af_packet: remove a stray tab in packet_set_ring()
[deliverable/linux.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95
96 #include "internal.h"
97
98 /*
99 Assumptions:
100 - if device has no dev->hard_header routine, it adds and removes ll header
101 inside itself. In this case ll header is invisible outside of device,
102 but higher levels still should reserve dev->hard_header_len.
103 Some devices are enough clever to reallocate skb, when header
104 will not fit to reserved space (tunnel), another ones are silly
105 (PPP).
106 - packet socket receives packets with pulled ll header,
107 so that SOCK_RAW should push it back.
108
109 On receive:
110 -----------
111
112 Incoming, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> data
115
116 Outgoing, dev->hard_header!=NULL
117 mac_header -> ll header
118 data -> ll header
119
120 Incoming, dev->hard_header==NULL
121 mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 header. PPP makes it, that is wrong, because introduce
123 assymetry between rx and tx paths.
124 data -> data
125
126 Outgoing, dev->hard_header==NULL
127 mac_header -> data. ll header is still not built!
128 data -> data
129
130 Resume
131 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132
133
134 On transmit:
135 ------------
136
137 dev->hard_header != NULL
138 mac_header -> ll header
139 data -> ll header
140
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142 mac_header -> data
143 data -> data
144
145 We should set nh.raw on output to correct posistion,
146 packet classifier depends on it.
147 */
148
149 /* Private packet socket structures. */
150
151 /* identical to struct packet_mreq except it has
152 * a longer address field.
153 */
154 struct packet_mreq_max {
155 int mr_ifindex;
156 unsigned short mr_type;
157 unsigned short mr_alen;
158 unsigned char mr_address[MAX_ADDR_LEN];
159 };
160
161 union tpacket_uhdr {
162 struct tpacket_hdr *h1;
163 struct tpacket2_hdr *h2;
164 struct tpacket3_hdr *h3;
165 void *raw;
166 };
167
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 int closing, int tx_ring);
170
171 #define V3_ALIGNMENT (8)
172
173 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177
178 #define PGV_FROM_VMALLOC 1
179
180 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
186 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 struct packet_type *pt, struct net_device *orig_dev);
192
193 static void *packet_previous_frame(struct packet_sock *po,
194 struct packet_ring_buffer *rb,
195 int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 struct tpacket_kbdq_core *,
210 void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217
218 struct packet_skb_cb {
219 unsigned int origlen;
220 union {
221 struct sockaddr_pkt pkt;
222 struct sockaddr_ll ll;
223 } sa;
224 };
225
226 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
227
228 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
229 #define GET_PBLOCK_DESC(x, bid) \
230 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
231 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
232 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
233 #define GET_NEXT_PRB_BLK_NUM(x) \
234 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
235 ((x)->kactive_blk_num+1) : 0)
236
237 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
238 static void __fanout_link(struct sock *sk, struct packet_sock *po);
239
240 static int packet_direct_xmit(struct sk_buff *skb)
241 {
242 struct net_device *dev = skb->dev;
243 const struct net_device_ops *ops = dev->netdev_ops;
244 netdev_features_t features;
245 struct netdev_queue *txq;
246 u16 queue_map;
247 int ret;
248
249 if (unlikely(!netif_running(dev) ||
250 !netif_carrier_ok(dev))) {
251 kfree_skb(skb);
252 return NET_XMIT_DROP;
253 }
254
255 features = netif_skb_features(skb);
256 if (skb_needs_linearize(skb, features) &&
257 __skb_linearize(skb)) {
258 kfree_skb(skb);
259 return NET_XMIT_DROP;
260 }
261
262 queue_map = skb_get_queue_mapping(skb);
263 txq = netdev_get_tx_queue(dev, queue_map);
264
265 __netif_tx_lock_bh(txq);
266 if (unlikely(netif_xmit_frozen_or_stopped(txq))) {
267 ret = NETDEV_TX_BUSY;
268 kfree_skb(skb);
269 goto out;
270 }
271
272 ret = ops->ndo_start_xmit(skb, dev);
273 if (likely(dev_xmit_complete(ret)))
274 txq_trans_update(txq);
275 else
276 kfree_skb(skb);
277 out:
278 __netif_tx_unlock_bh(txq);
279 return ret;
280 }
281
282 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
283 {
284 struct net_device *dev;
285
286 rcu_read_lock();
287 dev = rcu_dereference(po->cached_dev);
288 if (likely(dev))
289 dev_hold(dev);
290 rcu_read_unlock();
291
292 return dev;
293 }
294
295 static void packet_cached_dev_assign(struct packet_sock *po,
296 struct net_device *dev)
297 {
298 rcu_assign_pointer(po->cached_dev, dev);
299 }
300
301 static void packet_cached_dev_reset(struct packet_sock *po)
302 {
303 RCU_INIT_POINTER(po->cached_dev, NULL);
304 }
305
306 static bool packet_use_direct_xmit(const struct packet_sock *po)
307 {
308 return po->xmit == packet_direct_xmit;
309 }
310
311 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
312 {
313 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
314 }
315
316 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
317 {
318 const struct net_device_ops *ops = dev->netdev_ops;
319 u16 queue_index;
320
321 if (ops->ndo_select_queue) {
322 queue_index = ops->ndo_select_queue(dev, skb, NULL,
323 __packet_pick_tx_queue);
324 queue_index = netdev_cap_txqueue(dev, queue_index);
325 } else {
326 queue_index = __packet_pick_tx_queue(dev, skb);
327 }
328
329 skb_set_queue_mapping(skb, queue_index);
330 }
331
332 /* register_prot_hook must be invoked with the po->bind_lock held,
333 * or from a context in which asynchronous accesses to the packet
334 * socket is not possible (packet_create()).
335 */
336 static void register_prot_hook(struct sock *sk)
337 {
338 struct packet_sock *po = pkt_sk(sk);
339
340 if (!po->running) {
341 if (po->fanout)
342 __fanout_link(sk, po);
343 else
344 dev_add_pack(&po->prot_hook);
345
346 sock_hold(sk);
347 po->running = 1;
348 }
349 }
350
351 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
352 * held. If the sync parameter is true, we will temporarily drop
353 * the po->bind_lock and do a synchronize_net to make sure no
354 * asynchronous packet processing paths still refer to the elements
355 * of po->prot_hook. If the sync parameter is false, it is the
356 * callers responsibility to take care of this.
357 */
358 static void __unregister_prot_hook(struct sock *sk, bool sync)
359 {
360 struct packet_sock *po = pkt_sk(sk);
361
362 po->running = 0;
363
364 if (po->fanout)
365 __fanout_unlink(sk, po);
366 else
367 __dev_remove_pack(&po->prot_hook);
368
369 __sock_put(sk);
370
371 if (sync) {
372 spin_unlock(&po->bind_lock);
373 synchronize_net();
374 spin_lock(&po->bind_lock);
375 }
376 }
377
378 static void unregister_prot_hook(struct sock *sk, bool sync)
379 {
380 struct packet_sock *po = pkt_sk(sk);
381
382 if (po->running)
383 __unregister_prot_hook(sk, sync);
384 }
385
386 static inline __pure struct page *pgv_to_page(void *addr)
387 {
388 if (is_vmalloc_addr(addr))
389 return vmalloc_to_page(addr);
390 return virt_to_page(addr);
391 }
392
393 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
394 {
395 union tpacket_uhdr h;
396
397 h.raw = frame;
398 switch (po->tp_version) {
399 case TPACKET_V1:
400 h.h1->tp_status = status;
401 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
402 break;
403 case TPACKET_V2:
404 h.h2->tp_status = status;
405 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
406 break;
407 case TPACKET_V3:
408 default:
409 WARN(1, "TPACKET version not supported.\n");
410 BUG();
411 }
412
413 smp_wmb();
414 }
415
416 static int __packet_get_status(struct packet_sock *po, void *frame)
417 {
418 union tpacket_uhdr h;
419
420 smp_rmb();
421
422 h.raw = frame;
423 switch (po->tp_version) {
424 case TPACKET_V1:
425 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
426 return h.h1->tp_status;
427 case TPACKET_V2:
428 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
429 return h.h2->tp_status;
430 case TPACKET_V3:
431 default:
432 WARN(1, "TPACKET version not supported.\n");
433 BUG();
434 return 0;
435 }
436 }
437
438 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
439 unsigned int flags)
440 {
441 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
442
443 if (shhwtstamps) {
444 if ((flags & SOF_TIMESTAMPING_SYS_HARDWARE) &&
445 ktime_to_timespec_cond(shhwtstamps->syststamp, ts))
446 return TP_STATUS_TS_SYS_HARDWARE;
447 if ((flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
448 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
449 return TP_STATUS_TS_RAW_HARDWARE;
450 }
451
452 if (ktime_to_timespec_cond(skb->tstamp, ts))
453 return TP_STATUS_TS_SOFTWARE;
454
455 return 0;
456 }
457
458 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
459 struct sk_buff *skb)
460 {
461 union tpacket_uhdr h;
462 struct timespec ts;
463 __u32 ts_status;
464
465 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
466 return 0;
467
468 h.raw = frame;
469 switch (po->tp_version) {
470 case TPACKET_V1:
471 h.h1->tp_sec = ts.tv_sec;
472 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
473 break;
474 case TPACKET_V2:
475 h.h2->tp_sec = ts.tv_sec;
476 h.h2->tp_nsec = ts.tv_nsec;
477 break;
478 case TPACKET_V3:
479 default:
480 WARN(1, "TPACKET version not supported.\n");
481 BUG();
482 }
483
484 /* one flush is safe, as both fields always lie on the same cacheline */
485 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
486 smp_wmb();
487
488 return ts_status;
489 }
490
491 static void *packet_lookup_frame(struct packet_sock *po,
492 struct packet_ring_buffer *rb,
493 unsigned int position,
494 int status)
495 {
496 unsigned int pg_vec_pos, frame_offset;
497 union tpacket_uhdr h;
498
499 pg_vec_pos = position / rb->frames_per_block;
500 frame_offset = position % rb->frames_per_block;
501
502 h.raw = rb->pg_vec[pg_vec_pos].buffer +
503 (frame_offset * rb->frame_size);
504
505 if (status != __packet_get_status(po, h.raw))
506 return NULL;
507
508 return h.raw;
509 }
510
511 static void *packet_current_frame(struct packet_sock *po,
512 struct packet_ring_buffer *rb,
513 int status)
514 {
515 return packet_lookup_frame(po, rb, rb->head, status);
516 }
517
518 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
519 {
520 del_timer_sync(&pkc->retire_blk_timer);
521 }
522
523 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
524 int tx_ring,
525 struct sk_buff_head *rb_queue)
526 {
527 struct tpacket_kbdq_core *pkc;
528
529 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
530 GET_PBDQC_FROM_RB(&po->rx_ring);
531
532 spin_lock_bh(&rb_queue->lock);
533 pkc->delete_blk_timer = 1;
534 spin_unlock_bh(&rb_queue->lock);
535
536 prb_del_retire_blk_timer(pkc);
537 }
538
539 static void prb_init_blk_timer(struct packet_sock *po,
540 struct tpacket_kbdq_core *pkc,
541 void (*func) (unsigned long))
542 {
543 init_timer(&pkc->retire_blk_timer);
544 pkc->retire_blk_timer.data = (long)po;
545 pkc->retire_blk_timer.function = func;
546 pkc->retire_blk_timer.expires = jiffies;
547 }
548
549 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
550 {
551 struct tpacket_kbdq_core *pkc;
552
553 if (tx_ring)
554 BUG();
555
556 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
557 GET_PBDQC_FROM_RB(&po->rx_ring);
558 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
559 }
560
561 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
562 int blk_size_in_bytes)
563 {
564 struct net_device *dev;
565 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
566 struct ethtool_cmd ecmd;
567 int err;
568 u32 speed;
569
570 rtnl_lock();
571 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
572 if (unlikely(!dev)) {
573 rtnl_unlock();
574 return DEFAULT_PRB_RETIRE_TOV;
575 }
576 err = __ethtool_get_settings(dev, &ecmd);
577 speed = ethtool_cmd_speed(&ecmd);
578 rtnl_unlock();
579 if (!err) {
580 /*
581 * If the link speed is so slow you don't really
582 * need to worry about perf anyways
583 */
584 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
585 return DEFAULT_PRB_RETIRE_TOV;
586 } else {
587 msec = 1;
588 div = speed / 1000;
589 }
590 }
591
592 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
593
594 if (div)
595 mbits /= div;
596
597 tmo = mbits * msec;
598
599 if (div)
600 return tmo+1;
601 return tmo;
602 }
603
604 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
605 union tpacket_req_u *req_u)
606 {
607 p1->feature_req_word = req_u->req3.tp_feature_req_word;
608 }
609
610 static void init_prb_bdqc(struct packet_sock *po,
611 struct packet_ring_buffer *rb,
612 struct pgv *pg_vec,
613 union tpacket_req_u *req_u, int tx_ring)
614 {
615 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
616 struct tpacket_block_desc *pbd;
617
618 memset(p1, 0x0, sizeof(*p1));
619
620 p1->knxt_seq_num = 1;
621 p1->pkbdq = pg_vec;
622 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
623 p1->pkblk_start = pg_vec[0].buffer;
624 p1->kblk_size = req_u->req3.tp_block_size;
625 p1->knum_blocks = req_u->req3.tp_block_nr;
626 p1->hdrlen = po->tp_hdrlen;
627 p1->version = po->tp_version;
628 p1->last_kactive_blk_num = 0;
629 po->stats.stats3.tp_freeze_q_cnt = 0;
630 if (req_u->req3.tp_retire_blk_tov)
631 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
632 else
633 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
634 req_u->req3.tp_block_size);
635 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
636 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
637
638 prb_init_ft_ops(p1, req_u);
639 prb_setup_retire_blk_timer(po, tx_ring);
640 prb_open_block(p1, pbd);
641 }
642
643 /* Do NOT update the last_blk_num first.
644 * Assumes sk_buff_head lock is held.
645 */
646 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
647 {
648 mod_timer(&pkc->retire_blk_timer,
649 jiffies + pkc->tov_in_jiffies);
650 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
651 }
652
653 /*
654 * Timer logic:
655 * 1) We refresh the timer only when we open a block.
656 * By doing this we don't waste cycles refreshing the timer
657 * on packet-by-packet basis.
658 *
659 * With a 1MB block-size, on a 1Gbps line, it will take
660 * i) ~8 ms to fill a block + ii) memcpy etc.
661 * In this cut we are not accounting for the memcpy time.
662 *
663 * So, if the user sets the 'tmo' to 10ms then the timer
664 * will never fire while the block is still getting filled
665 * (which is what we want). However, the user could choose
666 * to close a block early and that's fine.
