nl_table_lock);
932
933 if (atomic_read(&nl_table_users)) {
934 DECLARE_WAITQUEUE(wait, current);
935
936 add_wait_queue_exclusive(&nl_table_wait, &wait);
937 for (;;) {
938 set_current_state(TASK_UNINTERRUPTIBLE);
939 if (atomic_read(&nl_table_users) == 0)
940 break;
941 write_unlock_irq(&nl_table_lock);
942 schedule();
943 write_lock_irq(&nl_table_lock);
944 }
945
946 __set_current_state(TASK_RUNNING);
947 remove_wait_queue(&nl_table_wait, &wait);
948 }
949 }
950
951 void netlink_table_ungrab(void)
952 __releases(nl_table_lock)
953 {
954 write_unlock_irq(&nl_table_lock);
955 wake_up(&nl_table_wait);
956 }
957
958 static inline void
959 netlink_lock_table(void)
960 {
961 /* read_lock() synchronizes us to netlink_table_grab */
962
963 read_lock(&nl_table_lock);
964 atomic_inc(&nl_table_users);
965 read_unlock(&nl_table_lock);
966 }
967
968 static inline void
969 netlink_unlock_table(void)
970 {
971 if (atomic_dec_and_test(&nl_table_users))
972 wake_up(&nl_table_wait);
973 }
974
975 struct netlink_compare_arg
976 {
977 possible_net_t pnet;
978 u32 portid;
979 };
980
981 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
982 #define netlink_compare_arg_len \
983 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
984
985 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
986 const void *ptr)
987 {
988 const struct netlink_compare_arg *x = arg->key;
989 const struct netlink_sock *nlk = ptr;
990
991 return nlk->portid != x->portid ||
992 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
993 }
994
995 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
996 struct net *net, u32 portid)
997 {
998 memset(arg, 0, sizeof(*arg));
999 write_pnet(&arg->pnet, net);
1000 arg->portid = portid;
1001 }
1002
1003 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1004 struct net *net)
1005 {
1006 struct netlink_compare_arg arg;
1007
1008 netlink_compare_arg_init(&arg, net, portid);
1009 return rhashtable_lookup_fast(&table->hash, &arg,
1010 netlink_rhashtable_params);
1011 }
1012
1013 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
1014 {
1015 struct netlink_compare_arg arg;
1016
1017 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
1018 return rhashtable_lookup_insert_key(&table->hash, &arg,
1019 &nlk_sk(sk)->node,
1020 netlink_rhashtable_params);
1021 }
1022
1023 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1024 {
1025 struct netlink_table *table = &nl_table[protocol];
1026 struct sock *sk;
1027
1028 rcu_read_lock();
1029 sk = __netlink_lookup(table, portid, net);
1030 if (sk)
1031 sock_hold(sk);
1032 rcu_read_unlock();
1033
1034 return sk;
1035 }
1036
1037 static const struct proto_ops netlink_ops;
1038
1039 static void
1040 netlink_update_listeners(struct sock *sk)
1041 {
1042 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1043 unsigned long mask;
1044 unsigned int i;
1045 struct listeners *listeners;
1046
1047 listeners = nl_deref_protected(tbl->listeners);
1048 if (!listeners)
1049 return;
1050
1051 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1052 mask = 0;
1053 sk_for_each_bound(sk, &tbl->mc_list) {
1054 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1055 mask |= nlk_sk(sk)->groups[i];
1056 }
1057 listeners->masks[i] = mask;
1058 }
1059 /* this function is only called with the netlink table "grabbed", which
1060 * makes sure updates are visible before bind or setsockopt return. */
1061 }
1062
1063 static int netlink_insert(struct sock *sk, u32 portid)
1064 {
1065 struct netlink_table *table = &nl_table[sk->sk_protocol];
1066 int err;
1067
1068 lock_sock(sk);
1069
1070 err = -EBUSY;
1071 if (nlk_sk(sk)->portid)
1072 goto err;
1073
1074 err = -ENOMEM;
1075 if (BITS_PER_LONG > 32 &&
1076 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
1077 goto err;
1078
1079 nlk_sk(sk)->portid = portid;
1080 sock_hold(sk);
1081
1082 err = __netlink_insert(table, sk);
1083 if (err) {
1084 if (err == -EEXIST)
1085 err = -EADDRINUSE;
1086 sock_put(sk);
1087 }
1088
1089 err:
1090 release_sock(sk);
1091 return err;
1092 }
1093
1094 static void netlink_remove(struct sock *sk)
1095 {
1096 struct netlink_table *table;
1097
1098 table = &nl_table[sk->sk_protocol];
1099 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
1100 netlink_rhashtable_params)) {
1101 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1102 __sock_put(sk);
1103 }
1104
1105 netlink_table_grab();
1106 if (nlk_sk(sk)->subscriptions) {
1107 __sk_del_bind_node(sk);
1108 netlink_update_listeners(sk);
1109 }
1110 if (sk->sk_protocol == NETLINK_GENERIC)
1111 atomic_inc(&genl_sk_destructing_cnt);
1112 netlink_table_ungrab();
1113 }
1114
1115 static struct proto netlink_proto = {
1116 .name = "NETLINK",
1117 .owner = THIS_MODULE,
1118 .obj_size = sizeof(struct netlink_sock),
1119 };
1120
1121 static int __netlink_create(struct net *net, struct socket *sock,
1122 struct mutex *cb_mutex, int protocol,
1123 int kern)
1124 {
1125 struct sock *sk;
1126 struct netlink_sock *nlk;
1127
1128 sock->ops = &netlink_ops;
1129
1130 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
1131 if (!sk)
1132 return -ENOMEM;
1133
1134 sock_init_data(sock, sk);
1135
1136 nlk = nlk_sk(sk);
1137 if (cb_mutex) {
1138 nlk->cb_mutex = cb_mutex;
1139 } else {
1140 nlk->cb_mutex = &nlk->cb_def_mutex;
1141 mutex_init(nlk->cb_mutex);
1142 }
1143 init_waitqueue_head(&nlk->wait);
1144 #ifdef CONFIG_NETLINK_MMAP
1145 mutex_init(&nlk->pg_vec_lock);
1146 #endif
1147
1148 sk->sk_destruct = netlink_sock_destruct;
1149 sk->sk_protocol = protocol;
1150 return 0;
1151 }
1152
1153 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1154 int kern)
1155 {
1156 struct module *module = NULL;
1157 struct mutex *cb_mutex;
1158 struct netlink_sock *nlk;
1159 int (*bind)(struct net *net, int group);
1160 void (*unbind)(struct net *net, int group);
1161 int err = 0;
1162
1163 sock->state = SS_UNCONNECTED;
1164
1165 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1166 return -ESOCKTNOSUPPORT;
1167
1168 if (protocol < 0 || protocol >= MAX_LINKS)
1169 return -EPROTONOSUPPORT;
1170
1171 netlink_lock_table();
1172 #ifdef CONFIG_MODULES
1173 if (!nl_table[protocol].registered) {
1174 netlink_unlock_table();
1175 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1176 netlink_lock_table();
1177 }
1178 #endif
1179 if (nl_table[protocol].registered &&
1180 try_module_get(nl_table[protocol].module))
1181 module = nl_table[protocol].module;
1182 else
1183 err = -EPROTONOSUPPORT;
1184 cb_mutex = nl_table[protocol].cb_mutex;
1185 bind = nl_table[protocol].bind;
1186 unbind = nl_table[protocol].unbind;
1187 netlink_unlock_table();
1188
1189 if (err < 0)
1190 goto out;
1191
1192 err = __netlink_create(net, sock, cb_mutex, protocol, kern);
1193 if (err < 0)
1194 goto out_module;
1195
1196 local_bh_disable();
1197 sock_prot_inuse_add(net, &netlink_proto, 1);
1198 local_bh_enable();
1199
1200 nlk = nlk_sk(sock->sk);
1201 nlk->module = module;
1202 nlk->netlink_bind = bind;
1203 nlk->netlink_unbind = unbind;
1204 out:
1205 return err;
1206
1207 out_module:
1208 module_put(module);
1209 goto out;
1210 }
1211
1212 static void deferred_put_nlk_sk(struct rcu_head *head)
1213 {
1214 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
1215
1216 sock_put(&nlk->sk);
1217 }
1218
1219 static int netlink_release(struct socket *sock)
1220 {
1221 struct sock *sk = sock->sk;
1222 struct netlink_sock *nlk;
1223
1224 if (!sk)
1225 return 0;
1226
1227 netlink_remove(sk);
1228 sock_orphan(sk);
1229 nlk = nlk_sk(sk);
1230
1231 /*
1232 * OK. Socket is unlinked, any packets that arrive now
1233 * will be purged.
