put iov_iter into msghdr
[deliverable/linux.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95
96 #include "internal.h"
97
98 /*
99 Assumptions:
100 - if device has no dev->hard_header routine, it adds and removes ll header
101 inside itself. In this case ll header is invisible outside of device,
102 but higher levels still should reserve dev->hard_header_len.
103 Some devices are enough clever to reallocate skb, when header
104 will not fit to reserved space (tunnel), another ones are silly
105 (PPP).
106 - packet socket receives packets with pulled ll header,
107 so that SOCK_RAW should push it back.
108
109 On receive:
110 -----------
111
112 Incoming, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> data
115
116 Outgoing, dev->hard_header!=NULL
117 mac_header -> ll header
118 data -> ll header
119
120 Incoming, dev->hard_header==NULL
121 mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 header. PPP makes it, that is wrong, because introduce
123 assymetry between rx and tx paths.
124 data -> data
125
126 Outgoing, dev->hard_header==NULL
127 mac_header -> data. ll header is still not built!
128 data -> data
129
130 Resume
131 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132
133
134 On transmit:
135 ------------
136
137 dev->hard_header != NULL
138 mac_header -> ll header
139 data -> ll header
140
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142 mac_header -> data
143 data -> data
144
145 We should set nh.raw on output to correct posistion,
146 packet classifier depends on it.
147 */
148
149 /* Private packet socket structures. */
150
151 /* identical to struct packet_mreq except it has
152 * a longer address field.
153 */
154 struct packet_mreq_max {
155 int mr_ifindex;
156 unsigned short mr_type;
157 unsigned short mr_alen;
158 unsigned char mr_address[MAX_ADDR_LEN];
159 };
160
161 union tpacket_uhdr {
162 struct tpacket_hdr *h1;
163 struct tpacket2_hdr *h2;
164 struct tpacket3_hdr *h3;
165 void *raw;
166 };
167
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 int closing, int tx_ring);
170
171 #define V3_ALIGNMENT (8)
172
173 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177
178 #define PGV_FROM_VMALLOC 1
179
180 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
186 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 struct packet_type *pt, struct net_device *orig_dev);
192
193 static void *packet_previous_frame(struct packet_sock *po,
194 struct packet_ring_buffer *rb,
195 int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 struct tpacket_kbdq_core *,
210 void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217
218 struct packet_skb_cb {
219 unsigned int origlen;
220 union {
221 struct sockaddr_pkt pkt;
222 struct sockaddr_ll ll;
223 } sa;
224 };
225
226 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
227
228 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
229 #define GET_PBLOCK_DESC(x, bid) \
230 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
231 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
232 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
233 #define GET_NEXT_PRB_BLK_NUM(x) \
234 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
235 ((x)->kactive_blk_num+1) : 0)
236
237 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
238 static void __fanout_link(struct sock *sk, struct packet_sock *po);
239
240 static int packet_direct_xmit(struct sk_buff *skb)
241 {
242 struct net_device *dev = skb->dev;
243 netdev_features_t features;
244 struct netdev_queue *txq;
245 int ret = NETDEV_TX_BUSY;
246
247 if (unlikely(!netif_running(dev) ||
248 !netif_carrier_ok(dev)))
249 goto drop;
250
251 features = netif_skb_features(skb);
252 if (skb_needs_linearize(skb, features) &&
253 __skb_linearize(skb))
254 goto drop;
255
256 txq = skb_get_tx_queue(dev, skb);
257
258 local_bh_disable();
259
260 HARD_TX_LOCK(dev, txq, smp_processor_id());
261 if (!netif_xmit_frozen_or_drv_stopped(txq))
262 ret = netdev_start_xmit(skb, dev, txq, false);
263 HARD_TX_UNLOCK(dev, txq);
264
265 local_bh_enable();
266
267 if (!dev_xmit_complete(ret))
268 kfree_skb(skb);
269
270 return ret;
271 drop:
272 atomic_long_inc(&dev->tx_dropped);
273 kfree_skb(skb);
274 return NET_XMIT_DROP;
275 }
276
277 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
278 {
279 struct net_device *dev;
280
281 rcu_read_lock();
282 dev = rcu_dereference(po->cached_dev);
283 if (likely(dev))
284 dev_hold(dev);
285 rcu_read_unlock();
286
287 return dev;
288 }
289
290 static void packet_cached_dev_assign(struct packet_sock *po,
291 struct net_device *dev)
292 {
293 rcu_assign_pointer(po->cached_dev, dev);
294 }
295
296 static void packet_cached_dev_reset(struct packet_sock *po)
297 {
298 RCU_INIT_POINTER(po->cached_dev, NULL);
299 }
300
301 static bool packet_use_direct_xmit(const struct packet_sock *po)
302 {
303 return po->xmit == packet_direct_xmit;
304 }
305
306 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
307 {
308 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
309 }
310
311 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
312 {
313 const struct net_device_ops *ops = dev->netdev_ops;
314 u16 queue_index;
315
316 if (ops->ndo_select_queue) {
317 queue_index = ops->ndo_select_queue(dev, skb, NULL,
318 __packet_pick_tx_queue);
319 queue_index = netdev_cap_txqueue(dev, queue_index);
320 } else {
321 queue_index = __packet_pick_tx_queue(dev, skb);
322 }
323
324 skb_set_queue_mapping(skb, queue_index);
325 }
326
327 /* register_prot_hook must be invoked with the po->bind_lock held,
328 * or from a context in which asynchronous accesses to the packet
329 * socket is not possible (packet_create()).
330 */
331 static void register_prot_hook(struct sock *sk)
332 {
333 struct packet_sock *po = pkt_sk(sk);
334
335 if (!po->running) {
336 if (po->fanout)
337 __fanout_link(sk, po);
338 else
339 dev_add_pack(&po->prot_hook);
340
341 sock_hold(sk);
342 po->running = 1;
343 }
344 }
345
346 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
347 * held. If the sync parameter is true, we will temporarily drop
348 * the po->bind_lock and do a synchronize_net to make sure no
349 * asynchronous packet processing paths still refer to the elements
350 * of po->prot_hook. If the sync parameter is false, it is the
351 * callers responsibility to take care of this.
352 */
353 static void __unregister_prot_hook(struct sock *sk, bool sync)
354 {
355 struct packet_sock *po = pkt_sk(sk);
356
357 po->running = 0;
358
359 if (po->fanout)
360 __fanout_unlink(sk, po);
361 else
362 __dev_remove_pack(&po->prot_hook);
363
364 __sock_put(sk);
365
366 if (sync) {
367 spin_unlock(&po->bind_lock);
368 synchronize_net();
369 spin_lock(&po->bind_lock);
370 }
371 }
372
373 static void unregister_prot_hook(struct sock *sk, bool sync)
374 {
375 struct packet_sock *po = pkt_sk(sk);
376
377 if (po->running)
378 __unregister_prot_hook(sk, sync);
379 }
380
381 static inline struct page * __pure pgv_to_page(void *addr)
382 {
383 if (is_vmalloc_addr(addr))
384 return vmalloc_to_page(addr);
385 return virt_to_page(addr);
386 }
387
388 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
389 {
390 union tpacket_uhdr h;
391
392 h.raw = frame;
393 switch (po->tp_version) {
394 case TPACKET_V1:
395 h.h1->tp_status = status;
396 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
397 break;
398 case TPACKET_V2:
399 h.h2->tp_status = status;
400 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
401 break;
402 case TPACKET_V3:
403 default:
404 WARN(1, "TPACKET version not supported.\n");
405 BUG();
406 }
407
408 smp_wmb();
409 }
410
411 static int __packet_get_status(struct packet_sock *po, void *frame)
412 {
413 union tpacket_uhdr h;
414
415 smp_rmb();
416
417 h.raw = frame;
418 switch (po->tp_version) {
419 case TPACKET_V1:
420 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
421 return h.h1->tp_status;
422 case TPACKET_V2:
423 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
424 return h.h2->tp_status;
425 case TPACKET_V3:
426 default:
427 WARN(1, "TPACKET version not supported.\n");
428 BUG();
429 return 0;
430 }
431 }
432
433 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
434 unsigned int flags)
435 {
436 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
437
438 if (shhwtstamps &&
439 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
440 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
441 return TP_STATUS_TS_RAW_HARDWARE;
442
443 if (ktime_to_timespec_cond(skb->tstamp, ts))
444 return TP_STATUS_TS_SOFTWARE;
445
446 return 0;
447 }
448
449 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
450 struct sk_buff *skb)
451 {
452 union tpacket_uhdr h;
453 struct timespec ts;
454 __u32 ts_status;
455
456 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
457 return 0;
458
459 h.raw = frame;
460 switch (po->tp_version) {
461 case TPACKET_V1:
462 h.h1->tp_sec = ts.tv_sec;
463 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
464 break;
465 case TPACKET_V2:
466 h.h2->tp_sec = ts.tv_sec;
467 h.h2->tp_nsec = ts.tv_nsec;
468 break;
469 case TPACKET_V3:
470 default:
471 WARN(1, "TPACKET version not supported.\n");
472 BUG();
473 }
474
475 /* one flush is safe, as both fields always lie on the same cacheline */
476 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
477 smp_wmb();
478
479 return ts_status;
480 }
481
482 static void *packet_lookup_frame(struct packet_sock *po,
483 struct packet_ring_buffer *rb,
484 unsigned int position,
485 int status)
486 {
487 unsigned int pg_vec_pos, frame_offset;
488 union tpacket_uhdr h;
489
490 pg_vec_pos = position / rb->frames_per_block;
491 frame_offset = position % rb->frames_per_block;
492
493 h.raw = rb->pg_vec[pg_vec_pos].buffer +
494 (frame_offset * rb->frame_size);
495
496 if (status != __packet_get_status(po, h.raw))
497 return NULL;
498
499 return h.raw;
500 }
501
502 static void *packet_current_frame(struct packet_sock *po,
503 struct packet_ring_buffer *rb,
504 int status)
505 {
506 return packet_lookup_frame(po, rb, rb->head, status);
507 }
508
509 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
510 {
511 del_timer_sync(&pkc->retire_blk_timer);
512 }
513
514 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
515 int tx_ring,
516 struct sk_buff_head *rb_queue)
517 {
518 struct tpacket_kbdq_core *pkc;
519
520 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
521 GET_PBDQC_FROM_RB(&po->rx_ring);
522
523 spin_lock_bh(&rb_queue->lock);
524 pkc->delete_blk_timer = 1;
525 spin_unlock_bh(&rb_queue->lock);
526
527 prb_del_retire_blk_timer(pkc);
528 }
529
530 static void prb_init_blk_timer(struct packet_sock *po,
531 struct tpacket_kbdq_core *pkc,
532 void (*func) (unsigned long))
533 {
534 init_timer(&pkc->retire_blk_timer);
535 pkc->retire_blk_timer.data = (long)po;
536 pkc->retire_blk_timer.function = func;
537 pkc->retire_blk_timer.expires = jiffies;
538 }
539
540 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
541 {
542 struct tpacket_kbdq_core *pkc;
543
544 if (tx_ring)
545 BUG();
546
547 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
548 GET_PBDQC_FROM_RB(&po->rx_ring);
549 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
550 }
551
552 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
553 int blk_size_in_bytes)
554 {
555 struct net_device *dev;
556 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
557 struct ethtool_cmd ecmd;
558 int err;
559 u32 speed;
560
561 rtnl_lock();
562 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
563 if (unlikely(!dev)) {
564 rtnl_unlock();
565 return DEFAULT_PRB_RETIRE_TOV;
566 }
567 err = __ethtool_get_settings(dev, &ecmd);
568 speed = ethtool_cmd_speed(&ecmd);
569 rtnl_unlock();
570 if (!err) {
571 /*
572 * If the link speed is so slow you don't really
573 * need to worry about perf anyways
574 */
575 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
576 return DEFAULT_PRB_RETIRE_TOV;
577 } else {
578 msec = 1;
579 div = speed / 1000;
580 }
581 }
582
583 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
584
585 if (div)
586 mbits /= div;
587
588 tmo = mbits * msec;
589
590 if (div)
591 return tmo+1;
592 return tmo;
593 }
594
595 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
596 union tpacket_req_u *req_u)
597 {
598 p1->feature_req_word = req_u->req3.tp_feature_req_word;
599 }
600
601 static void init_prb_bdqc(struct packet_sock *po,
602 struct packet_ring_buffer *rb,
603 struct pgv *pg_vec,
604 union tpacket_req_u *req_u, int tx_ring)
605 {
606 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
607 struct tpacket_block_desc *pbd;
608
609 memset(p1, 0x0, sizeof(*p1));
610
611 p1->knxt_seq_num = 1;
612 p1->pkbdq = pg_vec;
613 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
614 p1->pkblk_start = pg_vec[0].buffer;
615 p1->kblk_size = req_u->req3.tp_block_size;
616 p1->knum_blocks = req_u->req3.tp_block_nr;
617 p1->hdrlen = po->tp_hdrlen;
618 p1->version = po->tp_version;
619 p1->last_kactive_blk_num = 0;
620 po->stats.stats3.tp_freeze_q_cnt = 0;
621 if (req_u->req3.tp_retire_blk_tov)
622 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
623 else
624 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
625 req_u->req3.tp_block_size);
626 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
627 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
628
629 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
630 prb_init_ft_ops(p1, req_u);
631 prb_setup_retire_blk_timer(po, tx_ring);
632 prb_open_block(p1, pbd);
633 }
634
635 /* Do NOT update the last_blk_num first.
636 * Assumes sk_buff_head lock is held.
637 */
638 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
639 {
640 mod_timer(&pkc->retire_blk_timer,
641 jiffies + pkc->tov_in_jiffies);
642 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
643 }
644
645 /*
646 * Timer logic:
647 * 1) We refresh the timer only when we open a block.
648 * By doing this we don't waste cycles refreshing the timer
649 * on packet-by-packet basis.
650 *
651 * With a 1MB block-size, on a 1Gbps line, it will take
652 * i) ~8 ms to fill a block + ii) memcpy etc.
653 * In this cut we are not accounting for the memcpy time.
654 *
655 * So, if the user sets the 'tmo' to 10ms then the timer
656 * will never fire while the block is still getting filled
657 * (which is what we want). However, the user could choose
658 * to close a block early and that's fine.
659 *
660 * But when the timer does fire, we check whether or not to refresh it.
661 * Since the tmo granularity is in msecs, it is not too expensive
662 * to refresh the timer, lets say every '8' msecs.
663 * Either the user can set the 'tmo' or we can derive it based on
664 * a) line-speed and b) block-size.
665 * prb_calc_retire_blk_tmo() calculates the tmo.
