Merge tag 'master-2014-11-25' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[deliverable/linux.git] / net / openvswitch / actions.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31 #include <net/ip.h>
32 #include <net/ipv6.h>
33 #include <net/checksum.h>
34 #include <net/dsfield.h>
35 #include <net/sctp/checksum.h>
36
37 #include "datapath.h"
38 #include "flow.h"
39 #include "vport.h"
40
41 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
42 struct sw_flow_key *key,
43 const struct nlattr *attr, int len);
44
45 struct deferred_action {
46 struct sk_buff *skb;
47 const struct nlattr *actions;
48
49 /* Store pkt_key clone when creating deferred action. */
50 struct sw_flow_key pkt_key;
51 };
52
53 #define DEFERRED_ACTION_FIFO_SIZE 10
54 struct action_fifo {
55 int head;
56 int tail;
57 /* Deferred action fifo queue storage. */
58 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
59 };
60
61 static struct action_fifo __percpu *action_fifos;
62 static DEFINE_PER_CPU(int, exec_actions_level);
63
64 static void action_fifo_init(struct action_fifo *fifo)
65 {
66 fifo->head = 0;
67 fifo->tail = 0;
68 }
69
70 static bool action_fifo_is_empty(struct action_fifo *fifo)
71 {
72 return (fifo->head == fifo->tail);
73 }
74
75 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
76 {
77 if (action_fifo_is_empty(fifo))
78 return NULL;
79
80 return &fifo->fifo[fifo->tail++];
81 }
82
83 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
84 {
85 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
86 return NULL;
87
88 return &fifo->fifo[fifo->head++];
89 }
90
91 /* Return true if fifo is not full */
92 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
93 struct sw_flow_key *key,
94 const struct nlattr *attr)
95 {
96 struct action_fifo *fifo;
97 struct deferred_action *da;
98
99 fifo = this_cpu_ptr(action_fifos);
100 da = action_fifo_put(fifo);
101 if (da) {
102 da->skb = skb;
103 da->actions = attr;
104 da->pkt_key = *key;
105 }
106
107 return da;
108 }
109
110 static int make_writable(struct sk_buff *skb, int write_len)
111 {
112 if (!pskb_may_pull(skb, write_len))
113 return -ENOMEM;
114
115 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
116 return 0;
117
118 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
119 }
120
121 /* remove VLAN header from packet and update csum accordingly. */
122 static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci)
123 {
124 struct vlan_hdr *vhdr;
125 int err;
126
127 err = make_writable(skb, VLAN_ETH_HLEN);
128 if (unlikely(err))
129 return err;
130
131 if (skb->ip_summed == CHECKSUM_COMPLETE)
132 skb->csum = csum_sub(skb->csum, csum_partial(skb->data
133 + (2 * ETH_ALEN), VLAN_HLEN, 0));
134
135 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
136 *current_tci = vhdr->h_vlan_TCI;
137
138 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
139 __skb_pull(skb, VLAN_HLEN);
140
141 vlan_set_encap_proto(skb, vhdr);
142 skb->mac_header += VLAN_HLEN;
143 if (skb_network_offset(skb) < ETH_HLEN)
144 skb_set_network_header(skb, ETH_HLEN);
145 skb_reset_mac_len(skb);
146
147 return 0;
148 }
149
150 static int pop_vlan(struct sk_buff *skb)
151 {
152 __be16 tci;
153 int err;
154
155 if (likely(vlan_tx_tag_present(skb))) {
156 skb->vlan_tci = 0;
157 } else {
158 if (unlikely(skb->protocol != htons(ETH_P_8021Q) ||
159 skb->len < VLAN_ETH_HLEN))
160 return 0;
161
162 err = __pop_vlan_tci(skb, &tci);
163 if (err)
164 return err;
165 }
166 /* move next vlan tag to hw accel tag */
167 if (likely(skb->protocol != htons(ETH_P_8021Q) ||
168 skb->len < VLAN_ETH_HLEN))
169 return 0;
170
171 err = __pop_vlan_tci(skb, &tci);
172 if (unlikely(err))
173 return err;
174
175 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(tci));
176 return 0;
177 }
178
179 static int push_vlan(struct sk_buff *skb, const struct ovs_action_push_vlan *vlan)
180 {
181 if (unlikely(vlan_tx_tag_present(skb))) {
182 u16 current_tag;
183
184 /* push down current VLAN tag */
185 current_tag = vlan_tx_tag_get(skb);
186
187 if (!__vlan_put_tag(skb, skb->vlan_proto, current_tag))
