Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / net / netlink / af_netlink.c
1 /*
2 * NETLINK Kernel-user communication protocol.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6 * Patrick McHardy <kaber@trash.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14 * added netlink_proto_exit
15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16 * use nlk_sk, as sk->protinfo is on a diet 8)
17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18 * - inc module use count of module that owns
19 * the kernel socket in case userspace opens
20 * socket of same protocol
21 * - remove all module support, since netlink is
22 * mandatory if CONFIG_NET=y these days
23 */
24
25 #include <linux/module.h>
26
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64
65 #include <net/net_namespace.h>
66 #include <net/sock.h>
67 #include <net/scm.h>
68 #include <net/netlink.h>
69
70 #include "af_netlink.h"
71
72 struct listeners {
73 struct rcu_head rcu;
74 unsigned long masks[0];
75 };
76
77 /* state bits */
78 #define NETLINK_CONGESTED 0x0
79
80 /* flags */
81 #define NETLINK_KERNEL_SOCKET 0x1
82 #define NETLINK_RECV_PKTINFO 0x2
83 #define NETLINK_BROADCAST_SEND_ERROR 0x4
84 #define NETLINK_RECV_NO_ENOBUFS 0x8
85
86 static inline int netlink_is_kernel(struct sock *sk)
87 {
88 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
89 }
90
91 struct netlink_table *nl_table;
92 EXPORT_SYMBOL_GPL(nl_table);
93
94 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
95
96 static int netlink_dump(struct sock *sk);
97 static void netlink_skb_destructor(struct sk_buff *skb);
98
99 /* nl_table locking explained:
100 * Lookup and traversal are protected with nl_sk_hash_lock or nl_table_lock
101 * combined with an RCU read-side lock. Insertion and removal are protected
102 * with nl_sk_hash_lock while using RCU list modification primitives and may
103 * run in parallel to nl_table_lock protected lookups. Destruction of the
104 * Netlink socket may only occur *after* nl_table_lock has been acquired
105 * either during or after the socket has been removed from the list.
106 */
107 DEFINE_RWLOCK(nl_table_lock);
108 EXPORT_SYMBOL_GPL(nl_table_lock);
109 static atomic_t nl_table_users = ATOMIC_INIT(0);
110
111 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
112
113 /* Protects netlink socket hash table mutations */
114 DEFINE_MUTEX(nl_sk_hash_lock);
115 EXPORT_SYMBOL_GPL(nl_sk_hash_lock);
116
117 static int lockdep_nl_sk_hash_is_held(void)
118 {
119 #ifdef CONFIG_LOCKDEP
120 if (debug_locks)
121 return lockdep_is_held(&nl_sk_hash_lock) || lockdep_is_held(&nl_table_lock);
122 #endif
123 return 1;
124 }
125
126 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
127
128 static DEFINE_SPINLOCK(netlink_tap_lock);
129 static struct list_head netlink_tap_all __read_mostly;
130
131 static inline u32 netlink_group_mask(u32 group)
132 {
133 return group ? 1 << (group - 1) : 0;
134 }
135
136 int netlink_add_tap(struct netlink_tap *nt)
137 {
138 if (unlikely(nt->dev->type != ARPHRD_NETLINK))
139 return -EINVAL;
140
141 spin_lock(&netlink_tap_lock);
142 list_add_rcu(&nt->list, &netlink_tap_all);
143 spin_unlock(&netlink_tap_lock);
144
145 if (nt->module)
146 __module_get(nt->module);
147
148 return 0;
149 }
150 EXPORT_SYMBOL_GPL(netlink_add_tap);
151
152 static int __netlink_remove_tap(struct netlink_tap *nt)
153 {
154 bool found = false;
155 struct netlink_tap *tmp;
156
157 spin_lock(&netlink_tap_lock);
158
159 list_for_each_entry(tmp, &netlink_tap_all, list) {
160 if (nt == tmp) {
161 list_del_rcu(&nt->list);
162 found = true;
163 goto out;
164 }
165 }
166
167 pr_warn("__netlink_remove_tap: %p not found\n", nt);
168 out:
169 spin_unlock(&netlink_tap_lock);
170
171 if (found && nt->module)
172 module_put(nt->module);
173
174 return found ? 0 : -ENODEV;
175 }
176
177 int netlink_remove_tap(struct netlink_tap *nt)
178 {
179 int ret;
180
181 ret = __netlink_remove_tap(nt);
182 synchronize_net();
183
184 return ret;
185 }
186 EXPORT_SYMBOL_GPL(netlink_remove_tap);
187
188 static bool netlink_filter_tap(const struct sk_buff *skb)
189 {
190 struct sock *sk = skb->sk;
191
192 /* We take the more conservative approach and
193 * whitelist socket protocols that may pass.
194 */
195 switch (sk->sk_protocol) {
196 case NETLINK_ROUTE:
197 case NETLINK_USERSOCK:
198 case NETLINK_SOCK_DIAG:
199 case NETLINK_NFLOG:
200 case NETLINK_XFRM:
201 case NETLINK_FIB_LOOKUP:
202 case NETLINK_NETFILTER:
203 case NETLINK_GENERIC:
204 return true;
205 }
206
207 return false;
208 }
209
210 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
211 struct net_device *dev)
212 {
213 struct sk_buff *nskb;
214 struct sock *sk = skb->sk;
215 int ret = -ENOMEM;
216
217 dev_hold(dev);
218 nskb = skb_clone(skb, GFP_ATOMIC);
219 if (nskb) {
220 nskb->dev = dev;
221 nskb->protocol = htons((u16) sk->sk_protocol);
222 nskb->pkt_type = netlink_is_kernel(sk) ?
223 PACKET_KERNEL : PACKET_USER;
224 skb_reset_network_header(nskb);
225 ret = dev_queue_xmit(nskb);
226 if (unlikely(ret > 0))
227 ret = net_xmit_errno(ret);
228 }
229
230 dev_put(dev);
231 return ret;
232 }
233
234 static void __netlink_deliver_tap(struct sk_buff *skb)
235 {
236 int ret;
237 struct netlink_tap *tmp;
238
239 if (!netlink_filter_tap(skb))
240 return;
241
242 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
243 ret = __netlink_deliver_tap_skb(skb, tmp->dev);
244 if (unlikely(ret))
245 break;
246 }
247 }
248
249 static void netlink_deliver_tap(struct sk_buff *skb)
250 {
251 rcu_read_lock();
252
253 if (unlikely(!list_empty(&netlink_tap_all)))
254 __netlink_deliver_tap(skb);
255
256 rcu_read_unlock();
257 }
258
259 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
260 struct sk_buff *skb)
261 {
262 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
263 netlink_deliver_tap(skb);
264 }
265
266 static void netlink_overrun(struct sock *sk)
267 {
268 struct netlink_sock *nlk = nlk_sk(sk);
269
270 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
271 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
272 sk->sk_err = ENOBUFS;
273 sk->sk_error_report(sk);
274 }
275 }
276 atomic_inc(&sk->sk_drops);
277 }
278
279 static void netlink_rcv_wake(struct sock *sk)
280 {
281 struct netlink_sock *nlk = nlk_sk(sk);
282
283 if (skb_queue_empty(&sk->sk_receive_queue))
284 clear_bit(NETLINK_CONGESTED, &nlk->state);
285 if (!test_bit(NETLINK_CONGESTED, &nlk->state))
286 wake_up_interruptible(&nlk->wait);
287 }
288
289 #ifdef CONFIG_NETLINK_MMAP
290 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
291 {
292 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
293 }
294
295 static bool netlink_rx_is_mmaped(struct sock *sk)
296 {
297 return nlk_sk(sk)->rx_ring.pg_vec != NULL;
298 }
299
300 static bool netlink_tx_is_mmaped(struct sock *sk)
301 {
302 return nlk_sk(sk)->tx_ring.pg_vec != NULL;
303 }
304
305 static __pure struct page *pgvec_to_page(const void *addr)
306 {
307 if (is_vmalloc_addr(addr))
308 return vmalloc_to_page(addr);
309 else
310 return virt_to_page(addr);
311 }
312
313 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
314 {
315 unsigned int i;
316
317 for (i = 0; i < len; i++) {
318 if (pg_vec[i] != NULL) {
319 if (is_vmalloc_addr(pg_vec[i]))
320 vfree(pg_vec[i]);
321 else
322 free_pages((unsigned long)pg_vec[i], order);
323 }
324 }
325 kfree(pg_vec);
326 }
327
328 static void *alloc_one_pg_vec_page(unsigned long order)
329 {
330 void *buffer;
331 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
332 __GFP_NOWARN | __GFP_NORETRY;
333
334 buffer = (void *)__get_free_pages(gfp_flags, order);
335 if (buffer != NULL)
336 return buffer;
337
338 buffer = vzalloc((1 << order) * PAGE_SIZE);
339 if (buffer != NULL)
340 return buffer;
341
342 gfp_flags &= ~__GFP_NORETRY;
343 return (void *)__get_free_pages(gfp_flags, order);
344 }
345
346 static void **alloc_pg_vec(struct netlink_sock *nlk,
347 struct nl_mmap_req *req, unsigned int order)
348 {
349 unsigned int block_nr = req->nm_block_nr;
350 unsigned int i;
351 void **pg_vec;
352
353 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
354 if (pg_vec == NULL)
355 return NULL;
356
357 for (i = 0; i < block_nr; i++) {
358 pg_vec[i] = alloc_one_pg_vec_page(order);
359 if (pg_vec[i] == NULL)
360 goto err1;
361 }
362
363 return pg_vec;
364 err1:
365 free_pg_vec(pg_vec, order, block_nr);
366 return NULL;
367 }
368
369 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
370 bool closing, bool tx_ring)
371 {
372 struct netlink_sock *nlk = nlk_sk(sk);
373 struct netlink_ring *ring;
374 struct sk_buff_head *queue;
375 void **pg_vec = NULL;
376 unsigned int order = 0;
377 int err;
378
379 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
380 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
381
382 if (!closing) {
383 if (atomic_read(&nlk->mapped))
384 return -EBUSY;
385 if (atomic_read(&ring->pending))
386 return -EBUSY;
387 }
388
389 if (req->nm_block_nr) {
390 if (ring->pg_vec != NULL)
391 return -EBUSY;
392
393 if ((int)req->nm_block_size <= 0)
394 return -EINVAL;
395 if (!PAGE_ALIGNED(req->nm_block_size))
396 return -EINVAL;
397 if (req->nm_frame_size < NL_MMAP_HDRLEN)
398 return -EINVAL;
399 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
400 return -EINVAL;
401
402 ring->frames_per_block = req->nm_block_size /
403 req->nm_frame_size;
404 if (ring->frames_per_block == 0)
405 return -EINVAL;
406 if (ring->frames_per_block * req->nm_block_nr !=
407 req->nm_frame_nr)
408 return -EINVAL;
409
410 order = get_order(req->nm_block_size);
411 pg_vec = alloc_pg_vec(nlk, req, order);
412 if (pg_vec == NULL)
413 return -ENOMEM;
414 } else {
415 if (req->nm_frame_nr)
416 return -EINVAL;
417 }
418
419 err = -EBUSY;
420 mutex_lock(&nlk->pg_vec_lock);
421 if (closing || atomic_read(&nlk->mapped) == 0) {
422 err = 0;
423 spin_lock_bh(&queue->lock);
424
425 ring->frame_max = req->nm_frame_nr - 1;
426 ring->head = 0;
427 ring->frame_size = req->nm_frame_size;
428 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
429
430 swap(ring->pg_vec_len, req->nm_block_nr);
431 swap(ring->pg_vec_order, order);
432 swap(ring->pg_vec, pg_vec);
433
434 __skb_queue_purge(queue);
435 spin_unlock_bh(&queue->lock);
436
437 WARN_ON(atomic_read(&nlk->mapped));
438 }
439 mutex_unlock(&nlk->pg_vec_lock);
440
441 if (pg_vec)
442 free_pg_vec(pg_vec, order, req->nm_block_nr);
443 return err;
444 }
445
446 static void netlink_mm_open(struct vm_area_struct *vma)
447 {
448 struct file *file = vma->vm_file;
449 struct socket *sock = file->private_data;
450 struct sock *sk = sock->sk;
451
452 if (sk)
453 atomic_inc(&nlk_sk(sk)->mapped);
454 }
455
456 static void netlink_mm_close(struct vm_area_struct *vma)
457 {
458 struct file *file = vma->vm_file;
459 struct socket *sock = file->private_data;
460 struct sock *sk = sock->sk;
461
462 if (sk)
463 atomic_dec(&nlk_sk(sk)->mapped);
464 }
465
466 static const struct vm_operations_struct netlink_mmap_ops = {
467 .open = netlink_mm_open,
468 .close = netlink_mm_close,
469 };
470
471 static int netlink_mmap(struct file *file, struct socket *sock,
