bpf: fix arraymap NULL deref and missing overflow and zero size checks
[deliverable/linux.git] / net / netlink / af_netlink.c
1 /*
2 * NETLINK Kernel-user communication protocol.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6 * Patrick McHardy <kaber@trash.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14 * added netlink_proto_exit
15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16 * use nlk_sk, as sk->protinfo is on a diet 8)
17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18 * - inc module use count of module that owns
19 * the kernel socket in case userspace opens
20 * socket of same protocol
21 * - remove all module support, since netlink is
22 * mandatory if CONFIG_NET=y these days
23 */
24
25 #include <linux/module.h>
26
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64
65 #include <net/net_namespace.h>
66 #include <net/sock.h>
67 #include <net/scm.h>
68 #include <net/netlink.h>
69
70 #include "af_netlink.h"
71
72 struct listeners {
73 struct rcu_head rcu;
74 unsigned long masks[0];
75 };
76
77 /* state bits */
78 #define NETLINK_CONGESTED 0x0
79
80 /* flags */
81 #define NETLINK_KERNEL_SOCKET 0x1
82 #define NETLINK_RECV_PKTINFO 0x2
83 #define NETLINK_BROADCAST_SEND_ERROR 0x4
84 #define NETLINK_RECV_NO_ENOBUFS 0x8
85
86 static inline int netlink_is_kernel(struct sock *sk)
87 {
88 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
89 }
90
91 struct netlink_table *nl_table;
92 EXPORT_SYMBOL_GPL(nl_table);
93
94 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
95
96 static int netlink_dump(struct sock *sk);
97 static void netlink_skb_destructor(struct sk_buff *skb);
98
99 /* nl_table locking explained:
100 * Lookup and traversal are protected with nl_sk_hash_lock or nl_table_lock
101 * combined with an RCU read-side lock. Insertion and removal are protected
102 * with nl_sk_hash_lock while using RCU list modification primitives and may
103 * run in parallel to nl_table_lock protected lookups. Destruction of the
104 * Netlink socket may only occur *after* nl_table_lock has been acquired
105 * either during or after the socket has been removed from the list.
106 */
107 DEFINE_RWLOCK(nl_table_lock);
108 EXPORT_SYMBOL_GPL(nl_table_lock);
109 static atomic_t nl_table_users = ATOMIC_INIT(0);
110
111 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
112
113 /* Protects netlink socket hash table mutations */
114 DEFINE_MUTEX(nl_sk_hash_lock);
115 EXPORT_SYMBOL_GPL(nl_sk_hash_lock);
116
117 #ifdef CONFIG_PROVE_LOCKING
118 static int lockdep_nl_sk_hash_is_held(void *parent)
119 {
120 if (debug_locks)
121 return lockdep_is_held(&nl_sk_hash_lock) || lockdep_is_held(&nl_table_lock);
122 return 1;
123 }
124 #endif
125
126 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
127
128 static DEFINE_SPINLOCK(netlink_tap_lock);
129 static struct list_head netlink_tap_all __read_mostly;
130
131 static inline u32 netlink_group_mask(u32 group)
132 {
133 return group ? 1 << (group - 1) : 0;
134 }
135
136 int netlink_add_tap(struct netlink_tap *nt)
137 {
138 if (unlikely(nt->dev->type != ARPHRD_NETLINK))
139 return -EINVAL;
140
141 spin_lock(&netlink_tap_lock);
142 list_add_rcu(&nt->list, &netlink_tap_all);
143 spin_unlock(&netlink_tap_lock);
144
145 __module_get(nt->module);
146
147 return 0;
148 }
149 EXPORT_SYMBOL_GPL(netlink_add_tap);
150
151 static int __netlink_remove_tap(struct netlink_tap *nt)
152 {
153 bool found = false;
154 struct netlink_tap *tmp;
155
156 spin_lock(&netlink_tap_lock);
157
158 list_for_each_entry(tmp, &netlink_tap_all, list) {
159 if (nt == tmp) {
160 list_del_rcu(&nt->list);
161 found = true;
162 goto out;
163 }
164 }
165
166 pr_warn("__netlink_remove_tap: %p not found\n", nt);
167 out:
168 spin_unlock(&netlink_tap_lock);
169
170 if (found && nt->module)
171 module_put(nt->module);
172
173 return found ? 0 : -ENODEV;
174 }
175
176 int netlink_remove_tap(struct netlink_tap *nt)
177 {
178 int ret;
179
180 ret = __netlink_remove_tap(nt);
181 synchronize_net();
182
183 return ret;
184 }
185 EXPORT_SYMBOL_GPL(netlink_remove_tap);
186
187 static bool netlink_filter_tap(const struct sk_buff *skb)
188 {
189 struct sock *sk = skb->sk;
190
191 /* We take the more conservative approach and
192 * whitelist socket protocols that may pass.
193 */
194 switch (sk->sk_protocol) {
195 case NETLINK_ROUTE:
196 case NETLINK_USERSOCK:
197 case NETLINK_SOCK_DIAG:
198 case NETLINK_NFLOG:
199 case NETLINK_XFRM:
200 case NETLINK_FIB_LOOKUP:
201 case NETLINK_NETFILTER:
202 case NETLINK_GENERIC:
203 return true;
204 }
205
206 return false;
207 }
208
209 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
210 struct net_device *dev)
211 {
212 struct sk_buff *nskb;
213 struct sock *sk = skb->sk;
214 int ret = -ENOMEM;
215
216 dev_hold(dev);
217 nskb = skb_clone(skb, GFP_ATOMIC);
218 if (nskb) {
219 nskb->dev = dev;
220 nskb->protocol = htons((u16) sk->sk_protocol);
221 nskb->pkt_type = netlink_is_kernel(sk) ?
222 PACKET_KERNEL : PACKET_USER;
223 skb_reset_network_header(nskb);
224 ret = dev_queue_xmit(nskb);
225 if (unlikely(ret > 0))
226 ret = net_xmit_errno(ret);
227 }
228
229 dev_put(dev);
230 return ret;
231 }
232
233 static void __netlink_deliver_tap(struct sk_buff *skb)
234 {
235 int ret;
236 struct netlink_tap *tmp;
237
238 if (!netlink_filter_tap(skb))
239 return;
240
241 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
242 ret = __netlink_deliver_tap_skb(skb, tmp->dev);
243 if (unlikely(ret))
244 break;
245 }
246 }
247
248 static void netlink_deliver_tap(struct sk_buff *skb)
249 {
250 rcu_read_lock();
251
252 if (unlikely(!list_empty(&netlink_tap_all)))
253 __netlink_deliver_tap(skb);
254
255 rcu_read_unlock();
256 }
257
258 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
259 struct sk_buff *skb)
260 {
261 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
262 netlink_deliver_tap(skb);
263 }
264
265 static void netlink_overrun(struct sock *sk)
266 {
267 struct netlink_sock *nlk = nlk_sk(sk);
268
269 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
270 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
271 sk->sk_err = ENOBUFS;
272 sk->sk_error_report(sk);
273 }
274 }
275 atomic_inc(&sk->sk_drops);
276 }
277
278 static void netlink_rcv_wake(struct sock *sk)
279 {
280 struct netlink_sock *nlk = nlk_sk(sk);
281
282 if (skb_queue_empty(&sk->sk_receive_queue))
283 clear_bit(NETLINK_CONGESTED, &nlk->state);
284 if (!test_bit(NETLINK_CONGESTED, &nlk->state))
285 wake_up_interruptible(&nlk->wait);
286 }
287
288 #ifdef CONFIG_NETLINK_MMAP
289 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
290 {
291 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
292 }
293
294 static bool netlink_rx_is_mmaped(struct sock *sk)
295 {
296 return nlk_sk(sk)->rx_ring.pg_vec != NULL;
297 }
298
299 static bool netlink_tx_is_mmaped(struct sock *sk)
300 {
301 return nlk_sk(sk)->tx_ring.pg_vec != NULL;
302 }
303
304 static __pure struct page *pgvec_to_page(const void *addr)
305 {
306 if (is_vmalloc_addr(addr))
307 return vmalloc_to_page(addr);
308 else
309 return virt_to_page(addr);
310 }
311
312 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
313 {
314 unsigned int i;
315
316 for (i = 0; i < len; i++) {
317 if (pg_vec[i] != NULL) {
318 if (is_vmalloc_addr(pg_vec[i]))
319 vfree(pg_vec[i]);
320 else
321 free_pages((unsigned long)pg_vec[i], order);
322 }
323 }
324 kfree(pg_vec);
325 }
326
327 static void *alloc_one_pg_vec_page(unsigned long order)
328 {
329 void *buffer;
330 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
331 __GFP_NOWARN | __GFP_NORETRY;
332
333 buffer = (void *)__get_free_pages(gfp_flags, order);
334 if (buffer != NULL)
335 return buffer;
336
337 buffer = vzalloc((1 << order) * PAGE_SIZE);
338 if (buffer != NULL)
339 return buffer;
340
341 gfp_flags &= ~__GFP_NORETRY;
342 return (void *)__get_free_pages(gfp_flags, order);
343 }
344
345 static void **alloc_pg_vec(struct netlink_sock *nlk,
346 struct nl_mmap_req *req, unsigned int order)
347 {
348 unsigned int block_nr = req->nm_block_nr;
349 unsigned int i;
350 void **pg_vec;
351
352 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
353 if (pg_vec == NULL)
354 return NULL;
355
356 for (i = 0; i < block_nr; i++) {
357 pg_vec[i] = alloc_one_pg_vec_page(order);
358 if (pg_vec[i] == NULL)
359 goto err1;
360 }
361
362 return pg_vec;
363 err1:
364 free_pg_vec(pg_vec, order, block_nr);
365 return NULL;
366 }
367
368 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
369 bool closing, bool tx_ring)
370 {
371 struct netlink_sock *nlk = nlk_sk(sk);
372 struct netlink_ring *ring;
373 struct sk_buff_head *queue;
374 void **pg_vec = NULL;
375 unsigned int order = 0;
376 int err;
377
378 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
379 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
380
381 if (!closing) {
382 if (atomic_read(&nlk->mapped))
383 return -EBUSY;
384 if (atomic_read(&ring->pending))
385 return -EBUSY;
386 }
387
388 if (req->nm_block_nr) {
389 if (ring->pg_vec != NULL)
390 return -EBUSY;
391
392 if ((int)req->nm_block_size <= 0)
393 return -EINVAL;
394 if (!PAGE_ALIGNED(req->nm_block_size))
395 return -EINVAL;
396 if (req->nm_frame_size < NL_MMAP_HDRLEN)
397 return -EINVAL;
398 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
399 return -EINVAL;
400
401 ring->frames_per_block = req->nm_block_size /
402 req->nm_frame_size;
403 if (ring->frames_per_block == 0)
404 return -EINVAL;
405 if (ring->frames_per_block * req->nm_block_nr !=
406 req->nm_frame_nr)
407 return -EINVAL;
408
409 order = get_order(req->nm_block_size);
410 pg_vec = alloc_pg_vec(nlk, req, order);
411 if (pg_vec == NULL)
412 return -ENOMEM;
413 } else {
414 if (req->nm_frame_nr)
415 return -EINVAL;
416 }
417
418 err = -EBUSY;
419 mutex_lock(&nlk->pg_vec_lock);
420 if (closing || atomic_read(&nlk->mapped) == 0) {
421 err = 0;
422 spin_lock_bh(&queue->lock);
423
424 ring->frame_max = req->nm_frame_nr - 1;
425 ring->head = 0;
426 ring->frame_size = req->nm_frame_size;
427 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
428
429 swap(ring->pg_vec_len, req->nm_block_nr);
430 swap(ring->pg_vec_order, order);
431 swap(ring->pg_vec, pg_vec);
432
433 __skb_queue_purge(queue);
434 spin_unlock_bh(&queue->lock);
435
436 WARN_ON(atomic_read(&nlk->mapped));
437 }
438 mutex_unlock(&nlk->pg_vec_lock);
439
440 if (pg_vec)
441 free_pg_vec(pg_vec, order, req->nm_block_nr);
442 return err;
443 }
444
445 static void netlink_mm_open(struct vm_area_struct *vma)
446 {
447 struct file *file = vma->vm_file;
448 struct socket *sock = file->private_data;
449 struct sock *sk = sock->sk;
450
451 if (sk)
452 atomic_inc(&nlk_sk(sk)->mapped);
453 }
454
455 static void netlink_mm_close(struct vm_area_struct *vma)
456 {
457 struct file *file = vma->vm_file;
458 struct socket *sock = file->private_data;
459 struct sock *sk = sock->sk;
460
461 if (sk)
462 atomic_dec(&nlk_sk(sk)->mapped);
463 }
464
465 static const struct vm_operations_struct netlink_mmap_ops = {
466 .open = netlink_mm_open,
467 .close = netlink_mm_close,
468 };
469
470 static int netlink_mmap(struct file *file, struct socket *sock,