666 *
667 */
668 static void prb_retire_rx_blk_timer_expired(unsigned long data)
669 {
670 struct packet_sock *po = (struct packet_sock *)data;
671 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
672 unsigned int frozen;
673 struct tpacket_block_desc *pbd;
674
675 spin_lock(&po->sk.sk_receive_queue.lock);
676
677 frozen = prb_queue_frozen(pkc);
678 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
679
680 if (unlikely(pkc->delete_blk_timer))
681 goto out;
682
683 /* We only need to plug the race when the block is partially filled.
684 * tpacket_rcv:
685 * lock(); increment BLOCK_NUM_PKTS; unlock()
686 * copy_bits() is in progress ...
687 * timer fires on other cpu:
688 * we can't retire the current block because copy_bits
689 * is in progress.
690 *
691 */
692 if (BLOCK_NUM_PKTS(pbd)) {
693 while (atomic_read(&pkc->blk_fill_in_prog)) {
694 /* Waiting for skb_copy_bits to finish... */
695 cpu_relax();
696 }
697 }
698
699 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
700 if (!frozen) {
701 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
702 if (!prb_dispatch_next_block(pkc, po))
703 goto refresh_timer;
704 else
705 goto out;
706 } else {
707 /* Case 1. Queue was frozen because user-space was
708 * lagging behind.
709 */
710 if (prb_curr_blk_in_use(pkc, pbd)) {
711 /*
712 * Ok, user-space is still behind.
713 * So just refresh the timer.
714 */
715 goto refresh_timer;
716 } else {
717 /* Case 2. queue was frozen,user-space caught up,
718 * now the link went idle && the timer fired.
719 * We don't have a block to close.So we open this
720 * block and restart the timer.
721 * opening a block thaws the queue,restarts timer
722 * Thawing/timer-refresh is a side effect.
723 */
724 prb_open_block(pkc, pbd);
725 goto out;
726 }
727 }
728 }
729
730 refresh_timer:
731 _prb_refresh_rx_retire_blk_timer(pkc);
732
733 out:
734 spin_unlock(&po->sk.sk_receive_queue.lock);
735 }
736
737 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
738 struct tpacket_block_desc *pbd1, __u32 status)
739 {
740 /* Flush everything minus the block header */
741
742 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
743 u8 *start, *end;
744
745 start = (u8 *)pbd1;
746
747 /* Skip the block header(we know header WILL fit in 4K) */
748 start += PAGE_SIZE;
749
750 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
751 for (; start < end; start += PAGE_SIZE)
752 flush_dcache_page(pgv_to_page(start));
753
754 smp_wmb();
755 #endif
756
757 /* Now update the block status. */
758
759 BLOCK_STATUS(pbd1) = status;
760
761 /* Flush the block header */
762
763 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
764 start = (u8 *)pbd1;
765 flush_dcache_page(pgv_to_page(start));
766
767 smp_wmb();
768 #endif
769 }
770
771 /*
772 * Side effect:
773 *
774 * 1) flush the block
775 * 2) Increment active_blk_num
776 *
777 * Note:We DONT refresh the timer on purpose.
778 * Because almost always the next block will be opened.
779 */
780 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
781 struct tpacket_block_desc *pbd1,
782 struct packet_sock *po, unsigned int stat)
783 {
784 __u32 status = TP_STATUS_USER | stat;
785
786 struct tpacket3_hdr *last_pkt;
787 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
788
789 if (po->stats.stats3.tp_drops)
790 status |= TP_STATUS_LOSING;
791
792 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
793 last_pkt->tp_next_offset = 0;
794
795 /* Get the ts of the last pkt */
796 if (BLOCK_NUM_PKTS(pbd1)) {
797 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
798 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
799 } else {
800 /* Ok, we tmo'd - so get the current time */
801 struct timespec ts;
802 getnstimeofday(&ts);
803 h1->ts_last_pkt.ts_sec = ts.tv_sec;
804 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
805 }
806
807 smp_wmb();
808
809 /* Flush the block */
810 prb_flush_block(pkc1, pbd1, status);
811
812 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
813 }
814
815 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
816 {
817 pkc->reset_pending_on_curr_blk = 0;
818 }
819
820 /*
821 * Side effect of opening a block:
822 *
823 * 1) prb_queue is thawed.
824 * 2) retire_blk_timer is refreshed.
825 *
826 */
827 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
828 struct tpacket_block_desc *pbd1)
829 {
830 struct timespec ts;
831 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
832
833 smp_rmb();
834
835 /* We could have just memset this but we will lose the
836 * flexibility of making the priv area sticky
837 */
838
839 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
840 BLOCK_NUM_PKTS(pbd1) = 0;
841 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
842
843 getnstimeofday(&ts);
844
845 h1->ts_first_pkt.ts_sec = ts.tv_sec;
846 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
847
848 pkc1->pkblk_start = (char *)pbd1;
849 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
850
851 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
852 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
853
854 pbd1->version = pkc1->version;
855 pkc1->prev = pkc1->nxt_offset;
856 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
857
858 prb_thaw_queue(pkc1);
859 _prb_refresh_rx_retire_blk_timer(pkc1);
860
861 smp_wmb();
862 }
863
864 /*
865 * Queue freeze logic:
866 * 1) Assume tp_block_nr = 8 blocks.
867 * 2) At time 't0', user opens Rx ring.
868 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
869 * 4) user-space is either sleeping or processing block '0'.
870 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
871 * it will close block-7,loop around and try to fill block '0'.
872 * call-flow:
873 * __packet_lookup_frame_in_block
874 * prb_retire_current_block()
875 * prb_dispatch_next_block()
876 * |->(BLOCK_STATUS == USER) evaluates to true
877 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
878 * 6) Now there are two cases:
879 * 6.1) Link goes idle right after the queue is frozen.
880 * But remember, the last open_block() refreshed the timer.
881 * When this timer expires,it will refresh itself so that we can
882 * re-open block-0 in near future.
883 * 6.2) Link is busy and keeps on receiving packets. This is a simple
884 * case and __packet_lookup_frame_in_block will check if block-0
885 * is free and can now be re-used.
886 */
887 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
888 struct packet_sock *po)
889 {
890 pkc->reset_pending_on_curr_blk = 1;
891 po->stats.stats3.tp_freeze_q_cnt++;
892 }
893
894 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
895
896 /*
897 * If the next block is free then we will dispatch it
898 * and return a good offset.
899 * Else, we will freeze the queue.
900 * So, caller must check the return value.
901 */
902 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
903 struct packet_sock *po)
904 {
905 struct tpacket_block_desc *pbd;
906
907 smp_rmb();
908
909 /* 1. Get current block num */
910 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
911
912 /* 2. If this block is currently in_use then freeze the queue */
913 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
914 prb_freeze_queue(pkc, po);
915 return NULL;
916 }
917
918 /*
919 * 3.
920 * open this block and return the offset where the first packet
921 * needs to get stored.
922 */
923 prb_open_block(pkc, pbd);
924 return (void *)pkc->nxt_offset;
925 }
926
927 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
928 struct packet_sock *po, unsigned int status)
929 {
930 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
931
932 /* retire/close the current block */
933 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
934 /*
935 * Plug the case where copy_bits() is in progress on
936 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
937 * have space to copy the pkt in the current block and
938 * called prb_retire_current_block()
939 *
940 * We don't need to worry about the TMO case because
941 * the timer-handler already handled this case.
942 */
943 if (!(status & TP_STATUS_BLK_TMO)) {
944 while (atomic_read(&pkc->blk_fill_in_prog)) {
945 /* Waiting for skb_copy_bits to finish... */
946 cpu_relax();
947 }
948 }
949 prb_close_block(pkc, pbd, po, status);
950 return;
951 }
952 }
953
954 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
955 struct tpacket_block_desc *pbd)
956 {
957 return TP_STATUS_USER & BLOCK_STATUS(pbd);
958 }
959
960 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
961 {
962 return pkc->reset_pending_on_curr_blk;
963 }
964
965 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
966 {
967 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
968 atomic_dec(&pkc->blk_fill_in_prog);
969 }
970
971 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
972 struct tpacket3_hdr *ppd)
973 {
974 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
975 }
976
977 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
978 struct tpacket3_hdr *ppd)
979 {
980 ppd->hv1.tp_rxhash = 0;
981 }
982
983 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
984 struct tpacket3_hdr *ppd)
985 {
986 if (vlan_tx_tag_present(pkc->skb)) {
987 ppd->hv1.tp_vlan_tci = vlan_tx_tag_get(pkc->skb);
988 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
989 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
990 } else {
991 ppd->hv1.tp_vlan_tci = 0;
992 ppd->hv1.tp_vlan_tpid = 0;
993 ppd->tp_status = TP_STATUS_AVAILABLE;
994 }
995 }
996
997 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
998 struct tpacket3_hdr *ppd)
999 {
1000 ppd->hv1.tp_padding = 0;
1001 prb_fill_vlan_info(pkc, ppd);
1002
1003 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1004 prb_fill_rxhash(pkc, ppd);
1005 else
1006 prb_clear_rxhash(pkc, ppd);
1007 }
1008
1009 static void prb_fill_curr_block(char *curr,
1010 struct tpacket_kbdq_core *pkc,
1011 struct tpacket_block_desc *pbd,
1012 unsigned int len)
1013 {
1014 struct tpacket3_hdr *ppd;
1015
1016 ppd = (struct tpacket3_hdr *)curr;
1017 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1018 pkc->prev = curr;
1019 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1020 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1021 BLOCK_NUM_PKTS(pbd) += 1;
1022 atomic_inc(&pkc->blk_fill_in_prog);
1023 prb_run_all_ft_ops(pkc, ppd);
1024 }
1025
1026 /* Assumes caller has the sk->rx_queue.lock */
1027 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1028 struct sk_buff *skb,
1029 int status,
1030 unsigned int len
1031 )
1032 {
1033 struct tpacket_kbdq_core *pkc;
1034 struct tpacket_block_desc *pbd;
1035 char *curr, *end;
1036
1037 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1038 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1039
1040 /* Queue is frozen when user space is lagging behind */
1041 if (prb_queue_frozen(pkc)) {
1042 /*
1043 * Check if that last block which caused the queue to freeze,
1044 * is still in_use by user-space.
1045 */
1046 if (prb_curr_blk_in_use(pkc, pbd)) {
1047 /* Can't record this packet */
1048 return NULL;
1049 } else {
1050 /*
1051 * Ok, the block was released by user-space.
1052 * Now let's open that block.
1053 * opening a block also thaws the queue.
1054 * Thawing is a side effect.
1055 */
1056 prb_open_block(pkc, pbd);
1057 }
1058 }
1059
1060 smp_mb();
1061 curr = pkc->nxt_offset;
1062 pkc->skb = skb;
1063 end = (char *)pbd + pkc->kblk_size;
1064
1065 /* first try the current block */
1066 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1067 prb_fill_curr_block(curr, pkc, pbd, len);
1068 return (void *)curr;
1069 }
1070
1071 /* Ok, close the current block */
1072 prb_retire_current_block(pkc, po, 0);
1073
1074 /* Now, try to dispatch the next block */
1075 curr = (char *)prb_dispatch_next_block(pkc, po);
1076 if (curr) {
1077 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1078 prb_fill_curr_block(curr, pkc, pbd, len);
1079 return (void *)curr;
1080 }
1081
1082 /*
1083 * No free blocks are available.user_space hasn't caught up yet.
1084 * Queue was just frozen and now this packet will get dropped.