472 struct vm_area_struct *vma)
473 {
474 struct sock *sk = sock->sk;
475 struct netlink_sock *nlk = nlk_sk(sk);
476 struct netlink_ring *ring;
477 unsigned long start, size, expected;
478 unsigned int i;
479 int err = -EINVAL;
480
481 if (vma->vm_pgoff)
482 return -EINVAL;
483
484 mutex_lock(&nlk->pg_vec_lock);
485
486 expected = 0;
487 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
488 if (ring->pg_vec == NULL)
489 continue;
490 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
491 }
492
493 if (expected == 0)
494 goto out;
495
496 size = vma->vm_end - vma->vm_start;
497 if (size != expected)
498 goto out;
499
500 start = vma->vm_start;
501 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
502 if (ring->pg_vec == NULL)
503 continue;
504
505 for (i = 0; i < ring->pg_vec_len; i++) {
506 struct page *page;
507 void *kaddr = ring->pg_vec[i];
508 unsigned int pg_num;
509
510 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
511 page = pgvec_to_page(kaddr);
512 err = vm_insert_page(vma, start, page);
513 if (err < 0)
514 goto out;
515 start += PAGE_SIZE;
516 kaddr += PAGE_SIZE;
517 }
518 }
519 }
520
521 atomic_inc(&nlk->mapped);
522 vma->vm_ops = &netlink_mmap_ops;
523 err = 0;
524 out:
525 mutex_unlock(&nlk->pg_vec_lock);
526 return err;
527 }
528
529 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr)
530 {
531 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
532 struct page *p_start, *p_end;
533
534 /* First page is flushed through netlink_{get,set}_status */
535 p_start = pgvec_to_page(hdr + PAGE_SIZE);
536 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + hdr->nm_len - 1);
537 while (p_start <= p_end) {
538 flush_dcache_page(p_start);
539 p_start++;
540 }
541 #endif
542 }
543
544 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
545 {
546 smp_rmb();
547 flush_dcache_page(pgvec_to_page(hdr));
548 return hdr->nm_status;
549 }
550
551 static void netlink_set_status(struct nl_mmap_hdr *hdr,
552 enum nl_mmap_status status)
553 {
554 hdr->nm_status = status;
555 flush_dcache_page(pgvec_to_page(hdr));
556 smp_wmb();
557 }
558
559 static struct nl_mmap_hdr *
560 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
561 {
562 unsigned int pg_vec_pos, frame_off;
563
564 pg_vec_pos = pos / ring->frames_per_block;
565 frame_off = pos % ring->frames_per_block;
566
567 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
568 }
569
570 static struct nl_mmap_hdr *
571 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
572 enum nl_mmap_status status)
573 {
574 struct nl_mmap_hdr *hdr;
575
576 hdr = __netlink_lookup_frame(ring, pos);
577 if (netlink_get_status(hdr) != status)
578 return NULL;
579
580 return hdr;
581 }
582
583 static struct nl_mmap_hdr *
584 netlink_current_frame(const struct netlink_ring *ring,
585 enum nl_mmap_status status)
586 {
587 return netlink_lookup_frame(ring, ring->head, status);
588 }
589
590 static struct nl_mmap_hdr *
591 netlink_previous_frame(const struct netlink_ring *ring,
592 enum nl_mmap_status status)
593 {
594 unsigned int prev;
595
596 prev = ring->head ? ring->head - 1 : ring->frame_max;
597 return netlink_lookup_frame(ring, prev, status);
598 }
599
600 static void netlink_increment_head(struct netlink_ring *ring)
601 {
602 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
603 }
604
605 static void netlink_forward_ring(struct netlink_ring *ring)
606 {
607 unsigned int head = ring->head, pos = head;
608 const struct nl_mmap_hdr *hdr;
609
610 do {
611 hdr = __netlink_lookup_frame(ring, pos);
612 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
613 break;
614 if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
615 break;
616 netlink_increment_head(ring);
617 } while (ring->head != head);
618 }
619
620 static bool netlink_dump_space(struct netlink_sock *nlk)
621 {
622 struct netlink_ring *ring = &nlk->rx_ring;
623 struct nl_mmap_hdr *hdr;
624 unsigned int n;
625
626 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
627 if (hdr == NULL)
628 return false;
629
630 n = ring->head + ring->frame_max / 2;
631 if (n > ring->frame_max)
632 n -= ring->frame_max;
633
634 hdr = __netlink_lookup_frame(ring, n);
635
636 return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
637 }
638
639 static unsigned int netlink_poll(struct file *file, struct socket *sock,
640 poll_table *wait)
641 {
642 struct sock *sk = sock->sk;
643 struct netlink_sock *nlk = nlk_sk(sk);
644 unsigned int mask;
645 int err;
646
647 if (nlk->rx_ring.pg_vec != NULL) {
648 /* Memory mapped sockets don't call recvmsg(), so flow control
649 * for dumps is performed here. A dump is allowed to continue
650 * if at least half the ring is unused.
651 */
652 while (nlk->cb_running && netlink_dump_space(nlk)) {
653 err = netlink_dump(sk);
654 if (err < 0) {
655 sk->sk_err = -err;
656 sk->sk_error_report(sk);
657 break;
658 }
659 }
660 netlink_rcv_wake(sk);
661 }
662
663 mask = datagram_poll(file, sock, wait);
664
665 spin_lock_bh(&sk->sk_receive_queue.lock);
666 if (nlk->rx_ring.pg_vec) {
667 netlink_forward_ring(&nlk->rx_ring);
668 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
669 mask |= POLLIN | POLLRDNORM;
670 }
671 spin_unlock_bh(&sk->sk_receive_queue.lock);
672
673 spin_lock_bh(&sk->sk_write_queue.lock);
674 if (nlk->tx_ring.pg_vec) {
675 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
676 mask |= POLLOUT | POLLWRNORM;
677 }
678 spin_unlock_bh(&sk->sk_write_queue.lock);
679
680 return mask;
681 }
682
683 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
684 {
685 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
686 }
687
688 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
689 struct netlink_ring *ring,
690 struct nl_mmap_hdr *hdr)
691 {
692 unsigned int size;
693 void *data;
694
695 size = ring->frame_size - NL_MMAP_HDRLEN;
696 data = (void *)hdr + NL_MMAP_HDRLEN;
697
698 skb->head = data;
699 skb->data = data;
700 skb_reset_tail_pointer(skb);
701 skb->end = skb->tail + size;
702 skb->len = 0;
703
704 skb->destructor = netlink_skb_destructor;
705 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
706 NETLINK_CB(skb).sk = sk;
707 }
708
709 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
710 u32 dst_portid, u32 dst_group,
711 struct sock_iocb *siocb)
712 {
713 struct netlink_sock *nlk = nlk_sk(sk);
714 struct netlink_ring *ring;
715 struct nl_mmap_hdr *hdr;
716 struct sk_buff *skb;
717 unsigned int maxlen;
718 bool excl = true;
719 int err = 0, len = 0;
720
721 /* Netlink messages are validated by the receiver before processing.
722 * In order to avoid userspace changing the contents of the message
723 * after validation, the socket and the ring may only be used by a
724 * single process, otherwise we fall back to copying.
725 */
726 if (atomic_long_read(&sk->sk_socket->file->f_count) > 1 ||
727 atomic_read(&nlk->mapped) > 1)
728 excl = false;
729
730 mutex_lock(&nlk->pg_vec_lock);
731
732 ring = &nlk->tx_ring;
733 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
734
735 do {
736 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
737 if (hdr == NULL) {
738 if (!(msg->msg_flags & MSG_DONTWAIT) &&
739 atomic_read(&nlk->tx_ring.pending))
740 schedule();
741 continue;
742 }
743 if (hdr->nm_len > maxlen) {
744 err = -EINVAL;
745 goto out;
746 }
747
748 netlink_frame_flush_dcache(hdr);
749
750 if (likely(dst_portid == 0 && dst_group == 0 && excl)) {
751 skb = alloc_skb_head(GFP_KERNEL);
752 if (skb == NULL) {
753 err = -ENOBUFS;
754 goto out;
755 }
756 sock_hold(sk);
757 netlink_ring_setup_skb(skb, sk, ring, hdr);
758 NETLINK_CB(skb).flags |= NETLINK_SKB_TX;
759 __skb_put(skb, hdr->nm_len);
760 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
761 atomic_inc(&ring->pending);
762 } else {
763 skb = alloc_skb(hdr->nm_len, GFP_KERNEL);
764 if (skb == NULL) {
765 err = -ENOBUFS;
766 goto out;
767 }
768 __skb_put(skb, hdr->nm_len);
769 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, hdr->nm_len);
770 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
771 }
772
773 netlink_increment_head(ring);
774
775 NETLINK_CB(skb).portid = nlk->portid;
776 NETLINK_CB(skb).dst_group = dst_group;
777 NETLINK_CB(skb).creds = siocb->scm->creds;
778
779 err = security_netlink_send(sk, skb);
780 if (err) {
781 kfree_skb(skb);
782 goto out;
783 }
784
785 if (unlikely(dst_group)) {
786 atomic_inc(&skb->users);
787 netlink_broadcast(sk, skb, dst_portid, dst_group,
788 GFP_KERNEL);
789 }
790 err = netlink_unicast(sk, skb, dst_portid,
791 msg->msg_flags & MSG_DONTWAIT);
792 if (err < 0)
793 goto out;
794 len += err;
795
796 } while (hdr != NULL ||
797 (!(msg->msg_flags & MSG_DONTWAIT) &&
798 atomic_read(&nlk->tx_ring.pending)));
799
800 if (len > 0)
801 err = len;
802 out:
803 mutex_unlock(&nlk->pg_vec_lock);
804 return err;
805 }
806
807 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
808 {
809 struct nl_mmap_hdr *hdr;
810
811 hdr = netlink_mmap_hdr(skb);
812 hdr->nm_len = skb->len;
813 hdr->nm_group = NETLINK_CB(skb).dst_group;
814 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
815 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
816 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
817 netlink_frame_flush_dcache(hdr);
818 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
819
820 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
821 kfree_skb(skb);
822 }
823
824 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
825 {
826 struct netlink_sock *nlk = nlk_sk(sk);
827 struct netlink_ring *ring = &nlk->rx_ring;
828 struct nl_mmap_hdr *hdr;
829
830 spin_lock_bh(&sk->sk_receive_queue.lock);
831 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
832 if (hdr == NULL) {
833 spin_unlock_bh(&sk->sk_receive_queue.lock);
834 kfree_skb(skb);
835 netlink_overrun(sk);
836 return;
837 }
838 netlink_increment_head(ring);
839 __skb_queue_tail(&sk->sk_receive_queue, skb);
840 spin_unlock_bh(&sk->sk_receive_queue.lock);
841
842 hdr->nm_len = skb->len;
843 hdr->nm_group = NETLINK_CB(skb).dst_group;
844 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
845 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
846 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
847 netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
848 }
849
850 #else /* CONFIG_NETLINK_MMAP */
851 #define netlink_skb_is_mmaped(skb) false
852 #define netlink_rx_is_mmaped(sk) false
853 #define netlink_tx_is_mmaped(sk) false
854 #define netlink_mmap sock_no_mmap
855 #define netlink_poll datagram_poll
856 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0
857 #endif /* CONFIG_NETLINK_MMAP */
858
859 static void netlink_skb_destructor(struct sk_buff *skb)
860 {
861 #ifdef CONFIG_NETLINK_MMAP
862 struct nl_mmap_hdr *hdr;
863 struct netlink_ring *ring;
864 struct sock *sk;
865
866 /* If a packet from the kernel to userspace was freed because of an
867 * error without being delivered to userspace, the kernel must reset
868 * the status. In the direction userspace to kernel, the status is
869 * always reset here after the packet was processed and freed.