471 struct vm_area_struct *vma)
472 {
473 struct sock *sk = sock->sk;
474 struct netlink_sock *nlk = nlk_sk(sk);
475 struct netlink_ring *ring;
476 unsigned long start, size, expected;
477 unsigned int i;
478 int err = -EINVAL;
479
480 if (vma->vm_pgoff)
481 return -EINVAL;
482
483 mutex_lock(&nlk->pg_vec_lock);
484
485 expected = 0;
486 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
487 if (ring->pg_vec == NULL)
488 continue;
489 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
490 }
491
492 if (expected == 0)
493 goto out;
494
495 size = vma->vm_end - vma->vm_start;
496 if (size != expected)
497 goto out;
498
499 start = vma->vm_start;
500 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
501 if (ring->pg_vec == NULL)
502 continue;
503
504 for (i = 0; i < ring->pg_vec_len; i++) {
505 struct page *page;
506 void *kaddr = ring->pg_vec[i];
507 unsigned int pg_num;
508
509 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
510 page = pgvec_to_page(kaddr);
511 err = vm_insert_page(vma, start, page);
512 if (err < 0)
513 goto out;
514 start += PAGE_SIZE;
515 kaddr += PAGE_SIZE;
516 }
517 }
518 }
519
520 atomic_inc(&nlk->mapped);
521 vma->vm_ops = &netlink_mmap_ops;
522 err = 0;
523 out:
524 mutex_unlock(&nlk->pg_vec_lock);
525 return err;
526 }
527
528 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr)
529 {
530 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
531 struct page *p_start, *p_end;
532
533 /* First page is flushed through netlink_{get,set}_status */
534 p_start = pgvec_to_page(hdr + PAGE_SIZE);
535 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + hdr->nm_len - 1);
536 while (p_start <= p_end) {
537 flush_dcache_page(p_start);
538 p_start++;
539 }
540 #endif
541 }
542
543 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
544 {
545 smp_rmb();
546 flush_dcache_page(pgvec_to_page(hdr));
547 return hdr->nm_status;
548 }
549
550 static void netlink_set_status(struct nl_mmap_hdr *hdr,
551 enum nl_mmap_status status)
552 {
553 hdr->nm_status = status;
554 flush_dcache_page(pgvec_to_page(hdr));
555 smp_wmb();
556 }
557
558 static struct nl_mmap_hdr *
559 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
560 {
561 unsigned int pg_vec_pos, frame_off;
562
563 pg_vec_pos = pos / ring->frames_per_block;
564 frame_off = pos % ring->frames_per_block;
565
566 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
567 }
568
569 static struct nl_mmap_hdr *
570 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
571 enum nl_mmap_status status)
572 {
573 struct nl_mmap_hdr *hdr;
574
575 hdr = __netlink_lookup_frame(ring, pos);
576 if (netlink_get_status(hdr) != status)
577 return NULL;
578
579 return hdr;
580 }
581
582 static struct nl_mmap_hdr *
583 netlink_current_frame(const struct netlink_ring *ring,
584 enum nl_mmap_status status)
585 {
586 return netlink_lookup_frame(ring, ring->head, status);
587 }
588
589 static struct nl_mmap_hdr *
590 netlink_previous_frame(const struct netlink_ring *ring,
591 enum nl_mmap_status status)
592 {
593 unsigned int prev;
594
595 prev = ring->head ? ring->head - 1 : ring->frame_max;
596 return netlink_lookup_frame(ring, prev, status);
597 }
598
599 static void netlink_increment_head(struct netlink_ring *ring)
600 {
601 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
602 }
603
604 static void netlink_forward_ring(struct netlink_ring *ring)
605 {
606 unsigned int head = ring->head, pos = head;
607 const struct nl_mmap_hdr *hdr;
608
609 do {
610 hdr = __netlink_lookup_frame(ring, pos);
611 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
612 break;
613 if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
614 break;
615 netlink_increment_head(ring);
616 } while (ring->head != head);
617 }
618
619 static bool netlink_dump_space(struct netlink_sock *nlk)
620 {
621 struct netlink_ring *ring = &nlk->rx_ring;
622 struct nl_mmap_hdr *hdr;
623 unsigned int n;
624
625 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
626 if (hdr == NULL)
627 return false;
628
629 n = ring->head + ring->frame_max / 2;
630 if (n > ring->frame_max)
631 n -= ring->frame_max;
632
633 hdr = __netlink_lookup_frame(ring, n);
634
635 return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
636 }
637
638 static unsigned int netlink_poll(struct file *file, struct socket *sock,
639 poll_table *wait)
640 {
641 struct sock *sk = sock->sk;
642 struct netlink_sock *nlk = nlk_sk(sk);
643 unsigned int mask;
644 int err;
645
646 if (nlk->rx_ring.pg_vec != NULL) {
647 /* Memory mapped sockets don't call recvmsg(), so flow control
648 * for dumps is performed here. A dump is allowed to continue
649 * if at least half the ring is unused.
650 */
651 while (nlk->cb_running && netlink_dump_space(nlk)) {
652 err = netlink_dump(sk);
653 if (err < 0) {
654 sk->sk_err = -err;
655 sk->sk_error_report(sk);
656 break;
657 }
658 }
659 netlink_rcv_wake(sk);
660 }
661
662 mask = datagram_poll(file, sock, wait);
663
664 spin_lock_bh(&sk->sk_receive_queue.lock);
665 if (nlk->rx_ring.pg_vec) {
666 netlink_forward_ring(&nlk->rx_ring);
667 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
668 mask |= POLLIN | POLLRDNORM;
669 }
670 spin_unlock_bh(&sk->sk_receive_queue.lock);
671
672 spin_lock_bh(&sk->sk_write_queue.lock);
673 if (nlk->tx_ring.pg_vec) {
674 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
675 mask |= POLLOUT | POLLWRNORM;
676 }
677 spin_unlock_bh(&sk->sk_write_queue.lock);
678
679 return mask;
680 }
681
682 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
683 {
684 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
685 }
686
687 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
688 struct netlink_ring *ring,
689 struct nl_mmap_hdr *hdr)
690 {
691 unsigned int size;
692 void *data;
693
694 size = ring->frame_size - NL_MMAP_HDRLEN;
695 data = (void *)hdr + NL_MMAP_HDRLEN;
696
697 skb->head = data;
698 skb->data = data;
699 skb_reset_tail_pointer(skb);
700 skb->end = skb->tail + size;
701 skb->len = 0;
702
703 skb->destructor = netlink_skb_destructor;
704 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
705 NETLINK_CB(skb).sk = sk;
706 }
707
708 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
709 u32 dst_portid, u32 dst_group,
710 struct sock_iocb *siocb)
711 {
712 struct netlink_sock *nlk = nlk_sk(sk);
713 struct netlink_ring *ring;
714 struct nl_mmap_hdr *hdr;
715 struct sk_buff *skb;
716 unsigned int maxlen;
717 bool excl = true;
718 int err = 0, len = 0;
719
720 /* Netlink messages are validated by the receiver before processing.
721 * In order to avoid userspace changing the contents of the message
722 * after validation, the socket and the ring may only be used by a
723 * single process, otherwise we fall back to copying.
724 */
725 if (atomic_long_read(&sk->sk_socket->file->f_count) > 1 ||
726 atomic_read(&nlk->mapped) > 1)
727 excl = false;
728
729 mutex_lock(&nlk->pg_vec_lock);
730
731 ring = &nlk->tx_ring;
732 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
733
734 do {
735 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
736 if (hdr == NULL) {
737 if (!(msg->msg_flags & MSG_DONTWAIT) &&
738 atomic_read(&nlk->tx_ring.pending))
739 schedule();
740 continue;
741 }
742 if (hdr->nm_len > maxlen) {
743 err = -EINVAL;
744 goto out;
745 }
746
747 netlink_frame_flush_dcache(hdr);
748
749 if (likely(dst_portid == 0 && dst_group == 0 && excl)) {
750 skb = alloc_skb_head(GFP_KERNEL);
751 if (skb == NULL) {
752 err = -ENOBUFS;
753 goto out;
754 }
755 sock_hold(sk);
756 netlink_ring_setup_skb(skb, sk, ring, hdr);
757 NETLINK_CB(skb).flags |= NETLINK_SKB_TX;
758 __skb_put(skb, hdr->nm_len);
759 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
760 atomic_inc(&ring->pending);
761 } else {
762 skb = alloc_skb(hdr->nm_len, GFP_KERNEL);
763 if (skb == NULL) {
764 err = -ENOBUFS;
765 goto out;
766 }
767 __skb_put(skb, hdr->nm_len);
768 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, hdr->nm_len);
769 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
770 }
771
772 netlink_increment_head(ring);
773
774 NETLINK_CB(skb).portid = nlk->portid;
775 NETLINK_CB(skb).dst_group = dst_group;
776 NETLINK_CB(skb).creds = siocb->scm->creds;
777
778 err = security_netlink_send(sk, skb);
779 if (err) {
780 kfree_skb(skb);
781 goto out;
782 }
783
784 if (unlikely(dst_group)) {
785 atomic_inc(&skb->users);
786 netlink_broadcast(sk, skb, dst_portid, dst_group,
787 GFP_KERNEL);
788 }
789 err = netlink_unicast(sk, skb, dst_portid,
790 msg->msg_flags & MSG_DONTWAIT);
791 if (err < 0)
792 goto out;
793 len += err;
794
795 } while (hdr != NULL ||
796 (!(msg->msg_flags & MSG_DONTWAIT) &&
797 atomic_read(&nlk->tx_ring.pending)));
798
799 if (len > 0)
800 err = len;
801 out:
802 mutex_unlock(&nlk->pg_vec_lock);
803 return err;
804 }
805
806 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
807 {
808 struct nl_mmap_hdr *hdr;
809
810 hdr = netlink_mmap_hdr(skb);
811 hdr->nm_len = skb->len;
812 hdr->nm_group = NETLINK_CB(skb).dst_group;
813 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
814 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
815 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
816 netlink_frame_flush_dcache(hdr);
817 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
818
819 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
820 kfree_skb(skb);
821 }
822
823 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
824 {
825 struct netlink_sock *nlk = nlk_sk(sk);
826 struct netlink_ring *ring = &nlk->rx_ring;
827 struct nl_mmap_hdr *hdr;
828
829 spin_lock_bh(&sk->sk_receive_queue.lock);
830 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
831 if (hdr == NULL) {
832 spin_unlock_bh(&sk->sk_receive_queue.lock);
833 kfree_skb(skb);
834 netlink_overrun(sk);
835 return;
836 }
837 netlink_increment_head(ring);
838 __skb_queue_tail(&sk->sk_receive_queue, skb);
839 spin_unlock_bh(&sk->sk_receive_queue.lock);
840
841 hdr->nm_len = skb->len;
842 hdr->nm_group = NETLINK_CB(skb).dst_group;
843 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
844 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
845 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
846 netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
847 }
848
849 #else /* CONFIG_NETLINK_MMAP */
850 #define netlink_skb_is_mmaped(skb) false
851 #define netlink_rx_is_mmaped(sk) false
852 #define netlink_tx_is_mmaped(sk) false
853 #define netlink_mmap sock_no_mmap
854 #define netlink_poll datagram_poll
855 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0
856 #endif /* CONFIG_NETLINK_MMAP */
857
858 static void netlink_skb_destructor(struct sk_buff *skb)
859 {
860 #ifdef CONFIG_NETLINK_MMAP
861 struct nl_mmap_hdr *hdr;
862 struct netlink_ring *ring;
863 struct sock *sk;
864
865 /* If a packet from the kernel to userspace was freed because of an
866 * error without being delivered to userspace, the kernel must reset
867 * the status. In the direction userspace to kernel, the status is
868 * always reset here after the packet was processed and freed.
