packet: handle too big packets for PACKET_V3
[deliverable/linux.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95
96 #include "internal.h"
97
98 /*
99 Assumptions:
100 - if device has no dev->hard_header routine, it adds and removes ll header
101 inside itself. In this case ll header is invisible outside of device,
102 but higher levels still should reserve dev->hard_header_len.
103 Some devices are enough clever to reallocate skb, when header
104 will not fit to reserved space (tunnel), another ones are silly
105 (PPP).
106 - packet socket receives packets with pulled ll header,
107 so that SOCK_RAW should push it back.
108
109 On receive:
110 -----------
111
112 Incoming, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> data
115
116 Outgoing, dev->hard_header!=NULL
117 mac_header -> ll header
118 data -> ll header
119
120 Incoming, dev->hard_header==NULL
121 mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 header. PPP makes it, that is wrong, because introduce
123 assymetry between rx and tx paths.
124 data -> data
125
126 Outgoing, dev->hard_header==NULL
127 mac_header -> data. ll header is still not built!
128 data -> data
129
130 Resume
131 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132
133
134 On transmit:
135 ------------
136
137 dev->hard_header != NULL
138 mac_header -> ll header
139 data -> ll header
140
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142 mac_header -> data
143 data -> data
144
145 We should set nh.raw on output to correct posistion,
146 packet classifier depends on it.
147 */
148
149 /* Private packet socket structures. */
150
151 /* identical to struct packet_mreq except it has
152 * a longer address field.
153 */
154 struct packet_mreq_max {
155 int mr_ifindex;
156 unsigned short mr_type;
157 unsigned short mr_alen;
158 unsigned char mr_address[MAX_ADDR_LEN];
159 };
160
161 union tpacket_uhdr {
162 struct tpacket_hdr *h1;
163 struct tpacket2_hdr *h2;
164 struct tpacket3_hdr *h3;
165 void *raw;
166 };
167
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 int closing, int tx_ring);
170
171 #define V3_ALIGNMENT (8)
172
173 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177
178 #define PGV_FROM_VMALLOC 1
179
180 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
186 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 struct packet_type *pt, struct net_device *orig_dev);
192
193 static void *packet_previous_frame(struct packet_sock *po,
194 struct packet_ring_buffer *rb,
195 int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 struct tpacket_kbdq_core *,
210 void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217
218 struct packet_skb_cb {
219 unsigned int origlen;
220 union {
221 struct sockaddr_pkt pkt;
222 struct sockaddr_ll ll;
223 } sa;
224 };
225
226 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
227
228 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
229 #define GET_PBLOCK_DESC(x, bid) \
230 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
231 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
232 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
233 #define GET_NEXT_PRB_BLK_NUM(x) \
234 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
235 ((x)->kactive_blk_num+1) : 0)
236
237 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
238 static void __fanout_link(struct sock *sk, struct packet_sock *po);
239
240 static int packet_direct_xmit(struct sk_buff *skb)
241 {
242 struct net_device *dev = skb->dev;
243 const struct net_device_ops *ops = dev->netdev_ops;
244 netdev_features_t features;
245 struct netdev_queue *txq;
246 int ret = NETDEV_TX_BUSY;
247 u16 queue_map;
248
249 if (unlikely(!netif_running(dev) ||
250 !netif_carrier_ok(dev)))
251 goto drop;
252
253 features = netif_skb_features(skb);
254 if (skb_needs_linearize(skb, features) &&
255 __skb_linearize(skb))
256 goto drop;
257
258 queue_map = skb_get_queue_mapping(skb);
259 txq = netdev_get_tx_queue(dev, queue_map);
260
261 local_bh_disable();
262
263 HARD_TX_LOCK(dev, txq, smp_processor_id());
264 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
265 ret = ops->ndo_start_xmit(skb, dev);
266 if (ret == NETDEV_TX_OK)
267 txq_trans_update(txq);
268 }
269 HARD_TX_UNLOCK(dev, txq);
270
271 local_bh_enable();
272
273 if (!dev_xmit_complete(ret))
274 kfree_skb(skb);
275
276 return ret;
277 drop:
278 atomic_long_inc(&dev->tx_dropped);
279 kfree_skb(skb);
280 return NET_XMIT_DROP;
281 }
282
283 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
284 {
285 struct net_device *dev;
286
287 rcu_read_lock();
288 dev = rcu_dereference(po->cached_dev);
289 if (likely(dev))
290 dev_hold(dev);
291 rcu_read_unlock();
292
293 return dev;
294 }
295
296 static void packet_cached_dev_assign(struct packet_sock *po,
297 struct net_device *dev)
298 {
299 rcu_assign_pointer(po->cached_dev, dev);
300 }
301
302 static void packet_cached_dev_reset(struct packet_sock *po)
303 {
304 RCU_INIT_POINTER(po->cached_dev, NULL);
305 }
306
307 static bool packet_use_direct_xmit(const struct packet_sock *po)
308 {
309 return po->xmit == packet_direct_xmit;
310 }
311
312 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
313 {
314 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
315 }
316
317 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
318 {
319 const struct net_device_ops *ops = dev->netdev_ops;
320 u16 queue_index;
321
322 if (ops->ndo_select_queue) {
323 queue_index = ops->ndo_select_queue(dev, skb, NULL,
324 __packet_pick_tx_queue);
325 queue_index = netdev_cap_txqueue(dev, queue_index);
326 } else {
327 queue_index = __packet_pick_tx_queue(dev, skb);
328 }
329
330 skb_set_queue_mapping(skb, queue_index);
331 }
332
333 /* register_prot_hook must be invoked with the po->bind_lock held,
334 * or from a context in which asynchronous accesses to the packet
335 * socket is not possible (packet_create()).
336 */
337 static void register_prot_hook(struct sock *sk)
338 {
339 struct packet_sock *po = pkt_sk(sk);
340
341 if (!po->running) {
342 if (po->fanout)
343 __fanout_link(sk, po);
344 else
345 dev_add_pack(&po->prot_hook);
346
347 sock_hold(sk);
348 po->running = 1;
349 }
350 }
351
352 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
353 * held. If the sync parameter is true, we will temporarily drop
354 * the po->bind_lock and do a synchronize_net to make sure no
355 * asynchronous packet processing paths still refer to the elements
356 * of po->prot_hook. If the sync parameter is false, it is the
357 * callers responsibility to take care of this.
358 */
359 static void __unregister_prot_hook(struct sock *sk, bool sync)
360 {
361 struct packet_sock *po = pkt_sk(sk);
362
363 po->running = 0;
364
365 if (po->fanout)
366 __fanout_unlink(sk, po);
367 else
368 __dev_remove_pack(&po->prot_hook);
369
370 __sock_put(sk);
371
372 if (sync) {
373 spin_unlock(&po->bind_lock);
374 synchronize_net();
375 spin_lock(&po->bind_lock);
376 }
377 }
378
379 static void unregister_prot_hook(struct sock *sk, bool sync)
380 {
381 struct packet_sock *po = pkt_sk(sk);
382
383 if (po->running)
384 __unregister_prot_hook(sk, sync);
385 }
386
387 static inline __pure struct page *pgv_to_page(void *addr)
388 {
389 if (is_vmalloc_addr(addr))
390 return vmalloc_to_page(addr);
391 return virt_to_page(addr);
392 }
393
394 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
395 {
396 union tpacket_uhdr h;
397
398 h.raw = frame;
399 switch (po->tp_version) {
400 case TPACKET_V1:
401 h.h1->tp_status = status;
402 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
403 break;
404 case TPACKET_V2:
405 h.h2->tp_status = status;
406 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
407 break;
408 case TPACKET_V3:
409 default:
410 WARN(1, "TPACKET version not supported.\n");
411 BUG();
412 }
413
414 smp_wmb();
415 }
416
417 static int __packet_get_status(struct packet_sock *po, void *frame)
418 {
419 union tpacket_uhdr h;
420
421 smp_rmb();
422
423 h.raw = frame;
424 switch (po->tp_version) {
425 case TPACKET_V1:
426 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
427 return h.h1->tp_status;
428 case TPACKET_V2:
429 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
430 return h.h2->tp_status;
431 case TPACKET_V3:
432 default:
433 WARN(1, "TPACKET version not supported.\n");
434 BUG();
435 return 0;
436 }
437 }
438
439 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
440 unsigned int flags)
441 {
442 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
443
444 if (shhwtstamps &&
445 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
446 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
447 return TP_STATUS_TS_RAW_HARDWARE;
448
449 if (ktime_to_timespec_cond(skb->tstamp, ts))
450 return TP_STATUS_TS_SOFTWARE;
451
452 return 0;
453 }
454
455 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
456 struct sk_buff *skb)
457 {
458 union tpacket_uhdr h;
459 struct timespec ts;
460 __u32 ts_status;
461
462 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
463 return 0;
464
465 h.raw = frame;
466 switch (po->tp_version) {
467 case TPACKET_V1:
468 h.h1->tp_sec = ts.tv_sec;
469 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
470 break;
471 case TPACKET_V2:
472 h.h2->tp_sec = ts.tv_sec;
473 h.h2->tp_nsec = ts.tv_nsec;
474 break;
475 case TPACKET_V3:
476 default:
477 WARN(1, "TPACKET version not supported.\n");
478 BUG();
479 }
480
481 /* one flush is safe, as both fields always lie on the same cacheline */
482 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
483 smp_wmb();
484
485 return ts_status;
486 }
487
488 static void *packet_lookup_frame(struct packet_sock *po,
489 struct packet_ring_buffer *rb,
490 unsigned int position,
491 int status)
492 {
493 unsigned int pg_vec_pos, frame_offset;
494 union tpacket_uhdr h;
495
496 pg_vec_pos = position / rb->frames_per_block;
497 frame_offset = position % rb->frames_per_block;
498
499 h.raw = rb->pg_vec[pg_vec_pos].buffer +
500 (frame_offset * rb->frame_size);
501
502 if (status != __packet_get_status(po, h.raw))
503 return NULL;
504
505 return h.raw;
506 }
507
508 static void *packet_current_frame(struct packet_sock *po,
509 struct packet_ring_buffer *rb,
510 int status)
511 {
512 return packet_lookup_frame(po, rb, rb->head, status);
513 }
514
515 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
516 {
517 del_timer_sync(&pkc->retire_blk_timer);
518 }
519
520 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
521 int tx_ring,
522 struct sk_buff_head *rb_queue)
523 {
524 struct tpacket_kbdq_core *pkc;
525
526 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
527 GET_PBDQC_FROM_RB(&po->rx_ring);
528
529 spin_lock_bh(&rb_queue->lock);
530 pkc->delete_blk_timer = 1;
531 spin_unlock_bh(&rb_queue->lock);
532
533 prb_del_retire_blk_timer(pkc);
534 }
535
536 static void prb_init_blk_timer(struct packet_sock *po,
537 struct tpacket_kbdq_core *pkc,
538 void (*func) (unsigned long))
539 {
540 init_timer(&pkc->retire_blk_timer);
541 pkc->retire_blk_timer.data = (long)po;
542 pkc->retire_blk_timer.function = func;
543 pkc->retire_blk_timer.expires = jiffies;
544 }
545
546 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
547 {
548 struct tpacket_kbdq_core *pkc;
549
550 if (tx_ring)
551 BUG();
552
553 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
554 GET_PBDQC_FROM_RB(&po->rx_ring);
555 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
556 }
557
558 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
559 int blk_size_in_bytes)
560 {
561 struct net_device *dev;
562 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
563 struct ethtool_cmd ecmd;
564 int err;
565 u32 speed;
566
567 rtnl_lock();
568 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
569 if (unlikely(!dev)) {
570 rtnl_unlock();
571 return DEFAULT_PRB_RETIRE_TOV;
572 }
573 err = __ethtool_get_settings(dev, &ecmd);
574 speed = ethtool_cmd_speed(&ecmd);
575 rtnl_unlock();
576 if (!err) {
577 /*
578 * If the link speed is so slow you don't really
579 * need to worry about perf anyways
580 */
581 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
582 return DEFAULT_PRB_RETIRE_TOV;
583 } else {
584 msec = 1;
585 div = speed / 1000;
586 }
587 }
588
589 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
590
591 if (div)
592 mbits /= div;
593
594 tmo = mbits * msec;
595
596 if (div)
597 return tmo+1;
598 return tmo;
599 }
600
601 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
602 union tpacket_req_u *req_u)
603 {
604 p1->feature_req_word = req_u->req3.tp_feature_req_word;
605 }
606
607 static void init_prb_bdqc(struct packet_sock *po,
608 struct packet_ring_buffer *rb,
609 struct pgv *pg_vec,
610 union tpacket_req_u *req_u, int tx_ring)
611 {
612 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
613 struct tpacket_block_desc *pbd;
614
615 memset(p1, 0x0, sizeof(*p1));
616
617 p1->knxt_seq_num = 1;
618 p1->pkbdq = pg_vec;
619 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
620 p1->pkblk_start = pg_vec[0].buffer;
621 p1->kblk_size = req_u->req3.tp_block_size;
622 p1->knum_blocks = req_u->req3.tp_block_nr;
623 p1->hdrlen = po->tp_hdrlen;
624 p1->version = po->tp_version;
625 p1->last_kactive_blk_num = 0;
626 po->stats.stats3.tp_freeze_q_cnt = 0;
627 if (req_u->req3.tp_retire_blk_tov)
628 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
629 else
630 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
631 req_u->req3.tp_block_size);
632 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
633 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
634
635 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
636 prb_init_ft_ops(p1, req_u);
637 prb_setup_retire_blk_timer(po, tx_ring);
638 prb_open_block(p1, pbd);
639 }
640
641 /* Do NOT update the last_blk_num first.
642 * Assumes sk_buff_head lock is held.
643 */
644 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
645 {
646 mod_timer(&pkc->retire_blk_timer,
647 jiffies + pkc->tov_in_jiffies);
648 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
649 }
650
651 /*
652 * Timer logic:
653 * 1) We refresh the timer only when we open a block.
654 * By doing this we don't waste cycles refreshing the timer
655 * on packet-by-packet basis.
656 *
657 * With a 1MB block-size, on a 1Gbps line, it will take
658 * i) ~8 ms to fill a block + ii) memcpy etc.
659 * In this cut we are not accounting for the memcpy time.
660 *
661 * So, if the user sets the 'tmo' to 10ms then the timer
662 * will never fire while the block is still getting filled
663 * (which is what we want). However, the user could choose
664 * to close a block early and that's fine.
665 *
666 * But when the timer does fire, we check whether or not to refresh it.
667 * Since the tmo granularity is in msecs, it is not too expensive
668 * to refresh the timer, lets say every '8' msecs.
669 * Either the user can set the 'tmo' or we can derive it based on
670 * a) line-speed and b) block-size.
