packet: rollover only to socket with headroom
[deliverable/linux.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95
96 #include "internal.h"
97
98 /*
99 Assumptions:
100 - if device has no dev->hard_header routine, it adds and removes ll header
101 inside itself. In this case ll header is invisible outside of device,
102 but higher levels still should reserve dev->hard_header_len.
103 Some devices are enough clever to reallocate skb, when header
104 will not fit to reserved space (tunnel), another ones are silly
105 (PPP).
106 - packet socket receives packets with pulled ll header,
107 so that SOCK_RAW should push it back.
108
109 On receive:
110 -----------
111
112 Incoming, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> data
115
116 Outgoing, dev->hard_header!=NULL
117 mac_header -> ll header
118 data -> ll header
119
120 Incoming, dev->hard_header==NULL
121 mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 header. PPP makes it, that is wrong, because introduce
123 assymetry between rx and tx paths.
124 data -> data
125
126 Outgoing, dev->hard_header==NULL
127 mac_header -> data. ll header is still not built!
128 data -> data
129
130 Resume
131 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132
133
134 On transmit:
135 ------------
136
137 dev->hard_header != NULL
138 mac_header -> ll header
139 data -> ll header
140
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142 mac_header -> data
143 data -> data
144
145 We should set nh.raw on output to correct posistion,
146 packet classifier depends on it.
147 */
148
149 /* Private packet socket structures. */
150
151 /* identical to struct packet_mreq except it has
152 * a longer address field.
153 */
154 struct packet_mreq_max {
155 int mr_ifindex;
156 unsigned short mr_type;
157 unsigned short mr_alen;
158 unsigned char mr_address[MAX_ADDR_LEN];
159 };
160
161 union tpacket_uhdr {
162 struct tpacket_hdr *h1;
163 struct tpacket2_hdr *h2;
164 struct tpacket3_hdr *h3;
165 void *raw;
166 };
167
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 int closing, int tx_ring);
170
171 #define V3_ALIGNMENT (8)
172
173 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177
178 #define PGV_FROM_VMALLOC 1
179
180 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
186 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 struct packet_type *pt, struct net_device *orig_dev);
192
193 static void *packet_previous_frame(struct packet_sock *po,
194 struct packet_ring_buffer *rb,
195 int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 struct tpacket_kbdq_core *,
210 void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217
218 struct packet_skb_cb {
219 union {
220 struct sockaddr_pkt pkt;
221 union {
222 /* Trick: alias skb original length with
223 * ll.sll_family and ll.protocol in order
224 * to save room.
225 */
226 unsigned int origlen;
227 struct sockaddr_ll ll;
228 };
229 } sa;
230 };
231
232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
233
234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
235 #define GET_PBLOCK_DESC(x, bid) \
236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
239 #define GET_NEXT_PRB_BLK_NUM(x) \
240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
241 ((x)->kactive_blk_num+1) : 0)
242
243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
244 static void __fanout_link(struct sock *sk, struct packet_sock *po);
245
246 static int packet_direct_xmit(struct sk_buff *skb)
247 {
248 struct net_device *dev = skb->dev;
249 netdev_features_t features;
250 struct netdev_queue *txq;
251 int ret = NETDEV_TX_BUSY;
252
253 if (unlikely(!netif_running(dev) ||
254 !netif_carrier_ok(dev)))
255 goto drop;
256
257 features = netif_skb_features(skb);
258 if (skb_needs_linearize(skb, features) &&
259 __skb_linearize(skb))
260 goto drop;
261
262 txq = skb_get_tx_queue(dev, skb);
263
264 local_bh_disable();
265
266 HARD_TX_LOCK(dev, txq, smp_processor_id());
267 if (!netif_xmit_frozen_or_drv_stopped(txq))
268 ret = netdev_start_xmit(skb, dev, txq, false);
269 HARD_TX_UNLOCK(dev, txq);