869 */
870 if (netlink_skb_is_mmaped(skb)) {
871 hdr = netlink_mmap_hdr(skb);
872 sk = NETLINK_CB(skb).sk;
873
874 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
875 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
876 ring = &nlk_sk(sk)->tx_ring;
877 } else {
878 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
879 hdr->nm_len = 0;
880 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
881 }
882 ring = &nlk_sk(sk)->rx_ring;
883 }
884
885 WARN_ON(atomic_read(&ring->pending) == 0);
886 atomic_dec(&ring->pending);
887 sock_put(sk);
888
889 skb->head = NULL;
890 }
891 #endif
892 if (is_vmalloc_addr(skb->head)) {
893 if (!skb->cloned ||
894 !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
895 vfree(skb->head);
896
897 skb->head = NULL;
898 }
899 if (skb->sk != NULL)
900 sock_rfree(skb);
901 }
902
903 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
904 {
905 WARN_ON(skb->sk != NULL);
906 skb->sk = sk;
907 skb->destructor = netlink_skb_destructor;
908 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
909 sk_mem_charge(sk, skb->truesize);
910 }
911
912 static void netlink_sock_destruct(struct sock *sk)
913 {
914 struct netlink_sock *nlk = nlk_sk(sk);
915
916 if (nlk->cb_running) {
917 if (nlk->cb.done)
918 nlk->cb.done(&nlk->cb);
919
920 module_put(nlk->cb.module);
921 kfree_skb(nlk->cb.skb);
922 }
923
924 skb_queue_purge(&sk->sk_receive_queue);
925 #ifdef CONFIG_NETLINK_MMAP
926 if (1) {
927 struct nl_mmap_req req;
928
929 memset(&req, 0, sizeof(req));
930 if (nlk->rx_ring.pg_vec)
931 netlink_set_ring(sk, &req, true, false);
932 memset(&req, 0, sizeof(req));
933 if (nlk->tx_ring.pg_vec)
934 netlink_set_ring(sk, &req, true, true);
935 }
936 #endif /* CONFIG_NETLINK_MMAP */
937
938 if (!sock_flag(sk, SOCK_DEAD)) {
939 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
940 return;
941 }
942
943 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
944 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
945 WARN_ON(nlk_sk(sk)->groups);
946 }
947
948 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
949 * SMP. Look, when several writers sleep and reader wakes them up, all but one
950 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
951 * this, _but_ remember, it adds useless work on UP machines.
952 */
953
954 void netlink_table_grab(void)
955 __acquires(nl_table_lock)
956 {
957 might_sleep();
958
959 write_lock_irq(&nl_table_lock);
960
961 if (atomic_read(&nl_table_users)) {
962 DECLARE_WAITQUEUE(wait, current);
963
964 add_wait_queue_exclusive(&nl_table_wait, &wait);
965 for (;;) {
966 set_current_state(TASK_UNINTERRUPTIBLE);
967 if (atomic_read(&nl_table_users) == 0)
968 break;
969 write_unlock_irq(&nl_table_lock);
970 schedule();
971 write_lock_irq(&nl_table_lock);
972 }
973
974 __set_current_state(TASK_RUNNING);
975 remove_wait_queue(&nl_table_wait, &wait);
976 }
977 }
978
979 void netlink_table_ungrab(void)
980 __releases(nl_table_lock)
981 {
982 write_unlock_irq(&nl_table_lock);
983 wake_up(&nl_table_wait);
984 }
985
986 static inline void
987 netlink_lock_table(void)
988 {
989 /* read_lock() synchronizes us to netlink_table_grab */
990
991 read_lock(&nl_table_lock);
992 atomic_inc(&nl_table_users);
993 read_unlock(&nl_table_lock);
994 }
995
996 static inline void
997 netlink_unlock_table(void)
998 {
999 if (atomic_dec_and_test(&nl_table_users))
1000 wake_up(&nl_table_wait);
1001 }
1002
1003 struct netlink_compare_arg
1004 {
1005 struct net *net;
1006 u32 portid;
1007 };
1008
1009 static bool netlink_compare(void *ptr, void *arg)
1010 {
1011 struct netlink_compare_arg *x = arg;
1012 struct sock *sk = ptr;
1013
1014 return nlk_sk(sk)->portid == x->portid &&
1015 net_eq(sock_net(sk), x->net);
1016 }
1017
1018 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1019 struct net *net)
1020 {
1021 struct netlink_compare_arg arg = {
1022 .net = net,
1023 .portid = portid,
1024 };
1025 u32 hash;
1026
1027 hash = rhashtable_hashfn(&table->hash, &portid, sizeof(portid));
1028
1029 return rhashtable_lookup_compare(&table->hash, hash,
1030 &netlink_compare, &arg);
1031 }
1032
1033 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1034 {
1035 struct netlink_table *table = &nl_table[protocol];
1036 struct sock *sk;
1037
1038 read_lock(&nl_table_lock);
1039 rcu_read_lock();
1040 sk = __netlink_lookup(table, portid, net);
1041 if (sk)
1042 sock_hold(sk);
1043 rcu_read_unlock();
1044 read_unlock(&nl_table_lock);
1045
1046 return sk;
1047 }
1048
1049 static const struct proto_ops netlink_ops;
1050
1051 static void
1052 netlink_update_listeners(struct sock *sk)
1053 {
1054 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1055 unsigned long mask;
1056 unsigned int i;
1057 struct listeners *listeners;
1058
1059 listeners = nl_deref_protected(tbl->listeners);
1060 if (!listeners)
1061 return;
1062
1063 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1064 mask = 0;
1065 sk_for_each_bound(sk, &tbl->mc_list) {
1066 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1067 mask |= nlk_sk(sk)->groups[i];
1068 }
1069 listeners->masks[i] = mask;
1070 }
1071 /* this function is only called with the netlink table "grabbed", which
1072 * makes sure updates are visible before bind or setsockopt return. */
1073 }
1074
1075 static int netlink_insert(struct sock *sk, struct net *net, u32 portid)
1076 {
1077 struct netlink_table *table = &nl_table[sk->sk_protocol];
1078 int err = -EADDRINUSE;
1079
1080 mutex_lock(&nl_sk_hash_lock);
1081 if (__netlink_lookup(table, portid, net))
1082 goto err;
1083
1084 err = -EBUSY;
1085 if (nlk_sk(sk)->portid)
1086 goto err;
1087
1088 err = -ENOMEM;
1089 if (BITS_PER_LONG > 32 && unlikely(table->hash.nelems >= UINT_MAX))
1090 goto err;
1091
1092 nlk_sk(sk)->portid = portid;
1093 sock_hold(sk);
1094 rhashtable_insert(&table->hash, &nlk_sk(sk)->node);
1095 err = 0;
1096 err:
1097 mutex_unlock(&nl_sk_hash_lock);
1098 return err;
1099 }
1100
1101 static void netlink_remove(struct sock *sk)
1102 {
1103 struct netlink_table *table;
1104
1105 mutex_lock(&nl_sk_hash_lock);
1106 table = &nl_table[sk->sk_protocol];
1107 if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node)) {
1108 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1109 __sock_put(sk);
1110 }
1111 mutex_unlock(&nl_sk_hash_lock);
1112
1113 netlink_table_grab();
1114 if (nlk_sk(sk)->subscriptions)
1115 __sk_del_bind_node(sk);
1116 netlink_table_ungrab();
1117 }
1118
1119 static struct proto netlink_proto = {
1120 .name = "NETLINK",
1121 .owner = THIS_MODULE,
1122 .obj_size = sizeof(struct netlink_sock),
1123 };
1124
1125 static int __netlink_create(struct net *net, struct socket *sock,
1126 struct mutex *cb_mutex, int protocol)
1127 {
1128 struct sock *sk;
1129 struct netlink_sock *nlk;
1130
1131 sock->ops = &netlink_ops;
1132
1133 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1134 if (!sk)
1135 return -ENOMEM;
1136
1137 sock_init_data(sock, sk);
1138
1139 nlk = nlk_sk(sk);
1140 if (cb_mutex) {
1141 nlk->cb_mutex = cb_mutex;
1142 } else {
1143 nlk->cb_mutex = &nlk->cb_def_mutex;
1144 mutex_init(nlk->cb_mutex);
1145 }
1146 init_waitqueue_head(&nlk->wait);
1147 #ifdef CONFIG_NETLINK_MMAP
1148 mutex_init(&nlk->pg_vec_lock);
1149 #endif
1150
1151 sk->sk_destruct = netlink_sock_destruct;
1152 sk->sk_protocol = protocol;
1153 return 0;
1154 }
1155
1156 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1157 int kern)
1158 {
1159 struct module *module = NULL;
1160 struct mutex *cb_mutex;
1161 struct netlink_sock *nlk;
1162 int (*bind)(int group);
1163 void (*unbind)(int group);
1164 int err = 0;
1165
1166 sock->state = SS_UNCONNECTED;
1167
1168 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1169 return -ESOCKTNOSUPPORT;
1170
1171 if (protocol < 0 || protocol >= MAX_LINKS)
1172 return -EPROTONOSUPPORT;
1173
1174 netlink_lock_table();
1175 #ifdef CONFIG_MODULES
1176 if (!nl_table[protocol].registered) {
1177 netlink_unlock_table();
1178 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1179 netlink_lock_table();
1180 }
1181 #endif
1182 if (nl_table[protocol].registered &&
1183 try_module_get(nl_table[protocol].module))
1184 module = nl_table[protocol].module;
1185 else
1186 err = -EPROTONOSUPPORT;
1187 cb_mutex = nl_table[protocol].cb_mutex;
1188 bind = nl_table[protocol].bind;
1189 unbind = nl_table[protocol].unbind;
1190 netlink_unlock_table();
1191
1192 if (err < 0)
1193 goto out;
1194
1195 err = __netlink_create(net, sock, cb_mutex, protocol);
1196 if (err < 0)
1197 goto out_module;
1198
1199 local_bh_disable();
1200 sock_prot_inuse_add(net, &netlink_proto, 1);
1201 local_bh_enable();
1202
1203 nlk = nlk_sk(sock->sk);
1204 nlk->module = module;
1205 nlk->netlink_bind = bind;
1206 nlk->netlink_unbind = unbind;
1207 out:
1208 return err;
1209
1210 out_module:
1211 module_put(module);
1212 goto out;
1213 }
1214
1215 static int netlink_release(struct socket *sock)
1216 {
1217 struct sock *sk = sock->sk;
1218 struct netlink_sock *nlk;
1219
1220 if (!sk)
1221 return 0;
1222
1223 netlink_remove(sk);
1224 sock_orphan(sk);
1225 nlk = nlk_sk(sk);
1226
1227 /*
1228 * OK. Socket is unlinked, any packets that arrive now
1229 * will be purged.
