x86/fpu, sched: Dynamically allocate 'struct fpu'
[deliverable/linux.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95
96 #include "internal.h"
97
98 /*
99 Assumptions:
100 - if device has no dev->hard_header routine, it adds and removes ll header
101 inside itself. In this case ll header is invisible outside of device,
102 but higher levels still should reserve dev->hard_header_len.
103 Some devices are enough clever to reallocate skb, when header
104 will not fit to reserved space (tunnel), another ones are silly
105 (PPP).
106 - packet socket receives packets with pulled ll header,
107 so that SOCK_RAW should push it back.
108
109 On receive:
110 -----------
111
112 Incoming, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> data
115
116 Outgoing, dev->hard_header!=NULL
117 mac_header -> ll header
118 data -> ll header
119
120 Incoming, dev->hard_header==NULL
121 mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 header. PPP makes it, that is wrong, because introduce
123 assymetry between rx and tx paths.
124 data -> data
125
126 Outgoing, dev->hard_header==NULL
127 mac_header -> data. ll header is still not built!
128 data -> data
129
130 Resume
131 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132
133
134 On transmit:
135 ------------
136
137 dev->hard_header != NULL
138 mac_header -> ll header
139 data -> ll header
140
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142 mac_header -> data
143 data -> data
144
145 We should set nh.raw on output to correct posistion,
146 packet classifier depends on it.
147 */
148
149 /* Private packet socket structures. */
150
151 /* identical to struct packet_mreq except it has
152 * a longer address field.
153 */
154 struct packet_mreq_max {
155 int mr_ifindex;
156 unsigned short mr_type;
157 unsigned short mr_alen;
158 unsigned char mr_address[MAX_ADDR_LEN];
159 };
160
161 union tpacket_uhdr {
162 struct tpacket_hdr *h1;
163 struct tpacket2_hdr *h2;
164 struct tpacket3_hdr *h3;
165 void *raw;
166 };
167
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 int closing, int tx_ring);
170
171 #define V3_ALIGNMENT (8)
172
173 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177
178 #define PGV_FROM_VMALLOC 1
179
180 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
186 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 struct packet_type *pt, struct net_device *orig_dev);
192
193 static void *packet_previous_frame(struct packet_sock *po,
194 struct packet_ring_buffer *rb,
195 int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 struct tpacket_kbdq_core *,
210 void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217
218 struct packet_skb_cb {
219 union {
220 struct sockaddr_pkt pkt;
221 union {
222 /* Trick: alias skb original length with
223 * ll.sll_family and ll.protocol in order
224 * to save room.
225 */
226 unsigned int origlen;
227 struct sockaddr_ll ll;
228 };
229 } sa;
230 };
231
232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
233
234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
235 #define GET_PBLOCK_DESC(x, bid) \
236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
239 #define GET_NEXT_PRB_BLK_NUM(x) \
240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
241 ((x)->kactive_blk_num+1) : 0)
242
243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
244 static void __fanout_link(struct sock *sk, struct packet_sock *po);
245
246 static int packet_direct_xmit(struct sk_buff *skb)
247 {
248 struct net_device *dev = skb->dev;
249 netdev_features_t features;
250 struct netdev_queue *txq;
251 int ret = NETDEV_TX_BUSY;
252
253 if (unlikely(!netif_running(dev) ||
254 !netif_carrier_ok(dev)))
255 goto drop;
256
257 features = netif_skb_features(skb);
258 if (skb_needs_linearize(skb, features) &&
259 __skb_linearize(skb))
260 goto drop;
261
262 txq = skb_get_tx_queue(dev, skb);
263
264 local_bh_disable();
265
266 HARD_TX_LOCK(dev, txq, smp_processor_id());
267 if (!netif_xmit_frozen_or_drv_stopped(txq))
268 ret = netdev_start_xmit(skb, dev, txq, false);
269 HARD_TX_UNLOCK(dev, txq);
270
271 local_bh_enable();
272
273 if (!dev_xmit_complete(ret))
274 kfree_skb(skb);
275
276 return ret;
277 drop:
278 atomic_long_inc(&dev->tx_dropped);
279 kfree_skb(skb);
280 return NET_XMIT_DROP;
281 }
282
283 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
284 {
285 struct net_device *dev;
286
287 rcu_read_lock();
288 dev = rcu_dereference(po->cached_dev);
289 if (likely(dev))
290 dev_hold(dev);
291 rcu_read_unlock();
292
293 return dev;
294 }
295
296 static void packet_cached_dev_assign(struct packet_sock *po,
297 struct net_device *dev)
298 {
299 rcu_assign_pointer(po->cached_dev, dev);
300 }
301
302 static void packet_cached_dev_reset(struct packet_sock *po)
303 {
304 RCU_INIT_POINTER(po->cached_dev, NULL);
305 }
306
307 static bool packet_use_direct_xmit(const struct packet_sock *po)
308 {
309 return po->xmit == packet_direct_xmit;
310 }
311
312 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
313 {
314 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
315 }
316
317 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
318 {
319 const struct net_device_ops *ops = dev->netdev_ops;
320 u16 queue_index;
321
322 if (ops->ndo_select_queue) {
323 queue_index = ops->ndo_select_queue(dev, skb, NULL,
324 __packet_pick_tx_queue);
325 queue_index = netdev_cap_txqueue(dev, queue_index);
326 } else {
327 queue_index = __packet_pick_tx_queue(dev, skb);
328 }
329
330 skb_set_queue_mapping(skb, queue_index);
331 }
332
333 /* register_prot_hook must be invoked with the po->bind_lock held,
334 * or from a context in which asynchronous accesses to the packet
335 * socket is not possible (packet_create()).
336 */
337 static void register_prot_hook(struct sock *sk)
338 {
339 struct packet_sock *po = pkt_sk(sk);
340
341 if (!po->running) {
342 if (po->fanout)
343 __fanout_link(sk, po);
344 else
345 dev_add_pack(&po->prot_hook);
346
347 sock_hold(sk);
348 po->running = 1;
349 }
350 }
351
352 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
353 * held. If the sync parameter is true, we will temporarily drop
354 * the po->bind_lock and do a synchronize_net to make sure no
355 * asynchronous packet processing paths still refer to the elements
356 * of po->prot_hook. If the sync parameter is false, it is the
357 * callers responsibility to take care of this.
358 */
359 static void __unregister_prot_hook(struct sock *sk, bool sync)
360 {
361 struct packet_sock *po = pkt_sk(sk);
362
363 po->running = 0;
364
365 if (po->fanout)
366 __fanout_unlink(sk, po);
367 else
368 __dev_remove_pack(&po->prot_hook);
369
370 __sock_put(sk);
371
372 if (sync) {
373 spin_unlock(&po->bind_lock);
374 synchronize_net();
375 spin_lock(&po->bind_lock);
376 }
377 }
378
379 static void unregister_prot_hook(struct sock *sk, bool sync)
380 {
381 struct packet_sock *po = pkt_sk(sk);
382
383 if (po->running)
384 __unregister_prot_hook(sk, sync);
385 }
386
387 static inline struct page * __pure pgv_to_page(void *addr)
388 {
389 if (is_vmalloc_addr(addr))
390 return vmalloc_to_page(addr);
391 return virt_to_page(addr);
392 }
393
394 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
395 {
396 union tpacket_uhdr h;
397
398 h.raw = frame;
399 switch (po->tp_version) {
400 case TPACKET_V1:
401 h.h1->tp_status = status;
402 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
403 break;
404 case TPACKET_V2:
405 h.h2->tp_status = status;
406 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
407 break;
408 case TPACKET_V3:
409 default:
410 WARN(1, "TPACKET version not supported.\n");
411 BUG();
412 }
413
414 smp_wmb();
415 }
416
417 static int __packet_get_status(struct packet_sock *po, void *frame)
418 {
419 union tpacket_uhdr h;
420
421 smp_rmb();
422
423 h.raw = frame;
424 switch (po->tp_version) {
425 case TPACKET_V1:
426 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
427 return h.h1->tp_status;
428 case TPACKET_V2:
429 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
430 return h.h2->tp_status;
431 case TPACKET_V3:
432 default:
433 WARN(1, "TPACKET version not supported.\n");
434 BUG();
435 return 0;
436 }
437 }
438
439 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
440 unsigned int flags)
441 {
442 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
443
444 if (shhwtstamps &&
445 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
446 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
447 return TP_STATUS_TS_RAW_HARDWARE;
448
449 if (ktime_to_timespec_cond(skb->tstamp, ts))
450 return TP_STATUS_TS_SOFTWARE;
451
452 return 0;
453 }
454
455 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
456 struct sk_buff *skb)
457 {
458 union tpacket_uhdr h;
459 struct timespec ts;
460 __u32 ts_status;
461
462 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
463 return 0;
464
465 h.raw = frame;
466 switch (po->tp_version) {
467 case TPACKET_V1:
468 h.h1->tp_sec = ts.tv_sec;
469 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
470 break;
471 case TPACKET_V2:
472 h.h2->tp_sec = ts.tv_sec;
473 h.h2->tp_nsec = ts.tv_nsec;
474 break;
475 case TPACKET_V3:
476 default:
477 WARN(1, "TPACKET version not supported.\n");
478 BUG();
479 }
480
481 /* one flush is safe, as both fields always lie on the same cacheline */
482 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
483 smp_wmb();
484
485 return ts_status;
486 }
487
488 static void *packet_lookup_frame(struct packet_sock *po,
489 struct packet_ring_buffer *rb,
490 unsigned int position,
491 int status)
492 {
493 unsigned int pg_vec_pos, frame_offset;
494 union tpacket_uhdr h;
495
496 pg_vec_pos = position / rb->frames_per_block;
497 frame_offset = position % rb->frames_per_block;
498
499 h.raw = rb->pg_vec[pg_vec_pos].buffer +
500 (frame_offset * rb->frame_size);
501
502 if (status != __packet_get_status(po, h.raw))
503 return NULL;
504
505 return h.raw;
506 }
507
508 static void *packet_current_frame(struct packet_sock *po,
509 struct packet_ring_buffer *rb,
510 int status)
511 {
512 return packet_lookup_frame(po, rb, rb->head, status);
513 }
514
515 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
516 {
517 del_timer_sync(&pkc->retire_blk_timer);
518 }
519
520 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
521 int tx_ring,
522 struct sk_buff_head *rb_queue)
523 {
524 struct tpacket_kbdq_core *pkc;
525
526 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
527 GET_PBDQC_FROM_RB(&po->rx_ring);
528
529 spin_lock_bh(&rb_queue->lock);
530 pkc->delete_blk_timer = 1;
531 spin_unlock_bh(&rb_queue->lock);
532
533 prb_del_retire_blk_timer(pkc);
534 }
535
536 static void prb_init_blk_timer(struct packet_sock *po,
537 struct tpacket_kbdq_core *pkc,
538 void (*func) (unsigned long))
539 {
540 init_timer(&pkc->retire_blk_timer);
541 pkc->retire_blk_timer.data = (long)po;
542 pkc->retire_blk_timer.function = func;
543 pkc->retire_blk_timer.expires = jiffies;
544 }
545
546 static void prb_setup_retire_blk_timer(struct packet_sock *po)
547 {
548 struct tpacket_kbdq_core *pkc;
549
550 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
551 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
552 }
553
554 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
555 int blk_size_in_bytes)
556 {
557 struct net_device *dev;
558 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
559 struct ethtool_cmd ecmd;
560 int err;
561 u32 speed;
562
563 rtnl_lock();
564 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
565 if (unlikely(!dev)) {
566 rtnl_unlock();
567 return DEFAULT_PRB_RETIRE_TOV;
568 }
569 err = __ethtool_get_settings(dev, &ecmd);
570 speed = ethtool_cmd_speed(&ecmd);
571 rtnl_unlock();
572 if (!err) {
573 /*
574 * If the link speed is so slow you don't really
575 * need to worry about perf anyways
576 */
577 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
578 return DEFAULT_PRB_RETIRE_TOV;
579 } else {
580 msec = 1;
581 div = speed / 1000;
582 }
583 }
584
585 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
586
587 if (div)
588 mbits /= div;
589
590 tmo = mbits * msec;
591
592 if (div)
593 return tmo+1;
594 return tmo;
595 }
596
597 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
598 union tpacket_req_u *req_u)
599 {
600 p1->feature_req_word = req_u->req3.tp_feature_req_word;
601 }
602
603 static void init_prb_bdqc(struct packet_sock *po,
604 struct packet_ring_buffer *rb,
605 struct pgv *pg_vec,
606 union tpacket_req_u *req_u)
607 {
608 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
609 struct tpacket_block_desc *pbd;
610
611 memset(p1, 0x0, sizeof(*p1));
612
613 p1->knxt_seq_num = 1;
614 p1->pkbdq = pg_vec;
615 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
616 p1->pkblk_start = pg_vec[0].buffer;
617 p1->kblk_size = req_u->req3.tp_block_size;
618 p1->knum_blocks = req_u->req3.tp_block_nr;
619 p1->hdrlen = po->tp_hdrlen;
620 p1->version = po->tp_version;
621 p1->last_kactive_blk_num = 0;
622 po->stats.stats3.tp_freeze_q_cnt = 0;
623 if (req_u->req3.tp_retire_blk_tov)
624 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
625 else
626 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
627 req_u->req3.tp_block_size);
628 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
629 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
630
631 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
632 prb_init_ft_ops(p1, req_u);
633 prb_setup_retire_blk_timer(po);
634 prb_open_block(p1, pbd);
635 }
636
637 /* Do NOT update the last_blk_num first.
638 * Assumes sk_buff_head lock is held.
639 */
640 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
641 {
642 mod_timer(&pkc->retire_blk_timer,
643 jiffies + pkc->tov_in_jiffies);
644 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
645 }
646
647 /*
648 * Timer logic:
649 * 1) We refresh the timer only when we open a block.
650 * By doing this we don't waste cycles refreshing the timer
651 * on packet-by-packet basis.
652 *
653 * With a 1MB block-size, on a 1Gbps line, it will take
654 * i) ~8 ms to fill a block + ii) memcpy etc.
655 * In this cut we are not accounting for the memcpy time.
656 *
657 * So, if the user sets the 'tmo' to 10ms then the timer
658 * will never fire while the block is still getting filled
659 * (which is what we want). However, the user could choose
660 * to close a block early and that's fine.
661 *
662 * But when the timer does fire, we check whether or not to refresh it.
663 * Since the tmo granularity is in msecs, it is not too expensive
664 * to refresh the timer, lets say every '8' msecs.
665 * Either the user can set the 'tmo' or we can derive it based on
666 * a) line-speed and b) block-size.
667 * prb_calc_retire_blk_tmo() calculates the tmo.
668 *
669 */
670 static void prb_retire_rx_blk_timer_expired(unsigned long data)
671 {
672 struct packet_sock *po = (struct packet_sock *)data;
673 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
674 unsigned int frozen;
675 struct tpacket_block_desc *pbd;
676
677 spin_lock(&po->sk.sk_receive_queue.lock);
678
679 frozen = prb_queue_frozen(pkc);
680 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
681
682 if (unlikely(pkc->delete_blk_timer))
683 goto out;
684
685 /* We only need to plug the race when the block is partially filled.
686 * tpacket_rcv:
687 * lock(); increment BLOCK_NUM_PKTS; unlock()
688 * copy_bits() is in progress ...