671 * prb_calc_retire_blk_tmo() calculates the tmo.
672 *
673 */
674 static void prb_retire_rx_blk_timer_expired(unsigned long data)
675 {
676 struct packet_sock *po = (struct packet_sock *)data;
677 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
678 unsigned int frozen;
679 struct tpacket_block_desc *pbd;
680
681 spin_lock(&po->sk.sk_receive_queue.lock);
682
683 frozen = prb_queue_frozen(pkc);
684 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
685
686 if (unlikely(pkc->delete_blk_timer))
687 goto out;
688
689 /* We only need to plug the race when the block is partially filled.
690 * tpacket_rcv:
691 * lock(); increment BLOCK_NUM_PKTS; unlock()
692 * copy_bits() is in progress ...
693 * timer fires on other cpu:
694 * we can't retire the current block because copy_bits
695 * is in progress.
696 *
697 */
698 if (BLOCK_NUM_PKTS(pbd)) {
699 while (atomic_read(&pkc->blk_fill_in_prog)) {
700 /* Waiting for skb_copy_bits to finish... */
701 cpu_relax();
702 }
703 }
704
705 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
706 if (!frozen) {
707 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
708 if (!prb_dispatch_next_block(pkc, po))
709 goto refresh_timer;
710 else
711 goto out;
712 } else {
713 /* Case 1. Queue was frozen because user-space was
714 * lagging behind.
715 */
716 if (prb_curr_blk_in_use(pkc, pbd)) {
717 /*
718 * Ok, user-space is still behind.
719 * So just refresh the timer.
720 */
721 goto refresh_timer;
722 } else {
723 /* Case 2. queue was frozen,user-space caught up,
724 * now the link went idle && the timer fired.
725 * We don't have a block to close.So we open this
726 * block and restart the timer.
727 * opening a block thaws the queue,restarts timer
728 * Thawing/timer-refresh is a side effect.
729 */
730 prb_open_block(pkc, pbd);
731 goto out;
732 }
733 }
734 }
735
736 refresh_timer:
737 _prb_refresh_rx_retire_blk_timer(pkc);
738
739 out:
740 spin_unlock(&po->sk.sk_receive_queue.lock);
741 }
742
743 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
744 struct tpacket_block_desc *pbd1, __u32 status)
745 {
746 /* Flush everything minus the block header */
747
748 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
749 u8 *start, *end;
750
751 start = (u8 *)pbd1;
752
753 /* Skip the block header(we know header WILL fit in 4K) */
754 start += PAGE_SIZE;
755
756 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
757 for (; start < end; start += PAGE_SIZE)
758 flush_dcache_page(pgv_to_page(start));
759
760 smp_wmb();
761 #endif
762
763 /* Now update the block status. */
764
765 BLOCK_STATUS(pbd1) = status;
766
767 /* Flush the block header */
768
769 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
770 start = (u8 *)pbd1;
771 flush_dcache_page(pgv_to_page(start));
772
773 smp_wmb();
774 #endif
775 }
776
777 /*
778 * Side effect:
779 *
780 * 1) flush the block
781 * 2) Increment active_blk_num
782 *
783 * Note:We DONT refresh the timer on purpose.
784 * Because almost always the next block will be opened.
785 */
786 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
787 struct tpacket_block_desc *pbd1,
788 struct packet_sock *po, unsigned int stat)
789 {
790 __u32 status = TP_STATUS_USER | stat;
791
792 struct tpacket3_hdr *last_pkt;
793 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
794
795 if (po->stats.stats3.tp_drops)
796 status |= TP_STATUS_LOSING;
797
798 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
799 last_pkt->tp_next_offset = 0;
800
801 /* Get the ts of the last pkt */
802 if (BLOCK_NUM_PKTS(pbd1)) {
803 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
804 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
805 } else {
806 /* Ok, we tmo'd - so get the current time */
807 struct timespec ts;
808 getnstimeofday(&ts);
809 h1->ts_last_pkt.ts_sec = ts.tv_sec;
810 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
811 }
812
813 smp_wmb();
814
815 /* Flush the block */
816 prb_flush_block(pkc1, pbd1, status);
817
818 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
819 }
820
821 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
822 {
823 pkc->reset_pending_on_curr_blk = 0;
824 }
825
826 /*
827 * Side effect of opening a block:
828 *
829 * 1) prb_queue is thawed.
830 * 2) retire_blk_timer is refreshed.
831 *
832 */
833 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
834 struct tpacket_block_desc *pbd1)
835 {
836 struct timespec ts;
837 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
838
839 smp_rmb();
840
841 /* We could have just memset this but we will lose the
842 * flexibility of making the priv area sticky
843 */
844
845 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
846 BLOCK_NUM_PKTS(pbd1) = 0;
847 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
848
849 getnstimeofday(&ts);
850
851 h1->ts_first_pkt.ts_sec = ts.tv_sec;
852 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
853
854 pkc1->pkblk_start = (char *)pbd1;
855 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
856
857 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
858 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
859
860 pbd1->version = pkc1->version;
861 pkc1->prev = pkc1->nxt_offset;
862 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
863
864 prb_thaw_queue(pkc1);
865 _prb_refresh_rx_retire_blk_timer(pkc1);
866
867 smp_wmb();
868 }
869
870 /*
871 * Queue freeze logic:
872 * 1) Assume tp_block_nr = 8 blocks.
873 * 2) At time 't0', user opens Rx ring.
874 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
875 * 4) user-space is either sleeping or processing block '0'.
876 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
877 * it will close block-7,loop around and try to fill block '0'.
878 * call-flow:
879 * __packet_lookup_frame_in_block
880 * prb_retire_current_block()
881 * prb_dispatch_next_block()
882 * |->(BLOCK_STATUS == USER) evaluates to true
883 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
884 * 6) Now there are two cases:
885 * 6.1) Link goes idle right after the queue is frozen.
886 * But remember, the last open_block() refreshed the timer.
887 * When this timer expires,it will refresh itself so that we can
888 * re-open block-0 in near future.
889 * 6.2) Link is busy and keeps on receiving packets. This is a simple
890 * case and __packet_lookup_frame_in_block will check if block-0
891 * is free and can now be re-used.
892 */
893 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
894 struct packet_sock *po)
895 {
896 pkc->reset_pending_on_curr_blk = 1;
897 po->stats.stats3.tp_freeze_q_cnt++;
898 }
899
900 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
901
902 /*
903 * If the next block is free then we will dispatch it
904 * and return a good offset.
905 * Else, we will freeze the queue.
906 * So, caller must check the return value.
907 */
908 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
909 struct packet_sock *po)
910 {
911 struct tpacket_block_desc *pbd;
912
913 smp_rmb();
914
915 /* 1. Get current block num */
916 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
917
918 /* 2. If this block is currently in_use then freeze the queue */
919 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
920 prb_freeze_queue(pkc, po);
921 return NULL;
922 }
923
924 /*
925 * 3.
926 * open this block and return the offset where the first packet
927 * needs to get stored.
928 */
929 prb_open_block(pkc, pbd);
930 return (void *)pkc->nxt_offset;
931 }
932
933 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
934 struct packet_sock *po, unsigned int status)
935 {
936 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
937
938 /* retire/close the current block */
939 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
940 /*
941 * Plug the case where copy_bits() is in progress on
942 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
943 * have space to copy the pkt in the current block and
944 * called prb_retire_current_block()
945 *
946 * We don't need to worry about the TMO case because
947 * the timer-handler already handled this case.
948 */
949 if (!(status & TP_STATUS_BLK_TMO)) {
950 while (atomic_read(&pkc->blk_fill_in_prog)) {
951 /* Waiting for skb_copy_bits to finish... */
952 cpu_relax();
953 }
954 }
955 prb_close_block(pkc, pbd, po, status);
956 return;
957 }
958 }
959
960 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
961 struct tpacket_block_desc *pbd)
962 {
963 return TP_STATUS_USER & BLOCK_STATUS(pbd);
964 }
965
966 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
967 {
968 return pkc->reset_pending_on_curr_blk;
969 }
970
971 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
972 {
973 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
974 atomic_dec(&pkc->blk_fill_in_prog);
975 }
976
977 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
978 struct tpacket3_hdr *ppd)
979 {
980 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
981 }
982
983 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
984 struct tpacket3_hdr *ppd)
985 {
986 ppd->hv1.tp_rxhash = 0;
987 }
988
989 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
990 struct tpacket3_hdr *ppd)
991 {
992 if (vlan_tx_tag_present(pkc->skb)) {
993 ppd->hv1.tp_vlan_tci = vlan_tx_tag_get(pkc->skb);
994 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
995 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
996 } else {
997 ppd->hv1.tp_vlan_tci = 0;
998 ppd->hv1.tp_vlan_tpid = 0;
999 ppd->tp_status = TP_STATUS_AVAILABLE;
1000 }
1001 }
1002
1003 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1004 struct tpacket3_hdr *ppd)
1005 {
1006 ppd->hv1.tp_padding = 0;
1007 prb_fill_vlan_info(pkc, ppd);
1008
1009 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1010 prb_fill_rxhash(pkc, ppd);
1011 else
1012 prb_clear_rxhash(pkc, ppd);
1013 }
1014
1015 static void prb_fill_curr_block(char *curr,
1016 struct tpacket_kbdq_core *pkc,
1017 struct tpacket_block_desc *pbd,
1018 unsigned int len)
1019 {
1020 struct tpacket3_hdr *ppd;
1021
1022 ppd = (struct tpacket3_hdr *)curr;
1023 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1024 pkc->prev = curr;
1025 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1026 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1027 BLOCK_NUM_PKTS(pbd) += 1;
1028 atomic_inc(&pkc->blk_fill_in_prog);
1029 prb_run_all_ft_ops(pkc, ppd);
1030 }
1031
1032 /* Assumes caller has the sk->rx_queue.lock */
1033 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1034 struct sk_buff *skb,
1035 int status,
1036 unsigned int len
1037 )
1038 {
1039 struct tpacket_kbdq_core *pkc;
1040 struct tpacket_block_desc *pbd;
1041 char *curr, *end;
1042
1043 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1044 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1045
1046 /* Queue is frozen when user space is lagging behind */
1047 if (prb_queue_frozen(pkc)) {
1048 /*
1049 * Check if that last block which caused the queue to freeze,
1050 * is still in_use by user-space.
1051 */
1052 if (prb_curr_blk_in_use(pkc, pbd)) {
1053 /* Can't record this packet */
1054 return NULL;
1055 } else {
1056 /*
1057 * Ok, the block was released by user-space.
1058 * Now let's open that block.
1059 * opening a block also thaws the queue.
1060 * Thawing is a side effect.
1061 */
1062 prb_open_block(pkc, pbd);
1063 }
1064 }
1065
1066 smp_mb();
1067 curr = pkc->nxt_offset;
1068 pkc->skb = skb;
1069 end = (char *)pbd + pkc->kblk_size;
1070
1071 /* first try the current block */
1072 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1073 prb_fill_curr_block(curr, pkc, pbd, len);
1074 return (void *)curr;
1075 }
1076
1077 /* Ok, close the current block */
1078 prb_retire_current_block(pkc, po, 0);
1079
1080 /* Now, try to dispatch the next block */
1081 curr = (char *)prb_dispatch_next_block(pkc, po);
1082 if (curr) {
1083 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1084 prb_fill_curr_block(curr, pkc, pbd, len);
1085 return (void *)curr;
1086 }
1087
1088 /*
1089 * No free blocks are available.user_space hasn't caught up yet.
1090 * Queue was just frozen and now this packet will get dropped.
