tunnels: harmonize cleanup done on skb on xmit path
[deliverable/linux.git] / net / openvswitch / flow.c
1 /*
2 * Copyright (c) 2007-2013 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/sctp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ip_tunnels.h>
45 #include <net/ipv6.h>
46 #include <net/ndisc.h>
47
48 static struct kmem_cache *flow_cache;
49
50 static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask,
51 struct sw_flow_key_range *range, u8 val);
52
53 static void update_range__(struct sw_flow_match *match,
54 size_t offset, size_t size, bool is_mask)
55 {
56 struct sw_flow_key_range *range = NULL;
57 size_t start = rounddown(offset, sizeof(long));
58 size_t end = roundup(offset + size, sizeof(long));
59
60 if (!is_mask)
61 range = &match->range;
62 else if (match->mask)
63 range = &match->mask->range;
64
65 if (!range)
66 return;
67
68 if (range->start == range->end) {
69 range->start = start;
70 range->end = end;
71 return;
72 }
73
74 if (range->start > start)
75 range->start = start;
76
77 if (range->end < end)
78 range->end = end;
79 }
80
81 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
82 do { \
83 update_range__(match, offsetof(struct sw_flow_key, field), \
84 sizeof((match)->key->field), is_mask); \
85 if (is_mask) { \
86 if ((match)->mask) \
87 (match)->mask->key.field = value; \
88 } else { \
89 (match)->key->field = value; \
90 } \
91 } while (0)
92
93 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
94 do { \
95 update_range__(match, offsetof(struct sw_flow_key, field), \
96 len, is_mask); \
97 if (is_mask) { \
98 if ((match)->mask) \
99 memcpy(&(match)->mask->key.field, value_p, len);\
100 } else { \
101 memcpy(&(match)->key->field, value_p, len); \
102 } \
103 } while (0)
104
105 static u16 range_n_bytes(const struct sw_flow_key_range *range)
106 {
107 return range->end - range->start;
108 }
109
110 void ovs_match_init(struct sw_flow_match *match,
111 struct sw_flow_key *key,
112 struct sw_flow_mask *mask)
113 {
114 memset(match, 0, sizeof(*match));
115 match->key = key;
116 match->mask = mask;
117
118 memset(key, 0, sizeof(*key));
119
120 if (mask) {
121 memset(&mask->key, 0, sizeof(mask->key));
122 mask->range.start = mask->range.end = 0;
123 }
124 }
125
126 static bool ovs_match_validate(const struct sw_flow_match *match,
127 u64 key_attrs, u64 mask_attrs)
128 {
129 u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
130 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
131
132 /* The following mask attributes allowed only if they
133 * pass the validation tests. */
134 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
135 | (1 << OVS_KEY_ATTR_IPV6)
136 | (1 << OVS_KEY_ATTR_TCP)
137 | (1 << OVS_KEY_ATTR_UDP)
138 | (1 << OVS_KEY_ATTR_SCTP)
139 | (1 << OVS_KEY_ATTR_ICMP)
140 | (1 << OVS_KEY_ATTR_ICMPV6)
141 | (1 << OVS_KEY_ATTR_ARP)
142 | (1 << OVS_KEY_ATTR_ND));
143
144 /* Always allowed mask fields. */
145 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
146 | (1 << OVS_KEY_ATTR_IN_PORT)
147 | (1 << OVS_KEY_ATTR_ETHERTYPE));
148
149 /* Check key attributes. */
150 if (match->key->eth.type == htons(ETH_P_ARP)
151 || match->key->eth.type == htons(ETH_P_RARP)) {
152 key_expected |= 1 << OVS_KEY_ATTR_ARP;
153 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
154 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
155 }
156
157 if (match->key->eth.type == htons(ETH_P_IP)) {
158 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
159 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
160 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
161
162 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
163 if (match->key->ip.proto == IPPROTO_UDP) {
164 key_expected |= 1 << OVS_KEY_ATTR_UDP;
165 if (match->mask && (match->mask->key.ip.proto == 0xff))
166 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
167 }
168
169 if (match->key->ip.proto == IPPROTO_SCTP) {
170 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
171 if (match->mask && (match->mask->key.ip.proto == 0xff))
172 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
173 }
174
175 if (match->key->ip.proto == IPPROTO_TCP) {
176 key_expected |= 1 << OVS_KEY_ATTR_TCP;
177 if (match->mask && (match->mask->key.ip.proto == 0xff))
178 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
179 }
180
181 if (match->key->ip.proto == IPPROTO_ICMP) {
182 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
183 if (match->mask && (match->mask->key.ip.proto == 0xff))
184 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
185 }
186 }
187 }
188
189 if (match->key->eth.type == htons(ETH_P_IPV6)) {
190 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
191 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
192 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
193
194 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
195 if (match->key->ip.proto == IPPROTO_UDP) {
196 key_expected |= 1 << OVS_KEY_ATTR_UDP;
197 if (match->mask && (match->mask->key.ip.proto == 0xff))
198 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
199 }
200
201 if (match->key->ip.proto == IPPROTO_SCTP) {
202 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
203 if (match->mask && (match->mask->key.ip.proto == 0xff))
204 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
205 }
206
207 if (match->key->ip.proto == IPPROTO_TCP) {
208 key_expected |= 1 << OVS_KEY_ATTR_TCP;
209 if (match->mask && (match->mask->key.ip.proto == 0xff))
210 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
211 }
212
213 if (match->key->ip.proto == IPPROTO_ICMPV6) {
214 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
215 if (match->mask && (match->mask->key.ip.proto == 0xff))
216 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
217
218 if (match->key->ipv6.tp.src ==
219 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
220 match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
221 key_expected |= 1 << OVS_KEY_ATTR_ND;
222 if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff)))
223 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
224 }
225 }
226 }
227 }
228
229 if ((key_attrs & key_expected) != key_expected) {
230 /* Key attributes check failed. */
231 OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
232 key_attrs, key_expected);
233 return false;
234 }
235
236 if ((mask_attrs & mask_allowed) != mask_attrs) {
237 /* Mask attributes check failed. */
238 OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
239 mask_attrs, mask_allowed);
240 return false;
241 }
242
243 return true;
244 }
245
246 static int check_header(struct sk_buff *skb, int len)
247 {
248 if (unlikely(skb->len < len))
249 return -EINVAL;
250 if (unlikely(!pskb_may_pull(skb, len)))
251 return -ENOMEM;
252 return 0;
253 }
254
255 static bool arphdr_ok(struct sk_buff *skb)
256 {
257 return pskb_may_pull(skb, skb_network_offset(skb) +
258 sizeof(struct arp_eth_header));
259 }
260
261 static int check_iphdr(struct sk_buff *skb)
262 {
263 unsigned int nh_ofs = skb_network_offset(skb);
264 unsigned int ip_len;
265 int err;
266
267 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
268 if (unlikely(err))
269 return err;
270
271 ip_len = ip_hdrlen(skb);
272 if (unlikely(ip_len < sizeof(struct iphdr) ||
273 skb->len < nh_ofs + ip_len))
274 return -EINVAL;
275
276 skb_set_transport_header(skb, nh_ofs + ip_len);
277 return 0;
278 }
279