689 * timer fires on other cpu:
690 * we can't retire the current block because copy_bits
691 * is in progress.
692 *
693 */
694 if (BLOCK_NUM_PKTS(pbd)) {
695 while (atomic_read(&pkc->blk_fill_in_prog)) {
696 /* Waiting for skb_copy_bits to finish... */
697 cpu_relax();
698 }
699 }
700
701 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
702 if (!frozen) {
703 if (!BLOCK_NUM_PKTS(pbd)) {
704 /* An empty block. Just refresh the timer. */
705 goto refresh_timer;
706 }
707 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
708 if (!prb_dispatch_next_block(pkc, po))
709 goto refresh_timer;
710 else
711 goto out;
712 } else {
713 /* Case 1. Queue was frozen because user-space was
714 * lagging behind.
715 */
716 if (prb_curr_blk_in_use(pkc, pbd)) {
717 /*
718 * Ok, user-space is still behind.
719 * So just refresh the timer.
720 */
721 goto refresh_timer;
722 } else {
723 /* Case 2. queue was frozen,user-space caught up,
724 * now the link went idle && the timer fired.
725 * We don't have a block to close.So we open this
726 * block and restart the timer.
727 * opening a block thaws the queue,restarts timer
728 * Thawing/timer-refresh is a side effect.
729 */
730 prb_open_block(pkc, pbd);
731 goto out;
732 }
733 }
734 }
735
736 refresh_timer:
737 _prb_refresh_rx_retire_blk_timer(pkc);
738
739 out:
740 spin_unlock(&po->sk.sk_receive_queue.lock);
741 }
742
743 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
744 struct tpacket_block_desc *pbd1, __u32 status)
745 {
746 /* Flush everything minus the block header */
747
748 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
749 u8 *start, *end;
750
751 start = (u8 *)pbd1;
752
753 /* Skip the block header(we know header WILL fit in 4K) */
754 start += PAGE_SIZE;
755
756 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
757 for (; start < end; start += PAGE_SIZE)
758 flush_dcache_page(pgv_to_page(start));
759
760 smp_wmb();
761 #endif
762
763 /* Now update the block status. */
764
765 BLOCK_STATUS(pbd1) = status;
766
767 /* Flush the block header */
768
769 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
770 start = (u8 *)pbd1;
771 flush_dcache_page(pgv_to_page(start));
772
773 smp_wmb();
774 #endif
775 }
776
777 /*
778 * Side effect:
779 *
780 * 1) flush the block
781 * 2) Increment active_blk_num
782 *
783 * Note:We DONT refresh the timer on purpose.
784 * Because almost always the next block will be opened.
785 */
786 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
787 struct tpacket_block_desc *pbd1,
788 struct packet_sock *po, unsigned int stat)
789 {
790 __u32 status = TP_STATUS_USER | stat;
791
792 struct tpacket3_hdr *last_pkt;
793 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
794 struct sock *sk = &po->sk;
795
796 if (po->stats.stats3.tp_drops)
797 status |= TP_STATUS_LOSING;
798
799 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
800 last_pkt->tp_next_offset = 0;
801
802 /* Get the ts of the last pkt */
803 if (BLOCK_NUM_PKTS(pbd1)) {
804 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
805 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
806 } else {
807 /* Ok, we tmo'd - so get the current time.
808 *
809 * It shouldn't really happen as we don't close empty
810 * blocks. See prb_retire_rx_blk_timer_expired().
811 */
812 struct timespec ts;
813 getnstimeofday(&ts);
814 h1->ts_last_pkt.ts_sec = ts.tv_sec;
815 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
816 }
817
818 smp_wmb();
819
820 /* Flush the block */
821 prb_flush_block(pkc1, pbd1, status);
822
823 sk->sk_data_ready(sk);
824
825 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
826 }
827
828 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
829 {
830 pkc->reset_pending_on_curr_blk = 0;
831 }
832
833 /*
834 * Side effect of opening a block:
835 *
836 * 1) prb_queue is thawed.
837 * 2) retire_blk_timer is refreshed.
838 *
839 */
840 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
841 struct tpacket_block_desc *pbd1)
842 {
843 struct timespec ts;
844 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
845
846 smp_rmb();
847
848 /* We could have just memset this but we will lose the
849 * flexibility of making the priv area sticky
850 */
851
852 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
853 BLOCK_NUM_PKTS(pbd1) = 0;
854 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
855
856 getnstimeofday(&ts);
857
858 h1->ts_first_pkt.ts_sec = ts.tv_sec;
859 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
860
861 pkc1->pkblk_start = (char *)pbd1;
862 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
863
864 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
865 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
866
867 pbd1->version = pkc1->version;
868 pkc1->prev = pkc1->nxt_offset;
869 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
870
871 prb_thaw_queue(pkc1);
872 _prb_refresh_rx_retire_blk_timer(pkc1);
873
874 smp_wmb();
875 }
876
877 /*
878 * Queue freeze logic:
879 * 1) Assume tp_block_nr = 8 blocks.
880 * 2) At time 't0', user opens Rx ring.
881 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
882 * 4) user-space is either sleeping or processing block '0'.
883 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
884 * it will close block-7,loop around and try to fill block '0'.
885 * call-flow:
886 * __packet_lookup_frame_in_block
887 * prb_retire_current_block()
888 * prb_dispatch_next_block()
889 * |->(BLOCK_STATUS == USER) evaluates to true
890 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
891 * 6) Now there are two cases:
892 * 6.1) Link goes idle right after the queue is frozen.
893 * But remember, the last open_block() refreshed the timer.
894 * When this timer expires,it will refresh itself so that we can
895 * re-open block-0 in near future.
896 * 6.2) Link is busy and keeps on receiving packets. This is a simple
897 * case and __packet_lookup_frame_in_block will check if block-0
898 * is free and can now be re-used.
899 */
900 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
901 struct packet_sock *po)
902 {
903 pkc->reset_pending_on_curr_blk = 1;
904 po->stats.stats3.tp_freeze_q_cnt++;
905 }
906
907 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
908
909 /*
910 * If the next block is free then we will dispatch it
911 * and return a good offset.
912 * Else, we will freeze the queue.
913 * So, caller must check the return value.
914 */
915 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
916 struct packet_sock *po)
917 {
918 struct tpacket_block_desc *pbd;
919
920 smp_rmb();
921
922 /* 1. Get current block num */
923 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
924
925 /* 2. If this block is currently in_use then freeze the queue */
926 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
927 prb_freeze_queue(pkc, po);
928 return NULL;
929 }
930
931 /*
932 * 3.
933 * open this block and return the offset where the first packet
934 * needs to get stored.
935 */
936 prb_open_block(pkc, pbd);
937 return (void *)pkc->nxt_offset;
938 }
939
940 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
941 struct packet_sock *po, unsigned int status)
942 {
943 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
944
945 /* retire/close the current block */
946 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
947 /*
948 * Plug the case where copy_bits() is in progress on
949 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
950 * have space to copy the pkt in the current block and
951 * called prb_retire_current_block()
952 *
953 * We don't need to worry about the TMO case because
954 * the timer-handler already handled this case.
955 */
956 if (!(status & TP_STATUS_BLK_TMO)) {
957 while (atomic_read(&pkc->blk_fill_in_prog)) {
958 /* Waiting for skb_copy_bits to finish... */
959 cpu_relax();
960 }
961 }
962 prb_close_block(pkc, pbd, po, status);
963 return;
964 }
965 }
966
967 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
968 struct tpacket_block_desc *pbd)
969 {
970 return TP_STATUS_USER & BLOCK_STATUS(pbd);
971 }
972
973 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
974 {
975 return pkc->reset_pending_on_curr_blk;
976 }
977
978 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
979 {
980 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
981 atomic_dec(&pkc->blk_fill_in_prog);
982 }
983
984 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
985 struct tpacket3_hdr *ppd)
986 {
987 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
988 }
989
990 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
991 struct tpacket3_hdr *ppd)
992 {
993 ppd->hv1.tp_rxhash = 0;
994 }
995
996 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
997 struct tpacket3_hdr *ppd)
998 {
999 if (skb_vlan_tag_present(pkc->skb)) {
1000 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1001 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1002 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1003 } else {
1004 ppd->hv1.tp_vlan_tci = 0;
1005 ppd->hv1.tp_vlan_tpid = 0;
1006 ppd->tp_status = TP_STATUS_AVAILABLE;
1007 }
1008 }
1009
1010 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1011 struct tpacket3_hdr *ppd)
1012 {
1013 ppd->hv1.tp_padding = 0;
1014 prb_fill_vlan_info(pkc, ppd);
1015
1016 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1017 prb_fill_rxhash(pkc, ppd);
1018 else
1019 prb_clear_rxhash(pkc, ppd);
1020 }
1021
1022 static void prb_fill_curr_block(char *curr,
1023 struct tpacket_kbdq_core *pkc,
1024 struct tpacket_block_desc *pbd,
1025 unsigned int len)
1026 {
1027 struct tpacket3_hdr *ppd;
1028
1029 ppd = (struct tpacket3_hdr *)curr;
1030 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1031 pkc->prev = curr;
1032 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1033 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1034 BLOCK_NUM_PKTS(pbd) += 1;
1035 atomic_inc(&pkc->blk_fill_in_prog);
1036 prb_run_all_ft_ops(pkc, ppd);
1037 }
1038
1039 /* Assumes caller has the sk->rx_queue.lock */
1040 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1041 struct sk_buff *skb,
1042 int status,
1043 unsigned int len
1044 )
1045 {
1046 struct tpacket_kbdq_core *pkc;
1047 struct tpacket_block_desc *pbd;
1048 char *curr, *end;
1049
1050 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1051 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1052
1053 /* Queue is frozen when user space is lagging behind */
1054 if (prb_queue_frozen(pkc)) {
1055 /*
1056 * Check if that last block which caused the queue to freeze,
1057 * is still in_use by user-space.
1058 */
1059 if (prb_curr_blk_in_use(pkc, pbd)) {
1060 /* Can't record this packet */
1061 return NULL;
1062 } else {
1063 /*
1064 * Ok, the block was released by user-space.
1065 * Now let's open that block.
1066 * opening a block also thaws the queue.
1067 * Thawing is a side effect.
1068 */
1069 prb_open_block(pkc, pbd);
1070 }
1071 }
1072
1073 smp_mb();
1074 curr = pkc->nxt_offset;
1075 pkc->skb = skb;
1076 end = (char *)pbd + pkc->kblk_size;
1077
1078 /* first try the current block */
1079 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1080 prb_fill_curr_block(curr, pkc, pbd, len);
1081 return (void *)curr;
1082 }
1083
1084 /* Ok, close the current block */
1085 prb_retire_current_block(pkc, po, 0);
1086
1087 /* Now, try to dispatch the next block */
1088 curr = (char *)prb_dispatch_next_block(pkc, po);
1089 if (curr) {
1090 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1091 prb_fill_curr_block(curr, pkc, pbd, len);
1092 return (void *)curr;
1093 }
1094
1095 /*
1096 * No free blocks are available.user_space hasn't caught up yet.
1097 * Queue was just frozen and now this packet will get dropped.