270
271 local_bh_enable();
272
273 if (!dev_xmit_complete(ret))
274 kfree_skb(skb);
275
276 return ret;
277 drop:
278 atomic_long_inc(&dev->tx_dropped);
279 kfree_skb(skb);
280 return NET_XMIT_DROP;
281 }
282
283 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
284 {
285 struct net_device *dev;
286
287 rcu_read_lock();
288 dev = rcu_dereference(po->cached_dev);
289 if (likely(dev))
290 dev_hold(dev);
291 rcu_read_unlock();
292
293 return dev;
294 }
295
296 static void packet_cached_dev_assign(struct packet_sock *po,
297 struct net_device *dev)
298 {
299 rcu_assign_pointer(po->cached_dev, dev);
300 }
301
302 static void packet_cached_dev_reset(struct packet_sock *po)
303 {
304 RCU_INIT_POINTER(po->cached_dev, NULL);
305 }
306
307 static bool packet_use_direct_xmit(const struct packet_sock *po)
308 {
309 return po->xmit == packet_direct_xmit;
310 }
311
312 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
313 {
314 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
315 }
316
317 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
318 {
319 const struct net_device_ops *ops = dev->netdev_ops;
320 u16 queue_index;
321
322 if (ops->ndo_select_queue) {
323 queue_index = ops->ndo_select_queue(dev, skb, NULL,
324 __packet_pick_tx_queue);
325 queue_index = netdev_cap_txqueue(dev, queue_index);
326 } else {
327 queue_index = __packet_pick_tx_queue(dev, skb);
328 }
329
330 skb_set_queue_mapping(skb, queue_index);
331 }
332
333 /* register_prot_hook must be invoked with the po->bind_lock held,
334 * or from a context in which asynchronous accesses to the packet
335 * socket is not possible (packet_create()).
336 */
337 static void register_prot_hook(struct sock *sk)
338 {
339 struct packet_sock *po = pkt_sk(sk);
340
341 if (!po->running) {
342 if (po->fanout)
343 __fanout_link(sk, po);
344 else
345 dev_add_pack(&po->prot_hook);
346
347 sock_hold(sk);
348 po->running = 1;
349 }
350 }
351
352 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
353 * held. If the sync parameter is true, we will temporarily drop
354 * the po->bind_lock and do a synchronize_net to make sure no
355 * asynchronous packet processing paths still refer to the elements
356 * of po->prot_hook. If the sync parameter is false, it is the
357 * callers responsibility to take care of this.
358 */
359 static void __unregister_prot_hook(struct sock *sk, bool sync)
360 {
361 struct packet_sock *po = pkt_sk(sk);
362
363 po->running = 0;
364
365 if (po->fanout)
366 __fanout_unlink(sk, po);
367 else
368 __dev_remove_pack(&po->prot_hook);
369
370 __sock_put(sk);
371
372 if (sync) {
373 spin_unlock(&po->bind_lock);
374 synchronize_net();
375 spin_lock(&po->bind_lock);
376 }
377 }
378
379 static void unregister_prot_hook(struct sock *sk, bool sync)
380 {
381 struct packet_sock *po = pkt_sk(sk);
382
383 if (po->running)
384 __unregister_prot_hook(sk, sync);
385 }
386
387 static inline struct page * __pure pgv_to_page(void *addr)
388 {
389 if (is_vmalloc_addr(addr))
390 return vmalloc_to_page(addr);
391 return virt_to_page(addr);
392 }
393
394 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
395 {
396 union tpacket_uhdr h;
397
398 h.raw = frame;
399 switch (po->tp_version) {
400 case TPACKET_V1:
401 h.h1->tp_status = status;
402 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
403 break;
404 case TPACKET_V2:
405 h.h2->tp_status = status;
406 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
407 break;
408 case TPACKET_V3:
409 default:
410 WARN(1, "TPACKET version not supported.\n");
411 BUG();
412 }
413
414 smp_wmb();
415 }
416
417 static int __packet_get_status(struct packet_sock *po, void *frame)
418 {
419 union tpacket_uhdr h;
420
421 smp_rmb();
422
423 h.raw = frame;
424 switch (po->tp_version) {
425 case TPACKET_V1:
426 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
427 return h.h1->tp_status;
428 case TPACKET_V2:
429 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
430 return h.h2->tp_status;
431 case TPACKET_V3:
432 default:
433 WARN(1, "TPACKET version not supported.\n");
434 BUG();