280 static bool tcphdr_ok(struct sk_buff *skb)
281 {
282 int th_ofs = skb_transport_offset(skb);
283 int tcp_len;
284
285 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
286 return false;
287
288 tcp_len = tcp_hdrlen(skb);
289 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
290 skb->len < th_ofs + tcp_len))
291 return false;
292
293 return true;
294 }
295
296 static bool udphdr_ok(struct sk_buff *skb)
297 {
298 return pskb_may_pull(skb, skb_transport_offset(skb) +
299 sizeof(struct udphdr));
300 }
301
302 static bool sctphdr_ok(struct sk_buff *skb)
303 {
304 return pskb_may_pull(skb, skb_transport_offset(skb) +
305 sizeof(struct sctphdr));
306 }
307
308 static bool icmphdr_ok(struct sk_buff *skb)
309 {
310 return pskb_may_pull(skb, skb_transport_offset(skb) +
311 sizeof(struct icmphdr));
312 }
313
314 u64 ovs_flow_used_time(unsigned long flow_jiffies)
315 {
316 struct timespec cur_ts;
317 u64 cur_ms, idle_ms;
318
319 ktime_get_ts(&cur_ts);
320 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
321 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
322 cur_ts.tv_nsec / NSEC_PER_MSEC;
323
324 return cur_ms - idle_ms;
325 }
326
327 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
328 {
329 unsigned int nh_ofs = skb_network_offset(skb);
330 unsigned int nh_len;
331 int payload_ofs;
332 struct ipv6hdr *nh;
333 uint8_t nexthdr;
334 __be16 frag_off;
335 int err;
336
337 err = check_header(skb, nh_ofs + sizeof(*nh));
338 if (unlikely(err))
339 return err;
340
341 nh = ipv6_hdr(skb);
342 nexthdr = nh->nexthdr;
343 payload_ofs = (u8 *)(nh + 1) - skb->data;
344
345 key->ip.proto = NEXTHDR_NONE;
346 key->ip.tos = ipv6_get_dsfield(nh);
347 key->ip.ttl = nh->hop_limit;
348 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
349 key->ipv6.addr.src = nh->saddr;
350 key->ipv6.addr.dst = nh->daddr;
351
352 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
353 if (unlikely(payload_ofs < 0))
354 return -EINVAL;
355
356 if (frag_off) {
357 if (frag_off & htons(~0x7))
358 key->ip.frag = OVS_FRAG_TYPE_LATER;
359 else
360 key->ip.frag = OVS_FRAG_TYPE_FIRST;
361 }
362
363 nh_len = payload_ofs - nh_ofs;
364 skb_set_transport_header(skb, nh_ofs + nh_len);
365 key->ip.proto = nexthdr;
366 return nh_len;
367 }
368
369 static bool icmp6hdr_ok(struct sk_buff *skb)
370 {
371 return pskb_may_pull(skb, skb_transport_offset(skb) +
372 sizeof(struct icmp6hdr));
373 }
374
375 void ovs_flow_key_mask(struct sw_flow_key *dst, const struct sw_flow_key *src,
376 const struct sw_flow_mask *mask)
377 {
378 const long *m = (long *)((u8 *)&mask->key + mask->range.start);
379 const long *s = (long *)((u8 *)src + mask->range.start);
380 long *d = (long *)((u8 *)dst + mask->range.start);
381 int i;
382
383 /* The memory outside of the 'mask->range' are not set since
384 * further operations on 'dst' only uses contents within
385 * 'mask->range'.
386 */
387 for (i = 0; i < range_n_bytes(&mask->range); i += sizeof(long))
388 *d++ = *s++ & *m++;
389 }
390
391 #define TCP_FLAGS_OFFSET 13
392 #define TCP_FLAG_MASK 0x3f
393
394 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
395 {
396 u8 tcp_flags = 0;
397
398 if ((flow->key.eth.type == htons(ETH_P_IP) ||
399 flow->key.eth.type == htons(ETH_P_IPV6)) &&
400 flow->key.ip.proto == IPPROTO_TCP &&
401 likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
402 u8 *tcp = (u8 *)tcp_hdr(skb);
403 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
404 }
405
406 spin_lock(&flow->lock);
407 flow->used = jiffies;
408 flow->packet_count++;
409 flow->byte_count += skb->len;
410 flow->tcp_flags |= tcp_flags;
411 spin_unlock(&flow->lock);
412 }
413
414 struct sw_flow_actions *ovs_flow_actions_alloc(int size)
415 {
416 struct sw_flow_actions *sfa;
417
418 if (size > MAX_ACTIONS_BUFSIZE)
419 return ERR_PTR(-EINVAL);
420
421 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
422 if (!sfa)
423 return ERR_PTR(-ENOMEM);
424
425 sfa->actions_len = 0;
426 return sfa;
427 }
428
429 struct sw_flow *ovs_flow_alloc(void)
430 {
431 struct sw_flow *flow;
432
433 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
434 if (!flow)
435 return ERR_PTR(-ENOMEM);
436
437 spin_lock_init(&flow->lock);
438 flow->sf_acts = NULL;
439 flow->mask = NULL;
440
441 return flow;
442 }
443
444 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
445 {
446 hash = jhash_1word(hash, table->hash_seed);
447 return flex_array_get(table->buckets,
448 (hash & (table->n_buckets - 1)));
449 }
450
451 static struct flex_array *alloc_buckets(unsigned int n_buckets)
452 {
453 struct flex_array *buckets;
454 int i, err;
455
456 buckets = flex_array_alloc(sizeof(struct hlist_head),
457 n_buckets, GFP_KERNEL);
458 if (!buckets)
459 return NULL;
460
461 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
462 if (err) {
463 flex_array_free(buckets);
464 return NULL;
465 }
466
467 for (i = 0; i < n_buckets; i++)
468 INIT_HLIST_HEAD((struct hlist_head *)
469 flex_array_get(buckets, i));
470
471 return buckets;
472 }
473
474 static void free_buckets(struct flex_array *buckets)
475 {
476 flex_array_free(buckets);
477 }
478
479 static struct flow_table *__flow_tbl_alloc(int new_size)
480 {
481 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
482
483 if (!table)
484 return NULL;
485
486 table->buckets = alloc_buckets(new_size);
487
488 if (!table->buckets) {
489 kfree(table);
490 return NULL;
491 }
492 table->n_buckets = new_size;
493 table->count = 0;
494 table->node_ver = 0;
495 table->keep_flows = false;
496 get_random_bytes(&table->hash_seed, sizeof(u32));
497 table->mask_list = NULL;
498
499 return table;
500 }
501
502 static void __flow_tbl_destroy(struct flow_table *table)
503 {
504 int i;
505
506 if (table->keep_flows)
507 goto skip_flows;
508
509 for (i = 0; i < table->n_buckets; i++) {
510 struct sw_flow *flow;
511 struct hlist_head *head = flex_array_get(table->buckets, i);
512 struct hlist_node *n;
513 int ver = table->node_ver;
514
515 hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) {
516 hlist_del(&flow->hash_node[ver]);
517 ovs_flow_free(flow, false);
518 }
519 }
520
521 BUG_ON(!list_empty(table->mask_list));
522 kfree(table->mask_list);
523
524 skip_flows:
525 free_buckets(table->buckets);
526 kfree(table);
527 }
528
529 struct flow_table *ovs_flow_tbl_alloc(int new_size)
530 {
531 struct flow_table *table = __flow_tbl_alloc(new_size);
532
533 if (!table)
534 return NULL;
535
536 table->mask_list = kmalloc(sizeof(struct list_head), GFP_KERNEL);
537 if (!table->mask_list) {
538 table->keep_flows = true;
539 __flow_tbl_destroy(table);
540 return NULL;
541 }
542 INIT_LIST_HEAD(table->mask_list);
543
544 return table;
545 }
546
547 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
548 {
549 struct flow_table *table = container_of(rcu, struct flow_table, rcu);
550
551 __flow_tbl_destroy(table);
552 }
553
554 void ovs_flow_tbl_destroy(struct flow_table *table, bool deferred)
555 {
556 if (!table)
557 return;
558
559 if (deferred)
560 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
561 else
562 __flow_tbl_destroy(table);
563 }
564
565 struct sw_flow *ovs_flow_dump_next(struct flow_table *table, u32 *bucket, u32 *last)
566 {
567 struct sw_flow *flow;
568 struct hlist_head *head;
569 int ver;
570 int i;
571
572 ver = table->node_ver;
573 while (*bucket < table->n_buckets) {
574 i = 0;
575 head = flex_array_get(table->buckets, *bucket);