870 */
871 if (netlink_skb_is_mmaped(skb)) {
872 hdr = netlink_mmap_hdr(skb);
873 sk = NETLINK_CB(skb).sk;
874
875 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
876 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
877 ring = &nlk_sk(sk)->tx_ring;
878 } else {
879 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
880 hdr->nm_len = 0;
881 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
882 }
883 ring = &nlk_sk(sk)->rx_ring;
884 }
885
886 WARN_ON(atomic_read(&ring->pending) == 0);
887 atomic_dec(&ring->pending);
888 sock_put(sk);
889
890 skb->head = NULL;
891 }
892 #endif
893 if (is_vmalloc_addr(skb->head)) {
894 if (!skb->cloned ||
895 !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
896 vfree(skb->head);
897
898 skb->head = NULL;
899 }
900 if (skb->sk != NULL)
901 sock_rfree(skb);
902 }
903
904 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
905 {
906 WARN_ON(skb->sk != NULL);
907 skb->sk = sk;
908 skb->destructor = netlink_skb_destructor;
909 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
910 sk_mem_charge(sk, skb->truesize);
911 }
912
913 static void netlink_sock_destruct(struct sock *sk)
914 {
915 struct netlink_sock *nlk = nlk_sk(sk);
916
917 if (nlk->cb_running) {
918 if (nlk->cb.done)
919 nlk->cb.done(&nlk->cb);
920
921 module_put(nlk->cb.module);
922 kfree_skb(nlk->cb.skb);
923 }
924
925 skb_queue_purge(&sk->sk_receive_queue);
926 #ifdef CONFIG_NETLINK_MMAP
927 if (1) {
928 struct nl_mmap_req req;
929
930 memset(&req, 0, sizeof(req));
931 if (nlk->rx_ring.pg_vec)
932 netlink_set_ring(sk, &req, true, false);
933 memset(&req, 0, sizeof(req));
934 if (nlk->tx_ring.pg_vec)
935 netlink_set_ring(sk, &req, true, true);
936 }
937 #endif /* CONFIG_NETLINK_MMAP */
938
939 if (!sock_flag(sk, SOCK_DEAD)) {
940 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
941 return;
942 }
943
944 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
945 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
946 WARN_ON(nlk_sk(sk)->groups);
947 }
948
949 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
950 * SMP. Look, when several writers sleep and reader wakes them up, all but one
951 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
952 * this, _but_ remember, it adds useless work on UP machines.
953 */
954
955 void netlink_table_grab(void)
956 __acquires(nl_table_lock)
957 {
958 might_sleep();
959
960 write_lock_irq(&nl_table_lock);
961
962 if (atomic_read(&nl_table_users)) {
963 DECLARE_WAITQUEUE(wait, current);
964
965 add_wait_queue_exclusive(&nl_table_wait, &wait);
966 for (;;) {
967 set_current_state(TASK_UNINTERRUPTIBLE);
968 if (atomic_read(&nl_table_users) == 0)
969 break;
970 write_unlock_irq(&nl_table_lock);
971 schedule();
972 write_lock_irq(&nl_table_lock);
973 }
974
975 __set_current_state(TASK_RUNNING);
976 remove_wait_queue(&nl_table_wait, &wait);
977 }
978 }
979
980 void netlink_table_ungrab(void)
981 __releases(nl_table_lock)
982 {
983 write_unlock_irq(&nl_table_lock);
984 wake_up(&nl_table_wait);
985 }
986
987 static inline void
988 netlink_lock_table(void)
989 {
990 /* read_lock() synchronizes us to netlink_table_grab */
991
992 read_lock(&nl_table_lock);
993 atomic_inc(&nl_table_users);
994 read_unlock(&nl_table_lock);
995 }
996
997 static inline void
998 netlink_unlock_table(void)
999 {
1000 if (atomic_dec_and_test(&nl_table_users))
1001 wake_up(&nl_table_wait);
1002 }
1003
1004 struct netlink_compare_arg
1005 {
1006 struct net *net;
1007 u32 portid;
1008 };
1009
1010 static bool netlink_compare(void *ptr, void *arg)
1011 {
1012 struct netlink_compare_arg *x = arg;
1013 struct sock *sk = ptr;
1014
1015 return nlk_sk(sk)->portid == x->portid &&
1016 net_eq(sock_net(sk), x->net);
1017 }
1018
1019 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1020 struct net *net)
1021 {
1022 struct netlink_compare_arg arg = {
1023 .net = net,
1024 .portid = portid,
1025 };
1026 u32 hash;
1027
1028 hash = rhashtable_hashfn(&table->hash, &portid, sizeof(portid));
1029
1030 return rhashtable_lookup_compare(&table->hash, hash,
1031 &netlink_compare, &arg);
1032 }
1033
1034 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1035 {
1036 struct netlink_table *table = &nl_table[protocol];
1037 struct sock *sk;
1038
1039 read_lock(&nl_table_lock);
1040 rcu_read_lock();
1041 sk = __netlink_lookup(table, portid, net);
1042 if (sk)
1043 sock_hold(sk);
1044 rcu_read_unlock();
1045 read_unlock(&nl_table_lock);
1046
1047 return sk;
1048 }
1049
1050 static const struct proto_ops netlink_ops;
1051
1052 static void
1053 netlink_update_listeners(struct sock *sk)
1054 {
1055 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1056 unsigned long mask;
1057 unsigned int i;
1058 struct listeners *listeners;
1059
1060 listeners = nl_deref_protected(tbl->listeners);
1061 if (!listeners)
1062 return;
1063
1064 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1065 mask = 0;
1066 sk_for_each_bound(sk, &tbl->mc_list) {
1067 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1068 mask |= nlk_sk(sk)->groups[i];
1069 }
1070 listeners->masks[i] = mask;
1071 }
1072 /* this function is only called with the netlink table "grabbed", which
1073 * makes sure updates are visible before bind or setsockopt return. */
1074 }
1075
1076 static int netlink_insert(struct sock *sk, struct net *net, u32 portid)
1077 {
1078 struct netlink_table *table = &nl_table[sk->sk_protocol];
1079 int err = -EADDRINUSE;
1080
1081 mutex_lock(&nl_sk_hash_lock);
1082 if (__netlink_lookup(table, portid, net))
1083 goto err;
1084
1085 err = -EBUSY;
1086 if (nlk_sk(sk)->portid)
1087 goto err;
1088
1089 err = -ENOMEM;
1090 if (BITS_PER_LONG > 32 && unlikely(table->hash.nelems >= UINT_MAX))
1091 goto err;
1092
1093 nlk_sk(sk)->portid = portid;
1094 sock_hold(sk);
1095 rhashtable_insert(&table->hash, &nlk_sk(sk)->node, GFP_KERNEL);
1096 err = 0;
1097 err:
1098 mutex_unlock(&nl_sk_hash_lock);
1099 return err;
1100 }
1101
1102 static void netlink_remove(struct sock *sk)
1103 {
1104 struct netlink_table *table;
1105
1106 mutex_lock(&nl_sk_hash_lock);
1107 table = &nl_table[sk->sk_protocol];
1108 if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node, GFP_KERNEL)) {
1109 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1110 __sock_put(sk);
1111 }
1112 mutex_unlock(&nl_sk_hash_lock);
1113
1114 netlink_table_grab();
1115 if (nlk_sk(sk)->subscriptions)
1116 __sk_del_bind_node(sk);
1117 netlink_table_ungrab();
1118 }
1119
1120 static struct proto netlink_proto = {
1121 .name = "NETLINK",
1122 .owner = THIS_MODULE,
1123 .obj_size = sizeof(struct netlink_sock),
1124 };
1125
1126 static int __netlink_create(struct net *net, struct socket *sock,
1127 struct mutex *cb_mutex, int protocol)
1128 {
1129 struct sock *sk;
1130 struct netlink_sock *nlk;
1131
1132 sock->ops = &netlink_ops;
1133
1134 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1135 if (!sk)
1136 return -ENOMEM;
1137
1138 sock_init_data(sock, sk);
1139
1140 nlk = nlk_sk(sk);
1141 if (cb_mutex) {
1142 nlk->cb_mutex = cb_mutex;
1143 } else {
1144 nlk->cb_mutex = &nlk->cb_def_mutex;
1145 mutex_init(nlk->cb_mutex);
1146 }
1147 init_waitqueue_head(&nlk->wait);
1148 #ifdef CONFIG_NETLINK_MMAP
1149 mutex_init(&nlk->pg_vec_lock);
1150 #endif
1151
1152 sk->sk_destruct = netlink_sock_destruct;
1153 sk->sk_protocol = protocol;
1154 return 0;
1155 }
1156
1157 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1158 int kern)
1159 {
1160 struct module *module = NULL;
1161 struct mutex *cb_mutex;
1162 struct netlink_sock *nlk;
1163 int (*bind)(int group);
1164 void (*unbind)(int group);
1165 int err = 0;
1166
1167 sock->state = SS_UNCONNECTED;
1168
1169 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1170 return -ESOCKTNOSUPPORT;
1171
1172 if (protocol < 0 || protocol >= MAX_LINKS)
1173 return -EPROTONOSUPPORT;
1174
1175 netlink_lock_table();
1176 #ifdef CONFIG_MODULES
1177 if (!nl_table[protocol].registered) {
1178 netlink_unlock_table();
1179 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1180 netlink_lock_table();
1181 }
1182 #endif
1183 if (nl_table[protocol].registered &&
1184 try_module_get(nl_table[protocol].module))
1185 module = nl_table[protocol].module;
1186 else
1187 err = -EPROTONOSUPPORT;
1188 cb_mutex = nl_table[protocol].cb_mutex;
1189 bind = nl_table[protocol].bind;
1190 unbind = nl_table[protocol].unbind;
1191 netlink_unlock_table();
1192
1193 if (err < 0)
1194 goto out;
1195
1196 err = __netlink_create(net, sock, cb_mutex, protocol);
1197 if (err < 0)
1198 goto out_module;
1199
1200 local_bh_disable();
1201 sock_prot_inuse_add(net, &netlink_proto, 1);
1202 local_bh_enable();
1203
1204 nlk = nlk_sk(sock->sk);
1205 nlk->module = module;
1206 nlk->netlink_bind = bind;
1207 nlk->netlink_unbind = unbind;
1208 out:
1209 return err;
1210
1211 out_module:
1212 module_put(module);
1213 goto out;
1214 }
1215
1216 static int netlink_release(struct socket *sock)
1217 {
1218 struct sock *sk = sock->sk;
1219 struct netlink_sock *nlk;
1220
1221 if (!sk)
1222 return 0;
1223
1224 netlink_remove(sk);
1225 sock_orphan(sk);
1226 nlk = nlk_sk(sk);
1227
1228 /*
1229 * OK. Socket is unlinked, any packets that arrive now
1230 * will be purged.