1098 */
1099 return NULL;
1100 }
1101
1102 static void *packet_current_rx_frame(struct packet_sock *po,
1103 struct sk_buff *skb,
1104 int status, unsigned int len)
1105 {
1106 char *curr = NULL;
1107 switch (po->tp_version) {
1108 case TPACKET_V1:
1109 case TPACKET_V2:
1110 curr = packet_lookup_frame(po, &po->rx_ring,
1111 po->rx_ring.head, status);
1112 return curr;
1113 case TPACKET_V3:
1114 return __packet_lookup_frame_in_block(po, skb, status, len);
1115 default:
1116 WARN(1, "TPACKET version not supported\n");
1117 BUG();
1118 return NULL;
1119 }
1120 }
1121
1122 static void *prb_lookup_block(struct packet_sock *po,
1123 struct packet_ring_buffer *rb,
1124 unsigned int idx,
1125 int status)
1126 {
1127 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1128 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1129
1130 if (status != BLOCK_STATUS(pbd))
1131 return NULL;
1132 return pbd;
1133 }
1134
1135 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1136 {
1137 unsigned int prev;
1138 if (rb->prb_bdqc.kactive_blk_num)
1139 prev = rb->prb_bdqc.kactive_blk_num-1;
1140 else
1141 prev = rb->prb_bdqc.knum_blocks-1;
1142 return prev;
1143 }
1144
1145 /* Assumes caller has held the rx_queue.lock */
1146 static void *__prb_previous_block(struct packet_sock *po,
1147 struct packet_ring_buffer *rb,
1148 int status)
1149 {
1150 unsigned int previous = prb_previous_blk_num(rb);
1151 return prb_lookup_block(po, rb, previous, status);
1152 }
1153
1154 static void *packet_previous_rx_frame(struct packet_sock *po,
1155 struct packet_ring_buffer *rb,
1156 int status)
1157 {
1158 if (po->tp_version <= TPACKET_V2)
1159 return packet_previous_frame(po, rb, status);
1160
1161 return __prb_previous_block(po, rb, status);
1162 }
1163
1164 static void packet_increment_rx_head(struct packet_sock *po,
1165 struct packet_ring_buffer *rb)
1166 {
1167 switch (po->tp_version) {
1168 case TPACKET_V1:
1169 case TPACKET_V2:
1170 return packet_increment_head(rb);
1171 case TPACKET_V3:
1172 default:
1173 WARN(1, "TPACKET version not supported.\n");
1174 BUG();
1175 return;
1176 }
1177 }
1178
1179 static void *packet_previous_frame(struct packet_sock *po,
1180 struct packet_ring_buffer *rb,
1181 int status)
1182 {
1183 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1184 return packet_lookup_frame(po, rb, previous, status);
1185 }
1186
1187 static void packet_increment_head(struct packet_ring_buffer *buff)
1188 {
1189 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1190 }
1191
1192 static void packet_inc_pending(struct packet_ring_buffer *rb)
1193 {
1194 this_cpu_inc(*rb->pending_refcnt);
1195 }
1196
1197 static void packet_dec_pending(struct packet_ring_buffer *rb)
1198 {
1199 this_cpu_dec(*rb->pending_refcnt);
1200 }
1201
1202 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1203 {
1204 unsigned int refcnt = 0;
1205 int cpu;
1206
1207 /* We don't use pending refcount in rx_ring. */
1208 if (rb->pending_refcnt == NULL)
1209 return 0;
1210
1211 for_each_possible_cpu(cpu)
1212 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1213
1214 return refcnt;
1215 }
1216
1217 static int packet_alloc_pending(struct packet_sock *po)
1218 {
1219 po->rx_ring.pending_refcnt = NULL;
1220
1221 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1222 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1223 return -ENOBUFS;
1224
1225 return 0;
1226 }
1227
1228 static void packet_free_pending(struct packet_sock *po)
1229 {
1230 free_percpu(po->tx_ring.pending_refcnt);
1231 }
1232
1233 #define ROOM_POW_OFF 2
1234 #define ROOM_NONE 0x0
1235 #define ROOM_LOW 0x1
1236 #define ROOM_NORMAL 0x2
1237
1238 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1239 {
1240 int idx, len;
1241
1242 len = po->rx_ring.frame_max + 1;
1243 idx = po->rx_ring.head;
1244 if (pow_off)
1245 idx += len >> pow_off;
1246 if (idx >= len)
1247 idx -= len;
1248 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1249 }
1250
1251 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1252 {
1253 int idx, len;
1254
1255 len = po->rx_ring.prb_bdqc.knum_blocks;
1256 idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1257 if (pow_off)
1258 idx += len >> pow_off;
1259 if (idx >= len)
1260 idx -= len;
1261 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1262 }
1263
1264 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1265 {
1266 struct sock *sk = &po->sk;
1267 int ret = ROOM_NONE;
1268
1269 if (po->prot_hook.func != tpacket_rcv) {
1270 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1271 - (skb ? skb->truesize : 0);
1272 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1273 return ROOM_NORMAL;
1274 else if (avail > 0)
1275 return ROOM_LOW;
1276 else
1277 return ROOM_NONE;
1278 }
1279
1280 if (po->tp_version == TPACKET_V3) {
1281 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1282 ret = ROOM_NORMAL;
1283 else if (__tpacket_v3_has_room(po, 0))
1284 ret = ROOM_LOW;
1285 } else {
1286 if (__tpacket_has_room(po, ROOM_POW_OFF))
1287 ret = ROOM_NORMAL;
1288 else if (__tpacket_has_room(po, 0))
1289 ret = ROOM_LOW;
1290 }
1291
1292 return ret;
1293 }
1294
1295 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1296 {
1297 int ret;
1298 bool has_room;
1299
1300 spin_lock_bh(&po->sk.sk_receive_queue.lock);
1301 ret = __packet_rcv_has_room(po, skb);
1302 has_room = ret == ROOM_NORMAL;
1303 if (po->pressure == has_room)
1304 po->pressure = !has_room;
1305 spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1306
1307 return ret;
1308 }
1309
1310 static void packet_sock_destruct(struct sock *sk)
1311 {
1312 skb_queue_purge(&sk->sk_error_queue);
1313
1314 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1315 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1316
1317 if (!sock_flag(sk, SOCK_DEAD)) {
1318 pr_err("Attempt to release alive packet socket: %p\n", sk);
1319 return;
1320 }
1321
1322 sk_refcnt_debug_dec(sk);
1323 }
1324
1325 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1326 {
1327 u32 rxhash;
1328 int i, count = 0;
1329
1330 rxhash = skb_get_hash(skb);
1331 for (i = 0; i < ROLLOVER_HLEN; i++)
1332 if (po->rollover->history[i] == rxhash)
1333 count++;
1334
1335 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1336 return count > (ROLLOVER_HLEN >> 1);
1337 }
1338
1339 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1340 struct sk_buff *skb,
1341 unsigned int num)
1342 {
1343 return reciprocal_scale(skb_get_hash(skb), num);
1344 }
1345
1346 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1347 struct sk_buff *skb,
1348 unsigned int num)
1349 {
1350 unsigned int val = atomic_inc_return(&f->rr_cur);
1351
1352 return val % num;
1353 }
1354
1355 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1356 struct sk_buff *skb,
1357 unsigned int num)
1358 {
1359 return smp_processor_id() % num;
1360 }
1361
1362 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1363 struct sk_buff *skb,
1364 unsigned int num)
1365 {
1366 return prandom_u32_max(num);
1367 }
1368
1369 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1370 struct sk_buff *skb,
1371 unsigned int idx, bool try_self,
1372 unsigned int num)
1373 {
1374 struct packet_sock *po, *po_next, *po_skip = NULL;
1375 unsigned int i, j, room = ROOM_NONE;
1376
1377 po = pkt_sk(f->arr[idx]);
1378
1379 if (try_self) {
1380 room = packet_rcv_has_room(po, skb);
1381 if (room == ROOM_NORMAL ||
1382 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1383 return idx;
1384 po_skip = po;
1385 }
1386
1387 i = j = min_t(int, po->rollover->sock, num - 1);
1388 do {
1389 po_next = pkt_sk(f->arr[i]);
1390 if (po_next != po_skip && !po_next->pressure &&
1391 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1392 if (i != j)
1393 po->rollover->sock = i;
1394 atomic_long_inc(&po->rollover->num);
1395 if (room == ROOM_LOW)
1396 atomic_long_inc(&po->rollover->num_huge);
1397 return i;
1398 }
1399
1400 if (++i == num)
1401 i = 0;
1402 } while (i != j);
1403
1404 atomic_long_inc(&po->rollover->num_failed);
1405 return idx;
1406 }
1407
1408 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1409 struct sk_buff *skb,
1410 unsigned int num)
1411 {
1412 return skb_get_queue_mapping(skb) % num;
1413 }
1414
1415 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1416 {
1417 return f->flags & (flag >> 8);
1418 }
1419
1420 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1421 struct packet_type *pt, struct net_device *orig_dev)
1422 {
1423 struct packet_fanout *f = pt->af_packet_priv;
1424 unsigned int num = READ_ONCE(f->num_members);
1425 struct packet_sock *po;
1426 unsigned int idx;
1427
1428 if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1429 !num) {
1430 kfree_skb(skb);
1431 return 0;
1432 }
1433
1434 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1435 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1436 if (!skb)
1437 return 0;
1438 }
1439 switch (f->type) {
1440 case PACKET_FANOUT_HASH:
1441 default:
1442 idx = fanout_demux_hash(f, skb, num);
1443 break;
1444 case PACKET_FANOUT_LB:
1445 idx = fanout_demux_lb(f, skb, num);
1446 break;
1447 case PACKET_FANOUT_CPU:
1448 idx = fanout_demux_cpu(f, skb, num);
1449 break;
1450 case PACKET_FANOUT_RND:
1451 idx = fanout_demux_rnd(f, skb, num);
1452 break;
1453 case PACKET_FANOUT_QM:
1454 idx = fanout_demux_qm(f, skb, num);
1455 break;
1456 case PACKET_FANOUT_ROLLOVER:
1457 idx = fanout_demux_rollover(f, skb, 0, false, num);
1458 break;
1459 }
1460
1461 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1462 idx = fanout_demux_rollover(f, skb, idx, true, num);
1463
1464 po = pkt_sk(f->arr[idx]);
1465 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1466 }
1467
1468 DEFINE_MUTEX(fanout_mutex);
1469 EXPORT_SYMBOL_GPL(fanout_mutex);
1470 static LIST_HEAD(fanout_list);
1471
1472 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1473 {
1474 struct packet_fanout *f = po->fanout;
1475
1476 spin_lock(&f->lock);
1477 f->arr[f->num_members] = sk;
1478 smp_wmb();
1479 f->num_members++;
1480 spin_unlock(&f->lock);
1481 }
1482
1483 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1484 {
1485 struct packet_fanout *f = po->fanout;
1486 int i;
1487
1488 spin_lock(&f->lock);
1489 for (i = 0; i < f->num_members; i++) {
1490 if (f->arr[i] == sk)
1491 break;
1492 }
1493 BUG_ON(i >= f->num_members);
1494 f->arr[i] = f->arr[f->num_members - 1];
1495 f->num_members--;
1496 spin_unlock(&f->lock);
1497 }
1498
1499 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1500 {
1501 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1502 return true;
1503
1504 return false;
1505 }
1506
1507 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1508 {
1509 struct packet_sock *po = pkt_sk(sk);
1510 struct packet_fanout *f, *match;
1511 u8 type = type_flags & 0xff;
1512 u8 flags = type_flags >> 8;
1513 int err;
1514
1515 switch (type) {
1516 case PACKET_FANOUT_ROLLOVER:
1517 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1518 return -EINVAL;
1519 case PACKET_FANOUT_HASH:
1520 case PACKET_FANOUT_LB:
1521 case PACKET_FANOUT_CPU:
1522 case PACKET_FANOUT_RND:
1523 case PACKET_FANOUT_QM:
1524 break;
1525 default:
1526 return -EINVAL;
1527 }
1528
1529 if (!po->running)
1530 return -EINVAL;
1531
1532 if (po->fanout)
1533 return -EALREADY;
1534
1535 if (type == PACKET_FANOUT_ROLLOVER ||
1536 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1537 po->rollover = kzalloc(sizeof(*po->rollover), GFP_KERNEL);
1538 if (!po->rollover)
1539 return -ENOMEM;
1540 atomic_long_set(&po->rollover->num, 0);
1541 atomic_long_set(&po->rollover->num_huge, 0);
1542 atomic_long_set(&po->rollover->num_failed, 0);
1543 }
1544
1545 mutex_lock(&fanout_mutex);
1546 match = NULL;
1547 list_for_each_entry(f, &fanout_list, list) {
1548 if (f->id == id &&
1549 read_pnet(&f->net) == sock_net(sk)) {
1550 match = f;
1551 break;
1552 }
1553 }
1554 err = -EINVAL;
1555 if (match && match->flags != flags)
1556 goto out;
1557 if (!match) {
1558 err = -ENOMEM;
1559 match = kzalloc(sizeof(*match), GFP_KERNEL);
1560 if (!match)
1561 goto out;
1562 write_pnet(&match->net, sock_net(sk));
1563 match->id = id;
1564 match->type = type;
1565 match->flags = flags;
1566 atomic_set(&match->rr_cur, 0);
1567 INIT_LIST_HEAD(&match->list);
1568 spin_lock_init(&match->lock);
1569 atomic_set(&match->sk_ref, 0);
1570 match->prot_hook.type = po->prot_hook.type;
1571 match->prot_hook.dev = po->prot_hook.dev;
1572 match->prot_hook.func = packet_rcv_fanout;
1573 match->prot_hook.af_packet_priv = match;
1574 match->prot_hook.id_match = match_fanout_group;
1575 dev_add_pack(&match->prot_hook);
1576 list_add(&match->list, &fanout_list);
1577 }
1578 err = -EINVAL;
1579 if (match->type == type &&
1580 match->prot_hook.type == po->prot_hook.type &&
1581 match->prot_hook.dev == po->prot_hook.dev) {
1582 err = -ENOSPC;
1583 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1584 __dev_remove_pack(&po->prot_hook);
1585 po->fanout = match;
1586 atomic_inc(&match->sk_ref);
1587 __fanout_link(sk, po);
1588 err = 0;
1589 }
1590 }
1591 out:
1592 mutex_unlock(&fanout_mutex);
1593 if (err) {
1594 kfree(po->rollover);
1595 po->rollover = NULL;
1596 }
1597 return err;
1598 }
1599
1600 static void fanout_release(struct sock *sk)
1601 {
1602 struct packet_sock *po = pkt_sk(sk);
1603 struct packet_fanout *f;
1604
1605 f = po->fanout;
1606 if (!f)
1607 return;
1608
1609 mutex_lock(&fanout_mutex);
1610 po->fanout = NULL;
1611
1612 if (atomic_dec_and_test(&f->sk_ref)) {
1613 list_del(&f->list);
1614 dev_remove_pack(&f->prot_hook);
1615 kfree(f);
1616 }
1617 mutex_unlock(&fanout_mutex);
1618
1619 if (po->rollover)
1620 kfree_rcu(po->rollover, rcu);
1621 }
1622
1623 static const struct proto_ops packet_ops;
1624
1625 static const struct proto_ops packet_ops_spkt;
1626
1627 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1628 struct packet_type *pt, struct net_device *orig_dev)
1629 {
1630 struct sock *sk;
1631 struct sockaddr_pkt *spkt;
1632
1633 /*
1634 * When we registered the protocol we saved the socket in the data
1635 * field for just this event.
1636 */
1637
1638 sk = pt->af_packet_priv;
1639
1640 /*
1641 * Yank back the headers [hope the device set this
1642 * right or kerboom...]
1643 *
1644 * Incoming packets have ll header pulled,
1645 * push it back.
1646 *
1647 * For outgoing ones skb->data == skb_mac_header(skb)
1648 * so that this procedure is noop.
1649 */
1650
1651 if (skb->pkt_type == PACKET_LOOPBACK)
1652 goto out;
1653
1654 if (!net_eq(dev_net(dev), sock_net(sk)))
1655 goto out;
1656
1657 skb = skb_share_check(skb, GFP_ATOMIC);
1658 if (skb == NULL)
1659 goto oom;
1660
1661 /* drop any routing info */
1662 skb_dst_drop(skb);
1663
1664 /* drop conntrack reference */
1665 nf_reset(skb);
1666
1667 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1668
1669 skb_push(skb, skb->data - skb_mac_header(skb));
1670
1671 /*
1672 * The SOCK_PACKET socket receives _all_ frames.
1673 */
1674
1675 spkt->spkt_family = dev->type;
1676 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1677 spkt->spkt_protocol = skb->protocol;
1678
1679 /*
1680 * Charge the memory to the socket. This is done specifically
1681 * to prevent sockets using all the memory up.
1682 */
1683
1684 if (sock_queue_rcv_skb(sk, skb) == 0)
1685 return 0;
1686
1687 out:
1688 kfree_skb(skb);
1689 oom:
1690 return 0;
1691 }
1692
1693
1694 /*
1695 * Output a raw packet to a device layer. This bypasses all the other
1696 * protocol layers and you must therefore supply it with a complete frame
1697 */
1698
1699 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1700 size_t len)
1701 {
1702 struct sock *sk = sock->sk;
1703 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1704 struct sk_buff *skb = NULL;
1705 struct net_device *dev;
1706 __be16 proto = 0;
1707 int err;
1708 int extra_len = 0;
1709
1710 /*
1711 * Get and verify the address.
1712 */
1713
1714 if (saddr) {
1715 if (msg->msg_namelen < sizeof(struct sockaddr))
1716 return -EINVAL;
1717 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1718 proto = saddr->spkt_protocol;
1719 } else
1720 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1721
1722 /*
1723 * Find the device first to size check it
1724 */
1725
1726 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1727 retry:
1728 rcu_read_lock();
1729 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1730 err = -ENODEV;
1731 if (dev == NULL)
1732 goto out_unlock;
1733
1734 err = -ENETDOWN;
1735 if (!(dev->flags & IFF_UP))
1736 goto out_unlock;
1737
1738 /*
1739 * You may not queue a frame bigger than the mtu. This is the lowest level
1740 * raw protocol and you must do your own fragmentation at this level.
1741 */
1742
1743 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1744 if (!netif_supports_nofcs(dev)) {
1745 err = -EPROTONOSUPPORT;
1746 goto out_unlock;
1747 }
1748 extra_len = 4; /* We're doing our own CRC */
1749 }
1750
1751 err = -EMSGSIZE;
1752 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1753 goto out_unlock;
1754
1755 if (!skb) {
1756 size_t reserved = LL_RESERVED_SPACE(dev);
1757 int tlen = dev->needed_tailroom;
1758 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1759
1760 rcu_read_unlock();
1761 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1762 if (skb == NULL)
1763 return -ENOBUFS;
1764 /* FIXME: Save some space for broken drivers that write a hard
1765 * header at transmission time by themselves. PPP is the notable
1766 * one here. This should really be fixed at the driver level.
1767 */
1768 skb_reserve(skb, reserved);
1769 skb_reset_network_header(skb);
1770
1771 /* Try to align data part correctly */
1772 if (hhlen) {
1773 skb->data -= hhlen;
1774 skb->tail -= hhlen;
1775 if (len < hhlen)
1776 skb_reset_network_header(skb);
1777 }
1778 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1779 if (err)
1780 goto out_free;
1781 goto retry;
1782 }
1783
1784 if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1785 /* Earlier code assumed this would be a VLAN pkt,
1786 * double-check this now that we have the actual
1787 * packet in hand.