576 hlist_for_each_entry_rcu(flow, head, hash_node[ver]) {
577 if (i < *last) {
578 i++;
579 continue;
580 }
581 *last = i + 1;
582 return flow;
583 }
584 (*bucket)++;
585 *last = 0;
586 }
587
588 return NULL;
589 }
590
591 static void __tbl_insert(struct flow_table *table, struct sw_flow *flow)
592 {
593 struct hlist_head *head;
594
595 head = find_bucket(table, flow->hash);
596 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
597
598 table->count++;
599 }
600
601 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
602 {
603 int old_ver;
604 int i;
605
606 old_ver = old->node_ver;
607 new->node_ver = !old_ver;
608
609 /* Insert in new table. */
610 for (i = 0; i < old->n_buckets; i++) {
611 struct sw_flow *flow;
612 struct hlist_head *head;
613
614 head = flex_array_get(old->buckets, i);
615
616 hlist_for_each_entry(flow, head, hash_node[old_ver])
617 __tbl_insert(new, flow);
618 }
619
620 new->mask_list = old->mask_list;
621 old->keep_flows = true;
622 }
623
624 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
625 {
626 struct flow_table *new_table;
627
628 new_table = __flow_tbl_alloc(n_buckets);
629 if (!new_table)
630 return ERR_PTR(-ENOMEM);
631
632 flow_table_copy_flows(table, new_table);
633
634 return new_table;
635 }
636
637 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
638 {
639 return __flow_tbl_rehash(table, table->n_buckets);
640 }
641
642 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
643 {
644 return __flow_tbl_rehash(table, table->n_buckets * 2);
645 }
646
647 static void __flow_free(struct sw_flow *flow)
648 {
649 kfree((struct sf_flow_acts __force *)flow->sf_acts);
650 kmem_cache_free(flow_cache, flow);
651 }
652
653 static void rcu_free_flow_callback(struct rcu_head *rcu)
654 {
655 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
656
657 __flow_free(flow);
658 }
659
660 void ovs_flow_free(struct sw_flow *flow, bool deferred)
661 {
662 if (!flow)
663 return;
664
665 ovs_sw_flow_mask_del_ref(flow->mask, deferred);
666
667 if (deferred)
668 call_rcu(&flow->rcu, rcu_free_flow_callback);
669 else
670 __flow_free(flow);
671 }
672
673 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
674 * The caller must hold rcu_read_lock for this to be sensible. */
675 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
676 {
677 kfree_rcu(sf_acts, rcu);
678 }
679
680 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
681 {
682 struct qtag_prefix {
683 __be16 eth_type; /* ETH_P_8021Q */
684 __be16 tci;
685 };
686 struct qtag_prefix *qp;
687
688 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
689 return 0;
690
691 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
692 sizeof(__be16))))
693 return -ENOMEM;
694
695 qp = (struct qtag_prefix *) skb->data;
696 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
697 __skb_pull(skb, sizeof(struct qtag_prefix));
698
699 return 0;
700 }
701
702 static __be16 parse_ethertype(struct sk_buff *skb)
703 {
704 struct llc_snap_hdr {
705 u8 dsap; /* Always 0xAA */
706 u8 ssap; /* Always 0xAA */
707 u8 ctrl;
708 u8 oui[3];
709 __be16 ethertype;
710 };
711 struct llc_snap_hdr *llc;
712 __be16 proto;
713
714 proto = *(__be16 *) skb->data;
715 __skb_pull(skb, sizeof(__be16));
716
717 if (ntohs(proto) >= ETH_P_802_3_MIN)
718 return proto;
719
720 if (skb->len < sizeof(struct llc_snap_hdr))
721 return htons(ETH_P_802_2);
722
723 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
724 return htons(0);
725
726 llc = (struct llc_snap_hdr *) skb->data;
727 if (llc->dsap != LLC_SAP_SNAP ||
728 llc->ssap != LLC_SAP_SNAP ||
729 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
730 return htons(ETH_P_802_2);
731
732 __skb_pull(skb, sizeof(struct llc_snap_hdr));
733
734 if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
735 return llc->ethertype;
736
737 return htons(ETH_P_802_2);
738 }
739
740 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
741 int nh_len)
742 {
743 struct icmp6hdr *icmp = icmp6_hdr(skb);
744
745 /* The ICMPv6 type and code fields use the 16-bit transport port
746 * fields, so we need to store them in 16-bit network byte order.
747 */
748 key->ipv6.tp.src = htons(icmp->icmp6_type);
749 key->ipv6.tp.dst = htons(icmp->icmp6_code);
750
751 if (icmp->icmp6_code == 0 &&
752 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
753 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
754 int icmp_len = skb->len - skb_transport_offset(skb);
755 struct nd_msg *nd;
756 int offset;
757
758 /* In order to process neighbor discovery options, we need the
759 * entire packet.
760 */
761 if (unlikely(icmp_len < sizeof(*nd)))
762 return 0;
763
764 if (unlikely(skb_linearize(skb)))
765 return -ENOMEM;
766
767 nd = (struct nd_msg *)skb_transport_header(skb);
768 key->ipv6.nd.target = nd->target;
769
770 icmp_len -= sizeof(*nd);
771 offset = 0;
772 while (icmp_len >= 8) {
773 struct nd_opt_hdr *nd_opt =
774 (struct nd_opt_hdr *)(nd->opt + offset);
775 int opt_len = nd_opt->nd_opt_len * 8;
776
777 if (unlikely(!opt_len || opt_len > icmp_len))
778 return 0;
779
780 /* Store the link layer address if the appropriate
781 * option is provided. It is considered an error if
782 * the same link layer option is specified twice.
783 */
784 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
785 && opt_len == 8) {
786 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
787 goto invalid;
788 memcpy(key->ipv6.nd.sll,
789 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
790 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
791 && opt_len == 8) {
792 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
793 goto invalid;
794 memcpy(key->ipv6.nd.tll,
795 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
796 }
797
798 icmp_len -= opt_len;
799 offset += opt_len;
800 }
801 }
802
803 return 0;
804
805 invalid:
806 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
807 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
808 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
809
810 return 0;
811 }
812
813 /**
814 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
815 * @skb: sk_buff that contains the frame, with skb->data pointing to the
816 * Ethernet header
817 * @in_port: port number on which @skb was received.
818 * @key: output flow key
819 *
820 * The caller must ensure that skb->len >= ETH_HLEN.
821 *
822 * Returns 0 if successful, otherwise a negative errno value.
823 *
824 * Initializes @skb header pointers as follows:
825 *
826 * - skb->mac_header: the Ethernet header.
827 *
828 * - skb->network_header: just past the Ethernet header, or just past the
829 * VLAN header, to the first byte of the Ethernet payload.
830 *
831 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
832 * on output, then just past the IP header, if one is present and
833 * of a correct length, otherwise the same as skb->network_header.
834 * For other key->eth.type values it is left untouched.
835 */
836 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key)
837 {
838 int error;
839 struct ethhdr *eth;
840
841 memset(key, 0, sizeof(*key));
842
843 key->phy.priority = skb->priority;
844 if (OVS_CB(skb)->tun_key)
845 memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key));
846 key->phy.in_port = in_port;
847 key->phy.skb_mark = skb->mark;
848
849 skb_reset_mac_header(skb);
850
851 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
852 * header in the linear data area.