1231 */
1232
1233 sock->sk = NULL;
1234 wake_up_interruptible_all(&nlk->wait);
1235
1236 skb_queue_purge(&sk->sk_write_queue);
1237
1238 if (nlk->portid) {
1239 struct netlink_notify n = {
1240 .net = sock_net(sk),
1241 .protocol = sk->sk_protocol,
1242 .portid = nlk->portid,
1243 };
1244 atomic_notifier_call_chain(&netlink_chain,
1245 NETLINK_URELEASE, &n);
1246 }
1247
1248 module_put(nlk->module);
1249
1250 netlink_table_grab();
1251 if (netlink_is_kernel(sk)) {
1252 BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1253 if (--nl_table[sk->sk_protocol].registered == 0) {
1254 struct listeners *old;
1255
1256 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1257 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1258 kfree_rcu(old, rcu);
1259 nl_table[sk->sk_protocol].module = NULL;
1260 nl_table[sk->sk_protocol].bind = NULL;
1261 nl_table[sk->sk_protocol].unbind = NULL;
1262 nl_table[sk->sk_protocol].flags = 0;
1263 nl_table[sk->sk_protocol].registered = 0;
1264 }
1265 } else if (nlk->subscriptions) {
1266 netlink_update_listeners(sk);
1267 }
1268 netlink_table_ungrab();
1269
1270 kfree(nlk->groups);
1271 nlk->groups = NULL;
1272
1273 local_bh_disable();
1274 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1275 local_bh_enable();
1276 sock_put(sk);
1277 return 0;
1278 }
1279
1280 static int netlink_autobind(struct socket *sock)
1281 {
1282 struct sock *sk = sock->sk;
1283 struct net *net = sock_net(sk);
1284 struct netlink_table *table = &nl_table[sk->sk_protocol];
1285 s32 portid = task_tgid_vnr(current);
1286 int err;
1287 static s32 rover = -4097;
1288
1289 retry:
1290 cond_resched();
1291 netlink_table_grab();
1292 rcu_read_lock();
1293 if (__netlink_lookup(table, portid, net)) {
1294 /* Bind collision, search negative portid values. */
1295 portid = rover--;
1296 if (rover > -4097)
1297 rover = -4097;
1298 rcu_read_unlock();
1299 netlink_table_ungrab();
1300 goto retry;
1301 }
1302 rcu_read_unlock();
1303 netlink_table_ungrab();
1304
1305 err = netlink_insert(sk, net, portid);
1306 if (err == -EADDRINUSE)
1307 goto retry;
1308
1309 /* If 2 threads race to autobind, that is fine. */
1310 if (err == -EBUSY)
1311 err = 0;
1312
1313 return err;
1314 }
1315
1316 /**
1317 * __netlink_ns_capable - General netlink message capability test
1318 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1319 * @user_ns: The user namespace of the capability to use
1320 * @cap: The capability to use
1321 *
1322 * Test to see if the opener of the socket we received the message
1323 * from had when the netlink socket was created and the sender of the
1324 * message has has the capability @cap in the user namespace @user_ns.
1325 */
1326 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1327 struct user_namespace *user_ns, int cap)
1328 {
1329 return ((nsp->flags & NETLINK_SKB_DST) ||
1330 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1331 ns_capable(user_ns, cap);
1332 }
1333 EXPORT_SYMBOL(__netlink_ns_capable);
1334
1335 /**
1336 * netlink_ns_capable - General netlink message capability test
1337 * @skb: socket buffer holding a netlink command from userspace
1338 * @user_ns: The user namespace of the capability to use
1339 * @cap: The capability to use
1340 *
1341 * Test to see if the opener of the socket we received the message
1342 * from had when the netlink socket was created and the sender of the
1343 * message has has the capability @cap in the user namespace @user_ns.
1344 */
1345 bool netlink_ns_capable(const struct sk_buff *skb,
1346 struct user_namespace *user_ns, int cap)
1347 {
1348 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1349 }
1350 EXPORT_SYMBOL(netlink_ns_capable);
1351
1352 /**
1353 * netlink_capable - Netlink global message capability test
1354 * @skb: socket buffer holding a netlink command from userspace
1355 * @cap: The capability to use
1356 *
1357 * Test to see if the opener of the socket we received the message
1358 * from had when the netlink socket was created and the sender of the
1359 * message has has the capability @cap in all user namespaces.
1360 */
1361 bool netlink_capable(const struct sk_buff *skb, int cap)
1362 {
1363 return netlink_ns_capable(skb, &init_user_ns, cap);
1364 }
1365 EXPORT_SYMBOL(netlink_capable);
1366
1367 /**
1368 * netlink_net_capable - Netlink network namespace message capability test
1369 * @skb: socket buffer holding a netlink command from userspace
1370 * @cap: The capability to use
1371 *
1372 * Test to see if the opener of the socket we received the message
1373 * from had when the netlink socket was created and the sender of the
1374 * message has has the capability @cap over the network namespace of
1375 * the socket we received the message from.
1376 */
1377 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1378 {
1379 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1380 }
1381 EXPORT_SYMBOL(netlink_net_capable);
1382
1383 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1384 {
1385 return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1386 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1387 }
1388
1389 static void
1390 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1391 {
1392 struct netlink_sock *nlk = nlk_sk(sk);
1393
1394 if (nlk->subscriptions && !subscriptions)
1395 __sk_del_bind_node(sk);
1396 else if (!nlk->subscriptions && subscriptions)
1397 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1398 nlk->subscriptions = subscriptions;
1399 }
1400
1401 static int netlink_realloc_groups(struct sock *sk)
1402 {
1403 struct netlink_sock *nlk = nlk_sk(sk);
1404 unsigned int groups;
1405 unsigned long *new_groups;
1406 int err = 0;
1407
1408 netlink_table_grab();
1409
1410 groups = nl_table[sk->sk_protocol].groups;
1411 if (!nl_table[sk->sk_protocol].registered) {
1412 err = -ENOENT;
1413 goto out_unlock;
1414 }
1415
1416 if (nlk->ngroups >= groups)
1417 goto out_unlock;
1418
1419 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1420 if (new_groups == NULL) {
1421 err = -ENOMEM;
1422 goto out_unlock;
1423 }
1424 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1425 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1426
1427 nlk->groups = new_groups;
1428 nlk->ngroups = groups;
1429 out_unlock:
1430 netlink_table_ungrab();
1431 return err;
1432 }
1433
1434 static void netlink_unbind(int group, long unsigned int groups,
1435 struct netlink_sock *nlk)
1436 {
1437 int undo;
1438
1439 if (!nlk->netlink_unbind)
1440 return;
1441
1442 for (undo = 0; undo < group; undo++)
1443 if (test_bit(group, &groups))
1444 nlk->netlink_unbind(undo);
1445 }
1446
1447 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1448 int addr_len)
1449 {
1450 struct sock *sk = sock->sk;
1451 struct net *net = sock_net(sk);
1452 struct netlink_sock *nlk = nlk_sk(sk);
1453 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1454 int err;
1455 long unsigned int groups = nladdr->nl_groups;
1456
1457 if (addr_len < sizeof(struct sockaddr_nl))
1458 return -EINVAL;
1459
1460 if (nladdr->nl_family != AF_NETLINK)
1461 return -EINVAL;
1462
1463 /* Only superuser is allowed to listen multicasts */
1464 if (groups) {
1465 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1466 return -EPERM;
1467 err = netlink_realloc_groups(sk);
1468 if (err)
1469 return err;
1470 }
1471
1472 if (nlk->portid)
1473 if (nladdr->nl_pid != nlk->portid)
1474 return -EINVAL;
1475
1476 if (nlk->netlink_bind && groups) {
1477 int group;
1478
1479 for (group = 0; group < nlk->ngroups; group++) {
1480 if (!test_bit(group, &groups))
1481 continue;
1482 err = nlk->netlink_bind(group);
1483 if (!err)
1484 continue;
1485 netlink_unbind(group, groups, nlk);
1486 return err;
1487 }
1488 }
1489
1490 if (!nlk->portid) {
1491 err = nladdr->nl_pid ?
1492 netlink_insert(sk, net, nladdr->nl_pid) :
1493 netlink_autobind(sock);
1494 if (err) {
1495 netlink_unbind(nlk->ngroups - 1, groups, nlk);
1496 return err;
1497 }
1498 }
1499
1500 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1501 return 0;
1502
1503 netlink_table_grab();
1504 netlink_update_subscriptions(sk, nlk->subscriptions +
1505 hweight32(groups) -
1506 hweight32(nlk->groups[0]));
1507 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1508 netlink_update_listeners(sk);
1509 netlink_table_ungrab();
1510
1511 return 0;
1512 }
1513
1514 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1515 int alen, int flags)
1516 {
1517 int err = 0;
1518 struct sock *sk = sock->sk;
1519 struct netlink_sock *nlk = nlk_sk(sk);
1520 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1521
1522 if (alen < sizeof(addr->sa_family))
1523 return -EINVAL;
1524
1525 if (addr->sa_family == AF_UNSPEC) {
1526 sk->sk_state = NETLINK_UNCONNECTED;
1527 nlk->dst_portid = 0;
1528 nlk->dst_group = 0;
1529 return 0;
1530 }
1531 if (addr->sa_family != AF_NETLINK)
1532 return -EINVAL;
1533
1534 if ((nladdr->nl_groups || nladdr->nl_pid) &&
1535 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1536 return -EPERM;
1537
1538 if (!nlk->portid)
1539 err = netlink_autobind(sock);
1540
1541 if (err == 0) {
1542 sk->sk_state = NETLINK_CONNECTED;
1543 nlk->dst_portid = nladdr->nl_pid;
1544 nlk->dst_group = ffs(nladdr->nl_groups);
1545 }
1546
1547 return err;
1548 }
1549
1550 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1551 int *addr_len, int peer)
1552 {
1553 struct sock *sk = sock->sk;
1554 struct netlink_sock *nlk = nlk_sk(sk);
1555 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1556
1557 nladdr->nl_family = AF_NETLINK;
1558 nladdr->nl_pad = 0;
1559 *addr_len = sizeof(*nladdr);
1560
1561 if (peer) {
1562 nladdr->nl_pid = nlk->dst_portid;
1563 nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1564 } else {
1565 nladdr->nl_pid = nlk->portid;
1566 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1567 }
1568 return 0;
1569 }
1570
1571 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1572 {
1573 struct sock *sock;
1574 struct netlink_sock *nlk;
1575
1576 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1577 if (!sock)
1578 return ERR_PTR(-ECONNREFUSED);
1579
1580 /* Don't bother queuing skb if kernel socket has no input function */
1581 nlk = nlk_sk(sock);
1582 if (sock->sk_state == NETLINK_CONNECTED &&
1583 nlk->dst_portid != nlk_sk(ssk)->portid) {
1584 sock_put(sock);
1585 return ERR_PTR(-ECONNREFUSED);
1586 }
1587 return sock;
1588 }
1589
1590 struct sock *netlink_getsockbyfilp(struct file *filp)
1591 {
1592 struct inode *inode = file_inode(filp);
1593 struct sock *sock;
1594
1595 if (!S_ISSOCK(inode->i_mode))
1596 return ERR_PTR(-ENOTSOCK);
1597
1598 sock = SOCKET_I(inode)->sk;
1599 if (sock->sk_family != AF_NETLINK)
1600 return ERR_PTR(-EINVAL);
1601
1602 sock_hold(sock);
1603 return sock;
1604 }
1605
1606 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1607 int broadcast)
1608 {
1609 struct sk_buff *skb;
1610 void *data;
1611
1612 if (size <= NLMSG_GOODSIZE || broadcast)
1613 return alloc_skb(size, GFP_KERNEL);
1614
1615 size = SKB_DATA_ALIGN(size) +
1616 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1617
1618 data = vmalloc(size);
1619 if (data == NULL)
1620 return NULL;
1621
1622 skb = build_skb(data, size);
1623 if (skb == NULL)
1624 vfree(data);
1625 else {
1626 skb->head_frag = 0;
1627 skb->destructor = netlink_skb_destructor;
1628 }
1629
1630 return skb;
1631 }
1632
1633 /*
1634 * Attach a skb to a netlink socket.