435 return 0;
436 }
437 }
438
439 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
440 unsigned int flags)
441 {
442 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
443
444 if (shhwtstamps &&
445 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
446 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
447 return TP_STATUS_TS_RAW_HARDWARE;
448
449 if (ktime_to_timespec_cond(skb->tstamp, ts))
450 return TP_STATUS_TS_SOFTWARE;
451
452 return 0;
453 }
454
455 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
456 struct sk_buff *skb)
457 {
458 union tpacket_uhdr h;
459 struct timespec ts;
460 __u32 ts_status;
461
462 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
463 return 0;
464
465 h.raw = frame;
466 switch (po->tp_version) {
467 case TPACKET_V1:
468 h.h1->tp_sec = ts.tv_sec;
469 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
470 break;
471 case TPACKET_V2:
472 h.h2->tp_sec = ts.tv_sec;
473 h.h2->tp_nsec = ts.tv_nsec;
474 break;
475 case TPACKET_V3:
476 default:
477 WARN(1, "TPACKET version not supported.\n");
478 BUG();
479 }
480
481 /* one flush is safe, as both fields always lie on the same cacheline */
482 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
483 smp_wmb();
484
485 return ts_status;
486 }
487
488 static void *packet_lookup_frame(struct packet_sock *po,
489 struct packet_ring_buffer *rb,
490 unsigned int position,
491 int status)
492 {
493 unsigned int pg_vec_pos, frame_offset;
494 union tpacket_uhdr h;
495
496 pg_vec_pos = position / rb->frames_per_block;
497 frame_offset = position % rb->frames_per_block;
498
499 h.raw = rb->pg_vec[pg_vec_pos].buffer +
500 (frame_offset * rb->frame_size);
501
502 if (status != __packet_get_status(po, h.raw))
503 return NULL;
504
505 return h.raw;
506 }
507
508 static void *packet_current_frame(struct packet_sock *po,
509 struct packet_ring_buffer *rb,
510 int status)
511 {
512 return packet_lookup_frame(po, rb, rb->head, status);
513 }
514
515 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
516 {
517 del_timer_sync(&pkc->retire_blk_timer);
518 }
519
520 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
521 int tx_ring,
522 struct sk_buff_head *rb_queue)
523 {
524 struct tpacket_kbdq_core *pkc;
525
526 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
527 GET_PBDQC_FROM_RB(&po->rx_ring);
528
529 spin_lock_bh(&rb_queue->lock);
530 pkc->delete_blk_timer = 1;
531 spin_unlock_bh(&rb_queue->lock);
532
533 prb_del_retire_blk_timer(pkc);
534 }
535
536 static void prb_init_blk_timer(struct packet_sock *po,
537 struct tpacket_kbdq_core *pkc,
538 void (*func) (unsigned long))
539 {
540 init_timer(&pkc->retire_blk_timer);
541 pkc->retire_blk_timer.data = (long)po;
542 pkc->retire_blk_timer.function = func;
543 pkc->retire_blk_timer.expires = jiffies;
544 }
545
546 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
547 {
548 struct tpacket_kbdq_core *pkc;
549
550 if (tx_ring)
551 BUG();
552
553 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
554 GET_PBDQC_FROM_RB(&po->rx_ring);
555 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
556 }
557
558 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
559 int blk_size_in_bytes)
560 {
561 struct net_device *dev;
562 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
563 struct ethtool_cmd ecmd;
564 int err;
565 u32 speed;
566
567 rtnl_lock();
568 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
569 if (unlikely(!dev)) {
570 rtnl_unlock();
571 return DEFAULT_PRB_RETIRE_TOV;
572 }
573 err = __ethtool_get_settings(dev, &ecmd);
574 speed = ethtool_cmd_speed(&ecmd);
575 rtnl_unlock();
576 if (!err) {
577 /*
578 * If the link speed is so slow you don't really
579 * need to worry about perf anyways
580 */
581 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
582 return DEFAULT_PRB_RETIRE_TOV;
583 } else {
584 msec = 1;
585 div = speed / 1000;
586 }
587 }
588
589 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
590
591 if (div)
592 mbits /= div;
593
594 tmo = mbits * msec;
595
596 if (div)
597 return tmo+1;
598 return tmo;
599 }