667 *
668 * But when the timer does fire, we check whether or not to refresh it.
669 * Since the tmo granularity is in msecs, it is not too expensive
670 * to refresh the timer, lets say every '8' msecs.
671 * Either the user can set the 'tmo' or we can derive it based on
672 * a) line-speed and b) block-size.
673 * prb_calc_retire_blk_tmo() calculates the tmo.
674 *
675 */
676 static void prb_retire_rx_blk_timer_expired(unsigned long data)
677 {
678 struct packet_sock *po = (struct packet_sock *)data;
679 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
680 unsigned int frozen;
681 struct tpacket_block_desc *pbd;
682
683 spin_lock(&po->sk.sk_receive_queue.lock);
684
685 frozen = prb_queue_frozen(pkc);
686 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
687
688 if (unlikely(pkc->delete_blk_timer))
689 goto out;
690
691 /* We only need to plug the race when the block is partially filled.
692 * tpacket_rcv:
693 * lock(); increment BLOCK_NUM_PKTS; unlock()
694 * copy_bits() is in progress ...
695 * timer fires on other cpu:
696 * we can't retire the current block because copy_bits
697 * is in progress.
698 *
699 */
700 if (BLOCK_NUM_PKTS(pbd)) {
701 while (atomic_read(&pkc->blk_fill_in_prog)) {
702 /* Waiting for skb_copy_bits to finish... */
703 cpu_relax();
704 }
705 }
706
707 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
708 if (!frozen) {
709 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
710 if (!prb_dispatch_next_block(pkc, po))
711 goto refresh_timer;
712 else
713 goto out;
714 } else {
715 /* Case 1. Queue was frozen because user-space was
716 * lagging behind.
717 */
718 if (prb_curr_blk_in_use(pkc, pbd)) {
719 /*
720 * Ok, user-space is still behind.
721 * So just refresh the timer.
722 */
723 goto refresh_timer;
724 } else {
725 /* Case 2. queue was frozen,user-space caught up,
726 * now the link went idle && the timer fired.
727 * We don't have a block to close.So we open this
728 * block and restart the timer.
729 * opening a block thaws the queue,restarts timer
730 * Thawing/timer-refresh is a side effect.
731 */
732 prb_open_block(pkc, pbd);
733 goto out;
734 }
735 }
736 }
737
738 refresh_timer:
739 _prb_refresh_rx_retire_blk_timer(pkc);
740
741 out:
742 spin_unlock(&po->sk.sk_receive_queue.lock);
743 }
744
745 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
746 struct tpacket_block_desc *pbd1, __u32 status)
747 {
748 /* Flush everything minus the block header */
749
750 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
751 u8 *start, *end;
752
753 start = (u8 *)pbd1;
754
755 /* Skip the block header(we know header WILL fit in 4K) */
756 start += PAGE_SIZE;
757
758 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
759 for (; start < end; start += PAGE_SIZE)
760 flush_dcache_page(pgv_to_page(start));
761
762 smp_wmb();
763 #endif
764
765 /* Now update the block status. */
766
767 BLOCK_STATUS(pbd1) = status;
768
769 /* Flush the block header */
770
771 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
772 start = (u8 *)pbd1;
773 flush_dcache_page(pgv_to_page(start));
774
775 smp_wmb();
776 #endif
777 }
778
779 /*
780 * Side effect:
781 *
782 * 1) flush the block
783 * 2) Increment active_blk_num
784 *
785 * Note:We DONT refresh the timer on purpose.
786 * Because almost always the next block will be opened.
787 */
788 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
789 struct tpacket_block_desc *pbd1,
790 struct packet_sock *po, unsigned int stat)
791 {
792 __u32 status = TP_STATUS_USER | stat;
793
794 struct tpacket3_hdr *last_pkt;
795 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
796
797 if (po->stats.stats3.tp_drops)
798 status |= TP_STATUS_LOSING;
799
800 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
801 last_pkt->tp_next_offset = 0;
802
803 /* Get the ts of the last pkt */
804 if (BLOCK_NUM_PKTS(pbd1)) {
805 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
806 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
807 } else {
808 /* Ok, we tmo'd - so get the current time */
809 struct timespec ts;
810 getnstimeofday(&ts);
811 h1->ts_last_pkt.ts_sec = ts.tv_sec;
812 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
813 }
814
815 smp_wmb();
816
817 /* Flush the block */
818 prb_flush_block(pkc1, pbd1, status);
819
820 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
821 }
822
823 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
824 {
825 pkc->reset_pending_on_curr_blk = 0;
826 }
827
828 /*
829 * Side effect of opening a block:
830 *
831 * 1) prb_queue is thawed.
832 * 2) retire_blk_timer is refreshed.
833 *
834 */
835 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
836 struct tpacket_block_desc *pbd1)
837 {
838 struct timespec ts;
839 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
840
841 smp_rmb();
842
843 /* We could have just memset this but we will lose the
844 * flexibility of making the priv area sticky
845 */
846
847 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
848 BLOCK_NUM_PKTS(pbd1) = 0;
849 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
850
851 getnstimeofday(&ts);
852
853 h1->ts_first_pkt.ts_sec = ts.tv_sec;
854 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
855
856 pkc1->pkblk_start = (char *)pbd1;
857 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
858
859 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
860 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
861
862 pbd1->version = pkc1->version;
863 pkc1->prev = pkc1->nxt_offset;
864 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
865
866 prb_thaw_queue(pkc1);
867 _prb_refresh_rx_retire_blk_timer(pkc1);
868
869 smp_wmb();
870 }
871
872 /*
873 * Queue freeze logic:
874 * 1) Assume tp_block_nr = 8 blocks.
875 * 2) At time 't0', user opens Rx ring.
876 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
877 * 4) user-space is either sleeping or processing block '0'.
878 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
879 * it will close block-7,loop around and try to fill block '0'.
880 * call-flow:
881 * __packet_lookup_frame_in_block
882 * prb_retire_current_block()
883 * prb_dispatch_next_block()
884 * |->(BLOCK_STATUS == USER) evaluates to true
885 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
886 * 6) Now there are two cases:
887 * 6.1) Link goes idle right after the queue is frozen.
888 * But remember, the last open_block() refreshed the timer.
889 * When this timer expires,it will refresh itself so that we can
890 * re-open block-0 in near future.
891 * 6.2) Link is busy and keeps on receiving packets. This is a simple
892 * case and __packet_lookup_frame_in_block will check if block-0
893 * is free and can now be re-used.
894 */
895 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
896 struct packet_sock *po)
897 {
898 pkc->reset_pending_on_curr_blk = 1;
899 po->stats.stats3.tp_freeze_q_cnt++;
900 }
901
902 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
903
904 /*
905 * If the next block is free then we will dispatch it
906 * and return a good offset.
907 * Else, we will freeze the queue.
908 * So, caller must check the return value.
909 */
910 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
911 struct packet_sock *po)
912 {
913 struct tpacket_block_desc *pbd;
914
915 smp_rmb();
916
917 /* 1. Get current block num */
918 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
919
920 /* 2. If this block is currently in_use then freeze the queue */
921 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
922 prb_freeze_queue(pkc, po);
923 return NULL;
924 }
925
926 /*
927 * 3.
928 * open this block and return the offset where the first packet
929 * needs to get stored.
930 */
931 prb_open_block(pkc, pbd);
932 return (void *)pkc->nxt_offset;
933 }
934
935 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
936 struct packet_sock *po, unsigned int status)
937 {
938 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
939
940 /* retire/close the current block */
941 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
942 /*
943 * Plug the case where copy_bits() is in progress on
944 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
945 * have space to copy the pkt in the current block and
946 * called prb_retire_current_block()
947 *
948 * We don't need to worry about the TMO case because
949 * the timer-handler already handled this case.
950 */
951 if (!(status & TP_STATUS_BLK_TMO)) {
952 while (atomic_read(&pkc->blk_fill_in_prog)) {
953 /* Waiting for skb_copy_bits to finish... */
954 cpu_relax();
955 }
956 }
957 prb_close_block(pkc, pbd, po, status);
958 return;
959 }
960 }
961
962 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
963 struct tpacket_block_desc *pbd)
964 {
965 return TP_STATUS_USER & BLOCK_STATUS(pbd);
966 }
967
968 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
969 {
970 return pkc->reset_pending_on_curr_blk;
971 }
972
973 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
974 {
975 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
976 atomic_dec(&pkc->blk_fill_in_prog);
977 }
978
979 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
980 struct tpacket3_hdr *ppd)
981 {
982 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
983 }
984
985 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
986 struct tpacket3_hdr *ppd)
987 {
988 ppd->hv1.tp_rxhash = 0;
989 }
990
991 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
992 struct tpacket3_hdr *ppd)
993 {
994 if (vlan_tx_tag_present(pkc->skb)) {
995 ppd->hv1.tp_vlan_tci = vlan_tx_tag_get(pkc->skb);
996 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
997 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
998 } else {
999 ppd->hv1.tp_vlan_tci = 0;
1000 ppd->hv1.tp_vlan_tpid = 0;
1001 ppd->tp_status = TP_STATUS_AVAILABLE;
1002 }
1003 }
1004
1005 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1006 struct tpacket3_hdr *ppd)
1007 {
1008 ppd->hv1.tp_padding = 0;
1009 prb_fill_vlan_info(pkc, ppd);
1010
1011 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1012 prb_fill_rxhash(pkc, ppd);
1013 else
1014 prb_clear_rxhash(pkc, ppd);
1015 }
1016
1017 static void prb_fill_curr_block(char *curr,
1018 struct tpacket_kbdq_core *pkc,
1019 struct tpacket_block_desc *pbd,
1020 unsigned int len)
1021 {
1022 struct tpacket3_hdr *ppd;
1023
1024 ppd = (struct tpacket3_hdr *)curr;
1025 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1026 pkc->prev = curr;
1027 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1028 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1029 BLOCK_NUM_PKTS(pbd) += 1;
1030 atomic_inc(&pkc->blk_fill_in_prog);
1031 prb_run_all_ft_ops(pkc, ppd);
1032 }
1033
1034 /* Assumes caller has the sk->rx_queue.lock */
1035 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1036 struct sk_buff *skb,
1037 int status,
1038 unsigned int len
1039 )
1040 {
1041 struct tpacket_kbdq_core *pkc;
1042 struct tpacket_block_desc *pbd;
1043 char *curr, *end;
1044
1045 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1046 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1047
1048 /* Queue is frozen when user space is lagging behind */
1049 if (prb_queue_frozen(pkc)) {
1050 /*
1051 * Check if that last block which caused the queue to freeze,
1052 * is still in_use by user-space.
1053 */
1054 if (prb_curr_blk_in_use(pkc, pbd)) {
1055 /* Can't record this packet */
1056 return NULL;
1057 } else {
1058 /*
1059 * Ok, the block was released by user-space.
1060 * Now let's open that block.
1061 * opening a block also thaws the queue.
1062 * Thawing is a side effect.
1063 */
1064 prb_open_block(pkc, pbd);
1065 }
1066 }
1067
1068 smp_mb();
1069 curr = pkc->nxt_offset;
1070 pkc->skb = skb;
1071 end = (char *)pbd + pkc->kblk_size;
1072
1073 /* first try the current block */
1074 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1075 prb_fill_curr_block(curr, pkc, pbd, len);
1076 return (void *)curr;
1077 }
1078
1079 /* Ok, close the current block */
1080 prb_retire_current_block(pkc, po, 0);
1081
1082 /* Now, try to dispatch the next block */
1083 curr = (char *)prb_dispatch_next_block(pkc, po);
1084 if (curr) {
1085 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1086 prb_fill_curr_block(curr, pkc, pbd, len);
1087 return (void *)curr;
1088 }
1089
1090 /*
1091 * No free blocks are available.user_space hasn't caught up yet.
1092 * Queue was just frozen and now this packet will get dropped.
