MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95
96 #include "internal.h"
97
98 /*
99 Assumptions:
100 - if device has no dev->hard_header routine, it adds and removes ll header
101 inside itself. In this case ll header is invisible outside of device,
102 but higher levels still should reserve dev->hard_header_len.
103 Some devices are enough clever to reallocate skb, when header
104 will not fit to reserved space (tunnel), another ones are silly
105 (PPP).
106 - packet socket receives packets with pulled ll header,
107 so that SOCK_RAW should push it back.
108
109 On receive:
110 -----------
111
112 Incoming, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> data
115
116 Outgoing, dev->hard_header!=NULL
117 mac_header -> ll header
118 data -> ll header
119
120 Incoming, dev->hard_header==NULL
121 mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 header. PPP makes it, that is wrong, because introduce
123 assymetry between rx and tx paths.
124 data -> data
125
126 Outgoing, dev->hard_header==NULL
127 mac_header -> data. ll header is still not built!
128 data -> data
129
130 Resume
131 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132
133
134 On transmit:
135 ------------
136
137 dev->hard_header != NULL
138 mac_header -> ll header
139 data -> ll header
140
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142 mac_header -> data
143 data -> data
144
145 We should set nh.raw on output to correct posistion,
146 packet classifier depends on it.
147 */
148
149 /* Private packet socket structures. */
150
151 /* identical to struct packet_mreq except it has
152 * a longer address field.
153 */
154 struct packet_mreq_max {
155 int mr_ifindex;
156 unsigned short mr_type;
157 unsigned short mr_alen;
158 unsigned char mr_address[MAX_ADDR_LEN];
159 };
160
161 union tpacket_uhdr {
162 struct tpacket_hdr *h1;
163 struct tpacket2_hdr *h2;
164 struct tpacket3_hdr *h3;
165 void *raw;
166 };
167
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 int closing, int tx_ring);
170
171 #define V3_ALIGNMENT (8)
172
173 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177
178 #define PGV_FROM_VMALLOC 1
179
180 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
186 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 struct packet_type *pt, struct net_device *orig_dev);
192
193 static void *packet_previous_frame(struct packet_sock *po,
194 struct packet_ring_buffer *rb,
195 int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 struct tpacket_kbdq_core *,
210 void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217
218 struct packet_skb_cb {
219 unsigned int origlen;
220 union {
221 struct sockaddr_pkt pkt;
222 struct sockaddr_ll ll;
223 } sa;
224 };
225
226 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
227
228 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
229 #define GET_PBLOCK_DESC(x, bid) \
230 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
231 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
232 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
233 #define GET_NEXT_PRB_BLK_NUM(x) \
234 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
235 ((x)->kactive_blk_num+1) : 0)
236
237 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
238 static void __fanout_link(struct sock *sk, struct packet_sock *po);
239
240 static int packet_direct_xmit(struct sk_buff *skb)
241 {
242 struct net_device *dev = skb->dev;
243 netdev_features_t features;
244 struct netdev_queue *txq;
245 int ret = NETDEV_TX_BUSY;
246
247 if (unlikely(!netif_running(dev) ||
248 !netif_carrier_ok(dev)))
249 goto drop;
250
251 features = netif_skb_features(skb);
252 if (skb_needs_linearize(skb, features) &&
253 __skb_linearize(skb))
254 goto drop;
255
256 txq = skb_get_tx_queue(dev, skb);
257
258 local_bh_disable();
259
260 HARD_TX_LOCK(dev, txq, smp_processor_id());
261 if (!netif_xmit_frozen_or_drv_stopped(txq))
262 ret = netdev_start_xmit(skb, dev, txq, false);
263 HARD_TX_UNLOCK(dev, txq);
264
265 local_bh_enable();
266
267 if (!dev_xmit_complete(ret))
268 kfree_skb(skb);
269
270 return ret;
271 drop:
272 atomic_long_inc(&dev->tx_dropped);
273 kfree_skb(skb);
274 return NET_XMIT_DROP;
275 }
276
277 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
278 {
279 struct net_device *dev;
280
281 rcu_read_lock();
282 dev = rcu_dereference(po->cached_dev);
283 if (likely(dev))
284 dev_hold(dev);
285 rcu_read_unlock();
286
287 return dev;
288 }
289
290 static void packet_cached_dev_assign(struct packet_sock *po,
291 struct net_device *dev)
292 {
293 rcu_assign_pointer(po->cached_dev, dev);
294 }
295
296 static void packet_cached_dev_reset(struct packet_sock *po)
297 {
298 RCU_INIT_POINTER(po->cached_dev, NULL);
299 }
300
301 static bool packet_use_direct_xmit(const struct packet_sock *po)
302 {
303 return po->xmit == packet_direct_xmit;
304 }
305
306 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
307 {
308 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
309 }
310
311 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
312 {
313 const struct net_device_ops *ops = dev->netdev_ops;
314 u16 queue_index;
315
316 if (ops->ndo_select_queue) {
317 queue_index = ops->ndo_select_queue(dev, skb, NULL,
318 __packet_pick_tx_queue);
319 queue_index = netdev_cap_txqueue(dev, queue_index);
320 } else {
321 queue_index = __packet_pick_tx_queue(dev, skb);
322 }
323
324 skb_set_queue_mapping(skb, queue_index);
325 }
326
327 /* register_prot_hook must be invoked with the po->bind_lock held,
328 * or from a context in which asynchronous accesses to the packet
329 * socket is not possible (packet_create()).
330 */
331 static void register_prot_hook(struct sock *sk)
332 {
333 struct packet_sock *po = pkt_sk(sk);
334
335 if (!po->running) {
336 if (po->fanout)
337 __fanout_link(sk, po);
338 else
339 dev_add_pack(&po->prot_hook);
340
341 sock_hold(sk);
342 po->running = 1;
343 }
344 }
345
346 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
347 * held. If the sync parameter is true, we will temporarily drop
348 * the po->bind_lock and do a synchronize_net to make sure no
349 * asynchronous packet processing paths still refer to the elements
350 * of po->prot_hook. If the sync parameter is false, it is the
351 * callers responsibility to take care of this.
352 */
353 static void __unregister_prot_hook(struct sock *sk, bool sync)
354 {
355 struct packet_sock *po = pkt_sk(sk);
356
357 po->running = 0;
358
359 if (po->fanout)
360 __fanout_unlink(sk, po);
361 else
362 __dev_remove_pack(&po->prot_hook);
363
364 __sock_put(sk);
365
366 if (sync) {
367 spin_unlock(&po->bind_lock);
368 synchronize_net();
369 spin_lock(&po->bind_lock);
370 }
371 }
372
373 static void unregister_prot_hook(struct sock *sk, bool sync)
374 {
375 struct packet_sock *po = pkt_sk(sk);
376
377 if (po->running)
378 __unregister_prot_hook(sk, sync);
379 }
380
381 static inline struct page * __pure pgv_to_page(void *addr)
382 {
383 if (is_vmalloc_addr(addr))
384 return vmalloc_to_page(addr);
385 return virt_to_page(addr);
386 }
387
388 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
389 {
390 union tpacket_uhdr h;
391
392 h.raw = frame;
393 switch (po->tp_version) {
394 case TPACKET_V1:
395 h.h1->tp_status = status;
396 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
397 break;
398 case TPACKET_V2:
399 h.h2->tp_status = status;
400 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
401 break;
402 case TPACKET_V3:
403 default:
404 WARN(1, "TPACKET version not supported.\n");
405 BUG();
406 }
407
408 smp_wmb();
409 }
410
411 static int __packet_get_status(struct packet_sock *po, void *frame)
412 {
413 union tpacket_uhdr h;
414
415 smp_rmb();
416
417 h.raw = frame;
418 switch (po->tp_version) {
419 case TPACKET_V1:
420 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
421 return h.h1->tp_status;
422 case TPACKET_V2:
423 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
424 return h.h2->tp_status;
425 case TPACKET_V3:
426 default:
427 WARN(1, "TPACKET version not supported.\n");
428 BUG();
429 return 0;
430 }
431 }
432
433 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
434 unsigned int flags)
435 {
436 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
437
438 if (shhwtstamps &&
439 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
440 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
441 return TP_STATUS_TS_RAW_HARDWARE;
442
443 if (ktime_to_timespec_cond(skb->tstamp, ts))
444 return TP_STATUS_TS_SOFTWARE;
445
446 return 0;
447 }
448
449 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
450 struct sk_buff *skb)
451 {
452 union tpacket_uhdr h;
453 struct timespec ts;
454 __u32 ts_status;
455
456 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
457 return 0;
458
459 h.raw = frame;
460 switch (po->tp_version) {
461 case TPACKET_V1:
462 h.h1->tp_sec = ts.tv_sec;
463 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
464 break;
465 case TPACKET_V2:
466 h.h2->tp_sec = ts.tv_sec;
467 h.h2->tp_nsec = ts.tv_nsec;
468 break;
469 case TPACKET_V3:
470 default:
471 WARN(1, "TPACKET version not supported.\n");
472 BUG();
473 }
474
475 /* one flush is safe, as both fields always lie on the same cacheline */
476 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
477 smp_wmb();
478
479 return ts_status;
480 }
481
482 static void *packet_lookup_frame(struct packet_sock *po,
483 struct packet_ring_buffer *rb,
484 unsigned int position,
485 int status)
486 {
487 unsigned int pg_vec_pos, frame_offset;
488 union tpacket_uhdr h;
489
490 pg_vec_pos = position / rb->frames_per_block;
491 frame_offset = position % rb->frames_per_block;
492
493 h.raw = rb->pg_vec[pg_vec_pos].buffer +
494 (frame_offset * rb->frame_size);
495
496 if (status != __packet_get_status(po, h.raw))
497 return NULL;
498
499 return h.raw;
500 }
501
502 static void *packet_current_frame(struct packet_sock *po,
503 struct packet_ring_buffer *rb,
504 int status)
505 {
506 return packet_lookup_frame(po, rb, rb->head, status);
507 }
508
509 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
510 {
511 del_timer_sync(&pkc->retire_blk_timer);
512 }
513
514 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
515 int tx_ring,
516 struct sk_buff_head *rb_queue)
517 {
518 struct tpacket_kbdq_core *pkc;
519
520 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
521 GET_PBDQC_FROM_RB(&po->rx_ring);
522
523 spin_lock_bh(&rb_queue->lock);
524 pkc->delete_blk_timer = 1;
525 spin_unlock_bh(&rb_queue->lock);
526
527 prb_del_retire_blk_timer(pkc);
528 }
529
530 static void prb_init_blk_timer(struct packet_sock *po,
531 struct tpacket_kbdq_core *pkc,
532 void (*func) (unsigned long))
533 {
534 init_timer(&pkc->retire_blk_timer);
535 pkc->retire_blk_timer.data = (long)po;
536 pkc->retire_blk_timer.function = func;
537 pkc->retire_blk_timer.expires = jiffies;
538 }
539
540 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
541 {
542 struct tpacket_kbdq_core *pkc;
543
544 if (tx_ring)
545 BUG();
546
547 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
548 GET_PBDQC_FROM_RB(&po->rx_ring);
549 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
550 }
551
552 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
553 int blk_size_in_bytes)
554 {
555 struct net_device *dev;
556 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
557 struct ethtool_cmd ecmd;
558 int err;
559 u32 speed;
560
561 rtnl_lock();
562 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
563 if (unlikely(!dev)) {
564 rtnl_unlock();
565 return DEFAULT_PRB_RETIRE_TOV;
566 }
567 err = __ethtool_get_settings(dev, &ecmd);
568 speed = ethtool_cmd_speed(&ecmd);
569 rtnl_unlock();
570 if (!err) {
571 /*
572 * If the link speed is so slow you don't really
573 * need to worry about perf anyways
574 */
575 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
576 return DEFAULT_PRB_RETIRE_TOV;
577 } else {
578 msec = 1;
579 div = speed / 1000;
580 }
581 }
582
583 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
584
585 if (div)
586 mbits /= div;
587
588 tmo = mbits * msec;
589
590 if (div)
591 return tmo+1;
592 return tmo;
593 }
594
595 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
596 union tpacket_req_u *req_u)
597 {
598 p1->feature_req_word = req_u->req3.tp_feature_req_word;
599 }
600
601 static void init_prb_bdqc(struct packet_sock *po,
602 struct packet_ring_buffer *rb,
603 struct pgv *pg_vec,
604 union tpacket_req_u *req_u, int tx_ring)
605 {
606 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
607 struct tpacket_block_desc *pbd;
608
609 memset(p1, 0x0, sizeof(*p1));
610
611 p1->knxt_seq_num = 1;
612 p1->pkbdq = pg_vec;
613 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
614 p1->pkblk_start = pg_vec[0].buffer;
615 p1->kblk_size = req_u->req3.tp_block_size;
616 p1->knum_blocks = req_u->req3.tp_block_nr;
617 p1->hdrlen = po->tp_hdrlen;
618 p1->version = po->tp_version;
619 p1->last_kactive_blk_num = 0;
620 po->stats.stats3.tp_freeze_q_cnt = 0;
621 if (req_u->req3.tp_retire_blk_tov)
622 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
623 else
624 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
625 req_u->req3.tp_block_size);
626 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
627 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
628
629 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
630 prb_init_ft_ops(p1, req_u);
631 prb_setup_retire_blk_timer(po, tx_ring);
632 prb_open_block(p1, pbd);
633 }
634
635 /* Do NOT update the last_blk_num first.
636 * Assumes sk_buff_head lock is held.
637 */
638 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
639 {
640 mod_timer(&pkc->retire_blk_timer,
641 jiffies + pkc->tov_in_jiffies);
642 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
643 }
644
645 /*
646 * Timer logic:
647 * 1) We refresh the timer only when we open a block.
648 * By doing this we don't waste cycles refreshing the timer
649 * on packet-by-packet basis.
650 *
651 * With a 1MB block-size, on a 1Gbps line, it will take
652 * i) ~8 ms to fill a block + ii) memcpy etc.
653 * In this cut we are not accounting for the memcpy time.
654 *
655 * So, if the user sets the 'tmo' to 10ms then the timer
656 * will never fire while the block is still getting filled
657 * (which is what we want). However, the user could choose
658 * to close a block early and that's fine.
659 *
660 * But when the timer does fire, we check whether or not to refresh it.
661 * Since the tmo granularity is in msecs, it is not too expensive
662 * to refresh the timer, lets say every '8' msecs.
663 * Either the user can set the 'tmo' or we can derive it based on
664 * a) line-speed and b) block-size.
665 * prb_calc_retire_blk_tmo() calculates the tmo.