600
601 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
602 union tpacket_req_u *req_u)
603 {
604 p1->feature_req_word = req_u->req3.tp_feature_req_word;
605 }
606
607 static void init_prb_bdqc(struct packet_sock *po,
608 struct packet_ring_buffer *rb,
609 struct pgv *pg_vec,
610 union tpacket_req_u *req_u, int tx_ring)
611 {
612 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
613 struct tpacket_block_desc *pbd;
614
615 memset(p1, 0x0, sizeof(*p1));
616
617 p1->knxt_seq_num = 1;
618 p1->pkbdq = pg_vec;
619 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
620 p1->pkblk_start = pg_vec[0].buffer;
621 p1->kblk_size = req_u->req3.tp_block_size;
622 p1->knum_blocks = req_u->req3.tp_block_nr;
623 p1->hdrlen = po->tp_hdrlen;
624 p1->version = po->tp_version;
625 p1->last_kactive_blk_num = 0;
626 po->stats.stats3.tp_freeze_q_cnt = 0;
627 if (req_u->req3.tp_retire_blk_tov)
628 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
629 else
630 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
631 req_u->req3.tp_block_size);
632 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
633 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
634
635 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
636 prb_init_ft_ops(p1, req_u);
637 prb_setup_retire_blk_timer(po, tx_ring);
638 prb_open_block(p1, pbd);
639 }
640
641 /* Do NOT update the last_blk_num first.
642 * Assumes sk_buff_head lock is held.
643 */
644 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
645 {
646 mod_timer(&pkc->retire_blk_timer,
647 jiffies + pkc->tov_in_jiffies);
648 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
649 }
650
651 /*
652 * Timer logic:
653 * 1) We refresh the timer only when we open a block.
654 * By doing this we don't waste cycles refreshing the timer
655 * on packet-by-packet basis.
656 *
657 * With a 1MB block-size, on a 1Gbps line, it will take
658 * i) ~8 ms to fill a block + ii) memcpy etc.
659 * In this cut we are not accounting for the memcpy time.
660 *
661 * So, if the user sets the 'tmo' to 10ms then the timer
662 * will never fire while the block is still getting filled
663 * (which is what we want). However, the user could choose
664 * to close a block early and that's fine.
665 *
666 * But when the timer does fire, we check whether or not to refresh it.
667 * Since the tmo granularity is in msecs, it is not too expensive
668 * to refresh the timer, lets say every '8' msecs.
669 * Either the user can set the 'tmo' or we can derive it based on
670 * a) line-speed and b) block-size.
671 * prb_calc_retire_blk_tmo() calculates the tmo.
672 *
673 */
674 static void prb_retire_rx_blk_timer_expired(unsigned long data)
675 {
676 struct packet_sock *po = (struct packet_sock *)data;
677 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
678 unsigned int frozen;
679 struct tpacket_block_desc *pbd;
680
681 spin_lock(&po->sk.sk_receive_queue.lock);
682
683 frozen = prb_queue_frozen(pkc);
684 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
685
686 if (unlikely(pkc->delete_blk_timer))
687 goto out;
688
689 /* We only need to plug the race when the block is partially filled.
690 * tpacket_rcv:
691 * lock(); increment BLOCK_NUM_PKTS; unlock()
692 * copy_bits() is in progress ...
693 * timer fires on other cpu:
694 * we can't retire the current block because copy_bits
695 * is in progress.
696 *
697 */
698 if (BLOCK_NUM_PKTS(pbd)) {
699 while (atomic_read(&pkc->blk_fill_in_prog)) {
700 /* Waiting for skb_copy_bits to finish... */
701 cpu_relax();
702 }
703 }
704
705 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
706 if (!frozen) {
707 if (!BLOCK_NUM_PKTS(pbd)) {
708 /* An empty block. Just refresh the timer. */
709 goto refresh_timer;
710 }
711 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
712 if (!prb_dispatch_next_block(pkc, po))
713 goto refresh_timer;
714 else
715 goto out;
716 } else {
717 /* Case 1. Queue was frozen because user-space was
718 * lagging behind.
719 */
720 if (prb_curr_blk_in_use(pkc, pbd)) {
721 /*
722 * Ok, user-space is still behind.