1788 */
1789 struct ethhdr *ehdr;
1790 skb_reset_mac_header(skb);
1791 ehdr = eth_hdr(skb);
1792 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1793 err = -EMSGSIZE;
1794 goto out_unlock;
1795 }
1796 }
1797
1798 skb->protocol = proto;
1799 skb->dev = dev;
1800 skb->priority = sk->sk_priority;
1801 skb->mark = sk->sk_mark;
1802
1803 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1804
1805 if (unlikely(extra_len == 4))
1806 skb->no_fcs = 1;
1807
1808 skb_probe_transport_header(skb, 0);
1809
1810 dev_queue_xmit(skb);
1811 rcu_read_unlock();
1812 return len;
1813
1814 out_unlock:
1815 rcu_read_unlock();
1816 out_free:
1817 kfree_skb(skb);
1818 return err;
1819 }
1820
1821 static unsigned int run_filter(const struct sk_buff *skb,
1822 const struct sock *sk,
1823 unsigned int res)
1824 {
1825 struct sk_filter *filter;
1826
1827 rcu_read_lock();
1828 filter = rcu_dereference(sk->sk_filter);
1829 if (filter != NULL)
1830 res = SK_RUN_FILTER(filter, skb);
1831 rcu_read_unlock();
1832
1833 return res;
1834 }
1835
1836 /*
1837 * This function makes lazy skb cloning in hope that most of packets
1838 * are discarded by BPF.
1839 *
1840 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1841 * and skb->cb are mangled. It works because (and until) packets
1842 * falling here are owned by current CPU. Output packets are cloned
1843 * by dev_queue_xmit_nit(), input packets are processed by net_bh
1844 * sequencially, so that if we return skb to original state on exit,
1845 * we will not harm anyone.
1846 */
1847
1848 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1849 struct packet_type *pt, struct net_device *orig_dev)
1850 {
1851 struct sock *sk;
1852 struct sockaddr_ll *sll;
1853 struct packet_sock *po;
1854 u8 *skb_head = skb->data;
1855 int skb_len = skb->len;
1856 unsigned int snaplen, res;
1857
1858 if (skb->pkt_type == PACKET_LOOPBACK)
1859 goto drop;
1860
1861 sk = pt->af_packet_priv;
1862 po = pkt_sk(sk);
1863
1864 if (!net_eq(dev_net(dev), sock_net(sk)))
1865 goto drop;
1866
1867 skb->dev = dev;
1868
1869 if (dev->header_ops) {
1870 /* The device has an explicit notion of ll header,
1871 * exported to higher levels.
1872 *
1873 * Otherwise, the device hides details of its frame
1874 * structure, so that corresponding packet head is
1875 * never delivered to user.
1876 */
1877 if (sk->sk_type != SOCK_DGRAM)
1878 skb_push(skb, skb->data - skb_mac_header(skb));
1879 else if (skb->pkt_type == PACKET_OUTGOING) {
1880 /* Special case: outgoing packets have ll header at head */
1881 skb_pull(skb, skb_network_offset(skb));
1882 }
1883 }
1884
1885 snaplen = skb->len;
1886
1887 res = run_filter(skb, sk, snaplen);
1888 if (!res)
1889 goto drop_n_restore;
1890 if (snaplen > res)
1891 snaplen = res;
1892
1893 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1894 goto drop_n_acct;
1895
1896 if (skb_shared(skb)) {
1897 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1898 if (nskb == NULL)
1899 goto drop_n_acct;
1900
1901 if (skb_head != skb->data) {
1902 skb->data = skb_head;
1903 skb->len = skb_len;
1904 }
1905 consume_skb(skb);
1906 skb = nskb;
1907 }
1908
1909 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
1910
1911 sll = &PACKET_SKB_CB(skb)->sa.ll;
1912 sll->sll_hatype = dev->type;
1913 sll->sll_pkttype = skb->pkt_type;
1914 if (unlikely(po->origdev))
1915 sll->sll_ifindex = orig_dev->ifindex;
1916 else
1917 sll->sll_ifindex = dev->ifindex;
1918
1919 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1920
1921 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
1922 * Use their space for storing the original skb length.
1923 */
1924 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
1925
1926 if (pskb_trim(skb, snaplen))
1927 goto drop_n_acct;
1928
1929 skb_set_owner_r(skb, sk);
1930 skb->dev = NULL;
1931 skb_dst_drop(skb);
1932
1933 /* drop conntrack reference */
1934 nf_reset(skb);
1935
1936 spin_lock(&sk->sk_receive_queue.lock);
1937 po->stats.stats1.tp_packets++;
1938 sock_skb_set_dropcount(sk, skb);
1939 __skb_queue_tail(&sk->sk_receive_queue, skb);
1940 spin_unlock(&sk->sk_receive_queue.lock);
1941 sk->sk_data_ready(sk);
1942 return 0;
1943
1944 drop_n_acct:
1945 spin_lock(&sk->sk_receive_queue.lock);
1946 po->stats.stats1.tp_drops++;
1947 atomic_inc(&sk->sk_drops);
1948 spin_unlock(&sk->sk_receive_queue.lock);
1949
1950 drop_n_restore:
1951 if (skb_head != skb->data && skb_shared(skb)) {
1952 skb->data = skb_head;
1953 skb->len = skb_len;
1954 }
1955 drop:
1956 consume_skb(skb);
1957 return 0;
1958 }
1959
1960 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1961 struct packet_type *pt, struct net_device *orig_dev)
1962 {
1963 struct sock *sk;
1964 struct packet_sock *po;
1965 struct sockaddr_ll *sll;
1966 union tpacket_uhdr h;
1967 u8 *skb_head = skb->data;
1968 int skb_len = skb->len;
1969 unsigned int snaplen, res;
1970 unsigned long status = TP_STATUS_USER;
1971 unsigned short macoff, netoff, hdrlen;
1972 struct sk_buff *copy_skb = NULL;
1973 struct timespec ts;
1974 __u32 ts_status;
1975
1976 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
1977 * We may add members to them until current aligned size without forcing
1978 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
1979 */
1980 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
1981 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
1982
1983 if (skb->pkt_type == PACKET_LOOPBACK)
1984 goto drop;
1985
1986 sk = pt->af_packet_priv;
1987 po = pkt_sk(sk);
1988
1989 if (!net_eq(dev_net(dev), sock_net(sk)))
1990 goto drop;
1991
1992 if (dev->header_ops) {
1993 if (sk->sk_type != SOCK_DGRAM)
1994 skb_push(skb, skb->data - skb_mac_header(skb));
1995 else if (skb->pkt_type == PACKET_OUTGOING) {
1996 /* Special case: outgoing packets have ll header at head */
1997 skb_pull(skb, skb_network_offset(skb));
1998 }
1999 }
2000
2001 snaplen = skb->len;
2002
2003 res = run_filter(skb, sk, snaplen);
2004 if (!res)
2005 goto drop_n_restore;
2006
2007 if (skb->ip_summed == CHECKSUM_PARTIAL)
2008 status |= TP_STATUS_CSUMNOTREADY;
2009 else if (skb->pkt_type != PACKET_OUTGOING &&
2010 (skb->ip_summed == CHECKSUM_COMPLETE ||
2011 skb_csum_unnecessary(skb)))
2012 status |= TP_STATUS_CSUM_VALID;
2013
2014 if (snaplen > res)
2015 snaplen = res;
2016
2017 if (sk->sk_type == SOCK_DGRAM) {
2018 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2019 po->tp_reserve;
2020 } else {
2021 unsigned int maclen = skb_network_offset(skb);
2022 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2023 (maclen < 16 ? 16 : maclen)) +
2024 po->tp_reserve;
2025 macoff = netoff - maclen;
2026 }
2027 if (po->tp_version <= TPACKET_V2) {
2028 if (macoff + snaplen > po->rx_ring.frame_size) {
2029 if (po->copy_thresh &&
2030 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2031 if (skb_shared(skb)) {
2032 copy_skb = skb_clone(skb, GFP_ATOMIC);
2033 } else {
2034 copy_skb = skb_get(skb);
2035 skb_head = skb->data;
2036 }
2037 if (copy_skb)
2038 skb_set_owner_r(copy_skb, sk);
2039 }
2040 snaplen = po->rx_ring.frame_size - macoff;
2041 if ((int)snaplen < 0)
2042 snaplen = 0;
2043 }
2044 } else if (unlikely(macoff + snaplen >
2045 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2046 u32 nval;
2047
2048 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2049 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2050 snaplen, nval, macoff);
2051 snaplen = nval;
2052 if (unlikely((int)snaplen < 0)) {
2053 snaplen = 0;
2054 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2055 }
2056 }
2057 spin_lock(&sk->sk_receive_queue.lock);
2058 h.raw = packet_current_rx_frame(po, skb,
2059 TP_STATUS_KERNEL, (macoff+snaplen));
2060 if (!h.raw)
2061 goto ring_is_full;
2062 if (po->tp_version <= TPACKET_V2) {
2063 packet_increment_rx_head(po, &po->rx_ring);
2064 /*
2065 * LOSING will be reported till you read the stats,
2066 * because it's COR - Clear On Read.
2067 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2068 * at packet level.
2069 */
2070 if (po->stats.stats1.tp_drops)
2071 status |= TP_STATUS_LOSING;
2072 }
2073 po->stats.stats1.tp_packets++;
2074 if (copy_skb) {
2075 status |= TP_STATUS_COPY;
2076 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2077 }
2078 spin_unlock(&sk->sk_receive_queue.lock);
2079
2080 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2081
2082 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2083 getnstimeofday(&ts);
2084
2085 status |= ts_status;
2086
2087 switch (po->tp_version) {
2088 case TPACKET_V1:
2089 h.h1->tp_len = skb->len;
2090 h.h1->tp_snaplen = snaplen;
2091 h.h1->tp_mac = macoff;
2092 h.h1->tp_net = netoff;
2093 h.h1->tp_sec = ts.tv_sec;
2094 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2095 hdrlen = sizeof(*h.h1);
2096 break;
2097 case TPACKET_V2:
2098 h.h2->tp_len = skb->len;
2099 h.h2->tp_snaplen = snaplen;
2100 h.h2->tp_mac = macoff;
2101 h.h2->tp_net = netoff;
2102 h.h2->tp_sec = ts.tv_sec;
2103 h.h2->tp_nsec = ts.tv_nsec;
2104 if (skb_vlan_tag_present(skb)) {
2105 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2106 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2107 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2108 } else {
2109 h.h2->tp_vlan_tci = 0;
2110 h.h2->tp_vlan_tpid = 0;
2111 }
2112 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2113 hdrlen = sizeof(*h.h2);
2114 break;
2115 case TPACKET_V3:
2116 /* tp_nxt_offset,vlan are already populated above.