1635 * The caller must hold a reference to the destination socket. On error, the
1636 * reference is dropped. The skb is not send to the destination, just all
1637 * all error checks are performed and memory in the queue is reserved.
1638 * Return values:
1639 * < 0: error. skb freed, reference to sock dropped.
1640 * 0: continue
1641 * 1: repeat lookup - reference dropped while waiting for socket memory.
1642 */
1643 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1644 long *timeo, struct sock *ssk)
1645 {
1646 struct netlink_sock *nlk;
1647
1648 nlk = nlk_sk(sk);
1649
1650 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1651 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1652 !netlink_skb_is_mmaped(skb)) {
1653 DECLARE_WAITQUEUE(wait, current);
1654 if (!*timeo) {
1655 if (!ssk || netlink_is_kernel(ssk))
1656 netlink_overrun(sk);
1657 sock_put(sk);
1658 kfree_skb(skb);
1659 return -EAGAIN;
1660 }
1661
1662 __set_current_state(TASK_INTERRUPTIBLE);
1663 add_wait_queue(&nlk->wait, &wait);
1664
1665 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1666 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1667 !sock_flag(sk, SOCK_DEAD))
1668 *timeo = schedule_timeout(*timeo);
1669
1670 __set_current_state(TASK_RUNNING);
1671 remove_wait_queue(&nlk->wait, &wait);
1672 sock_put(sk);
1673
1674 if (signal_pending(current)) {
1675 kfree_skb(skb);
1676 return sock_intr_errno(*timeo);
1677 }
1678 return 1;
1679 }
1680 netlink_skb_set_owner_r(skb, sk);
1681 return 0;
1682 }
1683
1684 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1685 {
1686 int len = skb->len;
1687
1688 netlink_deliver_tap(skb);
1689
1690 #ifdef CONFIG_NETLINK_MMAP
1691 if (netlink_skb_is_mmaped(skb))
1692 netlink_queue_mmaped_skb(sk, skb);
1693 else if (netlink_rx_is_mmaped(sk))
1694 netlink_ring_set_copied(sk, skb);
1695 else
1696 #endif /* CONFIG_NETLINK_MMAP */
1697 skb_queue_tail(&sk->sk_receive_queue, skb);
1698 sk->sk_data_ready(sk);
1699 return len;
1700 }
1701
1702 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1703 {
1704 int len = __netlink_sendskb(sk, skb);
1705
1706 sock_put(sk);
1707 return len;
1708 }
1709
1710 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1711 {
1712 kfree_skb(skb);
1713 sock_put(sk);
1714 }
1715
1716 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1717 {
1718 int delta;
1719
1720 WARN_ON(skb->sk != NULL);
1721 if (netlink_skb_is_mmaped(skb))
1722 return skb;
1723
1724 delta = skb->end - skb->tail;
1725 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1726 return skb;
1727
1728 if (skb_shared(skb)) {
1729 struct sk_buff *nskb = skb_clone(skb, allocation);
1730 if (!nskb)
1731 return skb;
1732 consume_skb(skb);
1733 skb = nskb;
1734 }
1735
1736 if (!pskb_expand_head(skb, 0, -delta, allocation))
1737 skb->truesize -= delta;
1738
1739 return skb;
1740 }
1741
1742 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1743 struct sock *ssk)
1744 {
1745 int ret;
1746 struct netlink_sock *nlk = nlk_sk(sk);
1747
1748 ret = -ECONNREFUSED;
1749 if (nlk->netlink_rcv != NULL) {
1750 ret = skb->len;
1751 netlink_skb_set_owner_r(skb, sk);
1752 NETLINK_CB(skb).sk = ssk;
1753 netlink_deliver_tap_kernel(sk, ssk, skb);
1754 nlk->netlink_rcv(skb);
1755 consume_skb(skb);
1756 } else {
1757 kfree_skb(skb);
1758 }
1759 sock_put(sk);
1760 return ret;
1761 }
1762
1763 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1764 u32 portid, int nonblock)
1765 {
1766 struct sock *sk;
1767 int err;
1768 long timeo;
1769
1770 skb = netlink_trim(skb, gfp_any());
1771
1772 timeo = sock_sndtimeo(ssk, nonblock);
1773 retry:
1774 sk = netlink_getsockbyportid(ssk, portid);
1775 if (IS_ERR(sk)) {
1776 kfree_skb(skb);
1777 return PTR_ERR(sk);
1778 }
1779 if (netlink_is_kernel(sk))
1780 return netlink_unicast_kernel(sk, skb, ssk);
1781
1782 if (sk_filter(sk, skb)) {
1783 err = skb->len;
1784 kfree_skb(skb);
1785 sock_put(sk);
1786 return err;
1787 }
1788
1789 err = netlink_attachskb(sk, skb, &timeo, ssk);
1790 if (err == 1)
1791 goto retry;
1792 if (err)
1793 return err;
1794
1795 return netlink_sendskb(sk, skb);
1796 }
1797 EXPORT_SYMBOL(netlink_unicast);
1798
1799 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1800 u32 dst_portid, gfp_t gfp_mask)
1801 {
1802 #ifdef CONFIG_NETLINK_MMAP
1803 struct sock *sk = NULL;
1804 struct sk_buff *skb;
1805 struct netlink_ring *ring;
1806 struct nl_mmap_hdr *hdr;
1807 unsigned int maxlen;
1808
1809 sk = netlink_getsockbyportid(ssk, dst_portid);
1810 if (IS_ERR(sk))
1811 goto out;
1812
1813 ring = &nlk_sk(sk)->rx_ring;
1814 /* fast-path without atomic ops for common case: non-mmaped receiver */
1815 if (ring->pg_vec == NULL)
1816 goto out_put;
1817
1818 if (ring->frame_size - NL_MMAP_HDRLEN < size)
1819 goto out_put;
1820
1821 skb = alloc_skb_head(gfp_mask);
1822 if (skb == NULL)
1823 goto err1;
1824
1825 spin_lock_bh(&sk->sk_receive_queue.lock);
1826 /* check again under lock */
1827 if (ring->pg_vec == NULL)
1828 goto out_free;
1829
1830 /* check again under lock */
1831 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1832 if (maxlen < size)
1833 goto out_free;
1834
1835 netlink_forward_ring(ring);
1836 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1837 if (hdr == NULL)
1838 goto err2;
1839 netlink_ring_setup_skb(skb, sk, ring, hdr);
1840 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1841 atomic_inc(&ring->pending);
1842 netlink_increment_head(ring);
1843
1844 spin_unlock_bh(&sk->sk_receive_queue.lock);
1845 return skb;
1846
1847 err2:
1848 kfree_skb(skb);
1849 spin_unlock_bh(&sk->sk_receive_queue.lock);
1850 netlink_overrun(sk);
1851 err1:
1852 sock_put(sk);
1853 return NULL;
1854
1855 out_free:
1856 kfree_skb(skb);
1857 spin_unlock_bh(&sk->sk_receive_queue.lock);
1858 out_put:
1859 sock_put(sk);
1860 out:
1861 #endif
1862 return alloc_skb(size, gfp_mask);
1863 }
1864 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1865
1866 int netlink_has_listeners(struct sock *sk, unsigned int group)
1867 {
1868 int res = 0;
1869 struct listeners *listeners;
1870
1871 BUG_ON(!netlink_is_kernel(sk));
1872
1873 rcu_read_lock();
1874 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1875
1876 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1877 res = test_bit(group - 1, listeners->masks);
1878
1879 rcu_read_unlock();
1880
1881 return res;
1882 }
1883 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1884
1885 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1886 {
1887 struct netlink_sock *nlk = nlk_sk(sk);
1888
1889 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1890 !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1891 netlink_skb_set_owner_r(skb, sk);
1892 __netlink_sendskb(sk, skb);
1893 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1894 }
1895 return -1;
1896 }
1897
1898 struct netlink_broadcast_data {
1899 struct sock *exclude_sk;
1900 struct net *net;
1901 u32 portid;
1902 u32 group;
1903 int failure;
1904 int delivery_failure;
1905 int congested;
1906 int delivered;
1907 gfp_t allocation;
1908 struct sk_buff *skb, *skb2;
1909 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1910 void *tx_data;
1911 };
1912
1913 static void do_one_broadcast(struct sock *sk,
1914 struct netlink_broadcast_data *p)
1915 {
1916 struct netlink_sock *nlk = nlk_sk(sk);
1917 int val;
1918
1919 if (p->exclude_sk == sk)
1920 return;
1921
1922 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1923 !test_bit(p->group - 1, nlk->groups))
1924 return;
1925
1926 if (!net_eq(sock_net(sk), p->net))
1927 return;
1928
1929 if (p->failure) {
1930 netlink_overrun(sk);
1931 return;
1932 }
1933
1934 sock_hold(sk);
1935 if (p->skb2 == NULL) {
1936 if (skb_shared(p->skb)) {
1937 p->skb2 = skb_clone(p->skb, p->allocation);
1938 } else {
1939 p->skb2 = skb_get(p->skb);
1940 /*
1941 * skb ownership may have been set when
1942 * delivered to a previous socket.