1091 */
1092 return NULL;
1093 }
1094
1095 static void *packet_current_rx_frame(struct packet_sock *po,
1096 struct sk_buff *skb,
1097 int status, unsigned int len)
1098 {
1099 char *curr = NULL;
1100 switch (po->tp_version) {
1101 case TPACKET_V1:
1102 case TPACKET_V2:
1103 curr = packet_lookup_frame(po, &po->rx_ring,
1104 po->rx_ring.head, status);
1105 return curr;
1106 case TPACKET_V3:
1107 return __packet_lookup_frame_in_block(po, skb, status, len);
1108 default:
1109 WARN(1, "TPACKET version not supported\n");
1110 BUG();
1111 return NULL;
1112 }
1113 }
1114
1115 static void *prb_lookup_block(struct packet_sock *po,
1116 struct packet_ring_buffer *rb,
1117 unsigned int idx,
1118 int status)
1119 {
1120 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1121 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1122
1123 if (status != BLOCK_STATUS(pbd))
1124 return NULL;
1125 return pbd;
1126 }
1127
1128 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1129 {
1130 unsigned int prev;
1131 if (rb->prb_bdqc.kactive_blk_num)
1132 prev = rb->prb_bdqc.kactive_blk_num-1;
1133 else
1134 prev = rb->prb_bdqc.knum_blocks-1;
1135 return prev;
1136 }
1137
1138 /* Assumes caller has held the rx_queue.lock */
1139 static void *__prb_previous_block(struct packet_sock *po,
1140 struct packet_ring_buffer *rb,
1141 int status)
1142 {
1143 unsigned int previous = prb_previous_blk_num(rb);
1144 return prb_lookup_block(po, rb, previous, status);
1145 }
1146
1147 static void *packet_previous_rx_frame(struct packet_sock *po,
1148 struct packet_ring_buffer *rb,
1149 int status)
1150 {
1151 if (po->tp_version <= TPACKET_V2)
1152 return packet_previous_frame(po, rb, status);
1153
1154 return __prb_previous_block(po, rb, status);
1155 }
1156
1157 static void packet_increment_rx_head(struct packet_sock *po,
1158 struct packet_ring_buffer *rb)
1159 {
1160 switch (po->tp_version) {
1161 case TPACKET_V1:
1162 case TPACKET_V2:
1163 return packet_increment_head(rb);
1164 case TPACKET_V3:
1165 default:
1166 WARN(1, "TPACKET version not supported.\n");
1167 BUG();
1168 return;
1169 }
1170 }
1171
1172 static void *packet_previous_frame(struct packet_sock *po,
1173 struct packet_ring_buffer *rb,
1174 int status)
1175 {
1176 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1177 return packet_lookup_frame(po, rb, previous, status);
1178 }
1179
1180 static void packet_increment_head(struct packet_ring_buffer *buff)
1181 {
1182 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1183 }
1184
1185 static void packet_inc_pending(struct packet_ring_buffer *rb)
1186 {
1187 this_cpu_inc(*rb->pending_refcnt);
1188 }
1189
1190 static void packet_dec_pending(struct packet_ring_buffer *rb)
1191 {
1192 this_cpu_dec(*rb->pending_refcnt);
1193 }
1194
1195 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1196 {
1197 unsigned int refcnt = 0;
1198 int cpu;
1199
1200 /* We don't use pending refcount in rx_ring. */
1201 if (rb->pending_refcnt == NULL)
1202 return 0;
1203
1204 for_each_possible_cpu(cpu)
1205 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1206
1207 return refcnt;
1208 }
1209
1210 static int packet_alloc_pending(struct packet_sock *po)
1211 {
1212 po->rx_ring.pending_refcnt = NULL;
1213
1214 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1215 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1216 return -ENOBUFS;
1217
1218 return 0;
1219 }
1220
1221 static void packet_free_pending(struct packet_sock *po)
1222 {
1223 free_percpu(po->tx_ring.pending_refcnt);
1224 }
1225
1226 static bool packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1227 {
1228 struct sock *sk = &po->sk;
1229 bool has_room;
1230
1231 if (po->prot_hook.func != tpacket_rcv)
1232 return (atomic_read(&sk->sk_rmem_alloc) + skb->truesize)
1233 <= sk->sk_rcvbuf;
1234
1235 spin_lock(&sk->sk_receive_queue.lock);
1236 if (po->tp_version == TPACKET_V3)
1237 has_room = prb_lookup_block(po, &po->rx_ring,
1238 po->rx_ring.prb_bdqc.kactive_blk_num,
1239 TP_STATUS_KERNEL);
1240 else
1241 has_room = packet_lookup_frame(po, &po->rx_ring,
1242 po->rx_ring.head,
1243 TP_STATUS_KERNEL);
1244 spin_unlock(&sk->sk_receive_queue.lock);
1245
1246 return has_room;
1247 }
1248
1249 static void packet_sock_destruct(struct sock *sk)
1250 {
1251 skb_queue_purge(&sk->sk_error_queue);
1252
1253 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1254 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1255
1256 if (!sock_flag(sk, SOCK_DEAD)) {
1257 pr_err("Attempt to release alive packet socket: %p\n", sk);
1258 return;
1259 }
1260
1261 sk_refcnt_debug_dec(sk);
1262 }
1263
1264 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1265 {
1266 int x = atomic_read(&f->rr_cur) + 1;
1267
1268 if (x >= num)
1269 x = 0;
1270
1271 return x;
1272 }
1273
1274 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1275 struct sk_buff *skb,
1276 unsigned int num)
1277 {
1278 return reciprocal_scale(skb_get_hash(skb), num);
1279 }
1280
1281 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1282 struct sk_buff *skb,
1283 unsigned int num)
1284 {
1285 int cur, old;
1286
1287 cur = atomic_read(&f->rr_cur);
1288 while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1289 fanout_rr_next(f, num))) != cur)
1290 cur = old;
1291 return cur;
1292 }
1293
1294 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1295 struct sk_buff *skb,
1296 unsigned int num)
1297 {
1298 return smp_processor_id() % num;
1299 }
1300
1301 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1302 struct sk_buff *skb,
1303 unsigned int num)
1304 {
1305 return prandom_u32_max(num);
1306 }
1307
1308 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1309 struct sk_buff *skb,
1310 unsigned int idx, unsigned int skip,
1311 unsigned int num)
1312 {
1313 unsigned int i, j;
1314
1315 i = j = min_t(int, f->next[idx], num - 1);
1316 do {
1317 if (i != skip && packet_rcv_has_room(pkt_sk(f->arr[i]), skb)) {
1318 if (i != j)
1319 f->next[idx] = i;
1320 return i;
1321 }
1322 if (++i == num)
1323 i = 0;
1324 } while (i != j);
1325
1326 return idx;
1327 }
1328
1329 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1330 struct sk_buff *skb,
1331 unsigned int num)
1332 {
1333 return skb_get_queue_mapping(skb) % num;
1334 }
1335
1336 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1337 {
1338 return f->flags & (flag >> 8);
1339 }
1340
1341 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1342 struct packet_type *pt, struct net_device *orig_dev)
1343 {
1344 struct packet_fanout *f = pt->af_packet_priv;
1345 unsigned int num = f->num_members;
1346 struct packet_sock *po;
1347 unsigned int idx;
1348
1349 if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1350 !num) {
1351 kfree_skb(skb);
1352 return 0;
1353 }
1354
1355 switch (f->type) {
1356 case PACKET_FANOUT_HASH:
1357 default:
1358 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1359 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1360 if (!skb)
1361 return 0;
1362 }
1363 idx = fanout_demux_hash(f, skb, num);
1364 break;
1365 case PACKET_FANOUT_LB:
1366 idx = fanout_demux_lb(f, skb, num);
1367 break;
1368 case PACKET_FANOUT_CPU:
1369 idx = fanout_demux_cpu(f, skb, num);
1370 break;
1371 case PACKET_FANOUT_RND:
1372 idx = fanout_demux_rnd(f, skb, num);
1373 break;
1374 case PACKET_FANOUT_QM:
1375 idx = fanout_demux_qm(f, skb, num);
1376 break;
1377 case PACKET_FANOUT_ROLLOVER:
1378 idx = fanout_demux_rollover(f, skb, 0, (unsigned int) -1, num);
1379 break;
1380 }
1381
1382 po = pkt_sk(f->arr[idx]);
1383 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER) &&
1384 unlikely(!packet_rcv_has_room(po, skb))) {
1385 idx = fanout_demux_rollover(f, skb, idx, idx, num);
1386 po = pkt_sk(f->arr[idx]);
1387 }
1388
1389 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1390 }
1391
1392 DEFINE_MUTEX(fanout_mutex);
1393 EXPORT_SYMBOL_GPL(fanout_mutex);
1394 static LIST_HEAD(fanout_list);
1395
1396 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1397 {
1398 struct packet_fanout *f = po->fanout;
1399
1400 spin_lock(&f->lock);
1401 f->arr[f->num_members] = sk;
1402 smp_wmb();
1403 f->num_members++;
1404 spin_unlock(&f->lock);
1405 }
1406
1407 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1408 {
1409 struct packet_fanout *f = po->fanout;
1410 int i;
1411
1412 spin_lock(&f->lock);
1413 for (i = 0; i < f->num_members; i++) {
1414 if (f->arr[i] == sk)
1415 break;
1416 }
1417 BUG_ON(i >= f->num_members);
1418 f->arr[i] = f->arr[f->num_members - 1];
1419 f->num_members--;
1420 spin_unlock(&f->lock);
1421 }
1422
1423 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1424 {
1425 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1426 return true;
1427
1428 return false;
1429 }
1430
1431 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1432 {
1433 struct packet_sock *po = pkt_sk(sk);
1434 struct packet_fanout *f, *match;
1435 u8 type = type_flags & 0xff;
1436 u8 flags = type_flags >> 8;
1437 int err;
1438
1439 switch (type) {
1440 case PACKET_FANOUT_ROLLOVER:
1441 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1442 return -EINVAL;
1443 case PACKET_FANOUT_HASH:
1444 case PACKET_FANOUT_LB:
1445 case PACKET_FANOUT_CPU:
1446 case PACKET_FANOUT_RND:
1447 case PACKET_FANOUT_QM:
1448 break;
1449 default:
1450 return -EINVAL;
1451 }
1452
1453 if (!po->running)
1454 return -EINVAL;
1455
1456 if (po->fanout)
1457 return -EALREADY;
1458
1459 mutex_lock(&fanout_mutex);
1460 match = NULL;
1461 list_for_each_entry(f, &fanout_list, list) {
1462 if (f->id == id &&
1463 read_pnet(&f->net) == sock_net(sk)) {
1464 match = f;
1465 break;
1466 }
1467 }
1468 err = -EINVAL;
1469 if (match && match->flags != flags)
1470 goto out;
1471 if (!match) {
1472 err = -ENOMEM;
1473 match = kzalloc(sizeof(*match), GFP_KERNEL);
1474 if (!match)
1475 goto out;
1476 write_pnet(&match->net, sock_net(sk));
1477 match->id = id;
1478 match->type = type;
1479 match->flags = flags;
1480 atomic_set(&match->rr_cur, 0);
1481 INIT_LIST_HEAD(&match->list);
1482 spin_lock_init(&match->lock);
1483 atomic_set(&match->sk_ref, 0);
1484 match->prot_hook.type = po->prot_hook.type;
1485 match->prot_hook.dev = po->prot_hook.dev;
1486 match->prot_hook.func = packet_rcv_fanout;
1487 match->prot_hook.af_packet_priv = match;
1488 match->prot_hook.id_match = match_fanout_group;
1489 dev_add_pack(&match->prot_hook);
1490 list_add(&match->list, &fanout_list);
1491 }
1492 err = -EINVAL;
1493 if (match->type == type &&
1494 match->prot_hook.type == po->prot_hook.type &&
1495 match->prot_hook.dev == po->prot_hook.dev) {
1496 err = -ENOSPC;
1497 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1498 __dev_remove_pack(&po->prot_hook);
1499 po->fanout = match;
1500 atomic_inc(&match->sk_ref);
1501 __fanout_link(sk, po);
1502 err = 0;
1503 }
1504 }
1505 out:
1506 mutex_unlock(&fanout_mutex);
1507 return err;
1508 }
1509
1510 static void fanout_release(struct sock *sk)
1511 {
1512 struct packet_sock *po = pkt_sk(sk);
1513 struct packet_fanout *f;
1514
1515 f = po->fanout;
1516 if (!f)
1517 return;
1518
1519 mutex_lock(&fanout_mutex);
1520 po->fanout = NULL;
1521
1522 if (atomic_dec_and_test(&f->sk_ref)) {
1523 list_del(&f->list);
1524 dev_remove_pack(&f->prot_hook);
1525 kfree(f);
1526 }
1527 mutex_unlock(&fanout_mutex);
1528 }
1529
1530 static const struct proto_ops packet_ops;
1531
1532 static const struct proto_ops packet_ops_spkt;
1533
1534 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1535 struct packet_type *pt, struct net_device *orig_dev)
1536 {
1537 struct sock *sk;
1538 struct sockaddr_pkt *spkt;
1539
1540 /*
1541 * When we registered the protocol we saved the socket in the data
1542 * field for just this event.
1543 */
1544
1545 sk = pt->af_packet_priv;
1546
1547 /*
1548 * Yank back the headers [hope the device set this
1549 * right or kerboom...]
1550 *
1551 * Incoming packets have ll header pulled,
1552 * push it back.
1553 *
1554 * For outgoing ones skb->data == skb_mac_header(skb)
1555 * so that this procedure is noop.
1556 */
1557
1558 if (skb->pkt_type == PACKET_LOOPBACK)
1559 goto out;
1560
1561 if (!net_eq(dev_net(dev), sock_net(sk)))
1562 goto out;
1563
1564 skb = skb_share_check(skb, GFP_ATOMIC);
1565 if (skb == NULL)
1566 goto oom;
1567
1568 /* drop any routing info */
1569 skb_dst_drop(skb);
1570
1571 /* drop conntrack reference */
1572 nf_reset(skb);
1573
1574 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1575
1576 skb_push(skb, skb->data - skb_mac_header(skb));
1577
1578 /*
1579 * The SOCK_PACKET socket receives _all_ frames.
1580 */
1581
1582 spkt->spkt_family = dev->type;
1583 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1584 spkt->spkt_protocol = skb->protocol;
1585
1586 /*
1587 * Charge the memory to the socket. This is done specifically
1588 * to prevent sockets using all the memory up.
1589 */
1590
1591 if (sock_queue_rcv_skb(sk, skb) == 0)
1592 return 0;
1593
1594 out:
1595 kfree_skb(skb);
1596 oom:
1597 return 0;
1598 }
1599
1600
1601 /*
1602 * Output a raw packet to a device layer. This bypasses all the other
1603 * protocol layers and you must therefore supply it with a complete frame
1604 */
1605
1606 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1607 struct msghdr *msg, size_t len)
1608 {
1609 struct sock *sk = sock->sk;
1610 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1611 struct sk_buff *skb = NULL;
1612 struct net_device *dev;
1613 __be16 proto = 0;
1614 int err;
1615 int extra_len = 0;
1616
1617 /*
1618 * Get and verify the address.
1619 */
1620
1621 if (saddr) {
1622 if (msg->msg_namelen < sizeof(struct sockaddr))
1623 return -EINVAL;
1624 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1625 proto = saddr->spkt_protocol;
1626 } else
1627 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1628
1629 /*
1630 * Find the device first to size check it
1631 */
1632
1633 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1634 retry:
1635 rcu_read_lock();
1636 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1637 err = -ENODEV;
1638 if (dev == NULL)
1639 goto out_unlock;
1640
1641 err = -ENETDOWN;
1642 if (!(dev->flags & IFF_UP))
1643 goto out_unlock;
1644
1645 /*
1646 * You may not queue a frame bigger than the mtu. This is the lowest level
1647 * raw protocol and you must do your own fragmentation at this level.
1648 */
1649
1650 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1651 if (!netif_supports_nofcs(dev)) {
1652 err = -EPROTONOSUPPORT;
1653 goto out_unlock;
1654 }
1655 extra_len = 4; /* We're doing our own CRC */
1656 }
1657
1658 err = -EMSGSIZE;
1659 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1660 goto out_unlock;
1661
1662 if (!skb) {
1663 size_t reserved = LL_RESERVED_SPACE(dev);
1664 int tlen = dev->needed_tailroom;
1665 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1666
1667 rcu_read_unlock();
1668 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1669 if (skb == NULL)
1670 return -ENOBUFS;
1671 /* FIXME: Save some space for broken drivers that write a hard
1672 * header at transmission time by themselves. PPP is the notable
1673 * one here. This should really be fixed at the driver level.
1674 */
1675 skb_reserve(skb, reserved);
1676 skb_reset_network_header(skb);
1677
1678 /* Try to align data part correctly */
1679 if (hhlen) {
1680 skb->data -= hhlen;
1681 skb->tail -= hhlen;
1682 if (len < hhlen)
1683 skb_reset_network_header(skb);
1684 }
1685 err = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len);
1686 if (err)
1687 goto out_free;
1688 goto retry;
1689 }
1690
1691 if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1692 /* Earlier code assumed this would be a VLAN pkt,
1693 * double-check this now that we have the actual
1694 * packet in hand.
1695 */
1696 struct ethhdr *ehdr;
1697 skb_reset_mac_header(skb);
1698 ehdr = eth_hdr(skb);
1699 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1700 err = -EMSGSIZE;
1701 goto out_unlock;
1702 }
1703 }
1704
1705 skb->protocol = proto;
1706 skb->dev = dev;
1707 skb->priority = sk->sk_priority;
1708 skb->mark = sk->sk_mark;
1709
1710 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1711
1712 if (unlikely(extra_len == 4))
1713 skb->no_fcs = 1;
1714
1715 skb_probe_transport_header(skb, 0);
1716
1717 dev_queue_xmit(skb);
1718 rcu_read_unlock();
1719 return len;
1720
1721 out_unlock:
1722 rcu_read_unlock();
1723 out_free:
1724 kfree_skb(skb);
1725 return err;
1726 }
1727
1728 static unsigned int run_filter(const struct sk_buff *skb,
1729 const struct sock *sk,
1730 unsigned int res)
1731 {
1732 struct sk_filter *filter;
1733
1734 rcu_read_lock();
1735 filter = rcu_dereference(sk->sk_filter);
1736 if (filter != NULL)
1737 res = SK_RUN_FILTER(filter, skb);
1738 rcu_read_unlock();
1739
1740 return res;
1741 }
1742
1743 /*
1744 * This function makes lazy skb cloning in hope that most of packets
1745 * are discarded by BPF.