666 *
667 */
668 static void prb_retire_rx_blk_timer_expired(unsigned long data)
669 {
670 struct packet_sock *po = (struct packet_sock *)data;
671 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
672 unsigned int frozen;
673 struct tpacket_block_desc *pbd;
674
675 spin_lock(&po->sk.sk_receive_queue.lock);
676
677 frozen = prb_queue_frozen(pkc);
678 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
679
680 if (unlikely(pkc->delete_blk_timer))
681 goto out;
682
683 /* We only need to plug the race when the block is partially filled.
684 * tpacket_rcv:
685 * lock(); increment BLOCK_NUM_PKTS; unlock()
686 * copy_bits() is in progress ...
687 * timer fires on other cpu:
688 * we can't retire the current block because copy_bits
689 * is in progress.
690 *
691 */
692 if (BLOCK_NUM_PKTS(pbd)) {
693 while (atomic_read(&pkc->blk_fill_in_prog)) {
694 /* Waiting for skb_copy_bits to finish... */
695 cpu_relax();
696 }
697 }
698
699 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
700 if (!frozen) {
701 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
702 if (!prb_dispatch_next_block(pkc, po))
703 goto refresh_timer;
704 else
705 goto out;
706 } else {
707 /* Case 1. Queue was frozen because user-space was
708 * lagging behind.
709 */
710 if (prb_curr_blk_in_use(pkc, pbd)) {
711 /*
712 * Ok, user-space is still behind.
713 * So just refresh the timer.
714 */
715 goto refresh_timer;
716 } else {
717 /* Case 2. queue was frozen,user-space caught up,
718 * now the link went idle && the timer fired.
719 * We don't have a block to close.So we open this
720 * block and restart the timer.
721 * opening a block thaws the queue,restarts timer
722 * Thawing/timer-refresh is a side effect.
723 */
724 prb_open_block(pkc, pbd);
725 goto out;
726 }
727 }
728 }
729
730 refresh_timer:
731 _prb_refresh_rx_retire_blk_timer(pkc);
732
733 out:
734 spin_unlock(&po->sk.sk_receive_queue.lock);
735 }
736
737 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
738 struct tpacket_block_desc *pbd1, __u32 status)
739 {
740 /* Flush everything minus the block header */
741
742 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
743 u8 *start, *end;
744
745 start = (u8 *)pbd1;
746
747 /* Skip the block header(we know header WILL fit in 4K) */
748 start += PAGE_SIZE;
749
750 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
751 for (; start < end; start += PAGE_SIZE)
752 flush_dcache_page(pgv_to_page(start));
753
754 smp_wmb();
755 #endif
756
757 /* Now update the block status. */
758
759 BLOCK_STATUS(pbd1) = status;
760
761 /* Flush the block header */
762
763 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
764 start = (u8 *)pbd1;
765 flush_dcache_page(pgv_to_page(start));
766
767 smp_wmb();
768 #endif
769 }
770
771 /*
772 * Side effect:
773 *
774 * 1) flush the block
775 * 2) Increment active_blk_num
776 *
777 * Note:We DONT refresh the timer on purpose.
778 * Because almost always the next block will be opened.
779 */
780 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
781 struct tpacket_block_desc *pbd1,
782 struct packet_sock *po, unsigned int stat)
783 {
784 __u32 status = TP_STATUS_USER | stat;
785
786 struct tpacket3_hdr *last_pkt;
787 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
788 struct sock *sk = &po->sk;
789
790 if (po->stats.stats3.tp_drops)
791 status |= TP_STATUS_LOSING;
792
793 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
794 last_pkt->tp_next_offset = 0;
795
796 /* Get the ts of the last pkt */
797 if (BLOCK_NUM_PKTS(pbd1)) {
798 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
799 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
800 } else {
801 /* Ok, we tmo'd - so get the current time */
802 struct timespec ts;
803 getnstimeofday(&ts);
804 h1->ts_last_pkt.ts_sec = ts.tv_sec;
805 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
806 }
807
808 smp_wmb();
809
810 /* Flush the block */
811 prb_flush_block(pkc1, pbd1, status);
812
813 sk->sk_data_ready(sk);
814
815 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
816 }
817
818 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
819 {
820 pkc->reset_pending_on_curr_blk = 0;
821 }
822
823 /*
824 * Side effect of opening a block:
825 *
826 * 1) prb_queue is thawed.
827 * 2) retire_blk_timer is refreshed.
828 *
829 */
830 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
831 struct tpacket_block_desc *pbd1)
832 {
833 struct timespec ts;
834 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
835
836 smp_rmb();
837
838 /* We could have just memset this but we will lose the
839 * flexibility of making the priv area sticky
840 */
841
842 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
843 BLOCK_NUM_PKTS(pbd1) = 0;
844 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
845
846 getnstimeofday(&ts);
847
848 h1->ts_first_pkt.ts_sec = ts.tv_sec;
849 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
850
851 pkc1->pkblk_start = (char *)pbd1;
852 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
853
854 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
855 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
856
857 pbd1->version = pkc1->version;
858 pkc1->prev = pkc1->nxt_offset;
859 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
860
861 prb_thaw_queue(pkc1);
862 _prb_refresh_rx_retire_blk_timer(pkc1);
863
864 smp_wmb();
865 }
866
867 /*
868 * Queue freeze logic:
869 * 1) Assume tp_block_nr = 8 blocks.
870 * 2) At time 't0', user opens Rx ring.
871 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
872 * 4) user-space is either sleeping or processing block '0'.
873 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
874 * it will close block-7,loop around and try to fill block '0'.
875 * call-flow:
876 * __packet_lookup_frame_in_block
877 * prb_retire_current_block()
878 * prb_dispatch_next_block()
879 * |->(BLOCK_STATUS == USER) evaluates to true
880 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
881 * 6) Now there are two cases:
882 * 6.1) Link goes idle right after the queue is frozen.
883 * But remember, the last open_block() refreshed the timer.
884 * When this timer expires,it will refresh itself so that we can
885 * re-open block-0 in near future.
886 * 6.2) Link is busy and keeps on receiving packets. This is a simple
887 * case and __packet_lookup_frame_in_block will check if block-0
888 * is free and can now be re-used.
889 */
890 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
891 struct packet_sock *po)
892 {
893 pkc->reset_pending_on_curr_blk = 1;
894 po->stats.stats3.tp_freeze_q_cnt++;
895 }
896
897 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
898
899 /*
900 * If the next block is free then we will dispatch it
901 * and return a good offset.
902 * Else, we will freeze the queue.
903 * So, caller must check the return value.
904 */
905 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
906 struct packet_sock *po)
907 {
908 struct tpacket_block_desc *pbd;
909
910 smp_rmb();
911
912 /* 1. Get current block num */
913 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
914
915 /* 2. If this block is currently in_use then freeze the queue */
916 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
917 prb_freeze_queue(pkc, po);
918 return NULL;
919 }
920
921 /*
922 * 3.
923 * open this block and return the offset where the first packet
924 * needs to get stored.
925 */
926 prb_open_block(pkc, pbd);
927 return (void *)pkc->nxt_offset;
928 }
929
930 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
931 struct packet_sock *po, unsigned int status)
932 {
933 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
934
935 /* retire/close the current block */
936 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
937 /*
938 * Plug the case where copy_bits() is in progress on
939 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
940 * have space to copy the pkt in the current block and
941 * called prb_retire_current_block()
942 *
943 * We don't need to worry about the TMO case because
944 * the timer-handler already handled this case.
945 */
946 if (!(status & TP_STATUS_BLK_TMO)) {
947 while (atomic_read(&pkc->blk_fill_in_prog)) {
948 /* Waiting for skb_copy_bits to finish... */
949 cpu_relax();
950 }
951 }
952 prb_close_block(pkc, pbd, po, status);
953 return;
954 }
955 }
956
957 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
958 struct tpacket_block_desc *pbd)
959 {
960 return TP_STATUS_USER & BLOCK_STATUS(pbd);
961 }
962
963 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
964 {
965 return pkc->reset_pending_on_curr_blk;
966 }
967
968 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
969 {
970 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
971 atomic_dec(&pkc->blk_fill_in_prog);
972 }
973
974 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
975 struct tpacket3_hdr *ppd)
976 {
977 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
978 }
979
980 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
981 struct tpacket3_hdr *ppd)
982 {
983 ppd->hv1.tp_rxhash = 0;
984 }
985
986 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
987 struct tpacket3_hdr *ppd)
988 {
989 if (skb_vlan_tag_present(pkc->skb)) {
990 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
991 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
992 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
993 } else {
994 ppd->hv1.tp_vlan_tci = 0;
995 ppd->hv1.tp_vlan_tpid = 0;
996 ppd->tp_status = TP_STATUS_AVAILABLE;
997 }
998 }
999
1000 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1001 struct tpacket3_hdr *ppd)
1002 {
1003 ppd->hv1.tp_padding = 0;
1004 prb_fill_vlan_info(pkc, ppd);
1005
1006 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1007 prb_fill_rxhash(pkc, ppd);
1008 else
1009 prb_clear_rxhash(pkc, ppd);
1010 }
1011
1012 static void prb_fill_curr_block(char *curr,
1013 struct tpacket_kbdq_core *pkc,
1014 struct tpacket_block_desc *pbd,
1015 unsigned int len)
1016 {
1017 struct tpacket3_hdr *ppd;
1018
1019 ppd = (struct tpacket3_hdr *)curr;
1020 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1021 pkc->prev = curr;
1022 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1023 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1024 BLOCK_NUM_PKTS(pbd) += 1;
1025 atomic_inc(&pkc->blk_fill_in_prog);
1026 prb_run_all_ft_ops(pkc, ppd);
1027 }
1028
1029 /* Assumes caller has the sk->rx_queue.lock */
1030 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1031 struct sk_buff *skb,
1032 int status,
1033 unsigned int len
1034 )
1035 {
1036 struct tpacket_kbdq_core *pkc;
1037 struct tpacket_block_desc *pbd;
1038 char *curr, *end;
1039
1040 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1041 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1042
1043 /* Queue is frozen when user space is lagging behind */
1044 if (prb_queue_frozen(pkc)) {
1045 /*
1046 * Check if that last block which caused the queue to freeze,
1047 * is still in_use by user-space.
1048 */
1049 if (prb_curr_blk_in_use(pkc, pbd)) {
1050 /* Can't record this packet */
1051 return NULL;
1052 } else {
1053 /*
1054 * Ok, the block was released by user-space.
1055 * Now let's open that block.
1056 * opening a block also thaws the queue.
1057 * Thawing is a side effect.
1058 */
1059 prb_open_block(pkc, pbd);
1060 }
1061 }
1062
1063 smp_mb();
1064 curr = pkc->nxt_offset;
1065 pkc->skb = skb;
1066 end = (char *)pbd + pkc->kblk_size;
1067
1068 /* first try the current block */
1069 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1070 prb_fill_curr_block(curr, pkc, pbd, len);
1071 return (void *)curr;
1072 }
1073
1074 /* Ok, close the current block */
1075 prb_retire_current_block(pkc, po, 0);
1076
1077 /* Now, try to dispatch the next block */
1078 curr = (char *)prb_dispatch_next_block(pkc, po);
1079 if (curr) {
1080 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1081 prb_fill_curr_block(curr, pkc, pbd, len);
1082 return (void *)curr;
1083 }
1084
1085 /*
1086 * No free blocks are available.user_space hasn't caught up yet.
1087 * Queue was just frozen and now this packet will get dropped.