188 return -ENOMEM;
189
190 if (skb->ip_summed == CHECKSUM_COMPLETE)
191 skb->csum = csum_add(skb->csum, csum_partial(skb->data
192 + (2 * ETH_ALEN), VLAN_HLEN, 0));
193
194 }
195 __vlan_hwaccel_put_tag(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
196 return 0;
197 }
198
199 static int set_eth_addr(struct sk_buff *skb,
200 const struct ovs_key_ethernet *eth_key)
201 {
202 int err;
203 err = make_writable(skb, ETH_HLEN);
204 if (unlikely(err))
205 return err;
206
207 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
208
209 ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
210 ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
211
212 ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
213
214 return 0;
215 }
216
217 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
218 __be32 *addr, __be32 new_addr)
219 {
220 int transport_len = skb->len - skb_transport_offset(skb);
221
222 if (nh->protocol == IPPROTO_TCP) {
223 if (likely(transport_len >= sizeof(struct tcphdr)))
224 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
225 *addr, new_addr, 1);
226 } else if (nh->protocol == IPPROTO_UDP) {
227 if (likely(transport_len >= sizeof(struct udphdr))) {
228 struct udphdr *uh = udp_hdr(skb);
229
230 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
231 inet_proto_csum_replace4(&uh->check, skb,
232 *addr, new_addr, 1);
233 if (!uh->check)
234 uh->check = CSUM_MANGLED_0;
235 }
236 }
237 }
238
239 csum_replace4(&nh->check, *addr, new_addr);
240 skb_clear_hash(skb);
241 *addr = new_addr;
242 }
243
244 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
245 __be32 addr[4], const __be32 new_addr[4])
246 {
247 int transport_len = skb->len - skb_transport_offset(skb);
248
249 if (l4_proto == NEXTHDR_TCP) {
250 if (likely(transport_len >= sizeof(struct tcphdr)))
251 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
252 addr, new_addr, 1);
253 } else if (l4_proto == NEXTHDR_UDP) {
254 if (likely(transport_len >= sizeof(struct udphdr))) {
255 struct udphdr *uh = udp_hdr(skb);
256
257 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
258 inet_proto_csum_replace16(&uh->check, skb,
259 addr, new_addr, 1);
260 if (!uh->check)
261 uh->check = CSUM_MANGLED_0;
262 }
263 }
264 } else if (l4_proto == NEXTHDR_ICMP) {
265 if (likely(transport_len >= sizeof(struct icmp6hdr)))
266 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
267 skb, addr, new_addr, 1);
268 }
269 }
270
271 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
272 __be32 addr[4], const __be32 new_addr[4],
273 bool recalculate_csum)
274 {
275 if (recalculate_csum)
276 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
277
278 skb_clear_hash(skb);
279 memcpy(addr, new_addr, sizeof(__be32[4]));
280 }
281
282 static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
283 {
284 nh->priority = tc >> 4;
285 nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
286 }
287
288 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
289 {
290 nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
291 nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
292 nh->flow_lbl[2] = fl & 0x000000FF;
293 }
294
295 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
296 {
297 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
298 nh->ttl = new_ttl;
299 }
300
301 static int set_ipv4(struct sk_buff *skb, const struct ovs_key_ipv4 *ipv4_key)
302 {
303 struct iphdr *nh;
304 int err;
305
306 err = make_writable(skb, skb_network_offset(skb) +
307 sizeof(struct iphdr));
308 if (unlikely(err))
309 return err;
310
311 nh = ip_hdr(skb);
312
313 if (ipv4_key->ipv4_src != nh->saddr)
314 set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
315
316 if (ipv4_key->ipv4_dst != nh->daddr)
317 set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
318
319 if (ipv4_key->ipv4_tos != nh->tos)
320 ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
321
322 if (ipv4_key->ipv4_ttl != nh->ttl)
323 set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
324
325 return 0;
326 }
327