1085 */
1086 return NULL;
1087 }
1088
1089 static void *packet_current_rx_frame(struct packet_sock *po,
1090 struct sk_buff *skb,
1091 int status, unsigned int len)
1092 {
1093 char *curr = NULL;
1094 switch (po->tp_version) {
1095 case TPACKET_V1:
1096 case TPACKET_V2:
1097 curr = packet_lookup_frame(po, &po->rx_ring,
1098 po->rx_ring.head, status);
1099 return curr;
1100 case TPACKET_V3:
1101 return __packet_lookup_frame_in_block(po, skb, status, len);
1102 default:
1103 WARN(1, "TPACKET version not supported\n");
1104 BUG();
1105 return NULL;
1106 }
1107 }
1108
1109 static void *prb_lookup_block(struct packet_sock *po,
1110 struct packet_ring_buffer *rb,
1111 unsigned int idx,
1112 int status)
1113 {
1114 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1115 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1116
1117 if (status != BLOCK_STATUS(pbd))
1118 return NULL;
1119 return pbd;
1120 }
1121
1122 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1123 {
1124 unsigned int prev;
1125 if (rb->prb_bdqc.kactive_blk_num)
1126 prev = rb->prb_bdqc.kactive_blk_num-1;
1127 else
1128 prev = rb->prb_bdqc.knum_blocks-1;
1129 return prev;
1130 }
1131
1132 /* Assumes caller has held the rx_queue.lock */
1133 static void *__prb_previous_block(struct packet_sock *po,
1134 struct packet_ring_buffer *rb,
1135 int status)
1136 {
1137 unsigned int previous = prb_previous_blk_num(rb);
1138 return prb_lookup_block(po, rb, previous, status);
1139 }
1140
1141 static void *packet_previous_rx_frame(struct packet_sock *po,
1142 struct packet_ring_buffer *rb,
1143 int status)
1144 {
1145 if (po->tp_version <= TPACKET_V2)
1146 return packet_previous_frame(po, rb, status);
1147
1148 return __prb_previous_block(po, rb, status);
1149 }
1150
1151 static void packet_increment_rx_head(struct packet_sock *po,
1152 struct packet_ring_buffer *rb)
1153 {
1154 switch (po->tp_version) {
1155 case TPACKET_V1:
1156 case TPACKET_V2:
1157 return packet_increment_head(rb);
1158 case TPACKET_V3:
1159 default:
1160 WARN(1, "TPACKET version not supported.\n");
1161 BUG();
1162 return;
1163 }
1164 }
1165
1166 static void *packet_previous_frame(struct packet_sock *po,
1167 struct packet_ring_buffer *rb,
1168 int status)
1169 {
1170 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1171 return packet_lookup_frame(po, rb, previous, status);
1172 }
1173
1174 static void packet_increment_head(struct packet_ring_buffer *buff)
1175 {
1176 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1177 }
1178
1179 static void packet_inc_pending(struct packet_ring_buffer *rb)
1180 {
1181 this_cpu_inc(*rb->pending_refcnt);
1182 }
1183
1184 static void packet_dec_pending(struct packet_ring_buffer *rb)
1185 {
1186 this_cpu_dec(*rb->pending_refcnt);
1187 }
1188
1189 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1190 {
1191 unsigned int refcnt = 0;
1192 int cpu;
1193
1194 /* We don't use pending refcount in rx_ring. */
1195 if (rb->pending_refcnt == NULL)
1196 return 0;
1197
1198 for_each_possible_cpu(cpu)
1199 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1200
1201 return refcnt;
1202 }
1203
1204 static int packet_alloc_pending(struct packet_sock *po)
1205 {
1206 po->rx_ring.pending_refcnt = NULL;
1207
1208 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1209 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1210 return -ENOBUFS;
1211
1212 return 0;
1213 }
1214
1215 static void packet_free_pending(struct packet_sock *po)
1216 {
1217 free_percpu(po->tx_ring.pending_refcnt);
1218 }
1219
1220 static bool packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1221 {
1222 struct sock *sk = &po->sk;
1223 bool has_room;
1224
1225 if (po->prot_hook.func != tpacket_rcv)
1226 return (atomic_read(&sk->sk_rmem_alloc) + skb->truesize)
1227 <= sk->sk_rcvbuf;
1228
1229 spin_lock(&sk->sk_receive_queue.lock);
1230 if (po->tp_version == TPACKET_V3)
1231 has_room = prb_lookup_block(po, &po->rx_ring,
1232 po->rx_ring.prb_bdqc.kactive_blk_num,
1233 TP_STATUS_KERNEL);
1234 else
1235 has_room = packet_lookup_frame(po, &po->rx_ring,
1236 po->rx_ring.head,
1237 TP_STATUS_KERNEL);
1238 spin_unlock(&sk->sk_receive_queue.lock);
1239
1240 return has_room;
1241 }
1242
1243 static void packet_sock_destruct(struct sock *sk)
1244 {
1245 skb_queue_purge(&sk->sk_error_queue);
1246
1247 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1248 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1249
1250 if (!sock_flag(sk, SOCK_DEAD)) {
1251 pr_err("Attempt to release alive packet socket: %p\n", sk);
1252 return;
1253 }
1254
1255 sk_refcnt_debug_dec(sk);
1256 }
1257
1258 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1259 {
1260 int x = atomic_read(&f->rr_cur) + 1;
1261
1262 if (x >= num)
1263 x = 0;
1264
1265 return x;
1266 }
1267
1268 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1269 struct sk_buff *skb,
1270 unsigned int num)
1271 {
1272 return reciprocal_scale(skb_get_hash(skb), num);
1273 }
1274
1275 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1276 struct sk_buff *skb,
1277 unsigned int num)
1278 {
1279 int cur, old;
1280
1281 cur = atomic_read(&f->rr_cur);
1282 while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1283 fanout_rr_next(f, num))) != cur)
1284 cur = old;
1285 return cur;
1286 }
1287
1288 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1289 struct sk_buff *skb,
1290 unsigned int num)
1291 {
1292 return smp_processor_id() % num;
1293 }
1294
1295 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1296 struct sk_buff *skb,
1297 unsigned int num)
1298 {
1299 return prandom_u32_max(num);
1300 }
1301
1302 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1303 struct sk_buff *skb,
1304 unsigned int idx, unsigned int skip,
1305 unsigned int num)
1306 {
1307 unsigned int i, j;
1308
1309 i = j = min_t(int, f->next[idx], num - 1);
1310 do {
1311 if (i != skip && packet_rcv_has_room(pkt_sk(f->arr[i]), skb)) {
1312 if (i != j)
1313 f->next[idx] = i;
1314 return i;
1315 }
1316 if (++i == num)
1317 i = 0;
1318 } while (i != j);
1319
1320 return idx;
1321 }
1322
1323 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1324 struct sk_buff *skb,
1325 unsigned int num)
1326 {
1327 return skb_get_queue_mapping(skb) % num;
1328 }
1329
1330 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1331 {
1332 return f->flags & (flag >> 8);
1333 }
1334
1335 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1336 struct packet_type *pt, struct net_device *orig_dev)
1337 {
1338 struct packet_fanout *f = pt->af_packet_priv;
1339 unsigned int num = f->num_members;
1340 struct packet_sock *po;
1341 unsigned int idx;
1342
1343 if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1344 !num) {
1345 kfree_skb(skb);
1346 return 0;
1347 }
1348
1349 switch (f->type) {
1350 case PACKET_FANOUT_HASH:
1351 default:
1352 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1353 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1354 if (!skb)
1355 return 0;
1356 }
1357 idx = fanout_demux_hash(f, skb, num);
1358 break;
1359 case PACKET_FANOUT_LB:
1360 idx = fanout_demux_lb(f, skb, num);
1361 break;
1362 case PACKET_FANOUT_CPU:
1363 idx = fanout_demux_cpu(f, skb, num);
1364 break;
1365 case PACKET_FANOUT_RND:
1366 idx = fanout_demux_rnd(f, skb, num);
1367 break;
1368 case PACKET_FANOUT_QM:
1369 idx = fanout_demux_qm(f, skb, num);
1370 break;
1371 case PACKET_FANOUT_ROLLOVER:
1372 idx = fanout_demux_rollover(f, skb, 0, (unsigned int) -1, num);
1373 break;
1374 }
1375
1376 po = pkt_sk(f->arr[idx]);
1377 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER) &&
1378 unlikely(!packet_rcv_has_room(po, skb))) {
1379 idx = fanout_demux_rollover(f, skb, idx, idx, num);
1380 po = pkt_sk(f->arr[idx]);
1381 }
1382
1383 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1384 }
1385
1386 DEFINE_MUTEX(fanout_mutex);
1387 EXPORT_SYMBOL_GPL(fanout_mutex);
1388 static LIST_HEAD(fanout_list);
1389
1390 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1391 {
1392 struct packet_fanout *f = po->fanout;
1393
1394 spin_lock(&f->lock);
1395 f->arr[f->num_members] = sk;
1396 smp_wmb();
1397 f->num_members++;
1398 spin_unlock(&f->lock);
1399 }
1400
1401 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1402 {
1403 struct packet_fanout *f = po->fanout;
1404 int i;
1405
1406 spin_lock(&f->lock);
1407 for (i = 0; i < f->num_members; i++) {
1408 if (f->arr[i] == sk)
1409 break;
1410 }
1411 BUG_ON(i >= f->num_members);
1412 f->arr[i] = f->arr[f->num_members - 1];
1413 f->num_members--;
1414 spin_unlock(&f->lock);
1415 }
1416
1417 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1418 {
1419 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1420 return true;
1421
1422 return false;
1423 }
1424
1425 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1426 {
1427 struct packet_sock *po = pkt_sk(sk);
1428 struct packet_fanout *f, *match;
1429 u8 type = type_flags & 0xff;
1430 u8 flags = type_flags >> 8;
1431 int err;
1432
1433 switch (type) {
1434 case PACKET_FANOUT_ROLLOVER:
1435 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1436 return -EINVAL;
1437 case PACKET_FANOUT_HASH:
1438 case PACKET_FANOUT_LB:
1439 case PACKET_FANOUT_CPU:
1440 case PACKET_FANOUT_RND:
1441 case PACKET_FANOUT_QM:
1442 break;
1443 default:
1444 return -EINVAL;
1445 }
1446
1447 if (!po->running)
1448 return -EINVAL;
1449
1450 if (po->fanout)
1451 return -EALREADY;
1452
1453 mutex_lock(&fanout_mutex);
1454 match = NULL;
1455 list_for_each_entry(f, &fanout_list, list) {
1456 if (f->id == id &&
1457 read_pnet(&f->net) == sock_net(sk)) {
1458 match = f;
1459 break;
1460 }
1461 }
1462 err = -EINVAL;
1463 if (match && match->flags != flags)
1464 goto out;
1465 if (!match) {
1466 err = -ENOMEM;
1467 match = kzalloc(sizeof(*match), GFP_KERNEL);
1468 if (!match)
1469 goto out;
1470 write_pnet(&match->net, sock_net(sk));
1471 match->id = id;
1472 match->type = type;
1473 match->flags = flags;
1474 atomic_set(&match->rr_cur, 0);
1475 INIT_LIST_HEAD(&match->list);
1476 spin_lock_init(&match->lock);
1477 atomic_set(&match->sk_ref, 0);
1478 match->prot_hook.type = po->prot_hook.type;
1479 match->prot_hook.dev = po->prot_hook.dev;
1480 match->prot_hook.func = packet_rcv_fanout;
1481 match->prot_hook.af_packet_priv = match;
1482 match->prot_hook.id_match = match_fanout_group;
1483 dev_add_pack(&match->prot_hook);
1484 list_add(&match->list, &fanout_list);
1485 }
1486 err = -EINVAL;
1487 if (match->type == type &&
1488 match->prot_hook.type == po->prot_hook.type &&
1489 match->prot_hook.dev == po->prot_hook.dev) {
1490 err = -ENOSPC;
1491 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1492 __dev_remove_pack(&po->prot_hook);
1493 po->fanout = match;
1494 atomic_inc(&match->sk_ref);
1495 __fanout_link(sk, po);
1496 err = 0;
1497 }
1498 }
1499 out:
1500 mutex_unlock(&fanout_mutex);
1501 return err;
1502 }
1503
1504 static void fanout_release(struct sock *sk)
1505 {
1506 struct packet_sock *po = pkt_sk(sk);
1507 struct packet_fanout *f;
1508
1509 f = po->fanout;
1510 if (!f)
1511 return;
1512
1513 mutex_lock(&fanout_mutex);
1514 po->fanout = NULL;
1515
1516 if (atomic_dec_and_test(&f->sk_ref)) {
1517 list_del(&f->list);
1518 dev_remove_pack(&f->prot_hook);
1519 kfree(f);
1520 }
1521 mutex_unlock(&fanout_mutex);
1522 }
1523
1524 static const struct proto_ops packet_ops;
1525
1526 static const struct proto_ops packet_ops_spkt;
1527
1528 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1529 struct packet_type *pt, struct net_device *orig_dev)
1530 {
1531 struct sock *sk;
1532 struct sockaddr_pkt *spkt;
1533
1534 /*
1535 * When we registered the protocol we saved the socket in the data
1536 * field for just this event.
1537 */
1538
1539 sk = pt->af_packet_priv;
1540
1541 /*
1542 * Yank back the headers [hope the device set this
1543 * right or kerboom...]
1544 *
1545 * Incoming packets have ll header pulled,
1546 * push it back.
1547 *
1548 * For outgoing ones skb->data == skb_mac_header(skb)
1549 * so that this procedure is noop.
1550 */
1551
1552 if (skb->pkt_type == PACKET_LOOPBACK)
1553 goto out;
1554
1555 if (!net_eq(dev_net(dev), sock_net(sk)))
1556 goto out;
1557
1558 skb = skb_share_check(skb, GFP_ATOMIC);
1559 if (skb == NULL)
1560 goto oom;
1561
1562 /* drop any routing info */
1563 skb_dst_drop(skb);
1564
1565 /* drop conntrack reference */
1566 nf_reset(skb);
1567
1568 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1569
1570 skb_push(skb, skb->data - skb_mac_header(skb));
1571
1572 /*
1573 * The SOCK_PACKET socket receives _all_ frames.
1574 */
1575
1576 spkt->spkt_family = dev->type;
1577 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1578 spkt->spkt_protocol = skb->protocol;
1579
1580 /*
1581 * Charge the memory to the socket. This is done specifically
1582 * to prevent sockets using all the memory up.
1583 */
1584
1585 if (sock_queue_rcv_skb(sk, skb) == 0)
1586 return 0;
1587
1588 out:
1589 kfree_skb(skb);
1590 oom:
1591 return 0;
1592 }
1593
1594
1595 /*
1596 * Output a raw packet to a device layer. This bypasses all the other
1597 * protocol layers and you must therefore supply it with a complete frame
1598 */
1599
1600 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1601 struct msghdr *msg, size_t len)
1602 {
1603 struct sock *sk = sock->sk;
1604 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1605 struct sk_buff *skb = NULL;
1606 struct net_device *dev;
1607 __be16 proto = 0;
1608 int err;
1609 int extra_len = 0;
1610
1611 /*
1612 * Get and verify the address.
1613 */
1614
1615 if (saddr) {
1616 if (msg->msg_namelen < sizeof(struct sockaddr))
1617 return -EINVAL;
1618 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1619 proto = saddr->spkt_protocol;
1620 } else
1621 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1622
1623 /*
1624 * Find the device first to size check it
1625 */
1626
1627 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1628 retry:
1629 rcu_read_lock();
1630 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1631 err = -ENODEV;
1632 if (dev == NULL)
1633 goto out_unlock;
1634
1635 err = -ENETDOWN;
1636 if (!(dev->flags & IFF_UP))
1637 goto out_unlock;
1638
1639 /*
1640 * You may not queue a frame bigger than the mtu. This is the lowest level
1641 * raw protocol and you must do your own fragmentation at this level.
1642 */
1643
1644 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1645 if (!netif_supports_nofcs(dev)) {
1646 err = -EPROTONOSUPPORT;
1647 goto out_unlock;
1648 }
1649 extra_len = 4; /* We're doing our own CRC */
1650 }
1651
1652 err = -EMSGSIZE;
1653 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1654 goto out_unlock;
1655
1656 if (!skb) {
1657 size_t reserved = LL_RESERVED_SPACE(dev);
1658 int tlen = dev->needed_tailroom;
1659 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1660
1661 rcu_read_unlock();
1662 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1663 if (skb == NULL)
1664 return -ENOBUFS;
1665 /* FIXME: Save some space for broken drivers that write a hard
1666 * header at transmission time by themselves. PPP is the notable
1667 * one here. This should really be fixed at the driver level.
1668 */
1669 skb_reserve(skb, reserved);
1670 skb_reset_network_header(skb);
1671
1672 /* Try to align data part correctly */
1673 if (hhlen) {
1674 skb->data -= hhlen;
1675 skb->tail -= hhlen;
1676 if (len < hhlen)
1677 skb_reset_network_header(skb);
1678 }
1679 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1680 if (err)
1681 goto out_free;
1682 goto retry;
1683 }
1684
1685 if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1686 /* Earlier code assumed this would be a VLAN pkt,
1687 * double-check this now that we have the actual
1688 * packet in hand.
1689 */
1690 struct ethhdr *ehdr;
1691 skb_reset_mac_header(skb);
1692 ehdr = eth_hdr(skb);
1693 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1694 err = -EMSGSIZE;
1695 goto out_unlock;
1696 }
1697 }
1698
1699 skb->protocol = proto;
1700 skb->dev = dev;
1701 skb->priority = sk->sk_priority;
1702 skb->mark = sk->sk_mark;
1703
1704 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1705
1706 if (unlikely(extra_len == 4))
1707 skb->no_fcs = 1;
1708
1709 skb_probe_transport_header(skb, 0);
1710
1711 dev_queue_xmit(skb);
1712 rcu_read_unlock();
1713 return len;
1714
1715 out_unlock:
1716 rcu_read_unlock();
1717 out_free:
1718 kfree_skb(skb);
1719 return err;
1720 }
1721
1722 static unsigned int run_filter(const struct sk_buff *skb,
1723 const struct sock *sk,
1724 unsigned int res)
1725 {
1726 struct sk_filter *filter;
1727
1728 rcu_read_lock();
1729 filter = rcu_dereference(sk->sk_filter);
1730 if (filter != NULL)
1731 res = SK_RUN_FILTER(filter, skb);
1732 rcu_read_unlock();
1733
1734 return res;
1735 }
1736
1737 /*
1738 * This function makes lazy skb cloning in hope that most of packets
1739 * are discarded by BPF.