1746 *
1747 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1748 * and skb->cb are mangled. It works because (and until) packets
1749 * falling here are owned by current CPU. Output packets are cloned
1750 * by dev_queue_xmit_nit(), input packets are processed by net_bh
1751 * sequencially, so that if we return skb to original state on exit,
1752 * we will not harm anyone.
1753 */
1754
1755 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1756 struct packet_type *pt, struct net_device *orig_dev)
1757 {
1758 struct sock *sk;
1759 struct sockaddr_ll *sll;
1760 struct packet_sock *po;
1761 u8 *skb_head = skb->data;
1762 int skb_len = skb->len;
1763 unsigned int snaplen, res;
1764
1765 if (skb->pkt_type == PACKET_LOOPBACK)
1766 goto drop;
1767
1768 sk = pt->af_packet_priv;
1769 po = pkt_sk(sk);
1770
1771 if (!net_eq(dev_net(dev), sock_net(sk)))
1772 goto drop;
1773
1774 skb->dev = dev;
1775
1776 if (dev->header_ops) {
1777 /* The device has an explicit notion of ll header,
1778 * exported to higher levels.
1779 *
1780 * Otherwise, the device hides details of its frame
1781 * structure, so that corresponding packet head is
1782 * never delivered to user.
1783 */
1784 if (sk->sk_type != SOCK_DGRAM)
1785 skb_push(skb, skb->data - skb_mac_header(skb));
1786 else if (skb->pkt_type == PACKET_OUTGOING) {
1787 /* Special case: outgoing packets have ll header at head */
1788 skb_pull(skb, skb_network_offset(skb));
1789 }
1790 }
1791
1792 snaplen = skb->len;
1793
1794 res = run_filter(skb, sk, snaplen);
1795 if (!res)
1796 goto drop_n_restore;
1797 if (snaplen > res)
1798 snaplen = res;
1799
1800 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1801 goto drop_n_acct;
1802
1803 if (skb_shared(skb)) {
1804 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1805 if (nskb == NULL)
1806 goto drop_n_acct;
1807
1808 if (skb_head != skb->data) {
1809 skb->data = skb_head;
1810 skb->len = skb_len;
1811 }
1812 consume_skb(skb);
1813 skb = nskb;
1814 }
1815
1816 BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1817 sizeof(skb->cb));
1818
1819 sll = &PACKET_SKB_CB(skb)->sa.ll;
1820 sll->sll_family = AF_PACKET;
1821 sll->sll_hatype = dev->type;
1822 sll->sll_protocol = skb->protocol;
1823 sll->sll_pkttype = skb->pkt_type;
1824 if (unlikely(po->origdev))
1825 sll->sll_ifindex = orig_dev->ifindex;
1826 else
1827 sll->sll_ifindex = dev->ifindex;
1828
1829 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1830
1831 PACKET_SKB_CB(skb)->origlen = skb->len;
1832
1833 if (pskb_trim(skb, snaplen))
1834 goto drop_n_acct;
1835
1836 skb_set_owner_r(skb, sk);
1837 skb->dev = NULL;
1838 skb_dst_drop(skb);
1839
1840 /* drop conntrack reference */
1841 nf_reset(skb);
1842
1843 spin_lock(&sk->sk_receive_queue.lock);
1844 po->stats.stats1.tp_packets++;
1845 skb->dropcount = atomic_read(&sk->sk_drops);
1846 __skb_queue_tail(&sk->sk_receive_queue, skb);
1847 spin_unlock(&sk->sk_receive_queue.lock);
1848 sk->sk_data_ready(sk);
1849 return 0;
1850
1851 drop_n_acct:
1852 spin_lock(&sk->sk_receive_queue.lock);
1853 po->stats.stats1.tp_drops++;
1854 atomic_inc(&sk->sk_drops);
1855 spin_unlock(&sk->sk_receive_queue.lock);
1856
1857 drop_n_restore:
1858 if (skb_head != skb->data && skb_shared(skb)) {
1859 skb->data = skb_head;
1860 skb->len = skb_len;
1861 }
1862 drop:
1863 consume_skb(skb);
1864 return 0;
1865 }
1866
1867 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1868 struct packet_type *pt, struct net_device *orig_dev)
1869 {
1870 struct sock *sk;
1871 struct packet_sock *po;
1872 struct sockaddr_ll *sll;
1873 union tpacket_uhdr h;
1874 u8 *skb_head = skb->data;
1875 int skb_len = skb->len;
1876 unsigned int snaplen, res;
1877 unsigned long status = TP_STATUS_USER;
1878 unsigned short macoff, netoff, hdrlen;
1879 struct sk_buff *copy_skb = NULL;
1880 struct timespec ts;
1881 __u32 ts_status;
1882
1883 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
1884 * We may add members to them until current aligned size without forcing
1885 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
1886 */
1887 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
1888 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
1889
1890 if (skb->pkt_type == PACKET_LOOPBACK)
1891 goto drop;
1892
1893 sk = pt->af_packet_priv;
1894 po = pkt_sk(sk);
1895
1896 if (!net_eq(dev_net(dev), sock_net(sk)))
1897 goto drop;
1898
1899 if (dev->header_ops) {
1900 if (sk->sk_type != SOCK_DGRAM)
1901 skb_push(skb, skb->data - skb_mac_header(skb));
1902 else if (skb->pkt_type == PACKET_OUTGOING) {
1903 /* Special case: outgoing packets have ll header at head */
1904 skb_pull(skb, skb_network_offset(skb));
1905 }
1906 }
1907
1908 if (skb->ip_summed == CHECKSUM_PARTIAL)
1909 status |= TP_STATUS_CSUMNOTREADY;
1910
1911 snaplen = skb->len;
1912
1913 res = run_filter(skb, sk, snaplen);
1914 if (!res)
1915 goto drop_n_restore;
1916 if (snaplen > res)
1917 snaplen = res;
1918
1919 if (sk->sk_type == SOCK_DGRAM) {
1920 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1921 po->tp_reserve;
1922 } else {
1923 unsigned int maclen = skb_network_offset(skb);
1924 netoff = TPACKET_ALIGN(po->tp_hdrlen +
1925 (maclen < 16 ? 16 : maclen)) +
1926 po->tp_reserve;
1927 macoff = netoff - maclen;
1928 }
1929 if (po->tp_version <= TPACKET_V2) {
1930 if (macoff + snaplen > po->rx_ring.frame_size) {
1931 if (po->copy_thresh &&
1932 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1933 if (skb_shared(skb)) {
1934 copy_skb = skb_clone(skb, GFP_ATOMIC);
1935 } else {
1936 copy_skb = skb_get(skb);
1937 skb_head = skb->data;
1938 }
1939 if (copy_skb)
1940 skb_set_owner_r(copy_skb, sk);
1941 }
1942 snaplen = po->rx_ring.frame_size - macoff;
1943 if ((int)snaplen < 0)
1944 snaplen = 0;
1945 }
1946 } else if (unlikely(macoff + snaplen >
1947 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
1948 u32 nval;
1949
1950 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
1951 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
1952 snaplen, nval, macoff);
1953 snaplen = nval;
1954 if (unlikely((int)snaplen < 0)) {
1955 snaplen = 0;
1956 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
1957 }
1958 }
1959 spin_lock(&sk->sk_receive_queue.lock);
1960 h.raw = packet_current_rx_frame(po, skb,
1961 TP_STATUS_KERNEL, (macoff+snaplen));
1962 if (!h.raw)
1963 goto ring_is_full;
1964 if (po->tp_version <= TPACKET_V2) {
1965 packet_increment_rx_head(po, &po->rx_ring);
1966 /*
1967 * LOSING will be reported till you read the stats,
1968 * because it's COR - Clear On Read.
1969 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1970 * at packet level.
1971 */
1972 if (po->stats.stats1.tp_drops)
1973 status |= TP_STATUS_LOSING;
1974 }
1975 po->stats.stats1.tp_packets++;
1976 if (copy_skb) {
1977 status |= TP_STATUS_COPY;
1978 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1979 }
1980 spin_unlock(&sk->sk_receive_queue.lock);
1981
1982 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1983
1984 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
1985 getnstimeofday(&ts);
1986
1987 status |= ts_status;
1988
1989 switch (po->tp_version) {
1990 case TPACKET_V1:
1991 h.h1->tp_len = skb->len;
1992 h.h1->tp_snaplen = snaplen;
1993 h.h1->tp_mac = macoff;
1994 h.h1->tp_net = netoff;
1995 h.h1->tp_sec = ts.tv_sec;
1996 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
1997 hdrlen = sizeof(*h.h1);
1998 break;
1999 case TPACKET_V2:
2000 h.h2->tp_len = skb->len;
2001 h.h2->tp_snaplen = snaplen;
2002 h.h2->tp_mac = macoff;
2003 h.h2->tp_net = netoff;
2004 h.h2->tp_sec = ts.tv_sec;
2005 h.h2->tp_nsec = ts.tv_nsec;
2006 if (vlan_tx_tag_present(skb)) {
2007 h.h2->tp_vlan_tci = vlan_tx_tag_get(skb);
2008 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2009 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2010 } else {
2011 h.h2->tp_vlan_tci = 0;
2012 h.h2->tp_vlan_tpid = 0;
2013 }
2014 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2015 hdrlen = sizeof(*h.h2);
2016 break;
2017 case TPACKET_V3:
2018 /* tp_nxt_offset,vlan are already populated above.
2019 * So DONT clear those fields here
2020 */
2021 h.h3->tp_status |= status;
2022 h.h3->tp_len = skb->len;
2023 h.h3->tp_snaplen = snaplen;
2024 h.h3->tp_mac = macoff;
2025 h.h3->tp_net = netoff;
2026 h.h3->tp_sec = ts.tv_sec;
2027 h.h3->tp_nsec = ts.tv_nsec;
2028 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2029 hdrlen = sizeof(*h.h3);
2030 break;
2031 default:
2032 BUG();
2033 }
2034
2035 sll = h.raw + TPACKET_ALIGN(hdrlen);
2036 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2037 sll->sll_family = AF_PACKET;
2038 sll->sll_hatype = dev->type;
2039 sll->sll_protocol = skb->protocol;
2040 sll->sll_pkttype = skb->pkt_type;
2041 if (unlikely(po->origdev))
2042 sll->sll_ifindex = orig_dev->ifindex;
2043 else
2044 sll->sll_ifindex = dev->ifindex;
2045
2046 smp_mb();
2047
2048 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2049 if (po->tp_version <= TPACKET_V2) {
2050 u8 *start, *end;
2051
2052 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2053 macoff + snaplen);
2054
2055 for (start = h.raw; start < end; start += PAGE_SIZE)
2056 flush_dcache_page(pgv_to_page(start));
2057 }
2058 smp_wmb();
2059 #endif
2060
2061 if (po->tp_version <= TPACKET_V2)
2062 __packet_set_status(po, h.raw, status);
2063 else
2064 prb_clear_blk_fill_status(&po->rx_ring);
2065
2066 sk->sk_data_ready(sk);
2067
2068 drop_n_restore:
2069 if (skb_head != skb->data && skb_shared(skb)) {
2070 skb->data = skb_head;
2071 skb->len = skb_len;
2072 }
2073 drop:
2074 kfree_skb(skb);
2075 return 0;
2076
2077 ring_is_full:
2078 po->stats.stats1.tp_drops++;
2079 spin_unlock(&sk->sk_receive_queue.lock);
2080
2081 sk->sk_data_ready(sk);
2082 kfree_skb(copy_skb);
2083 goto drop_n_restore;
2084 }
2085
2086 static void tpacket_destruct_skb(struct sk_buff *skb)
2087 {
2088 struct packet_sock *po = pkt_sk(skb->sk);
2089
2090 if (likely(po->tx_ring.pg_vec)) {
2091 void *ph;
2092 __u32 ts;
2093
2094 ph = skb_shinfo(skb)->destructor_arg;
2095 packet_dec_pending(&po->tx_ring);
2096
2097 ts = __packet_set_timestamp(po, ph, skb);
2098 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2099 }
2100
2101 sock_wfree(skb);
2102 }
2103
2104 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2105 void *frame, struct net_device *dev, int size_max,
2106 __be16 proto, unsigned char *addr, int hlen)
2107 {
2108 union tpacket_uhdr ph;
2109 int to_write, offset, len, tp_len, nr_frags, len_max;
2110 struct socket *sock = po->sk.sk_socket;
2111 struct page *page;
2112 void *data;
2113 int err;
2114
2115 ph.raw = frame;
2116
2117 skb->protocol = proto;
2118 skb->dev = dev;
2119 skb->priority = po->sk.sk_priority;
2120 skb->mark = po->sk.sk_mark;
2121 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2122 skb_shinfo(skb)->destructor_arg = ph.raw;
2123
2124 switch (po->tp_version) {
2125 case TPACKET_V2:
2126 tp_len = ph.h2->tp_len;
2127 break;
2128 default:
2129 tp_len = ph.h1->tp_len;
2130 break;
2131 }
2132 if (unlikely(tp_len > size_max)) {
2133 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2134 return -EMSGSIZE;
2135 }
2136
2137 skb_reserve(skb, hlen);
2138 skb_reset_network_header(skb);
2139
2140 if (!packet_use_direct_xmit(po))
2141 skb_probe_transport_header(skb, 0);
2142 if (unlikely(po->tp_tx_has_off)) {
2143 int off_min, off_max, off;
2144 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2145 off_max = po->tx_ring.frame_size - tp_len;
2146 if (sock->type == SOCK_DGRAM) {
2147 switch (po->tp_version) {
2148 case TPACKET_V2:
2149 off = ph.h2->tp_net;
2150 break;
2151 default:
2152 off = ph.h1->tp_net;
2153 break;
2154 }
2155 } else {
2156 switch (po->tp_version) {
2157 case TPACKET_V2:
2158 off = ph.h2->tp_mac;
2159 break;
2160 default:
2161 off = ph.h1->tp_mac;
2162 break;
2163 }
2164 }
2165 if (unlikely((off < off_min) || (off_max < off)))
2166 return -EINVAL;
2167 data = ph.raw + off;
2168 } else {
2169 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2170 }
2171 to_write = tp_len;
2172
2173 if (sock->type == SOCK_DGRAM) {
2174 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2175 NULL, tp_len);
2176 if (unlikely(err < 0))
2177 return -EINVAL;
2178 } else if (dev->hard_header_len) {
2179 /* net device doesn't like empty head */
2180 if (unlikely(tp_len <= dev->hard_header_len)) {
2181 pr_err("packet size is too short (%d < %d)\n",
2182 tp_len, dev->hard_header_len);
2183 return -EINVAL;
2184 }
2185
2186 skb_push(skb, dev->hard_header_len);
2187 err = skb_store_bits(skb, 0, data,
2188 dev->hard_header_len);
2189 if (unlikely(err))
2190 return err;
2191
2192 data += dev->hard_header_len;
2193 to_write -= dev->hard_header_len;
2194 }
2195
2196 offset = offset_in_page(data);
2197 len_max = PAGE_SIZE - offset;
2198 len = ((to_write > len_max) ? len_max : to_write);
2199
2200 skb->data_len = to_write;
2201 skb->len += to_write;
2202 skb->truesize += to_write;
2203 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2204
2205 while (likely(to_write)) {
2206 nr_frags = skb_shinfo(skb)->nr_frags;
2207
2208 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2209 pr_err("Packet exceed the number of skb frags(%lu)\n",
2210 MAX_SKB_FRAGS);
2211 return -EFAULT;
2212 }
2213
2214 page = pgv_to_page(data);
2215 data += len;
2216 flush_dcache_page(page);
2217 get_page(page);
2218 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2219 to_write -= len;
2220 offset = 0;
2221 len_max = PAGE_SIZE;
2222 len = ((to_write > len_max) ? len_max : to_write);
2223 }
2224
2225 return tp_len;
2226 }
2227
2228 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2229 {
2230 struct sk_buff *skb;
2231 struct net_device *dev;
2232 __be16 proto;
2233 int err, reserve = 0;
2234 void *ph;
2235 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2236 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2237 int tp_len, size_max;
2238 unsigned char *addr;
2239 int len_sum = 0;
2240 int status = TP_STATUS_AVAILABLE;
2241 int hlen, tlen;
2242
2243 mutex_lock(&po->pg_vec_lock);
2244
2245 if (likely(saddr == NULL)) {
2246 dev = packet_cached_dev_get(po);
2247 proto = po->num;
2248 addr = NULL;
2249 } else {
2250 err = -EINVAL;
2251 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2252 goto out;
2253 if (msg->msg_namelen < (saddr->sll_halen
2254 + offsetof(struct sockaddr_ll,
2255 sll_addr)))
2256 goto out;
2257 proto = saddr->sll_protocol;
2258 addr = saddr->sll_addr;
2259 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2260 }
2261
2262 err = -ENXIO;
2263 if (unlikely(dev == NULL))
2264 goto out;
2265 err = -ENETDOWN;
2266 if (unlikely(!(dev->flags & IFF_UP)))
2267 goto out_put;
2268
2269 reserve = dev->hard_header_len + VLAN_HLEN;
2270 size_max = po->tx_ring.frame_size
2271 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2272
2273 if (size_max > dev->mtu + reserve)
2274 size_max = dev->mtu + reserve;
2275
2276 do {
2277 ph = packet_current_frame(po, &po->tx_ring,
2278 TP_STATUS_SEND_REQUEST);
2279 if (unlikely(ph == NULL)) {
2280 if (need_wait && need_resched())
2281 schedule();
2282 continue;
2283 }
2284
2285 status = TP_STATUS_SEND_REQUEST;
2286 hlen = LL_RESERVED_SPACE(dev);
2287 tlen = dev->needed_tailroom;
2288 skb = sock_alloc_send_skb(&po->sk,
2289 hlen + tlen + sizeof(struct sockaddr_ll),
2290 0, &err);
2291
2292 if (unlikely(skb == NULL))
2293 goto out_status;
2294
2295 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2296 addr, hlen);
2297 if (tp_len > dev->mtu + dev->hard_header_len) {
2298 struct ethhdr *ehdr;
2299 /* Earlier code assumed this would be a VLAN pkt,
2300 * double-check this now that we have the actual
2301 * packet in hand.