1234 */
1235
1236 /* must not acquire netlink_table_lock in any way again before unbind
1237 * and notifying genetlink is done as otherwise it might deadlock
1238 */
1239 if (nlk->netlink_unbind) {
1240 int i;
1241
1242 for (i = 0; i < nlk->ngroups; i++)
1243 if (test_bit(i, nlk->groups))
1244 nlk->netlink_unbind(sock_net(sk), i + 1);
1245 }
1246 if (sk->sk_protocol == NETLINK_GENERIC &&
1247 atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1248 wake_up(&genl_sk_destructing_waitq);
1249
1250 sock->sk = NULL;
1251 wake_up_interruptible_all(&nlk->wait);
1252
1253 skb_queue_purge(&sk->sk_write_queue);
1254
1255 if (nlk->portid) {
1256 struct netlink_notify n = {
1257 .net = sock_net(sk),
1258 .protocol = sk->sk_protocol,
1259 .portid = nlk->portid,
1260 };
1261 atomic_notifier_call_chain(&netlink_chain,
1262 NETLINK_URELEASE, &n);
1263 }
1264
1265 module_put(nlk->module);
1266
1267 if (netlink_is_kernel(sk)) {
1268 netlink_table_grab();
1269 BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1270 if (--nl_table[sk->sk_protocol].registered == 0) {
1271 struct listeners *old;
1272
1273 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1274 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1275 kfree_rcu(old, rcu);
1276 nl_table[sk->sk_protocol].module = NULL;
1277 nl_table[sk->sk_protocol].bind = NULL;
1278 nl_table[sk->sk_protocol].unbind = NULL;
1279 nl_table[sk->sk_protocol].flags = 0;
1280 nl_table[sk->sk_protocol].registered = 0;
1281 }
1282 netlink_table_ungrab();
1283 }
1284
1285 kfree(nlk->groups);
1286 nlk->groups = NULL;
1287
1288 local_bh_disable();
1289 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1290 local_bh_enable();
1291 call_rcu(&nlk->rcu, deferred_put_nlk_sk);
1292 return 0;
1293 }
1294
1295 static int netlink_autobind(struct socket *sock)
1296 {
1297 struct sock *sk = sock->sk;
1298 struct net *net = sock_net(sk);
1299 struct netlink_table *table = &nl_table[sk->sk_protocol];
1300 s32 portid = task_tgid_vnr(current);
1301 int err;
1302 static s32 rover = -4097;
1303
1304 retry:
1305 cond_resched();
1306 rcu_read_lock();
1307 if (__netlink_lookup(table, portid, net)) {
1308 /* Bind collision, search negative portid values. */
1309 portid = rover--;
1310 if (rover > -4097)
1311 rover = -4097;
1312 rcu_read_unlock();
1313 goto retry;
1314 }
1315 rcu_read_unlock();
1316
1317 err = netlink_insert(sk, portid);
1318 if (err == -EADDRINUSE)
1319 goto retry;
1320
1321 /* If 2 threads race to autobind, that is fine. */
1322 if (err == -EBUSY)
1323 err = 0;
1324
1325 return err;
1326 }
1327
1328 /**
1329 * __netlink_ns_capable - General netlink message capability test
1330 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1331 * @user_ns: The user namespace of the capability to use
1332 * @cap: The capability to use
1333 *
1334 * Test to see if the opener of the socket we received the message
1335 * from had when the netlink socket was created and the sender of the
1336 * message has has the capability @cap in the user namespace @user_ns.
1337 */
1338 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1339 struct user_namespace *user_ns, int cap)
1340 {
1341 return ((nsp->flags & NETLINK_SKB_DST) ||
1342 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1343 ns_capable(user_ns, cap);
1344 }
1345 EXPORT_SYMBOL(__netlink_ns_capable);
1346
1347 /**
1348 * netlink_ns_capable - General netlink message capability test
1349 * @skb: socket buffer holding a netlink command from userspace
1350 * @user_ns: The user namespace of the capability to use
1351 * @cap: The capability to use
1352 *
1353 * Test to see if the opener of the socket we received the message
1354 * from had when the netlink socket was created and the sender of the
1355 * message has has the capability @cap in the user namespace @user_ns.
1356 */
1357 bool netlink_ns_capable(const struct sk_buff *skb,
1358 struct user_namespace *user_ns, int cap)
1359 {
1360 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1361 }
1362 EXPORT_SYMBOL(netlink_ns_capable);
1363
1364 /**
1365 * netlink_capable - Netlink global message capability test
1366 * @skb: socket buffer holding a netlink command from userspace
1367 * @cap: The capability to use
1368 *
1369 * Test to see if the opener of the socket we received the message
1370 * from had when the netlink socket was created and the sender of the
1371 * message has has the capability @cap in all user namespaces.
1372 */
1373 bool netlink_capable(const struct sk_buff *skb, int cap)
1374 {
1375 return netlink_ns_capable(skb, &init_user_ns, cap);
1376 }
1377 EXPORT_SYMBOL(netlink_capable);
1378
1379 /**
1380 * netlink_net_capable - Netlink network namespace message capability test
1381 * @skb: socket buffer holding a netlink command from userspace
1382 * @cap: The capability to use
1383 *
1384 * Test to see if the opener of the socket we received the message
1385 * from had when the netlink socket was created and the sender of the
1386 * message has has the capability @cap over the network namespace of
1387 * the socket we received the message from.
1388 */
1389 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1390 {
1391 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1392 }
1393 EXPORT_SYMBOL(netlink_net_capable);
1394
1395 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1396 {
1397 return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1398 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1399 }
1400
1401 static void
1402 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1403 {
1404 struct netlink_sock *nlk = nlk_sk(sk);
1405
1406 if (nlk->subscriptions && !subscriptions)
1407 __sk_del_bind_node(sk);
1408 else if (!nlk->subscriptions && subscriptions)
1409 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1410 nlk->subscriptions = subscriptions;
1411 }
1412
1413 static int netlink_realloc_groups(struct sock *sk)
1414 {
1415 struct netlink_sock *nlk = nlk_sk(sk);
1416 unsigned int groups;
1417 unsigned long *new_groups;
1418 int err = 0;
1419
1420 netlink_table_grab();
1421
1422 groups = nl_table[sk->sk_protocol].groups;
1423 if (!nl_table[sk->sk_protocol].registered) {
1424 err = -ENOENT;
1425 goto out_unlock;
1426 }
1427
1428 if (nlk->ngroups >= groups)
1429 goto out_unlock;
1430
1431 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1432 if (new_groups == NULL) {
1433 err = -ENOMEM;
1434 goto out_unlock;
1435 }
1436 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1437 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1438
1439 nlk->groups = new_groups;
1440 nlk->ngroups = groups;
1441 out_unlock:
1442 netlink_table_ungrab();
1443 return err;
1444 }
1445
1446 static void netlink_undo_bind(int group, long unsigned int groups,
1447 struct sock *sk)
1448 {
1449 struct netlink_sock *nlk = nlk_sk(sk);
1450 int undo;
1451
1452 if (!nlk->netlink_unbind)
1453 return;
1454
1455 for (undo = 0; undo < group; undo++)
1456 if (test_bit(undo, &groups))
1457 nlk->netlink_unbind(sock_net(sk), undo + 1);
1458 }
1459
1460 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1461 int addr_len)
1462 {
1463 struct sock *sk = sock->sk;
1464 struct net *net = sock_net(sk);
1465 struct netlink_sock *nlk = nlk_sk(sk);
1466 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1467 int err;
1468 long unsigned int groups = nladdr->nl_groups;
1469
1470 if (addr_len < sizeof(struct sockaddr_nl))
1471 return -EINVAL;
1472
1473 if (nladdr->nl_family != AF_NETLINK)
1474 return -EINVAL;
1475
1476 /* Only superuser is allowed to listen multicasts */
1477 if (groups) {
1478 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1479 return -EPERM;
1480 err = netlink_realloc_groups(sk);
1481 if (err)
1482 return err;
1483 }
1484
1485 if (nlk->portid)
1486 if (nladdr->nl_pid != nlk->portid)
1487 return -EINVAL;
1488
1489 if (nlk->netlink_bind && groups) {
1490 int group;
1491
1492 for (group = 0; group < nlk->ngroups; group++) {
1493 if (!test_bit(group, &groups))
1494 continue;
1495 err = nlk->netlink_bind(net, group + 1);
1496 if (!err)
1497 continue;
1498 netlink_undo_bind(group, groups, sk);
1499 return err;
1500 }
1501 }
1502
1503 if (!nlk->portid) {
1504 err = nladdr->nl_pid ?