1230 */
1231
1232 sock->sk = NULL;
1233 wake_up_interruptible_all(&nlk->wait);
1234
1235 skb_queue_purge(&sk->sk_write_queue);
1236
1237 if (nlk->portid) {
1238 struct netlink_notify n = {
1239 .net = sock_net(sk),
1240 .protocol = sk->sk_protocol,
1241 .portid = nlk->portid,
1242 };
1243 atomic_notifier_call_chain(&netlink_chain,
1244 NETLINK_URELEASE, &n);
1245 }
1246
1247 module_put(nlk->module);
1248
1249 netlink_table_grab();
1250 if (netlink_is_kernel(sk)) {
1251 BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1252 if (--nl_table[sk->sk_protocol].registered == 0) {
1253 struct listeners *old;
1254
1255 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1256 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1257 kfree_rcu(old, rcu);
1258 nl_table[sk->sk_protocol].module = NULL;
1259 nl_table[sk->sk_protocol].bind = NULL;
1260 nl_table[sk->sk_protocol].unbind = NULL;
1261 nl_table[sk->sk_protocol].flags = 0;
1262 nl_table[sk->sk_protocol].registered = 0;
1263 }
1264 } else if (nlk->subscriptions) {
1265 netlink_update_listeners(sk);
1266 }
1267 netlink_table_ungrab();
1268
1269 kfree(nlk->groups);
1270 nlk->groups = NULL;
1271
1272 local_bh_disable();
1273 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1274 local_bh_enable();
1275 sock_put(sk);
1276 return 0;
1277 }
1278
1279 static int netlink_autobind(struct socket *sock)
1280 {
1281 struct sock *sk = sock->sk;
1282 struct net *net = sock_net(sk);
1283 struct netlink_table *table = &nl_table[sk->sk_protocol];
1284 s32 portid = task_tgid_vnr(current);
1285 int err;
1286 static s32 rover = -4097;
1287
1288 retry:
1289 cond_resched();
1290 netlink_table_grab();
1291 rcu_read_lock();
1292 if (__netlink_lookup(table, portid, net)) {
1293 /* Bind collision, search negative portid values. */
1294 portid = rover--;
1295 if (rover > -4097)
1296 rover = -4097;
1297 rcu_read_unlock();
1298 netlink_table_ungrab();
1299 goto retry;
1300 }
1301 rcu_read_unlock();
1302 netlink_table_ungrab();
1303
1304 err = netlink_insert(sk, net, portid);
1305 if (err == -EADDRINUSE)
1306 goto retry;
1307
1308 /* If 2 threads race to autobind, that is fine. */
1309 if (err == -EBUSY)
1310 err = 0;
1311
1312 return err;
1313 }
1314
1315 /**
1316 * __netlink_ns_capable - General netlink message capability test
1317 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1318 * @user_ns: The user namespace of the capability to use
1319 * @cap: The capability to use
1320 *
1321 * Test to see if the opener of the socket we received the message
1322 * from had when the netlink socket was created and the sender of the
1323 * message has has the capability @cap in the user namespace @user_ns.
1324 */
1325 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1326 struct user_namespace *user_ns, int cap)
1327 {
1328 return ((nsp->flags & NETLINK_SKB_DST) ||
1329 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1330 ns_capable(user_ns, cap);
1331 }
1332 EXPORT_SYMBOL(__netlink_ns_capable);
1333
1334 /**
1335 * netlink_ns_capable - General netlink message capability test
1336 * @skb: socket buffer holding a netlink command from userspace
1337 * @user_ns: The user namespace of the capability to use
1338 * @cap: The capability to use
1339 *
1340 * Test to see if the opener of the socket we received the message
1341 * from had when the netlink socket was created and the sender of the
1342 * message has has the capability @cap in the user namespace @user_ns.
1343 */
1344 bool netlink_ns_capable(const struct sk_buff *skb,
1345 struct user_namespace *user_ns, int cap)
1346 {
1347 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1348 }
1349 EXPORT_SYMBOL(netlink_ns_capable);
1350
1351 /**
1352 * netlink_capable - Netlink global message capability test
1353 * @skb: socket buffer holding a netlink command from userspace
1354 * @cap: The capability to use
1355 *
1356 * Test to see if the opener of the socket we received the message
1357 * from had when the netlink socket was created and the sender of the
1358 * message has has the capability @cap in all user namespaces.
1359 */
1360 bool netlink_capable(const struct sk_buff *skb, int cap)
1361 {
1362 return netlink_ns_capable(skb, &init_user_ns, cap);
1363 }
1364 EXPORT_SYMBOL(netlink_capable);
1365
1366 /**
1367 * netlink_net_capable - Netlink network namespace message capability test
1368 * @skb: socket buffer holding a netlink command from userspace
1369 * @cap: The capability to use
1370 *
1371 * Test to see if the opener of the socket we received the message
1372 * from had when the netlink socket was created and the sender of the
1373 * message has has the capability @cap over the network namespace of
1374 * the socket we received the message from.
1375 */
1376 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1377 {
1378 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1379 }
1380 EXPORT_SYMBOL(netlink_net_capable);
1381
1382 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1383 {
1384 return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1385 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1386 }
1387
1388 static void
1389 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1390 {
1391 struct netlink_sock *nlk = nlk_sk(sk);
1392
1393 if (nlk->subscriptions && !subscriptions)
1394 __sk_del_bind_node(sk);
1395 else if (!nlk->subscriptions && subscriptions)
1396 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1397 nlk->subscriptions = subscriptions;
1398 }
1399
1400 static int netlink_realloc_groups(struct sock *sk)
1401 {
1402 struct netlink_sock *nlk = nlk_sk(sk);
1403 unsigned int groups;
1404 unsigned long *new_groups;
1405 int err = 0;
1406
1407 netlink_table_grab();
1408
1409 groups = nl_table[sk->sk_protocol].groups;
1410 if (!nl_table[sk->sk_protocol].registered) {
1411 err = -ENOENT;
1412 goto out_unlock;
1413 }
1414
1415 if (nlk->ngroups >= groups)
1416 goto out_unlock;
1417
1418 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1419 if (new_groups == NULL) {
1420 err = -ENOMEM;
1421 goto out_unlock;
1422 }
1423 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1424 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1425
1426 nlk->groups = new_groups;
1427 nlk->ngroups = groups;
1428 out_unlock:
1429 netlink_table_ungrab();
1430 return err;
1431 }
1432
1433 static void netlink_unbind(int group, long unsigned int groups,
1434 struct netlink_sock *nlk)
1435 {
1436 int undo;
1437
1438 if (!nlk->netlink_unbind)
1439 return;
1440
1441 for (undo = 0; undo < group; undo++)
1442 if (test_bit(undo, &groups))
1443 nlk->netlink_unbind(undo);
1444 }
1445
1446 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1447 int addr_len)
1448 {
1449 struct sock *sk = sock->sk;
1450 struct net *net = sock_net(sk);
1451 struct netlink_sock *nlk = nlk_sk(sk);
1452 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1453 int err;
1454 long unsigned int groups = nladdr->nl_groups;
1455
1456 if (addr_len < sizeof(struct sockaddr_nl))
1457 return -EINVAL;
1458
1459 if (nladdr->nl_family != AF_NETLINK)
1460 return -EINVAL;
1461
1462 /* Only superuser is allowed to listen multicasts */
1463 if (groups) {
1464 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1465 return -EPERM;
1466 err = netlink_realloc_groups(sk);
1467 if (err)
1468 return err;
1469 }
1470
1471 if (nlk->portid)
1472 if (nladdr->nl_pid != nlk->portid)
1473 return -EINVAL;
1474
1475 if (nlk->netlink_bind && groups) {
1476 int group;
1477
1478 for (group = 0; group < nlk->ngroups; group++) {
1479 if (!test_bit(group, &groups))
1480 continue;
1481 err = nlk->netlink_bind(group);
1482 if (!err)
1483 continue;
1484 netlink_unbind(group, groups, nlk);
1485 return err;
1486 }
1487 }
1488
1489 if (!nlk->portid) {
1490 err = nladdr->nl_pid ?
1491 netlink_insert(sk, net, nladdr->nl_pid) :
1492 netlink_autobind(sock);
1493 if (err) {
1494 netlink_unbind(nlk->ngroups, groups, nlk);
1495 return err;
1496 }
1497 }
1498
1499 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1500 return 0;
1501
1502 netlink_table_grab();
1503 netlink_update_subscriptions(sk, nlk->subscriptions +
1504 hweight32(groups) -
1505 hweight32(nlk->groups[0]));
1506 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1507 netlink_update_listeners(sk);
1508 netlink_table_ungrab();
1509
1510 return 0;
1511 }
1512
1513 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1514 int alen, int flags)
1515 {
1516 int err = 0;
1517 struct sock *sk = sock->sk;
1518 struct netlink_sock *nlk = nlk_sk(sk);
1519 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1520
1521 if (alen < sizeof(addr->sa_family))
1522 return -EINVAL;
1523
1524 if (addr->sa_family == AF_UNSPEC) {
1525 sk->sk_state = NETLINK_UNCONNECTED;
1526 nlk->dst_portid = 0;
1527 nlk->dst_group = 0;
1528 return 0;
1529 }
1530 if (addr->sa_family != AF_NETLINK)
1531 return -EINVAL;
1532
1533 if ((nladdr->nl_groups || nladdr->nl_pid) &&
1534 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1535 return -EPERM;
1536
1537 if (!nlk->portid)
1538 err = netlink_autobind(sock);
1539
1540 if (err == 0) {
1541 sk->sk_state = NETLINK_CONNECTED;
1542 nlk->dst_portid = nladdr->nl_pid;
1543 nlk->dst_group = ffs(nladdr->nl_groups);
1544 }
1545
1546 return err;
1547 }
1548
1549 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1550 int *addr_len, int peer)
1551 {
1552 struct sock *sk = sock->sk;
1553 struct netlink_sock *nlk = nlk_sk(sk);
1554 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1555
1556 nladdr->nl_family = AF_NETLINK;
1557 nladdr->nl_pad = 0;
1558 *addr_len = sizeof(*nladdr);
1559
1560 if (peer) {
1561 nladdr->nl_pid = nlk->dst_portid;
1562 nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1563 } else {
1564 nladdr->nl_pid = nlk->portid;
1565 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1566 }
1567 return 0;
1568 }
1569
1570 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1571 {
1572 struct sock *sock;
1573 struct netlink_sock *nlk;
1574
1575 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1576 if (!sock)
1577 return ERR_PTR(-ECONNREFUSED);
1578
1579 /* Don't bother queuing skb if kernel socket has no input function */
1580 nlk = nlk_sk(sock);
1581 if (sock->sk_state == NETLINK_CONNECTED &&
1582 nlk->dst_portid != nlk_sk(ssk)->portid) {
1583 sock_put(sock);
1584 return ERR_PTR(-ECONNREFUSED);
1585 }
1586 return sock;
1587 }
1588
1589 struct sock *netlink_getsockbyfilp(struct file *filp)
1590 {
1591 struct inode *inode = file_inode(filp);
1592 struct sock *sock;
1593
1594 if (!S_ISSOCK(inode->i_mode))
1595 return ERR_PTR(-ENOTSOCK);
1596
1597 sock = SOCKET_I(inode)->sk;
1598 if (sock->sk_family != AF_NETLINK)
1599 return ERR_PTR(-EINVAL);
1600
1601 sock_hold(sock);
1602 return sock;
1603 }
1604
1605 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1606 int broadcast)
1607 {
1608 struct sk_buff *skb;
1609 void *data;
1610
1611 if (size <= NLMSG_GOODSIZE || broadcast)
1612 return alloc_skb(size, GFP_KERNEL);
1613
1614 size = SKB_DATA_ALIGN(size) +
1615 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1616
1617 data = vmalloc(size);
1618 if (data == NULL)
1619 return NULL;
1620
1621 skb = build_skb(data, size);
1622 if (skb == NULL)
1623 vfree(data);
1624 else {
1625 skb->head_frag = 0;
1626 skb->destructor = netlink_skb_destructor;
1627 }
1628
1629 return skb;
1630 }
1631
1632 /*
1633 * Attach a skb to a netlink socket.