853 */
854 eth = eth_hdr(skb);
855 memcpy(key->eth.src, eth->h_source, ETH_ALEN);
856 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
857
858 __skb_pull(skb, 2 * ETH_ALEN);
859 /* We are going to push all headers that we pull, so no need to
860 * update skb->csum here.
861 */
862
863 if (vlan_tx_tag_present(skb))
864 key->eth.tci = htons(skb->vlan_tci);
865 else if (eth->h_proto == htons(ETH_P_8021Q))
866 if (unlikely(parse_vlan(skb, key)))
867 return -ENOMEM;
868
869 key->eth.type = parse_ethertype(skb);
870 if (unlikely(key->eth.type == htons(0)))
871 return -ENOMEM;
872
873 skb_reset_network_header(skb);
874 __skb_push(skb, skb->data - skb_mac_header(skb));
875
876 /* Network layer. */
877 if (key->eth.type == htons(ETH_P_IP)) {
878 struct iphdr *nh;
879 __be16 offset;
880
881 error = check_iphdr(skb);
882 if (unlikely(error)) {
883 if (error == -EINVAL) {
884 skb->transport_header = skb->network_header;
885 error = 0;
886 }
887 return error;
888 }
889
890 nh = ip_hdr(skb);
891 key->ipv4.addr.src = nh->saddr;
892 key->ipv4.addr.dst = nh->daddr;
893
894 key->ip.proto = nh->protocol;
895 key->ip.tos = nh->tos;
896 key->ip.ttl = nh->ttl;
897
898 offset = nh->frag_off & htons(IP_OFFSET);
899 if (offset) {
900 key->ip.frag = OVS_FRAG_TYPE_LATER;
901 return 0;
902 }
903 if (nh->frag_off & htons(IP_MF) ||
904 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
905 key->ip.frag = OVS_FRAG_TYPE_FIRST;
906
907 /* Transport layer. */
908 if (key->ip.proto == IPPROTO_TCP) {
909 if (tcphdr_ok(skb)) {
910 struct tcphdr *tcp = tcp_hdr(skb);
911 key->ipv4.tp.src = tcp->source;
912 key->ipv4.tp.dst = tcp->dest;
913 }
914 } else if (key->ip.proto == IPPROTO_UDP) {
915 if (udphdr_ok(skb)) {
916 struct udphdr *udp = udp_hdr(skb);
917 key->ipv4.tp.src = udp->source;
918 key->ipv4.tp.dst = udp->dest;
919 }
920 } else if (key->ip.proto == IPPROTO_SCTP) {
921 if (sctphdr_ok(skb)) {
922 struct sctphdr *sctp = sctp_hdr(skb);
923 key->ipv4.tp.src = sctp->source;
924 key->ipv4.tp.dst = sctp->dest;
925 }
926 } else if (key->ip.proto == IPPROTO_ICMP) {
927 if (icmphdr_ok(skb)) {
928 struct icmphdr *icmp = icmp_hdr(skb);
929 /* The ICMP type and code fields use the 16-bit
930 * transport port fields, so we need to store
931 * them in 16-bit network byte order. */
932 key->ipv4.tp.src = htons(icmp->type);
933 key->ipv4.tp.dst = htons(icmp->code);
934 }
935 }
936
937 } else if ((key->eth.type == htons(ETH_P_ARP) ||
938 key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
939 struct arp_eth_header *arp;
940
941 arp = (struct arp_eth_header *)skb_network_header(skb);
942
943 if (arp->ar_hrd == htons(ARPHRD_ETHER)
944 && arp->ar_pro == htons(ETH_P_IP)
945 && arp->ar_hln == ETH_ALEN
946 && arp->ar_pln == 4) {
947
948 /* We only match on the lower 8 bits of the opcode. */
949 if (ntohs(arp->ar_op) <= 0xff)
950 key->ip.proto = ntohs(arp->ar_op);
951 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
952 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
953 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
954 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
955 }
956 } else if (key->eth.type == htons(ETH_P_IPV6)) {
957 int nh_len; /* IPv6 Header + Extensions */
958
959 nh_len = parse_ipv6hdr(skb, key);
960 if (unlikely(nh_len < 0)) {
961 if (nh_len == -EINVAL) {
962 skb->transport_header = skb->network_header;
963 error = 0;
964 } else {
965 error = nh_len;
966 }
967 return error;
968 }
969
970 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
971 return 0;
972 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
973 key->ip.frag = OVS_FRAG_TYPE_FIRST;
974
975 /* Transport layer. */
976 if (key->ip.proto == NEXTHDR_TCP) {
977 if (tcphdr_ok(skb)) {
978 struct tcphdr *tcp = tcp_hdr(skb);
979 key->ipv6.tp.src = tcp->source;
980 key->ipv6.tp.dst = tcp->dest;
981 }
982 } else if (key->ip.proto == NEXTHDR_UDP) {
983 if (udphdr_ok(skb)) {
984 struct udphdr *udp = udp_hdr(skb);
985 key->ipv6.tp.src = udp->source;
986 key->ipv6.tp.dst = udp->dest;
987 }
988 } else if (key->ip.proto == NEXTHDR_SCTP) {
989 if (sctphdr_ok(skb)) {
990 struct sctphdr *sctp = sctp_hdr(skb);
991 key->ipv6.tp.src = sctp->source;
992 key->ipv6.tp.dst = sctp->dest;
993 }
994 } else if (key->ip.proto == NEXTHDR_ICMP) {
995 if (icmp6hdr_ok(skb)) {
996 error = parse_icmpv6(skb, key, nh_len);
997 if (error)
998 return error;
999 }
1000 }
1001 }
1002
1003 return 0;
1004 }
1005
1006 static u32 ovs_flow_hash(const struct sw_flow_key *key, int key_start,
1007 int key_end)
1008 {
1009 u32 *hash_key = (u32 *)((u8 *)key + key_start);
1010 int hash_u32s = (key_end - key_start) >> 2;
1011
1012 /* Make sure number of hash bytes are multiple of u32. */
1013 BUILD_BUG_ON(sizeof(long) % sizeof(u32));
1014
1015 return jhash2(hash_key, hash_u32s, 0);
1016 }
1017
1018 static int flow_key_start(const struct sw_flow_key *key)
1019 {
1020 if (key->tun_key.ipv4_dst)
1021 return 0;
1022 else
1023 return rounddown(offsetof(struct sw_flow_key, phy),
1024 sizeof(long));
1025 }
1026
1027 static bool __cmp_key(const struct sw_flow_key *key1,
1028 const struct sw_flow_key *key2, int key_start, int key_end)
1029 {
1030 const long *cp1 = (long *)((u8 *)key1 + key_start);
1031 const long *cp2 = (long *)((u8 *)key2 + key_start);
1032 long diffs = 0;
1033 int i;
1034
1035 for (i = key_start; i < key_end; i += sizeof(long))
1036 diffs |= *cp1++ ^ *cp2++;
1037
1038 return diffs == 0;
1039 }
1040
1041 static bool __flow_cmp_masked_key(const struct sw_flow *flow,
1042 const struct sw_flow_key *key, int key_start, int key_end)
1043 {
1044 return __cmp_key(&flow->key, key, key_start, key_end);
1045 }
1046
1047 static bool __flow_cmp_unmasked_key(const struct sw_flow *flow,
1048 const struct sw_flow_key *key, int key_start, int key_end)
1049 {
1050 return __cmp_key(&flow->unmasked_key, key, key_start, key_end);
1051 }
1052
1053 bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow,
1054 const struct sw_flow_key *key, int key_end)
1055 {
1056 int key_start;
1057 key_start = flow_key_start(key);
1058
1059 return __flow_cmp_unmasked_key(flow, key, key_start, key_end);
1060
1061 }
1062
1063 struct sw_flow *ovs_flow_lookup_unmasked_key(struct flow_table *table,
1064 struct sw_flow_match *match)
1065 {
1066 struct sw_flow_key *unmasked = match->key;
1067 int key_end = match->range.end;
1068 struct sw_flow *flow;
1069
1070 flow = ovs_flow_lookup(table, unmasked);
1071 if (flow && (!ovs_flow_cmp_unmasked_key(flow, unmasked, key_end)))
1072 flow = NULL;
1073
1074 return flow;
1075 }
1076
1077 static struct sw_flow *ovs_masked_flow_lookup(struct flow_table *table,
1078 const struct sw_flow_key *unmasked,
1079 struct sw_flow_mask *mask)
1080 {
1081 struct sw_flow *flow;
1082 struct hlist_head *head;
1083 int key_start = mask->range.start;
1084 int key_end = mask->range.end;
1085 u32 hash;
1086 struct sw_flow_key masked_key;
1087
1088 ovs_flow_key_mask(&masked_key, unmasked, mask);
1089 hash = ovs_flow_hash(&masked_key, key_start, key_end);
1090 head = find_bucket(table, hash);
1091 hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) {
1092 if (flow->mask == mask &&
1093 __flow_cmp_masked_key(flow, &masked_key,
1094 key_start, key_end))
1095 return flow;
1096 }
1097 return NULL;
1098 }
1099
1100 struct sw_flow *ovs_flow_lookup(struct flow_table *tbl,
1101 const struct sw_flow_key *key)
1102 {
1103 struct sw_flow *flow = NULL;
1104 struct sw_flow_mask *mask;
1105
1106 list_for_each_entry_rcu(mask, tbl->mask_list, list) {
1107 flow = ovs_masked_flow_lookup(tbl, key, mask);
1108 if (flow) /* Found */
1109 break;
1110 }
1111
1112 return flow;
1113 }
1114
1115
1116 void ovs_flow_insert(struct flow_table *table, struct sw_flow *flow)
1117 {
1118 flow->hash = ovs_flow_hash(&flow->key, flow->mask->range.start,
1119 flow->mask->range.end);
1120 __tbl_insert(table, flow);
1121 }
1122
1123 void ovs_flow_remove(struct flow_table *table, struct sw_flow *flow)
1124 {
1125 BUG_ON(table->count == 0);
1126 hlist_del_rcu(&flow->hash_node[table->node_ver]);
1127 table->count--;
1128 }
1129
1130 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
1131 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
1132 [OVS_KEY_ATTR_ENCAP] = -1,