1088 */
1089 return NULL;
1090 }
1091
1092 static void *packet_current_rx_frame(struct packet_sock *po,
1093 struct sk_buff *skb,
1094 int status, unsigned int len)
1095 {
1096 char *curr = NULL;
1097 switch (po->tp_version) {
1098 case TPACKET_V1:
1099 case TPACKET_V2:
1100 curr = packet_lookup_frame(po, &po->rx_ring,
1101 po->rx_ring.head, status);
1102 return curr;
1103 case TPACKET_V3:
1104 return __packet_lookup_frame_in_block(po, skb, status, len);
1105 default:
1106 WARN(1, "TPACKET version not supported\n");
1107 BUG();
1108 return NULL;
1109 }
1110 }
1111
1112 static void *prb_lookup_block(struct packet_sock *po,
1113 struct packet_ring_buffer *rb,
1114 unsigned int idx,
1115 int status)
1116 {
1117 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1118 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1119
1120 if (status != BLOCK_STATUS(pbd))
1121 return NULL;
1122 return pbd;
1123 }
1124
1125 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1126 {
1127 unsigned int prev;
1128 if (rb->prb_bdqc.kactive_blk_num)
1129 prev = rb->prb_bdqc.kactive_blk_num-1;
1130 else
1131 prev = rb->prb_bdqc.knum_blocks-1;
1132 return prev;
1133 }
1134
1135 /* Assumes caller has held the rx_queue.lock */
1136 static void *__prb_previous_block(struct packet_sock *po,
1137 struct packet_ring_buffer *rb,
1138 int status)
1139 {
1140 unsigned int previous = prb_previous_blk_num(rb);
1141 return prb_lookup_block(po, rb, previous, status);
1142 }
1143
1144 static void *packet_previous_rx_frame(struct packet_sock *po,
1145 struct packet_ring_buffer *rb,
1146 int status)
1147 {
1148 if (po->tp_version <= TPACKET_V2)
1149 return packet_previous_frame(po, rb, status);
1150
1151 return __prb_previous_block(po, rb, status);
1152 }
1153
1154 static void packet_increment_rx_head(struct packet_sock *po,
1155 struct packet_ring_buffer *rb)
1156 {
1157 switch (po->tp_version) {
1158 case TPACKET_V1:
1159 case TPACKET_V2:
1160 return packet_increment_head(rb);
1161 case TPACKET_V3:
1162 default:
1163 WARN(1, "TPACKET version not supported.\n");
1164 BUG();
1165 return;
1166 }
1167 }
1168
1169 static void *packet_previous_frame(struct packet_sock *po,
1170 struct packet_ring_buffer *rb,
1171 int status)
1172 {
1173 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1174 return packet_lookup_frame(po, rb, previous, status);
1175 }
1176
1177 static void packet_increment_head(struct packet_ring_buffer *buff)
1178 {
1179 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1180 }
1181
1182 static void packet_inc_pending(struct packet_ring_buffer *rb)
1183 {
1184 this_cpu_inc(*rb->pending_refcnt);
1185 }
1186
1187 static void packet_dec_pending(struct packet_ring_buffer *rb)
1188 {
1189 this_cpu_dec(*rb->pending_refcnt);
1190 }
1191
1192 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1193 {
1194 unsigned int refcnt = 0;
1195 int cpu;
1196
1197 /* We don't use pending refcount in rx_ring. */
1198 if (rb->pending_refcnt == NULL)
1199 return 0;
1200
1201 for_each_possible_cpu(cpu)
1202 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1203
1204 return refcnt;
1205 }
1206
1207 static int packet_alloc_pending(struct packet_sock *po)
1208 {
1209 po->rx_ring.pending_refcnt = NULL;
1210
1211 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1212 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1213 return -ENOBUFS;
1214
1215 return 0;
1216 }
1217
1218 static void packet_free_pending(struct packet_sock *po)
1219 {
1220 free_percpu(po->tx_ring.pending_refcnt);
1221 }
1222
1223 static bool packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1224 {
1225 struct sock *sk = &po->sk;
1226 bool has_room;
1227
1228 if (po->prot_hook.func != tpacket_rcv)
1229 return (atomic_read(&sk->sk_rmem_alloc) + skb->truesize)
1230 <= sk->sk_rcvbuf;
1231
1232 spin_lock(&sk->sk_receive_queue.lock);
1233 if (po->tp_version == TPACKET_V3)
1234 has_room = prb_lookup_block(po, &po->rx_ring,
1235 po->rx_ring.prb_bdqc.kactive_blk_num,
1236 TP_STATUS_KERNEL);
1237 else
1238 has_room = packet_lookup_frame(po, &po->rx_ring,
1239 po->rx_ring.head,
1240 TP_STATUS_KERNEL);
1241 spin_unlock(&sk->sk_receive_queue.lock);
1242
1243 return has_room;
1244 }
1245
1246 static void packet_sock_destruct(struct sock *sk)
1247 {
1248 skb_queue_purge(&sk->sk_error_queue);
1249
1250 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1251 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1252
1253 if (!sock_flag(sk, SOCK_DEAD)) {
1254 pr_err("Attempt to release alive packet socket: %p\n", sk);
1255 return;
1256 }
1257
1258 sk_refcnt_debug_dec(sk);
1259 }
1260
1261 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1262 {
1263 int x = atomic_read(&f->rr_cur) + 1;
1264
1265 if (x >= num)
1266 x = 0;
1267
1268 return x;
1269 }
1270
1271 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1272 struct sk_buff *skb,
1273 unsigned int num)
1274 {
1275 return reciprocal_scale(skb_get_hash(skb), num);
1276 }
1277
1278 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1279 struct sk_buff *skb,
1280 unsigned int num)
1281 {
1282 int cur, old;
1283
1284 cur = atomic_read(&f->rr_cur);
1285 while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1286 fanout_rr_next(f, num))) != cur)
1287 cur = old;
1288 return cur;
1289 }
1290
1291 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1292 struct sk_buff *skb,
1293 unsigned int num)
1294 {
1295 return smp_processor_id() % num;
1296 }
1297
1298 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1299 struct sk_buff *skb,
1300 unsigned int num)
1301 {
1302 return prandom_u32_max(num);
1303 }
1304
1305 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1306 struct sk_buff *skb,
1307 unsigned int idx, unsigned int skip,
1308 unsigned int num)
1309 {
1310 unsigned int i, j;
1311
1312 i = j = min_t(int, f->next[idx], num - 1);
1313 do {
1314 if (i != skip && packet_rcv_has_room(pkt_sk(f->arr[i]), skb)) {
1315 if (i != j)
1316 f->next[idx] = i;
1317 return i;
1318 }
1319 if (++i == num)
1320 i = 0;
1321 } while (i != j);
1322
1323 return idx;
1324 }
1325
1326 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1327 struct sk_buff *skb,
1328 unsigned int num)
1329 {
1330 return skb_get_queue_mapping(skb) % num;
1331 }
1332
1333 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1334 {
1335 return f->flags & (flag >> 8);
1336 }
1337
1338 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1339 struct packet_type *pt, struct net_device *orig_dev)
1340 {
1341 struct packet_fanout *f = pt->af_packet_priv;
1342 unsigned int num = f->num_members;
1343 struct packet_sock *po;
1344 unsigned int idx;
1345
1346 if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1347 !num) {
1348 kfree_skb(skb);
1349 return 0;
1350 }
1351
1352 switch (f->type) {
1353 case PACKET_FANOUT_HASH:
1354 default:
1355 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1356 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1357 if (!skb)
1358 return 0;
1359 }
1360 idx = fanout_demux_hash(f, skb, num);
1361 break;
1362 case PACKET_FANOUT_LB:
1363 idx = fanout_demux_lb(f, skb, num);
1364 break;
1365 case PACKET_FANOUT_CPU:
1366 idx = fanout_demux_cpu(f, skb, num);
1367 break;
1368 case PACKET_FANOUT_RND:
1369 idx = fanout_demux_rnd(f, skb, num);
1370 break;
1371 case PACKET_FANOUT_QM:
1372 idx = fanout_demux_qm(f, skb, num);
1373 break;
1374 case PACKET_FANOUT_ROLLOVER:
1375 idx = fanout_demux_rollover(f, skb, 0, (unsigned int) -1, num);
1376 break;
1377 }
1378
1379 po = pkt_sk(f->arr[idx]);
1380 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER) &&
1381 unlikely(!packet_rcv_has_room(po, skb))) {
1382 idx = fanout_demux_rollover(f, skb, idx, idx, num);
1383 po = pkt_sk(f->arr[idx]);
1384 }
1385
1386 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1387 }
1388
1389 DEFINE_MUTEX(fanout_mutex);
1390 EXPORT_SYMBOL_GPL(fanout_mutex);
1391 static LIST_HEAD(fanout_list);
1392
1393 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1394 {
1395 struct packet_fanout *f = po->fanout;
1396
1397 spin_lock(&f->lock);
1398 f->arr[f->num_members] = sk;
1399 smp_wmb();
1400 f->num_members++;
1401 spin_unlock(&f->lock);
1402 }
1403
1404 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1405 {
1406 struct packet_fanout *f = po->fanout;
1407 int i;
1408
1409 spin_lock(&f->lock);
1410 for (i = 0; i < f->num_members; i++) {
1411 if (f->arr[i] == sk)
1412 break;
1413 }
1414 BUG_ON(i >= f->num_members);
1415 f->arr[i] = f->arr[f->num_members - 1];
1416 f->num_members--;
1417 spin_unlock(&f->lock);
1418 }
1419
1420 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1421 {
1422 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1423 return true;
1424
1425 return false;
1426 }
1427
1428 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1429 {
1430 struct packet_sock *po = pkt_sk(sk);
1431 struct packet_fanout *f, *match;
1432 u8 type = type_flags & 0xff;
1433 u8 flags = type_flags >> 8;
1434 int err;
1435
1436 switch (type) {
1437 case PACKET_FANOUT_ROLLOVER:
1438 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1439 return -EINVAL;
1440 case PACKET_FANOUT_HASH:
1441 case PACKET_FANOUT_LB:
1442 case PACKET_FANOUT_CPU:
1443 case PACKET_FANOUT_RND:
1444 case PACKET_FANOUT_QM:
1445 break;
1446 default:
1447 return -EINVAL;
1448 }
1449
1450 if (!po->running)
1451 return -EINVAL;
1452
1453 if (po->fanout)
1454 return -EALREADY;
1455
1456 mutex_lock(&fanout_mutex);
1457 match = NULL;
1458 list_for_each_entry(f, &fanout_list, list) {
1459 if (f->id == id &&
1460 read_pnet(&f->net) == sock_net(sk)) {
1461 match = f;
1462 break;
1463 }
1464 }
1465 err = -EINVAL;
1466 if (match && match->flags != flags)
1467 goto out;
1468 if (!match) {
1469 err = -ENOMEM;
1470 match = kzalloc(sizeof(*match), GFP_KERNEL);
1471 if (!match)
1472 goto out;
1473 write_pnet(&match->net, sock_net(sk));
1474 match->id = id;
1475 match->type = type;
1476 match->flags = flags;
1477 atomic_set(&match->rr_cur, 0);
1478 INIT_LIST_HEAD(&match->list);
1479 spin_lock_init(&match->lock);
1480 atomic_set(&match->sk_ref, 0);
1481 match->prot_hook.type = po->prot_hook.type;
1482 match->prot_hook.dev = po->prot_hook.dev;
1483 match->prot_hook.func = packet_rcv_fanout;
1484 match->prot_hook.af_packet_priv = match;
1485 match->prot_hook.id_match = match_fanout_group;
1486 dev_add_pack(&match->prot_hook);
1487 list_add(&match->list, &fanout_list);
1488 }
1489 err = -EINVAL;
1490 if (match->type == type &&
1491 match->prot_hook.type == po->prot_hook.type &&
1492 match->prot_hook.dev == po->prot_hook.dev) {
1493 err = -ENOSPC;
1494 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1495 __dev_remove_pack(&po->prot_hook);
1496 po->fanout = match;
1497 atomic_inc(&match->sk_ref);
1498 __fanout_link(sk, po);
1499 err = 0;
1500 }
1501 }
1502 out:
1503 mutex_unlock(&fanout_mutex);
1504 return err;
1505 }
1506
1507 static void fanout_release(struct sock *sk)
1508 {
1509 struct packet_sock *po = pkt_sk(sk);
1510 struct packet_fanout *f;
1511
1512 f = po->fanout;
1513 if (!f)
1514 return;
1515
1516 mutex_lock(&fanout_mutex);
1517 po->fanout = NULL;
1518
1519 if (atomic_dec_and_test(&f->sk_ref)) {
1520 list_del(&f->list);
1521 dev_remove_pack(&f->prot_hook);
1522 kfree(f);
1523 }
1524 mutex_unlock(&fanout_mutex);
1525 }
1526
1527 static const struct proto_ops packet_ops;
1528
1529 static const struct proto_ops packet_ops_spkt;
1530
1531 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1532 struct packet_type *pt, struct net_device *orig_dev)
1533 {
1534 struct sock *sk;
1535 struct sockaddr_pkt *spkt;
1536
1537 /*
1538 * When we registered the protocol we saved the socket in the data
1539 * field for just this event.
1540 */
1541
1542 sk = pt->af_packet_priv;
1543
1544 /*
1545 * Yank back the headers [hope the device set this
1546 * right or kerboom...]
1547 *
1548 * Incoming packets have ll header pulled,
1549 * push it back.
1550 *
1551 * For outgoing ones skb->data == skb_mac_header(skb)
1552 * so that this procedure is noop.
1553 */
1554
1555 if (skb->pkt_type == PACKET_LOOPBACK)
1556 goto out;
1557
1558 if (!net_eq(dev_net(dev), sock_net(sk)))
1559 goto out;
1560
1561 skb = skb_share_check(skb, GFP_ATOMIC);
1562 if (skb == NULL)
1563 goto oom;
1564
1565 /* drop any routing info */
1566 skb_dst_drop(skb);
1567
1568 /* drop conntrack reference */
1569 nf_reset(skb);
1570
1571 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1572
1573 skb_push(skb, skb->data - skb_mac_header(skb));
1574
1575 /*
1576 * The SOCK_PACKET socket receives _all_ frames.
1577 */
1578
1579 spkt->spkt_family = dev->type;
1580 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1581 spkt->spkt_protocol = skb->protocol;
1582
1583 /*
1584 * Charge the memory to the socket. This is done specifically
1585 * to prevent sockets using all the memory up.
1586 */
1587
1588 if (sock_queue_rcv_skb(sk, skb) == 0)
1589 return 0;
1590
1591 out:
1592 kfree_skb(skb);
1593 oom:
1594 return 0;
1595 }
1596
1597
1598 /*
1599 * Output a raw packet to a device layer. This bypasses all the other
1600 * protocol layers and you must therefore supply it with a complete frame
1601 */
1602
1603 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1604 struct msghdr *msg, size_t len)
1605 {
1606 struct sock *sk = sock->sk;
1607 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1608 struct sk_buff *skb = NULL;
1609 struct net_device *dev;
1610 __be16 proto = 0;
1611 int err;
1612 int extra_len = 0;
1613
1614 /*
1615 * Get and verify the address.
1616 */
1617
1618 if (saddr) {
1619 if (msg->msg_namelen < sizeof(struct sockaddr))
1620 return -EINVAL;
1621 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1622 proto = saddr->spkt_protocol;
1623 } else
1624 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1625
1626 /*
1627 * Find the device first to size check it
1628 */
1629
1630 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1631 retry:
1632 rcu_read_lock();
1633 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1634 err = -ENODEV;
1635 if (dev == NULL)
1636 goto out_unlock;
1637
1638 err = -ENETDOWN;
1639 if (!(dev->flags & IFF_UP))
1640 goto out_unlock;
1641
1642 /*
1643 * You may not queue a frame bigger than the mtu. This is the lowest level
1644 * raw protocol and you must do your own fragmentation at this level.
1645 */
1646
1647 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1648 if (!netif_supports_nofcs(dev)) {
1649 err = -EPROTONOSUPPORT;
1650 goto out_unlock;
1651 }
1652 extra_len = 4; /* We're doing our own CRC */
1653 }
1654
1655 err = -EMSGSIZE;
1656 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1657 goto out_unlock;
1658
1659 if (!skb) {
1660 size_t reserved = LL_RESERVED_SPACE(dev);
1661 int tlen = dev->needed_tailroom;
1662 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1663
1664 rcu_read_unlock();
1665 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1666 if (skb == NULL)
1667 return -ENOBUFS;
1668 /* FIXME: Save some space for broken drivers that write a hard
1669 * header at transmission time by themselves. PPP is the notable
1670 * one here. This should really be fixed at the driver level.
1671 */
1672 skb_reserve(skb, reserved);
1673 skb_reset_network_header(skb);
1674
1675 /* Try to align data part correctly */
1676 if (hhlen) {
1677 skb->data -= hhlen;
1678 skb->tail -= hhlen;
1679 if (len < hhlen)
1680 skb_reset_network_header(skb);
1681 }
1682 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1683 if (err)
1684 goto out_free;
1685 goto retry;
1686 }
1687
1688 if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1689 /* Earlier code assumed this would be a VLAN pkt,
1690 * double-check this now that we have the actual
1691 * packet in hand.
1692 */
1693 struct ethhdr *ehdr;
1694 skb_reset_mac_header(skb);
1695 ehdr = eth_hdr(skb);
1696 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1697 err = -EMSGSIZE;
1698 goto out_unlock;
1699 }
1700 }
1701
1702 skb->protocol = proto;
1703 skb->dev = dev;
1704 skb->priority = sk->sk_priority;
1705 skb->mark = sk->sk_mark;
1706
1707 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1708
1709 if (unlikely(extra_len == 4))
1710 skb->no_fcs = 1;
1711
1712 skb_probe_transport_header(skb, 0);
1713
1714 dev_queue_xmit(skb);
1715 rcu_read_unlock();
1716 return len;
1717
1718 out_unlock:
1719 rcu_read_unlock();
1720 out_free:
1721 kfree_skb(skb);
1722 return err;
1723 }
1724
1725 static unsigned int run_filter(const struct sk_buff *skb,
1726 const struct sock *sk,
1727 unsigned int res)
1728 {
1729 struct sk_filter *filter;
1730
1731 rcu_read_lock();
1732 filter = rcu_dereference(sk->sk_filter);
1733 if (filter != NULL)
1734 res = SK_RUN_FILTER(filter, skb);
1735 rcu_read_unlock();
1736
1737 return res;
1738 }
1739
1740 /*
1741 * This function makes lazy skb cloning in hope that most of packets
1742 * are discarded by BPF.