1505 netlink_insert(sk, nladdr->nl_pid) :
1506 netlink_autobind(sock);
1507 if (err) {
1508 netlink_undo_bind(nlk->ngroups, groups, sk);
1509 return err;
1510 }
1511 }
1512
1513 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1514 return 0;
1515
1516 netlink_table_grab();
1517 netlink_update_subscriptions(sk, nlk->subscriptions +
1518 hweight32(groups) -
1519 hweight32(nlk->groups[0]));
1520 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1521 netlink_update_listeners(sk);
1522 netlink_table_ungrab();
1523
1524 return 0;
1525 }
1526
1527 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1528 int alen, int flags)
1529 {
1530 int err = 0;
1531 struct sock *sk = sock->sk;
1532 struct netlink_sock *nlk = nlk_sk(sk);
1533 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1534
1535 if (alen < sizeof(addr->sa_family))
1536 return -EINVAL;
1537
1538 if (addr->sa_family == AF_UNSPEC) {
1539 sk->sk_state = NETLINK_UNCONNECTED;
1540 nlk->dst_portid = 0;
1541 nlk->dst_group = 0;
1542 return 0;
1543 }
1544 if (addr->sa_family != AF_NETLINK)
1545 return -EINVAL;
1546
1547 if ((nladdr->nl_groups || nladdr->nl_pid) &&
1548 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1549 return -EPERM;
1550
1551 if (!nlk->portid)
1552 err = netlink_autobind(sock);
1553
1554 if (err == 0) {
1555 sk->sk_state = NETLINK_CONNECTED;
1556 nlk->dst_portid = nladdr->nl_pid;
1557 nlk->dst_group = ffs(nladdr->nl_groups);
1558 }
1559
1560 return err;
1561 }
1562
1563 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1564 int *addr_len, int peer)
1565 {
1566 struct sock *sk = sock->sk;
1567 struct netlink_sock *nlk = nlk_sk(sk);
1568 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1569
1570 nladdr->nl_family = AF_NETLINK;
1571 nladdr->nl_pad = 0;
1572 *addr_len = sizeof(*nladdr);
1573
1574 if (peer) {
1575 nladdr->nl_pid = nlk->dst_portid;
1576 nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1577 } else {
1578 nladdr->nl_pid = nlk->portid;
1579 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1580 }
1581 return 0;
1582 }
1583
1584 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1585 {
1586 struct sock *sock;
1587 struct netlink_sock *nlk;
1588
1589 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1590 if (!sock)
1591 return ERR_PTR(-ECONNREFUSED);
1592
1593 /* Don't bother queuing skb if kernel socket has no input function */
1594 nlk = nlk_sk(sock);
1595 if (sock->sk_state == NETLINK_CONNECTED &&
1596 nlk->dst_portid != nlk_sk(ssk)->portid) {
1597 sock_put(sock);
1598 return ERR_PTR(-ECONNREFUSED);
1599 }
1600 return sock;
1601 }
1602
1603 struct sock *netlink_getsockbyfilp(struct file *filp)
1604 {
1605 struct inode *inode = file_inode(filp);
1606 struct sock *sock;
1607
1608 if (!S_ISSOCK(inode->i_mode))
1609 return ERR_PTR(-ENOTSOCK);
1610
1611 sock = SOCKET_I(inode)->sk;
1612 if (sock->sk_family != AF_NETLINK)
1613 return ERR_PTR(-EINVAL);
1614
1615 sock_hold(sock);
1616 return sock;
1617 }
1618
1619 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1620 int broadcast)
1621 {
1622 struct sk_buff *skb;
1623 void *data;
1624
1625 if (size <= NLMSG_GOODSIZE || broadcast)
1626 return alloc_skb(size, GFP_KERNEL);
1627
1628 size = SKB_DATA_ALIGN(size) +
1629 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1630
1631 data = vmalloc(size);
1632 if (data == NULL)
1633 return NULL;
1634
1635 skb = __build_skb(data, size);
1636 if (skb == NULL)
1637 vfree(data);
1638 else
1639 skb->destructor = netlink_skb_destructor;
1640
1641 return skb;
1642 }
1643
1644 /*
1645 * Attach a skb to a netlink socket.
1646 * The caller must hold a reference to the destination socket. On error, the
1647 * reference is dropped. The skb is not send to the destination, just all
1648 * all error checks are performed and memory in the queue is reserved.
1649 * Return values:
1650 * < 0: error. skb freed, reference to sock dropped.
1651 * 0: continue
1652 * 1: repeat lookup - reference dropped while waiting for socket memory.
1653 */
1654 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1655 long *timeo, struct sock *ssk)
1656 {
1657 struct netlink_sock *nlk;
1658
1659 nlk = nlk_sk(sk);
1660
1661 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1662 test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1663 !netlink_skb_is_mmaped(skb)) {
1664 DECLARE_WAITQUEUE(wait, current);
1665 if (!*timeo) {
1666 if (!ssk || netlink_is_kernel(ssk))
1667 netlink_overrun(sk);
1668 sock_put(sk);
1669 kfree_skb(skb);
1670 return -EAGAIN;
1671 }
1672
1673 __set_current_state(TASK_INTERRUPTIBLE);
1674 add_wait_queue(&nlk->wait, &wait);
1675
1676 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1677 test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1678 !sock_flag(sk, SOCK_DEAD))
1679 *timeo = schedule_timeout(*timeo);
1680
1681 __set_current_state(TASK_RUNNING);
1682 remove_wait_queue(&nlk->wait, &wait);
1683 sock_put(sk);
1684
1685 if (signal_pending(current)) {
1686 kfree_skb(skb);
1687 return sock_intr_errno(*timeo);
1688 }
1689 return 1;
1690 }
1691 netlink_skb_set_owner_r(skb, sk);
1692 return 0;
1693 }
1694
1695 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1696 {
1697 int len = skb->len;
1698
1699 netlink_deliver_tap(skb);
1700
1701 #ifdef CONFIG_NETLINK_MMAP
1702 if (netlink_skb_is_mmaped(skb))
1703 netlink_queue_mmaped_skb(sk, skb);
1704 else if (netlink_rx_is_mmaped(sk))
1705 netlink_ring_set_copied(sk, skb);
1706 else
1707 #endif /* CONFIG_NETLINK_MMAP */
1708 skb_queue_tail(&sk->sk_receive_queue, skb);
1709 sk->sk_data_ready(sk);
1710 return len;
1711 }
1712
1713 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1714 {
1715 int len = __netlink_sendskb(sk, skb);
1716
1717 sock_put(sk);
1718 return len;
1719 }
1720
1721 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1722 {
1723 kfree_skb(skb);
1724 sock_put(sk);
1725 }
1726
1727 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1728 {
1729 int delta;
1730
1731 WARN_ON(skb->sk != NULL);
1732 if (netlink_skb_is_mmaped(skb))
1733 return skb;
1734
1735 delta = skb->end - skb->tail;
1736 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1737 return skb;
1738
1739 if (skb_shared(skb)) {
1740 struct sk_buff *nskb = skb_clone(skb, allocation);
1741 if (!nskb)
1742 return skb;
1743 consume_skb(skb);
1744 skb = nskb;
1745 }
1746
1747 if (!pskb_expand_head(skb, 0, -delta, allocation))
1748 skb->truesize -= delta;
1749
1750 return skb;
1751 }
1752
1753 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1754 struct sock *ssk)
1755 {
1756 int ret;
1757 struct netlink_sock *nlk = nlk_sk(sk);
1758
1759 ret = -ECONNREFUSED;
1760 if (nlk->netlink_rcv != NULL) {
1761 ret = skb->len;
1762 netlink_skb_set_owner_r(skb, sk);
1763 NETLINK_CB(skb).sk = ssk;
1764 netlink_deliver_tap_kernel(sk, ssk, skb);
1765 nlk->netlink_rcv(skb);
1766 consume_skb(skb);
1767 } else {
1768 kfree_skb(skb);
1769 }
1770 sock_put(sk);
1771 return ret;
1772 }
1773
1774 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1775 u32 portid, int nonblock)
1776 {
1777 struct sock *sk;
1778 int err;
1779 long timeo;
1780
1781 skb = netlink_trim(skb, gfp_any());
1782
1783 timeo = sock_sndtimeo(ssk, nonblock);
1784 retry:
1785 sk = netlink_getsockbyportid(ssk, portid);
1786 if (IS_ERR(sk)) {
1787 kfree_skb(skb);
1788 return PTR_ERR(sk);
1789 }
1790 if (netlink_is_kernel(sk))
1791 return netlink_unicast_kernel(sk, skb, ssk);
1792
1793 if (sk_filter(sk, skb)) {
1794 err = skb->len;
1795 kfree_skb(skb);
1796 sock_put(sk);
1797 return err;
1798 }
1799
1800 err = netlink_attachskb(sk, skb, &timeo, ssk);
1801 if (err == 1)
1802 goto retry;
1803 if (err)
1804 return err;
1805