1133 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
1134 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
1135 [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
1136 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
1137 [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
1138 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
1139 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
1140 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
1141 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
1142 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
1143 [OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
1144 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
1145 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
1146 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
1147 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
1148 [OVS_KEY_ATTR_TUNNEL] = -1,
1149 };
1150
1151 static bool is_all_zero(const u8 *fp, size_t size)
1152 {
1153 int i;
1154
1155 if (!fp)
1156 return false;
1157
1158 for (i = 0; i < size; i++)
1159 if (fp[i])
1160 return false;
1161
1162 return true;
1163 }
1164
1165 static int __parse_flow_nlattrs(const struct nlattr *attr,
1166 const struct nlattr *a[],
1167 u64 *attrsp, bool nz)
1168 {
1169 const struct nlattr *nla;
1170 u32 attrs;
1171 int rem;
1172
1173 attrs = *attrsp;
1174 nla_for_each_nested(nla, attr, rem) {
1175 u16 type = nla_type(nla);
1176 int expected_len;
1177
1178 if (type > OVS_KEY_ATTR_MAX) {
1179 OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
1180 type, OVS_KEY_ATTR_MAX);
1181 }
1182
1183 if (attrs & (1 << type)) {
1184 OVS_NLERR("Duplicate key attribute (type %d).\n", type);
1185 return -EINVAL;
1186 }
1187
1188 expected_len = ovs_key_lens[type];
1189 if (nla_len(nla) != expected_len && expected_len != -1) {
1190 OVS_NLERR("Key attribute has unexpected length (type=%d"
1191 ", length=%d, expected=%d).\n", type,
1192 nla_len(nla), expected_len);
1193 return -EINVAL;
1194 }
1195
1196 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
1197 attrs |= 1 << type;
1198 a[type] = nla;
1199 }
1200 }
1201 if (rem) {
1202 OVS_NLERR("Message has %d unknown bytes.\n", rem);
1203 return -EINVAL;
1204 }
1205
1206 *attrsp = attrs;
1207 return 0;
1208 }
1209
1210 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
1211 const struct nlattr *a[], u64 *attrsp)
1212 {
1213 return __parse_flow_nlattrs(attr, a, attrsp, true);
1214 }
1215
1216 static int parse_flow_nlattrs(const struct nlattr *attr,
1217 const struct nlattr *a[], u64 *attrsp)
1218 {
1219 return __parse_flow_nlattrs(attr, a, attrsp, false);
1220 }
1221
1222 int ovs_ipv4_tun_from_nlattr(const struct nlattr *attr,
1223 struct sw_flow_match *match, bool is_mask)
1224 {
1225 struct nlattr *a;
1226 int rem;
1227 bool ttl = false;
1228 __be16 tun_flags = 0;
1229
1230 nla_for_each_nested(a, attr, rem) {
1231 int type = nla_type(a);
1232 static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
1233 [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
1234 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
1235 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
1236 [OVS_TUNNEL_KEY_ATTR_TOS] = 1,
1237 [OVS_TUNNEL_KEY_ATTR_TTL] = 1,
1238 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
1239 [OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
1240 };
1241
1242 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
1243 OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
1244 type, OVS_TUNNEL_KEY_ATTR_MAX);
1245 return -EINVAL;
1246 }
1247
1248 if (ovs_tunnel_key_lens[type] != nla_len(a)) {
1249 OVS_NLERR("IPv4 tunnel attribute type has unexpected "
1250 " length (type=%d, length=%d, expected=%d).\n",
1251 type, nla_len(a), ovs_tunnel_key_lens[type]);
1252 return -EINVAL;
1253 }
1254
1255 switch (type) {
1256 case OVS_TUNNEL_KEY_ATTR_ID:
1257 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
1258 nla_get_be64(a), is_mask);
1259 tun_flags |= TUNNEL_KEY;
1260 break;
1261 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
1262 SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
1263 nla_get_be32(a), is_mask);
1264 break;
1265 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
1266 SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
1267 nla_get_be32(a), is_mask);
1268 break;
1269 case OVS_TUNNEL_KEY_ATTR_TOS:
1270 SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
1271 nla_get_u8(a), is_mask);
1272 break;
1273 case OVS_TUNNEL_KEY_ATTR_TTL:
1274 SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
1275 nla_get_u8(a), is_mask);
1276 ttl = true;
1277 break;
1278 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
1279 tun_flags |= TUNNEL_DONT_FRAGMENT;
1280 break;
1281 case OVS_TUNNEL_KEY_ATTR_CSUM:
1282 tun_flags |= TUNNEL_CSUM;
1283 break;
1284 default:
1285 return -EINVAL;
1286 }
1287 }
1288
1289 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
1290
1291 if (rem > 0) {
1292 OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
1293 return -EINVAL;
1294 }
1295
1296 if (!is_mask) {
1297 if (!match->key->tun_key.ipv4_dst) {
1298 OVS_NLERR("IPv4 tunnel destination address is zero.\n");
1299 return -EINVAL;
1300 }
1301
1302 if (!ttl) {
1303 OVS_NLERR("IPv4 tunnel TTL not specified.\n");
1304 return -EINVAL;
1305 }
1306 }
1307
1308 return 0;
1309 }
1310
1311 int ovs_ipv4_tun_to_nlattr(struct sk_buff *skb,
1312 const struct ovs_key_ipv4_tunnel *tun_key,
1313 const struct ovs_key_ipv4_tunnel *output)
1314 {
1315 struct nlattr *nla;
1316
1317 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
1318 if (!nla)
1319 return -EMSGSIZE;
1320
1321 if (output->tun_flags & TUNNEL_KEY &&
1322 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
1323 return -EMSGSIZE;
1324 if (output->ipv4_src &&
1325 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
1326 return -EMSGSIZE;
1327 if (output->ipv4_dst &&
1328 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
1329 return -EMSGSIZE;
1330 if (output->ipv4_tos &&
1331 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
1332 return -EMSGSIZE;
1333 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
1334 return -EMSGSIZE;
1335 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
1336 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
1337 return -EMSGSIZE;
1338 if ((output->tun_flags & TUNNEL_CSUM) &&
1339 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
1340 return -EMSGSIZE;
1341
1342 nla_nest_end(skb, nla);
1343 return 0;
1344 }
1345
1346 static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs,
1347 const struct nlattr **a, bool is_mask)
1348 {
1349 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1350 SW_FLOW_KEY_PUT(match, phy.priority,
1351 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1352 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1353 }
1354
1355 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1356 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1357
1358 if (is_mask)
1359 in_port = 0xffffffff; /* Always exact match in_port. */
1360 else if (in_port >= DP_MAX_PORTS)
1361 return -EINVAL;
1362
1363 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1364 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1365 } else if (!is_mask) {
1366 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1367 }
1368
1369 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1370 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1371
1372 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1373 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1374 }
1375 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1376 if (ovs_ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1377 is_mask))
1378 return -EINVAL;
1379 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1380 }
1381 return 0;
1382 }
1383
1384 static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
1385 const struct nlattr **a, bool is_mask)
1386 {
1387 int err;
1388 u64 orig_attrs = attrs;
1389
1390 err = metadata_from_nlattrs(match, &attrs, a, is_mask);
1391 if (err)
1392 return err;
1393
1394 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1395 const struct ovs_key_ethernet *eth_key;
1396