1093 */
1094 return NULL;
1095 }
1096
1097 static void *packet_current_rx_frame(struct packet_sock *po,
1098 struct sk_buff *skb,
1099 int status, unsigned int len)
1100 {
1101 char *curr = NULL;
1102 switch (po->tp_version) {
1103 case TPACKET_V1:
1104 case TPACKET_V2:
1105 curr = packet_lookup_frame(po, &po->rx_ring,
1106 po->rx_ring.head, status);
1107 return curr;
1108 case TPACKET_V3:
1109 return __packet_lookup_frame_in_block(po, skb, status, len);
1110 default:
1111 WARN(1, "TPACKET version not supported\n");
1112 BUG();
1113 return NULL;
1114 }
1115 }
1116
1117 static void *prb_lookup_block(struct packet_sock *po,
1118 struct packet_ring_buffer *rb,
1119 unsigned int idx,
1120 int status)
1121 {
1122 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1123 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1124
1125 if (status != BLOCK_STATUS(pbd))
1126 return NULL;
1127 return pbd;
1128 }
1129
1130 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1131 {
1132 unsigned int prev;
1133 if (rb->prb_bdqc.kactive_blk_num)
1134 prev = rb->prb_bdqc.kactive_blk_num-1;
1135 else
1136 prev = rb->prb_bdqc.knum_blocks-1;
1137 return prev;
1138 }
1139
1140 /* Assumes caller has held the rx_queue.lock */
1141 static void *__prb_previous_block(struct packet_sock *po,
1142 struct packet_ring_buffer *rb,
1143 int status)
1144 {
1145 unsigned int previous = prb_previous_blk_num(rb);
1146 return prb_lookup_block(po, rb, previous, status);
1147 }
1148
1149 static void *packet_previous_rx_frame(struct packet_sock *po,
1150 struct packet_ring_buffer *rb,
1151 int status)
1152 {
1153 if (po->tp_version <= TPACKET_V2)
1154 return packet_previous_frame(po, rb, status);
1155
1156 return __prb_previous_block(po, rb, status);
1157 }
1158
1159 static void packet_increment_rx_head(struct packet_sock *po,
1160 struct packet_ring_buffer *rb)
1161 {
1162 switch (po->tp_version) {
1163 case TPACKET_V1:
1164 case TPACKET_V2:
1165 return packet_increment_head(rb);
1166 case TPACKET_V3:
1167 default:
1168 WARN(1, "TPACKET version not supported.\n");
1169 BUG();
1170 return;
1171 }
1172 }
1173
1174 static void *packet_previous_frame(struct packet_sock *po,
1175 struct packet_ring_buffer *rb,
1176 int status)
1177 {
1178 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1179 return packet_lookup_frame(po, rb, previous, status);
1180 }
1181
1182 static void packet_increment_head(struct packet_ring_buffer *buff)
1183 {
1184 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1185 }
1186
1187 static void packet_inc_pending(struct packet_ring_buffer *rb)
1188 {
1189 this_cpu_inc(*rb->pending_refcnt);
1190 }
1191
1192 static void packet_dec_pending(struct packet_ring_buffer *rb)
1193 {
1194 this_cpu_dec(*rb->pending_refcnt);
1195 }
1196
1197 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1198 {
1199 unsigned int refcnt = 0;
1200 int cpu;
1201
1202 /* We don't use pending refcount in rx_ring. */
1203 if (rb->pending_refcnt == NULL)
1204 return 0;
1205
1206 for_each_possible_cpu(cpu)
1207 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1208
1209 return refcnt;
1210 }
1211
1212 static int packet_alloc_pending(struct packet_sock *po)
1213 {
1214 po->rx_ring.pending_refcnt = NULL;
1215
1216 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1217 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1218 return -ENOBUFS;
1219
1220 return 0;
1221 }
1222
1223 static void packet_free_pending(struct packet_sock *po)
1224 {
1225 free_percpu(po->tx_ring.pending_refcnt);
1226 }
1227
1228 static bool packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1229 {
1230 struct sock *sk = &po->sk;
1231 bool has_room;
1232
1233 if (po->prot_hook.func != tpacket_rcv)
1234 return (atomic_read(&sk->sk_rmem_alloc) + skb->truesize)
1235 <= sk->sk_rcvbuf;
1236
1237 spin_lock(&sk->sk_receive_queue.lock);
1238 if (po->tp_version == TPACKET_V3)
1239 has_room = prb_lookup_block(po, &po->rx_ring,
1240 po->rx_ring.prb_bdqc.kactive_blk_num,
1241 TP_STATUS_KERNEL);
1242 else
1243 has_room = packet_lookup_frame(po, &po->rx_ring,
1244 po->rx_ring.head,
1245 TP_STATUS_KERNEL);
1246 spin_unlock(&sk->sk_receive_queue.lock);
1247
1248 return has_room;
1249 }
1250
1251 static void packet_sock_destruct(struct sock *sk)
1252 {
1253 skb_queue_purge(&sk->sk_error_queue);
1254
1255 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1256 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1257
1258 if (!sock_flag(sk, SOCK_DEAD)) {
1259 pr_err("Attempt to release alive packet socket: %p\n", sk);
1260 return;
1261 }
1262
1263 sk_refcnt_debug_dec(sk);
1264 }
1265
1266 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1267 {
1268 int x = atomic_read(&f->rr_cur) + 1;
1269
1270 if (x >= num)
1271 x = 0;
1272
1273 return x;
1274 }
1275
1276 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1277 struct sk_buff *skb,
1278 unsigned int num)
1279 {
1280 return reciprocal_scale(skb->rxhash, num);
1281 }
1282
1283 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1284 struct sk_buff *skb,
1285 unsigned int num)
1286 {
1287 int cur, old;
1288
1289 cur = atomic_read(&f->rr_cur);
1290 while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1291 fanout_rr_next(f, num))) != cur)
1292 cur = old;
1293 return cur;
1294 }
1295
1296 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1297 struct sk_buff *skb,
1298 unsigned int num)
1299 {
1300 return smp_processor_id() % num;
1301 }
1302
1303 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1304 struct sk_buff *skb,
1305 unsigned int num)
1306 {
1307 return prandom_u32_max(num);
1308 }
1309
1310 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1311 struct sk_buff *skb,
1312 unsigned int idx, unsigned int skip,
1313 unsigned int num)
1314 {
1315 unsigned int i, j;
1316
1317 i = j = min_t(int, f->next[idx], num - 1);
1318 do {
1319 if (i != skip && packet_rcv_has_room(pkt_sk(f->arr[i]), skb)) {
1320 if (i != j)
1321 f->next[idx] = i;
1322 return i;
1323 }
1324 if (++i == num)
1325 i = 0;
1326 } while (i != j);
1327
1328 return idx;
1329 }
1330
1331 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1332 struct sk_buff *skb,
1333 unsigned int num)
1334 {
1335 return skb_get_queue_mapping(skb) % num;
1336 }
1337
1338 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1339 {
1340 return f->flags & (flag >> 8);
1341 }
1342
1343 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1344 struct packet_type *pt, struct net_device *orig_dev)
1345 {
1346 struct packet_fanout *f = pt->af_packet_priv;
1347 unsigned int num = f->num_members;
1348 struct packet_sock *po;
1349 unsigned int idx;
1350
1351 if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1352 !num) {
1353 kfree_skb(skb);
1354 return 0;
1355 }
1356
1357 switch (f->type) {
1358 case PACKET_FANOUT_HASH:
1359 default:
1360 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1361 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1362 if (!skb)
1363 return 0;
1364 }
1365 skb_get_hash(skb);
1366 idx = fanout_demux_hash(f, skb, num);
1367 break;
1368 case PACKET_FANOUT_LB:
1369 idx = fanout_demux_lb(f, skb, num);
1370 break;
1371 case PACKET_FANOUT_CPU:
1372 idx = fanout_demux_cpu(f, skb, num);
1373 break;
1374 case PACKET_FANOUT_RND:
1375 idx = fanout_demux_rnd(f, skb, num);
1376 break;
1377 case PACKET_FANOUT_QM:
1378 idx = fanout_demux_qm(f, skb, num);
1379 break;
1380 case PACKET_FANOUT_ROLLOVER:
1381 idx = fanout_demux_rollover(f, skb, 0, (unsigned int) -1, num);
1382 break;
1383 }
1384
1385 po = pkt_sk(f->arr[idx]);
1386 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER) &&
1387 unlikely(!packet_rcv_has_room(po, skb))) {
1388 idx = fanout_demux_rollover(f, skb, idx, idx, num);
1389 po = pkt_sk(f->arr[idx]);
1390 }
1391
1392 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1393 }
1394
1395 DEFINE_MUTEX(fanout_mutex);
1396 EXPORT_SYMBOL_GPL(fanout_mutex);
1397 static LIST_HEAD(fanout_list);
1398
1399 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1400 {
1401 struct packet_fanout *f = po->fanout;
1402
1403 spin_lock(&f->lock);
1404 f->arr[f->num_members] = sk;
1405 smp_wmb();
1406 f->num_members++;
1407 spin_unlock(&f->lock);
1408 }
1409
1410 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1411 {
1412 struct packet_fanout *f = po->fanout;
1413 int i;
1414
1415 spin_lock(&f->lock);
1416 for (i = 0; i < f->num_members; i++) {
1417 if (f->arr[i] == sk)
1418 break;
1419 }
1420 BUG_ON(i >= f->num_members);
1421 f->arr[i] = f->arr[f->num_members - 1];
1422 f->num_members--;
1423 spin_unlock(&f->lock);
1424 }
1425
1426 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1427 {
1428 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1429 return true;
1430
1431 return false;
1432 }
1433
1434 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1435 {
1436 struct packet_sock *po = pkt_sk(sk);
1437 struct packet_fanout *f, *match;
1438 u8 type = type_flags & 0xff;
1439 u8 flags = type_flags >> 8;
1440 int err;
1441
1442 switch (type) {
1443 case PACKET_FANOUT_ROLLOVER:
1444 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1445 return -EINVAL;
1446 case PACKET_FANOUT_HASH:
1447 case PACKET_FANOUT_LB:
1448 case PACKET_FANOUT_CPU:
1449 case PACKET_FANOUT_RND:
1450 case PACKET_FANOUT_QM:
1451 break;
1452 default:
1453 return -EINVAL;
1454 }
1455
1456 if (!po->running)
1457 return -EINVAL;
1458
1459 if (po->fanout)
1460 return -EALREADY;
1461
1462 mutex_lock(&fanout_mutex);
1463 match = NULL;
1464 list_for_each_entry(f, &fanout_list, list) {
1465 if (f->id == id &&
1466 read_pnet(&f->net) == sock_net(sk)) {
1467 match = f;
1468 break;
1469 }
1470 }
1471 err = -EINVAL;
1472 if (match && match->flags != flags)
1473 goto out;
1474 if (!match) {
1475 err = -ENOMEM;
1476 match = kzalloc(sizeof(*match), GFP_KERNEL);
1477 if (!match)
1478 goto out;
1479 write_pnet(&match->net, sock_net(sk));
1480 match->id = id;
1481 match->type = type;
1482 match->flags = flags;
1483 atomic_set(&match->rr_cur, 0);
1484 INIT_LIST_HEAD(&match->list);
1485 spin_lock_init(&match->lock);
1486 atomic_set(&match->sk_ref, 0);
1487 match->prot_hook.type = po->prot_hook.type;
1488 match->prot_hook.dev = po->prot_hook.dev;
1489 match->prot_hook.func = packet_rcv_fanout;
1490 match->prot_hook.af_packet_priv = match;
1491 match->prot_hook.id_match = match_fanout_group;
1492 dev_add_pack(&match->prot_hook);
1493 list_add(&match->list, &fanout_list);
1494 }
1495 err = -EINVAL;
1496 if (match->type == type &&
1497 match->prot_hook.type == po->prot_hook.type &&
1498 match->prot_hook.dev == po->prot_hook.dev) {
1499 err = -ENOSPC;
1500 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1501 __dev_remove_pack(&po->prot_hook);
1502 po->fanout = match;
1503 atomic_inc(&match->sk_ref);
1504 __fanout_link(sk, po);
1505 err = 0;
1506 }
1507 }
1508 out:
1509 mutex_unlock(&fanout_mutex);
1510 return err;
1511 }
1512
1513 static void fanout_release(struct sock *sk)
1514 {
1515 struct packet_sock *po = pkt_sk(sk);
1516 struct packet_fanout *f;
1517
1518 f = po->fanout;
1519 if (!f)
1520 return;
1521
1522 mutex_lock(&fanout_mutex);
1523 po->fanout = NULL;
1524
1525 if (atomic_dec_and_test(&f->sk_ref)) {
1526 list_del(&f->list);
1527 dev_remove_pack(&f->prot_hook);
1528 kfree(f);
1529 }
1530 mutex_unlock(&fanout_mutex);
1531 }
1532
1533 static const struct proto_ops packet_ops;
1534
1535 static const struct proto_ops packet_ops_spkt;
1536
1537 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1538 struct packet_type *pt, struct net_device *orig_dev)
1539 {
1540 struct sock *sk;
1541 struct sockaddr_pkt *spkt;
1542
1543 /*
1544 * When we registered the protocol we saved the socket in the data
1545 * field for just this event.
1546 */
1547
1548 sk = pt->af_packet_priv;
1549
1550 /*
1551 * Yank back the headers [hope the device set this
1552 * right or kerboom...]
1553 *
1554 * Incoming packets have ll header pulled,
1555 * push it back.
1556 *
1557 * For outgoing ones skb->data == skb_mac_header(skb)
1558 * so that this procedure is noop.
1559 */
1560
1561 if (skb->pkt_type == PACKET_LOOPBACK)
1562 goto out;
1563
1564 if (!net_eq(dev_net(dev), sock_net(sk)))
1565 goto out;
1566
1567 skb = skb_share_check(skb, GFP_ATOMIC);
1568 if (skb == NULL)
1569 goto oom;
1570
1571 /* drop any routing info */
1572 skb_dst_drop(skb);
1573
1574 /* drop conntrack reference */
1575 nf_reset(skb);
1576
1577 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1578
1579 skb_push(skb, skb->data - skb_mac_header(skb));
1580
1581 /*
1582 * The SOCK_PACKET socket receives _all_ frames.
1583 */
1584
1585 spkt->spkt_family = dev->type;
1586 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1587 spkt->spkt_protocol = skb->protocol;
1588
1589 /*
1590 * Charge the memory to the socket. This is done specifically
1591 * to prevent sockets using all the memory up.
1592 */
1593
1594 if (sock_queue_rcv_skb(sk, skb) == 0)
1595 return 0;
1596
1597 out:
1598 kfree_skb(skb);
1599 oom:
1600 return 0;
1601 }
1602
1603
1604 /*
1605 * Output a raw packet to a device layer. This bypasses all the other
1606 * protocol layers and you must therefore supply it with a complete frame
1607 */
1608
1609 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1610 struct msghdr *msg, size_t len)
1611 {
1612 struct sock *sk = sock->sk;
1613 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1614 struct sk_buff *skb = NULL;
1615 struct net_device *dev;
1616 __be16 proto = 0;
1617 int err;
1618 int extra_len = 0;
1619
1620 /*
1621 * Get and verify the address.
1622 */
1623
1624 if (saddr) {
1625 if (msg->msg_namelen < sizeof(struct sockaddr))
1626 return -EINVAL;
1627 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1628 proto = saddr->spkt_protocol;
1629 } else
1630 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1631
1632 /*
1633 * Find the device first to size check it
1634 */
1635
1636 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1637 retry:
1638 rcu_read_lock();
1639 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1640 err = -ENODEV;
1641 if (dev == NULL)
1642 goto out_unlock;
1643
1644 err = -ENETDOWN;
1645 if (!(dev->flags & IFF_UP))
1646 goto out_unlock;
1647
1648 /*
1649 * You may not queue a frame bigger than the mtu. This is the lowest level
1650 * raw protocol and you must do your own fragmentation at this level.
1651 */
1652
1653 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1654 if (!netif_supports_nofcs(dev)) {
1655 err = -EPROTONOSUPPORT;
1656 goto out_unlock;
1657 }
1658 extra_len = 4; /* We're doing our own CRC */
1659 }
1660
1661 err = -EMSGSIZE;
1662 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1663 goto out_unlock;
1664
1665 if (!skb) {
1666 size_t reserved = LL_RESERVED_SPACE(dev);
1667 int tlen = dev->needed_tailroom;
1668 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1669
1670 rcu_read_unlock();
1671 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1672 if (skb == NULL)
1673 return -ENOBUFS;
1674 /* FIXME: Save some space for broken drivers that write a hard
1675 * header at transmission time by themselves. PPP is the notable
1676 * one here. This should really be fixed at the driver level.
1677 */
1678 skb_reserve(skb, reserved);
1679 skb_reset_network_header(skb);
1680
1681 /* Try to align data part correctly */
1682 if (hhlen) {
1683 skb->data -= hhlen;
1684 skb->tail -= hhlen;
1685 if (len < hhlen)
1686 skb_reset_network_header(skb);
1687 }
1688 err = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len);
1689 if (err)
1690 goto out_free;
1691 goto retry;
1692 }
1693
1694 if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1695 /* Earlier code assumed this would be a VLAN pkt,
1696 * double-check this now that we have the actual
1697 * packet in hand.