2117 * So DONT clear those fields here
2118 */
2119 h.h3->tp_status |= status;
2120 h.h3->tp_len = skb->len;
2121 h.h3->tp_snaplen = snaplen;
2122 h.h3->tp_mac = macoff;
2123 h.h3->tp_net = netoff;
2124 h.h3->tp_sec = ts.tv_sec;
2125 h.h3->tp_nsec = ts.tv_nsec;
2126 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2127 hdrlen = sizeof(*h.h3);
2128 break;
2129 default:
2130 BUG();
2131 }
2132
2133 sll = h.raw + TPACKET_ALIGN(hdrlen);
2134 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2135 sll->sll_family = AF_PACKET;
2136 sll->sll_hatype = dev->type;
2137 sll->sll_protocol = skb->protocol;
2138 sll->sll_pkttype = skb->pkt_type;
2139 if (unlikely(po->origdev))
2140 sll->sll_ifindex = orig_dev->ifindex;
2141 else
2142 sll->sll_ifindex = dev->ifindex;
2143
2144 smp_mb();
2145
2146 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2147 if (po->tp_version <= TPACKET_V2) {
2148 u8 *start, *end;
2149
2150 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2151 macoff + snaplen);
2152
2153 for (start = h.raw; start < end; start += PAGE_SIZE)
2154 flush_dcache_page(pgv_to_page(start));
2155 }
2156 smp_wmb();
2157 #endif
2158
2159 if (po->tp_version <= TPACKET_V2) {
2160 __packet_set_status(po, h.raw, status);
2161 sk->sk_data_ready(sk);
2162 } else {
2163 prb_clear_blk_fill_status(&po->rx_ring);
2164 }
2165
2166 drop_n_restore:
2167 if (skb_head != skb->data && skb_shared(skb)) {
2168 skb->data = skb_head;
2169 skb->len = skb_len;
2170 }
2171 drop:
2172 kfree_skb(skb);
2173 return 0;
2174
2175 ring_is_full:
2176 po->stats.stats1.tp_drops++;
2177 spin_unlock(&sk->sk_receive_queue.lock);
2178
2179 sk->sk_data_ready(sk);
2180 kfree_skb(copy_skb);
2181 goto drop_n_restore;
2182 }
2183
2184 static void tpacket_destruct_skb(struct sk_buff *skb)
2185 {
2186 struct packet_sock *po = pkt_sk(skb->sk);
2187
2188 if (likely(po->tx_ring.pg_vec)) {
2189 void *ph;
2190 __u32 ts;
2191
2192 ph = skb_shinfo(skb)->destructor_arg;
2193 packet_dec_pending(&po->tx_ring);
2194
2195 ts = __packet_set_timestamp(po, ph, skb);
2196 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2197 }
2198
2199 sock_wfree(skb);
2200 }
2201
2202 static bool ll_header_truncated(const struct net_device *dev, int len)
2203 {
2204 /* net device doesn't like empty head */
2205 if (unlikely(len <= dev->hard_header_len)) {
2206 net_warn_ratelimited("%s: packet size is too short (%d <= %d)\n",
2207 current->comm, len, dev->hard_header_len);
2208 return true;
2209 }
2210
2211 return false;
2212 }
2213
2214 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2215 void *frame, struct net_device *dev, int size_max,
2216 __be16 proto, unsigned char *addr, int hlen)
2217 {
2218 union tpacket_uhdr ph;
2219 int to_write, offset, len, tp_len, nr_frags, len_max;
2220 struct socket *sock = po->sk.sk_socket;
2221 struct page *page;
2222 void *data;
2223 int err;
2224
2225 ph.raw = frame;
2226
2227 skb->protocol = proto;
2228 skb->dev = dev;
2229 skb->priority = po->sk.sk_priority;
2230 skb->mark = po->sk.sk_mark;
2231 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2232 skb_shinfo(skb)->destructor_arg = ph.raw;
2233
2234 switch (po->tp_version) {
2235 case TPACKET_V2:
2236 tp_len = ph.h2->tp_len;
2237 break;
2238 default:
2239 tp_len = ph.h1->tp_len;
2240 break;
2241 }
2242 if (unlikely(tp_len > size_max)) {
2243 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2244 return -EMSGSIZE;
2245 }
2246
2247 skb_reserve(skb, hlen);
2248 skb_reset_network_header(skb);
2249
2250 if (!packet_use_direct_xmit(po))
2251 skb_probe_transport_header(skb, 0);
2252 if (unlikely(po->tp_tx_has_off)) {
2253 int off_min, off_max, off;
2254 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2255 off_max = po->tx_ring.frame_size - tp_len;
2256 if (sock->type == SOCK_DGRAM) {
2257 switch (po->tp_version) {
2258 case TPACKET_V2:
2259 off = ph.h2->tp_net;
2260 break;
2261 default:
2262 off = ph.h1->tp_net;
2263 break;
2264 }
2265 } else {
2266 switch (po->tp_version) {
2267 case TPACKET_V2:
2268 off = ph.h2->tp_mac;
2269 break;
2270 default:
2271 off = ph.h1->tp_mac;
2272 break;
2273 }
2274 }
2275 if (unlikely((off < off_min) || (off_max < off)))
2276 return -EINVAL;
2277 data = ph.raw + off;
2278 } else {
2279 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2280 }
2281 to_write = tp_len;
2282
2283 if (sock->type == SOCK_DGRAM) {
2284 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2285 NULL, tp_len);
2286 if (unlikely(err < 0))
2287 return -EINVAL;
2288 } else if (dev->hard_header_len) {
2289 if (ll_header_truncated(dev, tp_len))
2290 return -EINVAL;
2291
2292 skb_push(skb, dev->hard_header_len);
2293 err = skb_store_bits(skb, 0, data,
2294 dev->hard_header_len);
2295 if (unlikely(err))
2296 return err;
2297
2298 data += dev->hard_header_len;
2299 to_write -= dev->hard_header_len;
2300 }
2301
2302 offset = offset_in_page(data);
2303 len_max = PAGE_SIZE - offset;
2304 len = ((to_write > len_max) ? len_max : to_write);
2305
2306 skb->data_len = to_write;
2307 skb->len += to_write;
2308 skb->truesize += to_write;
2309 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2310
2311 while (likely(to_write)) {
2312 nr_frags = skb_shinfo(skb)->nr_frags;
2313
2314 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2315 pr_err("Packet exceed the number of skb frags(%lu)\n",
2316 MAX_SKB_FRAGS);
2317 return -EFAULT;
2318 }
2319
2320 page = pgv_to_page(data);
2321 data += len;
2322 flush_dcache_page(page);
2323 get_page(page);
2324 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2325 to_write -= len;
2326 offset = 0;
2327 len_max = PAGE_SIZE;
2328 len = ((to_write > len_max) ? len_max : to_write);
2329 }
2330
2331 return tp_len;
2332 }
2333
2334 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2335 {
2336 struct sk_buff *skb;
2337 struct net_device *dev;
2338 __be16 proto;
2339 int err, reserve = 0;
2340 void *ph;
2341 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2342 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2343 int tp_len, size_max;
2344 unsigned char *addr;
2345 int len_sum = 0;
2346 int status = TP_STATUS_AVAILABLE;
2347 int hlen, tlen;
2348
2349 mutex_lock(&po->pg_vec_lock);
2350
2351 if (likely(saddr == NULL)) {
2352 dev = packet_cached_dev_get(po);
2353 proto = po->num;
2354 addr = NULL;
2355 } else {
2356 err = -EINVAL;
2357 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2358 goto out;
2359 if (msg->msg_namelen < (saddr->sll_halen
2360 + offsetof(struct sockaddr_ll,
2361 sll_addr)))
2362 goto out;
2363 proto = saddr->sll_protocol;
2364 addr = saddr->sll_addr;
2365 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2366 }
2367
2368 err = -ENXIO;
2369 if (unlikely(dev == NULL))
2370 goto out;
2371 err = -ENETDOWN;
2372 if (unlikely(!(dev->flags & IFF_UP)))
2373 goto out_put;
2374
2375 reserve = dev->hard_header_len + VLAN_HLEN;
2376 size_max = po->tx_ring.frame_size
2377 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2378
2379 if (size_max > dev->mtu + reserve)
2380 size_max = dev->mtu + reserve;
2381
2382 do {
2383 ph = packet_current_frame(po, &po->tx_ring,
2384 TP_STATUS_SEND_REQUEST);
2385 if (unlikely(ph == NULL)) {
2386 if (need_wait && need_resched())
2387 schedule();
2388 continue;
2389 }
2390
2391 status = TP_STATUS_SEND_REQUEST;
2392 hlen = LL_RESERVED_SPACE(dev);
2393 tlen = dev->needed_tailroom;
2394 skb = sock_alloc_send_skb(&po->sk,
2395 hlen + tlen + sizeof(struct sockaddr_ll),
2396 !need_wait, &err);
2397
2398 if (unlikely(skb == NULL)) {
2399 /* we assume the socket was initially writeable ... */
2400 if (likely(len_sum > 0))
2401 err = len_sum;
2402 goto out_status;
2403 }
2404 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2405 addr, hlen);
2406 if (tp_len > dev->mtu + dev->hard_header_len) {
2407 struct ethhdr *ehdr;
2408 /* Earlier code assumed this would be a VLAN pkt,
2409 * double-check this now that we have the actual
2410 * packet in hand.
2411 */
2412
2413 skb_reset_mac_header(skb);
2414 ehdr = eth_hdr(skb);
2415 if (ehdr->h_proto != htons(ETH_P_8021Q))
2416 tp_len = -EMSGSIZE;
2417 }
2418 if (unlikely(tp_len < 0)) {
2419 if (po->tp_loss) {
2420 __packet_set_status(po, ph,
2421 TP_STATUS_AVAILABLE);
2422 packet_increment_head(&po->tx_ring);
2423 kfree_skb(skb);
2424 continue;
2425 } else {
2426 status = TP_STATUS_WRONG_FORMAT;
2427 err = tp_len;
2428 goto out_status;
2429 }
2430 }
2431
2432 packet_pick_tx_queue(dev, skb);
2433
2434 skb->destructor = tpacket_destruct_skb;
2435 __packet_set_status(po, ph, TP_STATUS_SENDING);
2436 packet_inc_pending(&po->tx_ring);
2437
2438 status = TP_STATUS_SEND_REQUEST;
2439 err = po->xmit(skb);
2440 if (unlikely(err > 0)) {
2441 err = net_xmit_errno(err);
2442 if (err && __packet_get_status(po, ph) ==
2443 TP_STATUS_AVAILABLE) {
2444 /* skb was destructed already */
2445 skb = NULL;
2446 goto out_status;
2447 }
2448 /*
2449 * skb was dropped but not destructed yet;
2450 * let's treat it like congestion or err < 0
2451 */
2452 err = 0;
2453 }
2454 packet_increment_head(&po->tx_ring);
2455 len_sum += tp_len;
2456 } while (likely((ph != NULL) ||
2457 /* Note: packet_read_pending() might be slow if we have
2458 * to call it as it's per_cpu variable, but in fast-path
2459 * we already short-circuit the loop with the first
2460 * condition, and luckily don't have to go that path
2461 * anyway.
2462 */
2463 (need_wait && packet_read_pending(&po->tx_ring))));
2464
2465 err = len_sum;
2466 goto out_put;
2467
2468 out_status:
2469 __packet_set_status(po, ph, status);
2470 kfree_skb(skb);
2471 out_put:
2472 dev_put(dev);
2473 out:
2474 mutex_unlock(&po->pg_vec_lock);
2475 return err;
2476 }
2477
2478 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2479 size_t reserve, size_t len,
2480 size_t linear, int noblock,
2481 int *err)
2482 {
2483 struct sk_buff *skb;
2484
2485 /* Under a page? Don't bother with paged skb. */
2486 if (prepad + len < PAGE_SIZE || !linear)
2487 linear = len;
2488
2489 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2490 err, 0);
2491 if (!skb)
2492 return NULL;
2493
2494 skb_reserve(skb, reserve);
2495 skb_put(skb, linear);
2496 skb->data_len = len - linear;
2497 skb->len += len - linear;
2498
2499 return skb;
2500 }
2501
2502 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2503 {
2504 struct sock *sk = sock->sk;
2505 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2506 struct sk_buff *skb;
2507 struct net_device *dev;
2508 __be16 proto;
2509 unsigned char *addr;
2510 int err, reserve = 0;
2511 struct virtio_net_hdr vnet_hdr = { 0 };
2512 int offset = 0;
2513 int vnet_hdr_len;
2514 struct packet_sock *po = pkt_sk(sk);
2515 unsigned short gso_type = 0;
2516 int hlen, tlen;
2517 int extra_len = 0;
2518 ssize_t n;
2519
2520 /*
2521 * Get and verify the address.
2522 */
2523
2524 if (likely(saddr == NULL)) {
2525 dev = packet_cached_dev_get(po);
2526 proto = po->num;
2527 addr = NULL;
2528 } else {
2529 err = -EINVAL;
2530 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2531 goto out;
2532 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2533 goto out;
2534 proto = saddr->sll_protocol;
2535 addr = saddr->sll_addr;
2536 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2537 }
2538
2539 err = -ENXIO;
2540 if (unlikely(dev == NULL))
2541 goto out_unlock;
2542 err = -ENETDOWN;
2543 if (unlikely(!(dev->flags & IFF_UP)))
2544 goto out_unlock;
2545
2546 if (sock->type == SOCK_RAW)
2547 reserve = dev->hard_header_len;
2548 if (po->has_vnet_hdr) {
2549 vnet_hdr_len = sizeof(vnet_hdr);
2550
2551 err = -EINVAL;
2552 if (len < vnet_hdr_len)
2553 goto out_unlock;
2554
2555 len -= vnet_hdr_len;
2556
2557 err = -EFAULT;
2558 n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter);
2559 if (n != vnet_hdr_len)
2560 goto out_unlock;
2561
2562 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2563 (__virtio16_to_cpu(false, vnet_hdr.csum_start) +
2564 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2 >
2565 __virtio16_to_cpu(false, vnet_hdr.hdr_len)))
2566 vnet_hdr.hdr_len = __cpu_to_virtio16(false,
2567 __virtio16_to_cpu(false, vnet_hdr.csum_start) +
2568 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2);
2569
2570 err = -EINVAL;
2571 if (__virtio16_to_cpu(false, vnet_hdr.hdr_len) > len)
2572 goto out_unlock;
2573
2574 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2575 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2576 case VIRTIO_NET_HDR_GSO_TCPV4:
2577 gso_type = SKB_GSO_TCPV4;
2578 break;
2579 case VIRTIO_NET_HDR_GSO_TCPV6:
2580 gso_type = SKB_GSO_TCPV6;
2581 break;
2582 case VIRTIO_NET_HDR_GSO_UDP:
2583 gso_type = SKB_GSO_UDP;
2584 break;
2585 default:
2586 goto out_unlock;
2587 }
2588
2589 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2590 gso_type |= SKB_GSO_TCP_ECN;
2591
2592 if (vnet_hdr.gso_size == 0)
2593 goto out_unlock;
2594
2595 }
2596 }
2597
2598 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2599 if (!netif_supports_nofcs(dev)) {
2600 err = -EPROTONOSUPPORT;
2601 goto out_unlock;
2602 }
2603 extra_len = 4; /* We're doing our own CRC */
2604 }
2605
2606 err = -EMSGSIZE;
2607 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2608 goto out_unlock;
2609
2610 err = -ENOBUFS;
2611 hlen = LL_RESERVED_SPACE(dev);
2612 tlen = dev->needed_tailroom;
2613 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,
2614 __virtio16_to_cpu(false, vnet_hdr.hdr_len),
2615 msg->msg_flags & MSG_DONTWAIT, &err);
2616 if (skb == NULL)
2617 goto out_unlock;
2618
2619 skb_set_network_header(skb, reserve);
2620
2621 err = -EINVAL;
2622 if (sock->type == SOCK_DGRAM) {
2623 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2624 if (unlikely(offset < 0))
2625 goto out_free;
2626 } else {
2627 if (ll_header_truncated(dev, len))
2628 goto out_free;
2629 }
2630
2631 /* Returns -EFAULT on error */
2632 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2633 if (err)
2634 goto out_free;
2635
2636 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2637
2638 if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2639 /* Earlier code assumed this would be a VLAN pkt,
2640 * double-check this now that we have the actual
2641 * packet in hand.
2642 */
2643 struct ethhdr *ehdr;
2644 skb_reset_mac_header(skb);
2645 ehdr = eth_hdr(skb);
2646 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2647 err = -EMSGSIZE;
2648 goto out_free;
2649 }
2650 }
2651
2652 skb->protocol = proto;
2653 skb->dev = dev;
2654 skb->priority = sk->sk_priority;
2655 skb->mark = sk->sk_mark;
2656
2657 packet_pick_tx_queue(dev, skb);
2658
2659 if (po->has_vnet_hdr) {
2660 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2661 u16 s = __virtio16_to_cpu(false, vnet_hdr.csum_start);
2662 u16 o = __virtio16_to_cpu(false, vnet_hdr.csum_offset);
2663 if (!skb_partial_csum_set(skb, s, o)) {
2664 err = -EINVAL;
2665 goto out_free;
2666 }
2667 }
2668
2669 skb_shinfo(skb)->gso_size =
2670 __virtio16_to_cpu(false, vnet_hdr.gso_size);
2671 skb_shinfo(skb)->gso_type = gso_type;
2672
2673 /* Header must be checked, and gso_segs computed. */
2674 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2675 skb_shinfo(skb)->gso_segs = 0;
2676
2677 len += vnet_hdr_len;
2678 }
2679
2680 if (!packet_use_direct_xmit(po))
2681 skb_probe_transport_header(skb, reserve);
2682 if (unlikely(extra_len == 4))
2683 skb->no_fcs = 1;
2684
2685 err = po->xmit(skb);
2686 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2687 goto out_unlock;
2688
2689 dev_put(dev);
2690
2691 return len;
2692
2693 out_free:
2694 kfree_skb(skb);
2695 out_unlock:
2696 if (dev)
2697 dev_put(dev);
2698 out:
2699 return err;
2700 }
2701
2702 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2703 {
2704 struct sock *sk = sock->sk;
2705 struct packet_sock *po = pkt_sk(sk);
2706
2707 if (po->tx_ring.pg_vec)
2708 return tpacket_snd(po, msg);
2709 else
2710 return packet_snd(sock, msg, len);
2711 }
2712
2713 /*
2714 * Close a PACKET socket. This is fairly simple. We immediately go
2715 * to 'closed' state and remove our protocol entry in the device list.
2716 */
2717
2718 static int packet_release(struct socket *sock)
2719 {
2720 struct sock *sk = sock->sk;
2721 struct packet_sock *po;
2722 struct net *net;
2723 union tpacket_req_u req_u;
2724
2725 if (!sk)
2726 return 0;
2727
2728 net = sock_net(sk);
2729 po = pkt_sk(sk);
2730
2731 mutex_lock(&net->packet.sklist_lock);
2732 sk_del_node_init_rcu(sk);
2733 mutex_unlock(&net->packet.sklist_lock);
2734
2735 preempt_disable();
2736 sock_prot_inuse_add(net, sk->sk_prot, -1);
2737 preempt_enable();
2738
2739 spin_lock(&po->bind_lock);
2740 unregister_prot_hook(sk, false);
2741 packet_cached_dev_reset(po);
2742
2743 if (po->prot_hook.dev) {
2744 dev_put(po->prot_hook.dev);
2745 po->prot_hook.dev = NULL;
2746 }
2747 spin_unlock(&po->bind_lock);
2748
2749 packet_flush_mclist(sk);
2750
2751 if (po->rx_ring.pg_vec) {
2752 memset(&req_u, 0, sizeof(req_u));
2753 packet_set_ring(sk, &req_u, 1, 0);
2754 }
2755
2756 if (po->tx_ring.pg_vec) {
2757 memset(&req_u, 0, sizeof(req_u));
2758 packet_set_ring(sk, &req_u, 1, 1);
2759 }
2760
2761 fanout_release(sk);
2762
2763 synchronize_net();
2764 /*
2765 * Now the socket is dead. No more input will appear.