1943 */
1944 skb_orphan(p->skb2);
1945 }
1946 }
1947 if (p->skb2 == NULL) {
1948 netlink_overrun(sk);
1949 /* Clone failed. Notify ALL listeners. */
1950 p->failure = 1;
1951 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1952 p->delivery_failure = 1;
1953 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1954 kfree_skb(p->skb2);
1955 p->skb2 = NULL;
1956 } else if (sk_filter(sk, p->skb2)) {
1957 kfree_skb(p->skb2);
1958 p->skb2 = NULL;
1959 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
1960 netlink_overrun(sk);
1961 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1962 p->delivery_failure = 1;
1963 } else {
1964 p->congested |= val;
1965 p->delivered = 1;
1966 p->skb2 = NULL;
1967 }
1968 sock_put(sk);
1969 }
1970
1971 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1972 u32 group, gfp_t allocation,
1973 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1974 void *filter_data)
1975 {
1976 struct net *net = sock_net(ssk);
1977 struct netlink_broadcast_data info;
1978 struct sock *sk;
1979
1980 skb = netlink_trim(skb, allocation);
1981
1982 info.exclude_sk = ssk;
1983 info.net = net;
1984 info.portid = portid;
1985 info.group = group;
1986 info.failure = 0;
1987 info.delivery_failure = 0;
1988 info.congested = 0;
1989 info.delivered = 0;
1990 info.allocation = allocation;
1991 info.skb = skb;
1992 info.skb2 = NULL;
1993 info.tx_filter = filter;
1994 info.tx_data = filter_data;
1995
1996 /* While we sleep in clone, do not allow to change socket list */
1997
1998 netlink_lock_table();
1999
2000 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2001 do_one_broadcast(sk, &info);
2002
2003 consume_skb(skb);
2004
2005 netlink_unlock_table();
2006
2007 if (info.delivery_failure) {
2008 kfree_skb(info.skb2);
2009 return -ENOBUFS;
2010 }
2011 consume_skb(info.skb2);
2012
2013 if (info.delivered) {
2014 if (info.congested && (allocation & __GFP_WAIT))
2015 yield();
2016 return 0;
2017 }
2018 return -ESRCH;
2019 }
2020 EXPORT_SYMBOL(netlink_broadcast_filtered);
2021
2022 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2023 u32 group, gfp_t allocation)
2024 {
2025 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2026 NULL, NULL);
2027 }
2028 EXPORT_SYMBOL(netlink_broadcast);
2029
2030 struct netlink_set_err_data {
2031 struct sock *exclude_sk;
2032 u32 portid;
2033 u32 group;
2034 int code;
2035 };
2036
2037 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2038 {
2039 struct netlink_sock *nlk = nlk_sk(sk);
2040 int ret = 0;
2041
2042 if (sk == p->exclude_sk)
2043 goto out;
2044
2045 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2046 goto out;
2047
2048 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2049 !test_bit(p->group - 1, nlk->groups))
2050 goto out;
2051
2052 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
2053 ret = 1;
2054 goto out;
2055 }
2056
2057 sk->sk_err = p->code;
2058 sk->sk_error_report(sk);
2059 out:
2060 return ret;
2061 }
2062
2063 /**
2064 * netlink_set_err - report error to broadcast listeners
2065 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2066 * @portid: the PORTID of a process that we want to skip (if any)
2067 * @group: the broadcast group that will notice the error
2068 * @code: error code, must be negative (as usual in kernelspace)
2069 *
2070 * This function returns the number of broadcast listeners that have set the
2071 * NETLINK_RECV_NO_ENOBUFS socket option.
2072 */
2073 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2074 {
2075 struct netlink_set_err_data info;
2076 struct sock *sk;
2077 int ret = 0;
2078
2079 info.exclude_sk = ssk;
2080 info.portid = portid;
2081 info.group = group;
2082 /* sk->sk_err wants a positive error value */
2083 info.code = -code;
2084
2085 read_lock(&nl_table_lock);
2086
2087 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2088 ret += do_one_set_err(sk, &info);
2089
2090 read_unlock(&nl_table_lock);
2091 return ret;
2092 }
2093 EXPORT_SYMBOL(netlink_set_err);
2094
2095 /* must be called with netlink table grabbed */
2096 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2097 unsigned int group,
2098 int is_new)
2099 {
2100 int old, new = !!is_new, subscriptions;
2101
2102 old = test_bit(group - 1, nlk->groups);
2103 subscriptions = nlk->subscriptions - old + new;
2104 if (new)
2105 __set_bit(group - 1, nlk->groups);
2106 else
2107 __clear_bit(group - 1, nlk->groups);
2108 netlink_update_subscriptions(&nlk->sk, subscriptions);
2109 netlink_update_listeners(&nlk->sk);
2110 }
2111
2112 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2113 char __user *optval, unsigned int optlen)
2114 {
2115 struct sock *sk = sock->sk;
2116 struct netlink_sock *nlk = nlk_sk(sk);
2117 unsigned int val = 0;
2118 int err;
2119
2120 if (level != SOL_NETLINK)
2121 return -ENOPROTOOPT;
2122
2123 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2124 optlen >= sizeof(int) &&
2125 get_user(val, (unsigned int __user *)optval))
2126 return -EFAULT;
2127
2128 switch (optname) {
2129 case NETLINK_PKTINFO:
2130 if (val)
2131 nlk->flags |= NETLINK_RECV_PKTINFO;
2132 else
2133 nlk->flags &= ~NETLINK_RECV_PKTINFO;
2134 err = 0;
2135 break;
2136 case NETLINK_ADD_MEMBERSHIP:
2137 case NETLINK_DROP_MEMBERSHIP: {
2138 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2139 return -EPERM;
2140 err = netlink_realloc_groups(sk);
2141 if (err)
2142 return err;
2143 if (!val || val - 1 >= nlk->ngroups)
2144 return -EINVAL;
2145 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2146 err = nlk->netlink_bind(val);
2147 if (err)
2148 return err;
2149 }
2150 netlink_table_grab();
2151 netlink_update_socket_mc(nlk, val,
2152 optname == NETLINK_ADD_MEMBERSHIP);
2153 netlink_table_ungrab();
2154 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2155 nlk->netlink_unbind(val);
2156
2157 err = 0;
2158 break;
2159 }
2160 case NETLINK_BROADCAST_ERROR:
2161 if (val)
2162 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
2163 else
2164 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
2165 err = 0;
2166 break;
2167 case NETLINK_NO_ENOBUFS:
2168 if (val) {
2169 nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
2170 clear_bit(NETLINK_CONGESTED, &nlk->state);
2171 wake_up_interruptible(&nlk->wait);
2172 } else {
2173 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
2174 }
2175 err = 0;
2176 break;
2177 #ifdef CONFIG_NETLINK_MMAP
2178 case NETLINK_RX_RING:
2179 case NETLINK_TX_RING: {
2180 struct nl_mmap_req req;
2181
2182 /* Rings might consume more memory than queue limits, require
2183 * CAP_NET_ADMIN.
2184 */
2185 if (!capable(CAP_NET_ADMIN))
2186 return -EPERM;
2187 if (optlen < sizeof(req))
2188 return -EINVAL;
2189 if (copy_from_user(&req, optval, sizeof(req)))
2190 return -EFAULT;
2191 err = netlink_set_ring(sk, &req, false,
2192 optname == NETLINK_TX_RING);
2193 break;
2194 }
2195 #endif /* CONFIG_NETLINK_MMAP */
2196 default:
2197 err = -ENOPROTOOPT;
2198 }
2199 return err;
2200 }
2201
2202 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2203 char __user *optval, int __user *optlen)
2204 {
2205 struct sock *sk = sock->sk;
2206 struct netlink_sock *nlk = nlk_sk(sk);
2207 int len, val, err;
2208
2209 if (level != SOL_NETLINK)
2210 return -ENOPROTOOPT;
2211
2212 if (get_user(len, optlen))
2213 return -EFAULT;
2214 if (len < 0)
2215 return -EINVAL;
2216
2217 switch (optname) {
2218 case NETLINK_PKTINFO:
2219 if (len < sizeof(int))
2220 return -EINVAL;
2221 len = sizeof(int);
2222 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2223 if (put_user(len, optlen) ||
2224 put_user(val, optval))
2225 return -EFAULT;
2226 err = 0;
2227 break;
2228 case NETLINK_BROADCAST_ERROR:
2229 if (len < sizeof(int))
2230 return -EINVAL;
2231 len = sizeof(int);
2232 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2233 if (put_user(len, optlen) ||
2234 put_user(val, optval))
2235 return -EFAULT;
2236 err = 0;
2237 break;
2238 case NETLINK_NO_ENOBUFS:
2239 if (len < sizeof(int))
2240 return -EINVAL;
2241 len = sizeof(int);
2242 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2243 if (put_user(len, optlen) ||
2244 put_user(val, optval))
2245 return -EFAULT;
2246 err = 0;
2247 break;
2248 default:
2249 err = -ENOPROTOOPT;
2250 }
2251 return err;
2252 }
2253
2254 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2255 {
2256 struct nl_pktinfo info;
2257
2258 info.group = NETLINK_CB(skb).dst_group;
2259 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2260 }
2261
2262 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
2263 struct msghdr *msg, size_t len)
2264 {
2265 struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2266 struct sock *sk = sock->sk;
2267 struct netlink_sock *nlk = nlk_sk(sk);
2268 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2269 u32 dst_portid;
2270 u32 dst_group;
2271 struct sk_buff *skb;
2272 int err;
2273 struct scm_cookie scm;
2274 u32 netlink_skb_flags = 0;
2275
2276 if (msg->msg_flags&MSG_OOB)
2277 return -EOPNOTSUPP;
2278
2279 if (NULL == siocb->scm)
2280 siocb->scm = &scm;
2281
2282 err = scm_send(sock, msg, siocb->scm, true);
2283 if (err < 0)
2284 return err;
2285
2286 if (msg->msg_namelen) {
2287 err = -EINVAL;
2288 if (addr->nl_family != AF_NETLINK)
2289 goto out;
2290 dst_portid = addr->nl_pid;
2291 dst_group = ffs(addr->nl_groups);
2292 err = -EPERM;
2293 if ((dst_group || dst_portid) &&
2294 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2295 goto out;
2296 netlink_skb_flags |= NETLINK_SKB_DST;
2297 } else {
2298 dst_portid = nlk->dst_portid;
2299 dst_group = nlk->dst_group;
2300 }
2301
2302 if (!nlk->portid) {
2303 err = netlink_autobind(sock);
2304 if (err)
2305 goto out;
2306 }
2307
2308 if (netlink_tx_is_mmaped(sk) &&
2309 msg->msg_iov->iov_base == NULL) {
2310 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2311 siocb);
2312 goto out;
2313 }
2314
2315 err = -EMSGSIZE;
2316 if (len > sk->sk_sndbuf - 32)
2317 goto out;
2318 err = -ENOBUFS;
2319 skb = netlink_alloc_large_skb(len, dst_group);
2320 if (skb == NULL)
2321 goto out;
2322
2323 NETLINK_CB(skb).portid = nlk->portid;
2324 NETLINK_CB(skb).dst_group = dst_group;
2325 NETLINK_CB(skb).creds = siocb->scm->creds;
2326 NETLINK_CB(skb).flags = netlink_skb_flags;
2327
2328 err = -EFAULT;
2329 if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
2330 kfree_skb(skb);
2331 goto out;
2332 }
2333
2334 err = security_netlink_send(sk, skb);
2335 if (err) {
2336 kfree_skb(skb);
2337 goto out;
2338 }
2339
2340 if (dst_group) {
2341 atomic_inc(&skb->users);
2342 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2343 }
2344 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2345
2346 out:
2347 scm_destroy(siocb->scm);
2348 return err;
2349 }
2350
2351 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
2352 struct msghdr *msg, size_t len,
2353 int flags)
2354 {
2355 struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2356 struct scm_cookie scm;
2357 struct sock *sk = sock->sk;
2358 struct netlink_sock *nlk = nlk_sk(sk);
2359 int noblock = flags&MSG_DONTWAIT;
2360 size_t copied;
2361 struct sk_buff *skb, *data_skb;
2362 int err, ret;
2363
2364 if (flags&MSG_OOB)
2365 return -EOPNOTSUPP;
2366
2367 copied = 0;
2368
2369 skb = skb_recv_datagram(sk, flags, noblock, &err);
2370 if (skb == NULL)
2371 goto out;
2372
2373 data_skb = skb;
2374
2375 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2376 if (unlikely(skb_shinfo(skb)->frag_list)) {
2377 /*
2378 * If this skb has a frag_list, then here that means that we
2379 * will have to use the frag_list skb's data for compat tasks
2380 * and the regular skb's data for normal (non-compat) tasks.
2381 *
2382 * If we need to send the compat skb, assign it to the
2383 * 'data_skb' variable so that it will be used below for data
2384 * copying. We keep 'skb' for everything else, including
2385 * freeing both later.