2302 */
2303
2304 skb_reset_mac_header(skb);
2305 ehdr = eth_hdr(skb);
2306 if (ehdr->h_proto != htons(ETH_P_8021Q))
2307 tp_len = -EMSGSIZE;
2308 }
2309 if (unlikely(tp_len < 0)) {
2310 if (po->tp_loss) {
2311 __packet_set_status(po, ph,
2312 TP_STATUS_AVAILABLE);
2313 packet_increment_head(&po->tx_ring);
2314 kfree_skb(skb);
2315 continue;
2316 } else {
2317 status = TP_STATUS_WRONG_FORMAT;
2318 err = tp_len;
2319 goto out_status;
2320 }
2321 }
2322
2323 packet_pick_tx_queue(dev, skb);
2324
2325 skb->destructor = tpacket_destruct_skb;
2326 __packet_set_status(po, ph, TP_STATUS_SENDING);
2327 packet_inc_pending(&po->tx_ring);
2328
2329 status = TP_STATUS_SEND_REQUEST;
2330 err = po->xmit(skb);
2331 if (unlikely(err > 0)) {
2332 err = net_xmit_errno(err);
2333 if (err && __packet_get_status(po, ph) ==
2334 TP_STATUS_AVAILABLE) {
2335 /* skb was destructed already */
2336 skb = NULL;
2337 goto out_status;
2338 }
2339 /*
2340 * skb was dropped but not destructed yet;
2341 * let's treat it like congestion or err < 0
2342 */
2343 err = 0;
2344 }
2345 packet_increment_head(&po->tx_ring);
2346 len_sum += tp_len;
2347 } while (likely((ph != NULL) ||
2348 /* Note: packet_read_pending() might be slow if we have
2349 * to call it as it's per_cpu variable, but in fast-path
2350 * we already short-circuit the loop with the first
2351 * condition, and luckily don't have to go that path
2352 * anyway.
2353 */
2354 (need_wait && packet_read_pending(&po->tx_ring))));
2355
2356 err = len_sum;
2357 goto out_put;
2358
2359 out_status:
2360 __packet_set_status(po, ph, status);
2361 kfree_skb(skb);
2362 out_put:
2363 dev_put(dev);
2364 out:
2365 mutex_unlock(&po->pg_vec_lock);
2366 return err;
2367 }
2368
2369 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2370 size_t reserve, size_t len,
2371 size_t linear, int noblock,
2372 int *err)
2373 {
2374 struct sk_buff *skb;
2375
2376 /* Under a page? Don't bother with paged skb. */
2377 if (prepad + len < PAGE_SIZE || !linear)
2378 linear = len;
2379
2380 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2381 err, 0);
2382 if (!skb)
2383 return NULL;
2384
2385 skb_reserve(skb, reserve);
2386 skb_put(skb, linear);
2387 skb->data_len = len - linear;
2388 skb->len += len - linear;
2389
2390 return skb;
2391 }
2392
2393 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2394 {
2395 struct sock *sk = sock->sk;
2396 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2397 struct sk_buff *skb;
2398 struct net_device *dev;
2399 __be16 proto;
2400 unsigned char *addr;
2401 int err, reserve = 0;
2402 struct virtio_net_hdr vnet_hdr = { 0 };
2403 int offset = 0;
2404 int vnet_hdr_len;
2405 struct packet_sock *po = pkt_sk(sk);
2406 unsigned short gso_type = 0;
2407 int hlen, tlen;
2408 int extra_len = 0;
2409
2410 /*
2411 * Get and verify the address.
2412 */
2413
2414 if (likely(saddr == NULL)) {
2415 dev = packet_cached_dev_get(po);
2416 proto = po->num;
2417 addr = NULL;
2418 } else {
2419 err = -EINVAL;
2420 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2421 goto out;
2422 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2423 goto out;
2424 proto = saddr->sll_protocol;
2425 addr = saddr->sll_addr;
2426 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2427 }
2428
2429 err = -ENXIO;
2430 if (unlikely(dev == NULL))
2431 goto out_unlock;
2432 err = -ENETDOWN;
2433 if (unlikely(!(dev->flags & IFF_UP)))
2434 goto out_unlock;
2435
2436 if (sock->type == SOCK_RAW)
2437 reserve = dev->hard_header_len;
2438 if (po->has_vnet_hdr) {
2439 vnet_hdr_len = sizeof(vnet_hdr);
2440
2441 err = -EINVAL;
2442 if (len < vnet_hdr_len)
2443 goto out_unlock;
2444
2445 len -= vnet_hdr_len;
2446
2447 err = memcpy_fromiovec((void *)&vnet_hdr, msg->msg_iov,
2448 vnet_hdr_len);
2449 if (err < 0)
2450 goto out_unlock;
2451
2452 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2453 (vnet_hdr.csum_start + vnet_hdr.csum_offset + 2 >
2454 vnet_hdr.hdr_len))
2455 vnet_hdr.hdr_len = vnet_hdr.csum_start +
2456 vnet_hdr.csum_offset + 2;
2457
2458 err = -EINVAL;
2459 if (vnet_hdr.hdr_len > len)
2460 goto out_unlock;
2461
2462 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2463 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2464 case VIRTIO_NET_HDR_GSO_TCPV4:
2465 gso_type = SKB_GSO_TCPV4;
2466 break;
2467 case VIRTIO_NET_HDR_GSO_TCPV6:
2468 gso_type = SKB_GSO_TCPV6;
2469 break;
2470 case VIRTIO_NET_HDR_GSO_UDP:
2471 gso_type = SKB_GSO_UDP;
2472 break;
2473 default:
2474 goto out_unlock;
2475 }
2476
2477 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2478 gso_type |= SKB_GSO_TCP_ECN;
2479
2480 if (vnet_hdr.gso_size == 0)
2481 goto out_unlock;
2482
2483 }
2484 }
2485
2486 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2487 if (!netif_supports_nofcs(dev)) {
2488 err = -EPROTONOSUPPORT;
2489 goto out_unlock;
2490 }
2491 extra_len = 4; /* We're doing our own CRC */
2492 }
2493
2494 err = -EMSGSIZE;
2495 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2496 goto out_unlock;
2497
2498 err = -ENOBUFS;
2499 hlen = LL_RESERVED_SPACE(dev);
2500 tlen = dev->needed_tailroom;
2501 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, vnet_hdr.hdr_len,
2502 msg->msg_flags & MSG_DONTWAIT, &err);
2503 if (skb == NULL)
2504 goto out_unlock;
2505
2506 skb_set_network_header(skb, reserve);
2507
2508 err = -EINVAL;
2509 if (sock->type == SOCK_DGRAM &&
2510 (offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len)) < 0)
2511 goto out_free;
2512
2513 /* Returns -EFAULT on error */
2514 err = skb_copy_datagram_from_iovec(skb, offset, msg->msg_iov, 0, len);
2515 if (err)
2516 goto out_free;
2517
2518 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2519
2520 if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2521 /* Earlier code assumed this would be a VLAN pkt,
2522 * double-check this now that we have the actual
2523 * packet in hand.
2524 */
2525 struct ethhdr *ehdr;
2526 skb_reset_mac_header(skb);
2527 ehdr = eth_hdr(skb);
2528 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2529 err = -EMSGSIZE;
2530 goto out_free;
2531 }
2532 }
2533
2534 skb->protocol = proto;
2535 skb->dev = dev;
2536 skb->priority = sk->sk_priority;
2537 skb->mark = sk->sk_mark;
2538
2539 packet_pick_tx_queue(dev, skb);
2540
2541 if (po->has_vnet_hdr) {
2542 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2543 if (!skb_partial_csum_set(skb, vnet_hdr.csum_start,
2544 vnet_hdr.csum_offset)) {
2545 err = -EINVAL;
2546 goto out_free;
2547 }
2548 }
2549
2550 skb_shinfo(skb)->gso_size = vnet_hdr.gso_size;
2551 skb_shinfo(skb)->gso_type = gso_type;
2552
2553 /* Header must be checked, and gso_segs computed. */
2554 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2555 skb_shinfo(skb)->gso_segs = 0;
2556
2557 len += vnet_hdr_len;
2558 }
2559
2560 if (!packet_use_direct_xmit(po))
2561 skb_probe_transport_header(skb, reserve);
2562 if (unlikely(extra_len == 4))
2563 skb->no_fcs = 1;
2564
2565 err = po->xmit(skb);
2566 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2567 goto out_unlock;
2568
2569 dev_put(dev);
2570
2571 return len;
2572
2573 out_free:
2574 kfree_skb(skb);
2575 out_unlock:
2576 if (dev)
2577 dev_put(dev);
2578 out:
2579 return err;
2580 }
2581
2582 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2583 struct msghdr *msg, size_t len)
2584 {
2585 struct sock *sk = sock->sk;
2586 struct packet_sock *po = pkt_sk(sk);
2587
2588 if (po->tx_ring.pg_vec)
2589 return tpacket_snd(po, msg);
2590 else
2591 return packet_snd(sock, msg, len);
2592 }
2593
2594 /*
2595 * Close a PACKET socket. This is fairly simple. We immediately go
2596 * to 'closed' state and remove our protocol entry in the device list.
2597 */
2598
2599 static int packet_release(struct socket *sock)
2600 {
2601 struct sock *sk = sock->sk;
2602 struct packet_sock *po;
2603 struct net *net;
2604 union tpacket_req_u req_u;
2605
2606 if (!sk)
2607 return 0;
2608
2609 net = sock_net(sk);
2610 po = pkt_sk(sk);
2611
2612 mutex_lock(&net->packet.sklist_lock);
2613 sk_del_node_init_rcu(sk);
2614 mutex_unlock(&net->packet.sklist_lock);
2615
2616 preempt_disable();
2617 sock_prot_inuse_add(net, sk->sk_prot, -1);
2618 preempt_enable();
2619
2620 spin_lock(&po->bind_lock);
2621 unregister_prot_hook(sk, false);
2622 packet_cached_dev_reset(po);
2623
2624 if (po->prot_hook.dev) {
2625 dev_put(po->prot_hook.dev);
2626 po->prot_hook.dev = NULL;
2627 }
2628 spin_unlock(&po->bind_lock);
2629
2630 packet_flush_mclist(sk);
2631
2632 if (po->rx_ring.pg_vec) {
2633 memset(&req_u, 0, sizeof(req_u));
2634 packet_set_ring(sk, &req_u, 1, 0);
2635 }
2636
2637 if (po->tx_ring.pg_vec) {
2638 memset(&req_u, 0, sizeof(req_u));
2639 packet_set_ring(sk, &req_u, 1, 1);
2640 }
2641
2642 fanout_release(sk);
2643
2644 synchronize_net();
2645 /*
2646 * Now the socket is dead. No more input will appear.