1743 *
1744 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1745 * and skb->cb are mangled. It works because (and until) packets
1746 * falling here are owned by current CPU. Output packets are cloned
1747 * by dev_queue_xmit_nit(), input packets are processed by net_bh
1748 * sequencially, so that if we return skb to original state on exit,
1749 * we will not harm anyone.
1750 */
1751
1752 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1753 struct packet_type *pt, struct net_device *orig_dev)
1754 {
1755 struct sock *sk;
1756 struct sockaddr_ll *sll;
1757 struct packet_sock *po;
1758 u8 *skb_head = skb->data;
1759 int skb_len = skb->len;
1760 unsigned int snaplen, res;
1761
1762 if (skb->pkt_type == PACKET_LOOPBACK)
1763 goto drop;
1764
1765 sk = pt->af_packet_priv;
1766 po = pkt_sk(sk);
1767
1768 if (!net_eq(dev_net(dev), sock_net(sk)))
1769 goto drop;
1770
1771 skb->dev = dev;
1772
1773 if (dev->header_ops) {
1774 /* The device has an explicit notion of ll header,
1775 * exported to higher levels.
1776 *
1777 * Otherwise, the device hides details of its frame
1778 * structure, so that corresponding packet head is
1779 * never delivered to user.
1780 */
1781 if (sk->sk_type != SOCK_DGRAM)
1782 skb_push(skb, skb->data - skb_mac_header(skb));
1783 else if (skb->pkt_type == PACKET_OUTGOING) {
1784 /* Special case: outgoing packets have ll header at head */
1785 skb_pull(skb, skb_network_offset(skb));
1786 }
1787 }
1788
1789 snaplen = skb->len;
1790
1791 res = run_filter(skb, sk, snaplen);
1792 if (!res)
1793 goto drop_n_restore;
1794 if (snaplen > res)
1795 snaplen = res;
1796
1797 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1798 goto drop_n_acct;
1799
1800 if (skb_shared(skb)) {
1801 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1802 if (nskb == NULL)
1803 goto drop_n_acct;
1804
1805 if (skb_head != skb->data) {
1806 skb->data = skb_head;
1807 skb->len = skb_len;
1808 }
1809 consume_skb(skb);
1810 skb = nskb;
1811 }
1812
1813 BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1814 sizeof(skb->cb));
1815
1816 sll = &PACKET_SKB_CB(skb)->sa.ll;
1817 sll->sll_family = AF_PACKET;
1818 sll->sll_hatype = dev->type;
1819 sll->sll_protocol = skb->protocol;
1820 sll->sll_pkttype = skb->pkt_type;
1821 if (unlikely(po->origdev))
1822 sll->sll_ifindex = orig_dev->ifindex;
1823 else
1824 sll->sll_ifindex = dev->ifindex;
1825
1826 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1827
1828 PACKET_SKB_CB(skb)->origlen = skb->len;
1829
1830 if (pskb_trim(skb, snaplen))
1831 goto drop_n_acct;
1832
1833 skb_set_owner_r(skb, sk);
1834 skb->dev = NULL;
1835 skb_dst_drop(skb);
1836
1837 /* drop conntrack reference */
1838 nf_reset(skb);
1839
1840 spin_lock(&sk->sk_receive_queue.lock);
1841 po->stats.stats1.tp_packets++;
1842 skb->dropcount = atomic_read(&sk->sk_drops);
1843 __skb_queue_tail(&sk->sk_receive_queue, skb);
1844 spin_unlock(&sk->sk_receive_queue.lock);
1845 sk->sk_data_ready(sk);
1846 return 0;
1847
1848 drop_n_acct:
1849 spin_lock(&sk->sk_receive_queue.lock);
1850 po->stats.stats1.tp_drops++;
1851 atomic_inc(&sk->sk_drops);
1852 spin_unlock(&sk->sk_receive_queue.lock);
1853
1854 drop_n_restore:
1855 if (skb_head != skb->data && skb_shared(skb)) {
1856 skb->data = skb_head;
1857 skb->len = skb_len;
1858 }
1859 drop:
1860 consume_skb(skb);
1861 return 0;
1862 }
1863
1864 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1865 struct packet_type *pt, struct net_device *orig_dev)
1866 {
1867 struct sock *sk;
1868 struct packet_sock *po;
1869 struct sockaddr_ll *sll;
1870 union tpacket_uhdr h;
1871 u8 *skb_head = skb->data;
1872 int skb_len = skb->len;
1873 unsigned int snaplen, res;
1874 unsigned long status = TP_STATUS_USER;
1875 unsigned short macoff, netoff, hdrlen;
1876 struct sk_buff *copy_skb = NULL;
1877 struct timespec ts;
1878 __u32 ts_status;
1879
1880 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
1881 * We may add members to them until current aligned size without forcing
1882 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
1883 */
1884 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
1885 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
1886
1887 if (skb->pkt_type == PACKET_LOOPBACK)
1888 goto drop;
1889
1890 sk = pt->af_packet_priv;
1891 po = pkt_sk(sk);
1892
1893 if (!net_eq(dev_net(dev), sock_net(sk)))
1894 goto drop;
1895
1896 if (dev->header_ops) {
1897 if (sk->sk_type != SOCK_DGRAM)
1898 skb_push(skb, skb->data - skb_mac_header(skb));
1899 else if (skb->pkt_type == PACKET_OUTGOING) {
1900 /* Special case: outgoing packets have ll header at head */
1901 skb_pull(skb, skb_network_offset(skb));
1902 }
1903 }
1904
1905 if (skb->ip_summed == CHECKSUM_PARTIAL)
1906 status |= TP_STATUS_CSUMNOTREADY;
1907
1908 snaplen = skb->len;
1909
1910 res = run_filter(skb, sk, snaplen);
1911 if (!res)
1912 goto drop_n_restore;
1913 if (snaplen > res)
1914 snaplen = res;
1915
1916 if (sk->sk_type == SOCK_DGRAM) {
1917 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1918 po->tp_reserve;
1919 } else {
1920 unsigned int maclen = skb_network_offset(skb);
1921 netoff = TPACKET_ALIGN(po->tp_hdrlen +
1922 (maclen < 16 ? 16 : maclen)) +
1923 po->tp_reserve;
1924 macoff = netoff - maclen;
1925 }
1926 if (po->tp_version <= TPACKET_V2) {
1927 if (macoff + snaplen > po->rx_ring.frame_size) {
1928 if (po->copy_thresh &&
1929 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1930 if (skb_shared(skb)) {
1931 copy_skb = skb_clone(skb, GFP_ATOMIC);
1932 } else {
1933 copy_skb = skb_get(skb);
1934 skb_head = skb->data;
1935 }
1936 if (copy_skb)
1937 skb_set_owner_r(copy_skb, sk);
1938 }
1939 snaplen = po->rx_ring.frame_size - macoff;
1940 if ((int)snaplen < 0)
1941 snaplen = 0;
1942 }
1943 } else if (unlikely(macoff + snaplen >
1944 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
1945 u32 nval;
1946
1947 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
1948 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
1949 snaplen, nval, macoff);
1950 snaplen = nval;
1951 if (unlikely((int)snaplen < 0)) {
1952 snaplen = 0;
1953 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
1954 }
1955 }
1956 spin_lock(&sk->sk_receive_queue.lock);
1957 h.raw = packet_current_rx_frame(po, skb,
1958 TP_STATUS_KERNEL, (macoff+snaplen));
1959 if (!h.raw)
1960 goto ring_is_full;
1961 if (po->tp_version <= TPACKET_V2) {
1962 packet_increment_rx_head(po, &po->rx_ring);
1963 /*
1964 * LOSING will be reported till you read the stats,
1965 * because it's COR - Clear On Read.
1966 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1967 * at packet level.
1968 */
1969 if (po->stats.stats1.tp_drops)
1970 status |= TP_STATUS_LOSING;
1971 }
1972 po->stats.stats1.tp_packets++;
1973 if (copy_skb) {
1974 status |= TP_STATUS_COPY;
1975 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1976 }
1977 spin_unlock(&sk->sk_receive_queue.lock);
1978
1979 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1980
1981 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
1982 getnstimeofday(&ts);
1983
1984 status |= ts_status;
1985
1986 switch (po->tp_version) {
1987 case TPACKET_V1:
1988 h.h1->tp_len = skb->len;
1989 h.h1->tp_snaplen = snaplen;
1990 h.h1->tp_mac = macoff;
1991 h.h1->tp_net = netoff;
1992 h.h1->tp_sec = ts.tv_sec;
1993 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
1994 hdrlen = sizeof(*h.h1);
1995 break;
1996 case TPACKET_V2:
1997 h.h2->tp_len = skb->len;
1998 h.h2->tp_snaplen = snaplen;
1999 h.h2->tp_mac = macoff;
2000 h.h2->tp_net = netoff;
2001 h.h2->tp_sec = ts.tv_sec;
2002 h.h2->tp_nsec = ts.tv_nsec;
2003 if (skb_vlan_tag_present(skb)) {
2004 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2005 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2006 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2007 } else {
2008 h.h2->tp_vlan_tci = 0;
2009 h.h2->tp_vlan_tpid = 0;
2010 }
2011 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2012 hdrlen = sizeof(*h.h2);
2013 break;
2014 case TPACKET_V3:
2015 /* tp_nxt_offset,vlan are already populated above.
2016 * So DONT clear those fields here
2017 */
2018 h.h3->tp_status |= status;
2019 h.h3->tp_len = skb->len;
2020 h.h3->tp_snaplen = snaplen;
2021 h.h3->tp_mac = macoff;
2022 h.h3->tp_net = netoff;
2023 h.h3->tp_sec = ts.tv_sec;
2024 h.h3->tp_nsec = ts.tv_nsec;
2025 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2026 hdrlen = sizeof(*h.h3);
2027 break;
2028 default:
2029 BUG();
2030 }
2031
2032 sll = h.raw + TPACKET_ALIGN(hdrlen);
2033 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2034 sll->sll_family = AF_PACKET;
2035 sll->sll_hatype = dev->type;
2036 sll->sll_protocol = skb->protocol;
2037 sll->sll_pkttype = skb->pkt_type;
2038 if (unlikely(po->origdev))
2039 sll->sll_ifindex = orig_dev->ifindex;
2040 else
2041 sll->sll_ifindex = dev->ifindex;
2042
2043 smp_mb();
2044
2045 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2046 if (po->tp_version <= TPACKET_V2) {
2047 u8 *start, *end;
2048
2049 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2050 macoff + snaplen);
2051
2052 for (start = h.raw; start < end; start += PAGE_SIZE)
2053 flush_dcache_page(pgv_to_page(start));
2054 }
2055 smp_wmb();
2056 #endif
2057
2058 if (po->tp_version <= TPACKET_V2) {
2059 __packet_set_status(po, h.raw, status);
2060 sk->sk_data_ready(sk);
2061 } else {
2062 prb_clear_blk_fill_status(&po->rx_ring);
2063 }
2064
2065 drop_n_restore:
2066 if (skb_head != skb->data && skb_shared(skb)) {
2067 skb->data = skb_head;
2068 skb->len = skb_len;
2069 }
2070 drop:
2071 kfree_skb(skb);
2072 return 0;
2073
2074 ring_is_full:
2075 po->stats.stats1.tp_drops++;
2076 spin_unlock(&sk->sk_receive_queue.lock);
2077
2078 sk->sk_data_ready(sk);
2079 kfree_skb(copy_skb);
2080 goto drop_n_restore;
2081 }
2082
2083 static void tpacket_destruct_skb(struct sk_buff *skb)
2084 {
2085 struct packet_sock *po = pkt_sk(skb->sk);
2086
2087 if (likely(po->tx_ring.pg_vec)) {
2088 void *ph;
2089 __u32 ts;
2090
2091 ph = skb_shinfo(skb)->destructor_arg;
2092 packet_dec_pending(&po->tx_ring);
2093
2094 ts = __packet_set_timestamp(po, ph, skb);
2095 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2096 }
2097
2098 sock_wfree(skb);
2099 }
2100
2101 static bool ll_header_truncated(const struct net_device *dev, int len)
2102 {
2103 /* net device doesn't like empty head */
2104 if (unlikely(len <= dev->hard_header_len)) {
2105 net_warn_ratelimited("%s: packet size is too short (%d <= %d)\n",
2106 current->comm, len, dev->hard_header_len);
2107 return true;
2108 }
2109
2110 return false;
2111 }
2112
2113 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2114 void *frame, struct net_device *dev, int size_max,
2115 __be16 proto, unsigned char *addr, int hlen)
2116 {
2117 union tpacket_uhdr ph;
2118 int to_write, offset, len, tp_len, nr_frags, len_max;
2119 struct socket *sock = po->sk.sk_socket;
2120 struct page *page;
2121 void *data;
2122 int err;
2123
2124 ph.raw = frame;
2125
2126 skb->protocol = proto;
2127 skb->dev = dev;
2128 skb->priority = po->sk.sk_priority;
2129 skb->mark = po->sk.sk_mark;
2130 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2131 skb_shinfo(skb)->destructor_arg = ph.raw;
2132
2133 switch (po->tp_version) {
2134 case TPACKET_V2:
2135 tp_len = ph.h2->tp_len;
2136 break;
2137 default:
2138 tp_len = ph.h1->tp_len;
2139 break;
2140 }
2141 if (unlikely(tp_len > size_max)) {
2142 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2143 return -EMSGSIZE;
2144 }
2145
2146 skb_reserve(skb, hlen);
2147 skb_reset_network_header(skb);
2148
2149 if (!packet_use_direct_xmit(po))
2150 skb_probe_transport_header(skb, 0);
2151 if (unlikely(po->tp_tx_has_off)) {
2152 int off_min, off_max, off;
2153 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2154 off_max = po->tx_ring.frame_size - tp_len;
2155 if (sock->type == SOCK_DGRAM) {
2156 switch (po->tp_version) {
2157 case TPACKET_V2:
2158 off = ph.h2->tp_net;
2159 break;
2160 default:
2161 off = ph.h1->tp_net;
2162 break;
2163 }
2164 } else {
2165 switch (po->tp_version) {
2166 case TPACKET_V2:
2167 off = ph.h2->tp_mac;
2168 break;
2169 default:
2170 off = ph.h1->tp_mac;
2171 break;
2172 }
2173 }
2174 if (unlikely((off < off_min) || (off_max < off)))
2175 return -EINVAL;
2176 data = ph.raw + off;
2177 } else {
2178 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2179 }
2180 to_write = tp_len;
2181
2182 if (sock->type == SOCK_DGRAM) {
2183 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2184 NULL, tp_len);
2185 if (unlikely(err < 0))
2186 return -EINVAL;
2187 } else if (dev->hard_header_len) {
2188 if (ll_header_truncated(dev, tp_len))
2189 return -EINVAL;
2190
2191 skb_push(skb, dev->hard_header_len);
2192 err = skb_store_bits(skb, 0, data,
2193 dev->hard_header_len);
2194 if (unlikely(err))
2195 return err;
2196
2197 data += dev->hard_header_len;
2198 to_write -= dev->hard_header_len;
2199 }
2200
2201 offset = offset_in_page(data);
2202 len_max = PAGE_SIZE - offset;
2203 len = ((to_write > len_max) ? len_max : to_write);
2204
2205 skb->data_len = to_write;
2206 skb->len += to_write;
2207 skb->truesize += to_write;
2208 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2209
2210 while (likely(to_write)) {
2211 nr_frags = skb_shinfo(skb)->nr_frags;
2212
2213 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2214 pr_err("Packet exceed the number of skb frags(%lu)\n",
2215 MAX_SKB_FRAGS);
2216 return -EFAULT;
2217 }
2218
2219 page = pgv_to_page(data);
2220 data += len;
2221 flush_dcache_page(page);
2222 get_page(page);
2223 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2224 to_write -= len;
2225 offset = 0;
2226 len_max = PAGE_SIZE;
2227 len = ((to_write > len_max) ? len_max : to_write);
2228 }
2229
2230 return tp_len;
2231 }
2232
2233 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2234 {
2235 struct sk_buff *skb;
2236 struct net_device *dev;
2237 __be16 proto;
2238 int err, reserve = 0;
2239 void *ph;
2240 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2241 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2242 int tp_len, size_max;
2243 unsigned char *addr;
2244 int len_sum = 0;
2245 int status = TP_STATUS_AVAILABLE;
2246 int hlen, tlen;
2247
2248 mutex_lock(&po->pg_vec_lock);
2249
2250 if (likely(saddr == NULL)) {
2251 dev = packet_cached_dev_get(po);
2252 proto = po->num;
2253 addr = NULL;
2254 } else {
2255 err = -EINVAL;
2256 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2257 goto out;
2258 if (msg->msg_namelen < (saddr->sll_halen
2259 + offsetof(struct sockaddr_ll,
2260 sll_addr)))
2261 goto out;
2262 proto = saddr->sll_protocol;
2263 addr = saddr->sll_addr;
2264 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2265 }
2266
2267 err = -ENXIO;
2268 if (unlikely(dev == NULL))
2269 goto out;
2270 err = -ENETDOWN;
2271 if (unlikely(!(dev->flags & IFF_UP)))
2272 goto out_put;
2273
2274 reserve = dev->hard_header_len + VLAN_HLEN;
2275 size_max = po->tx_ring.frame_size
2276 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2277
2278 if (size_max > dev->mtu + reserve)
2279 size_max = dev->mtu + reserve;
2280
2281 do {
2282 ph = packet_current_frame(po, &po->tx_ring,
2283 TP_STATUS_SEND_REQUEST);
2284 if (unlikely(ph == NULL)) {
2285 if (need_wait && need_resched())
2286 schedule();
2287 continue;
2288 }
2289
2290 status = TP_STATUS_SEND_REQUEST;
2291 hlen = LL_RESERVED_SPACE(dev);
2292 tlen = dev->needed_tailroom;
2293 skb = sock_alloc_send_skb(&po->sk,
2294 hlen + tlen + sizeof(struct sockaddr_ll),
2295 0, &err);
2296
2297 if (unlikely(skb == NULL))
2298 goto out_status;
2299
2300 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2301 addr, hlen);
2302 if (tp_len > dev->mtu + dev->hard_header_len) {
2303 struct ethhdr *ehdr;
2304 /* Earlier code assumed this would be a VLAN pkt,
2305 * double-check this now that we have the actual
2306 * packet in hand.