2766 */
2767 sock_orphan(sk);
2768 sock->sk = NULL;
2769
2770 /* Purge queues */
2771
2772 skb_queue_purge(&sk->sk_receive_queue);
2773 packet_free_pending(po);
2774 sk_refcnt_debug_release(sk);
2775
2776 sock_put(sk);
2777 return 0;
2778 }
2779
2780 /*
2781 * Attach a packet hook.
2782 */
2783
2784 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2785 {
2786 struct packet_sock *po = pkt_sk(sk);
2787 const struct net_device *dev_curr;
2788 __be16 proto_curr;
2789 bool need_rehook;
2790
2791 if (po->fanout) {
2792 if (dev)
2793 dev_put(dev);
2794
2795 return -EINVAL;
2796 }
2797
2798 lock_sock(sk);
2799 spin_lock(&po->bind_lock);
2800
2801 proto_curr = po->prot_hook.type;
2802 dev_curr = po->prot_hook.dev;
2803
2804 need_rehook = proto_curr != proto || dev_curr != dev;
2805
2806 if (need_rehook) {
2807 unregister_prot_hook(sk, true);
2808
2809 po->num = proto;
2810 po->prot_hook.type = proto;
2811
2812 if (po->prot_hook.dev)
2813 dev_put(po->prot_hook.dev);
2814
2815 po->prot_hook.dev = dev;
2816
2817 po->ifindex = dev ? dev->ifindex : 0;
2818 packet_cached_dev_assign(po, dev);
2819 }
2820
2821 if (proto == 0 || !need_rehook)
2822 goto out_unlock;
2823
2824 if (!dev || (dev->flags & IFF_UP)) {
2825 register_prot_hook(sk);
2826 } else {
2827 sk->sk_err = ENETDOWN;
2828 if (!sock_flag(sk, SOCK_DEAD))
2829 sk->sk_error_report(sk);
2830 }
2831
2832 out_unlock:
2833 spin_unlock(&po->bind_lock);
2834 release_sock(sk);
2835 return 0;
2836 }
2837
2838 /*
2839 * Bind a packet socket to a device
2840 */
2841
2842 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2843 int addr_len)
2844 {
2845 struct sock *sk = sock->sk;
2846 char name[15];
2847 struct net_device *dev;
2848 int err = -ENODEV;
2849
2850 /*
2851 * Check legality
2852 */
2853
2854 if (addr_len != sizeof(struct sockaddr))
2855 return -EINVAL;
2856 strlcpy(name, uaddr->sa_data, sizeof(name));
2857
2858 dev = dev_get_by_name(sock_net(sk), name);
2859 if (dev)
2860 err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2861 return err;
2862 }
2863
2864 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2865 {
2866 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2867 struct sock *sk = sock->sk;
2868 struct net_device *dev = NULL;
2869 int err;
2870
2871
2872 /*
2873 * Check legality
2874 */
2875
2876 if (addr_len < sizeof(struct sockaddr_ll))
2877 return -EINVAL;
2878 if (sll->sll_family != AF_PACKET)
2879 return -EINVAL;
2880
2881 if (sll->sll_ifindex) {
2882 err = -ENODEV;
2883 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2884 if (dev == NULL)
2885 goto out;
2886 }
2887 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2888
2889 out:
2890 return err;
2891 }
2892
2893 static struct proto packet_proto = {
2894 .name = "PACKET",
2895 .owner = THIS_MODULE,
2896 .obj_size = sizeof(struct packet_sock),
2897 };
2898
2899 /*
2900 * Create a packet of type SOCK_PACKET.
2901 */
2902
2903 static int packet_create(struct net *net, struct socket *sock, int protocol,
2904 int kern)
2905 {
2906 struct sock *sk;
2907 struct packet_sock *po;
2908 __be16 proto = (__force __be16)protocol; /* weird, but documented */
2909 int err;
2910
2911 if (!ns_capable(net->user_ns, CAP_NET_RAW))
2912 return -EPERM;
2913 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2914 sock->type != SOCK_PACKET)
2915 return -ESOCKTNOSUPPORT;
2916
2917 sock->state = SS_UNCONNECTED;
2918
2919 err = -ENOBUFS;
2920 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
2921 if (sk == NULL)
2922 goto out;
2923
2924 sock->ops = &packet_ops;
2925 if (sock->type == SOCK_PACKET)
2926 sock->ops = &packet_ops_spkt;
2927
2928 sock_init_data(sock, sk);
2929
2930 po = pkt_sk(sk);
2931 sk->sk_family = PF_PACKET;
2932 po->num = proto;
2933 po->xmit = dev_queue_xmit;
2934
2935 err = packet_alloc_pending(po);
2936 if (err)
2937 goto out2;
2938
2939 packet_cached_dev_reset(po);
2940
2941 sk->sk_destruct = packet_sock_destruct;
2942 sk_refcnt_debug_inc(sk);
2943
2944 /*
2945 * Attach a protocol block
2946 */
2947
2948 spin_lock_init(&po->bind_lock);
2949 mutex_init(&po->pg_vec_lock);
2950 po->rollover = NULL;
2951 po->prot_hook.func = packet_rcv;
2952
2953 if (sock->type == SOCK_PACKET)
2954 po->prot_hook.func = packet_rcv_spkt;
2955
2956 po->prot_hook.af_packet_priv = sk;
2957
2958 if (proto) {
2959 po->prot_hook.type = proto;
2960 register_prot_hook(sk);
2961 }
2962
2963 mutex_lock(&net->packet.sklist_lock);
2964 sk_add_node_rcu(sk, &net->packet.sklist);
2965 mutex_unlock(&net->packet.sklist_lock);
2966
2967 preempt_disable();
2968 sock_prot_inuse_add(net, &packet_proto, 1);
2969 preempt_enable();
2970
2971 return 0;
2972 out2:
2973 sk_free(sk);
2974 out:
2975 return err;
2976 }
2977
2978 /*
2979 * Pull a packet from our receive queue and hand it to the user.
2980 * If necessary we block.
2981 */
2982
2983 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2984 int flags)
2985 {
2986 struct sock *sk = sock->sk;
2987 struct sk_buff *skb;
2988 int copied, err;
2989 int vnet_hdr_len = 0;
2990 unsigned int origlen = 0;
2991
2992 err = -EINVAL;
2993 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2994 goto out;
2995
2996 #if 0
2997 /* What error should we return now? EUNATTACH? */
2998 if (pkt_sk(sk)->ifindex < 0)
2999 return -ENODEV;
3000 #endif
3001
3002 if (flags & MSG_ERRQUEUE) {
3003 err = sock_recv_errqueue(sk, msg, len,
3004 SOL_PACKET, PACKET_TX_TIMESTAMP);
3005 goto out;
3006 }
3007
3008 /*
3009 * Call the generic datagram receiver. This handles all sorts
3010 * of horrible races and re-entrancy so we can forget about it
3011 * in the protocol layers.
3012 *
3013 * Now it will return ENETDOWN, if device have just gone down,
3014 * but then it will block.
3015 */
3016
3017 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3018
3019 /*
3020 * An error occurred so return it. Because skb_recv_datagram()
3021 * handles the blocking we don't see and worry about blocking
3022 * retries.
3023 */
3024
3025 if (skb == NULL)
3026 goto out;
3027
3028 if (pkt_sk(sk)->pressure)
3029 packet_rcv_has_room(pkt_sk(sk), NULL);
3030
3031 if (pkt_sk(sk)->has_vnet_hdr) {
3032 struct virtio_net_hdr vnet_hdr = { 0 };
3033
3034 err = -EINVAL;
3035 vnet_hdr_len = sizeof(vnet_hdr);
3036 if (len < vnet_hdr_len)
3037 goto out_free;
3038
3039 len -= vnet_hdr_len;
3040
3041 if (skb_is_gso(skb)) {
3042 struct skb_shared_info *sinfo = skb_shinfo(skb);
3043
3044 /* This is a hint as to how much should be linear. */
3045 vnet_hdr.hdr_len =
3046 __cpu_to_virtio16(false, skb_headlen(skb));
3047 vnet_hdr.gso_size =
3048 __cpu_to_virtio16(false, sinfo->gso_size);
3049 if (sinfo->gso_type & SKB_GSO_TCPV4)
3050 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
3051 else if (sinfo->gso_type & SKB_GSO_TCPV6)
3052 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
3053 else if (sinfo->gso_type & SKB_GSO_UDP)
3054 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
3055 else if (sinfo->gso_type & SKB_GSO_FCOE)
3056 goto out_free;
3057 else
3058 BUG();
3059 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
3060 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
3061 } else
3062 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
3063
3064 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3065 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
3066 vnet_hdr.csum_start = __cpu_to_virtio16(false,
3067 skb_checksum_start_offset(skb));
3068 vnet_hdr.csum_offset = __cpu_to_virtio16(false,
3069 skb->csum_offset);
3070 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3071 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
3072 } /* else everything is zero */
3073
3074 err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len);
3075 if (err < 0)
3076 goto out_free;
3077 }
3078
3079 /* You lose any data beyond the buffer you gave. If it worries
3080 * a user program they can ask the device for its MTU
3081 * anyway.
3082 */
3083 copied = skb->len;
3084 if (copied > len) {
3085 copied = len;
3086 msg->msg_flags |= MSG_TRUNC;
3087 }
3088
3089 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3090 if (err)
3091 goto out_free;
3092
3093 if (sock->type != SOCK_PACKET) {
3094 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3095
3096 /* Original length was stored in sockaddr_ll fields */
3097 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3098 sll->sll_family = AF_PACKET;
3099 sll->sll_protocol = skb->protocol;
3100 }
3101
3102 sock_recv_ts_and_drops(msg, sk, skb);
3103
3104 if (msg->msg_name) {
3105 /* If the address length field is there to be filled
3106 * in, we fill it in now.
3107 */
3108 if (sock->type == SOCK_PACKET) {
3109 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3110 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3111 } else {
3112 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3113
3114 msg->msg_namelen = sll->sll_halen +
3115 offsetof(struct sockaddr_ll, sll_addr);
3116 }
3117 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3118 msg->msg_namelen);
3119 }
3120
3121 if (pkt_sk(sk)->auxdata) {
3122 struct tpacket_auxdata aux;
3123
3124 aux.tp_status = TP_STATUS_USER;
3125 if (skb->ip_summed == CHECKSUM_PARTIAL)
3126 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3127 else if (skb->pkt_type != PACKET_OUTGOING &&
3128 (skb->ip_summed == CHECKSUM_COMPLETE ||
3129 skb_csum_unnecessary(skb)))
3130 aux.tp_status |= TP_STATUS_CSUM_VALID;
3131
3132 aux.tp_len = origlen;
3133 aux.tp_snaplen = skb->len;
3134 aux.tp_mac = 0;
3135 aux.tp_net = skb_network_offset(skb);
3136 if (skb_vlan_tag_present(skb)) {
3137 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3138 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3139 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3140 } else {
3141 aux.tp_vlan_tci = 0;
3142 aux.tp_vlan_tpid = 0;
3143 }
3144 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3145 }
3146
3147 /*
3148 * Free or return the buffer as appropriate. Again this
3149 * hides all the races and re-entrancy issues from us.