2647 */
2648 sock_orphan(sk);
2649 sock->sk = NULL;
2650
2651 /* Purge queues */
2652
2653 skb_queue_purge(&sk->sk_receive_queue);
2654 packet_free_pending(po);
2655 sk_refcnt_debug_release(sk);
2656
2657 sock_put(sk);
2658 return 0;
2659 }
2660
2661 /*
2662 * Attach a packet hook.
2663 */
2664
2665 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2666 {
2667 struct packet_sock *po = pkt_sk(sk);
2668 const struct net_device *dev_curr;
2669 __be16 proto_curr;
2670 bool need_rehook;
2671
2672 if (po->fanout) {
2673 if (dev)
2674 dev_put(dev);
2675
2676 return -EINVAL;
2677 }
2678
2679 lock_sock(sk);
2680 spin_lock(&po->bind_lock);
2681
2682 proto_curr = po->prot_hook.type;
2683 dev_curr = po->prot_hook.dev;
2684
2685 need_rehook = proto_curr != proto || dev_curr != dev;
2686
2687 if (need_rehook) {
2688 unregister_prot_hook(sk, true);
2689
2690 po->num = proto;
2691 po->prot_hook.type = proto;
2692
2693 if (po->prot_hook.dev)
2694 dev_put(po->prot_hook.dev);
2695
2696 po->prot_hook.dev = dev;
2697
2698 po->ifindex = dev ? dev->ifindex : 0;
2699 packet_cached_dev_assign(po, dev);
2700 }
2701
2702 if (proto == 0 || !need_rehook)
2703 goto out_unlock;
2704
2705 if (!dev || (dev->flags & IFF_UP)) {
2706 register_prot_hook(sk);
2707 } else {
2708 sk->sk_err = ENETDOWN;
2709 if (!sock_flag(sk, SOCK_DEAD))
2710 sk->sk_error_report(sk);
2711 }
2712
2713 out_unlock:
2714 spin_unlock(&po->bind_lock);
2715 release_sock(sk);
2716 return 0;
2717 }
2718
2719 /*
2720 * Bind a packet socket to a device
2721 */
2722
2723 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2724 int addr_len)
2725 {
2726 struct sock *sk = sock->sk;
2727 char name[15];
2728 struct net_device *dev;
2729 int err = -ENODEV;
2730
2731 /*
2732 * Check legality
2733 */
2734
2735 if (addr_len != sizeof(struct sockaddr))
2736 return -EINVAL;
2737 strlcpy(name, uaddr->sa_data, sizeof(name));
2738
2739 dev = dev_get_by_name(sock_net(sk), name);
2740 if (dev)
2741 err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2742 return err;
2743 }
2744
2745 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2746 {
2747 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2748 struct sock *sk = sock->sk;
2749 struct net_device *dev = NULL;
2750 int err;
2751
2752
2753 /*
2754 * Check legality
2755 */
2756
2757 if (addr_len < sizeof(struct sockaddr_ll))
2758 return -EINVAL;
2759 if (sll->sll_family != AF_PACKET)
2760 return -EINVAL;
2761
2762 if (sll->sll_ifindex) {
2763 err = -ENODEV;
2764 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2765 if (dev == NULL)
2766 goto out;
2767 }
2768 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2769
2770 out:
2771 return err;
2772 }
2773
2774 static struct proto packet_proto = {
2775 .name = "PACKET",
2776 .owner = THIS_MODULE,
2777 .obj_size = sizeof(struct packet_sock),
2778 };
2779
2780 /*
2781 * Create a packet of type SOCK_PACKET.
2782 */
2783
2784 static int packet_create(struct net *net, struct socket *sock, int protocol,
2785 int kern)
2786 {
2787 struct sock *sk;
2788 struct packet_sock *po;
2789 __be16 proto = (__force __be16)protocol; /* weird, but documented */
2790 int err;
2791
2792 if (!ns_capable(net->user_ns, CAP_NET_RAW))
2793 return -EPERM;
2794 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2795 sock->type != SOCK_PACKET)
2796 return -ESOCKTNOSUPPORT;
2797
2798 sock->state = SS_UNCONNECTED;
2799
2800 err = -ENOBUFS;
2801 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2802 if (sk == NULL)
2803 goto out;
2804
2805 sock->ops = &packet_ops;
2806 if (sock->type == SOCK_PACKET)
2807 sock->ops = &packet_ops_spkt;
2808
2809 sock_init_data(sock, sk);
2810
2811 po = pkt_sk(sk);
2812 sk->sk_family = PF_PACKET;
2813 po->num = proto;
2814 po->xmit = dev_queue_xmit;
2815
2816 err = packet_alloc_pending(po);
2817 if (err)
2818 goto out2;
2819
2820 packet_cached_dev_reset(po);
2821
2822 sk->sk_destruct = packet_sock_destruct;
2823 sk_refcnt_debug_inc(sk);
2824
2825 /*
2826 * Attach a protocol block
2827 */
2828
2829 spin_lock_init(&po->bind_lock);
2830 mutex_init(&po->pg_vec_lock);
2831 po->prot_hook.func = packet_rcv;
2832
2833 if (sock->type == SOCK_PACKET)
2834 po->prot_hook.func = packet_rcv_spkt;
2835
2836 po->prot_hook.af_packet_priv = sk;
2837
2838 if (proto) {
2839 po->prot_hook.type = proto;
2840 register_prot_hook(sk);
2841 }
2842
2843 mutex_lock(&net->packet.sklist_lock);
2844 sk_add_node_rcu(sk, &net->packet.sklist);
2845 mutex_unlock(&net->packet.sklist_lock);
2846
2847 preempt_disable();
2848 sock_prot_inuse_add(net, &packet_proto, 1);
2849 preempt_enable();
2850
2851 return 0;
2852 out2:
2853 sk_free(sk);
2854 out:
2855 return err;
2856 }
2857
2858 /*
2859 * Pull a packet from our receive queue and hand it to the user.
2860 * If necessary we block.
2861 */
2862
2863 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2864 struct msghdr *msg, size_t len, int flags)
2865 {
2866 struct sock *sk = sock->sk;
2867 struct sk_buff *skb;
2868 int copied, err;
2869 int vnet_hdr_len = 0;
2870
2871 err = -EINVAL;
2872 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2873 goto out;
2874
2875 #if 0
2876 /* What error should we return now? EUNATTACH? */
2877 if (pkt_sk(sk)->ifindex < 0)
2878 return -ENODEV;
2879 #endif
2880
2881 if (flags & MSG_ERRQUEUE) {
2882 err = sock_recv_errqueue(sk, msg, len,
2883 SOL_PACKET, PACKET_TX_TIMESTAMP);
2884 goto out;
2885 }
2886
2887 /*
2888 * Call the generic datagram receiver. This handles all sorts
2889 * of horrible races and re-entrancy so we can forget about it
2890 * in the protocol layers.
2891 *
2892 * Now it will return ENETDOWN, if device have just gone down,
2893 * but then it will block.
2894 */
2895
2896 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2897
2898 /*
2899 * An error occurred so return it. Because skb_recv_datagram()
2900 * handles the blocking we don't see and worry about blocking
2901 * retries.
2902 */
2903
2904 if (skb == NULL)
2905 goto out;
2906
2907 if (pkt_sk(sk)->has_vnet_hdr) {
2908 struct virtio_net_hdr vnet_hdr = { 0 };
2909
2910 err = -EINVAL;
2911 vnet_hdr_len = sizeof(vnet_hdr);
2912 if (len < vnet_hdr_len)
2913 goto out_free;
2914
2915 len -= vnet_hdr_len;
2916
2917 if (skb_is_gso(skb)) {
2918 struct skb_shared_info *sinfo = skb_shinfo(skb);
2919
2920 /* This is a hint as to how much should be linear. */
2921 vnet_hdr.hdr_len = skb_headlen(skb);
2922 vnet_hdr.gso_size = sinfo->gso_size;
2923 if (sinfo->gso_type & SKB_GSO_TCPV4)
2924 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2925 else if (sinfo->gso_type & SKB_GSO_TCPV6)
2926 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2927 else if (sinfo->gso_type & SKB_GSO_UDP)
2928 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2929 else if (sinfo->gso_type & SKB_GSO_FCOE)
2930 goto out_free;
2931 else
2932 BUG();
2933 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2934 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2935 } else
2936 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2937
2938 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2939 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2940 vnet_hdr.csum_start = skb_checksum_start_offset(skb);
2941 vnet_hdr.csum_offset = skb->csum_offset;
2942 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2943 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2944 } /* else everything is zero */
2945
2946 err = memcpy_toiovec(msg->msg_iov, (void *)&vnet_hdr,
2947 vnet_hdr_len);
2948 if (err < 0)
2949 goto out_free;
2950 }
2951
2952 /* You lose any data beyond the buffer you gave. If it worries
2953 * a user program they can ask the device for its MTU
2954 * anyway.
2955 */
2956 copied = skb->len;
2957 if (copied > len) {
2958 copied = len;
2959 msg->msg_flags |= MSG_TRUNC;
2960 }
2961
2962 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2963 if (err)
2964 goto out_free;
2965
2966 sock_recv_ts_and_drops(msg, sk, skb);
2967
2968 if (msg->msg_name) {
2969 /* If the address length field is there to be filled
2970 * in, we fill it in now.
2971 */
2972 if (sock->type == SOCK_PACKET) {
2973 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
2974 msg->msg_namelen = sizeof(struct sockaddr_pkt);
2975 } else {
2976 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
2977 msg->msg_namelen = sll->sll_halen +
2978 offsetof(struct sockaddr_ll, sll_addr);
2979 }
2980 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
2981 msg->msg_namelen);
2982 }
2983
2984 if (pkt_sk(sk)->auxdata) {
2985 struct tpacket_auxdata aux;
2986
2987 aux.tp_status = TP_STATUS_USER;
2988 if (skb->ip_summed == CHECKSUM_PARTIAL)
2989 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
2990 aux.tp_len = PACKET_SKB_CB(skb)->origlen;
2991 aux.tp_snaplen = skb->len;
2992 aux.tp_mac = 0;
2993 aux.tp_net = skb_network_offset(skb);
2994 if (vlan_tx_tag_present(skb)) {
2995 aux.tp_vlan_tci = vlan_tx_tag_get(skb);
2996 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
2997 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2998 } else {
2999 aux.tp_vlan_tci = 0;
3000 aux.tp_vlan_tpid = 0;
3001 }
3002 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3003 }
3004
3005 /*
3006 * Free or return the buffer as appropriate. Again this
3007 * hides all the races and re-entrancy issues from us.