2307 */
2308
2309 skb_reset_mac_header(skb);
2310 ehdr = eth_hdr(skb);
2311 if (ehdr->h_proto != htons(ETH_P_8021Q))
2312 tp_len = -EMSGSIZE;
2313 }
2314 if (unlikely(tp_len < 0)) {
2315 if (po->tp_loss) {
2316 __packet_set_status(po, ph,
2317 TP_STATUS_AVAILABLE);
2318 packet_increment_head(&po->tx_ring);
2319 kfree_skb(skb);
2320 continue;
2321 } else {
2322 status = TP_STATUS_WRONG_FORMAT;
2323 err = tp_len;
2324 goto out_status;
2325 }
2326 }
2327
2328 packet_pick_tx_queue(dev, skb);
2329
2330 skb->destructor = tpacket_destruct_skb;
2331 __packet_set_status(po, ph, TP_STATUS_SENDING);
2332 packet_inc_pending(&po->tx_ring);
2333
2334 status = TP_STATUS_SEND_REQUEST;
2335 err = po->xmit(skb);
2336 if (unlikely(err > 0)) {
2337 err = net_xmit_errno(err);
2338 if (err && __packet_get_status(po, ph) ==
2339 TP_STATUS_AVAILABLE) {
2340 /* skb was destructed already */
2341 skb = NULL;
2342 goto out_status;
2343 }
2344 /*
2345 * skb was dropped but not destructed yet;
2346 * let's treat it like congestion or err < 0
2347 */
2348 err = 0;
2349 }
2350 packet_increment_head(&po->tx_ring);
2351 len_sum += tp_len;
2352 } while (likely((ph != NULL) ||
2353 /* Note: packet_read_pending() might be slow if we have
2354 * to call it as it's per_cpu variable, but in fast-path
2355 * we already short-circuit the loop with the first
2356 * condition, and luckily don't have to go that path
2357 * anyway.
2358 */
2359 (need_wait && packet_read_pending(&po->tx_ring))));
2360
2361 err = len_sum;
2362 goto out_put;
2363
2364 out_status:
2365 __packet_set_status(po, ph, status);
2366 kfree_skb(skb);
2367 out_put:
2368 dev_put(dev);
2369 out:
2370 mutex_unlock(&po->pg_vec_lock);
2371 return err;
2372 }
2373
2374 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2375 size_t reserve, size_t len,
2376 size_t linear, int noblock,
2377 int *err)
2378 {
2379 struct sk_buff *skb;
2380
2381 /* Under a page? Don't bother with paged skb. */
2382 if (prepad + len < PAGE_SIZE || !linear)
2383 linear = len;
2384
2385 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2386 err, 0);
2387 if (!skb)
2388 return NULL;
2389
2390 skb_reserve(skb, reserve);
2391 skb_put(skb, linear);
2392 skb->data_len = len - linear;
2393 skb->len += len - linear;
2394
2395 return skb;
2396 }
2397
2398 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2399 {
2400 struct sock *sk = sock->sk;
2401 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2402 struct sk_buff *skb;
2403 struct net_device *dev;
2404 __be16 proto;
2405 unsigned char *addr;
2406 int err, reserve = 0;
2407 struct virtio_net_hdr vnet_hdr = { 0 };
2408 int offset = 0;
2409 int vnet_hdr_len;
2410 struct packet_sock *po = pkt_sk(sk);
2411 unsigned short gso_type = 0;
2412 int hlen, tlen;
2413 int extra_len = 0;
2414 ssize_t n;
2415
2416 /*
2417 * Get and verify the address.
2418 */
2419
2420 if (likely(saddr == NULL)) {
2421 dev = packet_cached_dev_get(po);
2422 proto = po->num;
2423 addr = NULL;
2424 } else {
2425 err = -EINVAL;
2426 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2427 goto out;
2428 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2429 goto out;
2430 proto = saddr->sll_protocol;
2431 addr = saddr->sll_addr;
2432 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2433 }
2434
2435 err = -ENXIO;
2436 if (unlikely(dev == NULL))
2437 goto out_unlock;
2438 err = -ENETDOWN;
2439 if (unlikely(!(dev->flags & IFF_UP)))
2440 goto out_unlock;
2441
2442 if (sock->type == SOCK_RAW)
2443 reserve = dev->hard_header_len;
2444 if (po->has_vnet_hdr) {
2445 vnet_hdr_len = sizeof(vnet_hdr);
2446
2447 err = -EINVAL;
2448 if (len < vnet_hdr_len)
2449 goto out_unlock;
2450
2451 len -= vnet_hdr_len;
2452
2453 err = -EFAULT;
2454 n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter);
2455 if (n != vnet_hdr_len)
2456 goto out_unlock;
2457
2458 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2459 (__virtio16_to_cpu(false, vnet_hdr.csum_start) +
2460 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2 >
2461 __virtio16_to_cpu(false, vnet_hdr.hdr_len)))
2462 vnet_hdr.hdr_len = __cpu_to_virtio16(false,
2463 __virtio16_to_cpu(false, vnet_hdr.csum_start) +
2464 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2);
2465
2466 err = -EINVAL;
2467 if (__virtio16_to_cpu(false, vnet_hdr.hdr_len) > len)
2468 goto out_unlock;
2469
2470 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2471 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2472 case VIRTIO_NET_HDR_GSO_TCPV4:
2473 gso_type = SKB_GSO_TCPV4;
2474 break;
2475 case VIRTIO_NET_HDR_GSO_TCPV6:
2476 gso_type = SKB_GSO_TCPV6;
2477 break;
2478 case VIRTIO_NET_HDR_GSO_UDP:
2479 gso_type = SKB_GSO_UDP;
2480 break;
2481 default:
2482 goto out_unlock;
2483 }
2484
2485 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2486 gso_type |= SKB_GSO_TCP_ECN;
2487
2488 if (vnet_hdr.gso_size == 0)
2489 goto out_unlock;
2490
2491 }
2492 }
2493
2494 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2495 if (!netif_supports_nofcs(dev)) {
2496 err = -EPROTONOSUPPORT;
2497 goto out_unlock;
2498 }
2499 extra_len = 4; /* We're doing our own CRC */
2500 }
2501
2502 err = -EMSGSIZE;
2503 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2504 goto out_unlock;
2505
2506 err = -ENOBUFS;
2507 hlen = LL_RESERVED_SPACE(dev);
2508 tlen = dev->needed_tailroom;
2509 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,
2510 __virtio16_to_cpu(false, vnet_hdr.hdr_len),
2511 msg->msg_flags & MSG_DONTWAIT, &err);
2512 if (skb == NULL)
2513 goto out_unlock;
2514
2515 skb_set_network_header(skb, reserve);
2516
2517 err = -EINVAL;
2518 if (sock->type == SOCK_DGRAM) {
2519 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2520 if (unlikely(offset < 0))
2521 goto out_free;
2522 } else {
2523 if (ll_header_truncated(dev, len))
2524 goto out_free;
2525 }
2526
2527 /* Returns -EFAULT on error */
2528 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2529 if (err)
2530 goto out_free;
2531
2532 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2533
2534 if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2535 /* Earlier code assumed this would be a VLAN pkt,
2536 * double-check this now that we have the actual
2537 * packet in hand.
2538 */
2539 struct ethhdr *ehdr;
2540 skb_reset_mac_header(skb);
2541 ehdr = eth_hdr(skb);
2542 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2543 err = -EMSGSIZE;
2544 goto out_free;
2545 }
2546 }
2547
2548 skb->protocol = proto;
2549 skb->dev = dev;
2550 skb->priority = sk->sk_priority;
2551 skb->mark = sk->sk_mark;
2552
2553 packet_pick_tx_queue(dev, skb);
2554
2555 if (po->has_vnet_hdr) {
2556 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2557 u16 s = __virtio16_to_cpu(false, vnet_hdr.csum_start);
2558 u16 o = __virtio16_to_cpu(false, vnet_hdr.csum_offset);
2559 if (!skb_partial_csum_set(skb, s, o)) {
2560 err = -EINVAL;
2561 goto out_free;
2562 }
2563 }
2564
2565 skb_shinfo(skb)->gso_size =
2566 __virtio16_to_cpu(false, vnet_hdr.gso_size);
2567 skb_shinfo(skb)->gso_type = gso_type;
2568
2569 /* Header must be checked, and gso_segs computed. */
2570 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2571 skb_shinfo(skb)->gso_segs = 0;
2572
2573 len += vnet_hdr_len;
2574 }
2575
2576 if (!packet_use_direct_xmit(po))
2577 skb_probe_transport_header(skb, reserve);
2578 if (unlikely(extra_len == 4))
2579 skb->no_fcs = 1;
2580
2581 err = po->xmit(skb);
2582 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2583 goto out_unlock;
2584
2585 dev_put(dev);
2586
2587 return len;
2588
2589 out_free:
2590 kfree_skb(skb);
2591 out_unlock:
2592 if (dev)
2593 dev_put(dev);
2594 out:
2595 return err;
2596 }
2597
2598 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2599 struct msghdr *msg, size_t len)
2600 {
2601 struct sock *sk = sock->sk;
2602 struct packet_sock *po = pkt_sk(sk);
2603
2604 if (po->tx_ring.pg_vec)
2605 return tpacket_snd(po, msg);
2606 else
2607 return packet_snd(sock, msg, len);
2608 }
2609
2610 /*
2611 * Close a PACKET socket. This is fairly simple. We immediately go
2612 * to 'closed' state and remove our protocol entry in the device list.
2613 */
2614
2615 static int packet_release(struct socket *sock)
2616 {
2617 struct sock *sk = sock->sk;
2618 struct packet_sock *po;
2619 struct net *net;
2620 union tpacket_req_u req_u;
2621
2622 if (!sk)
2623 return 0;
2624
2625 net = sock_net(sk);
2626 po = pkt_sk(sk);
2627
2628 mutex_lock(&net->packet.sklist_lock);
2629 sk_del_node_init_rcu(sk);
2630 mutex_unlock(&net->packet.sklist_lock);
2631
2632 preempt_disable();
2633 sock_prot_inuse_add(net, sk->sk_prot, -1);
2634 preempt_enable();
2635
2636 spin_lock(&po->bind_lock);
2637 unregister_prot_hook(sk, false);
2638 packet_cached_dev_reset(po);
2639
2640 if (po->prot_hook.dev) {
2641 dev_put(po->prot_hook.dev);
2642 po->prot_hook.dev = NULL;
2643 }
2644 spin_unlock(&po->bind_lock);
2645
2646 packet_flush_mclist(sk);
2647
2648 if (po->rx_ring.pg_vec) {
2649 memset(&req_u, 0, sizeof(req_u));
2650 packet_set_ring(sk, &req_u, 1, 0);
2651 }
2652
2653 if (po->tx_ring.pg_vec) {
2654 memset(&req_u, 0, sizeof(req_u));
2655 packet_set_ring(sk, &req_u, 1, 1);
2656 }
2657
2658 fanout_release(sk);
2659
2660 synchronize_net();
2661 /*
2662 * Now the socket is dead. No more input will appear.