1698 */
1699 struct ethhdr *ehdr;
1700 skb_reset_mac_header(skb);
1701 ehdr = eth_hdr(skb);
1702 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1703 err = -EMSGSIZE;
1704 goto out_unlock;
1705 }
1706 }
1707
1708 skb->protocol = proto;
1709 skb->dev = dev;
1710 skb->priority = sk->sk_priority;
1711 skb->mark = sk->sk_mark;
1712
1713 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1714
1715 if (unlikely(extra_len == 4))
1716 skb->no_fcs = 1;
1717
1718 skb_probe_transport_header(skb, 0);
1719
1720 dev_queue_xmit(skb);
1721 rcu_read_unlock();
1722 return len;
1723
1724 out_unlock:
1725 rcu_read_unlock();
1726 out_free:
1727 kfree_skb(skb);
1728 return err;
1729 }
1730
1731 static unsigned int run_filter(const struct sk_buff *skb,
1732 const struct sock *sk,
1733 unsigned int res)
1734 {
1735 struct sk_filter *filter;
1736
1737 rcu_read_lock();
1738 filter = rcu_dereference(sk->sk_filter);
1739 if (filter != NULL)
1740 res = SK_RUN_FILTER(filter, skb);
1741 rcu_read_unlock();
1742
1743 return res;
1744 }
1745
1746 /*
1747 * This function makes lazy skb cloning in hope that most of packets
1748 * are discarded by BPF.
1749 *
1750 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1751 * and skb->cb are mangled. It works because (and until) packets
1752 * falling here are owned by current CPU. Output packets are cloned
1753 * by dev_queue_xmit_nit(), input packets are processed by net_bh
1754 * sequencially, so that if we return skb to original state on exit,
1755 * we will not harm anyone.
1756 */
1757
1758 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1759 struct packet_type *pt, struct net_device *orig_dev)
1760 {
1761 struct sock *sk;
1762 struct sockaddr_ll *sll;
1763 struct packet_sock *po;
1764 u8 *skb_head = skb->data;
1765 int skb_len = skb->len;
1766 unsigned int snaplen, res;
1767
1768 if (skb->pkt_type == PACKET_LOOPBACK)
1769 goto drop;
1770
1771 sk = pt->af_packet_priv;
1772 po = pkt_sk(sk);
1773
1774 if (!net_eq(dev_net(dev), sock_net(sk)))
1775 goto drop;
1776
1777 skb->dev = dev;
1778
1779 if (dev->header_ops) {
1780 /* The device has an explicit notion of ll header,
1781 * exported to higher levels.
1782 *
1783 * Otherwise, the device hides details of its frame
1784 * structure, so that corresponding packet head is
1785 * never delivered to user.
1786 */
1787 if (sk->sk_type != SOCK_DGRAM)
1788 skb_push(skb, skb->data - skb_mac_header(skb));
1789 else if (skb->pkt_type == PACKET_OUTGOING) {
1790 /* Special case: outgoing packets have ll header at head */
1791 skb_pull(skb, skb_network_offset(skb));
1792 }
1793 }
1794
1795 snaplen = skb->len;
1796
1797 res = run_filter(skb, sk, snaplen);
1798 if (!res)
1799 goto drop_n_restore;
1800 if (snaplen > res)
1801 snaplen = res;
1802
1803 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1804 goto drop_n_acct;
1805
1806 if (skb_shared(skb)) {
1807 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1808 if (nskb == NULL)
1809 goto drop_n_acct;
1810
1811 if (skb_head != skb->data) {
1812 skb->data = skb_head;
1813 skb->len = skb_len;
1814 }
1815 consume_skb(skb);
1816 skb = nskb;
1817 }
1818
1819 BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1820 sizeof(skb->cb));
1821
1822 sll = &PACKET_SKB_CB(skb)->sa.ll;
1823 sll->sll_family = AF_PACKET;
1824 sll->sll_hatype = dev->type;
1825 sll->sll_protocol = skb->protocol;
1826 sll->sll_pkttype = skb->pkt_type;
1827 if (unlikely(po->origdev))
1828 sll->sll_ifindex = orig_dev->ifindex;
1829 else
1830 sll->sll_ifindex = dev->ifindex;
1831
1832 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1833
1834 PACKET_SKB_CB(skb)->origlen = skb->len;
1835
1836 if (pskb_trim(skb, snaplen))
1837 goto drop_n_acct;
1838
1839 skb_set_owner_r(skb, sk);
1840 skb->dev = NULL;
1841 skb_dst_drop(skb);
1842
1843 /* drop conntrack reference */
1844 nf_reset(skb);
1845
1846 spin_lock(&sk->sk_receive_queue.lock);
1847 po->stats.stats1.tp_packets++;
1848 skb->dropcount = atomic_read(&sk->sk_drops);
1849 __skb_queue_tail(&sk->sk_receive_queue, skb);
1850 spin_unlock(&sk->sk_receive_queue.lock);
1851 sk->sk_data_ready(sk, skb->len);
1852 return 0;
1853
1854 drop_n_acct:
1855 spin_lock(&sk->sk_receive_queue.lock);
1856 po->stats.stats1.tp_drops++;
1857 atomic_inc(&sk->sk_drops);
1858 spin_unlock(&sk->sk_receive_queue.lock);
1859
1860 drop_n_restore:
1861 if (skb_head != skb->data && skb_shared(skb)) {
1862 skb->data = skb_head;
1863 skb->len = skb_len;
1864 }
1865 drop:
1866 consume_skb(skb);
1867 return 0;
1868 }
1869
1870 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1871 struct packet_type *pt, struct net_device *orig_dev)
1872 {
1873 struct sock *sk;
1874 struct packet_sock *po;
1875 struct sockaddr_ll *sll;
1876 union tpacket_uhdr h;
1877 u8 *skb_head = skb->data;
1878 int skb_len = skb->len;
1879 unsigned int snaplen, res;
1880 unsigned long status = TP_STATUS_USER;
1881 unsigned short macoff, netoff, hdrlen;
1882 struct sk_buff *copy_skb = NULL;
1883 struct timespec ts;
1884 __u32 ts_status;
1885
1886 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
1887 * We may add members to them until current aligned size without forcing
1888 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
1889 */
1890 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
1891 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
1892
1893 if (skb->pkt_type == PACKET_LOOPBACK)
1894 goto drop;
1895
1896 sk = pt->af_packet_priv;
1897 po = pkt_sk(sk);
1898
1899 if (!net_eq(dev_net(dev), sock_net(sk)))
1900 goto drop;
1901
1902 if (dev->header_ops) {
1903 if (sk->sk_type != SOCK_DGRAM)
1904 skb_push(skb, skb->data - skb_mac_header(skb));
1905 else if (skb->pkt_type == PACKET_OUTGOING) {
1906 /* Special case: outgoing packets have ll header at head */
1907 skb_pull(skb, skb_network_offset(skb));
1908 }
1909 }
1910
1911 if (skb->ip_summed == CHECKSUM_PARTIAL)
1912 status |= TP_STATUS_CSUMNOTREADY;
1913
1914 snaplen = skb->len;
1915
1916 res = run_filter(skb, sk, snaplen);
1917 if (!res)
1918 goto drop_n_restore;
1919 if (snaplen > res)
1920 snaplen = res;
1921
1922 if (sk->sk_type == SOCK_DGRAM) {
1923 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1924 po->tp_reserve;
1925 } else {
1926 unsigned int maclen = skb_network_offset(skb);
1927 netoff = TPACKET_ALIGN(po->tp_hdrlen +
1928 (maclen < 16 ? 16 : maclen)) +
1929 po->tp_reserve;
1930 macoff = netoff - maclen;
1931 }
1932 if (po->tp_version <= TPACKET_V2) {
1933 if (macoff + snaplen > po->rx_ring.frame_size) {
1934 if (po->copy_thresh &&
1935 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1936 if (skb_shared(skb)) {
1937 copy_skb = skb_clone(skb, GFP_ATOMIC);
1938 } else {
1939 copy_skb = skb_get(skb);
1940 skb_head = skb->data;
1941 }
1942 if (copy_skb)
1943 skb_set_owner_r(copy_skb, sk);
1944 }
1945 snaplen = po->rx_ring.frame_size - macoff;
1946 if ((int)snaplen < 0)
1947 snaplen = 0;
1948 }
1949 }
1950 spin_lock(&sk->sk_receive_queue.lock);
1951 h.raw = packet_current_rx_frame(po, skb,
1952 TP_STATUS_KERNEL, (macoff+snaplen));
1953 if (!h.raw)
1954 goto ring_is_full;
1955 if (po->tp_version <= TPACKET_V2) {
1956 packet_increment_rx_head(po, &po->rx_ring);
1957 /*
1958 * LOSING will be reported till you read the stats,
1959 * because it's COR - Clear On Read.
1960 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1961 * at packet level.
1962 */
1963 if (po->stats.stats1.tp_drops)
1964 status |= TP_STATUS_LOSING;
1965 }
1966 po->stats.stats1.tp_packets++;
1967 if (copy_skb) {
1968 status |= TP_STATUS_COPY;
1969 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1970 }
1971 spin_unlock(&sk->sk_receive_queue.lock);
1972
1973 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1974
1975 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
1976 getnstimeofday(&ts);
1977
1978 status |= ts_status;
1979
1980 switch (po->tp_version) {
1981 case TPACKET_V1:
1982 h.h1->tp_len = skb->len;
1983 h.h1->tp_snaplen = snaplen;
1984 h.h1->tp_mac = macoff;
1985 h.h1->tp_net = netoff;
1986 h.h1->tp_sec = ts.tv_sec;
1987 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
1988 hdrlen = sizeof(*h.h1);
1989 break;
1990 case TPACKET_V2:
1991 h.h2->tp_len = skb->len;
1992 h.h2->tp_snaplen = snaplen;
1993 h.h2->tp_mac = macoff;
1994 h.h2->tp_net = netoff;
1995 h.h2->tp_sec = ts.tv_sec;
1996 h.h2->tp_nsec = ts.tv_nsec;
1997 if (vlan_tx_tag_present(skb)) {
1998 h.h2->tp_vlan_tci = vlan_tx_tag_get(skb);
1999 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2000 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2001 } else {
2002 h.h2->tp_vlan_tci = 0;
2003 h.h2->tp_vlan_tpid = 0;
2004 }
2005 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2006 hdrlen = sizeof(*h.h2);
2007 break;
2008 case TPACKET_V3:
2009 /* tp_nxt_offset,vlan are already populated above.
2010 * So DONT clear those fields here
2011 */
2012 h.h3->tp_status |= status;
2013 h.h3->tp_len = skb->len;
2014 h.h3->tp_snaplen = snaplen;
2015 h.h3->tp_mac = macoff;
2016 h.h3->tp_net = netoff;
2017 h.h3->tp_sec = ts.tv_sec;
2018 h.h3->tp_nsec = ts.tv_nsec;
2019 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2020 hdrlen = sizeof(*h.h3);
2021 break;
2022 default:
2023 BUG();
2024 }
2025
2026 sll = h.raw + TPACKET_ALIGN(hdrlen);
2027 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2028 sll->sll_family = AF_PACKET;
2029 sll->sll_hatype = dev->type;
2030 sll->sll_protocol = skb->protocol;
2031 sll->sll_pkttype = skb->pkt_type;
2032 if (unlikely(po->origdev))
2033 sll->sll_ifindex = orig_dev->ifindex;
2034 else
2035 sll->sll_ifindex = dev->ifindex;
2036
2037 smp_mb();
2038
2039 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2040 if (po->tp_version <= TPACKET_V2) {
2041 u8 *start, *end;
2042
2043 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2044 macoff + snaplen);
2045
2046 for (start = h.raw; start < end; start += PAGE_SIZE)
2047 flush_dcache_page(pgv_to_page(start));
2048 }
2049 smp_wmb();
2050 #endif
2051
2052 if (po->tp_version <= TPACKET_V2)
2053 __packet_set_status(po, h.raw, status);
2054 else
2055 prb_clear_blk_fill_status(&po->rx_ring);
2056
2057 sk->sk_data_ready(sk, 0);
2058
2059 drop_n_restore:
2060 if (skb_head != skb->data && skb_shared(skb)) {
2061 skb->data = skb_head;
2062 skb->len = skb_len;
2063 }
2064 drop:
2065 kfree_skb(skb);
2066 return 0;
2067
2068 ring_is_full:
2069 po->stats.stats1.tp_drops++;
2070 spin_unlock(&sk->sk_receive_queue.lock);
2071
2072 sk->sk_data_ready(sk, 0);
2073 kfree_skb(copy_skb);
2074 goto drop_n_restore;
2075 }
2076
2077 static void tpacket_destruct_skb(struct sk_buff *skb)
2078 {
2079 struct packet_sock *po = pkt_sk(skb->sk);
2080
2081 if (likely(po->tx_ring.pg_vec)) {
2082 void *ph;
2083 __u32 ts;
2084
2085 ph = skb_shinfo(skb)->destructor_arg;
2086 packet_dec_pending(&po->tx_ring);
2087
2088 ts = __packet_set_timestamp(po, ph, skb);
2089 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2090 }
2091
2092 sock_wfree(skb);
2093 }
2094
2095 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2096 void *frame, struct net_device *dev, int size_max,
2097 __be16 proto, unsigned char *addr, int hlen)
2098 {
2099 union tpacket_uhdr ph;
2100 int to_write, offset, len, tp_len, nr_frags, len_max;
2101 struct socket *sock = po->sk.sk_socket;
2102 struct page *page;
2103 void *data;
2104 int err;
2105
2106 ph.raw = frame;
2107
2108 skb->protocol = proto;
2109 skb->dev = dev;
2110 skb->priority = po->sk.sk_priority;
2111 skb->mark = po->sk.sk_mark;
2112 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2113 skb_shinfo(skb)->destructor_arg = ph.raw;
2114
2115 switch (po->tp_version) {
2116 case TPACKET_V2:
2117 tp_len = ph.h2->tp_len;
2118 break;
2119 default:
2120 tp_len = ph.h1->tp_len;
2121 break;
2122 }
2123 if (unlikely(tp_len > size_max)) {
2124 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2125 return -EMSGSIZE;
2126 }
2127
2128 skb_reserve(skb, hlen);
2129 skb_reset_network_header(skb);
2130
2131 if (!packet_use_direct_xmit(po))
2132 skb_probe_transport_header(skb, 0);
2133 if (unlikely(po->tp_tx_has_off)) {
2134 int off_min, off_max, off;
2135 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2136 off_max = po->tx_ring.frame_size - tp_len;
2137 if (sock->type == SOCK_DGRAM) {
2138 switch (po->tp_version) {
2139 case TPACKET_V2:
2140 off = ph.h2->tp_net;
2141 break;
2142 default:
2143 off = ph.h1->tp_net;
2144 break;
2145 }
2146 } else {
2147 switch (po->tp_version) {
2148 case TPACKET_V2:
2149 off = ph.h2->tp_mac;
2150 break;
2151 default:
2152 off = ph.h1->tp_mac;
2153 break;
2154 }
2155 }
2156 if (unlikely((off < off_min) || (off_max < off)))
2157 return -EINVAL;
2158 data = ph.raw + off;
2159 } else {
2160 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2161 }
2162 to_write = tp_len;
2163
2164 if (sock->type == SOCK_DGRAM) {
2165 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2166 NULL, tp_len);
2167 if (unlikely(err < 0))
2168 return -EINVAL;
2169 } else if (dev->hard_header_len) {
2170 /* net device doesn't like empty head */
2171 if (unlikely(tp_len <= dev->hard_header_len)) {
2172 pr_err("packet size is too short (%d < %d)\n",
2173 tp_len, dev->hard_header_len);
2174 return -EINVAL;
2175 }
2176
2177 skb_push(skb, dev->hard_header_len);
2178 err = skb_store_bits(skb, 0, data,
2179 dev->hard_header_len);
2180 if (unlikely(err))
2181 return err;
2182
2183 data += dev->hard_header_len;
2184 to_write -= dev->hard_header_len;
2185 }
2186
2187 offset = offset_in_page(data);
2188 len_max = PAGE_SIZE - offset;
2189 len = ((to_write > len_max) ? len_max : to_write);
2190
2191 skb->data_len = to_write;
2192 skb->len += to_write;
2193 skb->truesize += to_write;
2194 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2195
2196 while (likely(to_write)) {
2197 nr_frags = skb_shinfo(skb)->nr_frags;
2198
2199 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2200 pr_err("Packet exceed the number of skb frags(%lu)\n",
2201 MAX_SKB_FRAGS);
2202 return -EFAULT;
2203 }
2204
2205 page = pgv_to_page(data);
2206 data += len;
2207 flush_dcache_page(page);
2208 get_page(page);
2209 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2210 to_write -= len;
2211 offset = 0;
2212 len_max = PAGE_SIZE;
2213 len = ((to_write > len_max) ? len_max : to_write);
2214 }
2215
2216 return tp_len;
2217 }
2218
2219 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2220 {
2221 struct sk_buff *skb;
2222 struct net_device *dev;
2223 __be16 proto;
2224 int err, reserve = 0;
2225 void *ph;
2226 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2227 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2228 int tp_len, size_max;
2229 unsigned char *addr;
2230 int len_sum = 0;
2231 int status = TP_STATUS_AVAILABLE;
2232 int hlen, tlen;
2233
2234 mutex_lock(&po->pg_vec_lock);
2235
2236 if (likely(saddr == NULL)) {
2237 dev = packet_cached_dev_get(po);
2238 proto = po->num;
2239 addr = NULL;
2240 } else {
2241 err = -EINVAL;
2242 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2243 goto out;
2244 if (msg->msg_namelen < (saddr->sll_halen
2245 + offsetof(struct sockaddr_ll,
2246 sll_addr)))
2247 goto out;
2248 proto = saddr->sll_protocol;
2249 addr = saddr->sll_addr;
2250 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2251 }
2252
2253 err = -ENXIO;
2254 if (unlikely(dev == NULL))
2255 goto out;
2256 err = -ENETDOWN;
2257 if (unlikely(!(dev->flags & IFF_UP)))
2258 goto out_put;
2259
2260 reserve = dev->hard_header_len;
2261
2262 size_max = po->tx_ring.frame_size
2263 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2264
2265 if (size_max > dev->mtu + reserve)
2266 size_max = dev->mtu + reserve;
2267
2268 do {
2269 ph = packet_current_frame(po, &po->tx_ring,
2270 TP_STATUS_SEND_REQUEST);
2271 if (unlikely(ph == NULL)) {
2272 if (need_wait && need_resched())
2273 schedule();
2274 continue;
2275 }
2276
2277 status = TP_STATUS_SEND_REQUEST;
2278 hlen = LL_RESERVED_SPACE(dev);
2279 tlen = dev->needed_tailroom;
2280 skb = sock_alloc_send_skb(&po->sk,
2281 hlen + tlen + sizeof(struct sockaddr_ll),
2282 0, &err);
2283
2284 if (unlikely(skb == NULL))
2285 goto out_status;
2286
2287 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2288 addr, hlen);
2289
2290 if (unlikely(tp_len < 0)) {
2291 if (po->tp_loss) {
2292 __packet_set_status(po, ph,
2293 TP_STATUS_AVAILABLE);
2294 packet_increment_head(&po->tx_ring);
2295 kfree_skb(skb);
2296 continue;
2297 } else {
2298 status = TP_STATUS_WRONG_FORMAT;
2299 err = tp_len;
2300 goto out_status;
2301 }
2302 }
2303
2304 packet_pick_tx_queue(dev, skb);
2305
2306 skb->destructor = tpacket_destruct_skb;
2307 __packet_set_status(po, ph, TP_STATUS_SENDING);
2308 packet_inc_pending(&po->tx_ring);
2309
2310 status = TP_STATUS_SEND_REQUEST;
2311 err = po->xmit(skb);
2312 if (unlikely(err > 0)) {
2313 err = net_xmit_errno(err);
2314 if (err && __packet_get_status(po, ph) ==
2315 TP_STATUS_AVAILABLE) {
2316 /* skb was destructed already */
2317 skb = NULL;
2318 goto out_status;
2319 }
2320 /*
2321 * skb was dropped but not destructed yet;
2322 * let's treat it like congestion or err < 0
2323 */
2324 err = 0;
2325 }
2326 packet_increment_head(&po->tx_ring);
2327 len_sum += tp_len;
2328 } while (likely((ph != NULL) ||
2329 /* Note: packet_read_pending() might be slow if we have
2330 * to call it as it's per_cpu variable, but in fast-path
2331 * we already short-circuit the loop with the first
2332 * condition, and luckily don't have to go that path
2333 * anyway.
2334 */
2335 (need_wait && packet_read_pending(&po->tx_ring))));
2336
2337 err = len_sum;
2338 goto out_put;
2339
2340 out_status:
2341 __packet_set_status(po, ph, status);
2342 kfree_skb(skb);
2343 out_put:
2344 dev_put(dev);
2345 out:
2346 mutex_unlock(&po->pg_vec_lock);
2347 return err;
2348 }
2349
2350 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2351 size_t reserve, size_t len,
2352 size_t linear, int noblock,
2353 int *err)
2354 {
2355 struct sk_buff *skb;
2356
2357 /* Under a page? Don't bother with paged skb. */
2358 if (prepad + len < PAGE_SIZE || !linear)
2359 linear = len;
2360
2361 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2362 err, 0);
2363 if (!skb)
2364 return NULL;
2365
2366 skb_reserve(skb, reserve);
2367 skb_put(skb, linear);
2368 skb->data_len = len - linear;
2369 skb->len += len - linear;
2370
2371 return skb;
2372 }
2373
2374 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2375 {
2376 struct sock *sk = sock->sk;
2377 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2378 struct sk_buff *skb;
2379 struct net_device *dev;
2380 __be16 proto;
2381 unsigned char *addr;
2382 int err, reserve = 0;
2383 struct virtio_net_hdr vnet_hdr = { 0 };
2384 int offset = 0;
2385 int vnet_hdr_len;
2386 struct packet_sock *po = pkt_sk(sk);
2387 unsigned short gso_type = 0;
2388 int hlen, tlen;
2389 int extra_len = 0;
2390
2391 /*
2392 * Get and verify the address.
2393 */
2394
2395 if (likely(saddr == NULL)) {
2396 dev = packet_cached_dev_get(po);
2397 proto = po->num;
2398 addr = NULL;
2399 } else {
2400 err = -EINVAL;
2401 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2402 goto out;
2403 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2404 goto out;
2405 proto = saddr->sll_protocol;
2406 addr = saddr->sll_addr;
2407 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2408 }
2409
2410 err = -ENXIO;
2411 if (unlikely(dev == NULL))
2412 goto out_unlock;
2413 err = -ENETDOWN;
2414 if (unlikely(!(dev->flags & IFF_UP)))
2415 goto out_unlock;
2416
2417 if (sock->type == SOCK_RAW)
2418 reserve = dev->hard_header_len;
2419 if (po->has_vnet_hdr) {
2420 vnet_hdr_len = sizeof(vnet_hdr);
2421
2422 err = -EINVAL;
2423 if (len < vnet_hdr_len)
2424 goto out_unlock;
2425
2426 len -= vnet_hdr_len;
2427
2428 err = memcpy_fromiovec((void *)&vnet_hdr, msg->msg_iov,
2429 vnet_hdr_len);
2430 if (err < 0)
2431 goto out_unlock;
2432
2433 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2434 (vnet_hdr.csum_start + vnet_hdr.csum_offset + 2 >
2435 vnet_hdr.hdr_len))
2436 vnet_hdr.hdr_len = vnet_hdr.csum_start +
2437 vnet_hdr.csum_offset + 2;
2438
2439 err = -EINVAL;
2440 if (vnet_hdr.hdr_len > len)
2441 goto out_unlock;
2442
2443 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2444 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2445 case VIRTIO_NET_HDR_GSO_TCPV4:
2446 gso_type = SKB_GSO_TCPV4;
2447 break;
2448 case VIRTIO_NET_HDR_GSO_TCPV6:
2449 gso_type = SKB_GSO_TCPV6;
2450 break;
2451 case VIRTIO_NET_HDR_GSO_UDP:
2452 gso_type = SKB_GSO_UDP;
2453 break;
2454 default:
2455 goto out_unlock;
2456 }
2457
2458 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2459 gso_type |= SKB_GSO_TCP_ECN;
2460
2461 if (vnet_hdr.gso_size == 0)
2462 goto out_unlock;
2463
2464 }
2465 }
2466
2467 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2468 if (!netif_supports_nofcs(dev)) {
2469 err = -EPROTONOSUPPORT;
2470 goto out_unlock;
2471 }
2472 extra_len = 4; /* We're doing our own CRC */
2473 }
2474
2475 err = -EMSGSIZE;
2476 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2477 goto out_unlock;
2478
2479 err = -ENOBUFS;
2480 hlen = LL_RESERVED_SPACE(dev);
2481 tlen = dev->needed_tailroom;
2482 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, vnet_hdr.hdr_len,
2483 msg->msg_flags & MSG_DONTWAIT, &err);
2484 if (skb == NULL)
2485 goto out_unlock;
2486
2487 skb_set_network_header(skb, reserve);
2488
2489 err = -EINVAL;
2490 if (sock->type == SOCK_DGRAM &&
2491 (offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len)) < 0)
2492 goto out_free;
2493
2494 /* Returns -EFAULT on error */
2495 err = skb_copy_datagram_from_iovec(skb, offset, msg->msg_iov, 0, len);
2496 if (err)
2497 goto out_free;
2498
2499 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2500
2501 if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2502 /* Earlier code assumed this would be a VLAN pkt,
2503 * double-check this now that we have the actual
2504 * packet in hand.
2505 */
2506 struct ethhdr *ehdr;
2507 skb_reset_mac_header(skb);
2508 ehdr = eth_hdr(skb);
2509 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2510 err = -EMSGSIZE;
2511 goto out_free;
2512 }
2513 }
2514
2515 skb->protocol = proto;
2516 skb->dev = dev;
2517 skb->priority = sk->sk_priority;
2518 skb->mark = sk->sk_mark;
2519
2520 packet_pick_tx_queue(dev, skb);
2521
2522 if (po->has_vnet_hdr) {
2523 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2524 if (!skb_partial_csum_set(skb, vnet_hdr.csum_start,
2525 vnet_hdr.csum_offset)) {
2526 err = -EINVAL;
2527 goto out_free;
2528 }
2529 }
2530
2531 skb_shinfo(skb)->gso_size = vnet_hdr.gso_size;
2532 skb_shinfo(skb)->gso_type = gso_type;
2533
2534 /* Header must be checked, and gso_segs computed. */
2535 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2536 skb_shinfo(skb)->gso_segs = 0;
2537
2538 len += vnet_hdr_len;
2539 }
2540
2541 if (!packet_use_direct_xmit(po))
2542 skb_probe_transport_header(skb, reserve);
2543 if (unlikely(extra_len == 4))
2544 skb->no_fcs = 1;
2545
2546 err = po->xmit(skb);
2547 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2548 goto out_unlock;
2549
2550 dev_put(dev);
2551
2552 return len;
2553
2554 out_free:
2555 kfree_skb(skb);
2556 out_unlock:
2557 if (dev)
2558 dev_put(dev);
2559 out:
2560 return err;
2561 }
2562
2563 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2564 struct msghdr *msg, size_t len)
2565 {
2566 struct sock *sk = sock->sk;
2567 struct packet_sock *po = pkt_sk(sk);
2568
2569 if (po->tx_ring.pg_vec)
2570 return tpacket_snd(po, msg);
2571 else
2572 return packet_snd(sock, msg, len);
2573 }
2574
2575 /*
2576 * Close a PACKET socket. This is fairly simple. We immediately go
2577 * to 'closed' state and remove our protocol entry in the device list.
2578 */
2579
2580 static int packet_release(struct socket *sock)
2581 {
2582 struct sock *sk = sock->sk;
2583 struct packet_sock *po;
2584 struct net *net;
2585 union tpacket_req_u req_u;
2586
2587 if (!sk)
2588 return 0;
2589
2590 net = sock_net(sk);
2591 po = pkt_sk(sk);
2592
2593 mutex_lock(&net->packet.sklist_lock);
2594 sk_del_node_init_rcu(sk);
2595 mutex_unlock(&net->packet.sklist_lock);
2596
2597 preempt_disable();
2598 sock_prot_inuse_add(net, sk->sk_prot, -1);
2599 preempt_enable();
2600
2601 spin_lock(&po->bind_lock);
2602 unregister_prot_hook(sk, false);
2603 packet_cached_dev_reset(po);
2604
2605 if (po->prot_hook.dev) {
2606 dev_put(po->prot_hook.dev);
2607 po->prot_hook.dev = NULL;
2608 }
2609 spin_unlock(&po->bind_lock);
2610
2611 packet_flush_mclist(sk);
2612
2613 if (po->rx_ring.pg_vec) {
2614 memset(&req_u, 0, sizeof(req_u));
2615 packet_set_ring(sk, &req_u, 1, 0);
2616 }
2617
2618 if (po->tx_ring.pg_vec) {
2619 memset(&req_u, 0, sizeof(req_u));
2620 packet_set_ring(sk, &req_u, 1, 1);
2621 }
2622
2623 fanout_release(sk);
2624
2625 synchronize_net();
2626 /*
2627 * Now the socket is dead. No more input will appear.