3008 */
3009 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3010
3011 out_free:
3012 skb_free_datagram(sk, skb);
3013 out:
3014 return err;
3015 }
3016
3017 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3018 int *uaddr_len, int peer)
3019 {
3020 struct net_device *dev;
3021 struct sock *sk = sock->sk;
3022
3023 if (peer)
3024 return -EOPNOTSUPP;
3025
3026 uaddr->sa_family = AF_PACKET;
3027 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3028 rcu_read_lock();
3029 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3030 if (dev)
3031 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3032 rcu_read_unlock();
3033 *uaddr_len = sizeof(*uaddr);
3034
3035 return 0;
3036 }
3037
3038 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3039 int *uaddr_len, int peer)
3040 {
3041 struct net_device *dev;
3042 struct sock *sk = sock->sk;
3043 struct packet_sock *po = pkt_sk(sk);
3044 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3045
3046 if (peer)
3047 return -EOPNOTSUPP;
3048
3049 sll->sll_family = AF_PACKET;
3050 sll->sll_ifindex = po->ifindex;
3051 sll->sll_protocol = po->num;
3052 sll->sll_pkttype = 0;
3053 rcu_read_lock();
3054 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3055 if (dev) {
3056 sll->sll_hatype = dev->type;
3057 sll->sll_halen = dev->addr_len;
3058 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3059 } else {
3060 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3061 sll->sll_halen = 0;
3062 }
3063 rcu_read_unlock();
3064 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3065
3066 return 0;
3067 }
3068
3069 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3070 int what)
3071 {
3072 switch (i->type) {
3073 case PACKET_MR_MULTICAST:
3074 if (i->alen != dev->addr_len)
3075 return -EINVAL;
3076 if (what > 0)
3077 return dev_mc_add(dev, i->addr);
3078 else
3079 return dev_mc_del(dev, i->addr);
3080 break;
3081 case PACKET_MR_PROMISC:
3082 return dev_set_promiscuity(dev, what);
3083 case PACKET_MR_ALLMULTI:
3084 return dev_set_allmulti(dev, what);
3085 case PACKET_MR_UNICAST:
3086 if (i->alen != dev->addr_len)
3087 return -EINVAL;
3088 if (what > 0)
3089 return dev_uc_add(dev, i->addr);
3090 else
3091 return dev_uc_del(dev, i->addr);
3092 break;
3093 default:
3094 break;
3095 }
3096 return 0;
3097 }
3098
3099 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
3100 {
3101 for ( ; i; i = i->next) {
3102 if (i->ifindex == dev->ifindex)
3103 packet_dev_mc(dev, i, what);
3104 }
3105 }
3106
3107 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3108 {
3109 struct packet_sock *po = pkt_sk(sk);
3110 struct packet_mclist *ml, *i;
3111 struct net_device *dev;
3112 int err;
3113
3114 rtnl_lock();
3115
3116 err = -ENODEV;
3117 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3118 if (!dev)
3119 goto done;
3120
3121 err = -EINVAL;
3122 if (mreq->mr_alen > dev->addr_len)
3123 goto done;
3124
3125 err = -ENOBUFS;
3126 i = kmalloc(sizeof(*i), GFP_KERNEL);
3127 if (i == NULL)
3128 goto done;
3129
3130 err = 0;
3131 for (ml = po->mclist; ml; ml = ml->next) {
3132 if (ml->ifindex == mreq->mr_ifindex &&
3133 ml->type == mreq->mr_type &&
3134 ml->alen == mreq->mr_alen &&
3135 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3136 ml->count++;
3137 /* Free the new element ... */
3138 kfree(i);
3139 goto done;
3140 }
3141 }
3142
3143 i->type = mreq->mr_type;
3144 i->ifindex = mreq->mr_ifindex;
3145 i->alen = mreq->mr_alen;
3146 memcpy(i->addr, mreq->mr_address, i->alen);
3147 i->count = 1;
3148 i->next = po->mclist;
3149 po->mclist = i;
3150 err = packet_dev_mc(dev, i, 1);
3151 if (err) {
3152 po->mclist = i->next;
3153 kfree(i);
3154 }
3155
3156 done:
3157 rtnl_unlock();
3158 return err;
3159 }
3160
3161 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3162 {
3163 struct packet_mclist *ml, **mlp;
3164
3165 rtnl_lock();
3166
3167 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3168 if (ml->ifindex == mreq->mr_ifindex &&
3169 ml->type == mreq->mr_type &&
3170 ml->alen == mreq->mr_alen &&
3171 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3172 if (--ml->count == 0) {
3173 struct net_device *dev;
3174 *mlp = ml->next;
3175 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3176 if (dev)
3177 packet_dev_mc(dev, ml, -1);
3178 kfree(ml);
3179 }
3180 rtnl_unlock();
3181 return 0;
3182 }
3183 }
3184 rtnl_unlock();
3185 return -EADDRNOTAVAIL;
3186 }
3187
3188 static void packet_flush_mclist(struct sock *sk)
3189 {
3190 struct packet_sock *po = pkt_sk(sk);
3191 struct packet_mclist *ml;
3192
3193 if (!po->mclist)
3194 return;
3195
3196 rtnl_lock();
3197 while ((ml = po->mclist) != NULL) {
3198 struct net_device *dev;
3199
3200 po->mclist = ml->next;
3201 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3202 if (dev != NULL)
3203 packet_dev_mc(dev, ml, -1);
3204 kfree(ml);
3205 }
3206 rtnl_unlock();
3207 }
3208
3209 static int
3210 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3211 {
3212 struct sock *sk = sock->sk;
3213 struct packet_sock *po = pkt_sk(sk);
3214 int ret;
3215
3216 if (level != SOL_PACKET)
3217 return -ENOPROTOOPT;
3218
3219 switch (optname) {
3220 case PACKET_ADD_MEMBERSHIP:
3221 case PACKET_DROP_MEMBERSHIP:
3222 {
3223 struct packet_mreq_max mreq;
3224 int len = optlen;
3225 memset(&mreq, 0, sizeof(mreq));
3226 if (len < sizeof(struct packet_mreq))
3227 return -EINVAL;
3228 if (len > sizeof(mreq))
3229 len = sizeof(mreq);
3230 if (copy_from_user(&mreq, optval, len))
3231 return -EFAULT;
3232 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3233 return -EINVAL;
3234 if (optname == PACKET_ADD_MEMBERSHIP)
3235 ret = packet_mc_add(sk, &mreq);
3236 else
3237 ret = packet_mc_drop(sk, &mreq);
3238 return ret;
3239 }
3240
3241 case PACKET_RX_RING:
3242 case PACKET_TX_RING:
3243 {
3244 union tpacket_req_u req_u;
3245 int len;
3246
3247 switch (po->tp_version) {
3248 case TPACKET_V1:
3249 case TPACKET_V2:
3250 len = sizeof(req_u.req);
3251 break;
3252 case TPACKET_V3:
3253 default:
3254 len = sizeof(req_u.req3);
3255 break;
3256 }
3257 if (optlen < len)
3258 return -EINVAL;
3259 if (pkt_sk(sk)->has_vnet_hdr)
3260 return -EINVAL;
3261 if (copy_from_user(&req_u.req, optval, len))
3262 return -EFAULT;
3263 return packet_set_ring(sk, &req_u, 0,
3264 optname == PACKET_TX_RING);
3265 }
3266 case PACKET_COPY_THRESH:
3267 {
3268 int val;
3269
3270 if (optlen != sizeof(val))
3271 return -EINVAL;
3272 if (copy_from_user(&val, optval, sizeof(val)))
3273 return -EFAULT;
3274
3275 pkt_sk(sk)->copy_thresh = val;
3276 return 0;
3277 }
3278 case PACKET_VERSION:
3279 {
3280 int val;
3281
3282 if (optlen != sizeof(val))
3283 return -EINVAL;
3284 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3285 return -EBUSY;
3286 if (copy_from_user(&val, optval, sizeof(val)))
3287 return -EFAULT;
3288 switch (val) {
3289 case TPACKET_V1:
3290 case TPACKET_V2:
3291 case TPACKET_V3:
3292 po->tp_version = val;
3293 return 0;
3294 default:
3295 return -EINVAL;
3296 }
3297 }
3298 case PACKET_RESERVE:
3299 {
3300 unsigned int val;
3301
3302 if (optlen != sizeof(val))
3303 return -EINVAL;
3304 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3305 return -EBUSY;
3306 if (copy_from_user(&val, optval, sizeof(val)))
3307 return -EFAULT;
3308 po->tp_reserve = val;
3309 return 0;
3310 }
3311 case PACKET_LOSS:
3312 {
3313 unsigned int val;
3314
3315 if (optlen != sizeof(val))
3316 return -EINVAL;
3317 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3318 return -EBUSY;
3319 if (copy_from_user(&val, optval, sizeof(val)))
3320 return -EFAULT;
3321 po->tp_loss = !!val;
3322 return 0;
3323 }
3324 case PACKET_AUXDATA:
3325 {
3326 int val;
3327
3328 if (optlen < sizeof(val))
3329 return -EINVAL;
3330 if (copy_from_user(&val, optval, sizeof(val)))
3331 return -EFAULT;
3332
3333 po->auxdata = !!val;
3334 return 0;
3335 }
3336 case PACKET_ORIGDEV:
3337 {
3338 int val;
3339
3340 if (optlen < sizeof(val))
3341 return -EINVAL;
3342 if (copy_from_user(&val, optval, sizeof(val)))
3343 return -EFAULT;
3344
3345 po->origdev = !!val;
3346 return 0;
3347 }
3348 case PACKET_VNET_HDR:
3349 {
3350 int val;
3351
3352 if (sock->type != SOCK_RAW)
3353 return -EINVAL;
3354 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3355 return -EBUSY;
3356 if (optlen < sizeof(val))
3357 return -EINVAL;
3358 if (copy_from_user(&val, optval, sizeof(val)))
3359 return -EFAULT;
3360
3361 po->has_vnet_hdr = !!val;
3362 return 0;
3363 }
3364 case PACKET_TIMESTAMP:
3365 {
3366 int val;
3367
3368 if (optlen != sizeof(val))
3369 return -EINVAL;
3370 if (copy_from_user(&val, optval, sizeof(val)))
3371 return -EFAULT;
3372
3373 po->tp_tstamp = val;
3374 return 0;
3375 }
3376 case PACKET_FANOUT:
3377 {
3378 int val;
3379
3380 if (optlen != sizeof(val))
3381 return -EINVAL;
3382 if (copy_from_user(&val, optval, sizeof(val)))
3383 return -EFAULT;
3384
3385 return fanout_add(sk, val & 0xffff, val >> 16);
3386 }
3387 case PACKET_TX_HAS_OFF:
3388 {
3389 unsigned int val;
3390
3391 if (optlen != sizeof(val))
3392 return -EINVAL;
3393 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3394 return -EBUSY;
3395 if (copy_from_user(&val, optval, sizeof(val)))
3396 return -EFAULT;
3397 po->tp_tx_has_off = !!val;
3398 return 0;
3399 }
3400 case PACKET_QDISC_BYPASS:
3401 {
3402 int val;
3403
3404 if (optlen != sizeof(val))
3405 return -EINVAL;
3406 if (copy_from_user(&val, optval, sizeof(val)))
3407 return -EFAULT;
3408
3409 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3410 return 0;
3411 }
3412 default:
3413 return -ENOPROTOOPT;
3414 }
3415 }
3416
3417 static int packet_getsockopt(struct socket *sock, int level, int optname,
3418 char __user *optval, int __user *optlen)
3419 {
3420 int len;
3421 int val, lv = sizeof(val);
3422 struct sock *sk = sock->sk;
3423 struct packet_sock *po = pkt_sk(sk);
3424 void *data = &val;
3425 union tpacket_stats_u st;
3426
3427 if (level != SOL_PACKET)
3428 return -ENOPROTOOPT;
3429
3430 if (get_user(len, optlen))
3431 return -EFAULT;
3432
3433 if (len < 0)
3434 return -EINVAL;
3435
3436 switch (optname) {
3437 case PACKET_STATISTICS:
3438 spin_lock_bh(&sk->sk_receive_queue.lock);
3439 memcpy(&st, &po->stats, sizeof(st));
3440 memset(&po->stats, 0, sizeof(po->stats));
3441 spin_unlock_bh(&sk->sk_receive_queue.lock);
3442
3443 if (po->tp_version == TPACKET_V3) {
3444 lv = sizeof(struct tpacket_stats_v3);
3445 st.stats3.tp_packets += st.stats3.tp_drops;
3446 data = &st.stats3;
3447 } else {
3448 lv = sizeof(struct tpacket_stats);
3449 st.stats1.tp_packets += st.stats1.tp_drops;
3450 data = &st.stats1;
3451 }
3452
3453 break;
3454 case PACKET_AUXDATA:
3455 val = po->auxdata;
3456 break;
3457 case PACKET_ORIGDEV:
3458 val = po->origdev;
3459 break;
3460 case PACKET_VNET_HDR:
3461 val = po->has_vnet_hdr;
3462 break;
3463 case PACKET_VERSION:
3464 val = po->tp_version;
3465 break;
3466 case PACKET_HDRLEN:
3467 if (len > sizeof(int))
3468 len = sizeof(int);
3469 if (copy_from_user(&val, optval, len))
3470 return -EFAULT;
3471 switch (val) {
3472 case TPACKET_V1:
3473 val = sizeof(struct tpacket_hdr);
3474 break;
3475 case TPACKET_V2:
3476 val = sizeof(struct tpacket2_hdr);
3477 break;
3478 case TPACKET_V3:
3479 val = sizeof(struct tpacket3_hdr);
3480 break;
3481 default:
3482 return -EINVAL;
3483 }
3484 break;
3485 case PACKET_RESERVE:
3486 val = po->tp_reserve;
3487 break;
3488 case PACKET_LOSS:
3489 val = po->tp_loss;
3490 break;
3491 case PACKET_TIMESTAMP:
3492 val = po->tp_tstamp;
3493 break;
3494 case PACKET_FANOUT:
3495 val = (po->fanout ?
3496 ((u32)po->fanout->id |
3497 ((u32)po->fanout->type << 16) |
3498 ((u32)po->fanout->flags << 24)) :
3499 0);
3500 break;
3501 case PACKET_TX_HAS_OFF:
3502 val = po->tp_tx_has_off;
3503 break;
3504 case PACKET_QDISC_BYPASS:
3505 val = packet_use_direct_xmit(po);
3506 break;
3507 default:
3508 return -ENOPROTOOPT;
3509 }
3510
3511 if (len > lv)
3512 len = lv;
3513 if (put_user(len, optlen))
3514 return -EFAULT;
3515 if (copy_to_user(optval, data, len))
3516 return -EFAULT;
3517 return 0;
3518 }
3519
3520
3521 static int packet_notifier(struct notifier_block *this,
3522 unsigned long msg, void *ptr)
3523 {
3524 struct sock *sk;
3525 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3526 struct net *net = dev_net(dev);
3527
3528 rcu_read_lock();
3529 sk_for_each_rcu(sk, &net->packet.sklist) {
3530 struct packet_sock *po = pkt_sk(sk);
3531
3532 switch (msg) {
3533 case NETDEV_UNREGISTER:
3534 if (po->mclist)
3535 packet_dev_mclist(dev, po->mclist, -1);
3536 /* fallthrough */
3537
3538 case NETDEV_DOWN:
3539 if (dev->ifindex == po->ifindex) {
3540 spin_lock(&po->bind_lock);
3541 if (po->running) {
3542 __unregister_prot_hook(sk, false);
3543 sk->sk_err = ENETDOWN;
3544 if (!sock_flag(sk, SOCK_DEAD))
3545 sk->sk_error_report(sk);
3546 }
3547 if (msg == NETDEV_UNREGISTER) {
3548 packet_cached_dev_reset(po);
3549 po->ifindex = -1;
3550 if (po->prot_hook.dev)
3551 dev_put(po->prot_hook.dev);
3552 po->prot_hook.dev = NULL;
3553 }
3554 spin_unlock(&po->bind_lock);
3555 }
3556 break;
3557 case NETDEV_UP:
3558 if (dev->ifindex == po->ifindex) {
3559 spin_lock(&po->bind_lock);
3560 if (po->num)
3561 register_prot_hook(sk);
3562 spin_unlock(&po->bind_lock);
3563 }
3564 break;
3565 }
3566 }
3567 rcu_read_unlock();
3568 return NOTIFY_DONE;
3569 }
3570
3571
3572 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3573 unsigned long arg)
3574 {
3575 struct sock *sk = sock->sk;
3576
3577 switch (cmd) {
3578 case SIOCOUTQ:
3579 {
3580 int amount = sk_wmem_alloc_get(sk);
3581
3582 return put_user(amount, (int __user *)arg);
3583 }
3584 case SIOCINQ:
3585 {
3586 struct sk_buff *skb;
3587 int amount = 0;
3588
3589 spin_lock_bh(&sk->sk_receive_queue.lock);
3590 skb = skb_peek(&sk->sk_receive_queue);
3591 if (skb)
3592 amount = skb->len;
3593 spin_unlock_bh(&sk->sk_receive_queue.lock);
3594 return put_user(amount, (int __user *)arg);
3595 }
3596 case SIOCGSTAMP:
3597 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3598 case SIOCGSTAMPNS:
3599 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3600
3601 #ifdef CONFIG_INET
3602 case SIOCADDRT:
3603 case SIOCDELRT:
3604 case SIOCDARP:
3605 case SIOCGARP:
3606 case SIOCSARP:
3607 case SIOCGIFADDR:
3608 case SIOCSIFADDR:
3609 case SIOCGIFBRDADDR:
3610 case SIOCSIFBRDADDR:
3611 case SIOCGIFNETMASK:
3612 case SIOCSIFNETMASK:
3613 case SIOCGIFDSTADDR:
3614 case SIOCSIFDSTADDR:
3615 case SIOCSIFFLAGS:
3616 return inet_dgram_ops.ioctl(sock, cmd, arg);
3617 #endif
3618
3619 default:
3620 return -ENOIOCTLCMD;
3621 }
3622 return 0;
3623 }
3624
3625 static unsigned int packet_poll(struct file *file, struct socket *sock,
3626 poll_table *wait)
3627 {
3628 struct sock *sk = sock->sk;
3629 struct packet_sock *po = pkt_sk(sk);
3630 unsigned int mask = datagram_poll(file, sock, wait);
3631
3632 spin_lock_bh(&sk->sk_receive_queue.lock);
3633 if (po->rx_ring.pg_vec) {
3634 if (!packet_previous_rx_frame(po, &po->rx_ring,
3635 TP_STATUS_KERNEL))
3636 mask |= POLLIN | POLLRDNORM;
3637 }
3638 spin_unlock_bh(&sk->sk_receive_queue.lock);
3639 spin_lock_bh(&sk->sk_write_queue.lock);
3640 if (po->tx_ring.pg_vec) {
3641 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3642 mask |= POLLOUT | POLLWRNORM;
3643 }
3644 spin_unlock_bh(&sk->sk_write_queue.lock);
3645 return mask;
3646 }
3647
3648
3649 /* Dirty? Well, I still did not learn better way to account
3650 * for user mmaps.