1397 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1398 SW_FLOW_KEY_MEMCPY(match, eth.src,
1399 eth_key->eth_src, ETH_ALEN, is_mask);
1400 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1401 eth_key->eth_dst, ETH_ALEN, is_mask);
1402 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1403 }
1404
1405 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1406 __be16 tci;
1407
1408 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1409 if (!(tci & htons(VLAN_TAG_PRESENT))) {
1410 if (is_mask)
1411 OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
1412 else
1413 OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
1414
1415 return -EINVAL;
1416 }
1417
1418 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
1419 attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1420 } else if (!is_mask)
1421 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1422
1423 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1424 __be16 eth_type;
1425
1426 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1427 if (is_mask) {
1428 /* Always exact match EtherType. */
1429 eth_type = htons(0xffff);
1430 } else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
1431 OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
1432 ntohs(eth_type), ETH_P_802_3_MIN);
1433 return -EINVAL;
1434 }
1435
1436 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1437 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1438 } else if (!is_mask) {
1439 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1440 }
1441
1442 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1443 const struct ovs_key_ipv4 *ipv4_key;
1444
1445 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1446 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1447 OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
1448 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1449 return -EINVAL;
1450 }
1451 SW_FLOW_KEY_PUT(match, ip.proto,
1452 ipv4_key->ipv4_proto, is_mask);
1453 SW_FLOW_KEY_PUT(match, ip.tos,
1454 ipv4_key->ipv4_tos, is_mask);
1455 SW_FLOW_KEY_PUT(match, ip.ttl,
1456 ipv4_key->ipv4_ttl, is_mask);
1457 SW_FLOW_KEY_PUT(match, ip.frag,
1458 ipv4_key->ipv4_frag, is_mask);
1459 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1460 ipv4_key->ipv4_src, is_mask);
1461 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1462 ipv4_key->ipv4_dst, is_mask);
1463 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1464 }
1465
1466 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1467 const struct ovs_key_ipv6 *ipv6_key;
1468
1469 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1470 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1471 OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
1472 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1473 return -EINVAL;
1474 }
1475 SW_FLOW_KEY_PUT(match, ipv6.label,
1476 ipv6_key->ipv6_label, is_mask);
1477 SW_FLOW_KEY_PUT(match, ip.proto,
1478 ipv6_key->ipv6_proto, is_mask);
1479 SW_FLOW_KEY_PUT(match, ip.tos,
1480 ipv6_key->ipv6_tclass, is_mask);
1481 SW_FLOW_KEY_PUT(match, ip.ttl,
1482 ipv6_key->ipv6_hlimit, is_mask);
1483 SW_FLOW_KEY_PUT(match, ip.frag,
1484 ipv6_key->ipv6_frag, is_mask);
1485 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1486 ipv6_key->ipv6_src,
1487 sizeof(match->key->ipv6.addr.src),
1488 is_mask);
1489 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1490 ipv6_key->ipv6_dst,
1491 sizeof(match->key->ipv6.addr.dst),
1492 is_mask);
1493
1494 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1495 }
1496
1497 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1498 const struct ovs_key_arp *arp_key;
1499
1500 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1501 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1502 OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
1503 arp_key->arp_op);
1504 return -EINVAL;
1505 }
1506
1507 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1508 arp_key->arp_sip, is_mask);
1509 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1510 arp_key->arp_tip, is_mask);
1511 SW_FLOW_KEY_PUT(match, ip.proto,
1512 ntohs(arp_key->arp_op), is_mask);
1513 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1514 arp_key->arp_sha, ETH_ALEN, is_mask);
1515 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1516 arp_key->arp_tha, ETH_ALEN, is_mask);
1517
1518 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1519 }
1520
1521 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1522 const struct ovs_key_tcp *tcp_key;
1523
1524 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1525 if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1526 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
1527 tcp_key->tcp_src, is_mask);
1528 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
1529 tcp_key->tcp_dst, is_mask);
1530 } else {
1531 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
1532 tcp_key->tcp_src, is_mask);
1533 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
1534 tcp_key->tcp_dst, is_mask);
1535 }
1536 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1537 }
1538
1539 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1540 const struct ovs_key_udp *udp_key;
1541
1542 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1543 if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1544 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
1545 udp_key->udp_src, is_mask);
1546 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
1547 udp_key->udp_dst, is_mask);
1548 } else {
1549 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
1550 udp_key->udp_src, is_mask);
1551 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
1552 udp_key->udp_dst, is_mask);
1553 }
1554 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1555 }
1556
1557 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1558 const struct ovs_key_sctp *sctp_key;
1559
1560 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1561 if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1562 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
1563 sctp_key->sctp_src, is_mask);
1564 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
1565 sctp_key->sctp_dst, is_mask);
1566 } else {
1567 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
1568 sctp_key->sctp_src, is_mask);
1569 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
1570 sctp_key->sctp_dst, is_mask);
1571 }
1572 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1573 }
1574
1575 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1576 const struct ovs_key_icmp *icmp_key;
1577
1578 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1579 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
1580 htons(icmp_key->icmp_type), is_mask);
1581 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
1582 htons(icmp_key->icmp_code), is_mask);
1583 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1584 }
1585
1586 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1587 const struct ovs_key_icmpv6 *icmpv6_key;
1588
1589 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1590 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
1591 htons(icmpv6_key->icmpv6_type), is_mask);
1592 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
1593 htons(icmpv6_key->icmpv6_code), is_mask);
1594 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1595 }
1596
1597 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1598 const struct ovs_key_nd *nd_key;
1599
1600 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1601 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1602 nd_key->nd_target,
1603 sizeof(match->key->ipv6.nd.target),
1604 is_mask);
1605 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1606 nd_key->nd_sll, ETH_ALEN, is_mask);
1607 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1608 nd_key->nd_tll, ETH_ALEN, is_mask);
1609 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1610 }
1611
1612 if (attrs != 0)
1613 return -EINVAL;
1614
1615 return 0;
1616 }
1617
1618 /**
1619 * ovs_match_from_nlattrs - parses Netlink attributes into a flow key and
1620 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1621 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1622 * does not include any don't care bit.