2628 */
2629 sock_orphan(sk);
2630 sock->sk = NULL;
2631
2632 /* Purge queues */
2633
2634 skb_queue_purge(&sk->sk_receive_queue);
2635 packet_free_pending(po);
2636 sk_refcnt_debug_release(sk);
2637
2638 sock_put(sk);
2639 return 0;
2640 }
2641
2642 /*
2643 * Attach a packet hook.
2644 */
2645
2646 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2647 {
2648 struct packet_sock *po = pkt_sk(sk);
2649 const struct net_device *dev_curr;
2650 __be16 proto_curr;
2651 bool need_rehook;
2652
2653 if (po->fanout) {
2654 if (dev)
2655 dev_put(dev);
2656
2657 return -EINVAL;
2658 }
2659
2660 lock_sock(sk);
2661 spin_lock(&po->bind_lock);
2662
2663 proto_curr = po->prot_hook.type;
2664 dev_curr = po->prot_hook.dev;
2665
2666 need_rehook = proto_curr != proto || dev_curr != dev;
2667
2668 if (need_rehook) {
2669 unregister_prot_hook(sk, true);
2670
2671 po->num = proto;
2672 po->prot_hook.type = proto;
2673
2674 if (po->prot_hook.dev)
2675 dev_put(po->prot_hook.dev);
2676
2677 po->prot_hook.dev = dev;
2678
2679 po->ifindex = dev ? dev->ifindex : 0;
2680 packet_cached_dev_assign(po, dev);
2681 }
2682
2683 if (proto == 0 || !need_rehook)
2684 goto out_unlock;
2685
2686 if (!dev || (dev->flags & IFF_UP)) {
2687 register_prot_hook(sk);
2688 } else {
2689 sk->sk_err = ENETDOWN;
2690 if (!sock_flag(sk, SOCK_DEAD))
2691 sk->sk_error_report(sk);
2692 }
2693
2694 out_unlock:
2695 spin_unlock(&po->bind_lock);
2696 release_sock(sk);
2697 return 0;
2698 }
2699
2700 /*
2701 * Bind a packet socket to a device
2702 */
2703
2704 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2705 int addr_len)
2706 {
2707 struct sock *sk = sock->sk;
2708 char name[15];
2709 struct net_device *dev;
2710 int err = -ENODEV;
2711
2712 /*
2713 * Check legality
2714 */
2715
2716 if (addr_len != sizeof(struct sockaddr))
2717 return -EINVAL;
2718 strlcpy(name, uaddr->sa_data, sizeof(name));
2719
2720 dev = dev_get_by_name(sock_net(sk), name);
2721 if (dev)
2722 err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2723 return err;
2724 }
2725
2726 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2727 {
2728 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2729 struct sock *sk = sock->sk;
2730 struct net_device *dev = NULL;
2731 int err;
2732
2733
2734 /*
2735 * Check legality
2736 */
2737
2738 if (addr_len < sizeof(struct sockaddr_ll))
2739 return -EINVAL;
2740 if (sll->sll_family != AF_PACKET)
2741 return -EINVAL;
2742
2743 if (sll->sll_ifindex) {
2744 err = -ENODEV;
2745 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2746 if (dev == NULL)
2747 goto out;
2748 }
2749 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2750
2751 out:
2752 return err;
2753 }
2754
2755 static struct proto packet_proto = {
2756 .name = "PACKET",
2757 .owner = THIS_MODULE,
2758 .obj_size = sizeof(struct packet_sock),
2759 };
2760
2761 /*
2762 * Create a packet of type SOCK_PACKET.
2763 */
2764
2765 static int packet_create(struct net *net, struct socket *sock, int protocol,
2766 int kern)
2767 {
2768 struct sock *sk;
2769 struct packet_sock *po;
2770 __be16 proto = (__force __be16)protocol; /* weird, but documented */
2771 int err;
2772
2773 if (!ns_capable(net->user_ns, CAP_NET_RAW))
2774 return -EPERM;
2775 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2776 sock->type != SOCK_PACKET)
2777 return -ESOCKTNOSUPPORT;
2778
2779 sock->state = SS_UNCONNECTED;
2780
2781 err = -ENOBUFS;
2782 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2783 if (sk == NULL)
2784 goto out;
2785
2786 sock->ops = &packet_ops;
2787 if (sock->type == SOCK_PACKET)
2788 sock->ops = &packet_ops_spkt;
2789
2790 sock_init_data(sock, sk);
2791
2792 po = pkt_sk(sk);
2793 sk->sk_family = PF_PACKET;
2794 po->num = proto;
2795 po->xmit = dev_queue_xmit;
2796
2797 err = packet_alloc_pending(po);
2798 if (err)
2799 goto out2;
2800
2801 packet_cached_dev_reset(po);
2802
2803 sk->sk_destruct = packet_sock_destruct;
2804 sk_refcnt_debug_inc(sk);
2805
2806 /*
2807 * Attach a protocol block
2808 */
2809
2810 spin_lock_init(&po->bind_lock);
2811 mutex_init(&po->pg_vec_lock);
2812 po->prot_hook.func = packet_rcv;
2813
2814 if (sock->type == SOCK_PACKET)
2815 po->prot_hook.func = packet_rcv_spkt;
2816
2817 po->prot_hook.af_packet_priv = sk;
2818
2819 if (proto) {
2820 po->prot_hook.type = proto;
2821 register_prot_hook(sk);
2822 }
2823
2824 mutex_lock(&net->packet.sklist_lock);
2825 sk_add_node_rcu(sk, &net->packet.sklist);
2826 mutex_unlock(&net->packet.sklist_lock);
2827
2828 preempt_disable();
2829 sock_prot_inuse_add(net, &packet_proto, 1);
2830 preempt_enable();
2831
2832 return 0;
2833 out2:
2834 sk_free(sk);
2835 out:
2836 return err;
2837 }
2838
2839 /*
2840 * Pull a packet from our receive queue and hand it to the user.
2841 * If necessary we block.
2842 */
2843
2844 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2845 struct msghdr *msg, size_t len, int flags)
2846 {
2847 struct sock *sk = sock->sk;
2848 struct sk_buff *skb;
2849 int copied, err;
2850 int vnet_hdr_len = 0;
2851
2852 err = -EINVAL;
2853 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2854 goto out;
2855
2856 #if 0
2857 /* What error should we return now? EUNATTACH? */
2858 if (pkt_sk(sk)->ifindex < 0)
2859 return -ENODEV;
2860 #endif
2861
2862 if (flags & MSG_ERRQUEUE) {
2863 err = sock_recv_errqueue(sk, msg, len,
2864 SOL_PACKET, PACKET_TX_TIMESTAMP);
2865 goto out;
2866 }
2867
2868 /*
2869 * Call the generic datagram receiver. This handles all sorts
2870 * of horrible races and re-entrancy so we can forget about it
2871 * in the protocol layers.
2872 *
2873 * Now it will return ENETDOWN, if device have just gone down,
2874 * but then it will block.
2875 */
2876
2877 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2878
2879 /*
2880 * An error occurred so return it. Because skb_recv_datagram()
2881 * handles the blocking we don't see and worry about blocking
2882 * retries.
2883 */
2884
2885 if (skb == NULL)
2886 goto out;
2887
2888 if (pkt_sk(sk)->has_vnet_hdr) {
2889 struct virtio_net_hdr vnet_hdr = { 0 };
2890
2891 err = -EINVAL;
2892 vnet_hdr_len = sizeof(vnet_hdr);
2893 if (len < vnet_hdr_len)
2894 goto out_free;
2895
2896 len -= vnet_hdr_len;
2897
2898 if (skb_is_gso(skb)) {
2899 struct skb_shared_info *sinfo = skb_shinfo(skb);
2900
2901 /* This is a hint as to how much should be linear. */
2902 vnet_hdr.hdr_len = skb_headlen(skb);
2903 vnet_hdr.gso_size = sinfo->gso_size;
2904 if (sinfo->gso_type & SKB_GSO_TCPV4)
2905 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2906 else if (sinfo->gso_type & SKB_GSO_TCPV6)
2907 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2908 else if (sinfo->gso_type & SKB_GSO_UDP)
2909 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2910 else if (sinfo->gso_type & SKB_GSO_FCOE)
2911 goto out_free;
2912 else
2913 BUG();
2914 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2915 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2916 } else
2917 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2918
2919 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2920 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2921 vnet_hdr.csum_start = skb_checksum_start_offset(skb);
2922 vnet_hdr.csum_offset = skb->csum_offset;
2923 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2924 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2925 } /* else everything is zero */
2926
2927 err = memcpy_toiovec(msg->msg_iov, (void *)&vnet_hdr,
2928 vnet_hdr_len);
2929 if (err < 0)
2930 goto out_free;
2931 }
2932
2933 /* You lose any data beyond the buffer you gave. If it worries
2934 * a user program they can ask the device for its MTU
2935 * anyway.
2936 */
2937 copied = skb->len;
2938 if (copied > len) {
2939 copied = len;
2940 msg->msg_flags |= MSG_TRUNC;
2941 }
2942
2943 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2944 if (err)
2945 goto out_free;
2946
2947 sock_recv_ts_and_drops(msg, sk, skb);
2948
2949 if (msg->msg_name) {
2950 /* If the address length field is there to be filled
2951 * in, we fill it in now.
2952 */
2953 if (sock->type == SOCK_PACKET) {
2954 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
2955 msg->msg_namelen = sizeof(struct sockaddr_pkt);
2956 } else {
2957 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
2958 msg->msg_namelen = sll->sll_halen +
2959 offsetof(struct sockaddr_ll, sll_addr);
2960 }
2961 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
2962 msg->msg_namelen);
2963 }
2964
2965 if (pkt_sk(sk)->auxdata) {
2966 struct tpacket_auxdata aux;
2967
2968 aux.tp_status = TP_STATUS_USER;
2969 if (skb->ip_summed == CHECKSUM_PARTIAL)
2970 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
2971 aux.tp_len = PACKET_SKB_CB(skb)->origlen;
2972 aux.tp_snaplen = skb->len;
2973 aux.tp_mac = 0;
2974 aux.tp_net = skb_network_offset(skb);
2975 if (vlan_tx_tag_present(skb)) {
2976 aux.tp_vlan_tci = vlan_tx_tag_get(skb);
2977 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
2978 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2979 } else {
2980 aux.tp_vlan_tci = 0;
2981 aux.tp_vlan_tpid = 0;
2982 }
2983 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
2984 }
2985
2986 /*
2987 * Free or return the buffer as appropriate. Again this
2988 * hides all the races and re-entrancy issues from us.