328 static int set_ipv6(struct sk_buff *skb, const struct ovs_key_ipv6 *ipv6_key)
329 {
330 struct ipv6hdr *nh;
331 int err;
332 __be32 *saddr;
333 __be32 *daddr;
334
335 err = make_writable(skb, skb_network_offset(skb) +
336 sizeof(struct ipv6hdr));
337 if (unlikely(err))
338 return err;
339
340 nh = ipv6_hdr(skb);
341 saddr = (__be32 *)&nh->saddr;
342 daddr = (__be32 *)&nh->daddr;
343
344 if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src)))
345 set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
346 ipv6_key->ipv6_src, true);
347
348 if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
349 unsigned int offset = 0;
350 int flags = IP6_FH_F_SKIP_RH;
351 bool recalc_csum = true;
352
353 if (ipv6_ext_hdr(nh->nexthdr))
354 recalc_csum = ipv6_find_hdr(skb, &offset,
355 NEXTHDR_ROUTING, NULL,
356 &flags) != NEXTHDR_ROUTING;
357
358 set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
359 ipv6_key->ipv6_dst, recalc_csum);
360 }
361
362 set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
363 set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
364 nh->hop_limit = ipv6_key->ipv6_hlimit;
365
366 return 0;
367 }
368
369 /* Must follow make_writable() since that can move the skb data. */
370 static void set_tp_port(struct sk_buff *skb, __be16 *port,
371 __be16 new_port, __sum16 *check)
372 {
373 inet_proto_csum_replace2(check, skb, *port, new_port, 0);
374 *port = new_port;
375 skb_clear_hash(skb);
376 }
377
378 static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
379 {
380 struct udphdr *uh = udp_hdr(skb);
381
382 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
383 set_tp_port(skb, port, new_port, &uh->check);
384
385 if (!uh->check)
386 uh->check = CSUM_MANGLED_0;
387 } else {
388 *port = new_port;
389 skb_clear_hash(skb);
390 }
391 }
392
393 static int set_udp(struct sk_buff *skb, const struct ovs_key_udp *udp_port_key)
394 {
395 struct udphdr *uh;
396 int err;
397
398 err = make_writable(skb, skb_transport_offset(skb) +
399 sizeof(struct udphdr));
400 if (unlikely(err))
401 return err;
402
403 uh = udp_hdr(skb);
404 if (udp_port_key->udp_src != uh->source)
405 set_udp_port(skb, &uh->source, udp_port_key->udp_src);
406
407 if (udp_port_key->udp_dst != uh->dest)
408 set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
409
410 return 0;
411 }
412
413 static int set_tcp(struct sk_buff *skb, const struct ovs_key_tcp *tcp_port_key)
414 {
415 struct tcphdr *th;
416 int err;
417
418 err = make_writable(skb, skb_transport_offset(skb) +
419 sizeof(struct tcphdr));
420 if (unlikely(err))
421 return err;
422
423 th = tcp_hdr(skb);
424 if (tcp_port_key->tcp_src != th->source)
425 set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
426
427 if (tcp_port_key->tcp_dst != th->dest)
428 set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
429
430 return 0;
431 }
432
433 static int set_sctp(struct sk_buff *skb,
434 const struct ovs_key_sctp *sctp_port_key)
435 {
436 struct sctphdr *sh;
437 int err;
438 unsigned int sctphoff = skb_transport_offset(skb);
439
440 err = make_writable(skb, sctphoff + sizeof(struct sctphdr));
441 if (unlikely(err))
442 return err;
443
444 sh = sctp_hdr(skb);
445 if (sctp_port_key->sctp_src != sh->source ||
446 sctp_port_key->sctp_dst != sh->dest) {
447 __le32 old_correct_csum, new_csum, old_csum;
448
449 old_csum = sh->checksum;
450 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
451
452 sh->source = sctp_port_key->sctp_src;
453 sh->dest = sctp_port_key->sctp_dst;
454
455 new_csum = sctp_compute_cksum(skb, sctphoff);
456
457 /* Carry any checksum errors through. */
458 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
459
460 skb_clear_hash(skb);
461 }
462
463 return 0;
464 }
465
466 static int do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
467 {
468 struct vport *vport;
469
470 if (unlikely(!skb))
471 return -ENOMEM;
472
473 vport = ovs_vport_rcu(dp, out_port);
474 if (unlikely(!vport)) {
475 kfree_skb(skb);
476 return -ENODEV;
477 }
478
479 ovs_vport_send(vport, skb);
480 return 0;
481 }
482
483 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