1740 *
1741 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1742 * and skb->cb are mangled. It works because (and until) packets
1743 * falling here are owned by current CPU. Output packets are cloned
1744 * by dev_queue_xmit_nit(), input packets are processed by net_bh
1745 * sequencially, so that if we return skb to original state on exit,
1746 * we will not harm anyone.
1747 */
1748
1749 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1750 struct packet_type *pt, struct net_device *orig_dev)
1751 {
1752 struct sock *sk;
1753 struct sockaddr_ll *sll;
1754 struct packet_sock *po;
1755 u8 *skb_head = skb->data;
1756 int skb_len = skb->len;
1757 unsigned int snaplen, res;
1758
1759 if (skb->pkt_type == PACKET_LOOPBACK)
1760 goto drop;
1761
1762 sk = pt->af_packet_priv;
1763 po = pkt_sk(sk);
1764
1765 if (!net_eq(dev_net(dev), sock_net(sk)))
1766 goto drop;
1767
1768 skb->dev = dev;
1769
1770 if (dev->header_ops) {
1771 /* The device has an explicit notion of ll header,
1772 * exported to higher levels.
1773 *
1774 * Otherwise, the device hides details of its frame
1775 * structure, so that corresponding packet head is
1776 * never delivered to user.
1777 */
1778 if (sk->sk_type != SOCK_DGRAM)
1779 skb_push(skb, skb->data - skb_mac_header(skb));
1780 else if (skb->pkt_type == PACKET_OUTGOING) {
1781 /* Special case: outgoing packets have ll header at head */
1782 skb_pull(skb, skb_network_offset(skb));
1783 }
1784 }
1785
1786 snaplen = skb->len;
1787
1788 res = run_filter(skb, sk, snaplen);
1789 if (!res)
1790 goto drop_n_restore;
1791 if (snaplen > res)
1792 snaplen = res;
1793
1794 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1795 goto drop_n_acct;
1796
1797 if (skb_shared(skb)) {
1798 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1799 if (nskb == NULL)
1800 goto drop_n_acct;
1801
1802 if (skb_head != skb->data) {
1803 skb->data = skb_head;
1804 skb->len = skb_len;
1805 }
1806 consume_skb(skb);
1807 skb = nskb;
1808 }
1809
1810 BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1811 sizeof(skb->cb));
1812
1813 sll = &PACKET_SKB_CB(skb)->sa.ll;
1814 sll->sll_family = AF_PACKET;
1815 sll->sll_hatype = dev->type;
1816 sll->sll_protocol = skb->protocol;
1817 sll->sll_pkttype = skb->pkt_type;
1818 if (unlikely(po->origdev))
1819 sll->sll_ifindex = orig_dev->ifindex;
1820 else
1821 sll->sll_ifindex = dev->ifindex;
1822
1823 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1824
1825 PACKET_SKB_CB(skb)->origlen = skb->len;
1826
1827 if (pskb_trim(skb, snaplen))
1828 goto drop_n_acct;
1829
1830 skb_set_owner_r(skb, sk);
1831 skb->dev = NULL;
1832 skb_dst_drop(skb);
1833
1834 /* drop conntrack reference */
1835 nf_reset(skb);
1836
1837 spin_lock(&sk->sk_receive_queue.lock);
1838 po->stats.stats1.tp_packets++;
1839 skb->dropcount = atomic_read(&sk->sk_drops);
1840 __skb_queue_tail(&sk->sk_receive_queue, skb);
1841 spin_unlock(&sk->sk_receive_queue.lock);
1842 sk->sk_data_ready(sk);
1843 return 0;
1844
1845 drop_n_acct:
1846 spin_lock(&sk->sk_receive_queue.lock);
1847 po->stats.stats1.tp_drops++;
1848 atomic_inc(&sk->sk_drops);
1849 spin_unlock(&sk->sk_receive_queue.lock);
1850
1851 drop_n_restore:
1852 if (skb_head != skb->data && skb_shared(skb)) {
1853 skb->data = skb_head;
1854 skb->len = skb_len;
1855 }
1856 drop:
1857 consume_skb(skb);
1858 return 0;
1859 }
1860
1861 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1862 struct packet_type *pt, struct net_device *orig_dev)
1863 {
1864 struct sock *sk;
1865 struct packet_sock *po;
1866 struct sockaddr_ll *sll;
1867 union tpacket_uhdr h;
1868 u8 *skb_head = skb->data;
1869 int skb_len = skb->len;
1870 unsigned int snaplen, res;
1871 unsigned long status = TP_STATUS_USER;
1872 unsigned short macoff, netoff, hdrlen;
1873 struct sk_buff *copy_skb = NULL;
1874 struct timespec ts;
1875 __u32 ts_status;
1876
1877 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
1878 * We may add members to them until current aligned size without forcing
1879 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
1880 */
1881 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
1882 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
1883
1884 if (skb->pkt_type == PACKET_LOOPBACK)
1885 goto drop;
1886
1887 sk = pt->af_packet_priv;
1888 po = pkt_sk(sk);
1889
1890 if (!net_eq(dev_net(dev), sock_net(sk)))
1891 goto drop;
1892
1893 if (dev->header_ops) {
1894 if (sk->sk_type != SOCK_DGRAM)
1895 skb_push(skb, skb->data - skb_mac_header(skb));
1896 else if (skb->pkt_type == PACKET_OUTGOING) {
1897 /* Special case: outgoing packets have ll header at head */
1898 skb_pull(skb, skb_network_offset(skb));
1899 }
1900 }
1901
1902 if (skb->ip_summed == CHECKSUM_PARTIAL)
1903 status |= TP_STATUS_CSUMNOTREADY;
1904
1905 snaplen = skb->len;
1906
1907 res = run_filter(skb, sk, snaplen);
1908 if (!res)
1909 goto drop_n_restore;
1910 if (snaplen > res)
1911 snaplen = res;
1912
1913 if (sk->sk_type == SOCK_DGRAM) {
1914 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1915 po->tp_reserve;
1916 } else {
1917 unsigned int maclen = skb_network_offset(skb);
1918 netoff = TPACKET_ALIGN(po->tp_hdrlen +
1919 (maclen < 16 ? 16 : maclen)) +
1920 po->tp_reserve;
1921 macoff = netoff - maclen;
1922 }
1923 if (po->tp_version <= TPACKET_V2) {
1924 if (macoff + snaplen > po->rx_ring.frame_size) {
1925 if (po->copy_thresh &&
1926 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1927 if (skb_shared(skb)) {
1928 copy_skb = skb_clone(skb, GFP_ATOMIC);
1929 } else {
1930 copy_skb = skb_get(skb);
1931 skb_head = skb->data;
1932 }
1933 if (copy_skb)
1934 skb_set_owner_r(copy_skb, sk);
1935 }
1936 snaplen = po->rx_ring.frame_size - macoff;
1937 if ((int)snaplen < 0)
1938 snaplen = 0;
1939 }
1940 } else if (unlikely(macoff + snaplen >
1941 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
1942 u32 nval;
1943
1944 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
1945 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
1946 snaplen, nval, macoff);
1947 snaplen = nval;
1948 if (unlikely((int)snaplen < 0)) {
1949 snaplen = 0;
1950 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
1951 }
1952 }
1953 spin_lock(&sk->sk_receive_queue.lock);
1954 h.raw = packet_current_rx_frame(po, skb,
1955 TP_STATUS_KERNEL, (macoff+snaplen));
1956 if (!h.raw)
1957 goto ring_is_full;
1958 if (po->tp_version <= TPACKET_V2) {
1959 packet_increment_rx_head(po, &po->rx_ring);
1960 /*
1961 * LOSING will be reported till you read the stats,
1962 * because it's COR - Clear On Read.
1963 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1964 * at packet level.
1965 */
1966 if (po->stats.stats1.tp_drops)
1967 status |= TP_STATUS_LOSING;
1968 }
1969 po->stats.stats1.tp_packets++;
1970 if (copy_skb) {
1971 status |= TP_STATUS_COPY;
1972 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1973 }
1974 spin_unlock(&sk->sk_receive_queue.lock);
1975
1976 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1977
1978 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
1979 getnstimeofday(&ts);
1980
1981 status |= ts_status;
1982
1983 switch (po->tp_version) {
1984 case TPACKET_V1:
1985 h.h1->tp_len = skb->len;
1986 h.h1->tp_snaplen = snaplen;
1987 h.h1->tp_mac = macoff;
1988 h.h1->tp_net = netoff;
1989 h.h1->tp_sec = ts.tv_sec;
1990 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
1991 hdrlen = sizeof(*h.h1);
1992 break;
1993 case TPACKET_V2:
1994 h.h2->tp_len = skb->len;
1995 h.h2->tp_snaplen = snaplen;
1996 h.h2->tp_mac = macoff;
1997 h.h2->tp_net = netoff;
1998 h.h2->tp_sec = ts.tv_sec;
1999 h.h2->tp_nsec = ts.tv_nsec;
2000 if (vlan_tx_tag_present(skb)) {
2001 h.h2->tp_vlan_tci = vlan_tx_tag_get(skb);
2002 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2003 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2004 } else {
2005 h.h2->tp_vlan_tci = 0;
2006 h.h2->tp_vlan_tpid = 0;
2007 }
2008 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2009 hdrlen = sizeof(*h.h2);
2010 break;
2011 case TPACKET_V3:
2012 /* tp_nxt_offset,vlan are already populated above.
2013 * So DONT clear those fields here
2014 */
2015 h.h3->tp_status |= status;
2016 h.h3->tp_len = skb->len;
2017 h.h3->tp_snaplen = snaplen;
2018 h.h3->tp_mac = macoff;
2019 h.h3->tp_net = netoff;
2020 h.h3->tp_sec = ts.tv_sec;
2021 h.h3->tp_nsec = ts.tv_nsec;
2022 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2023 hdrlen = sizeof(*h.h3);
2024 break;
2025 default:
2026 BUG();
2027 }
2028
2029 sll = h.raw + TPACKET_ALIGN(hdrlen);
2030 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2031 sll->sll_family = AF_PACKET;
2032 sll->sll_hatype = dev->type;
2033 sll->sll_protocol = skb->protocol;
2034 sll->sll_pkttype = skb->pkt_type;
2035 if (unlikely(po->origdev))
2036 sll->sll_ifindex = orig_dev->ifindex;
2037 else
2038 sll->sll_ifindex = dev->ifindex;
2039
2040 smp_mb();
2041
2042 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2043 if (po->tp_version <= TPACKET_V2) {
2044 u8 *start, *end;
2045
2046 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2047 macoff + snaplen);
2048
2049 for (start = h.raw; start < end; start += PAGE_SIZE)
2050 flush_dcache_page(pgv_to_page(start));
2051 }
2052 smp_wmb();
2053 #endif
2054
2055 if (po->tp_version <= TPACKET_V2)
2056 __packet_set_status(po, h.raw, status);
2057 else
2058 prb_clear_blk_fill_status(&po->rx_ring);
2059
2060 sk->sk_data_ready(sk);
2061
2062 drop_n_restore:
2063 if (skb_head != skb->data && skb_shared(skb)) {
2064 skb->data = skb_head;
2065 skb->len = skb_len;
2066 }
2067 drop:
2068 kfree_skb(skb);
2069 return 0;
2070
2071 ring_is_full:
2072 po->stats.stats1.tp_drops++;
2073 spin_unlock(&sk->sk_receive_queue.lock);
2074
2075 sk->sk_data_ready(sk);
2076 kfree_skb(copy_skb);
2077 goto drop_n_restore;
2078 }
2079
2080 static void tpacket_destruct_skb(struct sk_buff *skb)
2081 {
2082 struct packet_sock *po = pkt_sk(skb->sk);
2083
2084 if (likely(po->tx_ring.pg_vec)) {
2085 void *ph;
2086 __u32 ts;
2087
2088 ph = skb_shinfo(skb)->destructor_arg;
2089 packet_dec_pending(&po->tx_ring);
2090
2091 ts = __packet_set_timestamp(po, ph, skb);
2092 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2093 }
2094
2095 sock_wfree(skb);
2096 }
2097
2098 static bool ll_header_truncated(const struct net_device *dev, int len)
2099 {
2100 /* net device doesn't like empty head */
2101 if (unlikely(len <= dev->hard_header_len)) {
2102 net_warn_ratelimited("%s: packet size is too short (%d < %d)\n",
2103 current->comm, len, dev->hard_header_len);
2104 return true;
2105 }
2106
2107 return false;
2108 }
2109
2110 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2111 void *frame, struct net_device *dev, int size_max,
2112 __be16 proto, unsigned char *addr, int hlen)
2113 {
2114 union tpacket_uhdr ph;
2115 int to_write, offset, len, tp_len, nr_frags, len_max;
2116 struct socket *sock = po->sk.sk_socket;
2117 struct page *page;
2118 void *data;
2119 int err;
2120
2121 ph.raw = frame;
2122
2123 skb->protocol = proto;
2124 skb->dev = dev;
2125 skb->priority = po->sk.sk_priority;
2126 skb->mark = po->sk.sk_mark;
2127 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2128 skb_shinfo(skb)->destructor_arg = ph.raw;
2129
2130 switch (po->tp_version) {
2131 case TPACKET_V2:
2132 tp_len = ph.h2->tp_len;
2133 break;
2134 default:
2135 tp_len = ph.h1->tp_len;
2136 break;
2137 }
2138 if (unlikely(tp_len > size_max)) {
2139 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2140 return -EMSGSIZE;
2141 }
2142
2143 skb_reserve(skb, hlen);
2144 skb_reset_network_header(skb);
2145
2146 if (!packet_use_direct_xmit(po))
2147 skb_probe_transport_header(skb, 0);
2148 if (unlikely(po->tp_tx_has_off)) {
2149 int off_min, off_max, off;
2150 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2151 off_max = po->tx_ring.frame_size - tp_len;
2152 if (sock->type == SOCK_DGRAM) {
2153 switch (po->tp_version) {
2154 case TPACKET_V2:
2155 off = ph.h2->tp_net;
2156 break;
2157 default:
2158 off = ph.h1->tp_net;
2159 break;
2160 }
2161 } else {
2162 switch (po->tp_version) {
2163 case TPACKET_V2:
2164 off = ph.h2->tp_mac;
2165 break;
2166 default:
2167 off = ph.h1->tp_mac;
2168 break;
2169 }
2170 }
2171 if (unlikely((off < off_min) || (off_max < off)))
2172 return -EINVAL;
2173 data = ph.raw + off;
2174 } else {
2175 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2176 }
2177 to_write = tp_len;
2178
2179 if (sock->type == SOCK_DGRAM) {
2180 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2181 NULL, tp_len);
2182 if (unlikely(err < 0))
2183 return -EINVAL;
2184 } else if (dev->hard_header_len) {
2185 if (ll_header_truncated(dev, tp_len))
2186 return -EINVAL;
2187
2188 skb_push(skb, dev->hard_header_len);
2189 err = skb_store_bits(skb, 0, data,
2190 dev->hard_header_len);
2191 if (unlikely(err))
2192 return err;
2193
2194 data += dev->hard_header_len;
2195 to_write -= dev->hard_header_len;
2196 }
2197
2198 offset = offset_in_page(data);
2199 len_max = PAGE_SIZE - offset;
2200 len = ((to_write > len_max) ? len_max : to_write);
2201
2202 skb->data_len = to_write;
2203 skb->len += to_write;
2204 skb->truesize += to_write;
2205 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2206
2207 while (likely(to_write)) {
2208 nr_frags = skb_shinfo(skb)->nr_frags;
2209
2210 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2211 pr_err("Packet exceed the number of skb frags(%lu)\n",
2212 MAX_SKB_FRAGS);
2213 return -EFAULT;
2214 }
2215
2216 page = pgv_to_page(data);
2217 data += len;
2218 flush_dcache_page(page);
2219 get_page(page);
2220 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2221 to_write -= len;
2222 offset = 0;
2223 len_max = PAGE_SIZE;
2224 len = ((to_write > len_max) ? len_max : to_write);
2225 }
2226
2227 return tp_len;
2228 }
2229
2230 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2231 {
2232 struct sk_buff *skb;
2233 struct net_device *dev;
2234 __be16 proto;
2235 int err, reserve = 0;
2236 void *ph;
2237 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2238 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2239 int tp_len, size_max;
2240 unsigned char *addr;
2241 int len_sum = 0;
2242 int status = TP_STATUS_AVAILABLE;
2243 int hlen, tlen;
2244
2245 mutex_lock(&po->pg_vec_lock);
2246
2247 if (likely(saddr == NULL)) {
2248 dev = packet_cached_dev_get(po);
2249 proto = po->num;
2250 addr = NULL;
2251 } else {
2252 err = -EINVAL;
2253 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2254 goto out;
2255 if (msg->msg_namelen < (saddr->sll_halen
2256 + offsetof(struct sockaddr_ll,
2257 sll_addr)))
2258 goto out;
2259 proto = saddr->sll_protocol;
2260 addr = saddr->sll_addr;
2261 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2262 }
2263
2264 err = -ENXIO;
2265 if (unlikely(dev == NULL))
2266 goto out;
2267 err = -ENETDOWN;
2268 if (unlikely(!(dev->flags & IFF_UP)))
2269 goto out_put;
2270
2271 reserve = dev->hard_header_len + VLAN_HLEN;
2272 size_max = po->tx_ring.frame_size
2273 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2274
2275 if (size_max > dev->mtu + reserve)
2276 size_max = dev->mtu + reserve;
2277
2278 do {
2279 ph = packet_current_frame(po, &po->tx_ring,
2280 TP_STATUS_SEND_REQUEST);
2281 if (unlikely(ph == NULL)) {
2282 if (need_wait && need_resched())
2283 schedule();
2284 continue;
2285 }
2286
2287 status = TP_STATUS_SEND_REQUEST;
2288 hlen = LL_RESERVED_SPACE(dev);
2289 tlen = dev->needed_tailroom;
2290 skb = sock_alloc_send_skb(&po->sk,
2291 hlen + tlen + sizeof(struct sockaddr_ll),
2292 0, &err);
2293
2294 if (unlikely(skb == NULL))
2295 goto out_status;
2296
2297 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2298 addr, hlen);
2299 if (tp_len > dev->mtu + dev->hard_header_len) {
2300 struct ethhdr *ehdr;
2301 /* Earlier code assumed this would be a VLAN pkt,
2302 * double-check this now that we have the actual
2303 * packet in hand.