1623 * @match: receives the extracted flow match information.
1624 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1625 * sequence. The fields should of the packet that triggered the creation
1626 * of this flow.
1627 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1628 * attribute specifies the mask field of the wildcarded flow.
1629 */
1630 int ovs_match_from_nlattrs(struct sw_flow_match *match,
1631 const struct nlattr *key,
1632 const struct nlattr *mask)
1633 {
1634 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1635 const struct nlattr *encap;
1636 u64 key_attrs = 0;
1637 u64 mask_attrs = 0;
1638 bool encap_valid = false;
1639 int err;
1640
1641 err = parse_flow_nlattrs(key, a, &key_attrs);
1642 if (err)
1643 return err;
1644
1645 if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1646 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1647 (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1648 __be16 tci;
1649
1650 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1651 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1652 OVS_NLERR("Invalid Vlan frame.\n");
1653 return -EINVAL;
1654 }
1655
1656 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1657 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1658 encap = a[OVS_KEY_ATTR_ENCAP];
1659 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1660 encap_valid = true;
1661
1662 if (tci & htons(VLAN_TAG_PRESENT)) {
1663 err = parse_flow_nlattrs(encap, a, &key_attrs);
1664 if (err)
1665 return err;
1666 } else if (!tci) {
1667 /* Corner case for truncated 802.1Q header. */
1668 if (nla_len(encap)) {
1669 OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
1670 return -EINVAL;
1671 }
1672 } else {
1673 OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
1674 return -EINVAL;
1675 }
1676 }
1677
1678 err = ovs_key_from_nlattrs(match, key_attrs, a, false);
1679 if (err)
1680 return err;
1681
1682 if (mask) {
1683 err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
1684 if (err)
1685 return err;
1686
1687 if (mask_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) {
1688 __be16 eth_type = 0;
1689 __be16 tci = 0;
1690
1691 if (!encap_valid) {
1692 OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
1693 return -EINVAL;
1694 }
1695
1696 mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1697 if (a[OVS_KEY_ATTR_ETHERTYPE])
1698 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1699
1700 if (eth_type == htons(0xffff)) {
1701 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1702 encap = a[OVS_KEY_ATTR_ENCAP];
1703 err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
1704 } else {
1705 OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
1706 ntohs(eth_type));
1707 return -EINVAL;
1708 }
1709
1710 if (a[OVS_KEY_ATTR_VLAN])
1711 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1712
1713 if (!(tci & htons(VLAN_TAG_PRESENT))) {
1714 OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
1715 return -EINVAL;
1716 }
1717 }
1718
1719 err = ovs_key_from_nlattrs(match, mask_attrs, a, true);
1720 if (err)
1721 return err;
1722 } else {
1723 /* Populate exact match flow's key mask. */
1724 if (match->mask)
1725 ovs_sw_flow_mask_set(match->mask, &match->range, 0xff);
1726 }
1727
1728 if (!ovs_match_validate(match, key_attrs, mask_attrs))
1729 return -EINVAL;
1730
1731 return 0;
1732 }
1733
1734 /**
1735 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1736 * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
1737 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1738 * sequence.
1739 *
1740 * This parses a series of Netlink attributes that form a flow key, which must
1741 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1742 * get the metadata, that is, the parts of the flow key that cannot be
1743 * extracted from the packet itself.
1744 */
1745
1746 int ovs_flow_metadata_from_nlattrs(struct sw_flow *flow,
1747 const struct nlattr *attr)
1748 {
1749 struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
1750 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1751 u64 attrs = 0;
1752 int err;
1753 struct sw_flow_match match;
1754
1755 flow->key.phy.in_port = DP_MAX_PORTS;
1756 flow->key.phy.priority = 0;
1757 flow->key.phy.skb_mark = 0;
1758 memset(tun_key, 0, sizeof(flow->key.tun_key));
1759
1760 err = parse_flow_nlattrs(attr, a, &attrs);
1761 if (err)
1762 return -EINVAL;
1763
1764 memset(&match, 0, sizeof(match));
1765 match.key = &flow->key;
1766
1767 err = metadata_from_nlattrs(&match, &attrs, a, false);
1768 if (err)
1769 return err;
1770
1771 return 0;
1772 }
1773
1774 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey,
1775 const struct sw_flow_key *output, struct sk_buff *skb)
1776 {
1777 struct ovs_key_ethernet *eth_key;
1778 struct nlattr *nla, *encap;
1779 bool is_mask = (swkey != output);
1780
1781 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1782 goto nla_put_failure;
1783
1784 if ((swkey->tun_key.ipv4_dst || is_mask) &&
1785 ovs_ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
1786 goto nla_put_failure;
1787
1788 if (swkey->phy.in_port == DP_MAX_PORTS) {
1789 if (is_mask && (output->phy.in_port == 0xffff))
1790 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1791 goto nla_put_failure;
1792 } else {
1793 u16 upper_u16;
1794 upper_u16 = !is_mask ? 0 : 0xffff;
1795
1796 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1797 (upper_u16 << 16) | output->phy.in_port))
1798 goto nla_put_failure;
1799 }
1800
1801 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1802 goto nla_put_failure;
1803
1804 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1805 if (!nla)
1806 goto nla_put_failure;
1807
1808 eth_key = nla_data(nla);
1809 memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN);
1810 memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN);
1811
1812 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1813 __be16 eth_type;
1814 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1815 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1816 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1817 goto nla_put_failure;
1818 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1819 if (!swkey->eth.tci)
1820 goto unencap;
1821 } else
1822 encap = NULL;
1823
1824 if (swkey->eth.type == htons(ETH_P_802_2)) {
1825 /*
1826 * Ethertype 802.2 is represented in the netlink with omitted
1827 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1828 * 0xffff in the mask attribute. Ethertype can also
1829 * be wildcarded.