3150 */
3151 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3152
3153 out_free:
3154 skb_free_datagram(sk, skb);
3155 out:
3156 return err;
3157 }
3158
3159 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3160 int *uaddr_len, int peer)
3161 {
3162 struct net_device *dev;
3163 struct sock *sk = sock->sk;
3164
3165 if (peer)
3166 return -EOPNOTSUPP;
3167
3168 uaddr->sa_family = AF_PACKET;
3169 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3170 rcu_read_lock();
3171 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3172 if (dev)
3173 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3174 rcu_read_unlock();
3175 *uaddr_len = sizeof(*uaddr);
3176
3177 return 0;
3178 }
3179
3180 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3181 int *uaddr_len, int peer)
3182 {
3183 struct net_device *dev;
3184 struct sock *sk = sock->sk;
3185 struct packet_sock *po = pkt_sk(sk);
3186 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3187
3188 if (peer)
3189 return -EOPNOTSUPP;
3190
3191 sll->sll_family = AF_PACKET;
3192 sll->sll_ifindex = po->ifindex;
3193 sll->sll_protocol = po->num;
3194 sll->sll_pkttype = 0;
3195 rcu_read_lock();
3196 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3197 if (dev) {
3198 sll->sll_hatype = dev->type;
3199 sll->sll_halen = dev->addr_len;
3200 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3201 } else {
3202 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3203 sll->sll_halen = 0;
3204 }
3205 rcu_read_unlock();
3206 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3207
3208 return 0;
3209 }
3210
3211 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3212 int what)
3213 {
3214 switch (i->type) {
3215 case PACKET_MR_MULTICAST:
3216 if (i->alen != dev->addr_len)
3217 return -EINVAL;
3218 if (what > 0)
3219 return dev_mc_add(dev, i->addr);
3220 else
3221 return dev_mc_del(dev, i->addr);
3222 break;
3223 case PACKET_MR_PROMISC:
3224 return dev_set_promiscuity(dev, what);
3225 case PACKET_MR_ALLMULTI:
3226 return dev_set_allmulti(dev, what);
3227 case PACKET_MR_UNICAST:
3228 if (i->alen != dev->addr_len)
3229 return -EINVAL;
3230 if (what > 0)
3231 return dev_uc_add(dev, i->addr);
3232 else
3233 return dev_uc_del(dev, i->addr);
3234 break;
3235 default:
3236 break;
3237 }
3238 return 0;
3239 }
3240
3241 static void packet_dev_mclist_delete(struct net_device *dev,
3242 struct packet_mclist **mlp)
3243 {
3244 struct packet_mclist *ml;
3245
3246 while ((ml = *mlp) != NULL) {
3247 if (ml->ifindex == dev->ifindex) {
3248 packet_dev_mc(dev, ml, -1);
3249 *mlp = ml->next;
3250 kfree(ml);
3251 } else
3252 mlp = &ml->next;
3253 }
3254 }
3255
3256 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3257 {
3258 struct packet_sock *po = pkt_sk(sk);
3259 struct packet_mclist *ml, *i;
3260 struct net_device *dev;
3261 int err;
3262
3263 rtnl_lock();
3264
3265 err = -ENODEV;
3266 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3267 if (!dev)
3268 goto done;
3269
3270 err = -EINVAL;
3271 if (mreq->mr_alen > dev->addr_len)
3272 goto done;
3273
3274 err = -ENOBUFS;
3275 i = kmalloc(sizeof(*i), GFP_KERNEL);
3276 if (i == NULL)
3277 goto done;
3278
3279 err = 0;
3280 for (ml = po->mclist; ml; ml = ml->next) {
3281 if (ml->ifindex == mreq->mr_ifindex &&
3282 ml->type == mreq->mr_type &&
3283 ml->alen == mreq->mr_alen &&
3284 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3285 ml->count++;
3286 /* Free the new element ... */
3287 kfree(i);
3288 goto done;
3289 }
3290 }
3291
3292 i->type = mreq->mr_type;
3293 i->ifindex = mreq->mr_ifindex;
3294 i->alen = mreq->mr_alen;
3295 memcpy(i->addr, mreq->mr_address, i->alen);
3296 i->count = 1;
3297 i->next = po->mclist;
3298 po->mclist = i;
3299 err = packet_dev_mc(dev, i, 1);
3300 if (err) {
3301 po->mclist = i->next;
3302 kfree(i);
3303 }
3304
3305 done:
3306 rtnl_unlock();
3307 return err;
3308 }
3309
3310 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3311 {
3312 struct packet_mclist *ml, **mlp;
3313
3314 rtnl_lock();
3315
3316 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3317 if (ml->ifindex == mreq->mr_ifindex &&
3318 ml->type == mreq->mr_type &&
3319 ml->alen == mreq->mr_alen &&
3320 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3321 if (--ml->count == 0) {
3322 struct net_device *dev;
3323 *mlp = ml->next;
3324 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3325 if (dev)
3326 packet_dev_mc(dev, ml, -1);
3327 kfree(ml);
3328 }
3329 break;
3330 }
3331 }
3332 rtnl_unlock();
3333 return 0;
3334 }
3335
3336 static void packet_flush_mclist(struct sock *sk)
3337 {
3338 struct packet_sock *po = pkt_sk(sk);
3339 struct packet_mclist *ml;
3340
3341 if (!po->mclist)
3342 return;
3343
3344 rtnl_lock();
3345 while ((ml = po->mclist) != NULL) {
3346 struct net_device *dev;
3347
3348 po->mclist = ml->next;
3349 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3350 if (dev != NULL)
3351 packet_dev_mc(dev, ml, -1);
3352 kfree(ml);
3353 }
3354 rtnl_unlock();
3355 }
3356
3357 static int
3358 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3359 {
3360 struct sock *sk = sock->sk;
3361 struct packet_sock *po = pkt_sk(sk);
3362 int ret;
3363
3364 if (level != SOL_PACKET)
3365 return -ENOPROTOOPT;
3366
3367 switch (optname) {
3368 case PACKET_ADD_MEMBERSHIP:
3369 case PACKET_DROP_MEMBERSHIP:
3370 {
3371 struct packet_mreq_max mreq;
3372 int len = optlen;
3373 memset(&mreq, 0, sizeof(mreq));
3374 if (len < sizeof(struct packet_mreq))
3375 return -EINVAL;
3376 if (len > sizeof(mreq))
3377 len = sizeof(mreq);
3378 if (copy_from_user(&mreq, optval, len))
3379 return -EFAULT;
3380 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3381 return -EINVAL;
3382 if (optname == PACKET_ADD_MEMBERSHIP)
3383 ret = packet_mc_add(sk, &mreq);
3384 else
3385 ret = packet_mc_drop(sk, &mreq);
3386 return ret;
3387 }
3388
3389 case PACKET_RX_RING:
3390 case PACKET_TX_RING:
3391 {
3392 union tpacket_req_u req_u;
3393 int len;
3394
3395 switch (po->tp_version) {
3396 case TPACKET_V1:
3397 case TPACKET_V2:
3398 len = sizeof(req_u.req);
3399 break;
3400 case TPACKET_V3:
3401 default:
3402 len = sizeof(req_u.req3);
3403 break;
3404 }
3405 if (optlen < len)
3406 return -EINVAL;
3407 if (pkt_sk(sk)->has_vnet_hdr)
3408 return -EINVAL;
3409 if (copy_from_user(&req_u.req, optval, len))
3410 return -EFAULT;
3411 return packet_set_ring(sk, &req_u, 0,
3412 optname == PACKET_TX_RING);
3413 }
3414 case PACKET_COPY_THRESH:
3415 {
3416 int val;
3417
3418 if (optlen != sizeof(val))
3419 return -EINVAL;
3420 if (copy_from_user(&val, optval, sizeof(val)))
3421 return -EFAULT;
3422
3423 pkt_sk(sk)->copy_thresh = val;
3424 return 0;
3425 }
3426 case PACKET_VERSION:
3427 {
3428 int val;
3429
3430 if (optlen != sizeof(val))
3431 return -EINVAL;
3432 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3433 return -EBUSY;
3434 if (copy_from_user(&val, optval, sizeof(val)))
3435 return -EFAULT;
3436 switch (val) {
3437 case TPACKET_V1:
3438 case TPACKET_V2:
3439 case TPACKET_V3:
3440 po->tp_version = val;
3441 return 0;
3442 default:
3443 return -EINVAL;
3444 }
3445 }
3446 case PACKET_RESERVE:
3447 {
3448 unsigned int val;
3449
3450 if (optlen != sizeof(val))
3451 return -EINVAL;
3452 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3453 return -EBUSY;
3454 if (copy_from_user(&val, optval, sizeof(val)))
3455 return -EFAULT;
3456 po->tp_reserve = val;
3457 return 0;
3458 }
3459 case PACKET_LOSS:
3460 {
3461 unsigned int val;
3462
3463 if (optlen != sizeof(val))
3464 return -EINVAL;
3465 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3466 return -EBUSY;
3467 if (copy_from_user(&val, optval, sizeof(val)))
3468 return -EFAULT;
3469 po->tp_loss = !!val;
3470 return 0;
3471 }
3472 case PACKET_AUXDATA:
3473 {
3474 int val;
3475
3476 if (optlen < sizeof(val))
3477 return -EINVAL;
3478 if (copy_from_user(&val, optval, sizeof(val)))
3479 return -EFAULT;
3480
3481 po->auxdata = !!val;
3482 return 0;
3483 }
3484 case PACKET_ORIGDEV:
3485 {
3486 int val;
3487
3488 if (optlen < sizeof(val))
3489 return -EINVAL;
3490 if (copy_from_user(&val, optval, sizeof(val)))
3491 return -EFAULT;
3492
3493 po->origdev = !!val;
3494 return 0;
3495 }
3496 case PACKET_VNET_HDR:
3497 {
3498 int val;
3499
3500 if (sock->type != SOCK_RAW)
3501 return -EINVAL;
3502 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3503 return -EBUSY;
3504 if (optlen < sizeof(val))
3505 return -EINVAL;
3506 if (copy_from_user(&val, optval, sizeof(val)))
3507 return -EFAULT;
3508
3509 po->has_vnet_hdr = !!val;
3510 return 0;
3511 }
3512 case PACKET_TIMESTAMP:
3513 {
3514 int val;
3515
3516 if (optlen != sizeof(val))
3517 return -EINVAL;
3518 if (copy_from_user(&val, optval, sizeof(val)))
3519 return -EFAULT;
3520
3521 po->tp_tstamp = val;
3522 return 0;
3523 }
3524 case PACKET_FANOUT:
3525 {
3526 int val;
3527
3528 if (optlen != sizeof(val))
3529 return -EINVAL;
3530 if (copy_from_user(&val, optval, sizeof(val)))
3531 return -EFAULT;
3532
3533 return fanout_add(sk, val & 0xffff, val >> 16);
3534 }
3535 case PACKET_TX_HAS_OFF:
3536 {
3537 unsigned int val;
3538
3539 if (optlen != sizeof(val))
3540 return -EINVAL;
3541 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3542 return -EBUSY;
3543 if (copy_from_user(&val, optval, sizeof(val)))
3544 return -EFAULT;
3545 po->tp_tx_has_off = !!val;
3546 return 0;
3547 }
3548 case PACKET_QDISC_BYPASS:
3549 {
3550 int val;
3551
3552 if (optlen != sizeof(val))
3553 return -EINVAL;
3554 if (copy_from_user(&val, optval, sizeof(val)))
3555 return -EFAULT;
3556
3557 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3558 return 0;
3559 }
3560 default:
3561 return -ENOPROTOOPT;
3562 }
3563 }
3564
3565 static int packet_getsockopt(struct socket *sock, int level, int optname,
3566 char __user *optval, int __user *optlen)
3567 {
3568 int len;
3569 int val, lv = sizeof(val);
3570 struct sock *sk = sock->sk;
3571 struct packet_sock *po = pkt_sk(sk);
3572 void *data = &val;
3573 union tpacket_stats_u st;
3574 struct tpacket_rollover_stats rstats;
3575
3576 if (level != SOL_PACKET)
3577 return -ENOPROTOOPT;
3578
3579 if (get_user(len, optlen))
3580 return -EFAULT;
3581
3582 if (len < 0)
3583 return -EINVAL;
3584
3585 switch (optname) {
3586 case PACKET_STATISTICS:
3587 spin_lock_bh(&sk->sk_receive_queue.lock);
3588 memcpy(&st, &po->stats, sizeof(st));
3589 memset(&po->stats, 0, sizeof(po->stats));
3590 spin_unlock_bh(&sk->sk_receive_queue.lock);
3591
3592 if (po->tp_version == TPACKET_V3) {
3593 lv = sizeof(struct tpacket_stats_v3);
3594 st.stats3.tp_packets += st.stats3.tp_drops;
3595 data = &st.stats3;
3596 } else {
3597 lv = sizeof(struct tpacket_stats);
3598 st.stats1.tp_packets += st.stats1.tp_drops;
3599 data = &st.stats1;
3600 }
3601
3602 break;
3603 case PACKET_AUXDATA:
3604 val = po->auxdata;
3605 break;
3606 case PACKET_ORIGDEV:
3607 val = po->origdev;
3608 break;
3609 case PACKET_VNET_HDR:
3610 val = po->has_vnet_hdr;
3611 break;
3612 case PACKET_VERSION:
3613 val = po->tp_version;
3614 break;
3615 case PACKET_HDRLEN:
3616 if (len > sizeof(int))
3617 len = sizeof(int);
3618 if (copy_from_user(&val, optval, len))
3619 return -EFAULT;
3620 switch (val) {
3621 case TPACKET_V1:
3622 val = sizeof(struct tpacket_hdr);
3623 break;
3624 case TPACKET_V2:
3625 val = sizeof(struct tpacket2_hdr);
3626 break;
3627 case TPACKET_V3:
3628 val = sizeof(struct tpacket3_hdr);
3629 break;
3630 default:
3631 return -EINVAL;
3632 }
3633 break;
3634 case PACKET_RESERVE:
3635 val = po->tp_reserve;
3636 break;
3637 case PACKET_LOSS:
3638 val = po->tp_loss;
3639 break;
3640 case PACKET_TIMESTAMP:
3641 val = po->tp_tstamp;
3642 break;
3643 case PACKET_FANOUT:
3644 val = (po->fanout ?
3645 ((u32)po->fanout->id |
3646 ((u32)po->fanout->type << 16) |
3647 ((u32)po->fanout->flags << 24)) :
3648 0);
3649 break;
3650 case PACKET_ROLLOVER_STATS:
3651 if (!po->rollover)
3652 return -EINVAL;
3653 rstats.tp_all = atomic_long_read(&po->rollover->num);
3654 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3655 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3656 data = &rstats;
3657 lv = sizeof(rstats);
3658 break;
3659 case PACKET_TX_HAS_OFF:
3660 val = po->tp_tx_has_off;
3661 break;
3662 case PACKET_QDISC_BYPASS:
3663 val = packet_use_direct_xmit(po);
3664 break;
3665 default:
3666 return -ENOPROTOOPT;
3667 }
3668
3669 if (len > lv)
3670 len = lv;
3671 if (put_user(len, optlen))
3672 return -EFAULT;
3673 if (copy_to_user(optval, data, len))
3674 return -EFAULT;
3675 return 0;
3676 }
3677
3678
3679 static int packet_notifier(struct notifier_block *this,
3680 unsigned long msg, void *ptr)
3681 {
3682 struct sock *sk;
3683 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3684 struct net *net = dev_net(dev);
3685
3686 rcu_read_lock();
3687 sk_for_each_rcu(sk, &net->packet.sklist) {
3688 struct packet_sock *po = pkt_sk(sk);
3689
3690 switch (msg) {
3691 case NETDEV_UNREGISTER:
3692 if (po->mclist)
3693 packet_dev_mclist_delete(dev, &po->mclist);
3694 /* fallthrough */
3695
3696 case NETDEV_DOWN:
3697 if (dev->ifindex == po->ifindex) {
3698 spin_lock(&po->bind_lock);
3699 if (po->running) {
3700 __unregister_prot_hook(sk, false);
3701 sk->sk_err = ENETDOWN;
3702 if (!sock_flag(sk, SOCK_DEAD))
3703 sk->sk_error_report(sk);
3704 }
3705 if (msg == NETDEV_UNREGISTER) {
3706 packet_cached_dev_reset(po);
3707 po->ifindex = -1;
3708 if (po->prot_hook.dev)
3709 dev_put(po->prot_hook.dev);
3710 po->prot_hook.dev = NULL;
3711 }
3712 spin_unlock(&po->bind_lock);
3713 }
3714 break;
3715 case NETDEV_UP:
3716 if (dev->ifindex == po->ifindex) {
3717 spin_lock(&po->bind_lock);
3718 if (po->num)
3719 register_prot_hook(sk);
3720 spin_unlock(&po->bind_lock);
3721 }
3722 break;
3723 }
3724 }
3725 rcu_read_unlock();
3726 return NOTIFY_DONE;
3727 }
3728
3729
3730 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3731 unsigned long arg)
3732 {
3733 struct sock *sk = sock->sk;
3734
3735 switch (cmd) {
3736 case SIOCOUTQ:
3737 {
3738 int amount = sk_wmem_alloc_get(sk);
3739
3740 return put_user(amount, (int __user *)arg);
3741 }
3742 case SIOCINQ:
3743 {
3744 struct sk_buff *skb;
3745 int amount = 0;
3746
3747 spin_lock_bh(&sk->sk_receive_queue.lock);
3748 skb = skb_peek(&sk->sk_receive_queue);
3749 if (skb)
3750 amount = skb->len;
3751 spin_unlock_bh(&sk->sk_receive_queue.lock);
3752 return put_user(amount, (int __user *)arg);
3753 }
3754 case SIOCGSTAMP:
3755 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3756 case SIOCGSTAMPNS:
3757 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3758
3759 #ifdef CONFIG_INET
3760 case SIOCADDRT:
3761 case SIOCDELRT:
3762 case SIOCDARP:
3763 case SIOCGARP:
3764 case SIOCSARP:
3765 case SIOCGIFADDR:
3766 case SIOCSIFADDR:
3767 case SIOCGIFBRDADDR:
3768 case SIOCSIFBRDADDR:
3769 case SIOCGIFNETMASK:
3770 case SIOCSIFNETMASK:
3771 case SIOCGIFDSTADDR:
3772 case SIOCSIFDSTADDR:
3773 case SIOCSIFFLAGS:
3774 return inet_dgram_ops.ioctl(sock, cmd, arg);
3775 #endif
3776
3777 default:
3778 return -ENOIOCTLCMD;
3779 }
3780 return 0;
3781 }
3782
3783 static unsigned int packet_poll(struct file *file, struct socket *sock,
3784 poll_table *wait)
3785 {
3786 struct sock *sk = sock->sk;
3787 struct packet_sock *po = pkt_sk(sk);
3788 unsigned int mask = datagram_poll(file, sock, wait);
3789
3790 spin_lock_bh(&sk->sk_receive_queue.lock);
3791 if (po->rx_ring.pg_vec) {
3792 if (!packet_previous_rx_frame(po, &po->rx_ring,
3793 TP_STATUS_KERNEL))
3794 mask |= POLLIN | POLLRDNORM;
3795 }
3796 if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
3797 po->pressure = 0;
3798 spin_unlock_bh(&sk->sk_receive_queue.lock);
3799 spin_lock_bh(&sk->sk_write_queue.lock);
3800 if (po->tx_ring.pg_vec) {
3801 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3802 mask |= POLLOUT | POLLWRNORM;
3803 }
3804 spin_unlock_bh(&sk->sk_write_queue.lock);
3805 return mask;
3806 }
3807
3808
3809 /* Dirty? Well, I still did not learn better way to account
3810 * for user mmaps.