2304 */
2305
2306 skb_reset_mac_header(skb);
2307 ehdr = eth_hdr(skb);
2308 if (ehdr->h_proto != htons(ETH_P_8021Q))
2309 tp_len = -EMSGSIZE;
2310 }
2311 if (unlikely(tp_len < 0)) {
2312 if (po->tp_loss) {
2313 __packet_set_status(po, ph,
2314 TP_STATUS_AVAILABLE);
2315 packet_increment_head(&po->tx_ring);
2316 kfree_skb(skb);
2317 continue;
2318 } else {
2319 status = TP_STATUS_WRONG_FORMAT;
2320 err = tp_len;
2321 goto out_status;
2322 }
2323 }
2324
2325 packet_pick_tx_queue(dev, skb);
2326
2327 skb->destructor = tpacket_destruct_skb;
2328 __packet_set_status(po, ph, TP_STATUS_SENDING);
2329 packet_inc_pending(&po->tx_ring);
2330
2331 status = TP_STATUS_SEND_REQUEST;
2332 err = po->xmit(skb);
2333 if (unlikely(err > 0)) {
2334 err = net_xmit_errno(err);
2335 if (err && __packet_get_status(po, ph) ==
2336 TP_STATUS_AVAILABLE) {
2337 /* skb was destructed already */
2338 skb = NULL;
2339 goto out_status;
2340 }
2341 /*
2342 * skb was dropped but not destructed yet;
2343 * let's treat it like congestion or err < 0
2344 */
2345 err = 0;
2346 }
2347 packet_increment_head(&po->tx_ring);
2348 len_sum += tp_len;
2349 } while (likely((ph != NULL) ||
2350 /* Note: packet_read_pending() might be slow if we have
2351 * to call it as it's per_cpu variable, but in fast-path
2352 * we already short-circuit the loop with the first
2353 * condition, and luckily don't have to go that path
2354 * anyway.
2355 */
2356 (need_wait && packet_read_pending(&po->tx_ring))));
2357
2358 err = len_sum;
2359 goto out_put;
2360
2361 out_status:
2362 __packet_set_status(po, ph, status);
2363 kfree_skb(skb);
2364 out_put:
2365 dev_put(dev);
2366 out:
2367 mutex_unlock(&po->pg_vec_lock);
2368 return err;
2369 }
2370
2371 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2372 size_t reserve, size_t len,
2373 size_t linear, int noblock,
2374 int *err)
2375 {
2376 struct sk_buff *skb;
2377
2378 /* Under a page? Don't bother with paged skb. */
2379 if (prepad + len < PAGE_SIZE || !linear)
2380 linear = len;
2381
2382 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2383 err, 0);
2384 if (!skb)
2385 return NULL;
2386
2387 skb_reserve(skb, reserve);
2388 skb_put(skb, linear);
2389 skb->data_len = len - linear;
2390 skb->len += len - linear;
2391
2392 return skb;
2393 }
2394
2395 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2396 {
2397 struct sock *sk = sock->sk;
2398 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2399 struct sk_buff *skb;
2400 struct net_device *dev;
2401 __be16 proto;
2402 unsigned char *addr;
2403 int err, reserve = 0;
2404 struct virtio_net_hdr vnet_hdr = { 0 };
2405 int offset = 0;
2406 int vnet_hdr_len;
2407 struct packet_sock *po = pkt_sk(sk);
2408 unsigned short gso_type = 0;
2409 int hlen, tlen;
2410 int extra_len = 0;
2411 ssize_t n;
2412
2413 /*
2414 * Get and verify the address.
2415 */
2416
2417 if (likely(saddr == NULL)) {
2418 dev = packet_cached_dev_get(po);
2419 proto = po->num;
2420 addr = NULL;
2421 } else {
2422 err = -EINVAL;
2423 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2424 goto out;
2425 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2426 goto out;
2427 proto = saddr->sll_protocol;
2428 addr = saddr->sll_addr;
2429 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2430 }
2431
2432 err = -ENXIO;
2433 if (unlikely(dev == NULL))
2434 goto out_unlock;
2435 err = -ENETDOWN;
2436 if (unlikely(!(dev->flags & IFF_UP)))
2437 goto out_unlock;
2438
2439 if (sock->type == SOCK_RAW)
2440 reserve = dev->hard_header_len;
2441 if (po->has_vnet_hdr) {
2442 vnet_hdr_len = sizeof(vnet_hdr);
2443
2444 err = -EINVAL;
2445 if (len < vnet_hdr_len)
2446 goto out_unlock;
2447
2448 len -= vnet_hdr_len;
2449
2450 err = -EFAULT;
2451 n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter);
2452 if (n != vnet_hdr_len)
2453 goto out_unlock;
2454
2455 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2456 (vnet_hdr.csum_start + vnet_hdr.csum_offset + 2 >
2457 vnet_hdr.hdr_len))
2458 vnet_hdr.hdr_len = vnet_hdr.csum_start +
2459 vnet_hdr.csum_offset + 2;
2460
2461 err = -EINVAL;
2462 if (vnet_hdr.hdr_len > len)
2463 goto out_unlock;
2464
2465 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2466 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2467 case VIRTIO_NET_HDR_GSO_TCPV4:
2468 gso_type = SKB_GSO_TCPV4;
2469 break;
2470 case VIRTIO_NET_HDR_GSO_TCPV6:
2471 gso_type = SKB_GSO_TCPV6;
2472 break;
2473 case VIRTIO_NET_HDR_GSO_UDP:
2474 gso_type = SKB_GSO_UDP;
2475 break;
2476 default:
2477 goto out_unlock;
2478 }
2479
2480 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2481 gso_type |= SKB_GSO_TCP_ECN;
2482
2483 if (vnet_hdr.gso_size == 0)
2484 goto out_unlock;
2485
2486 }
2487 }
2488
2489 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2490 if (!netif_supports_nofcs(dev)) {
2491 err = -EPROTONOSUPPORT;
2492 goto out_unlock;
2493 }
2494 extra_len = 4; /* We're doing our own CRC */
2495 }
2496
2497 err = -EMSGSIZE;
2498 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2499 goto out_unlock;
2500
2501 err = -ENOBUFS;
2502 hlen = LL_RESERVED_SPACE(dev);
2503 tlen = dev->needed_tailroom;
2504 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, vnet_hdr.hdr_len,
2505 msg->msg_flags & MSG_DONTWAIT, &err);
2506 if (skb == NULL)
2507 goto out_unlock;
2508
2509 skb_set_network_header(skb, reserve);
2510
2511 err = -EINVAL;
2512 if (sock->type == SOCK_DGRAM) {
2513 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2514 if (unlikely(offset) < 0)
2515 goto out_free;
2516 } else {
2517 if (ll_header_truncated(dev, len))
2518 goto out_free;
2519 }
2520
2521 /* Returns -EFAULT on error */
2522 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2523 if (err)
2524 goto out_free;
2525
2526 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2527
2528 if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2529 /* Earlier code assumed this would be a VLAN pkt,
2530 * double-check this now that we have the actual
2531 * packet in hand.
2532 */
2533 struct ethhdr *ehdr;
2534 skb_reset_mac_header(skb);
2535 ehdr = eth_hdr(skb);
2536 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2537 err = -EMSGSIZE;
2538 goto out_free;
2539 }
2540 }
2541
2542 skb->protocol = proto;
2543 skb->dev = dev;
2544 skb->priority = sk->sk_priority;
2545 skb->mark = sk->sk_mark;
2546
2547 packet_pick_tx_queue(dev, skb);
2548
2549 if (po->has_vnet_hdr) {
2550 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2551 if (!skb_partial_csum_set(skb, vnet_hdr.csum_start,
2552 vnet_hdr.csum_offset)) {
2553 err = -EINVAL;
2554 goto out_free;
2555 }
2556 }
2557
2558 skb_shinfo(skb)->gso_size = vnet_hdr.gso_size;
2559 skb_shinfo(skb)->gso_type = gso_type;
2560
2561 /* Header must be checked, and gso_segs computed. */
2562 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2563 skb_shinfo(skb)->gso_segs = 0;
2564
2565 len += vnet_hdr_len;
2566 }
2567
2568 if (!packet_use_direct_xmit(po))
2569 skb_probe_transport_header(skb, reserve);
2570 if (unlikely(extra_len == 4))
2571 skb->no_fcs = 1;
2572
2573 err = po->xmit(skb);
2574 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2575 goto out_unlock;
2576
2577 dev_put(dev);
2578
2579 return len;
2580
2581 out_free:
2582 kfree_skb(skb);
2583 out_unlock:
2584 if (dev)
2585 dev_put(dev);
2586 out:
2587 return err;
2588 }
2589
2590 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2591 struct msghdr *msg, size_t len)
2592 {
2593 struct sock *sk = sock->sk;
2594 struct packet_sock *po = pkt_sk(sk);
2595
2596 if (po->tx_ring.pg_vec)
2597 return tpacket_snd(po, msg);
2598 else
2599 return packet_snd(sock, msg, len);
2600 }
2601
2602 /*
2603 * Close a PACKET socket. This is fairly simple. We immediately go
2604 * to 'closed' state and remove our protocol entry in the device list.
2605 */
2606
2607 static int packet_release(struct socket *sock)
2608 {
2609 struct sock *sk = sock->sk;
2610 struct packet_sock *po;
2611 struct net *net;
2612 union tpacket_req_u req_u;
2613
2614 if (!sk)
2615 return 0;
2616
2617 net = sock_net(sk);
2618 po = pkt_sk(sk);
2619
2620 mutex_lock(&net->packet.sklist_lock);
2621 sk_del_node_init_rcu(sk);
2622 mutex_unlock(&net->packet.sklist_lock);
2623
2624 preempt_disable();
2625 sock_prot_inuse_add(net, sk->sk_prot, -1);
2626 preempt_enable();
2627
2628 spin_lock(&po->bind_lock);
2629 unregister_prot_hook(sk, false);
2630 packet_cached_dev_reset(po);
2631
2632 if (po->prot_hook.dev) {
2633 dev_put(po->prot_hook.dev);
2634 po->prot_hook.dev = NULL;
2635 }
2636 spin_unlock(&po->bind_lock);
2637
2638 packet_flush_mclist(sk);
2639
2640 if (po->rx_ring.pg_vec) {
2641 memset(&req_u, 0, sizeof(req_u));
2642 packet_set_ring(sk, &req_u, 1, 0);
2643 }
2644
2645 if (po->tx_ring.pg_vec) {
2646 memset(&req_u, 0, sizeof(req_u));
2647 packet_set_ring(sk, &req_u, 1, 1);
2648 }
2649
2650 fanout_release(sk);
2651
2652 synchronize_net();
2653 /*
2654 * Now the socket is dead. No more input will appear.