3651 */
3652
3653 static void packet_mm_open(struct vm_area_struct *vma)
3654 {
3655 struct file *file = vma->vm_file;
3656 struct socket *sock = file->private_data;
3657 struct sock *sk = sock->sk;
3658
3659 if (sk)
3660 atomic_inc(&pkt_sk(sk)->mapped);
3661 }
3662
3663 static void packet_mm_close(struct vm_area_struct *vma)
3664 {
3665 struct file *file = vma->vm_file;
3666 struct socket *sock = file->private_data;
3667 struct sock *sk = sock->sk;
3668
3669 if (sk)
3670 atomic_dec(&pkt_sk(sk)->mapped);
3671 }
3672
3673 static const struct vm_operations_struct packet_mmap_ops = {
3674 .open = packet_mm_open,
3675 .close = packet_mm_close,
3676 };
3677
3678 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3679 unsigned int len)
3680 {
3681 int i;
3682
3683 for (i = 0; i < len; i++) {
3684 if (likely(pg_vec[i].buffer)) {
3685 if (is_vmalloc_addr(pg_vec[i].buffer))
3686 vfree(pg_vec[i].buffer);
3687 else
3688 free_pages((unsigned long)pg_vec[i].buffer,
3689 order);
3690 pg_vec[i].buffer = NULL;
3691 }
3692 }
3693 kfree(pg_vec);
3694 }
3695
3696 static char *alloc_one_pg_vec_page(unsigned long order)
3697 {
3698 char *buffer;
3699 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3700 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3701
3702 buffer = (char *) __get_free_pages(gfp_flags, order);
3703 if (buffer)
3704 return buffer;
3705
3706 /* __get_free_pages failed, fall back to vmalloc */
3707 buffer = vzalloc((1 << order) * PAGE_SIZE);
3708 if (buffer)
3709 return buffer;
3710
3711 /* vmalloc failed, lets dig into swap here */
3712 gfp_flags &= ~__GFP_NORETRY;
3713 buffer = (char *) __get_free_pages(gfp_flags, order);
3714 if (buffer)
3715 return buffer;
3716
3717 /* complete and utter failure */
3718 return NULL;
3719 }
3720
3721 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3722 {
3723 unsigned int block_nr = req->tp_block_nr;
3724 struct pgv *pg_vec;
3725 int i;
3726
3727 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3728 if (unlikely(!pg_vec))
3729 goto out;
3730
3731 for (i = 0; i < block_nr; i++) {
3732 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3733 if (unlikely(!pg_vec[i].buffer))
3734 goto out_free_pgvec;
3735 }
3736
3737 out:
3738 return pg_vec;
3739
3740 out_free_pgvec:
3741 free_pg_vec(pg_vec, order, block_nr);
3742 pg_vec = NULL;
3743 goto out;
3744 }
3745
3746 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3747 int closing, int tx_ring)
3748 {
3749 struct pgv *pg_vec = NULL;
3750 struct packet_sock *po = pkt_sk(sk);
3751 int was_running, order = 0;
3752 struct packet_ring_buffer *rb;
3753 struct sk_buff_head *rb_queue;
3754 __be16 num;
3755 int err = -EINVAL;
3756 /* Added to avoid minimal code churn */
3757 struct tpacket_req *req = &req_u->req;
3758
3759 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3760 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3761 WARN(1, "Tx-ring is not supported.\n");
3762 goto out;
3763 }
3764
3765 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3766 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3767
3768 err = -EBUSY;
3769 if (!closing) {
3770 if (atomic_read(&po->mapped))
3771 goto out;
3772 if (packet_read_pending(rb))
3773 goto out;
3774 }
3775
3776 if (req->tp_block_nr) {
3777 /* Sanity tests and some calculations */
3778 err = -EBUSY;
3779 if (unlikely(rb->pg_vec))
3780 goto out;
3781
3782 switch (po->tp_version) {
3783 case TPACKET_V1:
3784 po->tp_hdrlen = TPACKET_HDRLEN;
3785 break;
3786 case TPACKET_V2:
3787 po->tp_hdrlen = TPACKET2_HDRLEN;
3788 break;
3789 case TPACKET_V3:
3790 po->tp_hdrlen = TPACKET3_HDRLEN;
3791 break;
3792 }
3793
3794 err = -EINVAL;
3795 if (unlikely((int)req->tp_block_size <= 0))
3796 goto out;
3797 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3798 goto out;
3799 if (po->tp_version >= TPACKET_V3 &&
3800 (int)(req->tp_block_size -
3801 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
3802 goto out;
3803 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3804 po->tp_reserve))
3805 goto out;
3806 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3807 goto out;
3808
3809 rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3810 if (unlikely(rb->frames_per_block <= 0))
3811 goto out;
3812 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3813 req->tp_frame_nr))
3814 goto out;
3815
3816 err = -ENOMEM;
3817 order = get_order(req->tp_block_size);
3818 pg_vec = alloc_pg_vec(req, order);
3819 if (unlikely(!pg_vec))
3820 goto out;
3821 switch (po->tp_version) {
3822 case TPACKET_V3:
3823 /* Transmit path is not supported. We checked
3824 * it above but just being paranoid
3825 */
3826 if (!tx_ring)
3827 init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3828 break;
3829 default:
3830 break;
3831 }
3832 }
3833 /* Done */
3834 else {
3835 err = -EINVAL;
3836 if (unlikely(req->tp_frame_nr))
3837 goto out;
3838 }
3839
3840 lock_sock(sk);
3841
3842 /* Detach socket from network */
3843 spin_lock(&po->bind_lock);
3844 was_running = po->running;
3845 num = po->num;
3846 if (was_running) {
3847 po->num = 0;
3848 __unregister_prot_hook(sk, false);
3849 }
3850 spin_unlock(&po->bind_lock);
3851
3852 synchronize_net();
3853
3854 err = -EBUSY;
3855 mutex_lock(&po->pg_vec_lock);
3856 if (closing || atomic_read(&po->mapped) == 0) {
3857 err = 0;
3858 spin_lock_bh(&rb_queue->lock);
3859 swap(rb->pg_vec, pg_vec);
3860 rb->frame_max = (req->tp_frame_nr - 1);
3861 rb->head = 0;
3862 rb->frame_size = req->tp_frame_size;
3863 spin_unlock_bh(&rb_queue->lock);
3864
3865 swap(rb->pg_vec_order, order);
3866 swap(rb->pg_vec_len, req->tp_block_nr);
3867
3868 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3869 po->prot_hook.func = (po->rx_ring.pg_vec) ?
3870 tpacket_rcv : packet_rcv;
3871 skb_queue_purge(rb_queue);
3872 if (atomic_read(&po->mapped))
3873 pr_err("packet_mmap: vma is busy: %d\n",
3874 atomic_read(&po->mapped));
3875 }
3876 mutex_unlock(&po->pg_vec_lock);
3877
3878 spin_lock(&po->bind_lock);
3879 if (was_running) {
3880 po->num = num;
3881 register_prot_hook(sk);
3882 }
3883 spin_unlock(&po->bind_lock);
3884 if (closing && (po->tp_version > TPACKET_V2)) {
3885 /* Because we don't support block-based V3 on tx-ring */
3886 if (!tx_ring)
3887 prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3888 }
3889 release_sock(sk);
3890
3891 if (pg_vec)
3892 free_pg_vec(pg_vec, order, req->tp_block_nr);
3893 out:
3894 return err;
3895 }
3896
3897 static int packet_mmap(struct file *file, struct socket *sock,
3898 struct vm_area_struct *vma)
3899 {
3900 struct sock *sk = sock->sk;
3901 struct packet_sock *po = pkt_sk(sk);
3902 unsigned long size, expected_size;
3903 struct packet_ring_buffer *rb;
3904 unsigned long start;
3905 int err = -EINVAL;
3906 int i;
3907
3908 if (vma->vm_pgoff)
3909 return -EINVAL;
3910
3911 mutex_lock(&po->pg_vec_lock);
3912
3913 expected_size = 0;
3914 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3915 if (rb->pg_vec) {
3916 expected_size += rb->pg_vec_len
3917 * rb->pg_vec_pages
3918 * PAGE_SIZE;
3919 }
3920 }
3921
3922 if (expected_size == 0)
3923 goto out;
3924
3925 size = vma->vm_end - vma->vm_start;
3926 if (size != expected_size)
3927 goto out;
3928
3929 start = vma->vm_start;
3930 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3931 if (rb->pg_vec == NULL)
3932 continue;
3933
3934 for (i = 0; i < rb->pg_vec_len; i++) {
3935 struct page *page;
3936 void *kaddr = rb->pg_vec[i].buffer;
3937 int pg_num;
3938
3939 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3940 page = pgv_to_page(kaddr);
3941 err = vm_insert_page(vma, start, page);
3942 if (unlikely(err))
3943 goto out;
3944 start += PAGE_SIZE;
3945 kaddr += PAGE_SIZE;
3946 }
3947 }
3948 }
3949
3950 atomic_inc(&po->mapped);
3951 vma->vm_ops = &packet_mmap_ops;
3952 err = 0;
3953
3954 out:
3955 mutex_unlock(&po->pg_vec_lock);
3956 return err;
3957 }
3958
3959 static const struct proto_ops packet_ops_spkt = {
3960 .family = PF_PACKET,
3961 .owner = THIS_MODULE,
3962 .release = packet_release,
3963 .bind = packet_bind_spkt,
3964 .connect = sock_no_connect,
3965 .socketpair = sock_no_socketpair,
3966 .accept = sock_no_accept,
3967 .getname = packet_getname_spkt,
3968 .poll = datagram_poll,
3969 .ioctl = packet_ioctl,
3970 .listen = sock_no_listen,
3971 .shutdown = sock_no_shutdown,
3972 .setsockopt = sock_no_setsockopt,
3973 .getsockopt = sock_no_getsockopt,
3974 .sendmsg = packet_sendmsg_spkt,
3975 .recvmsg = packet_recvmsg,
3976 .mmap = sock_no_mmap,
3977 .sendpage = sock_no_sendpage,
3978 };
3979
3980 static const struct proto_ops packet_ops = {
3981 .family = PF_PACKET,
3982 .owner = THIS_MODULE,
3983 .release = packet_release,
3984 .bind = packet_bind,
3985 .connect = sock_no_connect,
3986 .socketpair = sock_no_socketpair,
3987 .accept = sock_no_accept,
3988 .getname = packet_getname,
3989 .poll = packet_poll,
3990 .ioctl = packet_ioctl,
3991 .listen = sock_no_listen,
3992 .shutdown = sock_no_shutdown,
3993 .setsockopt = packet_setsockopt,
3994 .getsockopt = packet_getsockopt,
3995 .sendmsg = packet_sendmsg,
3996 .recvmsg = packet_recvmsg,
3997 .mmap = packet_mmap,
3998 .sendpage = sock_no_sendpage,
3999 };
4000
4001 static const struct net_proto_family packet_family_ops = {
4002 .family = PF_PACKET,
4003 .create = packet_create,
4004 .owner = THIS_MODULE,
4005 };
4006
4007 static struct notifier_block packet_netdev_notifier = {
4008 .notifier_call = packet_notifier,
4009 };
4010
4011 #ifdef CONFIG_PROC_FS
4012
4013 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4014 __acquires(RCU)
4015 {
4016 struct net *net = seq_file_net(seq);
4017
4018 rcu_read_lock();
4019 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4020 }
4021
4022 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4023 {
4024 struct net *net = seq_file_net(seq);
4025 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4026 }
4027
4028 static void packet_seq_stop(struct seq_file *seq, void *v)
4029 __releases(RCU)
4030 {
4031 rcu_read_unlock();
4032 }
4033
4034 static int packet_seq_show(struct seq_file *seq, void *v)
4035 {
4036 if (v == SEQ_START_TOKEN)
4037 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4038 else {
4039 struct sock *s = sk_entry(v);
4040 const struct packet_sock *po = pkt_sk(s);
4041
4042 seq_printf(seq,
4043 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4044 s,
4045 atomic_read(&s->sk_refcnt),
4046 s->sk_type,
4047 ntohs(po->num),
4048 po->ifindex,
4049 po->running,
4050 atomic_read(&s->sk_rmem_alloc),
4051 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4052 sock_i_ino(s));
4053 }
4054
4055 return 0;
4056 }
4057
4058 static const struct seq_operations packet_seq_ops = {
4059 .start = packet_seq_start,
4060 .next = packet_seq_next,
4061 .stop = packet_seq_stop,
4062 .show = packet_seq_show,
4063 };
4064
4065 static int packet_seq_open(struct inode *inode, struct file *file)
4066 {
4067 return seq_open_net(inode, file, &packet_seq_ops,
4068 sizeof(struct seq_net_private));
4069 }
4070
4071 static const struct file_operations packet_seq_fops = {
4072 .owner = THIS_MODULE,
4073 .open = packet_seq_open,
4074 .read = seq_read,
4075 .llseek = seq_lseek,
4076 .release = seq_release_net,
4077 };
4078
4079 #endif
4080
4081 static int __net_init packet_net_init(struct net *net)
4082 {
4083 mutex_init(&net->packet.sklist_lock);
4084 INIT_HLIST_HEAD(&net->packet.sklist);
4085
4086 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4087 return -ENOMEM;
4088
4089 return 0;
4090 }
4091
4092 static void __net_exit packet_net_exit(struct net *net)
4093 {
4094 remove_proc_entry("packet", net->proc_net);
4095 }
4096
4097 static struct pernet_operations packet_net_ops = {
4098 .init = packet_net_init,
4099 .exit = packet_net_exit,
4100 };
4101
4102
4103 static void __exit packet_exit(void)
4104 {
4105 unregister_netdevice_notifier(&packet_netdev_notifier);
4106 unregister_pernet_subsys(&packet_net_ops);
4107 sock_unregister(PF_PACKET);
4108 proto_unregister(&packet_proto);
4109 }
4110
4111 static int __init packet_init(void)
4112 {
4113 int rc = proto_register(&packet_proto, 0);
4114
4115 if (rc != 0)
4116 goto out;
4117
4118 sock_register(&packet_family_ops);
4119 register_pernet_subsys(&packet_net_ops);
4120 register_netdevice_notifier(&packet_netdev_notifier);
4121 out:
4122 return rc;
4123 }
4124
4125 module_init(packet_init);
4126 module_exit(packet_exit);
4127 MODULE_LICENSE("GPL");
4128 MODULE_ALIAS_NETPROTO(PF_PACKET);
This page took 0.162348 seconds and 5 git commands to generate.