3811 */
3812
3813 static void packet_mm_open(struct vm_area_struct *vma)
3814 {
3815 struct file *file = vma->vm_file;
3816 struct socket *sock = file->private_data;
3817 struct sock *sk = sock->sk;
3818
3819 if (sk)
3820 atomic_inc(&pkt_sk(sk)->mapped);
3821 }
3822
3823 static void packet_mm_close(struct vm_area_struct *vma)
3824 {
3825 struct file *file = vma->vm_file;
3826 struct socket *sock = file->private_data;
3827 struct sock *sk = sock->sk;
3828
3829 if (sk)
3830 atomic_dec(&pkt_sk(sk)->mapped);
3831 }
3832
3833 static const struct vm_operations_struct packet_mmap_ops = {
3834 .open = packet_mm_open,
3835 .close = packet_mm_close,
3836 };
3837
3838 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3839 unsigned int len)
3840 {
3841 int i;
3842
3843 for (i = 0; i < len; i++) {
3844 if (likely(pg_vec[i].buffer)) {
3845 if (is_vmalloc_addr(pg_vec[i].buffer))
3846 vfree(pg_vec[i].buffer);
3847 else
3848 free_pages((unsigned long)pg_vec[i].buffer,
3849 order);
3850 pg_vec[i].buffer = NULL;
3851 }
3852 }
3853 kfree(pg_vec);
3854 }
3855
3856 static char *alloc_one_pg_vec_page(unsigned long order)
3857 {
3858 char *buffer;
3859 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3860 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3861
3862 buffer = (char *) __get_free_pages(gfp_flags, order);
3863 if (buffer)
3864 return buffer;
3865
3866 /* __get_free_pages failed, fall back to vmalloc */
3867 buffer = vzalloc((1 << order) * PAGE_SIZE);
3868 if (buffer)
3869 return buffer;
3870
3871 /* vmalloc failed, lets dig into swap here */
3872 gfp_flags &= ~__GFP_NORETRY;
3873 buffer = (char *) __get_free_pages(gfp_flags, order);
3874 if (buffer)
3875 return buffer;
3876
3877 /* complete and utter failure */
3878 return NULL;
3879 }
3880
3881 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3882 {
3883 unsigned int block_nr = req->tp_block_nr;
3884 struct pgv *pg_vec;
3885 int i;
3886
3887 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3888 if (unlikely(!pg_vec))
3889 goto out;
3890
3891 for (i = 0; i < block_nr; i++) {
3892 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3893 if (unlikely(!pg_vec[i].buffer))
3894 goto out_free_pgvec;
3895 }
3896
3897 out:
3898 return pg_vec;
3899
3900 out_free_pgvec:
3901 free_pg_vec(pg_vec, order, block_nr);
3902 pg_vec = NULL;
3903 goto out;
3904 }
3905
3906 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3907 int closing, int tx_ring)
3908 {
3909 struct pgv *pg_vec = NULL;
3910 struct packet_sock *po = pkt_sk(sk);
3911 int was_running, order = 0;
3912 struct packet_ring_buffer *rb;
3913 struct sk_buff_head *rb_queue;
3914 __be16 num;
3915 int err = -EINVAL;
3916 /* Added to avoid minimal code churn */
3917 struct tpacket_req *req = &req_u->req;
3918
3919 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3920 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3921 WARN(1, "Tx-ring is not supported.\n");
3922 goto out;
3923 }
3924
3925 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3926 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3927
3928 err = -EBUSY;
3929 if (!closing) {
3930 if (atomic_read(&po->mapped))
3931 goto out;
3932 if (packet_read_pending(rb))
3933 goto out;
3934 }
3935
3936 if (req->tp_block_nr) {
3937 /* Sanity tests and some calculations */
3938 err = -EBUSY;
3939 if (unlikely(rb->pg_vec))
3940 goto out;
3941
3942 switch (po->tp_version) {
3943 case TPACKET_V1:
3944 po->tp_hdrlen = TPACKET_HDRLEN;
3945 break;
3946 case TPACKET_V2:
3947 po->tp_hdrlen = TPACKET2_HDRLEN;
3948 break;
3949 case TPACKET_V3:
3950 po->tp_hdrlen = TPACKET3_HDRLEN;
3951 break;
3952 }
3953
3954 err = -EINVAL;
3955 if (unlikely((int)req->tp_block_size <= 0))
3956 goto out;
3957 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3958 goto out;
3959 if (po->tp_version >= TPACKET_V3 &&
3960 (int)(req->tp_block_size -
3961 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
3962 goto out;
3963 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3964 po->tp_reserve))
3965 goto out;
3966 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3967 goto out;
3968
3969 rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3970 if (unlikely(rb->frames_per_block <= 0))
3971 goto out;
3972 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3973 req->tp_frame_nr))
3974 goto out;
3975
3976 err = -ENOMEM;
3977 order = get_order(req->tp_block_size);
3978 pg_vec = alloc_pg_vec(req, order);
3979 if (unlikely(!pg_vec))
3980 goto out;
3981 switch (po->tp_version) {
3982 case TPACKET_V3:
3983 /* Transmit path is not supported. We checked
3984 * it above but just being paranoid
3985 */
3986 if (!tx_ring)
3987 init_prb_bdqc(po, rb, pg_vec, req_u);
3988 break;
3989 default:
3990 break;
3991 }
3992 }
3993 /* Done */
3994 else {
3995 err = -EINVAL;
3996 if (unlikely(req->tp_frame_nr))
3997 goto out;
3998 }
3999
4000 lock_sock(sk);
4001
4002 /* Detach socket from network */
4003 spin_lock(&po->bind_lock);
4004 was_running = po->running;
4005 num = po->num;
4006 if (was_running) {
4007 po->num = 0;
4008 __unregister_prot_hook(sk, false);
4009 }
4010 spin_unlock(&po->bind_lock);
4011
4012 synchronize_net();
4013
4014 err = -EBUSY;
4015 mutex_lock(&po->pg_vec_lock);
4016 if (closing || atomic_read(&po->mapped) == 0) {
4017 err = 0;
4018 spin_lock_bh(&rb_queue->lock);
4019 swap(rb->pg_vec, pg_vec);
4020 rb->frame_max = (req->tp_frame_nr - 1);
4021 rb->head = 0;
4022 rb->frame_size = req->tp_frame_size;
4023 spin_unlock_bh(&rb_queue->lock);
4024
4025 swap(rb->pg_vec_order, order);
4026 swap(rb->pg_vec_len, req->tp_block_nr);
4027
4028 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4029 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4030 tpacket_rcv : packet_rcv;
4031 skb_queue_purge(rb_queue);
4032 if (atomic_read(&po->mapped))
4033 pr_err("packet_mmap: vma is busy: %d\n",
4034 atomic_read(&po->mapped));
4035 }
4036 mutex_unlock(&po->pg_vec_lock);
4037
4038 spin_lock(&po->bind_lock);
4039 if (was_running) {
4040 po->num = num;
4041 register_prot_hook(sk);
4042 }
4043 spin_unlock(&po->bind_lock);
4044 if (closing && (po->tp_version > TPACKET_V2)) {
4045 /* Because we don't support block-based V3 on tx-ring */
4046 if (!tx_ring)
4047 prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
4048 }
4049 release_sock(sk);
4050
4051 if (pg_vec)
4052 free_pg_vec(pg_vec, order, req->tp_block_nr);
4053 out:
4054 return err;
4055 }
4056
4057 static int packet_mmap(struct file *file, struct socket *sock,
4058 struct vm_area_struct *vma)
4059 {
4060 struct sock *sk = sock->sk;
4061 struct packet_sock *po = pkt_sk(sk);
4062 unsigned long size, expected_size;
4063 struct packet_ring_buffer *rb;
4064 unsigned long start;
4065 int err = -EINVAL;
4066 int i;
4067
4068 if (vma->vm_pgoff)
4069 return -EINVAL;
4070
4071 mutex_lock(&po->pg_vec_lock);
4072
4073 expected_size = 0;
4074 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4075 if (rb->pg_vec) {
4076 expected_size += rb->pg_vec_len
4077 * rb->pg_vec_pages
4078 * PAGE_SIZE;
4079 }
4080 }
4081
4082 if (expected_size == 0)
4083 goto out;
4084
4085 size = vma->vm_end - vma->vm_start;
4086 if (size != expected_size)
4087 goto out;
4088
4089 start = vma->vm_start;
4090 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4091 if (rb->pg_vec == NULL)
4092 continue;
4093
4094 for (i = 0; i < rb->pg_vec_len; i++) {
4095 struct page *page;
4096 void *kaddr = rb->pg_vec[i].buffer;
4097 int pg_num;
4098
4099 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4100 page = pgv_to_page(kaddr);
4101 err = vm_insert_page(vma, start, page);
4102 if (unlikely(err))
4103 goto out;
4104 start += PAGE_SIZE;
4105 kaddr += PAGE_SIZE;
4106 }
4107 }
4108 }
4109
4110 atomic_inc(&po->mapped);
4111 vma->vm_ops = &packet_mmap_ops;
4112 err = 0;
4113
4114 out:
4115 mutex_unlock(&po->pg_vec_lock);
4116 return err;
4117 }
4118
4119 static const struct proto_ops packet_ops_spkt = {
4120 .family = PF_PACKET,
4121 .owner = THIS_MODULE,
4122 .release = packet_release,
4123 .bind = packet_bind_spkt,
4124 .connect = sock_no_connect,
4125 .socketpair = sock_no_socketpair,
4126 .accept = sock_no_accept,
4127 .getname = packet_getname_spkt,
4128 .poll = datagram_poll,
4129 .ioctl = packet_ioctl,
4130 .listen = sock_no_listen,
4131 .shutdown = sock_no_shutdown,
4132 .setsockopt = sock_no_setsockopt,
4133 .getsockopt = sock_no_getsockopt,
4134 .sendmsg = packet_sendmsg_spkt,
4135 .recvmsg = packet_recvmsg,
4136 .mmap = sock_no_mmap,
4137 .sendpage = sock_no_sendpage,
4138 };
4139
4140 static const struct proto_ops packet_ops = {
4141 .family = PF_PACKET,
4142 .owner = THIS_MODULE,
4143 .release = packet_release,
4144 .bind = packet_bind,
4145 .connect = sock_no_connect,
4146 .socketpair = sock_no_socketpair,
4147 .accept = sock_no_accept,
4148 .getname = packet_getname,
4149 .poll = packet_poll,
4150 .ioctl = packet_ioctl,
4151 .listen = sock_no_listen,
4152 .shutdown = sock_no_shutdown,
4153 .setsockopt = packet_setsockopt,
4154 .getsockopt = packet_getsockopt,
4155 .sendmsg = packet_sendmsg,
4156 .recvmsg = packet_recvmsg,
4157 .mmap = packet_mmap,
4158 .sendpage = sock_no_sendpage,
4159 };
4160
4161 static const struct net_proto_family packet_family_ops = {
4162 .family = PF_PACKET,
4163 .create = packet_create,
4164 .owner = THIS_MODULE,
4165 };
4166
4167 static struct notifier_block packet_netdev_notifier = {
4168 .notifier_call = packet_notifier,
4169 };
4170
4171 #ifdef CONFIG_PROC_FS
4172
4173 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4174 __acquires(RCU)
4175 {
4176 struct net *net = seq_file_net(seq);
4177
4178 rcu_read_lock();
4179 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4180 }
4181
4182 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4183 {
4184 struct net *net = seq_file_net(seq);
4185 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4186 }
4187
4188 static void packet_seq_stop(struct seq_file *seq, void *v)
4189 __releases(RCU)
4190 {
4191 rcu_read_unlock();
4192 }
4193
4194 static int packet_seq_show(struct seq_file *seq, void *v)
4195 {
4196 if (v == SEQ_START_TOKEN)
4197 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4198 else {
4199 struct sock *s = sk_entry(v);
4200 const struct packet_sock *po = pkt_sk(s);
4201
4202 seq_printf(seq,
4203 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4204 s,
4205 atomic_read(&s->sk_refcnt),
4206 s->sk_type,
4207 ntohs(po->num),
4208 po->ifindex,
4209 po->running,
4210 atomic_read(&s->sk_rmem_alloc),
4211 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4212 sock_i_ino(s));
4213 }
4214
4215 return 0;
4216 }
4217
4218 static const struct seq_operations packet_seq_ops = {
4219 .start = packet_seq_start,
4220 .next = packet_seq_next,
4221 .stop = packet_seq_stop,
4222 .show = packet_seq_show,
4223 };
4224
4225 static int packet_seq_open(struct inode *inode, struct file *file)
4226 {
4227 return seq_open_net(inode, file, &packet_seq_ops,
4228 sizeof(struct seq_net_private));
4229 }
4230
4231 static const struct file_operations packet_seq_fops = {
4232 .owner = THIS_MODULE,
4233 .open = packet_seq_open,
4234 .read = seq_read,
4235 .llseek = seq_lseek,
4236 .release = seq_release_net,
4237 };
4238
4239 #endif
4240
4241 static int __net_init packet_net_init(struct net *net)
4242 {
4243 mutex_init(&net->packet.sklist_lock);
4244 INIT_HLIST_HEAD(&net->packet.sklist);
4245
4246 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4247 return -ENOMEM;
4248
4249 return 0;
4250 }
4251
4252 static void __net_exit packet_net_exit(struct net *net)
4253 {
4254 remove_proc_entry("packet", net->proc_net);
4255 }
4256
4257 static struct pernet_operations packet_net_ops = {
4258 .init = packet_net_init,
4259 .exit = packet_net_exit,
4260 };
4261
4262
4263 static void __exit packet_exit(void)
4264 {
4265 unregister_netdevice_notifier(&packet_netdev_notifier);
4266 unregister_pernet_subsys(&packet_net_ops);
4267 sock_unregister(PF_PACKET);
4268 proto_unregister(&packet_proto);
4269 }
4270
4271 static int __init packet_init(void)
4272 {
4273 int rc = proto_register(&packet_proto, 0);
4274
4275 if (rc != 0)
4276 goto out;
4277
4278 sock_register(&packet_family_ops);
4279 register_pernet_subsys(&packet_net_ops);
4280 register_netdevice_notifier(&packet_netdev_notifier);
4281 out:
4282 return rc;
4283 }
4284
4285 module_init(packet_init);
4286 module_exit(packet_exit);
4287 MODULE_LICENSE("GPL");
4288 MODULE_ALIAS_NETPROTO(PF_PACKET);
This page took 0.125447 seconds and 5 git commands to generate.