1806 return netlink_sendskb(sk, skb);
1807 }
1808 EXPORT_SYMBOL(netlink_unicast);
1809
1810 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1811 u32 dst_portid, gfp_t gfp_mask)
1812 {
1813 #ifdef CONFIG_NETLINK_MMAP
1814 struct sock *sk = NULL;
1815 struct sk_buff *skb;
1816 struct netlink_ring *ring;
1817 struct nl_mmap_hdr *hdr;
1818 unsigned int maxlen;
1819
1820 sk = netlink_getsockbyportid(ssk, dst_portid);
1821 if (IS_ERR(sk))
1822 goto out;
1823
1824 ring = &nlk_sk(sk)->rx_ring;
1825 /* fast-path without atomic ops for common case: non-mmaped receiver */
1826 if (ring->pg_vec == NULL)
1827 goto out_put;
1828
1829 if (ring->frame_size - NL_MMAP_HDRLEN < size)
1830 goto out_put;
1831
1832 skb = alloc_skb_head(gfp_mask);
1833 if (skb == NULL)
1834 goto err1;
1835
1836 spin_lock_bh(&sk->sk_receive_queue.lock);
1837 /* check again under lock */
1838 if (ring->pg_vec == NULL)
1839 goto out_free;
1840
1841 /* check again under lock */
1842 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1843 if (maxlen < size)
1844 goto out_free;
1845
1846 netlink_forward_ring(ring);
1847 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1848 if (hdr == NULL)
1849 goto err2;
1850 netlink_ring_setup_skb(skb, sk, ring, hdr);
1851 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1852 atomic_inc(&ring->pending);
1853 netlink_increment_head(ring);
1854
1855 spin_unlock_bh(&sk->sk_receive_queue.lock);
1856 return skb;
1857
1858 err2:
1859 kfree_skb(skb);
1860 spin_unlock_bh(&sk->sk_receive_queue.lock);
1861 netlink_overrun(sk);
1862 err1:
1863 sock_put(sk);
1864 return NULL;
1865
1866 out_free:
1867 kfree_skb(skb);
1868 spin_unlock_bh(&sk->sk_receive_queue.lock);
1869 out_put:
1870 sock_put(sk);
1871 out:
1872 #endif
1873 return alloc_skb(size, gfp_mask);
1874 }
1875 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1876
1877 int netlink_has_listeners(struct sock *sk, unsigned int group)
1878 {
1879 int res = 0;
1880 struct listeners *listeners;
1881
1882 BUG_ON(!netlink_is_kernel(sk));
1883
1884 rcu_read_lock();
1885 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1886
1887 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1888 res = test_bit(group - 1, listeners->masks);
1889
1890 rcu_read_unlock();
1891
1892 return res;
1893 }
1894 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1895
1896 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1897 {
1898 struct netlink_sock *nlk = nlk_sk(sk);
1899
1900 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1901 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
1902 netlink_skb_set_owner_r(skb, sk);
1903 __netlink_sendskb(sk, skb);
1904 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1905 }
1906 return -1;
1907 }
1908
1909 struct netlink_broadcast_data {
1910 struct sock *exclude_sk;
1911 struct net *net;
1912 u32 portid;
1913 u32 group;
1914 int failure;
1915 int delivery_failure;
1916 int congested;
1917 int delivered;
1918 gfp_t allocation;
1919 struct sk_buff *skb, *skb2;
1920 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1921 void *tx_data;
1922 };
1923
1924 static void do_one_broadcast(struct sock *sk,
1925 struct netlink_broadcast_data *p)
1926 {
1927 struct netlink_sock *nlk = nlk_sk(sk);
1928 int val;
1929
1930 if (p->exclude_sk == sk)
1931 return;
1932
1933 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1934 !test_bit(p->group - 1, nlk->groups))
1935 return;
1936
1937 if (!net_eq(sock_net(sk), p->net)) {
1938 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
1939 return;
1940
1941 if (!peernet_has_id(sock_net(sk), p->net))
1942 return;
1943
1944 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
1945 CAP_NET_BROADCAST))
1946 return;
1947 }
1948
1949 if (p->failure) {
1950 netlink_overrun(sk);
1951 return;
1952 }
1953
1954 sock_hold(sk);
1955 if (p->skb2 == NULL) {
1956 if (skb_shared(p->skb)) {
1957 p->skb2 = skb_clone(p->skb, p->allocation);
1958 } else {
1959 p->skb2 = skb_get(p->skb);
1960 /*
1961 * skb ownership may have been set when
1962 * delivered to a previous socket.
1963 */
1964 skb_orphan(p->skb2);
1965 }
1966 }
1967 if (p->skb2 == NULL) {
1968 netlink_overrun(sk);
1969 /* Clone failed. Notify ALL listeners. */
1970 p->failure = 1;
1971 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
1972 p->delivery_failure = 1;
1973 goto out;
1974 }
1975 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1976 kfree_skb(p->skb2);
1977 p->skb2 = NULL;
1978 goto out;
1979 }
1980 if (sk_filter(sk, p->skb2)) {
1981 kfree_skb(p->skb2);
1982 p->skb2 = NULL;
1983 goto out;
1984 }
1985 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
1986 NETLINK_CB(p->skb2).nsid_is_set = true;
1987 val = netlink_broadcast_deliver(sk, p->skb2);
1988 if (val < 0) {
1989 netlink_overrun(sk);
1990 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
1991 p->delivery_failure = 1;
1992 } else {
1993 p->congested |= val;
1994 p->delivered = 1;
1995 p->skb2 = NULL;
1996 }
1997 out:
1998 sock_put(sk);
1999 }
2000
2001 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
2002 u32 group, gfp_t allocation,
2003 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
2004 void *filter_data)
2005 {
2006 struct net *net = sock_net(ssk);
2007 struct netlink_broadcast_data info;
2008 struct sock *sk;
2009
2010 skb = netlink_trim(skb, allocation);
2011
2012 info.exclude_sk = ssk;
2013 info.net = net;
2014 info.portid = portid;
2015 info.group = group;
2016 info.failure = 0;
2017 info.delivery_failure = 0;
2018 info.congested = 0;
2019 info.delivered = 0;
2020 info.allocation = allocation;
2021 info.skb = skb;
2022 info.skb2 = NULL;
2023 info.tx_filter = filter;
2024 info.tx_data = filter_data;
2025
2026 /* While we sleep in clone, do not allow to change socket list */
2027
2028 netlink_lock_table();
2029
2030 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2031 do_one_broadcast(sk, &info);
2032
2033 consume_skb(skb);
2034
2035 netlink_unlock_table();
2036
2037 if (info.delivery_failure) {
2038 kfree_skb(info.skb2);
2039 return -ENOBUFS;
2040 }
2041 consume_skb(info.skb2);
2042
2043 if (info.delivered) {
2044 if (info.congested && (allocation & __GFP_WAIT))
2045 yield();
2046 return 0;
2047 }
2048 return -ESRCH;
2049 }
2050 EXPORT_SYMBOL(netlink_broadcast_filtered);
2051
2052 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2053 u32 group, gfp_t allocation)
2054 {
2055 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2056 NULL, NULL);
2057 }
2058 EXPORT_SYMBOL(netlink_broadcast);
2059
2060 struct netlink_set_err_data {
2061 struct sock *exclude_sk;
2062 u32 portid;
2063 u32 group;
2064 int code;
2065 };
2066
2067 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2068 {
2069 struct netlink_sock *nlk = nlk_sk(sk);
2070 int ret = 0;
2071
2072 if (sk == p->exclude_sk)
2073 goto out;
2074
2075 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2076 goto out;
2077
2078 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2079 !test_bit(p->group - 1, nlk->groups))
2080 goto out;
2081
2082 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
2083 ret = 1;
2084 goto out;
2085 }
2086
2087 sk->sk_err = p->code;
2088 sk->sk_error_report(sk);
2089 out:
2090 return ret;
2091 }
2092
2093 /**
2094 * netlink_set_err - report error to broadcast listeners
2095 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2096 * @portid: the PORTID of a process that we want to skip (if any)
2097 * @group: the broadcast group that will notice the error
2098 * @code: error code, must be negative (as usual in kernelspace)
2099 *
2100 * This function returns the number of broadcast listeners that have set the
2101 * NETLINK_NO_ENOBUFS socket option.