484 struct sw_flow_key *key, const struct nlattr *attr)
485 {
486 struct dp_upcall_info upcall;
487 const struct nlattr *a;
488 int rem;
489
490 upcall.cmd = OVS_PACKET_CMD_ACTION;
491 upcall.key = key;
492 upcall.userdata = NULL;
493 upcall.portid = 0;
494
495 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
496 a = nla_next(a, &rem)) {
497 switch (nla_type(a)) {
498 case OVS_USERSPACE_ATTR_USERDATA:
499 upcall.userdata = a;
500 break;
501
502 case OVS_USERSPACE_ATTR_PID:
503 upcall.portid = nla_get_u32(a);
504 break;
505 }
506 }
507
508 return ovs_dp_upcall(dp, skb, &upcall);
509 }
510
511 static bool last_action(const struct nlattr *a, int rem)
512 {
513 return a->nla_len == rem;
514 }
515
516 static int sample(struct datapath *dp, struct sk_buff *skb,
517 struct sw_flow_key *key, const struct nlattr *attr)
518 {
519 const struct nlattr *acts_list = NULL;
520 const struct nlattr *a;
521 int rem;
522
523 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
524 a = nla_next(a, &rem)) {
525 switch (nla_type(a)) {
526 case OVS_SAMPLE_ATTR_PROBABILITY:
527 if (prandom_u32() >= nla_get_u32(a))
528 return 0;
529 break;
530
531 case OVS_SAMPLE_ATTR_ACTIONS:
532 acts_list = a;
533 break;
534 }
535 }
536
537 rem = nla_len(acts_list);
538 a = nla_data(acts_list);
539
540 /* Actions list is empty, do nothing */
541 if (unlikely(!rem))
542 return 0;
543
544 /* The only known usage of sample action is having a single user-space
545 * action. Treat this usage as a special case.
546 * The output_userspace() should clone the skb to be sent to the
547 * user space. This skb will be consumed by its caller.
548 */
549 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
550 last_action(a, rem)))
551 return output_userspace(dp, skb, key, a);
552
553 skb = skb_clone(skb, GFP_ATOMIC);
554 if (!skb)
555 /* Skip the sample action when out of memory. */
556 return 0;
557
558 if (!add_deferred_actions(skb, key, a)) {
559 if (net_ratelimit())
560 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
561 ovs_dp_name(dp));
562
563 kfree_skb(skb);
564 }
565 return 0;
566 }
567
568 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
569 const struct nlattr *attr)
570 {
571 struct ovs_action_hash *hash_act = nla_data(attr);
572 u32 hash = 0;
573
574 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
575 hash = skb_get_hash(skb);
576 hash = jhash_1word(hash, hash_act->hash_basis);
577 if (!hash)
578 hash = 0x1;
579
580 key->ovs_flow_hash = hash;
581 }
582
583 static int execute_set_action(struct sk_buff *skb,
584 const struct nlattr *nested_attr)
585 {
586 int err = 0;
587
588 switch (nla_type(nested_attr)) {
589 case OVS_KEY_ATTR_PRIORITY:
590 skb->priority = nla_get_u32(nested_attr);
591 break;
592
593 case OVS_KEY_ATTR_SKB_MARK:
594 skb->mark = nla_get_u32(nested_attr);
595 break;
596
597 case OVS_KEY_ATTR_TUNNEL_INFO:
598 OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
599 break;
600
601 case OVS_KEY_ATTR_ETHERNET:
602 err = set_eth_addr(skb, nla_data(nested_attr));
603 break;
604
605 case OVS_KEY_ATTR_IPV4:
606 err = set_ipv4(skb, nla_data(nested_attr));
607 break;
608
609 case OVS_KEY_ATTR_IPV6:
610 err = set_ipv6(skb, nla_data(nested_attr));
611 break;
612
613 case OVS_KEY_ATTR_TCP:
614 err = set_tcp(skb, nla_data(nested_attr));
615 break;
616
617 case OVS_KEY_ATTR_UDP:
618 err = set_udp(skb, nla_data(nested_attr));
619 break;
620
621 case OVS_KEY_ATTR_SCTP:
622 err = set_sctp(skb, nla_data(nested_attr));
623 break;
624 }
625
626 return err;
627 }
628
629 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
630 struct sw_flow_key *key,
631 const struct nlattr *a, int rem)
632 {
633 struct deferred_action *da;
634 int err;
635
636 err = ovs_flow_key_update(skb, key);
637 if (err)
638 return err;
639
640 if (!last_action(a, rem)) {
641 /* Recirc action is the not the last action
642 * of the action list, need to clone the skb.
643 */
644 skb = skb_clone(skb, GFP_ATOMIC);
645
646 /* Skip the recirc action when out of memory, but
647 * continue on with the rest of the action list.