2386 */
2387 if (flags & MSG_CMSG_COMPAT)
2388 data_skb = skb_shinfo(skb)->frag_list;
2389 }
2390 #endif
2391
2392 /* Record the max length of recvmsg() calls for future allocations */
2393 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2394 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2395 16384);
2396
2397 copied = data_skb->len;
2398 if (len < copied) {
2399 msg->msg_flags |= MSG_TRUNC;
2400 copied = len;
2401 }
2402
2403 skb_reset_transport_header(data_skb);
2404 err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied);
2405
2406 if (msg->msg_name) {
2407 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2408 addr->nl_family = AF_NETLINK;
2409 addr->nl_pad = 0;
2410 addr->nl_pid = NETLINK_CB(skb).portid;
2411 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
2412 msg->msg_namelen = sizeof(*addr);
2413 }
2414
2415 if (nlk->flags & NETLINK_RECV_PKTINFO)
2416 netlink_cmsg_recv_pktinfo(msg, skb);
2417
2418 if (NULL == siocb->scm) {
2419 memset(&scm, 0, sizeof(scm));
2420 siocb->scm = &scm;
2421 }
2422 siocb->scm->creds = *NETLINK_CREDS(skb);
2423 if (flags & MSG_TRUNC)
2424 copied = data_skb->len;
2425
2426 skb_free_datagram(sk, skb);
2427
2428 if (nlk->cb_running &&
2429 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2430 ret = netlink_dump(sk);
2431 if (ret) {
2432 sk->sk_err = -ret;
2433 sk->sk_error_report(sk);
2434 }
2435 }
2436
2437 scm_recv(sock, msg, siocb->scm, flags);
2438 out:
2439 netlink_rcv_wake(sk);
2440 return err ? : copied;
2441 }
2442
2443 static void netlink_data_ready(struct sock *sk)
2444 {
2445 BUG();
2446 }
2447
2448 /*
2449 * We export these functions to other modules. They provide a
2450 * complete set of kernel non-blocking support for message
2451 * queueing.
2452 */
2453
2454 struct sock *
2455 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2456 struct netlink_kernel_cfg *cfg)
2457 {
2458 struct socket *sock;
2459 struct sock *sk;
2460 struct netlink_sock *nlk;
2461 struct listeners *listeners = NULL;
2462 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2463 unsigned int groups;
2464
2465 BUG_ON(!nl_table);
2466
2467 if (unit < 0 || unit >= MAX_LINKS)
2468 return NULL;
2469
2470 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2471 return NULL;
2472
2473 /*
2474 * We have to just have a reference on the net from sk, but don't
2475 * get_net it. Besides, we cannot get and then put the net here.
2476 * So we create one inside init_net and the move it to net.
2477 */
2478
2479 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2480 goto out_sock_release_nosk;
2481
2482 sk = sock->sk;
2483 sk_change_net(sk, net);
2484
2485 if (!cfg || cfg->groups < 32)
2486 groups = 32;
2487 else
2488 groups = cfg->groups;
2489
2490 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2491 if (!listeners)
2492 goto out_sock_release;
2493
2494 sk->sk_data_ready = netlink_data_ready;
2495 if (cfg && cfg->input)
2496 nlk_sk(sk)->netlink_rcv = cfg->input;
2497
2498 if (netlink_insert(sk, net, 0))
2499 goto out_sock_release;
2500
2501 nlk = nlk_sk(sk);
2502 nlk->flags |= NETLINK_KERNEL_SOCKET;
2503
2504 netlink_table_grab();
2505 if (!nl_table[unit].registered) {
2506 nl_table[unit].groups = groups;
2507 rcu_assign_pointer(nl_table[unit].listeners, listeners);
2508 nl_table[unit].cb_mutex = cb_mutex;
2509 nl_table[unit].module = module;
2510 if (cfg) {
2511 nl_table[unit].bind = cfg->bind;
2512 nl_table[unit].flags = cfg->flags;
2513 if (cfg->compare)
2514 nl_table[unit].compare = cfg->compare;
2515 }
2516 nl_table[unit].registered = 1;
2517 } else {
2518 kfree(listeners);
2519 nl_table[unit].registered++;
2520 }
2521 netlink_table_ungrab();
2522 return sk;
2523
2524 out_sock_release:
2525 kfree(listeners);
2526 netlink_kernel_release(sk);
2527 return NULL;
2528
2529 out_sock_release_nosk:
2530 sock_release(sock);
2531 return NULL;
2532 }
2533 EXPORT_SYMBOL(__netlink_kernel_create);
2534
2535 void
2536 netlink_kernel_release(struct sock *sk)
2537 {
2538 sk_release_kernel(sk);
2539 }
2540 EXPORT_SYMBOL(netlink_kernel_release);
2541
2542 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2543 {
2544 struct listeners *new, *old;
2545 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2546
2547 if (groups < 32)
2548 groups = 32;
2549
2550 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2551 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2552 if (!new)
2553 return -ENOMEM;
2554 old = nl_deref_protected(tbl->listeners);
2555 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2556 rcu_assign_pointer(tbl->listeners, new);
2557
2558 kfree_rcu(old, rcu);
2559 }
2560 tbl->groups = groups;
2561
2562 return 0;
2563 }
2564
2565 /**
2566 * netlink_change_ngroups - change number of multicast groups
2567 *
2568 * This changes the number of multicast groups that are available
2569 * on a certain netlink family. Note that it is not possible to
2570 * change the number of groups to below 32. Also note that it does
2571 * not implicitly call netlink_clear_multicast_users() when the
2572 * number of groups is reduced.
2573 *
2574 * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2575 * @groups: The new number of groups.
2576 */
2577 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2578 {
2579 int err;
2580
2581 netlink_table_grab();
2582 err = __netlink_change_ngroups(sk, groups);
2583 netlink_table_ungrab();
2584
2585 return err;
2586 }
2587
2588 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2589 {
2590 struct sock *sk;
2591 struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2592
2593 sk_for_each_bound(sk, &tbl->mc_list)
2594 netlink_update_socket_mc(nlk_sk(sk), group, 0);
2595 }
2596
2597 struct nlmsghdr *
2598 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2599 {
2600 struct nlmsghdr *nlh;
2601 int size = nlmsg_msg_size(len);
2602
2603 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2604 nlh->nlmsg_type = type;
2605 nlh->nlmsg_len = size;
2606 nlh->nlmsg_flags = flags;
2607 nlh->nlmsg_pid = portid;
2608 nlh->nlmsg_seq = seq;
2609 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2610 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2611 return nlh;
2612 }
2613 EXPORT_SYMBOL(__nlmsg_put);
2614
2615 /*
2616 * It looks a bit ugly.
2617 * It would be better to create kernel thread.
2618 */
2619
2620 static int netlink_dump(struct sock *sk)
2621 {
2622 struct netlink_sock *nlk = nlk_sk(sk);
2623 struct netlink_callback *cb;
2624 struct sk_buff *skb = NULL;
2625 struct nlmsghdr *nlh;
2626 int len, err = -ENOBUFS;
2627 int alloc_size;
2628
2629 mutex_lock(nlk->cb_mutex);
2630 if (!nlk->cb_running) {
2631 err = -EINVAL;
2632 goto errout_skb;
2633 }
2634
2635 cb = &nlk->cb;
2636 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2637
2638 if (!netlink_rx_is_mmaped(sk) &&
2639 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2640 goto errout_skb;
2641
2642 /* NLMSG_GOODSIZE is small to avoid high order allocations being
2643 * required, but it makes sense to _attempt_ a 16K bytes allocation
2644 * to reduce number of system calls on dump operations, if user
2645 * ever provided a big enough buffer.
2646 */
2647 if (alloc_size < nlk->max_recvmsg_len) {
2648 skb = netlink_alloc_skb(sk,
2649 nlk->max_recvmsg_len,
2650 nlk->portid,
2651 GFP_KERNEL |
2652 __GFP_NOWARN |
2653 __GFP_NORETRY);
2654 /* available room should be exact amount to avoid MSG_TRUNC */
2655 if (skb)
2656 skb_reserve(skb, skb_tailroom(skb) -
2657 nlk->max_recvmsg_len);
2658 }
2659 if (!skb)
2660 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2661 GFP_KERNEL);
2662 if (!skb)
2663 goto errout_skb;
2664 netlink_skb_set_owner_r(skb, sk);
2665
2666 len = cb->dump(skb, cb);
2667
2668 if (len > 0) {
2669 mutex_unlock(nlk->cb_mutex);
2670
2671 if (sk_filter(sk, skb))
2672 kfree_skb(skb);
2673 else
2674 __netlink_sendskb(sk, skb);
2675 return 0;
2676 }
2677
2678 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2679 if (!nlh)
2680 goto errout_skb;
2681
2682 nl_dump_check_consistent(cb, nlh);
2683
2684 memcpy(nlmsg_data(nlh), &len, sizeof(len));
2685
2686 if (sk_filter(sk, skb))
2687 kfree_skb(skb);
2688 else
2689 __netlink_sendskb(sk, skb);
2690
2691 if (cb->done)
2692 cb->done(cb);
2693
2694 nlk->cb_running = false;
2695 mutex_unlock(nlk->cb_mutex);
2696 module_put(cb->module);
2697 consume_skb(cb->skb);
2698 return 0;
2699
2700 errout_skb:
2701 mutex_unlock(nlk->cb_mutex);
2702 kfree_skb(skb);
2703 return err;
2704 }
2705
2706 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2707 const struct nlmsghdr *nlh,
2708 struct netlink_dump_control *control)
2709 {
2710 struct netlink_callback *cb;
2711 struct sock *sk;
2712 struct netlink_sock *nlk;
2713 int ret;
2714
2715 /* Memory mapped dump requests need to be copied to avoid looping
2716 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2717 * a reference to the skb.
2718 */
2719 if (netlink_skb_is_mmaped(skb)) {
2720 skb = skb_copy(skb, GFP_KERNEL);
2721 if (skb == NULL)
2722 return -ENOBUFS;
2723 } else
2724 atomic_inc(&skb->users);
2725
2726 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2727 if (sk == NULL) {
2728 ret = -ECONNREFUSED;
2729 goto error_free;
2730 }
2731
2732 nlk = nlk_sk(sk);
2733 mutex_lock(nlk->cb_mutex);
2734 /* A dump is in progress... */
2735 if (nlk->cb_running) {
2736 ret = -EBUSY;
2737 goto error_unlock;
2738 }
2739 /* add reference of module which cb->dump belongs to */
2740 if (!try_module_get(control->module)) {
2741 ret = -EPROTONOSUPPORT;
2742 goto error_unlock;
2743 }
2744
2745 cb = &nlk->cb;
2746 memset(cb, 0, sizeof(*cb));
2747 cb->dump = control->dump;
2748 cb->done = control->done;
2749 cb->nlh = nlh;
2750 cb->data = control->data;
2751 cb->module = control->module;
2752 cb->min_dump_alloc = control->min_dump_alloc;
2753 cb->skb = skb;
2754
2755 nlk->cb_running = true;
2756
2757 mutex_unlock(nlk->cb_mutex);
2758
2759 ret = netlink_dump(sk);
2760 sock_put(sk);
2761
2762 if (ret)
2763 return ret;
2764
2765 /* We successfully started a dump, by returning -EINTR we
2766 * signal not to send ACK even if it was requested.