2989 */
2990 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
2991
2992 out_free:
2993 skb_free_datagram(sk, skb);
2994 out:
2995 return err;
2996 }
2997
2998 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
2999 int *uaddr_len, int peer)
3000 {
3001 struct net_device *dev;
3002 struct sock *sk = sock->sk;
3003
3004 if (peer)
3005 return -EOPNOTSUPP;
3006
3007 uaddr->sa_family = AF_PACKET;
3008 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3009 rcu_read_lock();
3010 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3011 if (dev)
3012 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3013 rcu_read_unlock();
3014 *uaddr_len = sizeof(*uaddr);
3015
3016 return 0;
3017 }
3018
3019 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3020 int *uaddr_len, int peer)
3021 {
3022 struct net_device *dev;
3023 struct sock *sk = sock->sk;
3024 struct packet_sock *po = pkt_sk(sk);
3025 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3026
3027 if (peer)
3028 return -EOPNOTSUPP;
3029
3030 sll->sll_family = AF_PACKET;
3031 sll->sll_ifindex = po->ifindex;
3032 sll->sll_protocol = po->num;
3033 sll->sll_pkttype = 0;
3034 rcu_read_lock();
3035 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3036 if (dev) {
3037 sll->sll_hatype = dev->type;
3038 sll->sll_halen = dev->addr_len;
3039 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3040 } else {
3041 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3042 sll->sll_halen = 0;
3043 }
3044 rcu_read_unlock();
3045 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3046
3047 return 0;
3048 }
3049
3050 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3051 int what)
3052 {
3053 switch (i->type) {
3054 case PACKET_MR_MULTICAST:
3055 if (i->alen != dev->addr_len)
3056 return -EINVAL;
3057 if (what > 0)
3058 return dev_mc_add(dev, i->addr);
3059 else
3060 return dev_mc_del(dev, i->addr);
3061 break;
3062 case PACKET_MR_PROMISC:
3063 return dev_set_promiscuity(dev, what);
3064 break;
3065 case PACKET_MR_ALLMULTI:
3066 return dev_set_allmulti(dev, what);
3067 break;
3068 case PACKET_MR_UNICAST:
3069 if (i->alen != dev->addr_len)
3070 return -EINVAL;
3071 if (what > 0)
3072 return dev_uc_add(dev, i->addr);
3073 else
3074 return dev_uc_del(dev, i->addr);
3075 break;
3076 default:
3077 break;
3078 }
3079 return 0;
3080 }
3081
3082 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
3083 {
3084 for ( ; i; i = i->next) {
3085 if (i->ifindex == dev->ifindex)
3086 packet_dev_mc(dev, i, what);
3087 }
3088 }
3089
3090 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3091 {
3092 struct packet_sock *po = pkt_sk(sk);
3093 struct packet_mclist *ml, *i;
3094 struct net_device *dev;
3095 int err;
3096
3097 rtnl_lock();
3098
3099 err = -ENODEV;
3100 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3101 if (!dev)
3102 goto done;
3103
3104 err = -EINVAL;
3105 if (mreq->mr_alen > dev->addr_len)
3106 goto done;
3107
3108 err = -ENOBUFS;
3109 i = kmalloc(sizeof(*i), GFP_KERNEL);
3110 if (i == NULL)
3111 goto done;
3112
3113 err = 0;
3114 for (ml = po->mclist; ml; ml = ml->next) {
3115 if (ml->ifindex == mreq->mr_ifindex &&
3116 ml->type == mreq->mr_type &&
3117 ml->alen == mreq->mr_alen &&
3118 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3119 ml->count++;
3120 /* Free the new element ... */
3121 kfree(i);
3122 goto done;
3123 }
3124 }
3125
3126 i->type = mreq->mr_type;
3127 i->ifindex = mreq->mr_ifindex;
3128 i->alen = mreq->mr_alen;
3129 memcpy(i->addr, mreq->mr_address, i->alen);
3130 i->count = 1;
3131 i->next = po->mclist;
3132 po->mclist = i;
3133 err = packet_dev_mc(dev, i, 1);
3134 if (err) {
3135 po->mclist = i->next;
3136 kfree(i);
3137 }
3138
3139 done:
3140 rtnl_unlock();
3141 return err;
3142 }
3143
3144 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3145 {
3146 struct packet_mclist *ml, **mlp;
3147
3148 rtnl_lock();
3149
3150 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3151 if (ml->ifindex == mreq->mr_ifindex &&
3152 ml->type == mreq->mr_type &&
3153 ml->alen == mreq->mr_alen &&
3154 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3155 if (--ml->count == 0) {
3156 struct net_device *dev;
3157 *mlp = ml->next;
3158 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3159 if (dev)
3160 packet_dev_mc(dev, ml, -1);
3161 kfree(ml);
3162 }
3163 rtnl_unlock();
3164 return 0;
3165 }
3166 }
3167 rtnl_unlock();
3168 return -EADDRNOTAVAIL;
3169 }
3170
3171 static void packet_flush_mclist(struct sock *sk)
3172 {
3173 struct packet_sock *po = pkt_sk(sk);
3174 struct packet_mclist *ml;
3175
3176 if (!po->mclist)
3177 return;
3178
3179 rtnl_lock();
3180 while ((ml = po->mclist) != NULL) {
3181 struct net_device *dev;
3182
3183 po->mclist = ml->next;
3184 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3185 if (dev != NULL)
3186 packet_dev_mc(dev, ml, -1);
3187 kfree(ml);
3188 }
3189 rtnl_unlock();
3190 }
3191
3192 static int
3193 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3194 {
3195 struct sock *sk = sock->sk;
3196 struct packet_sock *po = pkt_sk(sk);
3197 int ret;
3198
3199 if (level != SOL_PACKET)
3200 return -ENOPROTOOPT;
3201
3202 switch (optname) {
3203 case PACKET_ADD_MEMBERSHIP:
3204 case PACKET_DROP_MEMBERSHIP:
3205 {
3206 struct packet_mreq_max mreq;
3207 int len = optlen;
3208 memset(&mreq, 0, sizeof(mreq));
3209 if (len < sizeof(struct packet_mreq))
3210 return -EINVAL;
3211 if (len > sizeof(mreq))
3212 len = sizeof(mreq);
3213 if (copy_from_user(&mreq, optval, len))
3214 return -EFAULT;
3215 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3216 return -EINVAL;
3217 if (optname == PACKET_ADD_MEMBERSHIP)
3218 ret = packet_mc_add(sk, &mreq);
3219 else
3220 ret = packet_mc_drop(sk, &mreq);
3221 return ret;
3222 }
3223
3224 case PACKET_RX_RING:
3225 case PACKET_TX_RING:
3226 {
3227 union tpacket_req_u req_u;
3228 int len;
3229
3230 switch (po->tp_version) {
3231 case TPACKET_V1:
3232 case TPACKET_V2:
3233 len = sizeof(req_u.req);
3234 break;
3235 case TPACKET_V3:
3236 default:
3237 len = sizeof(req_u.req3);
3238 break;
3239 }
3240 if (optlen < len)
3241 return -EINVAL;
3242 if (pkt_sk(sk)->has_vnet_hdr)
3243 return -EINVAL;
3244 if (copy_from_user(&req_u.req, optval, len))
3245 return -EFAULT;
3246 return packet_set_ring(sk, &req_u, 0,
3247 optname == PACKET_TX_RING);
3248 }
3249 case PACKET_COPY_THRESH:
3250 {
3251 int val;
3252
3253 if (optlen != sizeof(val))
3254 return -EINVAL;
3255 if (copy_from_user(&val, optval, sizeof(val)))
3256 return -EFAULT;
3257
3258 pkt_sk(sk)->copy_thresh = val;
3259 return 0;
3260 }
3261 case PACKET_VERSION:
3262 {
3263 int val;
3264
3265 if (optlen != sizeof(val))
3266 return -EINVAL;
3267 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3268 return -EBUSY;
3269 if (copy_from_user(&val, optval, sizeof(val)))
3270 return -EFAULT;
3271 switch (val) {
3272 case TPACKET_V1:
3273 case TPACKET_V2:
3274 case TPACKET_V3:
3275 po->tp_version = val;
3276 return 0;
3277 default:
3278 return -EINVAL;
3279 }
3280 }
3281 case PACKET_RESERVE:
3282 {
3283 unsigned int val;
3284
3285 if (optlen != sizeof(val))
3286 return -EINVAL;
3287 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3288 return -EBUSY;
3289 if (copy_from_user(&val, optval, sizeof(val)))
3290 return -EFAULT;
3291 po->tp_reserve = val;
3292 return 0;
3293 }
3294 case PACKET_LOSS:
3295 {
3296 unsigned int val;
3297
3298 if (optlen != sizeof(val))
3299 return -EINVAL;
3300 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3301 return -EBUSY;
3302 if (copy_from_user(&val, optval, sizeof(val)))
3303 return -EFAULT;
3304 po->tp_loss = !!val;
3305 return 0;
3306 }
3307 case PACKET_AUXDATA:
3308 {
3309 int val;
3310
3311 if (optlen < sizeof(val))
3312 return -EINVAL;
3313 if (copy_from_user(&val, optval, sizeof(val)))
3314 return -EFAULT;
3315
3316 po->auxdata = !!val;
3317 return 0;
3318 }
3319 case PACKET_ORIGDEV:
3320 {
3321 int val;
3322
3323 if (optlen < sizeof(val))
3324 return -EINVAL;
3325 if (copy_from_user(&val, optval, sizeof(val)))
3326 return -EFAULT;
3327
3328 po->origdev = !!val;
3329 return 0;
3330 }
3331 case PACKET_VNET_HDR:
3332 {
3333 int val;
3334
3335 if (sock->type != SOCK_RAW)
3336 return -EINVAL;
3337 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3338 return -EBUSY;
3339 if (optlen < sizeof(val))
3340 return -EINVAL;
3341 if (copy_from_user(&val, optval, sizeof(val)))
3342 return -EFAULT;
3343
3344 po->has_vnet_hdr = !!val;
3345 return 0;
3346 }
3347 case PACKET_TIMESTAMP:
3348 {
3349 int val;
3350
3351 if (optlen != sizeof(val))
3352 return -EINVAL;
3353 if (copy_from_user(&val, optval, sizeof(val)))
3354 return -EFAULT;
3355
3356 po->tp_tstamp = val;
3357 return 0;
3358 }
3359 case PACKET_FANOUT:
3360 {
3361 int val;
3362
3363 if (optlen != sizeof(val))
3364 return -EINVAL;
3365 if (copy_from_user(&val, optval, sizeof(val)))
3366 return -EFAULT;
3367
3368 return fanout_add(sk, val & 0xffff, val >> 16);
3369 }
3370 case PACKET_TX_HAS_OFF:
3371 {
3372 unsigned int val;
3373
3374 if (optlen != sizeof(val))
3375 return -EINVAL;
3376 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3377 return -EBUSY;
3378 if (copy_from_user(&val, optval, sizeof(val)))
3379 return -EFAULT;
3380 po->tp_tx_has_off = !!val;
3381 return 0;
3382 }
3383 case PACKET_QDISC_BYPASS:
3384 {
3385 int val;
3386
3387 if (optlen != sizeof(val))
3388 return -EINVAL;
3389 if (copy_from_user(&val, optval, sizeof(val)))
3390 return -EFAULT;
3391
3392 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3393 return 0;
3394 }
3395 default:
3396 return -ENOPROTOOPT;
3397 }
3398 }
3399
3400 static int packet_getsockopt(struct socket *sock, int level, int optname,
3401 char __user *optval, int __user *optlen)
3402 {
3403 int len;
3404 int val, lv = sizeof(val);
3405 struct sock *sk = sock->sk;
3406 struct packet_sock *po = pkt_sk(sk);
3407 void *data = &val;
3408 union tpacket_stats_u st;
3409
3410 if (level != SOL_PACKET)
3411 return -ENOPROTOOPT;
3412
3413 if (get_user(len, optlen))
3414 return -EFAULT;
3415
3416 if (len < 0)
3417 return -EINVAL;
3418
3419 switch (optname) {
3420 case PACKET_STATISTICS:
3421 spin_lock_bh(&sk->sk_receive_queue.lock);
3422 memcpy(&st, &po->stats, sizeof(st));
3423 memset(&po->stats, 0, sizeof(po->stats));
3424 spin_unlock_bh(&sk->sk_receive_queue.lock);
3425
3426 if (po->tp_version == TPACKET_V3) {
3427 lv = sizeof(struct tpacket_stats_v3);
3428 st.stats3.tp_packets += st.stats3.tp_drops;
3429 data = &st.stats3;
3430 } else {
3431 lv = sizeof(struct tpacket_stats);
3432 st.stats1.tp_packets += st.stats1.tp_drops;
3433 data = &st.stats1;
3434 }
3435
3436 break;
3437 case PACKET_AUXDATA:
3438 val = po->auxdata;
3439 break;
3440 case PACKET_ORIGDEV:
3441 val = po->origdev;
3442 break;
3443 case PACKET_VNET_HDR:
3444 val = po->has_vnet_hdr;
3445 break;
3446 case PACKET_VERSION:
3447 val = po->tp_version;
3448 break;
3449 case PACKET_HDRLEN:
3450 if (len > sizeof(int))
3451 len = sizeof(int);
3452 if (copy_from_user(&val, optval, len))
3453 return -EFAULT;
3454 switch (val) {
3455 case TPACKET_V1:
3456 val = sizeof(struct tpacket_hdr);
3457 break;
3458 case TPACKET_V2:
3459 val = sizeof(struct tpacket2_hdr);
3460 break;
3461 case TPACKET_V3:
3462 val = sizeof(struct tpacket3_hdr);
3463 break;
3464 default:
3465 return -EINVAL;
3466 }
3467 break;
3468 case PACKET_RESERVE:
3469 val = po->tp_reserve;
3470 break;
3471 case PACKET_LOSS:
3472 val = po->tp_loss;
3473 break;
3474 case PACKET_TIMESTAMP:
3475 val = po->tp_tstamp;
3476 break;
3477 case PACKET_FANOUT:
3478 val = (po->fanout ?
3479 ((u32)po->fanout->id |
3480 ((u32)po->fanout->type << 16) |
3481 ((u32)po->fanout->flags << 24)) :
3482 0);
3483 break;
3484 case PACKET_TX_HAS_OFF:
3485 val = po->tp_tx_has_off;
3486 break;
3487 case PACKET_QDISC_BYPASS:
3488 val = packet_use_direct_xmit(po);
3489 break;
3490 default:
3491 return -ENOPROTOOPT;
3492 }
3493
3494 if (len > lv)
3495 len = lv;
3496 if (put_user(len, optlen))
3497 return -EFAULT;
3498 if (copy_to_user(optval, data, len))
3499 return -EFAULT;
3500 return 0;
3501 }
3502
3503
3504 static int packet_notifier(struct notifier_block *this,
3505 unsigned long msg, void *ptr)
3506 {
3507 struct sock *sk;
3508 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3509 struct net *net = dev_net(dev);
3510
3511 rcu_read_lock();
3512 sk_for_each_rcu(sk, &net->packet.sklist) {
3513 struct packet_sock *po = pkt_sk(sk);
3514
3515 switch (msg) {
3516 case NETDEV_UNREGISTER:
3517 if (po->mclist)
3518 packet_dev_mclist(dev, po->mclist, -1);
3519 /* fallthrough */
3520
3521 case NETDEV_DOWN:
3522 if (dev->ifindex == po->ifindex) {
3523 spin_lock(&po->bind_lock);
3524 if (po->running) {
3525 __unregister_prot_hook(sk, false);
3526 sk->sk_err = ENETDOWN;
3527 if (!sock_flag(sk, SOCK_DEAD))
3528 sk->sk_error_report(sk);
3529 }
3530 if (msg == NETDEV_UNREGISTER) {
3531 packet_cached_dev_reset(po);
3532 po->ifindex = -1;
3533 if (po->prot_hook.dev)
3534 dev_put(po->prot_hook.dev);
3535 po->prot_hook.dev = NULL;
3536 }
3537 spin_unlock(&po->bind_lock);
3538 }
3539 break;
3540 case NETDEV_UP:
3541 if (dev->ifindex == po->ifindex) {
3542 spin_lock(&po->bind_lock);
3543 if (po->num)
3544 register_prot_hook(sk);
3545 spin_unlock(&po->bind_lock);
3546 }
3547 break;
3548 }
3549 }
3550 rcu_read_unlock();
3551 return NOTIFY_DONE;
3552 }
3553
3554
3555 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3556 unsigned long arg)
3557 {
3558 struct sock *sk = sock->sk;
3559
3560 switch (cmd) {
3561 case SIOCOUTQ:
3562 {
3563 int amount = sk_wmem_alloc_get(sk);
3564
3565 return put_user(amount, (int __user *)arg);
3566 }
3567 case SIOCINQ:
3568 {
3569 struct sk_buff *skb;
3570 int amount = 0;
3571
3572 spin_lock_bh(&sk->sk_receive_queue.lock);
3573 skb = skb_peek(&sk->sk_receive_queue);
3574 if (skb)
3575 amount = skb->len;
3576 spin_unlock_bh(&sk->sk_receive_queue.lock);
3577 return put_user(amount, (int __user *)arg);
3578 }
3579 case SIOCGSTAMP:
3580 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3581 case SIOCGSTAMPNS:
3582 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3583
3584 #ifdef CONFIG_INET
3585 case SIOCADDRT:
3586 case SIOCDELRT:
3587 case SIOCDARP:
3588 case SIOCGARP:
3589 case SIOCSARP:
3590 case SIOCGIFADDR:
3591 case SIOCSIFADDR:
3592 case SIOCGIFBRDADDR:
3593 case SIOCSIFBRDADDR:
3594 case SIOCGIFNETMASK:
3595 case SIOCSIFNETMASK:
3596 case SIOCGIFDSTADDR:
3597 case SIOCSIFDSTADDR:
3598 case SIOCSIFFLAGS:
3599 return inet_dgram_ops.ioctl(sock, cmd, arg);
3600 #endif
3601
3602 default:
3603 return -ENOIOCTLCMD;
3604 }
3605 return 0;
3606 }
3607
3608 static unsigned int packet_poll(struct file *file, struct socket *sock,
3609 poll_table *wait)
3610 {
3611 struct sock *sk = sock->sk;
3612 struct packet_sock *po = pkt_sk(sk);
3613 unsigned int mask = datagram_poll(file, sock, wait);
3614
3615 spin_lock_bh(&sk->sk_receive_queue.lock);
3616 if (po->rx_ring.pg_vec) {
3617 if (!packet_previous_rx_frame(po, &po->rx_ring,
3618 TP_STATUS_KERNEL))
3619 mask |= POLLIN | POLLRDNORM;
3620 }
3621 spin_unlock_bh(&sk->sk_receive_queue.lock);
3622 spin_lock_bh(&sk->sk_write_queue.lock);
3623 if (po->tx_ring.pg_vec) {
3624 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3625 mask |= POLLOUT | POLLWRNORM;
3626 }
3627 spin_unlock_bh(&sk->sk_write_queue.lock);
3628 return mask;
3629 }
3630
3631
3632 /* Dirty? Well, I still did not learn better way to account
3633 * for user mmaps.