2655 */
2656 sock_orphan(sk);
2657 sock->sk = NULL;
2658
2659 /* Purge queues */
2660
2661 skb_queue_purge(&sk->sk_receive_queue);
2662 packet_free_pending(po);
2663 sk_refcnt_debug_release(sk);
2664
2665 sock_put(sk);
2666 return 0;
2667 }
2668
2669 /*
2670 * Attach a packet hook.
2671 */
2672
2673 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2674 {
2675 struct packet_sock *po = pkt_sk(sk);
2676 const struct net_device *dev_curr;
2677 __be16 proto_curr;
2678 bool need_rehook;
2679
2680 if (po->fanout) {
2681 if (dev)
2682 dev_put(dev);
2683
2684 return -EINVAL;
2685 }
2686
2687 lock_sock(sk);
2688 spin_lock(&po->bind_lock);
2689
2690 proto_curr = po->prot_hook.type;
2691 dev_curr = po->prot_hook.dev;
2692
2693 need_rehook = proto_curr != proto || dev_curr != dev;
2694
2695 if (need_rehook) {
2696 unregister_prot_hook(sk, true);
2697
2698 po->num = proto;
2699 po->prot_hook.type = proto;
2700
2701 if (po->prot_hook.dev)
2702 dev_put(po->prot_hook.dev);
2703
2704 po->prot_hook.dev = dev;
2705
2706 po->ifindex = dev ? dev->ifindex : 0;
2707 packet_cached_dev_assign(po, dev);
2708 }
2709
2710 if (proto == 0 || !need_rehook)
2711 goto out_unlock;
2712
2713 if (!dev || (dev->flags & IFF_UP)) {
2714 register_prot_hook(sk);
2715 } else {
2716 sk->sk_err = ENETDOWN;
2717 if (!sock_flag(sk, SOCK_DEAD))
2718 sk->sk_error_report(sk);
2719 }
2720
2721 out_unlock:
2722 spin_unlock(&po->bind_lock);
2723 release_sock(sk);
2724 return 0;
2725 }
2726
2727 /*
2728 * Bind a packet socket to a device
2729 */
2730
2731 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2732 int addr_len)
2733 {
2734 struct sock *sk = sock->sk;
2735 char name[15];
2736 struct net_device *dev;
2737 int err = -ENODEV;
2738
2739 /*
2740 * Check legality
2741 */
2742
2743 if (addr_len != sizeof(struct sockaddr))
2744 return -EINVAL;
2745 strlcpy(name, uaddr->sa_data, sizeof(name));
2746
2747 dev = dev_get_by_name(sock_net(sk), name);
2748 if (dev)
2749 err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2750 return err;
2751 }
2752
2753 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2754 {
2755 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2756 struct sock *sk = sock->sk;
2757 struct net_device *dev = NULL;
2758 int err;
2759
2760
2761 /*
2762 * Check legality
2763 */
2764
2765 if (addr_len < sizeof(struct sockaddr_ll))
2766 return -EINVAL;
2767 if (sll->sll_family != AF_PACKET)
2768 return -EINVAL;
2769
2770 if (sll->sll_ifindex) {
2771 err = -ENODEV;
2772 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2773 if (dev == NULL)
2774 goto out;
2775 }
2776 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2777
2778 out:
2779 return err;
2780 }
2781
2782 static struct proto packet_proto = {
2783 .name = "PACKET",
2784 .owner = THIS_MODULE,
2785 .obj_size = sizeof(struct packet_sock),
2786 };
2787
2788 /*
2789 * Create a packet of type SOCK_PACKET.
2790 */
2791
2792 static int packet_create(struct net *net, struct socket *sock, int protocol,
2793 int kern)
2794 {
2795 struct sock *sk;
2796 struct packet_sock *po;
2797 __be16 proto = (__force __be16)protocol; /* weird, but documented */
2798 int err;
2799
2800 if (!ns_capable(net->user_ns, CAP_NET_RAW))
2801 return -EPERM;
2802 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2803 sock->type != SOCK_PACKET)
2804 return -ESOCKTNOSUPPORT;
2805
2806 sock->state = SS_UNCONNECTED;
2807
2808 err = -ENOBUFS;
2809 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2810 if (sk == NULL)
2811 goto out;
2812
2813 sock->ops = &packet_ops;
2814 if (sock->type == SOCK_PACKET)
2815 sock->ops = &packet_ops_spkt;
2816
2817 sock_init_data(sock, sk);
2818
2819 po = pkt_sk(sk);
2820 sk->sk_family = PF_PACKET;
2821 po->num = proto;
2822 po->xmit = dev_queue_xmit;
2823
2824 err = packet_alloc_pending(po);
2825 if (err)
2826 goto out2;
2827
2828 packet_cached_dev_reset(po);
2829
2830 sk->sk_destruct = packet_sock_destruct;
2831 sk_refcnt_debug_inc(sk);
2832
2833 /*
2834 * Attach a protocol block
2835 */
2836
2837 spin_lock_init(&po->bind_lock);
2838 mutex_init(&po->pg_vec_lock);
2839 po->prot_hook.func = packet_rcv;
2840
2841 if (sock->type == SOCK_PACKET)
2842 po->prot_hook.func = packet_rcv_spkt;
2843
2844 po->prot_hook.af_packet_priv = sk;
2845
2846 if (proto) {
2847 po->prot_hook.type = proto;
2848 register_prot_hook(sk);
2849 }
2850
2851 mutex_lock(&net->packet.sklist_lock);
2852 sk_add_node_rcu(sk, &net->packet.sklist);
2853 mutex_unlock(&net->packet.sklist_lock);
2854
2855 preempt_disable();
2856 sock_prot_inuse_add(net, &packet_proto, 1);
2857 preempt_enable();
2858
2859 return 0;
2860 out2:
2861 sk_free(sk);
2862 out:
2863 return err;
2864 }
2865
2866 /*
2867 * Pull a packet from our receive queue and hand it to the user.
2868 * If necessary we block.
2869 */
2870
2871 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2872 struct msghdr *msg, size_t len, int flags)
2873 {
2874 struct sock *sk = sock->sk;
2875 struct sk_buff *skb;
2876 int copied, err;
2877 int vnet_hdr_len = 0;
2878
2879 err = -EINVAL;
2880 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2881 goto out;
2882
2883 #if 0
2884 /* What error should we return now? EUNATTACH? */
2885 if (pkt_sk(sk)->ifindex < 0)
2886 return -ENODEV;
2887 #endif
2888
2889 if (flags & MSG_ERRQUEUE) {
2890 err = sock_recv_errqueue(sk, msg, len,
2891 SOL_PACKET, PACKET_TX_TIMESTAMP);
2892 goto out;
2893 }
2894
2895 /*
2896 * Call the generic datagram receiver. This handles all sorts
2897 * of horrible races and re-entrancy so we can forget about it
2898 * in the protocol layers.
2899 *
2900 * Now it will return ENETDOWN, if device have just gone down,
2901 * but then it will block.
2902 */
2903
2904 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2905
2906 /*
2907 * An error occurred so return it. Because skb_recv_datagram()
2908 * handles the blocking we don't see and worry about blocking
2909 * retries.
2910 */
2911
2912 if (skb == NULL)
2913 goto out;
2914
2915 if (pkt_sk(sk)->has_vnet_hdr) {
2916 struct virtio_net_hdr vnet_hdr = { 0 };
2917
2918 err = -EINVAL;
2919 vnet_hdr_len = sizeof(vnet_hdr);
2920 if (len < vnet_hdr_len)
2921 goto out_free;
2922
2923 len -= vnet_hdr_len;
2924
2925 if (skb_is_gso(skb)) {
2926 struct skb_shared_info *sinfo = skb_shinfo(skb);
2927
2928 /* This is a hint as to how much should be linear. */
2929 vnet_hdr.hdr_len = skb_headlen(skb);
2930 vnet_hdr.gso_size = sinfo->gso_size;
2931 if (sinfo->gso_type & SKB_GSO_TCPV4)
2932 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2933 else if (sinfo->gso_type & SKB_GSO_TCPV6)
2934 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2935 else if (sinfo->gso_type & SKB_GSO_UDP)
2936 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2937 else if (sinfo->gso_type & SKB_GSO_FCOE)
2938 goto out_free;
2939 else
2940 BUG();
2941 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2942 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2943 } else
2944 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2945
2946 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2947 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2948 vnet_hdr.csum_start = skb_checksum_start_offset(skb);
2949 vnet_hdr.csum_offset = skb->csum_offset;
2950 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2951 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2952 } /* else everything is zero */
2953
2954 err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len);
2955 if (err < 0)
2956 goto out_free;
2957 }
2958
2959 /* You lose any data beyond the buffer you gave. If it worries
2960 * a user program they can ask the device for its MTU
2961 * anyway.
2962 */
2963 copied = skb->len;
2964 if (copied > len) {
2965 copied = len;
2966 msg->msg_flags |= MSG_TRUNC;
2967 }
2968
2969 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2970 if (err)
2971 goto out_free;
2972
2973 sock_recv_ts_and_drops(msg, sk, skb);
2974
2975 if (msg->msg_name) {
2976 /* If the address length field is there to be filled
2977 * in, we fill it in now.
2978 */
2979 if (sock->type == SOCK_PACKET) {
2980 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
2981 msg->msg_namelen = sizeof(struct sockaddr_pkt);
2982 } else {
2983 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
2984 msg->msg_namelen = sll->sll_halen +
2985 offsetof(struct sockaddr_ll, sll_addr);
2986 }
2987 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
2988 msg->msg_namelen);
2989 }
2990
2991 if (pkt_sk(sk)->auxdata) {
2992 struct tpacket_auxdata aux;
2993
2994 aux.tp_status = TP_STATUS_USER;
2995 if (skb->ip_summed == CHECKSUM_PARTIAL)
2996 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
2997 aux.tp_len = PACKET_SKB_CB(skb)->origlen;
2998 aux.tp_snaplen = skb->len;
2999 aux.tp_mac = 0;
3000 aux.tp_net = skb_network_offset(skb);
3001 if (vlan_tx_tag_present(skb)) {
3002 aux.tp_vlan_tci = vlan_tx_tag_get(skb);
3003 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3004 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3005 } else {
3006 aux.tp_vlan_tci = 0;
3007 aux.tp_vlan_tpid = 0;
3008 }
3009 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3010 }
3011
3012 /*
3013 * Free or return the buffer as appropriate. Again this
3014 * hides all the races and re-entrancy issues from us.