1634 * The caller must hold a reference to the destination socket. On error, the
1635 * reference is dropped. The skb is not send to the destination, just all
1636 * all error checks are performed and memory in the queue is reserved.
1637 * Return values:
1638 * < 0: error. skb freed, reference to sock dropped.
1639 * 0: continue
1640 * 1: repeat lookup - reference dropped while waiting for socket memory.
1641 */
1642 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1643 long *timeo, struct sock *ssk)
1644 {
1645 struct netlink_sock *nlk;
1646
1647 nlk = nlk_sk(sk);
1648
1649 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1650 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1651 !netlink_skb_is_mmaped(skb)) {
1652 DECLARE_WAITQUEUE(wait, current);
1653 if (!*timeo) {
1654 if (!ssk || netlink_is_kernel(ssk))
1655 netlink_overrun(sk);
1656 sock_put(sk);
1657 kfree_skb(skb);
1658 return -EAGAIN;
1659 }
1660
1661 __set_current_state(TASK_INTERRUPTIBLE);
1662 add_wait_queue(&nlk->wait, &wait);
1663
1664 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1665 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1666 !sock_flag(sk, SOCK_DEAD))
1667 *timeo = schedule_timeout(*timeo);
1668
1669 __set_current_state(TASK_RUNNING);
1670 remove_wait_queue(&nlk->wait, &wait);
1671 sock_put(sk);
1672
1673 if (signal_pending(current)) {
1674 kfree_skb(skb);
1675 return sock_intr_errno(*timeo);
1676 }
1677 return 1;
1678 }
1679 netlink_skb_set_owner_r(skb, sk);
1680 return 0;
1681 }
1682
1683 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1684 {
1685 int len = skb->len;
1686
1687 netlink_deliver_tap(skb);
1688
1689 #ifdef CONFIG_NETLINK_MMAP
1690 if (netlink_skb_is_mmaped(skb))
1691 netlink_queue_mmaped_skb(sk, skb);
1692 else if (netlink_rx_is_mmaped(sk))
1693 netlink_ring_set_copied(sk, skb);
1694 else
1695 #endif /* CONFIG_NETLINK_MMAP */
1696 skb_queue_tail(&sk->sk_receive_queue, skb);
1697 sk->sk_data_ready(sk);
1698 return len;
1699 }
1700
1701 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1702 {
1703 int len = __netlink_sendskb(sk, skb);
1704
1705 sock_put(sk);
1706 return len;
1707 }
1708
1709 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1710 {
1711 kfree_skb(skb);
1712 sock_put(sk);
1713 }
1714
1715 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1716 {
1717 int delta;
1718
1719 WARN_ON(skb->sk != NULL);
1720 if (netlink_skb_is_mmaped(skb))
1721 return skb;
1722
1723 delta = skb->end - skb->tail;
1724 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1725 return skb;
1726
1727 if (skb_shared(skb)) {
1728 struct sk_buff *nskb = skb_clone(skb, allocation);
1729 if (!nskb)
1730 return skb;
1731 consume_skb(skb);
1732 skb = nskb;
1733 }
1734
1735 if (!pskb_expand_head(skb, 0, -delta, allocation))
1736 skb->truesize -= delta;
1737
1738 return skb;
1739 }
1740
1741 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1742 struct sock *ssk)
1743 {
1744 int ret;
1745 struct netlink_sock *nlk = nlk_sk(sk);
1746
1747 ret = -ECONNREFUSED;
1748 if (nlk->netlink_rcv != NULL) {
1749 ret = skb->len;
1750 netlink_skb_set_owner_r(skb, sk);
1751 NETLINK_CB(skb).sk = ssk;
1752 netlink_deliver_tap_kernel(sk, ssk, skb);
1753 nlk->netlink_rcv(skb);
1754 consume_skb(skb);
1755 } else {
1756 kfree_skb(skb);
1757 }
1758 sock_put(sk);
1759 return ret;
1760 }
1761
1762 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1763 u32 portid, int nonblock)
1764 {
1765 struct sock *sk;
1766 int err;
1767 long timeo;
1768
1769 skb = netlink_trim(skb, gfp_any());
1770
1771 timeo = sock_sndtimeo(ssk, nonblock);
1772 retry:
1773 sk = netlink_getsockbyportid(ssk, portid);
1774 if (IS_ERR(sk)) {
1775 kfree_skb(skb);
1776 return PTR_ERR(sk);
1777 }
1778 if (netlink_is_kernel(sk))
1779 return netlink_unicast_kernel(sk, skb, ssk);
1780
1781 if (sk_filter(sk, skb)) {
1782 err = skb->len;
1783 kfree_skb(skb);
1784 sock_put(sk);
1785 return err;
1786 }
1787
1788 err = netlink_attachskb(sk, skb, &timeo, ssk);
1789 if (err == 1)
1790 goto retry;
1791 if (err)
1792 return err;
1793
1794 return netlink_sendskb(sk, skb);
1795 }
1796 EXPORT_SYMBOL(netlink_unicast);
1797
1798 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1799 u32 dst_portid, gfp_t gfp_mask)
1800 {
1801 #ifdef CONFIG_NETLINK_MMAP
1802 struct sock *sk = NULL;
1803 struct sk_buff *skb;
1804 struct netlink_ring *ring;
1805 struct nl_mmap_hdr *hdr;
1806 unsigned int maxlen;
1807
1808 sk = netlink_getsockbyportid(ssk, dst_portid);
1809 if (IS_ERR(sk))
1810 goto out;
1811
1812 ring = &nlk_sk(sk)->rx_ring;
1813 /* fast-path without atomic ops for common case: non-mmaped receiver */
1814 if (ring->pg_vec == NULL)
1815 goto out_put;
1816
1817 if (ring->frame_size - NL_MMAP_HDRLEN < size)
1818 goto out_put;
1819
1820 skb = alloc_skb_head(gfp_mask);
1821 if (skb == NULL)
1822 goto err1;
1823
1824 spin_lock_bh(&sk->sk_receive_queue.lock);
1825 /* check again under lock */
1826 if (ring->pg_vec == NULL)
1827 goto out_free;
1828
1829 /* check again under lock */
1830 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1831 if (maxlen < size)
1832 goto out_free;
1833
1834 netlink_forward_ring(ring);
1835 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1836 if (hdr == NULL)
1837 goto err2;
1838 netlink_ring_setup_skb(skb, sk, ring, hdr);
1839 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1840 atomic_inc(&ring->pending);
1841 netlink_increment_head(ring);
1842
1843 spin_unlock_bh(&sk->sk_receive_queue.lock);
1844 return skb;
1845
1846 err2:
1847 kfree_skb(skb);
1848 spin_unlock_bh(&sk->sk_receive_queue.lock);
1849 netlink_overrun(sk);
1850 err1:
1851 sock_put(sk);
1852 return NULL;
1853
1854 out_free:
1855 kfree_skb(skb);
1856 spin_unlock_bh(&sk->sk_receive_queue.lock);
1857 out_put:
1858 sock_put(sk);
1859 out:
1860 #endif
1861 return alloc_skb(size, gfp_mask);
1862 }
1863 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1864
1865 int netlink_has_listeners(struct sock *sk, unsigned int group)
1866 {
1867 int res = 0;
1868 struct listeners *listeners;
1869
1870 BUG_ON(!netlink_is_kernel(sk));
1871
1872 rcu_read_lock();
1873 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1874
1875 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1876 res = test_bit(group - 1, listeners->masks);
1877
1878 rcu_read_unlock();
1879
1880 return res;
1881 }
1882 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1883
1884 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1885 {
1886 struct netlink_sock *nlk = nlk_sk(sk);
1887
1888 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1889 !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1890 netlink_skb_set_owner_r(skb, sk);
1891 __netlink_sendskb(sk, skb);
1892 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1893 }
1894 return -1;
1895 }
1896
1897 struct netlink_broadcast_data {
1898 struct sock *exclude_sk;
1899 struct net *net;
1900 u32 portid;
1901 u32 group;
1902 int failure;
1903 int delivery_failure;
1904 int congested;
1905 int delivered;
1906 gfp_t allocation;
1907 struct sk_buff *skb, *skb2;
1908 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1909 void *tx_data;
1910 };
1911
1912 static void do_one_broadcast(struct sock *sk,
1913 struct netlink_broadcast_data *p)
1914 {
1915 struct netlink_sock *nlk = nlk_sk(sk);
1916 int val;
1917
1918 if (p->exclude_sk == sk)
1919 return;
1920
1921 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1922 !test_bit(p->group - 1, nlk->groups))
1923 return;
1924
1925 if (!net_eq(sock_net(sk), p->net))
1926 return;
1927
1928 if (p->failure) {
1929 netlink_overrun(sk);
1930 return;
1931 }
1932
1933 sock_hold(sk);
1934 if (p->skb2 == NULL) {
1935 if (skb_shared(p->skb)) {
1936 p->skb2 = skb_clone(p->skb, p->allocation);
1937 } else {
1938 p->skb2 = skb_get(p->skb);
1939 /*
1940 * skb ownership may have been set when
1941 * delivered to a previous socket.