2663 */
2664 sock_orphan(sk);
2665 sock->sk = NULL;
2666
2667 /* Purge queues */
2668
2669 skb_queue_purge(&sk->sk_receive_queue);
2670 packet_free_pending(po);
2671 sk_refcnt_debug_release(sk);
2672
2673 sock_put(sk);
2674 return 0;
2675 }
2676
2677 /*
2678 * Attach a packet hook.
2679 */
2680
2681 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2682 {
2683 struct packet_sock *po = pkt_sk(sk);
2684 const struct net_device *dev_curr;
2685 __be16 proto_curr;
2686 bool need_rehook;
2687
2688 if (po->fanout) {
2689 if (dev)
2690 dev_put(dev);
2691
2692 return -EINVAL;
2693 }
2694
2695 lock_sock(sk);
2696 spin_lock(&po->bind_lock);
2697
2698 proto_curr = po->prot_hook.type;
2699 dev_curr = po->prot_hook.dev;
2700
2701 need_rehook = proto_curr != proto || dev_curr != dev;
2702
2703 if (need_rehook) {
2704 unregister_prot_hook(sk, true);
2705
2706 po->num = proto;
2707 po->prot_hook.type = proto;
2708
2709 if (po->prot_hook.dev)
2710 dev_put(po->prot_hook.dev);
2711
2712 po->prot_hook.dev = dev;
2713
2714 po->ifindex = dev ? dev->ifindex : 0;
2715 packet_cached_dev_assign(po, dev);
2716 }
2717
2718 if (proto == 0 || !need_rehook)
2719 goto out_unlock;
2720
2721 if (!dev || (dev->flags & IFF_UP)) {
2722 register_prot_hook(sk);
2723 } else {
2724 sk->sk_err = ENETDOWN;
2725 if (!sock_flag(sk, SOCK_DEAD))
2726 sk->sk_error_report(sk);
2727 }
2728
2729 out_unlock:
2730 spin_unlock(&po->bind_lock);
2731 release_sock(sk);
2732 return 0;
2733 }
2734
2735 /*
2736 * Bind a packet socket to a device
2737 */
2738
2739 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2740 int addr_len)
2741 {
2742 struct sock *sk = sock->sk;
2743 char name[15];
2744 struct net_device *dev;
2745 int err = -ENODEV;
2746
2747 /*
2748 * Check legality
2749 */
2750
2751 if (addr_len != sizeof(struct sockaddr))
2752 return -EINVAL;
2753 strlcpy(name, uaddr->sa_data, sizeof(name));
2754
2755 dev = dev_get_by_name(sock_net(sk), name);
2756 if (dev)
2757 err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2758 return err;
2759 }
2760
2761 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2762 {
2763 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2764 struct sock *sk = sock->sk;
2765 struct net_device *dev = NULL;
2766 int err;
2767
2768
2769 /*
2770 * Check legality
2771 */
2772
2773 if (addr_len < sizeof(struct sockaddr_ll))
2774 return -EINVAL;
2775 if (sll->sll_family != AF_PACKET)
2776 return -EINVAL;
2777
2778 if (sll->sll_ifindex) {
2779 err = -ENODEV;
2780 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2781 if (dev == NULL)
2782 goto out;
2783 }
2784 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2785
2786 out:
2787 return err;
2788 }
2789
2790 static struct proto packet_proto = {
2791 .name = "PACKET",
2792 .owner = THIS_MODULE,
2793 .obj_size = sizeof(struct packet_sock),
2794 };
2795
2796 /*
2797 * Create a packet of type SOCK_PACKET.
2798 */
2799
2800 static int packet_create(struct net *net, struct socket *sock, int protocol,
2801 int kern)
2802 {
2803 struct sock *sk;
2804 struct packet_sock *po;
2805 __be16 proto = (__force __be16)protocol; /* weird, but documented */
2806 int err;
2807
2808 if (!ns_capable(net->user_ns, CAP_NET_RAW))
2809 return -EPERM;
2810 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2811 sock->type != SOCK_PACKET)
2812 return -ESOCKTNOSUPPORT;
2813
2814 sock->state = SS_UNCONNECTED;
2815
2816 err = -ENOBUFS;
2817 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2818 if (sk == NULL)
2819 goto out;
2820
2821 sock->ops = &packet_ops;
2822 if (sock->type == SOCK_PACKET)
2823 sock->ops = &packet_ops_spkt;
2824
2825 sock_init_data(sock, sk);
2826
2827 po = pkt_sk(sk);
2828 sk->sk_family = PF_PACKET;
2829 po->num = proto;
2830 po->xmit = dev_queue_xmit;
2831
2832 err = packet_alloc_pending(po);
2833 if (err)
2834 goto out2;
2835
2836 packet_cached_dev_reset(po);
2837
2838 sk->sk_destruct = packet_sock_destruct;
2839 sk_refcnt_debug_inc(sk);
2840
2841 /*
2842 * Attach a protocol block
2843 */
2844
2845 spin_lock_init(&po->bind_lock);
2846 mutex_init(&po->pg_vec_lock);
2847 po->prot_hook.func = packet_rcv;
2848
2849 if (sock->type == SOCK_PACKET)
2850 po->prot_hook.func = packet_rcv_spkt;
2851
2852 po->prot_hook.af_packet_priv = sk;
2853
2854 if (proto) {
2855 po->prot_hook.type = proto;
2856 register_prot_hook(sk);
2857 }
2858
2859 mutex_lock(&net->packet.sklist_lock);
2860 sk_add_node_rcu(sk, &net->packet.sklist);
2861 mutex_unlock(&net->packet.sklist_lock);
2862
2863 preempt_disable();
2864 sock_prot_inuse_add(net, &packet_proto, 1);
2865 preempt_enable();
2866
2867 return 0;
2868 out2:
2869 sk_free(sk);
2870 out:
2871 return err;
2872 }
2873
2874 /*
2875 * Pull a packet from our receive queue and hand it to the user.
2876 * If necessary we block.
2877 */
2878
2879 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2880 struct msghdr *msg, size_t len, int flags)
2881 {
2882 struct sock *sk = sock->sk;
2883 struct sk_buff *skb;
2884 int copied, err;
2885 int vnet_hdr_len = 0;
2886
2887 err = -EINVAL;
2888 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2889 goto out;
2890
2891 #if 0
2892 /* What error should we return now? EUNATTACH? */
2893 if (pkt_sk(sk)->ifindex < 0)
2894 return -ENODEV;
2895 #endif
2896
2897 if (flags & MSG_ERRQUEUE) {
2898 err = sock_recv_errqueue(sk, msg, len,
2899 SOL_PACKET, PACKET_TX_TIMESTAMP);
2900 goto out;
2901 }
2902
2903 /*
2904 * Call the generic datagram receiver. This handles all sorts
2905 * of horrible races and re-entrancy so we can forget about it
2906 * in the protocol layers.
2907 *
2908 * Now it will return ENETDOWN, if device have just gone down,
2909 * but then it will block.
2910 */
2911
2912 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2913
2914 /*
2915 * An error occurred so return it. Because skb_recv_datagram()
2916 * handles the blocking we don't see and worry about blocking
2917 * retries.
2918 */
2919
2920 if (skb == NULL)
2921 goto out;
2922
2923 if (pkt_sk(sk)->has_vnet_hdr) {
2924 struct virtio_net_hdr vnet_hdr = { 0 };
2925
2926 err = -EINVAL;
2927 vnet_hdr_len = sizeof(vnet_hdr);
2928 if (len < vnet_hdr_len)
2929 goto out_free;
2930
2931 len -= vnet_hdr_len;
2932
2933 if (skb_is_gso(skb)) {
2934 struct skb_shared_info *sinfo = skb_shinfo(skb);
2935
2936 /* This is a hint as to how much should be linear. */
2937 vnet_hdr.hdr_len =
2938 __cpu_to_virtio16(false, skb_headlen(skb));
2939 vnet_hdr.gso_size =
2940 __cpu_to_virtio16(false, sinfo->gso_size);
2941 if (sinfo->gso_type & SKB_GSO_TCPV4)
2942 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2943 else if (sinfo->gso_type & SKB_GSO_TCPV6)
2944 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2945 else if (sinfo->gso_type & SKB_GSO_UDP)
2946 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2947 else if (sinfo->gso_type & SKB_GSO_FCOE)
2948 goto out_free;
2949 else
2950 BUG();
2951 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2952 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2953 } else
2954 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2955
2956 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2957 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2958 vnet_hdr.csum_start = __cpu_to_virtio16(false,
2959 skb_checksum_start_offset(skb));
2960 vnet_hdr.csum_offset = __cpu_to_virtio16(false,
2961 skb->csum_offset);
2962 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2963 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2964 } /* else everything is zero */
2965
2966 err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len);
2967 if (err < 0)
2968 goto out_free;
2969 }
2970
2971 /* You lose any data beyond the buffer you gave. If it worries
2972 * a user program they can ask the device for its MTU
2973 * anyway.
2974 */
2975 copied = skb->len;
2976 if (copied > len) {
2977 copied = len;
2978 msg->msg_flags |= MSG_TRUNC;
2979 }
2980
2981 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2982 if (err)
2983 goto out_free;
2984
2985 sock_recv_ts_and_drops(msg, sk, skb);
2986
2987 if (msg->msg_name) {
2988 /* If the address length field is there to be filled
2989 * in, we fill it in now.
2990 */
2991 if (sock->type == SOCK_PACKET) {
2992 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
2993 msg->msg_namelen = sizeof(struct sockaddr_pkt);
2994 } else {
2995 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
2996 msg->msg_namelen = sll->sll_halen +
2997 offsetof(struct sockaddr_ll, sll_addr);
2998 }
2999 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3000 msg->msg_namelen);
3001 }
3002
3003 if (pkt_sk(sk)->auxdata) {
3004 struct tpacket_auxdata aux;
3005
3006 aux.tp_status = TP_STATUS_USER;
3007 if (skb->ip_summed == CHECKSUM_PARTIAL)
3008 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3009 aux.tp_len = PACKET_SKB_CB(skb)->origlen;
3010 aux.tp_snaplen = skb->len;
3011 aux.tp_mac = 0;
3012 aux.tp_net = skb_network_offset(skb);
3013 if (skb_vlan_tag_present(skb)) {
3014 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3015 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3016 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3017 } else {
3018 aux.tp_vlan_tci = 0;
3019 aux.tp_vlan_tpid = 0;
3020 }
3021 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3022 }
3023
3024 /*
3025 * Free or return the buffer as appropriate. Again this
3026 * hides all the races and re-entrancy issues from us.