3015 */
3016 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3017
3018 out_free:
3019 skb_free_datagram(sk, skb);
3020 out:
3021 return err;
3022 }
3023
3024 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3025 int *uaddr_len, int peer)
3026 {
3027 struct net_device *dev;
3028 struct sock *sk = sock->sk;
3029
3030 if (peer)
3031 return -EOPNOTSUPP;
3032
3033 uaddr->sa_family = AF_PACKET;
3034 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3035 rcu_read_lock();
3036 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3037 if (dev)
3038 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3039 rcu_read_unlock();
3040 *uaddr_len = sizeof(*uaddr);
3041
3042 return 0;
3043 }
3044
3045 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3046 int *uaddr_len, int peer)
3047 {
3048 struct net_device *dev;
3049 struct sock *sk = sock->sk;
3050 struct packet_sock *po = pkt_sk(sk);
3051 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3052
3053 if (peer)
3054 return -EOPNOTSUPP;
3055
3056 sll->sll_family = AF_PACKET;
3057 sll->sll_ifindex = po->ifindex;
3058 sll->sll_protocol = po->num;
3059 sll->sll_pkttype = 0;
3060 rcu_read_lock();
3061 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3062 if (dev) {
3063 sll->sll_hatype = dev->type;
3064 sll->sll_halen = dev->addr_len;
3065 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3066 } else {
3067 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3068 sll->sll_halen = 0;
3069 }
3070 rcu_read_unlock();
3071 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3072
3073 return 0;
3074 }
3075
3076 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3077 int what)
3078 {
3079 switch (i->type) {
3080 case PACKET_MR_MULTICAST:
3081 if (i->alen != dev->addr_len)
3082 return -EINVAL;
3083 if (what > 0)
3084 return dev_mc_add(dev, i->addr);
3085 else
3086 return dev_mc_del(dev, i->addr);
3087 break;
3088 case PACKET_MR_PROMISC:
3089 return dev_set_promiscuity(dev, what);
3090 case PACKET_MR_ALLMULTI:
3091 return dev_set_allmulti(dev, what);
3092 case PACKET_MR_UNICAST:
3093 if (i->alen != dev->addr_len)
3094 return -EINVAL;
3095 if (what > 0)
3096 return dev_uc_add(dev, i->addr);
3097 else
3098 return dev_uc_del(dev, i->addr);
3099 break;
3100 default:
3101 break;
3102 }
3103 return 0;
3104 }
3105
3106 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
3107 {
3108 for ( ; i; i = i->next) {
3109 if (i->ifindex == dev->ifindex)
3110 packet_dev_mc(dev, i, what);
3111 }
3112 }
3113
3114 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3115 {
3116 struct packet_sock *po = pkt_sk(sk);
3117 struct packet_mclist *ml, *i;
3118 struct net_device *dev;
3119 int err;
3120
3121 rtnl_lock();
3122
3123 err = -ENODEV;
3124 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3125 if (!dev)
3126 goto done;
3127
3128 err = -EINVAL;
3129 if (mreq->mr_alen > dev->addr_len)
3130 goto done;
3131
3132 err = -ENOBUFS;
3133 i = kmalloc(sizeof(*i), GFP_KERNEL);
3134 if (i == NULL)
3135 goto done;
3136
3137 err = 0;
3138 for (ml = po->mclist; ml; ml = ml->next) {
3139 if (ml->ifindex == mreq->mr_ifindex &&
3140 ml->type == mreq->mr_type &&
3141 ml->alen == mreq->mr_alen &&
3142 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3143 ml->count++;
3144 /* Free the new element ... */
3145 kfree(i);
3146 goto done;
3147 }
3148 }
3149
3150 i->type = mreq->mr_type;
3151 i->ifindex = mreq->mr_ifindex;
3152 i->alen = mreq->mr_alen;
3153 memcpy(i->addr, mreq->mr_address, i->alen);
3154 i->count = 1;
3155 i->next = po->mclist;
3156 po->mclist = i;
3157 err = packet_dev_mc(dev, i, 1);
3158 if (err) {
3159 po->mclist = i->next;
3160 kfree(i);
3161 }
3162
3163 done:
3164 rtnl_unlock();
3165 return err;
3166 }
3167
3168 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3169 {
3170 struct packet_mclist *ml, **mlp;
3171
3172 rtnl_lock();
3173
3174 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3175 if (ml->ifindex == mreq->mr_ifindex &&
3176 ml->type == mreq->mr_type &&
3177 ml->alen == mreq->mr_alen &&
3178 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3179 if (--ml->count == 0) {
3180 struct net_device *dev;
3181 *mlp = ml->next;
3182 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3183 if (dev)
3184 packet_dev_mc(dev, ml, -1);
3185 kfree(ml);
3186 }
3187 rtnl_unlock();
3188 return 0;
3189 }
3190 }
3191 rtnl_unlock();
3192 return -EADDRNOTAVAIL;
3193 }
3194
3195 static void packet_flush_mclist(struct sock *sk)
3196 {
3197 struct packet_sock *po = pkt_sk(sk);
3198 struct packet_mclist *ml;
3199
3200 if (!po->mclist)
3201 return;
3202
3203 rtnl_lock();
3204 while ((ml = po->mclist) != NULL) {
3205 struct net_device *dev;
3206
3207 po->mclist = ml->next;
3208 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3209 if (dev != NULL)
3210 packet_dev_mc(dev, ml, -1);
3211 kfree(ml);
3212 }
3213 rtnl_unlock();
3214 }
3215
3216 static int
3217 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3218 {
3219 struct sock *sk = sock->sk;
3220 struct packet_sock *po = pkt_sk(sk);
3221 int ret;
3222
3223 if (level != SOL_PACKET)
3224 return -ENOPROTOOPT;
3225
3226 switch (optname) {
3227 case PACKET_ADD_MEMBERSHIP:
3228 case PACKET_DROP_MEMBERSHIP:
3229 {
3230 struct packet_mreq_max mreq;
3231 int len = optlen;
3232 memset(&mreq, 0, sizeof(mreq));
3233 if (len < sizeof(struct packet_mreq))
3234 return -EINVAL;
3235 if (len > sizeof(mreq))
3236 len = sizeof(mreq);
3237 if (copy_from_user(&mreq, optval, len))
3238 return -EFAULT;
3239 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3240 return -EINVAL;
3241 if (optname == PACKET_ADD_MEMBERSHIP)
3242 ret = packet_mc_add(sk, &mreq);
3243 else
3244 ret = packet_mc_drop(sk, &mreq);
3245 return ret;
3246 }
3247
3248 case PACKET_RX_RING:
3249 case PACKET_TX_RING:
3250 {
3251 union tpacket_req_u req_u;
3252 int len;
3253
3254 switch (po->tp_version) {
3255 case TPACKET_V1:
3256 case TPACKET_V2:
3257 len = sizeof(req_u.req);
3258 break;
3259 case TPACKET_V3:
3260 default:
3261 len = sizeof(req_u.req3);
3262 break;
3263 }
3264 if (optlen < len)
3265 return -EINVAL;
3266 if (pkt_sk(sk)->has_vnet_hdr)
3267 return -EINVAL;
3268 if (copy_from_user(&req_u.req, optval, len))
3269 return -EFAULT;
3270 return packet_set_ring(sk, &req_u, 0,
3271 optname == PACKET_TX_RING);
3272 }
3273 case PACKET_COPY_THRESH:
3274 {
3275 int val;
3276
3277 if (optlen != sizeof(val))
3278 return -EINVAL;
3279 if (copy_from_user(&val, optval, sizeof(val)))
3280 return -EFAULT;
3281
3282 pkt_sk(sk)->copy_thresh = val;
3283 return 0;
3284 }
3285 case PACKET_VERSION:
3286 {
3287 int val;
3288
3289 if (optlen != sizeof(val))
3290 return -EINVAL;
3291 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3292 return -EBUSY;
3293 if (copy_from_user(&val, optval, sizeof(val)))
3294 return -EFAULT;
3295 switch (val) {
3296 case TPACKET_V1:
3297 case TPACKET_V2:
3298 case TPACKET_V3:
3299 po->tp_version = val;
3300 return 0;
3301 default:
3302 return -EINVAL;
3303 }
3304 }
3305 case PACKET_RESERVE:
3306 {
3307 unsigned int val;
3308
3309 if (optlen != sizeof(val))
3310 return -EINVAL;
3311 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3312 return -EBUSY;
3313 if (copy_from_user(&val, optval, sizeof(val)))
3314 return -EFAULT;
3315 po->tp_reserve = val;
3316 return 0;
3317 }
3318 case PACKET_LOSS:
3319 {
3320 unsigned int val;
3321
3322 if (optlen != sizeof(val))
3323 return -EINVAL;
3324 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3325 return -EBUSY;
3326 if (copy_from_user(&val, optval, sizeof(val)))
3327 return -EFAULT;
3328 po->tp_loss = !!val;
3329 return 0;
3330 }
3331 case PACKET_AUXDATA:
3332 {
3333 int val;
3334
3335 if (optlen < sizeof(val))
3336 return -EINVAL;
3337 if (copy_from_user(&val, optval, sizeof(val)))
3338 return -EFAULT;
3339
3340 po->auxdata = !!val;
3341 return 0;
3342 }
3343 case PACKET_ORIGDEV:
3344 {
3345 int val;
3346
3347 if (optlen < sizeof(val))
3348 return -EINVAL;
3349 if (copy_from_user(&val, optval, sizeof(val)))
3350 return -EFAULT;
3351
3352 po->origdev = !!val;
3353 return 0;
3354 }
3355 case PACKET_VNET_HDR:
3356 {
3357 int val;
3358
3359 if (sock->type != SOCK_RAW)
3360 return -EINVAL;
3361 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3362 return -EBUSY;
3363 if (optlen < sizeof(val))
3364 return -EINVAL;
3365 if (copy_from_user(&val, optval, sizeof(val)))
3366 return -EFAULT;
3367
3368 po->has_vnet_hdr = !!val;
3369 return 0;
3370 }
3371 case PACKET_TIMESTAMP:
3372 {
3373 int val;
3374
3375 if (optlen != sizeof(val))
3376 return -EINVAL;
3377 if (copy_from_user(&val, optval, sizeof(val)))
3378 return -EFAULT;
3379
3380 po->tp_tstamp = val;
3381 return 0;
3382 }
3383 case PACKET_FANOUT:
3384 {
3385 int val;
3386
3387 if (optlen != sizeof(val))
3388 return -EINVAL;
3389 if (copy_from_user(&val, optval, sizeof(val)))
3390 return -EFAULT;
3391
3392 return fanout_add(sk, val & 0xffff, val >> 16);
3393 }
3394 case PACKET_TX_HAS_OFF:
3395 {
3396 unsigned int val;
3397
3398 if (optlen != sizeof(val))
3399 return -EINVAL;
3400 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3401 return -EBUSY;
3402 if (copy_from_user(&val, optval, sizeof(val)))
3403 return -EFAULT;
3404 po->tp_tx_has_off = !!val;
3405 return 0;
3406 }
3407 case PACKET_QDISC_BYPASS:
3408 {
3409 int val;
3410
3411 if (optlen != sizeof(val))
3412 return -EINVAL;
3413 if (copy_from_user(&val, optval, sizeof(val)))
3414 return -EFAULT;
3415
3416 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3417 return 0;
3418 }
3419 default:
3420 return -ENOPROTOOPT;
3421 }
3422 }
3423
3424 static int packet_getsockopt(struct socket *sock, int level, int optname,
3425 char __user *optval, int __user *optlen)
3426 {
3427 int len;
3428 int val, lv = sizeof(val);
3429 struct sock *sk = sock->sk;
3430 struct packet_sock *po = pkt_sk(sk);
3431 void *data = &val;
3432 union tpacket_stats_u st;
3433
3434 if (level != SOL_PACKET)
3435 return -ENOPROTOOPT;
3436
3437 if (get_user(len, optlen))
3438 return -EFAULT;
3439
3440 if (len < 0)
3441 return -EINVAL;
3442
3443 switch (optname) {
3444 case PACKET_STATISTICS:
3445 spin_lock_bh(&sk->sk_receive_queue.lock);
3446 memcpy(&st, &po->stats, sizeof(st));
3447 memset(&po->stats, 0, sizeof(po->stats));
3448 spin_unlock_bh(&sk->sk_receive_queue.lock);
3449
3450 if (po->tp_version == TPACKET_V3) {
3451 lv = sizeof(struct tpacket_stats_v3);
3452 st.stats3.tp_packets += st.stats3.tp_drops;
3453 data = &st.stats3;
3454 } else {
3455 lv = sizeof(struct tpacket_stats);
3456 st.stats1.tp_packets += st.stats1.tp_drops;
3457 data = &st.stats1;
3458 }
3459
3460 break;
3461 case PACKET_AUXDATA:
3462 val = po->auxdata;
3463 break;
3464 case PACKET_ORIGDEV:
3465 val = po->origdev;
3466 break;
3467 case PACKET_VNET_HDR:
3468 val = po->has_vnet_hdr;
3469 break;
3470 case PACKET_VERSION:
3471 val = po->tp_version;
3472 break;
3473 case PACKET_HDRLEN:
3474 if (len > sizeof(int))
3475 len = sizeof(int);
3476 if (copy_from_user(&val, optval, len))
3477 return -EFAULT;
3478 switch (val) {
3479 case TPACKET_V1:
3480 val = sizeof(struct tpacket_hdr);
3481 break;
3482 case TPACKET_V2:
3483 val = sizeof(struct tpacket2_hdr);
3484 break;
3485 case TPACKET_V3:
3486 val = sizeof(struct tpacket3_hdr);
3487 break;
3488 default:
3489 return -EINVAL;
3490 }
3491 break;
3492 case PACKET_RESERVE:
3493 val = po->tp_reserve;
3494 break;
3495 case PACKET_LOSS:
3496 val = po->tp_loss;
3497 break;
3498 case PACKET_TIMESTAMP:
3499 val = po->tp_tstamp;
3500 break;
3501 case PACKET_FANOUT:
3502 val = (po->fanout ?
3503 ((u32)po->fanout->id |
3504 ((u32)po->fanout->type << 16) |
3505 ((u32)po->fanout->flags << 24)) :
3506 0);
3507 break;
3508 case PACKET_TX_HAS_OFF:
3509 val = po->tp_tx_has_off;
3510 break;
3511 case PACKET_QDISC_BYPASS:
3512 val = packet_use_direct_xmit(po);
3513 break;
3514 default:
3515 return -ENOPROTOOPT;
3516 }
3517
3518 if (len > lv)
3519 len = lv;
3520 if (put_user(len, optlen))
3521 return -EFAULT;
3522 if (copy_to_user(optval, data, len))
3523 return -EFAULT;
3524 return 0;
3525 }
3526
3527
3528 static int packet_notifier(struct notifier_block *this,
3529 unsigned long msg, void *ptr)
3530 {
3531 struct sock *sk;
3532 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3533 struct net *net = dev_net(dev);
3534
3535 rcu_read_lock();
3536 sk_for_each_rcu(sk, &net->packet.sklist) {
3537 struct packet_sock *po = pkt_sk(sk);
3538
3539 switch (msg) {
3540 case NETDEV_UNREGISTER:
3541 if (po->mclist)
3542 packet_dev_mclist(dev, po->mclist, -1);
3543 /* fallthrough */
3544
3545 case NETDEV_DOWN:
3546 if (dev->ifindex == po->ifindex) {
3547 spin_lock(&po->bind_lock);
3548 if (po->running) {
3549 __unregister_prot_hook(sk, false);
3550 sk->sk_err = ENETDOWN;
3551 if (!sock_flag(sk, SOCK_DEAD))
3552 sk->sk_error_report(sk);
3553 }
3554 if (msg == NETDEV_UNREGISTER) {
3555 packet_cached_dev_reset(po);
3556 po->ifindex = -1;
3557 if (po->prot_hook.dev)
3558 dev_put(po->prot_hook.dev);
3559 po->prot_hook.dev = NULL;
3560 }
3561 spin_unlock(&po->bind_lock);
3562 }
3563 break;
3564 case NETDEV_UP:
3565 if (dev->ifindex == po->ifindex) {
3566 spin_lock(&po->bind_lock);
3567 if (po->num)
3568 register_prot_hook(sk);
3569 spin_unlock(&po->bind_lock);
3570 }
3571 break;
3572 }
3573 }
3574 rcu_read_unlock();
3575 return NOTIFY_DONE;
3576 }
3577
3578
3579 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3580 unsigned long arg)
3581 {
3582 struct sock *sk = sock->sk;
3583
3584 switch (cmd) {
3585 case SIOCOUTQ:
3586 {
3587 int amount = sk_wmem_alloc_get(sk);
3588
3589 return put_user(amount, (int __user *)arg);
3590 }
3591 case SIOCINQ:
3592 {
3593 struct sk_buff *skb;
3594 int amount = 0;
3595
3596 spin_lock_bh(&sk->sk_receive_queue.lock);
3597 skb = skb_peek(&sk->sk_receive_queue);
3598 if (skb)
3599 amount = skb->len;
3600 spin_unlock_bh(&sk->sk_receive_queue.lock);
3601 return put_user(amount, (int __user *)arg);
3602 }
3603 case SIOCGSTAMP:
3604 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3605 case SIOCGSTAMPNS:
3606 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3607
3608 #ifdef CONFIG_INET
3609 case SIOCADDRT:
3610 case SIOCDELRT:
3611 case SIOCDARP:
3612 case SIOCGARP:
3613 case SIOCSARP:
3614 case SIOCGIFADDR:
3615 case SIOCSIFADDR:
3616 case SIOCGIFBRDADDR:
3617 case SIOCSIFBRDADDR:
3618 case SIOCGIFNETMASK:
3619 case SIOCSIFNETMASK:
3620 case SIOCGIFDSTADDR:
3621 case SIOCSIFDSTADDR:
3622 case SIOCSIFFLAGS:
3623 return inet_dgram_ops.ioctl(sock, cmd, arg);
3624 #endif
3625
3626 default:
3627 return -ENOIOCTLCMD;
3628 }
3629 return 0;
3630 }
3631
3632 static unsigned int packet_poll(struct file *file, struct socket *sock,
3633 poll_table *wait)
3634 {
3635 struct sock *sk = sock->sk;
3636 struct packet_sock *po = pkt_sk(sk);
3637 unsigned int mask = datagram_poll(file, sock, wait);
3638
3639 spin_lock_bh(&sk->sk_receive_queue.lock);
3640 if (po->rx_ring.pg_vec) {
3641 if (!packet_previous_rx_frame(po, &po->rx_ring,
3642 TP_STATUS_KERNEL))
3643 mask |= POLLIN | POLLRDNORM;
3644 }
3645 spin_unlock_bh(&sk->sk_receive_queue.lock);
3646 spin_lock_bh(&sk->sk_write_queue.lock);
3647 if (po->tx_ring.pg_vec) {
3648 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3649 mask |= POLLOUT | POLLWRNORM;
3650 }
3651 spin_unlock_bh(&sk->sk_write_queue.lock);
3652 return mask;
3653 }
3654
3655
3656 /* Dirty? Well, I still did not learn better way to account
3657 * for user mmaps.