2102 */
2103 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2104 {
2105 struct netlink_set_err_data info;
2106 struct sock *sk;
2107 int ret = 0;
2108
2109 info.exclude_sk = ssk;
2110 info.portid = portid;
2111 info.group = group;
2112 /* sk->sk_err wants a positive error value */
2113 info.code = -code;
2114
2115 read_lock(&nl_table_lock);
2116
2117 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2118 ret += do_one_set_err(sk, &info);
2119
2120 read_unlock(&nl_table_lock);
2121 return ret;
2122 }
2123 EXPORT_SYMBOL(netlink_set_err);
2124
2125 /* must be called with netlink table grabbed */
2126 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2127 unsigned int group,
2128 int is_new)
2129 {
2130 int old, new = !!is_new, subscriptions;
2131
2132 old = test_bit(group - 1, nlk->groups);
2133 subscriptions = nlk->subscriptions - old + new;
2134 if (new)
2135 __set_bit(group - 1, nlk->groups);
2136 else
2137 __clear_bit(group - 1, nlk->groups);
2138 netlink_update_subscriptions(&nlk->sk, subscriptions);
2139 netlink_update_listeners(&nlk->sk);
2140 }
2141
2142 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2143 char __user *optval, unsigned int optlen)
2144 {
2145 struct sock *sk = sock->sk;
2146 struct netlink_sock *nlk = nlk_sk(sk);
2147 unsigned int val = 0;
2148 int err;
2149
2150 if (level != SOL_NETLINK)
2151 return -ENOPROTOOPT;
2152
2153 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2154 optlen >= sizeof(int) &&
2155 get_user(val, (unsigned int __user *)optval))
2156 return -EFAULT;
2157
2158 switch (optname) {
2159 case NETLINK_PKTINFO:
2160 if (val)
2161 nlk->flags |= NETLINK_F_RECV_PKTINFO;
2162 else
2163 nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
2164 err = 0;
2165 break;
2166 case NETLINK_ADD_MEMBERSHIP:
2167 case NETLINK_DROP_MEMBERSHIP: {
2168 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2169 return -EPERM;
2170 err = netlink_realloc_groups(sk);
2171 if (err)
2172 return err;
2173 if (!val || val - 1 >= nlk->ngroups)
2174 return -EINVAL;
2175 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2176 err = nlk->netlink_bind(sock_net(sk), val);
2177 if (err)
2178 return err;
2179 }
2180 netlink_table_grab();
2181 netlink_update_socket_mc(nlk, val,
2182 optname == NETLINK_ADD_MEMBERSHIP);
2183 netlink_table_ungrab();
2184 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2185 nlk->netlink_unbind(sock_net(sk), val);
2186
2187 err = 0;
2188 break;
2189 }
2190 case NETLINK_BROADCAST_ERROR:
2191 if (val)
2192 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
2193 else
2194 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
2195 err = 0;
2196 break;
2197 case NETLINK_NO_ENOBUFS:
2198 if (val) {
2199 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
2200 clear_bit(NETLINK_S_CONGESTED, &nlk->state);
2201 wake_up_interruptible(&nlk->wait);
2202 } else {
2203 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
2204 }
2205 err = 0;
2206 break;
2207 #ifdef CONFIG_NETLINK_MMAP
2208 case NETLINK_RX_RING:
2209 case NETLINK_TX_RING: {
2210 struct nl_mmap_req req;
2211
2212 /* Rings might consume more memory than queue limits, require
2213 * CAP_NET_ADMIN.
2214 */
2215 if (!capable(CAP_NET_ADMIN))
2216 return -EPERM;
2217 if (optlen < sizeof(req))
2218 return -EINVAL;
2219 if (copy_from_user(&req, optval, sizeof(req)))
2220 return -EFAULT;
2221 err = netlink_set_ring(sk, &req, false,
2222 optname == NETLINK_TX_RING);
2223 break;
2224 }
2225 #endif /* CONFIG_NETLINK_MMAP */
2226 case NETLINK_LISTEN_ALL_NSID:
2227 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
2228 return -EPERM;
2229
2230 if (val)
2231 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
2232 else
2233 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
2234 err = 0;
2235 break;
2236 default:
2237 err = -ENOPROTOOPT;
2238 }
2239 return err;
2240 }
2241
2242 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2243 char __user *optval, int __user *optlen)
2244 {
2245 struct sock *sk = sock->sk;
2246 struct netlink_sock *nlk = nlk_sk(sk);
2247 int len, val, err;
2248
2249 if (level != SOL_NETLINK)
2250 return -ENOPROTOOPT;
2251
2252 if (get_user(len, optlen))
2253 return -EFAULT;
2254 if (len < 0)
2255 return -EINVAL;
2256
2257 switch (optname) {
2258 case NETLINK_PKTINFO:
2259 if (len < sizeof(int))
2260 return -EINVAL;
2261 len = sizeof(int);
2262 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
2263 if (put_user(len, optlen) ||
2264 put_user(val, optval))
2265 return -EFAULT;
2266 err = 0;
2267 break;
2268 case NETLINK_BROADCAST_ERROR:
2269 if (len < sizeof(int))
2270 return -EINVAL;
2271 len = sizeof(int);
2272 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
2273 if (put_user(len, optlen) ||
2274 put_user(val, optval))
2275 return -EFAULT;
2276 err = 0;
2277 break;
2278 case NETLINK_NO_ENOBUFS:
2279 if (len < sizeof(int))
2280 return -EINVAL;
2281 len = sizeof(int);
2282 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
2283 if (put_user(len, optlen) ||
2284 put_user(val, optval))
2285 return -EFAULT;
2286 err = 0;
2287 break;
2288 default:
2289 err = -ENOPROTOOPT;
2290 }
2291 return err;
2292 }
2293
2294 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2295 {
2296 struct nl_pktinfo info;
2297
2298 info.group = NETLINK_CB(skb).dst_group;
2299 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2300 }
2301
2302 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
2303 struct sk_buff *skb)
2304 {
2305 if (!NETLINK_CB(skb).nsid_is_set)
2306 return;
2307
2308 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
2309 &NETLINK_CB(skb).nsid);
2310 }
2311
2312 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2313 {
2314 struct sock *sk = sock->sk;
2315 struct netlink_sock *nlk = nlk_sk(sk);
2316 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2317 u32 dst_portid;
2318 u32 dst_group;
2319 struct sk_buff *skb;
2320 int err;
2321 struct scm_cookie scm;
2322 u32 netlink_skb_flags = 0;
2323
2324 if (msg->msg_flags&MSG_OOB)
2325 return -EOPNOTSUPP;
2326
2327 err = scm_send(sock, msg, &scm, true);
2328 if (err < 0)
2329 return err;
2330
2331 if (msg->msg_namelen) {
2332 err = -EINVAL;
2333 if (addr->nl_family != AF_NETLINK)
2334 goto out;
2335 dst_portid = addr->nl_pid;
2336 dst_group = ffs(addr->nl_groups);
2337 err = -EPERM;
2338 if ((dst_group || dst_portid) &&
2339 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2340 goto out;
2341 netlink_skb_flags |= NETLINK_SKB_DST;
2342 } else {
2343 dst_portid = nlk->dst_portid;
2344 dst_group = nlk->dst_group;
2345 }
2346
2347 if (!nlk->portid) {
2348 err = netlink_autobind(sock);
2349 if (err)
2350 goto out;
2351 }
2352
2353 /* It's a really convoluted way for userland to ask for mmaped
2354 * sendmsg(), but that's what we've got...