648 */
649 if (!skb)
650 return 0;
651 }
652
653 da = add_deferred_actions(skb, key, NULL);
654 if (da) {
655 da->pkt_key.recirc_id = nla_get_u32(a);
656 } else {
657 kfree_skb(skb);
658
659 if (net_ratelimit())
660 pr_warn("%s: deferred action limit reached, drop recirc action\n",
661 ovs_dp_name(dp));
662 }
663
664 return 0;
665 }
666
667 /* Execute a list of actions against 'skb'. */
668 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
669 struct sw_flow_key *key,
670 const struct nlattr *attr, int len)
671 {
672 /* Every output action needs a separate clone of 'skb', but the common
673 * case is just a single output action, so that doing a clone and
674 * then freeing the original skbuff is wasteful. So the following code
675 * is slightly obscure just to avoid that. */
676 int prev_port = -1;
677 const struct nlattr *a;
678 int rem;
679
680 for (a = attr, rem = len; rem > 0;
681 a = nla_next(a, &rem)) {
682 int err = 0;
683
684 if (prev_port != -1) {
685 do_output(dp, skb_clone(skb, GFP_ATOMIC), prev_port);
686 prev_port = -1;
687 }
688
689 switch (nla_type(a)) {
690 case OVS_ACTION_ATTR_OUTPUT:
691 prev_port = nla_get_u32(a);
692 break;
693
694 case OVS_ACTION_ATTR_USERSPACE:
695 output_userspace(dp, skb, key, a);
696 break;
697
698 case OVS_ACTION_ATTR_HASH:
699 execute_hash(skb, key, a);
700 break;
701
702 case OVS_ACTION_ATTR_PUSH_VLAN:
703 err = push_vlan(skb, nla_data(a));
704 if (unlikely(err)) /* skb already freed. */
705 return err;
706 break;
707
708 case OVS_ACTION_ATTR_POP_VLAN:
709 err = pop_vlan(skb);
710 break;
711
712 case OVS_ACTION_ATTR_RECIRC:
713 err = execute_recirc(dp, skb, key, a, rem);
714 if (last_action(a, rem)) {
715 /* If this is the last action, the skb has
716 * been consumed or freed.
717 * Return immediately.
718 */
719 return err;
720 }
721 break;
722
723 case OVS_ACTION_ATTR_SET:
724 err = execute_set_action(skb, nla_data(a));
725 break;
726
727 case OVS_ACTION_ATTR_SAMPLE:
728 err = sample(dp, skb, key, a);
729 break;
730 }
731
732 if (unlikely(err)) {
733 kfree_skb(skb);
734 return err;
735 }
736 }
737
738 if (prev_port != -1)
739 do_output(dp, skb, prev_port);
740 else
741 consume_skb(skb);
742
743 return 0;
744 }
745
746 static void process_deferred_actions(struct datapath *dp)
747 {
748 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
749
750 /* Do not touch the FIFO in case there is no deferred actions. */
751 if (action_fifo_is_empty(fifo))
752 return;
753
754 /* Finishing executing all deferred actions. */
755 do {
756 struct deferred_action *da = action_fifo_get(fifo);
757 struct sk_buff *skb = da->skb;
758 struct sw_flow_key *key = &da->pkt_key;
759 const struct nlattr *actions = da->actions;
760
761 if (actions)
762 do_execute_actions(dp, skb, key, actions,
763 nla_len(actions));
764 else
765 ovs_dp_process_packet(skb, key);
766 } while (!action_fifo_is_empty(fifo));
767
768 /* Reset FIFO for the next packet. */
769 action_fifo_init(fifo);
770 }
771
772 /* Execute a list of actions against 'skb'. */
773 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
774 struct sw_flow_key *key)
775 {
776 int level = this_cpu_read(exec_actions_level);
777 struct sw_flow_actions *acts;
778 int err;
779
780 acts = rcu_dereference(OVS_CB(skb)->flow->sf_acts);
781
782 this_cpu_inc(exec_actions_level);
783 OVS_CB(skb)->egress_tun_info = NULL;
784 err = do_execute_actions(dp, skb, key,
785 acts->actions, acts->actions_len);
786
787 if (!level)
788 process_deferred_actions(dp);
789
790 this_cpu_dec(exec_actions_level);
791 return err;
792 }
793
794 int action_fifos_init(void)
795 {
796 action_fifos = alloc_percpu(struct action_fifo);
797 if (!action_fifos)
798 return -ENOMEM;
799
800 return 0;
801 }
802
803 void action_fifos_exit(void)
804 {
805 free_percpu(action_fifos);
806 }
This page took 0.062129 seconds and 5 git commands to generate.