3027 */
3028 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3029
3030 out_free:
3031 skb_free_datagram(sk, skb);
3032 out:
3033 return err;
3034 }
3035
3036 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3037 int *uaddr_len, int peer)
3038 {
3039 struct net_device *dev;
3040 struct sock *sk = sock->sk;
3041
3042 if (peer)
3043 return -EOPNOTSUPP;
3044
3045 uaddr->sa_family = AF_PACKET;
3046 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3047 rcu_read_lock();
3048 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3049 if (dev)
3050 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3051 rcu_read_unlock();
3052 *uaddr_len = sizeof(*uaddr);
3053
3054 return 0;
3055 }
3056
3057 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3058 int *uaddr_len, int peer)
3059 {
3060 struct net_device *dev;
3061 struct sock *sk = sock->sk;
3062 struct packet_sock *po = pkt_sk(sk);
3063 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3064
3065 if (peer)
3066 return -EOPNOTSUPP;
3067
3068 sll->sll_family = AF_PACKET;
3069 sll->sll_ifindex = po->ifindex;
3070 sll->sll_protocol = po->num;
3071 sll->sll_pkttype = 0;
3072 rcu_read_lock();
3073 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3074 if (dev) {
3075 sll->sll_hatype = dev->type;
3076 sll->sll_halen = dev->addr_len;
3077 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3078 } else {
3079 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3080 sll->sll_halen = 0;
3081 }
3082 rcu_read_unlock();
3083 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3084
3085 return 0;
3086 }
3087
3088 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3089 int what)
3090 {
3091 switch (i->type) {
3092 case PACKET_MR_MULTICAST:
3093 if (i->alen != dev->addr_len)
3094 return -EINVAL;
3095 if (what > 0)
3096 return dev_mc_add(dev, i->addr);
3097 else
3098 return dev_mc_del(dev, i->addr);
3099 break;
3100 case PACKET_MR_PROMISC:
3101 return dev_set_promiscuity(dev, what);
3102 case PACKET_MR_ALLMULTI:
3103 return dev_set_allmulti(dev, what);
3104 case PACKET_MR_UNICAST:
3105 if (i->alen != dev->addr_len)
3106 return -EINVAL;
3107 if (what > 0)
3108 return dev_uc_add(dev, i->addr);
3109 else
3110 return dev_uc_del(dev, i->addr);
3111 break;
3112 default:
3113 break;
3114 }
3115 return 0;
3116 }
3117
3118 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
3119 {
3120 for ( ; i; i = i->next) {
3121 if (i->ifindex == dev->ifindex)
3122 packet_dev_mc(dev, i, what);
3123 }
3124 }
3125
3126 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3127 {
3128 struct packet_sock *po = pkt_sk(sk);
3129 struct packet_mclist *ml, *i;
3130 struct net_device *dev;
3131 int err;
3132
3133 rtnl_lock();
3134
3135 err = -ENODEV;
3136 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3137 if (!dev)
3138 goto done;
3139
3140 err = -EINVAL;
3141 if (mreq->mr_alen > dev->addr_len)
3142 goto done;
3143
3144 err = -ENOBUFS;
3145 i = kmalloc(sizeof(*i), GFP_KERNEL);
3146 if (i == NULL)
3147 goto done;
3148
3149 err = 0;
3150 for (ml = po->mclist; ml; ml = ml->next) {
3151 if (ml->ifindex == mreq->mr_ifindex &&
3152 ml->type == mreq->mr_type &&
3153 ml->alen == mreq->mr_alen &&
3154 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3155 ml->count++;
3156 /* Free the new element ... */
3157 kfree(i);
3158 goto done;
3159 }
3160 }
3161
3162 i->type = mreq->mr_type;
3163 i->ifindex = mreq->mr_ifindex;
3164 i->alen = mreq->mr_alen;
3165 memcpy(i->addr, mreq->mr_address, i->alen);
3166 i->count = 1;
3167 i->next = po->mclist;
3168 po->mclist = i;
3169 err = packet_dev_mc(dev, i, 1);
3170 if (err) {
3171 po->mclist = i->next;
3172 kfree(i);
3173 }
3174
3175 done:
3176 rtnl_unlock();
3177 return err;
3178 }
3179
3180 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3181 {
3182 struct packet_mclist *ml, **mlp;
3183
3184 rtnl_lock();
3185
3186 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3187 if (ml->ifindex == mreq->mr_ifindex &&
3188 ml->type == mreq->mr_type &&
3189 ml->alen == mreq->mr_alen &&
3190 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3191 if (--ml->count == 0) {
3192 struct net_device *dev;
3193 *mlp = ml->next;
3194 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3195 if (dev)
3196 packet_dev_mc(dev, ml, -1);
3197 kfree(ml);
3198 }
3199 rtnl_unlock();
3200 return 0;
3201 }
3202 }
3203 rtnl_unlock();
3204 return -EADDRNOTAVAIL;
3205 }
3206
3207 static void packet_flush_mclist(struct sock *sk)
3208 {
3209 struct packet_sock *po = pkt_sk(sk);
3210 struct packet_mclist *ml;
3211
3212 if (!po->mclist)
3213 return;
3214
3215 rtnl_lock();
3216 while ((ml = po->mclist) != NULL) {
3217 struct net_device *dev;
3218
3219 po->mclist = ml->next;
3220 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3221 if (dev != NULL)
3222 packet_dev_mc(dev, ml, -1);
3223 kfree(ml);
3224 }
3225 rtnl_unlock();
3226 }
3227
3228 static int
3229 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3230 {
3231 struct sock *sk = sock->sk;
3232 struct packet_sock *po = pkt_sk(sk);
3233 int ret;
3234
3235 if (level != SOL_PACKET)
3236 return -ENOPROTOOPT;
3237
3238 switch (optname) {
3239 case PACKET_ADD_MEMBERSHIP:
3240 case PACKET_DROP_MEMBERSHIP:
3241 {
3242 struct packet_mreq_max mreq;
3243 int len = optlen;
3244 memset(&mreq, 0, sizeof(mreq));
3245 if (len < sizeof(struct packet_mreq))
3246 return -EINVAL;
3247 if (len > sizeof(mreq))
3248 len = sizeof(mreq);
3249 if (copy_from_user(&mreq, optval, len))
3250 return -EFAULT;
3251 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3252 return -EINVAL;
3253 if (optname == PACKET_ADD_MEMBERSHIP)
3254 ret = packet_mc_add(sk, &mreq);
3255 else
3256 ret = packet_mc_drop(sk, &mreq);
3257 return ret;
3258 }
3259
3260 case PACKET_RX_RING:
3261 case PACKET_TX_RING:
3262 {
3263 union tpacket_req_u req_u;
3264 int len;
3265
3266 switch (po->tp_version) {
3267 case TPACKET_V1:
3268 case TPACKET_V2:
3269 len = sizeof(req_u.req);
3270 break;
3271 case TPACKET_V3:
3272 default:
3273 len = sizeof(req_u.req3);
3274 break;
3275 }
3276 if (optlen < len)
3277 return -EINVAL;
3278 if (pkt_sk(sk)->has_vnet_hdr)
3279 return -EINVAL;
3280 if (copy_from_user(&req_u.req, optval, len))
3281 return -EFAULT;
3282 return packet_set_ring(sk, &req_u, 0,
3283 optname == PACKET_TX_RING);
3284 }
3285 case PACKET_COPY_THRESH:
3286 {
3287 int val;
3288
3289 if (optlen != sizeof(val))
3290 return -EINVAL;
3291 if (copy_from_user(&val, optval, sizeof(val)))
3292 return -EFAULT;
3293
3294 pkt_sk(sk)->copy_thresh = val;
3295 return 0;
3296 }
3297 case PACKET_VERSION:
3298 {
3299 int val;
3300
3301 if (optlen != sizeof(val))
3302 return -EINVAL;
3303 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3304 return -EBUSY;
3305 if (copy_from_user(&val, optval, sizeof(val)))
3306 return -EFAULT;
3307 switch (val) {
3308 case TPACKET_V1:
3309 case TPACKET_V2:
3310 case TPACKET_V3:
3311 po->tp_version = val;
3312 return 0;
3313 default:
3314 return -EINVAL;
3315 }
3316 }
3317 case PACKET_RESERVE:
3318 {
3319 unsigned int val;
3320
3321 if (optlen != sizeof(val))
3322 return -EINVAL;
3323 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3324 return -EBUSY;
3325 if (copy_from_user(&val, optval, sizeof(val)))
3326 return -EFAULT;
3327 po->tp_reserve = val;
3328 return 0;
3329 }
3330 case PACKET_LOSS:
3331 {
3332 unsigned int val;
3333
3334 if (optlen != sizeof(val))
3335 return -EINVAL;
3336 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3337 return -EBUSY;
3338 if (copy_from_user(&val, optval, sizeof(val)))
3339 return -EFAULT;
3340 po->tp_loss = !!val;
3341 return 0;
3342 }
3343 case PACKET_AUXDATA:
3344 {
3345 int val;
3346
3347 if (optlen < sizeof(val))
3348 return -EINVAL;
3349 if (copy_from_user(&val, optval, sizeof(val)))
3350 return -EFAULT;
3351
3352 po->auxdata = !!val;
3353 return 0;
3354 }
3355 case PACKET_ORIGDEV:
3356 {
3357 int val;
3358
3359 if (optlen < sizeof(val))
3360 return -EINVAL;
3361 if (copy_from_user(&val, optval, sizeof(val)))
3362 return -EFAULT;
3363
3364 po->origdev = !!val;
3365 return 0;
3366 }
3367 case PACKET_VNET_HDR:
3368 {
3369 int val;
3370
3371 if (sock->type != SOCK_RAW)
3372 return -EINVAL;
3373 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3374 return -EBUSY;
3375 if (optlen < sizeof(val))
3376 return -EINVAL;
3377 if (copy_from_user(&val, optval, sizeof(val)))
3378 return -EFAULT;
3379
3380 po->has_vnet_hdr = !!val;
3381 return 0;
3382 }
3383 case PACKET_TIMESTAMP:
3384 {
3385 int val;
3386
3387 if (optlen != sizeof(val))
3388 return -EINVAL;
3389 if (copy_from_user(&val, optval, sizeof(val)))
3390 return -EFAULT;
3391
3392 po->tp_tstamp = val;
3393 return 0;
3394 }
3395 case PACKET_FANOUT:
3396 {
3397 int val;
3398
3399 if (optlen != sizeof(val))
3400 return -EINVAL;
3401 if (copy_from_user(&val, optval, sizeof(val)))
3402 return -EFAULT;
3403
3404 return fanout_add(sk, val & 0xffff, val >> 16);
3405 }
3406 case PACKET_TX_HAS_OFF:
3407 {
3408 unsigned int val;
3409
3410 if (optlen != sizeof(val))
3411 return -EINVAL;
3412 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3413 return -EBUSY;
3414 if (copy_from_user(&val, optval, sizeof(val)))
3415 return -EFAULT;
3416 po->tp_tx_has_off = !!val;
3417 return 0;
3418 }
3419 case PACKET_QDISC_BYPASS:
3420 {
3421 int val;
3422
3423 if (optlen != sizeof(val))
3424 return -EINVAL;
3425 if (copy_from_user(&val, optval, sizeof(val)))
3426 return -EFAULT;
3427
3428 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3429 return 0;
3430 }
3431 default:
3432 return -ENOPROTOOPT;
3433 }
3434 }
3435
3436 static int packet_getsockopt(struct socket *sock, int level, int optname,
3437 char __user *optval, int __user *optlen)
3438 {
3439 int len;
3440 int val, lv = sizeof(val);
3441 struct sock *sk = sock->sk;
3442 struct packet_sock *po = pkt_sk(sk);
3443 void *data = &val;
3444 union tpacket_stats_u st;
3445
3446 if (level != SOL_PACKET)
3447 return -ENOPROTOOPT;
3448
3449 if (get_user(len, optlen))
3450 return -EFAULT;
3451
3452 if (len < 0)
3453 return -EINVAL;
3454
3455 switch (optname) {
3456 case PACKET_STATISTICS:
3457 spin_lock_bh(&sk->sk_receive_queue.lock);
3458 memcpy(&st, &po->stats, sizeof(st));
3459 memset(&po->stats, 0, sizeof(po->stats));
3460 spin_unlock_bh(&sk->sk_receive_queue.lock);
3461
3462 if (po->tp_version == TPACKET_V3) {
3463 lv = sizeof(struct tpacket_stats_v3);
3464 st.stats3.tp_packets += st.stats3.tp_drops;
3465 data = &st.stats3;
3466 } else {
3467 lv = sizeof(struct tpacket_stats);
3468 st.stats1.tp_packets += st.stats1.tp_drops;
3469 data = &st.stats1;
3470 }
3471
3472 break;
3473 case PACKET_AUXDATA:
3474 val = po->auxdata;
3475 break;
3476 case PACKET_ORIGDEV:
3477 val = po->origdev;
3478 break;
3479 case PACKET_VNET_HDR:
3480 val = po->has_vnet_hdr;
3481 break;
3482 case PACKET_VERSION:
3483 val = po->tp_version;
3484 break;
3485 case PACKET_HDRLEN:
3486 if (len > sizeof(int))
3487 len = sizeof(int);
3488 if (copy_from_user(&val, optval, len))
3489 return -EFAULT;
3490 switch (val) {
3491 case TPACKET_V1:
3492 val = sizeof(struct tpacket_hdr);
3493 break;
3494 case TPACKET_V2:
3495 val = sizeof(struct tpacket2_hdr);
3496 break;
3497 case TPACKET_V3:
3498 val = sizeof(struct tpacket3_hdr);
3499 break;
3500 default:
3501 return -EINVAL;
3502 }
3503 break;
3504 case PACKET_RESERVE:
3505 val = po->tp_reserve;
3506 break;
3507 case PACKET_LOSS:
3508 val = po->tp_loss;
3509 break;
3510 case PACKET_TIMESTAMP:
3511 val = po->tp_tstamp;
3512 break;
3513 case PACKET_FANOUT:
3514 val = (po->fanout ?
3515 ((u32)po->fanout->id |
3516 ((u32)po->fanout->type << 16) |
3517 ((u32)po->fanout->flags << 24)) :
3518 0);
3519 break;
3520 case PACKET_TX_HAS_OFF:
3521 val = po->tp_tx_has_off;
3522 break;
3523 case PACKET_QDISC_BYPASS:
3524 val = packet_use_direct_xmit(po);
3525 break;
3526 default:
3527 return -ENOPROTOOPT;
3528 }
3529
3530 if (len > lv)
3531 len = lv;
3532 if (put_user(len, optlen))
3533 return -EFAULT;
3534 if (copy_to_user(optval, data, len))
3535 return -EFAULT;
3536 return 0;
3537 }
3538
3539
3540 static int packet_notifier(struct notifier_block *this,
3541 unsigned long msg, void *ptr)
3542 {
3543 struct sock *sk;
3544 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3545 struct net *net = dev_net(dev);
3546
3547 rcu_read_lock();
3548 sk_for_each_rcu(sk, &net->packet.sklist) {
3549 struct packet_sock *po = pkt_sk(sk);
3550
3551 switch (msg) {
3552 case NETDEV_UNREGISTER:
3553 if (po->mclist)
3554 packet_dev_mclist(dev, po->mclist, -1);
3555 /* fallthrough */
3556
3557 case NETDEV_DOWN:
3558 if (dev->ifindex == po->ifindex) {
3559 spin_lock(&po->bind_lock);
3560 if (po->running) {
3561 __unregister_prot_hook(sk, false);
3562 sk->sk_err = ENETDOWN;
3563 if (!sock_flag(sk, SOCK_DEAD))
3564 sk->sk_error_report(sk);
3565 }
3566 if (msg == NETDEV_UNREGISTER) {
3567 packet_cached_dev_reset(po);
3568 po->ifindex = -1;
3569 if (po->prot_hook.dev)
3570 dev_put(po->prot_hook.dev);
3571 po->prot_hook.dev = NULL;
3572 }
3573 spin_unlock(&po->bind_lock);
3574 }
3575 break;
3576 case NETDEV_UP:
3577 if (dev->ifindex == po->ifindex) {
3578 spin_lock(&po->bind_lock);
3579 if (po->num)
3580 register_prot_hook(sk);
3581 spin_unlock(&po->bind_lock);
3582 }
3583 break;
3584 }
3585 }
3586 rcu_read_unlock();
3587 return NOTIFY_DONE;
3588 }
3589
3590
3591 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3592 unsigned long arg)
3593 {
3594 struct sock *sk = sock->sk;
3595
3596 switch (cmd) {
3597 case SIOCOUTQ:
3598 {
3599 int amount = sk_wmem_alloc_get(sk);
3600
3601 return put_user(amount, (int __user *)arg);
3602 }
3603 case SIOCINQ:
3604 {
3605 struct sk_buff *skb;
3606 int amount = 0;
3607
3608 spin_lock_bh(&sk->sk_receive_queue.lock);
3609 skb = skb_peek(&sk->sk_receive_queue);
3610 if (skb)
3611 amount = skb->len;
3612 spin_unlock_bh(&sk->sk_receive_queue.lock);
3613 return put_user(amount, (int __user *)arg);
3614 }
3615 case SIOCGSTAMP:
3616 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3617 case SIOCGSTAMPNS:
3618 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3619
3620 #ifdef CONFIG_INET
3621 case SIOCADDRT:
3622 case SIOCDELRT:
3623 case SIOCDARP:
3624 case SIOCGARP:
3625 case SIOCSARP:
3626 case SIOCGIFADDR:
3627 case SIOCSIFADDR:
3628 case SIOCGIFBRDADDR:
3629 case SIOCSIFBRDADDR:
3630 case SIOCGIFNETMASK:
3631 case SIOCSIFNETMASK:
3632 case SIOCGIFDSTADDR:
3633 case SIOCSIFDSTADDR:
3634 case SIOCSIFFLAGS:
3635 return inet_dgram_ops.ioctl(sock, cmd, arg);
3636 #endif
3637
3638 default:
3639 return -ENOIOCTLCMD;
3640 }
3641 return 0;
3642 }
3643
3644 static unsigned int packet_poll(struct file *file, struct socket *sock,
3645 poll_table *wait)
3646 {
3647 struct sock *sk = sock->sk;
3648 struct packet_sock *po = pkt_sk(sk);
3649 unsigned int mask = datagram_poll(file, sock, wait);
3650
3651 spin_lock_bh(&sk->sk_receive_queue.lock);
3652 if (po->rx_ring.pg_vec) {
3653 if (!packet_previous_rx_frame(po, &po->rx_ring,
3654 TP_STATUS_KERNEL))
3655 mask |= POLLIN | POLLRDNORM;
3656 }
3657 spin_unlock_bh(&sk->sk_receive_queue.lock);
3658 spin_lock_bh(&sk->sk_write_queue.lock);
3659 if (po->tx_ring.pg_vec) {
3660 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3661 mask |= POLLOUT | POLLWRNORM;
3662 }
3663 spin_unlock_bh(&sk->sk_write_queue.lock);
3664 return mask;
3665 }
3666
3667
3668 /* Dirty? Well, I still did not learn better way to account
3669 * for user mmaps.