2355 */
2356 if (netlink_tx_is_mmaped(sk) &&
2357 msg->msg_iter.type == ITER_IOVEC &&
2358 msg->msg_iter.nr_segs == 1 &&
2359 msg->msg_iter.iov->iov_base == NULL) {
2360 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2361 &scm);
2362 goto out;
2363 }
2364
2365 err = -EMSGSIZE;
2366 if (len > sk->sk_sndbuf - 32)
2367 goto out;
2368 err = -ENOBUFS;
2369 skb = netlink_alloc_large_skb(len, dst_group);
2370 if (skb == NULL)
2371 goto out;
2372
2373 NETLINK_CB(skb).portid = nlk->portid;
2374 NETLINK_CB(skb).dst_group = dst_group;
2375 NETLINK_CB(skb).creds = scm.creds;
2376 NETLINK_CB(skb).flags = netlink_skb_flags;
2377
2378 err = -EFAULT;
2379 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2380 kfree_skb(skb);
2381 goto out;
2382 }
2383
2384 err = security_netlink_send(sk, skb);
2385 if (err) {
2386 kfree_skb(skb);
2387 goto out;
2388 }
2389
2390 if (dst_group) {
2391 atomic_inc(&skb->users);
2392 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2393 }
2394 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2395
2396 out:
2397 scm_destroy(&scm);
2398 return err;
2399 }
2400
2401 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2402 int flags)
2403 {
2404 struct scm_cookie scm;
2405 struct sock *sk = sock->sk;
2406 struct netlink_sock *nlk = nlk_sk(sk);
2407 int noblock = flags&MSG_DONTWAIT;
2408 size_t copied;
2409 struct sk_buff *skb, *data_skb;
2410 int err, ret;
2411
2412 if (flags&MSG_OOB)
2413 return -EOPNOTSUPP;
2414
2415 copied = 0;
2416
2417 skb = skb_recv_datagram(sk, flags, noblock, &err);
2418 if (skb == NULL)
2419 goto out;
2420
2421 data_skb = skb;
2422
2423 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2424 if (unlikely(skb_shinfo(skb)->frag_list)) {
2425 /*
2426 * If this skb has a frag_list, then here that means that we
2427 * will have to use the frag_list skb's data for compat tasks
2428 * and the regular skb's data for normal (non-compat) tasks.
2429 *
2430 * If we need to send the compat skb, assign it to the
2431 * 'data_skb' variable so that it will be used below for data
2432 * copying. We keep 'skb' for everything else, including
2433 * freeing both later.
2434 */
2435 if (flags & MSG_CMSG_COMPAT)
2436 data_skb = skb_shinfo(skb)->frag_list;
2437 }
2438 #endif
2439
2440 /* Record the max length of recvmsg() calls for future allocations */
2441 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2442 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2443 16384);
2444
2445 copied = data_skb->len;
2446 if (len < copied) {
2447 msg->msg_flags |= MSG_TRUNC;
2448 copied = len;
2449 }
2450
2451 skb_reset_transport_header(data_skb);
2452 err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2453
2454 if (msg->msg_name) {
2455 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2456 addr->nl_family = AF_NETLINK;
2457 addr->nl_pad = 0;
2458 addr->nl_pid = NETLINK_CB(skb).portid;
2459 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
2460 msg->msg_namelen = sizeof(*addr);
2461 }
2462
2463 if (nlk->flags & NETLINK_F_RECV_PKTINFO)
2464 netlink_cmsg_recv_pktinfo(msg, skb);
2465 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
2466 netlink_cmsg_listen_all_nsid(sk, msg, skb);
2467
2468 memset(&scm, 0, sizeof(scm));
2469 scm.creds = *NETLINK_CREDS(skb);
2470 if (flags & MSG_TRUNC)
2471 copied = data_skb->len;
2472
2473 skb_free_datagram(sk, skb);
2474
2475 if (nlk->cb_running &&
2476 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2477 ret = netlink_dump(sk);
2478 if (ret) {
2479 sk->sk_err = -ret;
2480 sk->sk_error_report(sk);
2481 }
2482 }
2483
2484 scm_recv(sock, msg, &scm, flags);
2485 out:
2486 netlink_rcv_wake(sk);
2487 return err ? : copied;
2488 }
2489
2490 static void netlink_data_ready(struct sock *sk)
2491 {
2492 BUG();
2493 }
2494
2495 /*
2496 * We export these functions to other modules. They provide a
2497 * complete set of kernel non-blocking support for message
2498 * queueing.
2499 */
2500
2501 struct sock *
2502 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2503 struct netlink_kernel_cfg *cfg)
2504 {
2505 struct socket *sock;
2506 struct sock *sk;
2507 struct netlink_sock *nlk;
2508 struct listeners *listeners = NULL;
2509 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2510 unsigned int groups;
2511
2512 BUG_ON(!nl_table);
2513
2514 if (unit < 0 || unit >= MAX_LINKS)
2515 return NULL;
2516
2517 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2518 return NULL;
2519 /*
2520 * We have to just have a reference on the net from sk, but don't
2521 * get_net it. Besides, we cannot get and then put the net here.
2522 * So we create one inside init_net and the move it to net.
2523 */
2524 if (__netlink_create(&init_net, sock, cb_mutex, unit, 0) < 0)
2525 goto out_sock_release_nosk;
2526
2527 sk = sock->sk;
2528 sk_change_net(sk, net);
2529
2530 if (!cfg || cfg->groups < 32)
2531 groups = 32;
2532 else
2533 groups = cfg->groups;
2534
2535 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2536 if (!listeners)
2537 goto out_sock_release;
2538
2539 sk->sk_data_ready = netlink_data_ready;
2540 if (cfg && cfg->input)
2541 nlk_sk(sk)->netlink_rcv = cfg->input;
2542
2543 if (netlink_insert(sk, 0))
2544 goto out_sock_release;
2545
2546 nlk = nlk_sk(sk);
2547 nlk->flags |= NETLINK_F_KERNEL_SOCKET;
2548
2549 netlink_table_grab();
2550 if (!nl_table[unit].registered) {
2551 nl_table[unit].groups = groups;
2552 rcu_assign_pointer(nl_table[unit].listeners, listeners);
2553 nl_table[unit].cb_mutex = cb_mutex;
2554 nl_table[unit].module = module;
2555 if (cfg) {
2556 nl_table[unit].bind = cfg->bind;
2557 nl_table[unit].unbind = cfg->unbind;
2558 nl_table[unit].flags = cfg->flags;
2559 if (cfg->compare)
2560 nl_table[unit].compare = cfg->compare;
2561 }
2562 nl_table[unit].registered = 1;
2563 } else {
2564 kfree(listeners);
2565 nl_table[unit].registered++;
2566 }
2567 netlink_table_ungrab();
2568 return sk;
2569
2570 out_sock_release:
2571 kfree(listeners);
2572 netlink_kernel_release(sk);
2573 return NULL;
2574
2575 out_sock_release_nosk:
2576 sock_release(sock);
2577 return NULL;
2578 }
2579 EXPORT_SYMBOL(__netlink_kernel_create);
2580
2581 void
2582 netlink_kernel_release(struct sock *sk)
2583 {
2584 sk_release_kernel(sk);
2585 }
2586 EXPORT_SYMBOL(netlink_kernel_release);
2587
2588 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2589 {
2590 struct listeners *new, *old;
2591 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2592
2593 if (groups < 32)
2594 groups = 32;
2595
2596 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2597 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2598 if (!new)
2599 return -ENOMEM;
2600 old = nl_deref_protected(tbl->listeners);
2601 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2602 rcu_assign_pointer(tbl->listeners, new);
2603
2604 kfree_rcu(old, rcu);
2605 }
2606 tbl->groups = groups;
2607
2608 return 0;
2609 }
2610
2611 /**
2612 * netlink_change_ngroups - change number of multicast groups
2613 *
2614 * This changes the number of multicast groups that are available
2615 * on a certain netlink family. Note that it is not possible to
2616 * change the number of groups to below 32. Also note that it does
2617 * not implicitly call netlink_clear_multicast_users() when the
2618 * number of groups is reduced.
2619 *
2620 * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2621 * @groups: The new number of groups.
2622 */
2623 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2624 {
2625 int err;
2626
2627 netlink_table_grab();
2628 err = __netlink_change_ngroups(sk, groups);
2629 netlink_table_ungrab();
2630
2631 return err;
2632 }
2633
2634 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2635 {
2636 struct sock *sk;
2637 struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2638
2639 sk_for_each_bound(sk, &tbl->mc_list)
2640 netlink_update_socket_mc(nlk_sk(sk), group, 0);
2641 }
2642
2643 struct nlmsghdr *
2644 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2645 {
2646 struct nlmsghdr *nlh;
2647 int size = nlmsg_msg_size(len);
2648
2649 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2650 nlh->nlmsg_type = type;
2651 nlh->nlmsg_len = size;
2652 nlh->nlmsg_flags = flags;
2653 nlh->nlmsg_pid = portid;
2654 nlh->nlmsg_seq = seq;
2655 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2656 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2657 return nlh;
2658 }
2659 EXPORT_SYMBOL(__nlmsg_put);
2660
2661 /*
2662 * It looks a bit ugly.