2767 */
2768 return -EINTR;
2769
2770 error_unlock:
2771 sock_put(sk);
2772 mutex_unlock(nlk->cb_mutex);
2773 error_free:
2774 kfree_skb(skb);
2775 return ret;
2776 }
2777 EXPORT_SYMBOL(__netlink_dump_start);
2778
2779 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2780 {
2781 struct sk_buff *skb;
2782 struct nlmsghdr *rep;
2783 struct nlmsgerr *errmsg;
2784 size_t payload = sizeof(*errmsg);
2785
2786 /* error messages get the original request appened */
2787 if (err)
2788 payload += nlmsg_len(nlh);
2789
2790 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2791 NETLINK_CB(in_skb).portid, GFP_KERNEL);
2792 if (!skb) {
2793 struct sock *sk;
2794
2795 sk = netlink_lookup(sock_net(in_skb->sk),
2796 in_skb->sk->sk_protocol,
2797 NETLINK_CB(in_skb).portid);
2798 if (sk) {
2799 sk->sk_err = ENOBUFS;
2800 sk->sk_error_report(sk);
2801 sock_put(sk);
2802 }
2803 return;
2804 }
2805
2806 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2807 NLMSG_ERROR, payload, 0);
2808 errmsg = nlmsg_data(rep);
2809 errmsg->error = err;
2810 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2811 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2812 }
2813 EXPORT_SYMBOL(netlink_ack);
2814
2815 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2816 struct nlmsghdr *))
2817 {
2818 struct nlmsghdr *nlh;
2819 int err;
2820
2821 while (skb->len >= nlmsg_total_size(0)) {
2822 int msglen;
2823
2824 nlh = nlmsg_hdr(skb);
2825 err = 0;
2826
2827 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2828 return 0;
2829
2830 /* Only requests are handled by the kernel */
2831 if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2832 goto ack;
2833
2834 /* Skip control messages */
2835 if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2836 goto ack;
2837
2838 err = cb(skb, nlh);
2839 if (err == -EINTR)
2840 goto skip;
2841
2842 ack:
2843 if (nlh->nlmsg_flags & NLM_F_ACK || err)
2844 netlink_ack(skb, nlh, err);
2845
2846 skip:
2847 msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2848 if (msglen > skb->len)
2849 msglen = skb->len;
2850 skb_pull(skb, msglen);
2851 }
2852
2853 return 0;
2854 }
2855 EXPORT_SYMBOL(netlink_rcv_skb);
2856
2857 /**
2858 * nlmsg_notify - send a notification netlink message
2859 * @sk: netlink socket to use
2860 * @skb: notification message
2861 * @portid: destination netlink portid for reports or 0
2862 * @group: destination multicast group or 0
2863 * @report: 1 to report back, 0 to disable
2864 * @flags: allocation flags
2865 */
2866 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2867 unsigned int group, int report, gfp_t flags)
2868 {
2869 int err = 0;
2870
2871 if (group) {
2872 int exclude_portid = 0;
2873
2874 if (report) {
2875 atomic_inc(&skb->users);
2876 exclude_portid = portid;
2877 }
2878
2879 /* errors reported via destination sk->sk_err, but propagate
2880 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2881 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2882 }
2883
2884 if (report) {
2885 int err2;
2886
2887 err2 = nlmsg_unicast(sk, skb, portid);
2888 if (!err || err == -ESRCH)
2889 err = err2;
2890 }
2891
2892 return err;
2893 }
2894 EXPORT_SYMBOL(nlmsg_notify);
2895
2896 #ifdef CONFIG_PROC_FS
2897 struct nl_seq_iter {
2898 struct seq_net_private p;
2899 int link;
2900 int hash_idx;
2901 };
2902
2903 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
2904 {
2905 struct nl_seq_iter *iter = seq->private;
2906 int i, j;
2907 struct netlink_sock *nlk;
2908 struct sock *s;
2909 loff_t off = 0;
2910
2911 for (i = 0; i < MAX_LINKS; i++) {
2912 struct rhashtable *ht = &nl_table[i].hash;
2913 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2914
2915 for (j = 0; j < tbl->size; j++) {
2916 rht_for_each_entry_rcu(nlk, tbl->buckets[j], node) {
2917 s = (struct sock *)nlk;
2918
2919 if (sock_net(s) != seq_file_net(seq))
2920 continue;
2921 if (off == pos) {
2922 iter->link = i;
2923 iter->hash_idx = j;
2924 return s;
2925 }
2926 ++off;
2927 }
2928 }
2929 }
2930 return NULL;
2931 }
2932
2933 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
2934 __acquires(nl_table_lock) __acquires(RCU)
2935 {
2936 read_lock(&nl_table_lock);
2937 rcu_read_lock();
2938 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2939 }
2940
2941 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2942 {
2943 struct rhashtable *ht;
2944 struct netlink_sock *nlk;
2945 struct nl_seq_iter *iter;
2946 struct net *net;
2947 int i, j;
2948
2949 ++*pos;
2950
2951 if (v == SEQ_START_TOKEN)
2952 return netlink_seq_socket_idx(seq, 0);
2953
2954 net = seq_file_net(seq);
2955 iter = seq->private;
2956 nlk = v;
2957
2958 i = iter->link;
2959 ht = &nl_table[i].hash;
2960 rht_for_each_entry(nlk, nlk->node.next, ht, node)
2961 if (net_eq(sock_net((struct sock *)nlk), net))
2962 return nlk;
2963
2964 j = iter->hash_idx + 1;
2965
2966 do {
2967 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2968
2969 for (; j < tbl->size; j++) {
2970 rht_for_each_entry(nlk, tbl->buckets[j], ht, node) {
2971 if (net_eq(sock_net((struct sock *)nlk), net)) {
2972 iter->link = i;
2973 iter->hash_idx = j;
2974 return nlk;
2975 }
2976 }
2977 }
2978
2979 j = 0;
2980 } while (++i < MAX_LINKS);
2981
2982 return NULL;
2983 }
2984
2985 static void netlink_seq_stop(struct seq_file *seq, void *v)
2986 __releases(RCU) __releases(nl_table_lock)
2987 {
2988 rcu_read_unlock();
2989 read_unlock(&nl_table_lock);
2990 }
2991
2992
2993 static int netlink_seq_show(struct seq_file *seq, void *v)
2994 {
2995 if (v == SEQ_START_TOKEN) {
2996 seq_puts(seq,
2997 "sk Eth Pid Groups "
2998 "Rmem Wmem Dump Locks Drops Inode\n");
2999 } else {
3000 struct sock *s = v;
3001 struct netlink_sock *nlk = nlk_sk(s);
3002
3003 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3004 s,
3005 s->sk_protocol,
3006 nlk->portid,
3007 nlk->groups ? (u32)nlk->groups[0] : 0,
3008 sk_rmem_alloc_get(s),
3009 sk_wmem_alloc_get(s),
3010 nlk->cb_running,
3011 atomic_read(&s->sk_refcnt),
3012 atomic_read(&s->sk_drops),
3013 sock_i_ino(s)
3014 );
3015
3016 }
3017 return 0;
3018 }
3019
3020 static const struct seq_operations netlink_seq_ops = {
3021 .start = netlink_seq_start,
3022 .next = netlink_seq_next,
3023 .stop = netlink_seq_stop,
3024 .show = netlink_seq_show,
3025 };
3026
3027
3028 static int netlink_seq_open(struct inode *inode, struct file *file)
3029 {
3030 return seq_open_net(inode, file, &netlink_seq_ops,
3031 sizeof(struct nl_seq_iter));
3032 }
3033
3034 static const struct file_operations netlink_seq_fops = {
3035 .owner = THIS_MODULE,
3036 .open = netlink_seq_open,
3037 .read = seq_read,
3038 .llseek = seq_lseek,
3039 .release = seq_release_net,
3040 };
3041
3042 #endif
3043
3044 int netlink_register_notifier(struct notifier_block *nb)
3045 {
3046 return atomic_notifier_chain_register(&netlink_chain, nb);
3047 }
3048 EXPORT_SYMBOL(netlink_register_notifier);
3049
3050 int netlink_unregister_notifier(struct notifier_block *nb)
3051 {
3052 return atomic_notifier_chain_unregister(&netlink_chain, nb);
3053 }
3054 EXPORT_SYMBOL(netlink_unregister_notifier);
3055
3056 static const struct proto_ops netlink_ops = {
3057 .family = PF_NETLINK,
3058 .owner = THIS_MODULE,
3059 .release = netlink_release,
3060 .bind = netlink_bind,
3061 .connect = netlink_connect,
3062 .socketpair = sock_no_socketpair,
3063 .accept = sock_no_accept,
3064 .getname = netlink_getname,
3065 .poll = netlink_poll,
3066 .ioctl = sock_no_ioctl,
3067 .listen = sock_no_listen,
3068 .shutdown = sock_no_shutdown,
3069 .setsockopt = netlink_setsockopt,
3070 .getsockopt = netlink_getsockopt,
3071 .sendmsg = netlink_sendmsg,
3072 .recvmsg = netlink_recvmsg,
3073 .mmap = netlink_mmap,
3074 .sendpage = sock_no_sendpage,
3075 };
3076
3077 static const struct net_proto_family netlink_family_ops = {
3078 .family = PF_NETLINK,
3079 .create = netlink_create,
3080 .owner = THIS_MODULE, /* for consistency 8) */
3081 };
3082
3083 static int __net_init netlink_net_init(struct net *net)
3084 {
3085 #ifdef CONFIG_PROC_FS
3086 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3087 return -ENOMEM;
3088 #endif
3089 return 0;
3090 }
3091
3092 static void __net_exit netlink_net_exit(struct net *net)
3093 {
3094 #ifdef CONFIG_PROC_FS
3095 remove_proc_entry("netlink", net->proc_net);
3096 #endif
3097 }
3098
3099 static void __init netlink_add_usersock_entry(void)
3100 {
3101 struct listeners *listeners;
3102 int groups = 32;
3103
3104 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3105 if (!listeners)
3106 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3107
3108 netlink_table_grab();
3109
3110 nl_table[NETLINK_USERSOCK].groups = groups;
3111 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3112 nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3113 nl_table[NETLINK_USERSOCK].registered = 1;
3114 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3115
3116 netlink_table_ungrab();
3117 }
3118
3119 static struct pernet_operations __net_initdata netlink_net_ops = {
3120 .init = netlink_net_init,
3121 .exit = netlink_net_exit,
3122 };
3123
3124 static int __init netlink_proto_init(void)
3125 {
3126 int i;
3127 int err = proto_register(&netlink_proto, 0);
3128 struct rhashtable_params ht_params = {
3129 .head_offset = offsetof(struct netlink_sock, node),
3130 .key_offset = offsetof(struct netlink_sock, portid),
3131 .key_len = sizeof(u32), /* portid */
3132 .hashfn = arch_fast_hash,
3133 .max_shift = 16, /* 64K */
3134 .grow_decision = rht_grow_above_75,
3135 .shrink_decision = rht_shrink_below_30,
3136 .mutex_is_held = lockdep_nl_sk_hash_is_held,
3137 };
3138
3139 if (err != 0)
3140 goto out;
3141
3142 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3143
3144 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3145 if (!nl_table)
3146 goto panic;
3147
3148 for (i = 0; i < MAX_LINKS; i++) {
3149 if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) {
3150 while (--i > 0)
3151 rhashtable_destroy(&nl_table[i].hash);
3152 kfree(nl_table);
3153 goto panic;
3154 }
3155 }
3156
3157 INIT_LIST_HEAD(&netlink_tap_all);
3158
3159 netlink_add_usersock_entry();
3160
3161 sock_register(&netlink_family_ops);
3162 register_pernet_subsys(&netlink_net_ops);
3163 /* The netlink device handler may be needed early. */
3164 rtnetlink_init();
3165 out:
3166 return err;
3167 panic:
3168 panic("netlink_init: Cannot allocate nl_table\n");
3169 }
3170
3171 core_initcall(netlink_proto_init);
This page took 0.148561 seconds and 6 git commands to generate.