1942 */
1943 skb_orphan(p->skb2);
1944 }
1945 }
1946 if (p->skb2 == NULL) {
1947 netlink_overrun(sk);
1948 /* Clone failed. Notify ALL listeners. */
1949 p->failure = 1;
1950 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1951 p->delivery_failure = 1;
1952 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1953 kfree_skb(p->skb2);
1954 p->skb2 = NULL;
1955 } else if (sk_filter(sk, p->skb2)) {
1956 kfree_skb(p->skb2);
1957 p->skb2 = NULL;
1958 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
1959 netlink_overrun(sk);
1960 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1961 p->delivery_failure = 1;
1962 } else {
1963 p->congested |= val;
1964 p->delivered = 1;
1965 p->skb2 = NULL;
1966 }
1967 sock_put(sk);
1968 }
1969
1970 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1971 u32 group, gfp_t allocation,
1972 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1973 void *filter_data)
1974 {
1975 struct net *net = sock_net(ssk);
1976 struct netlink_broadcast_data info;
1977 struct sock *sk;
1978
1979 skb = netlink_trim(skb, allocation);
1980
1981 info.exclude_sk = ssk;
1982 info.net = net;
1983 info.portid = portid;
1984 info.group = group;
1985 info.failure = 0;
1986 info.delivery_failure = 0;
1987 info.congested = 0;
1988 info.delivered = 0;
1989 info.allocation = allocation;
1990 info.skb = skb;
1991 info.skb2 = NULL;
1992 info.tx_filter = filter;
1993 info.tx_data = filter_data;
1994
1995 /* While we sleep in clone, do not allow to change socket list */
1996
1997 netlink_lock_table();
1998
1999 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2000 do_one_broadcast(sk, &info);
2001
2002 consume_skb(skb);
2003
2004 netlink_unlock_table();
2005
2006 if (info.delivery_failure) {
2007 kfree_skb(info.skb2);
2008 return -ENOBUFS;
2009 }
2010 consume_skb(info.skb2);
2011
2012 if (info.delivered) {
2013 if (info.congested && (allocation & __GFP_WAIT))
2014 yield();
2015 return 0;
2016 }
2017 return -ESRCH;
2018 }
2019 EXPORT_SYMBOL(netlink_broadcast_filtered);
2020
2021 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2022 u32 group, gfp_t allocation)
2023 {
2024 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2025 NULL, NULL);
2026 }
2027 EXPORT_SYMBOL(netlink_broadcast);
2028
2029 struct netlink_set_err_data {
2030 struct sock *exclude_sk;
2031 u32 portid;
2032 u32 group;
2033 int code;
2034 };
2035
2036 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2037 {
2038 struct netlink_sock *nlk = nlk_sk(sk);
2039 int ret = 0;
2040
2041 if (sk == p->exclude_sk)
2042 goto out;
2043
2044 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2045 goto out;
2046
2047 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2048 !test_bit(p->group - 1, nlk->groups))
2049 goto out;
2050
2051 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
2052 ret = 1;
2053 goto out;
2054 }
2055
2056 sk->sk_err = p->code;
2057 sk->sk_error_report(sk);
2058 out:
2059 return ret;
2060 }
2061
2062 /**
2063 * netlink_set_err - report error to broadcast listeners
2064 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2065 * @portid: the PORTID of a process that we want to skip (if any)
2066 * @group: the broadcast group that will notice the error
2067 * @code: error code, must be negative (as usual in kernelspace)
2068 *
2069 * This function returns the number of broadcast listeners that have set the
2070 * NETLINK_RECV_NO_ENOBUFS socket option.
2071 */
2072 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2073 {
2074 struct netlink_set_err_data info;
2075 struct sock *sk;
2076 int ret = 0;
2077
2078 info.exclude_sk = ssk;
2079 info.portid = portid;
2080 info.group = group;
2081 /* sk->sk_err wants a positive error value */
2082 info.code = -code;
2083
2084 read_lock(&nl_table_lock);
2085
2086 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2087 ret += do_one_set_err(sk, &info);
2088
2089 read_unlock(&nl_table_lock);
2090 return ret;
2091 }
2092 EXPORT_SYMBOL(netlink_set_err);
2093
2094 /* must be called with netlink table grabbed */
2095 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2096 unsigned int group,
2097 int is_new)
2098 {
2099 int old, new = !!is_new, subscriptions;
2100
2101 old = test_bit(group - 1, nlk->groups);
2102 subscriptions = nlk->subscriptions - old + new;
2103 if (new)
2104 __set_bit(group - 1, nlk->groups);
2105 else
2106 __clear_bit(group - 1, nlk->groups);
2107 netlink_update_subscriptions(&nlk->sk, subscriptions);
2108 netlink_update_listeners(&nlk->sk);
2109 }
2110
2111 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2112 char __user *optval, unsigned int optlen)
2113 {
2114 struct sock *sk = sock->sk;
2115 struct netlink_sock *nlk = nlk_sk(sk);
2116 unsigned int val = 0;
2117 int err;
2118
2119 if (level != SOL_NETLINK)
2120 return -ENOPROTOOPT;
2121
2122 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2123 optlen >= sizeof(int) &&
2124 get_user(val, (unsigned int __user *)optval))
2125 return -EFAULT;
2126
2127 switch (optname) {
2128 case NETLINK_PKTINFO:
2129 if (val)
2130 nlk->flags |= NETLINK_RECV_PKTINFO;
2131 else
2132 nlk->flags &= ~NETLINK_RECV_PKTINFO;
2133 err = 0;
2134 break;
2135 case NETLINK_ADD_MEMBERSHIP:
2136 case NETLINK_DROP_MEMBERSHIP: {
2137 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2138 return -EPERM;
2139 err = netlink_realloc_groups(sk);
2140 if (err)
2141 return err;
2142 if (!val || val - 1 >= nlk->ngroups)
2143 return -EINVAL;
2144 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2145 err = nlk->netlink_bind(val);
2146 if (err)
2147 return err;
2148 }
2149 netlink_table_grab();
2150 netlink_update_socket_mc(nlk, val,
2151 optname == NETLINK_ADD_MEMBERSHIP);
2152 netlink_table_ungrab();
2153 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2154 nlk->netlink_unbind(val);
2155
2156 err = 0;
2157 break;
2158 }
2159 case NETLINK_BROADCAST_ERROR:
2160 if (val)
2161 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
2162 else
2163 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
2164 err = 0;
2165 break;
2166 case NETLINK_NO_ENOBUFS:
2167 if (val) {
2168 nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
2169 clear_bit(NETLINK_CONGESTED, &nlk->state);
2170 wake_up_interruptible(&nlk->wait);
2171 } else {
2172 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
2173 }
2174 err = 0;
2175 break;
2176 #ifdef CONFIG_NETLINK_MMAP
2177 case NETLINK_RX_RING:
2178 case NETLINK_TX_RING: {
2179 struct nl_mmap_req req;
2180
2181 /* Rings might consume more memory than queue limits, require
2182 * CAP_NET_ADMIN.
2183 */
2184 if (!capable(CAP_NET_ADMIN))
2185 return -EPERM;
2186 if (optlen < sizeof(req))
2187 return -EINVAL;
2188 if (copy_from_user(&req, optval, sizeof(req)))
2189 return -EFAULT;
2190 err = netlink_set_ring(sk, &req, false,
2191 optname == NETLINK_TX_RING);
2192 break;
2193 }
2194 #endif /* CONFIG_NETLINK_MMAP */
2195 default:
2196 err = -ENOPROTOOPT;
2197 }
2198 return err;
2199 }
2200
2201 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2202 char __user *optval, int __user *optlen)
2203 {
2204 struct sock *sk = sock->sk;
2205 struct netlink_sock *nlk = nlk_sk(sk);
2206 int len, val, err;
2207
2208 if (level != SOL_NETLINK)
2209 return -ENOPROTOOPT;
2210
2211 if (get_user(len, optlen))
2212 return -EFAULT;
2213 if (len < 0)
2214 return -EINVAL;
2215
2216 switch (optname) {
2217 case NETLINK_PKTINFO:
2218 if (len < sizeof(int))
2219 return -EINVAL;
2220 len = sizeof(int);
2221 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2222 if (put_user(len, optlen) ||
2223 put_user(val, optval))
2224 return -EFAULT;
2225 err = 0;
2226 break;
2227 case NETLINK_BROADCAST_ERROR:
2228 if (len < sizeof(int))
2229 return -EINVAL;
2230 len = sizeof(int);
2231 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2232 if (put_user(len, optlen) ||
2233 put_user(val, optval))
2234 return -EFAULT;
2235 err = 0;
2236 break;
2237 case NETLINK_NO_ENOBUFS:
2238 if (len < sizeof(int))
2239 return -EINVAL;
2240 len = sizeof(int);
2241 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2242 if (put_user(len, optlen) ||
2243 put_user(val, optval))
2244 return -EFAULT;
2245 err = 0;
2246 break;
2247 default:
2248 err = -ENOPROTOOPT;
2249 }
2250 return err;
2251 }
2252
2253 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2254 {
2255 struct nl_pktinfo info;
2256
2257 info.group = NETLINK_CB(skb).dst_group;
2258 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2259 }
2260
2261 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
2262 struct msghdr *msg, size_t len)
2263 {
2264 struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2265 struct sock *sk = sock->sk;
2266 struct netlink_sock *nlk = nlk_sk(sk);
2267 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2268 u32 dst_portid;
2269 u32 dst_group;
2270 struct sk_buff *skb;
2271 int err;
2272 struct scm_cookie scm;
2273 u32 netlink_skb_flags = 0;
2274
2275 if (msg->msg_flags&MSG_OOB)
2276 return -EOPNOTSUPP;
2277
2278 if (NULL == siocb->scm)
2279 siocb->scm = &scm;
2280
2281 err = scm_send(sock, msg, siocb->scm, true);
2282 if (err < 0)
2283 return err;
2284
2285 if (msg->msg_namelen) {
2286 err = -EINVAL;
2287 if (addr->nl_family != AF_NETLINK)
2288 goto out;
2289 dst_portid = addr->nl_pid;
2290 dst_group = ffs(addr->nl_groups);
2291 err = -EPERM;
2292 if ((dst_group || dst_portid) &&
2293 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2294 goto out;
2295 netlink_skb_flags |= NETLINK_SKB_DST;
2296 } else {
2297 dst_portid = nlk->dst_portid;
2298 dst_group = nlk->dst_group;
2299 }
2300
2301 if (!nlk->portid) {
2302 err = netlink_autobind(sock);
2303 if (err)
2304 goto out;
2305 }
2306
2307 if (netlink_tx_is_mmaped(sk) &&
2308 msg->msg_iov->iov_base == NULL) {
2309 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2310 siocb);
2311 goto out;
2312 }
2313
2314 err = -EMSGSIZE;
2315 if (len > sk->sk_sndbuf - 32)
2316 goto out;
2317 err = -ENOBUFS;
2318 skb = netlink_alloc_large_skb(len, dst_group);
2319 if (skb == NULL)
2320 goto out;
2321
2322 NETLINK_CB(skb).portid = nlk->portid;
2323 NETLINK_CB(skb).dst_group = dst_group;
2324 NETLINK_CB(skb).creds = siocb->scm->creds;
2325 NETLINK_CB(skb).flags = netlink_skb_flags;
2326
2327 err = -EFAULT;
2328 if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
2329 kfree_skb(skb);
2330 goto out;
2331 }
2332
2333 err = security_netlink_send(sk, skb);
2334 if (err) {
2335 kfree_skb(skb);
2336 goto out;
2337 }
2338
2339 if (dst_group) {
2340 atomic_inc(&skb->users);
2341 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2342 }
2343 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2344
2345 out:
2346 scm_destroy(siocb->scm);
2347 return err;
2348 }
2349
2350 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
2351 struct msghdr *msg, size_t len,
2352 int flags)
2353 {
2354 struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2355 struct scm_cookie scm;
2356 struct sock *sk = sock->sk;
2357 struct netlink_sock *nlk = nlk_sk(sk);
2358 int noblock = flags&MSG_DONTWAIT;
2359 size_t copied;
2360 struct sk_buff *skb, *data_skb;
2361 int err, ret;
2362
2363 if (flags&MSG_OOB)
2364 return -EOPNOTSUPP;
2365
2366 copied = 0;
2367
2368 skb = skb_recv_datagram(sk, flags, noblock, &err);
2369 if (skb == NULL)
2370 goto out;
2371
2372 data_skb = skb;
2373
2374 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2375 if (unlikely(skb_shinfo(skb)->frag_list)) {
2376 /*
2377 * If this skb has a frag_list, then here that means that we
2378 * will have to use the frag_list skb's data for compat tasks
2379 * and the regular skb's data for normal (non-compat) tasks.
2380 *
2381 * If we need to send the compat skb, assign it to the
2382 * 'data_skb' variable so that it will be used below for data
2383 * copying. We keep 'skb' for everything else, including
2384 * freeing both later.