3670 */
3671
3672 static void packet_mm_open(struct vm_area_struct *vma)
3673 {
3674 struct file *file = vma->vm_file;
3675 struct socket *sock = file->private_data;
3676 struct sock *sk = sock->sk;
3677
3678 if (sk)
3679 atomic_inc(&pkt_sk(sk)->mapped);
3680 }
3681
3682 static void packet_mm_close(struct vm_area_struct *vma)
3683 {
3684 struct file *file = vma->vm_file;
3685 struct socket *sock = file->private_data;
3686 struct sock *sk = sock->sk;
3687
3688 if (sk)
3689 atomic_dec(&pkt_sk(sk)->mapped);
3690 }
3691
3692 static const struct vm_operations_struct packet_mmap_ops = {
3693 .open = packet_mm_open,
3694 .close = packet_mm_close,
3695 };
3696
3697 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3698 unsigned int len)
3699 {
3700 int i;
3701
3702 for (i = 0; i < len; i++) {
3703 if (likely(pg_vec[i].buffer)) {
3704 if (is_vmalloc_addr(pg_vec[i].buffer))
3705 vfree(pg_vec[i].buffer);
3706 else
3707 free_pages((unsigned long)pg_vec[i].buffer,
3708 order);
3709 pg_vec[i].buffer = NULL;
3710 }
3711 }
3712 kfree(pg_vec);
3713 }
3714
3715 static char *alloc_one_pg_vec_page(unsigned long order)
3716 {
3717 char *buffer;
3718 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3719 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3720
3721 buffer = (char *) __get_free_pages(gfp_flags, order);
3722 if (buffer)
3723 return buffer;
3724
3725 /* __get_free_pages failed, fall back to vmalloc */
3726 buffer = vzalloc((1 << order) * PAGE_SIZE);
3727 if (buffer)
3728 return buffer;
3729
3730 /* vmalloc failed, lets dig into swap here */
3731 gfp_flags &= ~__GFP_NORETRY;
3732 buffer = (char *) __get_free_pages(gfp_flags, order);
3733 if (buffer)
3734 return buffer;
3735
3736 /* complete and utter failure */
3737 return NULL;
3738 }
3739
3740 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3741 {
3742 unsigned int block_nr = req->tp_block_nr;
3743 struct pgv *pg_vec;
3744 int i;
3745
3746 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3747 if (unlikely(!pg_vec))
3748 goto out;
3749
3750 for (i = 0; i < block_nr; i++) {
3751 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3752 if (unlikely(!pg_vec[i].buffer))
3753 goto out_free_pgvec;
3754 }
3755
3756 out:
3757 return pg_vec;
3758
3759 out_free_pgvec:
3760 free_pg_vec(pg_vec, order, block_nr);
3761 pg_vec = NULL;
3762 goto out;
3763 }
3764
3765 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3766 int closing, int tx_ring)
3767 {
3768 struct pgv *pg_vec = NULL;
3769 struct packet_sock *po = pkt_sk(sk);
3770 int was_running, order = 0;
3771 struct packet_ring_buffer *rb;
3772 struct sk_buff_head *rb_queue;
3773 __be16 num;
3774 int err = -EINVAL;
3775 /* Added to avoid minimal code churn */
3776 struct tpacket_req *req = &req_u->req;
3777
3778 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3779 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3780 WARN(1, "Tx-ring is not supported.\n");
3781 goto out;
3782 }
3783
3784 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3785 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3786
3787 err = -EBUSY;
3788 if (!closing) {
3789 if (atomic_read(&po->mapped))
3790 goto out;
3791 if (packet_read_pending(rb))
3792 goto out;
3793 }
3794
3795 if (req->tp_block_nr) {
3796 /* Sanity tests and some calculations */
3797 err = -EBUSY;
3798 if (unlikely(rb->pg_vec))
3799 goto out;
3800
3801 switch (po->tp_version) {
3802 case TPACKET_V1:
3803 po->tp_hdrlen = TPACKET_HDRLEN;
3804 break;
3805 case TPACKET_V2:
3806 po->tp_hdrlen = TPACKET2_HDRLEN;
3807 break;
3808 case TPACKET_V3:
3809 po->tp_hdrlen = TPACKET3_HDRLEN;
3810 break;
3811 }
3812
3813 err = -EINVAL;
3814 if (unlikely((int)req->tp_block_size <= 0))
3815 goto out;
3816 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3817 goto out;
3818 if (po->tp_version >= TPACKET_V3 &&
3819 (int)(req->tp_block_size -
3820 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
3821 goto out;
3822 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3823 po->tp_reserve))
3824 goto out;
3825 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3826 goto out;
3827
3828 rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3829 if (unlikely(rb->frames_per_block <= 0))
3830 goto out;
3831 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3832 req->tp_frame_nr))
3833 goto out;
3834
3835 err = -ENOMEM;
3836 order = get_order(req->tp_block_size);
3837 pg_vec = alloc_pg_vec(req, order);
3838 if (unlikely(!pg_vec))
3839 goto out;
3840 switch (po->tp_version) {
3841 case TPACKET_V3:
3842 /* Transmit path is not supported. We checked
3843 * it above but just being paranoid
3844 */
3845 if (!tx_ring)
3846 init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3847 break;
3848 default:
3849 break;
3850 }
3851 }
3852 /* Done */
3853 else {
3854 err = -EINVAL;
3855 if (unlikely(req->tp_frame_nr))
3856 goto out;
3857 }
3858
3859 lock_sock(sk);
3860
3861 /* Detach socket from network */
3862 spin_lock(&po->bind_lock);
3863 was_running = po->running;
3864 num = po->num;
3865 if (was_running) {
3866 po->num = 0;
3867 __unregister_prot_hook(sk, false);
3868 }
3869 spin_unlock(&po->bind_lock);
3870
3871 synchronize_net();
3872
3873 err = -EBUSY;
3874 mutex_lock(&po->pg_vec_lock);
3875 if (closing || atomic_read(&po->mapped) == 0) {
3876 err = 0;
3877 spin_lock_bh(&rb_queue->lock);
3878 swap(rb->pg_vec, pg_vec);
3879 rb->frame_max = (req->tp_frame_nr - 1);
3880 rb->head = 0;
3881 rb->frame_size = req->tp_frame_size;
3882 spin_unlock_bh(&rb_queue->lock);
3883
3884 swap(rb->pg_vec_order, order);
3885 swap(rb->pg_vec_len, req->tp_block_nr);
3886
3887 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3888 po->prot_hook.func = (po->rx_ring.pg_vec) ?
3889 tpacket_rcv : packet_rcv;
3890 skb_queue_purge(rb_queue);
3891 if (atomic_read(&po->mapped))
3892 pr_err("packet_mmap: vma is busy: %d\n",
3893 atomic_read(&po->mapped));
3894 }
3895 mutex_unlock(&po->pg_vec_lock);
3896
3897 spin_lock(&po->bind_lock);
3898 if (was_running) {
3899 po->num = num;
3900 register_prot_hook(sk);
3901 }
3902 spin_unlock(&po->bind_lock);
3903 if (closing && (po->tp_version > TPACKET_V2)) {
3904 /* Because we don't support block-based V3 on tx-ring */
3905 if (!tx_ring)
3906 prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3907 }
3908 release_sock(sk);
3909
3910 if (pg_vec)
3911 free_pg_vec(pg_vec, order, req->tp_block_nr);
3912 out:
3913 return err;
3914 }
3915
3916 static int packet_mmap(struct file *file, struct socket *sock,
3917 struct vm_area_struct *vma)
3918 {
3919 struct sock *sk = sock->sk;
3920 struct packet_sock *po = pkt_sk(sk);
3921 unsigned long size, expected_size;
3922 struct packet_ring_buffer *rb;
3923 unsigned long start;
3924 int err = -EINVAL;
3925 int i;
3926
3927 if (vma->vm_pgoff)
3928 return -EINVAL;
3929
3930 mutex_lock(&po->pg_vec_lock);
3931
3932 expected_size = 0;
3933 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3934 if (rb->pg_vec) {
3935 expected_size += rb->pg_vec_len
3936 * rb->pg_vec_pages
3937 * PAGE_SIZE;
3938 }
3939 }
3940
3941 if (expected_size == 0)
3942 goto out;
3943
3944 size = vma->vm_end - vma->vm_start;
3945 if (size != expected_size)
3946 goto out;
3947
3948 start = vma->vm_start;
3949 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3950 if (rb->pg_vec == NULL)
3951 continue;
3952
3953 for (i = 0; i < rb->pg_vec_len; i++) {
3954 struct page *page;
3955 void *kaddr = rb->pg_vec[i].buffer;
3956 int pg_num;
3957
3958 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3959 page = pgv_to_page(kaddr);
3960 err = vm_insert_page(vma, start, page);
3961 if (unlikely(err))
3962 goto out;
3963 start += PAGE_SIZE;
3964 kaddr += PAGE_SIZE;
3965 }
3966 }
3967 }
3968
3969 atomic_inc(&po->mapped);
3970 vma->vm_ops = &packet_mmap_ops;
3971 err = 0;
3972
3973 out:
3974 mutex_unlock(&po->pg_vec_lock);
3975 return err;
3976 }
3977
3978 static const struct proto_ops packet_ops_spkt = {
3979 .family = PF_PACKET,
3980 .owner = THIS_MODULE,
3981 .release = packet_release,
3982 .bind = packet_bind_spkt,
3983 .connect = sock_no_connect,
3984 .socketpair = sock_no_socketpair,
3985 .accept = sock_no_accept,
3986 .getname = packet_getname_spkt,
3987 .poll = datagram_poll,
3988 .ioctl = packet_ioctl,
3989 .listen = sock_no_listen,
3990 .shutdown = sock_no_shutdown,
3991 .setsockopt = sock_no_setsockopt,
3992 .getsockopt = sock_no_getsockopt,
3993 .sendmsg = packet_sendmsg_spkt,
3994 .recvmsg = packet_recvmsg,
3995 .mmap = sock_no_mmap,
3996 .sendpage = sock_no_sendpage,
3997 };
3998
3999 static const struct proto_ops packet_ops = {
4000 .family = PF_PACKET,
4001 .owner = THIS_MODULE,
4002 .release = packet_release,
4003 .bind = packet_bind,
4004 .connect = sock_no_connect,
4005 .socketpair = sock_no_socketpair,
4006 .accept = sock_no_accept,
4007 .getname = packet_getname,
4008 .poll = packet_poll,
4009 .ioctl = packet_ioctl,
4010 .listen = sock_no_listen,
4011 .shutdown = sock_no_shutdown,
4012 .setsockopt = packet_setsockopt,
4013 .getsockopt = packet_getsockopt,
4014 .sendmsg = packet_sendmsg,
4015 .recvmsg = packet_recvmsg,
4016 .mmap = packet_mmap,
4017 .sendpage = sock_no_sendpage,
4018 };
4019
4020 static const struct net_proto_family packet_family_ops = {
4021 .family = PF_PACKET,
4022 .create = packet_create,
4023 .owner = THIS_MODULE,
4024 };
4025
4026 static struct notifier_block packet_netdev_notifier = {
4027 .notifier_call = packet_notifier,
4028 };
4029
4030 #ifdef CONFIG_PROC_FS
4031
4032 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4033 __acquires(RCU)
4034 {
4035 struct net *net = seq_file_net(seq);
4036
4037 rcu_read_lock();
4038 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4039 }
4040
4041 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4042 {
4043 struct net *net = seq_file_net(seq);
4044 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4045 }
4046
4047 static void packet_seq_stop(struct seq_file *seq, void *v)
4048 __releases(RCU)
4049 {
4050 rcu_read_unlock();
4051 }
4052
4053 static int packet_seq_show(struct seq_file *seq, void *v)
4054 {
4055 if (v == SEQ_START_TOKEN)
4056 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4057 else {
4058 struct sock *s = sk_entry(v);
4059 const struct packet_sock *po = pkt_sk(s);
4060
4061 seq_printf(seq,
4062 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4063 s,
4064 atomic_read(&s->sk_refcnt),
4065 s->sk_type,
4066 ntohs(po->num),
4067 po->ifindex,
4068 po->running,
4069 atomic_read(&s->sk_rmem_alloc),
4070 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4071 sock_i_ino(s));
4072 }
4073
4074 return 0;
4075 }
4076
4077 static const struct seq_operations packet_seq_ops = {
4078 .start = packet_seq_start,
4079 .next = packet_seq_next,
4080 .stop = packet_seq_stop,
4081 .show = packet_seq_show,
4082 };
4083
4084 static int packet_seq_open(struct inode *inode, struct file *file)
4085 {
4086 return seq_open_net(inode, file, &packet_seq_ops,
4087 sizeof(struct seq_net_private));
4088 }
4089
4090 static const struct file_operations packet_seq_fops = {
4091 .owner = THIS_MODULE,
4092 .open = packet_seq_open,
4093 .read = seq_read,
4094 .llseek = seq_lseek,
4095 .release = seq_release_net,
4096 };
4097
4098 #endif
4099
4100 static int __net_init packet_net_init(struct net *net)
4101 {
4102 mutex_init(&net->packet.sklist_lock);
4103 INIT_HLIST_HEAD(&net->packet.sklist);
4104
4105 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4106 return -ENOMEM;
4107
4108 return 0;
4109 }
4110
4111 static void __net_exit packet_net_exit(struct net *net)
4112 {
4113 remove_proc_entry("packet", net->proc_net);
4114 }
4115
4116 static struct pernet_operations packet_net_ops = {
4117 .init = packet_net_init,
4118 .exit = packet_net_exit,
4119 };
4120
4121
4122 static void __exit packet_exit(void)
4123 {
4124 unregister_netdevice_notifier(&packet_netdev_notifier);
4125 unregister_pernet_subsys(&packet_net_ops);
4126 sock_unregister(PF_PACKET);
4127 proto_unregister(&packet_proto);
4128 }
4129
4130 static int __init packet_init(void)
4131 {
4132 int rc = proto_register(&packet_proto, 0);
4133
4134 if (rc != 0)
4135 goto out;
4136
4137 sock_register(&packet_family_ops);
4138 register_pernet_subsys(&packet_net_ops);
4139 register_netdevice_notifier(&packet_netdev_notifier);
4140 out:
4141 return rc;
4142 }
4143
4144 module_init(packet_init);
4145 module_exit(packet_exit);
4146 MODULE_LICENSE("GPL");
4147 MODULE_ALIAS_NETPROTO(PF_PACKET);
This page took 0.116348 seconds and 5 git commands to generate.