2663 * It would be better to create kernel thread.
2664 */
2665
2666 static int netlink_dump(struct sock *sk)
2667 {
2668 struct netlink_sock *nlk = nlk_sk(sk);
2669 struct netlink_callback *cb;
2670 struct sk_buff *skb = NULL;
2671 struct nlmsghdr *nlh;
2672 int len, err = -ENOBUFS;
2673 int alloc_size;
2674
2675 mutex_lock(nlk->cb_mutex);
2676 if (!nlk->cb_running) {
2677 err = -EINVAL;
2678 goto errout_skb;
2679 }
2680
2681 cb = &nlk->cb;
2682 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2683
2684 if (!netlink_rx_is_mmaped(sk) &&
2685 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2686 goto errout_skb;
2687
2688 /* NLMSG_GOODSIZE is small to avoid high order allocations being
2689 * required, but it makes sense to _attempt_ a 16K bytes allocation
2690 * to reduce number of system calls on dump operations, if user
2691 * ever provided a big enough buffer.
2692 */
2693 if (alloc_size < nlk->max_recvmsg_len) {
2694 skb = netlink_alloc_skb(sk,
2695 nlk->max_recvmsg_len,
2696 nlk->portid,
2697 GFP_KERNEL |
2698 __GFP_NOWARN |
2699 __GFP_NORETRY);
2700 /* available room should be exact amount to avoid MSG_TRUNC */
2701 if (skb)
2702 skb_reserve(skb, skb_tailroom(skb) -
2703 nlk->max_recvmsg_len);
2704 }
2705 if (!skb)
2706 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2707 GFP_KERNEL);
2708 if (!skb)
2709 goto errout_skb;
2710 netlink_skb_set_owner_r(skb, sk);
2711
2712 len = cb->dump(skb, cb);
2713
2714 if (len > 0) {
2715 mutex_unlock(nlk->cb_mutex);
2716
2717 if (sk_filter(sk, skb))
2718 kfree_skb(skb);
2719 else
2720 __netlink_sendskb(sk, skb);
2721 return 0;
2722 }
2723
2724 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2725 if (!nlh)
2726 goto errout_skb;
2727
2728 nl_dump_check_consistent(cb, nlh);
2729
2730 memcpy(nlmsg_data(nlh), &len, sizeof(len));
2731
2732 if (sk_filter(sk, skb))
2733 kfree_skb(skb);
2734 else
2735 __netlink_sendskb(sk, skb);
2736
2737 if (cb->done)
2738 cb->done(cb);
2739
2740 nlk->cb_running = false;
2741 mutex_unlock(nlk->cb_mutex);
2742 module_put(cb->module);
2743 consume_skb(cb->skb);
2744 return 0;
2745
2746 errout_skb:
2747 mutex_unlock(nlk->cb_mutex);
2748 kfree_skb(skb);
2749 return err;
2750 }
2751
2752 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2753 const struct nlmsghdr *nlh,
2754 struct netlink_dump_control *control)
2755 {
2756 struct netlink_callback *cb;
2757 struct sock *sk;
2758 struct netlink_sock *nlk;
2759 int ret;
2760
2761 /* Memory mapped dump requests need to be copied to avoid looping
2762 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2763 * a reference to the skb.
2764 */
2765 if (netlink_skb_is_mmaped(skb)) {
2766 skb = skb_copy(skb, GFP_KERNEL);
2767 if (skb == NULL)
2768 return -ENOBUFS;
2769 } else
2770 atomic_inc(&skb->users);
2771
2772 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2773 if (sk == NULL) {
2774 ret = -ECONNREFUSED;
2775 goto error_free;
2776 }
2777
2778 nlk = nlk_sk(sk);
2779 mutex_lock(nlk->cb_mutex);
2780 /* A dump is in progress... */
2781 if (nlk->cb_running) {
2782 ret = -EBUSY;
2783 goto error_unlock;
2784 }
2785 /* add reference of module which cb->dump belongs to */
2786 if (!try_module_get(control->module)) {
2787 ret = -EPROTONOSUPPORT;
2788 goto error_unlock;
2789 }
2790
2791 cb = &nlk->cb;
2792 memset(cb, 0, sizeof(*cb));
2793 cb->dump = control->dump;
2794 cb->done = control->done;
2795 cb->nlh = nlh;
2796 cb->data = control->data;
2797 cb->module = control->module;
2798 cb->min_dump_alloc = control->min_dump_alloc;
2799 cb->skb = skb;
2800
2801 nlk->cb_running = true;
2802
2803 mutex_unlock(nlk->cb_mutex);
2804
2805 ret = netlink_dump(sk);
2806 sock_put(sk);
2807
2808 if (ret)
2809 return ret;
2810
2811 /* We successfully started a dump, by returning -EINTR we
2812 * signal not to send ACK even if it was requested.
2813 */
2814 return -EINTR;
2815
2816 error_unlock:
2817 sock_put(sk);
2818 mutex_unlock(nlk->cb_mutex);
2819 error_free:
2820 kfree_skb(skb);
2821 return ret;
2822 }
2823 EXPORT_SYMBOL(__netlink_dump_start);
2824
2825 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2826 {
2827 struct sk_buff *skb;
2828 struct nlmsghdr *rep;
2829 struct nlmsgerr *errmsg;
2830 size_t payload = sizeof(*errmsg);
2831
2832 /* error messages get the original request appened */
2833 if (err)
2834 payload += nlmsg_len(nlh);
2835
2836 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2837 NETLINK_CB(in_skb).portid, GFP_KERNEL);
2838 if (!skb) {
2839 struct sock *sk;
2840
2841 sk = netlink_lookup(sock_net(in_skb->sk),
2842 in_skb->sk->sk_protocol,
2843 NETLINK_CB(in_skb).portid);
2844 if (sk) {
2845 sk->sk_err = ENOBUFS;
2846 sk->sk_error_report(sk);
2847 sock_put(sk);
2848 }
2849 return;
2850 }
2851
2852 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2853 NLMSG_ERROR, payload, 0);
2854 errmsg = nlmsg_data(rep);
2855 errmsg->error = err;
2856 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2857 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2858 }
2859 EXPORT_SYMBOL(netlink_ack);
2860
2861 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2862 struct nlmsghdr *))
2863 {
2864 struct nlmsghdr *nlh;
2865 int err;
2866
2867 while (skb->len >= nlmsg_total_size(0)) {
2868 int msglen;
2869
2870 nlh = nlmsg_hdr(skb);
2871 err = 0;
2872
2873 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2874 return 0;
2875
2876 /* Only requests are handled by the kernel */
2877 if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2878 goto ack;
2879
2880 /* Skip control messages */
2881 if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2882 goto ack;
2883
2884 err = cb(skb, nlh);
2885 if (err == -EINTR)
2886 goto skip;
2887
2888 ack:
2889 if (nlh->nlmsg_flags & NLM_F_ACK || err)
2890 netlink_ack(skb, nlh, err);
2891
2892 skip:
2893 msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2894 if (msglen > skb->len)
2895 msglen = skb->len;
2896 skb_pull(skb, msglen);
2897 }
2898
2899 return 0;
2900 }
2901 EXPORT_SYMBOL(netlink_rcv_skb);
2902
2903 /**
2904 * nlmsg_notify - send a notification netlink message
2905 * @sk: netlink socket to use
2906 * @skb: notification message
2907 * @portid: destination netlink portid for reports or 0
2908 * @group: destination multicast group or 0
2909 * @report: 1 to report back, 0 to disable
2910 * @flags: allocation flags
2911 */
2912 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2913 unsigned int group, int report, gfp_t flags)
2914 {
2915 int err = 0;
2916
2917 if (group) {
2918 int exclude_portid = 0;
2919
2920 if (report) {
2921 atomic_inc(&skb->users);
2922 exclude_portid = portid;
2923 }
2924
2925 /* errors reported via destination sk->sk_err, but propagate
2926 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2927 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2928 }
2929
2930 if (report) {
2931 int err2;
2932
2933 err2 = nlmsg_unicast(sk, skb, portid);
2934 if (!err || err == -ESRCH)
2935 err = err2;
2936 }
2937
2938 return err;
2939 }
2940 EXPORT_SYMBOL(nlmsg_notify);
2941
2942 #ifdef CONFIG_PROC_FS
2943 struct nl_seq_iter {
2944 struct seq_net_private p;
2945 struct rhashtable_iter hti;
2946 int link;
2947 };