1830 */
1831 if (is_mask && output->eth.type)
1832 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1833 output->eth.type))
1834 goto nla_put_failure;
1835 goto unencap;
1836 }
1837
1838 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1839 goto nla_put_failure;
1840
1841 if (swkey->eth.type == htons(ETH_P_IP)) {
1842 struct ovs_key_ipv4 *ipv4_key;
1843
1844 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1845 if (!nla)
1846 goto nla_put_failure;
1847 ipv4_key = nla_data(nla);
1848 ipv4_key->ipv4_src = output->ipv4.addr.src;
1849 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1850 ipv4_key->ipv4_proto = output->ip.proto;
1851 ipv4_key->ipv4_tos = output->ip.tos;
1852 ipv4_key->ipv4_ttl = output->ip.ttl;
1853 ipv4_key->ipv4_frag = output->ip.frag;
1854 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1855 struct ovs_key_ipv6 *ipv6_key;
1856
1857 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1858 if (!nla)
1859 goto nla_put_failure;
1860 ipv6_key = nla_data(nla);
1861 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1862 sizeof(ipv6_key->ipv6_src));
1863 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1864 sizeof(ipv6_key->ipv6_dst));
1865 ipv6_key->ipv6_label = output->ipv6.label;
1866 ipv6_key->ipv6_proto = output->ip.proto;
1867 ipv6_key->ipv6_tclass = output->ip.tos;
1868 ipv6_key->ipv6_hlimit = output->ip.ttl;
1869 ipv6_key->ipv6_frag = output->ip.frag;
1870 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1871 swkey->eth.type == htons(ETH_P_RARP)) {
1872 struct ovs_key_arp *arp_key;
1873
1874 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1875 if (!nla)
1876 goto nla_put_failure;
1877 arp_key = nla_data(nla);
1878 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1879 arp_key->arp_sip = output->ipv4.addr.src;
1880 arp_key->arp_tip = output->ipv4.addr.dst;
1881 arp_key->arp_op = htons(output->ip.proto);
1882 memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN);
1883 memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN);
1884 }
1885
1886 if ((swkey->eth.type == htons(ETH_P_IP) ||
1887 swkey->eth.type == htons(ETH_P_IPV6)) &&
1888 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1889
1890 if (swkey->ip.proto == IPPROTO_TCP) {
1891 struct ovs_key_tcp *tcp_key;
1892
1893 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1894 if (!nla)
1895 goto nla_put_failure;
1896 tcp_key = nla_data(nla);
1897 if (swkey->eth.type == htons(ETH_P_IP)) {
1898 tcp_key->tcp_src = output->ipv4.tp.src;
1899 tcp_key->tcp_dst = output->ipv4.tp.dst;
1900 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1901 tcp_key->tcp_src = output->ipv6.tp.src;
1902 tcp_key->tcp_dst = output->ipv6.tp.dst;
1903 }
1904 } else if (swkey->ip.proto == IPPROTO_UDP) {
1905 struct ovs_key_udp *udp_key;
1906
1907 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1908 if (!nla)
1909 goto nla_put_failure;
1910 udp_key = nla_data(nla);
1911 if (swkey->eth.type == htons(ETH_P_IP)) {
1912 udp_key->udp_src = output->ipv4.tp.src;
1913 udp_key->udp_dst = output->ipv4.tp.dst;
1914 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1915 udp_key->udp_src = output->ipv6.tp.src;
1916 udp_key->udp_dst = output->ipv6.tp.dst;
1917 }
1918 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1919 struct ovs_key_sctp *sctp_key;
1920
1921 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1922 if (!nla)
1923 goto nla_put_failure;
1924 sctp_key = nla_data(nla);
1925 if (swkey->eth.type == htons(ETH_P_IP)) {
1926 sctp_key->sctp_src = swkey->ipv4.tp.src;
1927 sctp_key->sctp_dst = swkey->ipv4.tp.dst;
1928 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1929 sctp_key->sctp_src = swkey->ipv6.tp.src;
1930 sctp_key->sctp_dst = swkey->ipv6.tp.dst;
1931 }
1932 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1933 swkey->ip.proto == IPPROTO_ICMP) {
1934 struct ovs_key_icmp *icmp_key;
1935
1936 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1937 if (!nla)
1938 goto nla_put_failure;
1939 icmp_key = nla_data(nla);
1940 icmp_key->icmp_type = ntohs(output->ipv4.tp.src);
1941 icmp_key->icmp_code = ntohs(output->ipv4.tp.dst);
1942 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1943 swkey->ip.proto == IPPROTO_ICMPV6) {
1944 struct ovs_key_icmpv6 *icmpv6_key;
1945
1946 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1947 sizeof(*icmpv6_key));
1948 if (!nla)
1949 goto nla_put_failure;
1950 icmpv6_key = nla_data(nla);
1951 icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src);
1952 icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst);
1953
1954 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1955 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1956 struct ovs_key_nd *nd_key;
1957
1958 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1959 if (!nla)
1960 goto nla_put_failure;
1961 nd_key = nla_data(nla);
1962 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1963 sizeof(nd_key->nd_target));
1964 memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN);
1965 memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN);
1966 }
1967 }
1968 }
1969
1970 unencap:
1971 if (encap)
1972 nla_nest_end(skb, encap);
1973
1974 return 0;
1975
1976 nla_put_failure:
1977 return -EMSGSIZE;
1978 }
1979
1980 /* Initializes the flow module.
1981 * Returns zero if successful or a negative error code. */
1982 int ovs_flow_init(void)
1983 {
1984 BUILD_BUG_ON(sizeof(struct sw_flow_key) % sizeof(long));
1985
1986 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1987 0, NULL);
1988 if (flow_cache == NULL)
1989 return -ENOMEM;
1990
1991 return 0;
1992 }
1993
1994 /* Uninitializes the flow module. */
1995 void ovs_flow_exit(void)
1996 {
1997 kmem_cache_destroy(flow_cache);
1998 }
1999
2000 struct sw_flow_mask *ovs_sw_flow_mask_alloc(void)
2001 {
2002 struct sw_flow_mask *mask;
2003
2004 mask = kmalloc(sizeof(*mask), GFP_KERNEL);
2005 if (mask)
2006 mask->ref_count = 0;
2007
2008 return mask;
2009 }
2010
2011 void ovs_sw_flow_mask_add_ref(struct sw_flow_mask *mask)
2012 {
2013 mask->ref_count++;
2014 }
2015
2016 void ovs_sw_flow_mask_del_ref(struct sw_flow_mask *mask, bool deferred)
2017 {
2018 if (!mask)
2019 return;
2020
2021 BUG_ON(!mask->ref_count);
2022 mask->ref_count--;
2023
2024 if (!mask->ref_count) {
2025 list_del_rcu(&mask->list);
2026 if (deferred)
2027 kfree_rcu(mask, rcu);
2028 else
2029 kfree(mask);
2030 }
2031 }
2032
2033 static bool ovs_sw_flow_mask_equal(const struct sw_flow_mask *a,
2034 const struct sw_flow_mask *b)
2035 {
2036 u8 *a_ = (u8 *)&a->key + a->range.start;
2037 u8 *b_ = (u8 *)&b->key + b->range.start;
2038
2039 return (a->range.end == b->range.end)
2040 && (a->range.start == b->range.start)
2041 && (memcmp(a_, b_, range_n_bytes(&a->range)) == 0);
2042 }
2043
2044 struct sw_flow_mask *ovs_sw_flow_mask_find(const struct flow_table *tbl,
2045 const struct sw_flow_mask *mask)
2046 {
2047 struct list_head *ml;
2048
2049 list_for_each(ml, tbl->mask_list) {
2050 struct sw_flow_mask *m;
2051 m = container_of(ml, struct sw_flow_mask, list);
2052 if (ovs_sw_flow_mask_equal(mask, m))
2053 return m;
2054 }
2055
2056 return NULL;
2057 }
2058
2059 /**
2060 * add a new mask into the mask list.
2061 * The caller needs to make sure that 'mask' is not the same
2062 * as any masks that are already on the list.
2063 */
2064 void ovs_sw_flow_mask_insert(struct flow_table *tbl, struct sw_flow_mask *mask)
2065 {
2066 list_add_rcu(&mask->list, tbl->mask_list);
2067 }
2068
2069 /**
2070 * Set 'range' fields in the mask to the value of 'val'.
2071 */
2072 static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask,
2073 struct sw_flow_key_range *range, u8 val)
2074 {
2075 u8 *m = (u8 *)&mask->key + range->start;
2076
2077 mask->range = *range;
2078 memset(m, val, range_n_bytes(range));
2079 }
This page took 0.073346 seconds and 5 git commands to generate.