2385 */
2386 if (flags & MSG_CMSG_COMPAT)
2387 data_skb = skb_shinfo(skb)->frag_list;
2388 }
2389 #endif
2390
2391 /* Record the max length of recvmsg() calls for future allocations */
2392 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2393 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2394 16384);
2395
2396 copied = data_skb->len;
2397 if (len < copied) {
2398 msg->msg_flags |= MSG_TRUNC;
2399 copied = len;
2400 }
2401
2402 skb_reset_transport_header(data_skb);
2403 err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2404
2405 if (msg->msg_name) {
2406 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2407 addr->nl_family = AF_NETLINK;
2408 addr->nl_pad = 0;
2409 addr->nl_pid = NETLINK_CB(skb).portid;
2410 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
2411 msg->msg_namelen = sizeof(*addr);
2412 }
2413
2414 if (nlk->flags & NETLINK_RECV_PKTINFO)
2415 netlink_cmsg_recv_pktinfo(msg, skb);
2416
2417 if (NULL == siocb->scm) {
2418 memset(&scm, 0, sizeof(scm));
2419 siocb->scm = &scm;
2420 }
2421 siocb->scm->creds = *NETLINK_CREDS(skb);
2422 if (flags & MSG_TRUNC)
2423 copied = data_skb->len;
2424
2425 skb_free_datagram(sk, skb);
2426
2427 if (nlk->cb_running &&
2428 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2429 ret = netlink_dump(sk);
2430 if (ret) {
2431 sk->sk_err = -ret;
2432 sk->sk_error_report(sk);
2433 }
2434 }
2435
2436 scm_recv(sock, msg, siocb->scm, flags);
2437 out:
2438 netlink_rcv_wake(sk);
2439 return err ? : copied;
2440 }
2441
2442 static void netlink_data_ready(struct sock *sk)
2443 {
2444 BUG();
2445 }
2446
2447 /*
2448 * We export these functions to other modules. They provide a
2449 * complete set of kernel non-blocking support for message
2450 * queueing.
2451 */
2452
2453 struct sock *
2454 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2455 struct netlink_kernel_cfg *cfg)
2456 {
2457 struct socket *sock;
2458 struct sock *sk;
2459 struct netlink_sock *nlk;
2460 struct listeners *listeners = NULL;
2461 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2462 unsigned int groups;
2463
2464 BUG_ON(!nl_table);
2465
2466 if (unit < 0 || unit >= MAX_LINKS)
2467 return NULL;
2468
2469 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2470 return NULL;
2471
2472 /*
2473 * We have to just have a reference on the net from sk, but don't
2474 * get_net it. Besides, we cannot get and then put the net here.
2475 * So we create one inside init_net and the move it to net.
2476 */
2477
2478 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2479 goto out_sock_release_nosk;
2480
2481 sk = sock->sk;
2482 sk_change_net(sk, net);
2483
2484 if (!cfg || cfg->groups < 32)
2485 groups = 32;
2486 else
2487 groups = cfg->groups;
2488
2489 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2490 if (!listeners)
2491 goto out_sock_release;
2492
2493 sk->sk_data_ready = netlink_data_ready;
2494 if (cfg && cfg->input)
2495 nlk_sk(sk)->netlink_rcv = cfg->input;
2496
2497 if (netlink_insert(sk, net, 0))
2498 goto out_sock_release;
2499
2500 nlk = nlk_sk(sk);
2501 nlk->flags |= NETLINK_KERNEL_SOCKET;
2502
2503 netlink_table_grab();
2504 if (!nl_table[unit].registered) {
2505 nl_table[unit].groups = groups;
2506 rcu_assign_pointer(nl_table[unit].listeners, listeners);
2507 nl_table[unit].cb_mutex = cb_mutex;
2508 nl_table[unit].module = module;
2509 if (cfg) {
2510 nl_table[unit].bind = cfg->bind;
2511 nl_table[unit].unbind = cfg->unbind;
2512 nl_table[unit].flags = cfg->flags;
2513 if (cfg->compare)
2514 nl_table[unit].compare = cfg->compare;
2515 }
2516 nl_table[unit].registered = 1;
2517 } else {
2518 kfree(listeners);
2519 nl_table[unit].registered++;
2520 }
2521 netlink_table_ungrab();
2522 return sk;
2523
2524 out_sock_release:
2525 kfree(listeners);
2526 netlink_kernel_release(sk);
2527 return NULL;
2528
2529 out_sock_release_nosk:
2530 sock_release(sock);
2531 return NULL;
2532 }
2533 EXPORT_SYMBOL(__netlink_kernel_create);
2534
2535 void
2536 netlink_kernel_release(struct sock *sk)
2537 {
2538 sk_release_kernel(sk);
2539 }
2540 EXPORT_SYMBOL(netlink_kernel_release);
2541
2542 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2543 {
2544 struct listeners *new, *old;
2545 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2546
2547 if (groups < 32)
2548 groups = 32;
2549
2550 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2551 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2552 if (!new)
2553 return -ENOMEM;
2554 old = nl_deref_protected(tbl->listeners);
2555 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2556 rcu_assign_pointer(tbl->listeners, new);
2557
2558 kfree_rcu(old, rcu);
2559 }
2560 tbl->groups = groups;
2561
2562 return 0;
2563 }
2564
2565 /**
2566 * netlink_change_ngroups - change number of multicast groups
2567 *
2568 * This changes the number of multicast groups that are available
2569 * on a certain netlink family. Note that it is not possible to
2570 * change the number of groups to below 32. Also note that it does
2571 * not implicitly call netlink_clear_multicast_users() when the
2572 * number of groups is reduced.
2573 *
2574 * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2575 * @groups: The new number of groups.
2576 */
2577 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2578 {
2579 int err;
2580
2581 netlink_table_grab();
2582 err = __netlink_change_ngroups(sk, groups);
2583 netlink_table_ungrab();
2584
2585 return err;
2586 }
2587
2588 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2589 {
2590 struct sock *sk;
2591 struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2592
2593 sk_for_each_bound(sk, &tbl->mc_list)
2594 netlink_update_socket_mc(nlk_sk(sk), group, 0);
2595 }
2596
2597 struct nlmsghdr *
2598 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2599 {
2600 struct nlmsghdr *nlh;
2601 int size = nlmsg_msg_size(len);
2602
2603 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2604 nlh->nlmsg_type = type;
2605 nlh->nlmsg_len = size;
2606 nlh->nlmsg_flags = flags;
2607 nlh->nlmsg_pid = portid;
2608 nlh->nlmsg_seq = seq;
2609 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2610 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2611 return nlh;
2612 }
2613 EXPORT_SYMBOL(__nlmsg_put);
2614
2615 /*
2616 * It looks a bit ugly.
2617 * It would be better to create kernel thread.
2618 */
2619
2620 static int netlink_dump(struct sock *sk)
2621 {
2622 struct netlink_sock *nlk = nlk_sk(sk);
2623 struct netlink_callback *cb;
2624 struct sk_buff *skb = NULL;
2625 struct nlmsghdr *nlh;
2626 int len, err = -ENOBUFS;
2627 int alloc_size;
2628
2629 mutex_lock(nlk->cb_mutex);
2630 if (!nlk->cb_running) {
2631 err = -EINVAL;
2632 goto errout_skb;
2633 }
2634
2635 cb = &nlk->cb;
2636 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2637
2638 if (!netlink_rx_is_mmaped(sk) &&
2639 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2640 goto errout_skb;
2641
2642 /* NLMSG_GOODSIZE is small to avoid high order allocations being
2643 * required, but it makes sense to _attempt_ a 16K bytes allocation
2644 * to reduce number of system calls on dump operations, if user
2645 * ever provided a big enough buffer.
2646 */
2647 if (alloc_size < nlk->max_recvmsg_len) {
2648 skb = netlink_alloc_skb(sk,
2649 nlk->max_recvmsg_len,
2650 nlk->portid,
2651 GFP_KERNEL |
2652 __GFP_NOWARN |
2653 __GFP_NORETRY);
2654 /* available room should be exact amount to avoid MSG_TRUNC */
2655 if (skb)
2656 skb_reserve(skb, skb_tailroom(skb) -
2657 nlk->max_recvmsg_len);
2658 }
2659 if (!skb)
2660 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2661 GFP_KERNEL);
2662 if (!skb)
2663 goto errout_skb;
2664 netlink_skb_set_owner_r(skb, sk);
2665
2666 len = cb->dump(skb, cb);
2667
2668 if (len > 0) {
2669 mutex_unlock(nlk->cb_mutex);
2670
2671 if (sk_filter(sk, skb))
2672 kfree_skb(skb);
2673 else
2674 __netlink_sendskb(sk, skb);
2675 return 0;
2676 }
2677
2678 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2679 if (!nlh)
2680 goto errout_skb;
2681
2682 nl_dump_check_consistent(cb, nlh);
2683
2684 memcpy(nlmsg_data(nlh), &len, sizeof(len));
2685
2686 if (sk_filter(sk, skb))
2687 kfree_skb(skb);
2688 else
2689 __netlink_sendskb(sk, skb);
2690
2691 if (cb->done)
2692 cb->done(cb);
2693
2694 nlk->cb_running = false;
2695 mutex_unlock(nlk->cb_mutex);
2696 module_put(cb->module);
2697 consume_skb(cb->skb);
2698 return 0;
2699
2700 errout_skb:
2701 mutex_unlock(nlk->cb_mutex);
2702 kfree_skb(skb);
2703 return err;
2704 }
2705
2706 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2707 const struct nlmsghdr *nlh,
2708 struct netlink_dump_control *control)
2709 {
2710 struct netlink_callback *cb;
2711 struct sock *sk;
2712 struct netlink_sock *nlk;
2713 int ret;
2714
2715 /* Memory mapped dump requests need to be copied to avoid looping
2716 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2717 * a reference to the skb.
2718 */
2719 if (netlink_skb_is_mmaped(skb)) {
2720 skb = skb_copy(skb, GFP_KERNEL);
2721 if (skb == NULL)
2722 return -ENOBUFS;
2723 } else
2724 atomic_inc(&skb->users);
2725
2726 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2727 if (sk == NULL) {
2728 ret = -ECONNREFUSED;
2729 goto error_free;
2730 }
2731
2732 nlk = nlk_sk(sk);
2733 mutex_lock(nlk->cb_mutex);
2734 /* A dump is in progress... */
2735 if (nlk->cb_running) {
2736 ret = -EBUSY;
2737 goto error_unlock;
2738 }
2739 /* add reference of module which cb->dump belongs to */
2740 if (!try_module_get(control->module)) {
2741 ret = -EPROTONOSUPPORT;
2742 goto error_unlock;
2743 }
2744
2745 cb = &nlk->cb;
2746 memset(cb, 0, sizeof(*cb));
2747 cb->dump = control->dump;
2748 cb->done = control->done;
2749 cb->nlh = nlh;
2750 cb->data = control->data;
2751 cb->module = control->module;
2752 cb->min_dump_alloc = control->min_dump_alloc;
2753 cb->skb = skb;
2754
2755 nlk->cb_running = true;
2756
2757 mutex_unlock(nlk->cb_mutex);
2758
2759 ret = netlink_dump(sk);
2760 sock_put(sk);
2761
2762 if (ret)
2763 return ret;
2764
2765 /* We successfully started a dump, by returning -EINTR we
2766 * signal not to send ACK even if it was requested.