2948
2949 static int netlink_walk_start(struct nl_seq_iter *iter)
2950 {
2951 int err;
2952
2953 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti);
2954 if (err) {
2955 iter->link = MAX_LINKS;
2956 return err;
2957 }
2958
2959 err = rhashtable_walk_start(&iter->hti);
2960 return err == -EAGAIN ? 0 : err;
2961 }
2962
2963 static void netlink_walk_stop(struct nl_seq_iter *iter)
2964 {
2965 rhashtable_walk_stop(&iter->hti);
2966 rhashtable_walk_exit(&iter->hti);
2967 }
2968
2969 static void *__netlink_seq_next(struct seq_file *seq)
2970 {
2971 struct nl_seq_iter *iter = seq->private;
2972 struct netlink_sock *nlk;
2973
2974 do {
2975 for (;;) {
2976 int err;
2977
2978 nlk = rhashtable_walk_next(&iter->hti);
2979
2980 if (IS_ERR(nlk)) {
2981 if (PTR_ERR(nlk) == -EAGAIN)
2982 continue;
2983
2984 return nlk;
2985 }
2986
2987 if (nlk)
2988 break;
2989
2990 netlink_walk_stop(iter);
2991 if (++iter->link >= MAX_LINKS)
2992 return NULL;
2993
2994 err = netlink_walk_start(iter);
2995 if (err)
2996 return ERR_PTR(err);
2997 }
2998 } while (sock_net(&nlk->sk) != seq_file_net(seq));
2999
3000 return nlk;
3001 }
3002
3003 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
3004 {
3005 struct nl_seq_iter *iter = seq->private;
3006 void *obj = SEQ_START_TOKEN;
3007 loff_t pos;
3008 int err;
3009
3010 iter->link = 0;
3011
3012 err = netlink_walk_start(iter);
3013 if (err)
3014 return ERR_PTR(err);
3015
3016 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
3017 obj = __netlink_seq_next(seq);
3018
3019 return obj;
3020 }
3021
3022 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3023 {
3024 ++*pos;
3025 return __netlink_seq_next(seq);
3026 }
3027
3028 static void netlink_seq_stop(struct seq_file *seq, void *v)
3029 {
3030 struct nl_seq_iter *iter = seq->private;
3031
3032 if (iter->link >= MAX_LINKS)
3033 return;
3034
3035 netlink_walk_stop(iter);
3036 }
3037
3038
3039 static int netlink_seq_show(struct seq_file *seq, void *v)
3040 {
3041 if (v == SEQ_START_TOKEN) {
3042 seq_puts(seq,
3043 "sk Eth Pid Groups "
3044 "Rmem Wmem Dump Locks Drops Inode\n");
3045 } else {
3046 struct sock *s = v;
3047 struct netlink_sock *nlk = nlk_sk(s);
3048
3049 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3050 s,
3051 s->sk_protocol,
3052 nlk->portid,
3053 nlk->groups ? (u32)nlk->groups[0] : 0,
3054 sk_rmem_alloc_get(s),
3055 sk_wmem_alloc_get(s),
3056 nlk->cb_running,
3057 atomic_read(&s->sk_refcnt),
3058 atomic_read(&s->sk_drops),
3059 sock_i_ino(s)
3060 );
3061
3062 }
3063 return 0;
3064 }
3065
3066 static const struct seq_operations netlink_seq_ops = {
3067 .start = netlink_seq_start,
3068 .next = netlink_seq_next,
3069 .stop = netlink_seq_stop,
3070 .show = netlink_seq_show,
3071 };
3072
3073
3074 static int netlink_seq_open(struct inode *inode, struct file *file)
3075 {
3076 return seq_open_net(inode, file, &netlink_seq_ops,
3077 sizeof(struct nl_seq_iter));
3078 }
3079
3080 static const struct file_operations netlink_seq_fops = {
3081 .owner = THIS_MODULE,
3082 .open = netlink_seq_open,
3083 .read = seq_read,
3084 .llseek = seq_lseek,
3085 .release = seq_release_net,
3086 };
3087
3088 #endif
3089
3090 int netlink_register_notifier(struct notifier_block *nb)
3091 {
3092 return atomic_notifier_chain_register(&netlink_chain, nb);
3093 }
3094 EXPORT_SYMBOL(netlink_register_notifier);
3095
3096 int netlink_unregister_notifier(struct notifier_block *nb)
3097 {
3098 return atomic_notifier_chain_unregister(&netlink_chain, nb);
3099 }
3100 EXPORT_SYMBOL(netlink_unregister_notifier);
3101
3102 static const struct proto_ops netlink_ops = {
3103 .family = PF_NETLINK,
3104 .owner = THIS_MODULE,
3105 .release = netlink_release,
3106 .bind = netlink_bind,
3107 .connect = netlink_connect,
3108 .socketpair = sock_no_socketpair,
3109 .accept = sock_no_accept,
3110 .getname = netlink_getname,
3111 .poll = netlink_poll,
3112 .ioctl = sock_no_ioctl,
3113 .listen = sock_no_listen,
3114 .shutdown = sock_no_shutdown,
3115 .setsockopt = netlink_setsockopt,
3116 .getsockopt = netlink_getsockopt,
3117 .sendmsg = netlink_sendmsg,
3118 .recvmsg = netlink_recvmsg,
3119 .mmap = netlink_mmap,
3120 .sendpage = sock_no_sendpage,
3121 };
3122
3123 static const struct net_proto_family netlink_family_ops = {
3124 .family = PF_NETLINK,
3125 .create = netlink_create,
3126 .owner = THIS_MODULE, /* for consistency 8) */
3127 };
3128
3129 static int __net_init netlink_net_init(struct net *net)
3130 {
3131 #ifdef CONFIG_PROC_FS
3132 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3133 return -ENOMEM;
3134 #endif
3135 return 0;
3136 }
3137
3138 static void __net_exit netlink_net_exit(struct net *net)
3139 {
3140 #ifdef CONFIG_PROC_FS
3141 remove_proc_entry("netlink", net->proc_net);
3142 #endif
3143 }
3144
3145 static void __init netlink_add_usersock_entry(void)
3146 {
3147 struct listeners *listeners;
3148 int groups = 32;
3149
3150 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3151 if (!listeners)
3152 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3153
3154 netlink_table_grab();
3155
3156 nl_table[NETLINK_USERSOCK].groups = groups;
3157 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3158 nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3159 nl_table[NETLINK_USERSOCK].registered = 1;
3160 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3161
3162 netlink_table_ungrab();
3163 }
3164
3165 static struct pernet_operations __net_initdata netlink_net_ops = {
3166 .init = netlink_net_init,
3167 .exit = netlink_net_exit,
3168 };
3169
3170 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
3171 {
3172 const struct netlink_sock *nlk = data;
3173 struct netlink_compare_arg arg;
3174
3175 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
3176 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
3177 }
3178
3179 static const struct rhashtable_params netlink_rhashtable_params = {
3180 .head_offset = offsetof(struct netlink_sock, node),
3181 .key_len = netlink_compare_arg_len,
3182 .obj_hashfn = netlink_hash,
3183 .obj_cmpfn = netlink_compare,
3184 .max_size = 65536,
3185 .automatic_shrinking = true,
3186 };
3187
3188 static int __init netlink_proto_init(void)
3189 {
3190 int i;
3191 int err = proto_register(&netlink_proto, 0);
3192
3193 if (err != 0)
3194 goto out;
3195
3196 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3197
3198 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3199 if (!nl_table)
3200 goto panic;
3201
3202 for (i = 0; i < MAX_LINKS; i++) {
3203 if (rhashtable_init(&nl_table[i].hash,
3204 &netlink_rhashtable_params) < 0) {
3205 while (--i > 0)
3206 rhashtable_destroy(&nl_table[i].hash);
3207 kfree(nl_table);
3208 goto panic;
3209 }
3210 }
3211
3212 INIT_LIST_HEAD(&netlink_tap_all);
3213
3214 netlink_add_usersock_entry();
3215
3216 sock_register(&netlink_family_ops);
3217 register_pernet_subsys(&netlink_net_ops);
3218 /* The netlink device handler may be needed early. */
3219 rtnetlink_init();
3220 out:
3221 return err;
3222 panic:
3223 panic("netlink_init: Cannot allocate nl_table\n");
3224 }
3225
3226 core_initcall(netlink_proto_init);
This page took 0.097339 seconds and 4 git commands to generate.