3634 */
3635
3636 static void packet_mm_open(struct vm_area_struct *vma)
3637 {
3638 struct file *file = vma->vm_file;
3639 struct socket *sock = file->private_data;
3640 struct sock *sk = sock->sk;
3641
3642 if (sk)
3643 atomic_inc(&pkt_sk(sk)->mapped);
3644 }
3645
3646 static void packet_mm_close(struct vm_area_struct *vma)
3647 {
3648 struct file *file = vma->vm_file;
3649 struct socket *sock = file->private_data;
3650 struct sock *sk = sock->sk;
3651
3652 if (sk)
3653 atomic_dec(&pkt_sk(sk)->mapped);
3654 }
3655
3656 static const struct vm_operations_struct packet_mmap_ops = {
3657 .open = packet_mm_open,
3658 .close = packet_mm_close,
3659 };
3660
3661 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3662 unsigned int len)
3663 {
3664 int i;
3665
3666 for (i = 0; i < len; i++) {
3667 if (likely(pg_vec[i].buffer)) {
3668 if (is_vmalloc_addr(pg_vec[i].buffer))
3669 vfree(pg_vec[i].buffer);
3670 else
3671 free_pages((unsigned long)pg_vec[i].buffer,
3672 order);
3673 pg_vec[i].buffer = NULL;
3674 }
3675 }
3676 kfree(pg_vec);
3677 }
3678
3679 static char *alloc_one_pg_vec_page(unsigned long order)
3680 {
3681 char *buffer;
3682 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3683 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3684
3685 buffer = (char *) __get_free_pages(gfp_flags, order);
3686 if (buffer)
3687 return buffer;
3688
3689 /* __get_free_pages failed, fall back to vmalloc */
3690 buffer = vzalloc((1 << order) * PAGE_SIZE);
3691 if (buffer)
3692 return buffer;
3693
3694 /* vmalloc failed, lets dig into swap here */
3695 gfp_flags &= ~__GFP_NORETRY;
3696 buffer = (char *) __get_free_pages(gfp_flags, order);
3697 if (buffer)
3698 return buffer;
3699
3700 /* complete and utter failure */
3701 return NULL;
3702 }
3703
3704 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3705 {
3706 unsigned int block_nr = req->tp_block_nr;
3707 struct pgv *pg_vec;
3708 int i;
3709
3710 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3711 if (unlikely(!pg_vec))
3712 goto out;
3713
3714 for (i = 0; i < block_nr; i++) {
3715 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3716 if (unlikely(!pg_vec[i].buffer))
3717 goto out_free_pgvec;
3718 }
3719
3720 out:
3721 return pg_vec;
3722
3723 out_free_pgvec:
3724 free_pg_vec(pg_vec, order, block_nr);
3725 pg_vec = NULL;
3726 goto out;
3727 }
3728
3729 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3730 int closing, int tx_ring)
3731 {
3732 struct pgv *pg_vec = NULL;
3733 struct packet_sock *po = pkt_sk(sk);
3734 int was_running, order = 0;
3735 struct packet_ring_buffer *rb;
3736 struct sk_buff_head *rb_queue;
3737 __be16 num;
3738 int err = -EINVAL;
3739 /* Added to avoid minimal code churn */
3740 struct tpacket_req *req = &req_u->req;
3741
3742 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3743 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3744 WARN(1, "Tx-ring is not supported.\n");
3745 goto out;
3746 }
3747
3748 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3749 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3750
3751 err = -EBUSY;
3752 if (!closing) {
3753 if (atomic_read(&po->mapped))
3754 goto out;
3755 if (packet_read_pending(rb))
3756 goto out;
3757 }
3758
3759 if (req->tp_block_nr) {
3760 /* Sanity tests and some calculations */
3761 err = -EBUSY;
3762 if (unlikely(rb->pg_vec))
3763 goto out;
3764
3765 switch (po->tp_version) {
3766 case TPACKET_V1:
3767 po->tp_hdrlen = TPACKET_HDRLEN;
3768 break;
3769 case TPACKET_V2:
3770 po->tp_hdrlen = TPACKET2_HDRLEN;
3771 break;
3772 case TPACKET_V3:
3773 po->tp_hdrlen = TPACKET3_HDRLEN;
3774 break;
3775 }
3776
3777 err = -EINVAL;
3778 if (unlikely((int)req->tp_block_size <= 0))
3779 goto out;
3780 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3781 goto out;
3782 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3783 po->tp_reserve))
3784 goto out;
3785 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3786 goto out;
3787
3788 rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3789 if (unlikely(rb->frames_per_block <= 0))
3790 goto out;
3791 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3792 req->tp_frame_nr))
3793 goto out;
3794
3795 err = -ENOMEM;
3796 order = get_order(req->tp_block_size);
3797 pg_vec = alloc_pg_vec(req, order);
3798 if (unlikely(!pg_vec))
3799 goto out;
3800 switch (po->tp_version) {
3801 case TPACKET_V3:
3802 /* Transmit path is not supported. We checked
3803 * it above but just being paranoid
3804 */
3805 if (!tx_ring)
3806 init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3807 break;
3808 default:
3809 break;
3810 }
3811 }
3812 /* Done */
3813 else {
3814 err = -EINVAL;
3815 if (unlikely(req->tp_frame_nr))
3816 goto out;
3817 }
3818
3819 lock_sock(sk);
3820
3821 /* Detach socket from network */
3822 spin_lock(&po->bind_lock);
3823 was_running = po->running;
3824 num = po->num;
3825 if (was_running) {
3826 po->num = 0;
3827 __unregister_prot_hook(sk, false);
3828 }
3829 spin_unlock(&po->bind_lock);
3830
3831 synchronize_net();
3832
3833 err = -EBUSY;
3834 mutex_lock(&po->pg_vec_lock);
3835 if (closing || atomic_read(&po->mapped) == 0) {
3836 err = 0;
3837 spin_lock_bh(&rb_queue->lock);
3838 swap(rb->pg_vec, pg_vec);
3839 rb->frame_max = (req->tp_frame_nr - 1);
3840 rb->head = 0;
3841 rb->frame_size = req->tp_frame_size;
3842 spin_unlock_bh(&rb_queue->lock);
3843
3844 swap(rb->pg_vec_order, order);
3845 swap(rb->pg_vec_len, req->tp_block_nr);
3846
3847 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3848 po->prot_hook.func = (po->rx_ring.pg_vec) ?
3849 tpacket_rcv : packet_rcv;
3850 skb_queue_purge(rb_queue);
3851 if (atomic_read(&po->mapped))
3852 pr_err("packet_mmap: vma is busy: %d\n",
3853 atomic_read(&po->mapped));
3854 }
3855 mutex_unlock(&po->pg_vec_lock);
3856
3857 spin_lock(&po->bind_lock);
3858 if (was_running) {
3859 po->num = num;
3860 register_prot_hook(sk);
3861 }
3862 spin_unlock(&po->bind_lock);
3863 if (closing && (po->tp_version > TPACKET_V2)) {
3864 /* Because we don't support block-based V3 on tx-ring */
3865 if (!tx_ring)
3866 prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3867 }
3868 release_sock(sk);
3869
3870 if (pg_vec)
3871 free_pg_vec(pg_vec, order, req->tp_block_nr);
3872 out:
3873 return err;
3874 }
3875
3876 static int packet_mmap(struct file *file, struct socket *sock,
3877 struct vm_area_struct *vma)
3878 {
3879 struct sock *sk = sock->sk;
3880 struct packet_sock *po = pkt_sk(sk);
3881 unsigned long size, expected_size;
3882 struct packet_ring_buffer *rb;
3883 unsigned long start;
3884 int err = -EINVAL;
3885 int i;
3886
3887 if (vma->vm_pgoff)
3888 return -EINVAL;
3889
3890 mutex_lock(&po->pg_vec_lock);
3891
3892 expected_size = 0;
3893 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3894 if (rb->pg_vec) {
3895 expected_size += rb->pg_vec_len
3896 * rb->pg_vec_pages
3897 * PAGE_SIZE;
3898 }
3899 }
3900
3901 if (expected_size == 0)
3902 goto out;
3903
3904 size = vma->vm_end - vma->vm_start;
3905 if (size != expected_size)
3906 goto out;
3907
3908 start = vma->vm_start;
3909 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3910 if (rb->pg_vec == NULL)
3911 continue;
3912
3913 for (i = 0; i < rb->pg_vec_len; i++) {
3914 struct page *page;
3915 void *kaddr = rb->pg_vec[i].buffer;
3916 int pg_num;
3917
3918 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3919 page = pgv_to_page(kaddr);
3920 err = vm_insert_page(vma, start, page);
3921 if (unlikely(err))
3922 goto out;
3923 start += PAGE_SIZE;
3924 kaddr += PAGE_SIZE;
3925 }
3926 }
3927 }
3928
3929 atomic_inc(&po->mapped);
3930 vma->vm_ops = &packet_mmap_ops;
3931 err = 0;
3932
3933 out:
3934 mutex_unlock(&po->pg_vec_lock);
3935 return err;
3936 }
3937
3938 static const struct proto_ops packet_ops_spkt = {
3939 .family = PF_PACKET,
3940 .owner = THIS_MODULE,
3941 .release = packet_release,
3942 .bind = packet_bind_spkt,
3943 .connect = sock_no_connect,
3944 .socketpair = sock_no_socketpair,
3945 .accept = sock_no_accept,
3946 .getname = packet_getname_spkt,
3947 .poll = datagram_poll,
3948 .ioctl = packet_ioctl,
3949 .listen = sock_no_listen,
3950 .shutdown = sock_no_shutdown,
3951 .setsockopt = sock_no_setsockopt,
3952 .getsockopt = sock_no_getsockopt,
3953 .sendmsg = packet_sendmsg_spkt,
3954 .recvmsg = packet_recvmsg,
3955 .mmap = sock_no_mmap,
3956 .sendpage = sock_no_sendpage,
3957 };
3958
3959 static const struct proto_ops packet_ops = {
3960 .family = PF_PACKET,
3961 .owner = THIS_MODULE,
3962 .release = packet_release,
3963 .bind = packet_bind,
3964 .connect = sock_no_connect,
3965 .socketpair = sock_no_socketpair,
3966 .accept = sock_no_accept,
3967 .getname = packet_getname,
3968 .poll = packet_poll,
3969 .ioctl = packet_ioctl,
3970 .listen = sock_no_listen,
3971 .shutdown = sock_no_shutdown,
3972 .setsockopt = packet_setsockopt,
3973 .getsockopt = packet_getsockopt,
3974 .sendmsg = packet_sendmsg,
3975 .recvmsg = packet_recvmsg,
3976 .mmap = packet_mmap,
3977 .sendpage = sock_no_sendpage,
3978 };
3979
3980 static const struct net_proto_family packet_family_ops = {
3981 .family = PF_PACKET,
3982 .create = packet_create,
3983 .owner = THIS_MODULE,
3984 };
3985
3986 static struct notifier_block packet_netdev_notifier = {
3987 .notifier_call = packet_notifier,
3988 };
3989
3990 #ifdef CONFIG_PROC_FS
3991
3992 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
3993 __acquires(RCU)
3994 {
3995 struct net *net = seq_file_net(seq);
3996
3997 rcu_read_lock();
3998 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
3999 }
4000
4001 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4002 {
4003 struct net *net = seq_file_net(seq);
4004 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4005 }
4006
4007 static void packet_seq_stop(struct seq_file *seq, void *v)
4008 __releases(RCU)
4009 {
4010 rcu_read_unlock();
4011 }
4012
4013 static int packet_seq_show(struct seq_file *seq, void *v)
4014 {
4015 if (v == SEQ_START_TOKEN)
4016 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4017 else {
4018 struct sock *s = sk_entry(v);
4019 const struct packet_sock *po = pkt_sk(s);
4020
4021 seq_printf(seq,
4022 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4023 s,
4024 atomic_read(&s->sk_refcnt),
4025 s->sk_type,
4026 ntohs(po->num),
4027 po->ifindex,
4028 po->running,
4029 atomic_read(&s->sk_rmem_alloc),
4030 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4031 sock_i_ino(s));
4032 }
4033
4034 return 0;
4035 }
4036
4037 static const struct seq_operations packet_seq_ops = {
4038 .start = packet_seq_start,
4039 .next = packet_seq_next,
4040 .stop = packet_seq_stop,
4041 .show = packet_seq_show,
4042 };
4043
4044 static int packet_seq_open(struct inode *inode, struct file *file)
4045 {
4046 return seq_open_net(inode, file, &packet_seq_ops,
4047 sizeof(struct seq_net_private));
4048 }
4049
4050 static const struct file_operations packet_seq_fops = {
4051 .owner = THIS_MODULE,
4052 .open = packet_seq_open,
4053 .read = seq_read,
4054 .llseek = seq_lseek,
4055 .release = seq_release_net,
4056 };
4057
4058 #endif
4059
4060 static int __net_init packet_net_init(struct net *net)
4061 {
4062 mutex_init(&net->packet.sklist_lock);
4063 INIT_HLIST_HEAD(&net->packet.sklist);
4064
4065 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4066 return -ENOMEM;
4067
4068 return 0;
4069 }
4070
4071 static void __net_exit packet_net_exit(struct net *net)
4072 {
4073 remove_proc_entry("packet", net->proc_net);
4074 }
4075
4076 static struct pernet_operations packet_net_ops = {
4077 .init = packet_net_init,
4078 .exit = packet_net_exit,
4079 };
4080
4081
4082 static void __exit packet_exit(void)
4083 {
4084 unregister_netdevice_notifier(&packet_netdev_notifier);
4085 unregister_pernet_subsys(&packet_net_ops);
4086 sock_unregister(PF_PACKET);
4087 proto_unregister(&packet_proto);
4088 }
4089
4090 static int __init packet_init(void)
4091 {
4092 int rc = proto_register(&packet_proto, 0);
4093
4094 if (rc != 0)
4095 goto out;
4096
4097 sock_register(&packet_family_ops);
4098 register_pernet_subsys(&packet_net_ops);
4099 register_netdevice_notifier(&packet_netdev_notifier);
4100 out:
4101 return rc;
4102 }
4103
4104 module_init(packet_init);
4105 module_exit(packet_exit);
4106 MODULE_LICENSE("GPL");
4107 MODULE_ALIAS_NETPROTO(PF_PACKET);
This page took 0.195347 seconds and 5 git commands to generate.