2767 */
2768 return -EINTR;
2769
2770 error_unlock:
2771 sock_put(sk);
2772 mutex_unlock(nlk->cb_mutex);
2773 error_free:
2774 kfree_skb(skb);
2775 return ret;
2776 }
2777 EXPORT_SYMBOL(__netlink_dump_start);
2778
2779 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2780 {
2781 struct sk_buff *skb;
2782 struct nlmsghdr *rep;
2783 struct nlmsgerr *errmsg;
2784 size_t payload = sizeof(*errmsg);
2785
2786 /* error messages get the original request appened */
2787 if (err)
2788 payload += nlmsg_len(nlh);
2789
2790 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2791 NETLINK_CB(in_skb).portid, GFP_KERNEL);
2792 if (!skb) {
2793 struct sock *sk;
2794
2795 sk = netlink_lookup(sock_net(in_skb->sk),
2796 in_skb->sk->sk_protocol,
2797 NETLINK_CB(in_skb).portid);
2798 if (sk) {
2799 sk->sk_err = ENOBUFS;
2800 sk->sk_error_report(sk);
2801 sock_put(sk);
2802 }
2803 return;
2804 }
2805
2806 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2807 NLMSG_ERROR, payload, 0);
2808 errmsg = nlmsg_data(rep);
2809 errmsg->error = err;
2810 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2811 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2812 }
2813 EXPORT_SYMBOL(netlink_ack);
2814
2815 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2816 struct nlmsghdr *))
2817 {
2818 struct nlmsghdr *nlh;
2819 int err;
2820
2821 while (skb->len >= nlmsg_total_size(0)) {
2822 int msglen;
2823
2824 nlh = nlmsg_hdr(skb);
2825 err = 0;
2826
2827 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2828 return 0;
2829
2830 /* Only requests are handled by the kernel */
2831 if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2832 goto ack;
2833
2834 /* Skip control messages */
2835 if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2836 goto ack;
2837
2838 err = cb(skb, nlh);
2839 if (err == -EINTR)
2840 goto skip;
2841
2842 ack:
2843 if (nlh->nlmsg_flags & NLM_F_ACK || err)
2844 netlink_ack(skb, nlh, err);
2845
2846 skip:
2847 msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2848 if (msglen > skb->len)
2849 msglen = skb->len;
2850 skb_pull(skb, msglen);
2851 }
2852
2853 return 0;
2854 }
2855 EXPORT_SYMBOL(netlink_rcv_skb);
2856
2857 /**
2858 * nlmsg_notify - send a notification netlink message
2859 * @sk: netlink socket to use
2860 * @skb: notification message
2861 * @portid: destination netlink portid for reports or 0
2862 * @group: destination multicast group or 0
2863 * @report: 1 to report back, 0 to disable
2864 * @flags: allocation flags
2865 */
2866 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2867 unsigned int group, int report, gfp_t flags)
2868 {
2869 int err = 0;
2870
2871 if (group) {
2872 int exclude_portid = 0;
2873
2874 if (report) {
2875 atomic_inc(&skb->users);
2876 exclude_portid = portid;
2877 }
2878
2879 /* errors reported via destination sk->sk_err, but propagate
2880 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2881 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2882 }
2883
2884 if (report) {
2885 int err2;
2886
2887 err2 = nlmsg_unicast(sk, skb, portid);
2888 if (!err || err == -ESRCH)
2889 err = err2;
2890 }
2891
2892 return err;
2893 }
2894 EXPORT_SYMBOL(nlmsg_notify);
2895
2896 #ifdef CONFIG_PROC_FS
2897 struct nl_seq_iter {
2898 struct seq_net_private p;
2899 int link;
2900 int hash_idx;
2901 };
2902
2903 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
2904 {
2905 struct nl_seq_iter *iter = seq->private;
2906 int i, j;
2907 struct netlink_sock *nlk;
2908 struct sock *s;
2909 loff_t off = 0;
2910
2911 for (i = 0; i < MAX_LINKS; i++) {
2912 struct rhashtable *ht = &nl_table[i].hash;
2913 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2914
2915 for (j = 0; j < tbl->size; j++) {
2916 rht_for_each_entry_rcu(nlk, tbl->buckets[j], node) {
2917 s = (struct sock *)nlk;
2918
2919 if (sock_net(s) != seq_file_net(seq))
2920 continue;
2921 if (off == pos) {
2922 iter->link = i;
2923 iter->hash_idx = j;
2924 return s;
2925 }
2926 ++off;
2927 }
2928 }
2929 }
2930 return NULL;
2931 }
2932
2933 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
2934 __acquires(nl_table_lock) __acquires(RCU)
2935 {
2936 read_lock(&nl_table_lock);
2937 rcu_read_lock();
2938 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2939 }
2940
2941 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2942 {
2943 struct rhashtable *ht;
2944 struct netlink_sock *nlk;
2945 struct nl_seq_iter *iter;
2946 struct net *net;
2947 int i, j;
2948
2949 ++*pos;
2950
2951 if (v == SEQ_START_TOKEN)
2952 return netlink_seq_socket_idx(seq, 0);
2953
2954 net = seq_file_net(seq);
2955 iter = seq->private;
2956 nlk = v;
2957
2958 i = iter->link;
2959 ht = &nl_table[i].hash;
2960 rht_for_each_entry(nlk, nlk->node.next, ht, node)
2961 if (net_eq(sock_net((struct sock *)nlk), net))
2962 return nlk;
2963
2964 j = iter->hash_idx + 1;
2965
2966 do {
2967 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2968
2969 for (; j < tbl->size; j++) {
2970 rht_for_each_entry(nlk, tbl->buckets[j], ht, node) {
2971 if (net_eq(sock_net((struct sock *)nlk), net)) {
2972 iter->link = i;
2973 iter->hash_idx = j;
2974 return nlk;
2975 }
2976 }
2977 }
2978
2979 j = 0;
2980 } while (++i < MAX_LINKS);
2981
2982 return NULL;
2983 }
2984
2985 static void netlink_seq_stop(struct seq_file *seq, void *v)
2986 __releases(RCU) __releases(nl_table_lock)
2987 {
2988 rcu_read_unlock();
2989 read_unlock(&nl_table_lock);
2990 }
2991
2992
2993 static int netlink_seq_show(struct seq_file *seq, void *v)
2994 {
2995 if (v == SEQ_START_TOKEN) {
2996 seq_puts(seq,
2997 "sk Eth Pid Groups "
2998 "Rmem Wmem Dump Locks Drops Inode\n");
2999 } else {
3000 struct sock *s = v;
3001 struct netlink_sock *nlk = nlk_sk(s);
3002
3003 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3004 s,
3005 s->sk_protocol,
3006 nlk->portid,
3007 nlk->groups ? (u32)nlk->groups[0] : 0,
3008 sk_rmem_alloc_get(s),
3009 sk_wmem_alloc_get(s),
3010 nlk->cb_running,
3011 atomic_read(&s->sk_refcnt),
3012 atomic_read(&s->sk_drops),
3013 sock_i_ino(s)
3014 );
3015
3016 }
3017 return 0;
3018 }
3019
3020 static const struct seq_operations netlink_seq_ops = {
3021 .start = netlink_seq_start,
3022 .next = netlink_seq_next,
3023 .stop = netlink_seq_stop,
3024 .show = netlink_seq_show,
3025 };
3026
3027
3028 static int netlink_seq_open(struct inode *inode, struct file *file)
3029 {
3030 return seq_open_net(inode, file, &netlink_seq_ops,
3031 sizeof(struct nl_seq_iter));
3032 }
3033
3034 static const struct file_operations netlink_seq_fops = {
3035 .owner = THIS_MODULE,
3036 .open = netlink_seq_open,
3037 .read = seq_read,
3038 .llseek = seq_lseek,
3039 .release = seq_release_net,
3040 };
3041
3042 #endif
3043
3044 int netlink_register_notifier(struct notifier_block *nb)
3045 {
3046 return atomic_notifier_chain_register(&netlink_chain, nb);
3047 }
3048 EXPORT_SYMBOL(netlink_register_notifier);
3049
3050 int netlink_unregister_notifier(struct notifier_block *nb)
3051 {
3052 return atomic_notifier_chain_unregister(&netlink_chain, nb);
3053 }
3054 EXPORT_SYMBOL(netlink_unregister_notifier);
3055
3056 static const struct proto_ops netlink_ops = {
3057 .family = PF_NETLINK,
3058 .owner = THIS_MODULE,
3059 .release = netlink_release,
3060 .bind = netlink_bind,
3061 .connect = netlink_connect,
3062 .socketpair = sock_no_socketpair,
3063 .accept = sock_no_accept,
3064 .getname = netlink_getname,
3065 .poll = netlink_poll,
3066 .ioctl = sock_no_ioctl,
3067 .listen = sock_no_listen,
3068 .shutdown = sock_no_shutdown,
3069 .setsockopt = netlink_setsockopt,
3070 .getsockopt = netlink_getsockopt,
3071 .sendmsg = netlink_sendmsg,
3072 .recvmsg = netlink_recvmsg,
3073 .mmap = netlink_mmap,
3074 .sendpage = sock_no_sendpage,
3075 };
3076
3077 static const struct net_proto_family netlink_family_ops = {
3078 .family = PF_NETLINK,
3079 .create = netlink_create,
3080 .owner = THIS_MODULE, /* for consistency 8) */
3081 };
3082
3083 static int __net_init netlink_net_init(struct net *net)
3084 {
3085 #ifdef CONFIG_PROC_FS
3086 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3087 return -ENOMEM;
3088 #endif
3089 return 0;
3090 }
3091
3092 static void __net_exit netlink_net_exit(struct net *net)
3093 {
3094 #ifdef CONFIG_PROC_FS
3095 remove_proc_entry("netlink", net->proc_net);
3096 #endif
3097 }
3098
3099 static void __init netlink_add_usersock_entry(void)
3100 {
3101 struct listeners *listeners;
3102 int groups = 32;
3103
3104 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3105 if (!listeners)
3106 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3107
3108 netlink_table_grab();
3109
3110 nl_table[NETLINK_USERSOCK].groups = groups;
3111 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3112 nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3113 nl_table[NETLINK_USERSOCK].registered = 1;
3114 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3115
3116 netlink_table_ungrab();
3117 }
3118
3119 static struct pernet_operations __net_initdata netlink_net_ops = {
3120 .init = netlink_net_init,
3121 .exit = netlink_net_exit,
3122 };
3123
3124 static int __init netlink_proto_init(void)
3125 {
3126 int i;
3127 int err = proto_register(&netlink_proto, 0);
3128 struct rhashtable_params ht_params = {
3129 .head_offset = offsetof(struct netlink_sock, node),
3130 .key_offset = offsetof(struct netlink_sock, portid),
3131 .key_len = sizeof(u32), /* portid */
3132 .hashfn = arch_fast_hash,
3133 .max_shift = 16, /* 64K */
3134 .grow_decision = rht_grow_above_75,
3135 .shrink_decision = rht_shrink_below_30,
3136 #ifdef CONFIG_PROVE_LOCKING
3137 .mutex_is_held = lockdep_nl_sk_hash_is_held,
3138 #endif
3139 };
3140
3141 if (err != 0)
3142 goto out;
3143
3144 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3145
3146 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3147 if (!nl_table)
3148 goto panic;
3149
3150 for (i = 0; i < MAX_LINKS; i++) {
3151 if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) {
3152 while (--i > 0)
3153 rhashtable_destroy(&nl_table[i].hash);
3154 kfree(nl_table);
3155 goto panic;
3156 }
3157 }
3158
3159 INIT_LIST_HEAD(&netlink_tap_all);
3160
3161 netlink_add_usersock_entry();
3162
3163 sock_register(&netlink_family_ops);
3164 register_pernet_subsys(&netlink_net_ops);
3165 /* The netlink device handler may be needed early. */
3166 rtnetlink_init();
3167 out:
3168 return err;
3169 panic:
3170 panic("netlink_init: Cannot allocate nl_table\n");
3171 }
3172
3173 core_initcall(netlink_proto_init);
This page took 0.140212 seconds and 5 git commands to generate.