3658 */
3659
3660 static void packet_mm_open(struct vm_area_struct *vma)
3661 {
3662 struct file *file = vma->vm_file;
3663 struct socket *sock = file->private_data;
3664 struct sock *sk = sock->sk;
3665
3666 if (sk)
3667 atomic_inc(&pkt_sk(sk)->mapped);
3668 }
3669
3670 static void packet_mm_close(struct vm_area_struct *vma)
3671 {
3672 struct file *file = vma->vm_file;
3673 struct socket *sock = file->private_data;
3674 struct sock *sk = sock->sk;
3675
3676 if (sk)
3677 atomic_dec(&pkt_sk(sk)->mapped);
3678 }
3679
3680 static const struct vm_operations_struct packet_mmap_ops = {
3681 .open = packet_mm_open,
3682 .close = packet_mm_close,
3683 };
3684
3685 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3686 unsigned int len)
3687 {
3688 int i;
3689
3690 for (i = 0; i < len; i++) {
3691 if (likely(pg_vec[i].buffer)) {
3692 if (is_vmalloc_addr(pg_vec[i].buffer))
3693 vfree(pg_vec[i].buffer);
3694 else
3695 free_pages((unsigned long)pg_vec[i].buffer,
3696 order);
3697 pg_vec[i].buffer = NULL;
3698 }
3699 }
3700 kfree(pg_vec);
3701 }
3702
3703 static char *alloc_one_pg_vec_page(unsigned long order)
3704 {
3705 char *buffer;
3706 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3707 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3708
3709 buffer = (char *) __get_free_pages(gfp_flags, order);
3710 if (buffer)
3711 return buffer;
3712
3713 /* __get_free_pages failed, fall back to vmalloc */
3714 buffer = vzalloc((1 << order) * PAGE_SIZE);
3715 if (buffer)
3716 return buffer;
3717
3718 /* vmalloc failed, lets dig into swap here */
3719 gfp_flags &= ~__GFP_NORETRY;
3720 buffer = (char *) __get_free_pages(gfp_flags, order);
3721 if (buffer)
3722 return buffer;
3723
3724 /* complete and utter failure */
3725 return NULL;
3726 }
3727
3728 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3729 {
3730 unsigned int block_nr = req->tp_block_nr;
3731 struct pgv *pg_vec;
3732 int i;
3733
3734 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3735 if (unlikely(!pg_vec))
3736 goto out;
3737
3738 for (i = 0; i < block_nr; i++) {
3739 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3740 if (unlikely(!pg_vec[i].buffer))
3741 goto out_free_pgvec;
3742 }
3743
3744 out:
3745 return pg_vec;
3746
3747 out_free_pgvec:
3748 free_pg_vec(pg_vec, order, block_nr);
3749 pg_vec = NULL;
3750 goto out;
3751 }
3752
3753 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3754 int closing, int tx_ring)
3755 {
3756 struct pgv *pg_vec = NULL;
3757 struct packet_sock *po = pkt_sk(sk);
3758 int was_running, order = 0;
3759 struct packet_ring_buffer *rb;
3760 struct sk_buff_head *rb_queue;
3761 __be16 num;
3762 int err = -EINVAL;
3763 /* Added to avoid minimal code churn */
3764 struct tpacket_req *req = &req_u->req;
3765
3766 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3767 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3768 WARN(1, "Tx-ring is not supported.\n");
3769 goto out;
3770 }
3771
3772 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3773 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3774
3775 err = -EBUSY;
3776 if (!closing) {
3777 if (atomic_read(&po->mapped))
3778 goto out;
3779 if (packet_read_pending(rb))
3780 goto out;
3781 }
3782
3783 if (req->tp_block_nr) {
3784 /* Sanity tests and some calculations */
3785 err = -EBUSY;
3786 if (unlikely(rb->pg_vec))
3787 goto out;
3788
3789 switch (po->tp_version) {
3790 case TPACKET_V1:
3791 po->tp_hdrlen = TPACKET_HDRLEN;
3792 break;
3793 case TPACKET_V2:
3794 po->tp_hdrlen = TPACKET2_HDRLEN;
3795 break;
3796 case TPACKET_V3:
3797 po->tp_hdrlen = TPACKET3_HDRLEN;
3798 break;
3799 }
3800
3801 err = -EINVAL;
3802 if (unlikely((int)req->tp_block_size <= 0))
3803 goto out;
3804 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3805 goto out;
3806 if (po->tp_version >= TPACKET_V3 &&
3807 (int)(req->tp_block_size -
3808 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
3809 goto out;
3810 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3811 po->tp_reserve))
3812 goto out;
3813 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3814 goto out;
3815
3816 rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3817 if (unlikely(rb->frames_per_block <= 0))
3818 goto out;
3819 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3820 req->tp_frame_nr))
3821 goto out;
3822
3823 err = -ENOMEM;
3824 order = get_order(req->tp_block_size);
3825 pg_vec = alloc_pg_vec(req, order);
3826 if (unlikely(!pg_vec))
3827 goto out;
3828 switch (po->tp_version) {
3829 case TPACKET_V3:
3830 /* Transmit path is not supported. We checked
3831 * it above but just being paranoid
3832 */
3833 if (!tx_ring)
3834 init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3835 break;
3836 default:
3837 break;
3838 }
3839 }
3840 /* Done */
3841 else {
3842 err = -EINVAL;
3843 if (unlikely(req->tp_frame_nr))
3844 goto out;
3845 }
3846
3847 lock_sock(sk);
3848
3849 /* Detach socket from network */
3850 spin_lock(&po->bind_lock);
3851 was_running = po->running;
3852 num = po->num;
3853 if (was_running) {
3854 po->num = 0;
3855 __unregister_prot_hook(sk, false);
3856 }
3857 spin_unlock(&po->bind_lock);
3858
3859 synchronize_net();
3860
3861 err = -EBUSY;
3862 mutex_lock(&po->pg_vec_lock);
3863 if (closing || atomic_read(&po->mapped) == 0) {
3864 err = 0;
3865 spin_lock_bh(&rb_queue->lock);
3866 swap(rb->pg_vec, pg_vec);
3867 rb->frame_max = (req->tp_frame_nr - 1);
3868 rb->head = 0;
3869 rb->frame_size = req->tp_frame_size;
3870 spin_unlock_bh(&rb_queue->lock);
3871
3872 swap(rb->pg_vec_order, order);
3873 swap(rb->pg_vec_len, req->tp_block_nr);
3874
3875 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3876 po->prot_hook.func = (po->rx_ring.pg_vec) ?
3877 tpacket_rcv : packet_rcv;
3878 skb_queue_purge(rb_queue);
3879 if (atomic_read(&po->mapped))
3880 pr_err("packet_mmap: vma is busy: %d\n",
3881 atomic_read(&po->mapped));
3882 }
3883 mutex_unlock(&po->pg_vec_lock);
3884
3885 spin_lock(&po->bind_lock);
3886 if (was_running) {
3887 po->num = num;
3888 register_prot_hook(sk);
3889 }
3890 spin_unlock(&po->bind_lock);
3891 if (closing && (po->tp_version > TPACKET_V2)) {
3892 /* Because we don't support block-based V3 on tx-ring */
3893 if (!tx_ring)
3894 prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3895 }
3896 release_sock(sk);
3897
3898 if (pg_vec)
3899 free_pg_vec(pg_vec, order, req->tp_block_nr);
3900 out:
3901 return err;
3902 }
3903
3904 static int packet_mmap(struct file *file, struct socket *sock,
3905 struct vm_area_struct *vma)
3906 {
3907 struct sock *sk = sock->sk;
3908 struct packet_sock *po = pkt_sk(sk);
3909 unsigned long size, expected_size;
3910 struct packet_ring_buffer *rb;
3911 unsigned long start;
3912 int err = -EINVAL;
3913 int i;
3914
3915 if (vma->vm_pgoff)
3916 return -EINVAL;
3917
3918 mutex_lock(&po->pg_vec_lock);
3919
3920 expected_size = 0;
3921 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3922 if (rb->pg_vec) {
3923 expected_size += rb->pg_vec_len
3924 * rb->pg_vec_pages
3925 * PAGE_SIZE;
3926 }
3927 }
3928
3929 if (expected_size == 0)
3930 goto out;
3931
3932 size = vma->vm_end - vma->vm_start;
3933 if (size != expected_size)
3934 goto out;
3935
3936 start = vma->vm_start;
3937 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3938 if (rb->pg_vec == NULL)
3939 continue;
3940
3941 for (i = 0; i < rb->pg_vec_len; i++) {
3942 struct page *page;
3943 void *kaddr = rb->pg_vec[i].buffer;
3944 int pg_num;
3945
3946 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3947 page = pgv_to_page(kaddr);
3948 err = vm_insert_page(vma, start, page);
3949 if (unlikely(err))
3950 goto out;
3951 start += PAGE_SIZE;
3952 kaddr += PAGE_SIZE;
3953 }
3954 }
3955 }
3956
3957 atomic_inc(&po->mapped);
3958 vma->vm_ops = &packet_mmap_ops;
3959 err = 0;
3960
3961 out:
3962 mutex_unlock(&po->pg_vec_lock);
3963 return err;
3964 }
3965
3966 static const struct proto_ops packet_ops_spkt = {
3967 .family = PF_PACKET,
3968 .owner = THIS_MODULE,
3969 .release = packet_release,
3970 .bind = packet_bind_spkt,
3971 .connect = sock_no_connect,
3972 .socketpair = sock_no_socketpair,
3973 .accept = sock_no_accept,
3974 .getname = packet_getname_spkt,
3975 .poll = datagram_poll,
3976 .ioctl = packet_ioctl,
3977 .listen = sock_no_listen,
3978 .shutdown = sock_no_shutdown,
3979 .setsockopt = sock_no_setsockopt,
3980 .getsockopt = sock_no_getsockopt,
3981 .sendmsg = packet_sendmsg_spkt,
3982 .recvmsg = packet_recvmsg,
3983 .mmap = sock_no_mmap,
3984 .sendpage = sock_no_sendpage,
3985 };
3986
3987 static const struct proto_ops packet_ops = {
3988 .family = PF_PACKET,
3989 .owner = THIS_MODULE,
3990 .release = packet_release,
3991 .bind = packet_bind,
3992 .connect = sock_no_connect,
3993 .socketpair = sock_no_socketpair,
3994 .accept = sock_no_accept,
3995 .getname = packet_getname,
3996 .poll = packet_poll,
3997 .ioctl = packet_ioctl,
3998 .listen = sock_no_listen,
3999 .shutdown = sock_no_shutdown,
4000 .setsockopt = packet_setsockopt,
4001 .getsockopt = packet_getsockopt,
4002 .sendmsg = packet_sendmsg,
4003 .recvmsg = packet_recvmsg,
4004 .mmap = packet_mmap,
4005 .sendpage = sock_no_sendpage,
4006 };
4007
4008 static const struct net_proto_family packet_family_ops = {
4009 .family = PF_PACKET,
4010 .create = packet_create,
4011 .owner = THIS_MODULE,
4012 };
4013
4014 static struct notifier_block packet_netdev_notifier = {
4015 .notifier_call = packet_notifier,
4016 };
4017
4018 #ifdef CONFIG_PROC_FS
4019
4020 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4021 __acquires(RCU)
4022 {
4023 struct net *net = seq_file_net(seq);
4024
4025 rcu_read_lock();
4026 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4027 }
4028
4029 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4030 {
4031 struct net *net = seq_file_net(seq);
4032 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4033 }
4034
4035 static void packet_seq_stop(struct seq_file *seq, void *v)
4036 __releases(RCU)
4037 {
4038 rcu_read_unlock();
4039 }
4040
4041 static int packet_seq_show(struct seq_file *seq, void *v)
4042 {
4043 if (v == SEQ_START_TOKEN)
4044 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4045 else {
4046 struct sock *s = sk_entry(v);
4047 const struct packet_sock *po = pkt_sk(s);
4048
4049 seq_printf(seq,
4050 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4051 s,
4052 atomic_read(&s->sk_refcnt),
4053 s->sk_type,
4054 ntohs(po->num),
4055 po->ifindex,
4056 po->running,
4057 atomic_read(&s->sk_rmem_alloc),
4058 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4059 sock_i_ino(s));
4060 }
4061
4062 return 0;
4063 }
4064
4065 static const struct seq_operations packet_seq_ops = {
4066 .start = packet_seq_start,
4067 .next = packet_seq_next,
4068 .stop = packet_seq_stop,
4069 .show = packet_seq_show,
4070 };
4071
4072 static int packet_seq_open(struct inode *inode, struct file *file)
4073 {
4074 return seq_open_net(inode, file, &packet_seq_ops,
4075 sizeof(struct seq_net_private));
4076 }
4077
4078 static const struct file_operations packet_seq_fops = {
4079 .owner = THIS_MODULE,
4080 .open = packet_seq_open,
4081 .read = seq_read,
4082 .llseek = seq_lseek,
4083 .release = seq_release_net,
4084 };
4085
4086 #endif
4087
4088 static int __net_init packet_net_init(struct net *net)
4089 {
4090 mutex_init(&net->packet.sklist_lock);
4091 INIT_HLIST_HEAD(&net->packet.sklist);
4092
4093 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4094 return -ENOMEM;
4095
4096 return 0;
4097 }
4098
4099 static void __net_exit packet_net_exit(struct net *net)
4100 {
4101 remove_proc_entry("packet", net->proc_net);
4102 }
4103
4104 static struct pernet_operations packet_net_ops = {
4105 .init = packet_net_init,
4106 .exit = packet_net_exit,
4107 };
4108
4109
4110 static void __exit packet_exit(void)
4111 {
4112 unregister_netdevice_notifier(&packet_netdev_notifier);
4113 unregister_pernet_subsys(&packet_net_ops);
4114 sock_unregister(PF_PACKET);
4115 proto_unregister(&packet_proto);
4116 }
4117
4118 static int __init packet_init(void)
4119 {
4120 int rc = proto_register(&packet_proto, 0);
4121
4122 if (rc != 0)
4123 goto out;
4124
4125 sock_register(&packet_family_ops);
4126 register_pernet_subsys(&packet_net_ops);
4127 register_netdevice_notifier(&packet_netdev_notifier);
4128 out:
4129 return rc;
4130 }
4131
4132 module_init(packet_init);
4133 module_exit(packet_exit);
4134 MODULE_LICENSE("GPL");
4135 MODULE_ALIAS_NETPROTO(PF_PACKET);
This page took 0.120323 seconds and 5 git commands to generate.