723 * So just refresh the timer.
724 */
725 goto refresh_timer;
726 } else {
727 /* Case 2. queue was frozen,user-space caught up,
728 * now the link went idle && the timer fired.
729 * We don't have a block to close.So we open this
730 * block and restart the timer.
731 * opening a block thaws the queue,restarts timer
732 * Thawing/timer-refresh is a side effect.
733 */
734 prb_open_block(pkc, pbd);
735 goto out;
736 }
737 }
738 }
739
740 refresh_timer:
741 _prb_refresh_rx_retire_blk_timer(pkc);
742
743 out:
744 spin_unlock(&po->sk.sk_receive_queue.lock);
745 }
746
747 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
748 struct tpacket_block_desc *pbd1, __u32 status)
749 {
750 /* Flush everything minus the block header */
751
752 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
753 u8 *start, *end;
754
755 start = (u8 *)pbd1;
756
757 /* Skip the block header(we know header WILL fit in 4K) */
758 start += PAGE_SIZE;
759
760 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
761 for (; start < end; start += PAGE_SIZE)
762 flush_dcache_page(pgv_to_page(start));
763
764 smp_wmb();
765 #endif
766
767 /* Now update the block status. */
768
769 BLOCK_STATUS(pbd1) = status;
770
771 /* Flush the block header */
772
773 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
774 start = (u8 *)pbd1;
775 flush_dcache_page(pgv_to_page(start));
776
777 smp_wmb();
778 #endif
779 }
780
781 /*
782 * Side effect:
783 *
784 * 1) flush the block
785 * 2) Increment active_blk_num
786 *
787 * Note:We DONT refresh the timer on purpose.
788 * Because almost always the next block will be opened.
789 */
790 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
791 struct tpacket_block_desc *pbd1,
792 struct packet_sock *po, unsigned int stat)
793 {
794 __u32 status = TP_STATUS_USER | stat;
795
796 struct tpacket3_hdr *last_pkt;
797 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
798 struct sock *sk = &po->sk;
799
800 if (po->stats.stats3.tp_drops)
801 status |= TP_STATUS_LOSING;
802
803 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
804 last_pkt->tp_next_offset = 0;
805
806 /* Get the ts of the last pkt */
807 if (BLOCK_NUM_PKTS(pbd1)) {
808 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
809 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
810 } else {
811 /* Ok, we tmo'd - so get the current time.
812 *
813 * It shouldn't really happen as we don't close empty
814 * blocks. See prb_retire_rx_blk_timer_expired().
815 */
816 struct timespec ts;
817 getnstimeofday(&ts);
818 h1->ts_last_pkt.ts_sec = ts.tv_sec;
819 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
820 }
821
822 smp_wmb();
823
824 /* Flush the block */
825 prb_flush_block(pkc1, pbd1, status);
826
827 sk->sk_data_ready(sk);
828
829 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
830 }
831
832 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
833 {
834 pkc->reset_pending_on_curr_blk = 0;
835 }
836
837 /*
838 * Side effect of opening a block:
839 *
840 * 1) prb_queue is thawed.
841 * 2) retire_blk_timer is refreshed.
842 *
843 */
844 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
845 struct tpacket_block_desc *pbd1)
846 {
847 struct timespec ts;
848 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
849
850 smp_rmb();
851
852 /* We could have just memset this but we will lose the
853 * flexibility of making the priv area sticky
854 */
855
856 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
857 BLOCK_NUM_PKTS(pbd1) = 0;
858 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
859
860 getnstimeofday(&ts);
861
862 h1->ts_first_pkt.ts_sec = ts.tv_sec;
863 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
864
865 pkc1->pkblk_start = (char *)pbd1;
866 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
867
868 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
869 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
870
871 pbd1->version = pkc1->version;
872 pkc1->prev = pkc1->nxt_offset;
873 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
874
875 prb_thaw_queue(pkc1);
876 _prb_refresh_rx_retire_blk_timer(pkc1);
877
878 smp_wmb();
879 }
880
881 /*
882 * Queue freeze logic:
883 * 1) Assume tp_block_nr = 8 blocks.
884 * 2) At time 't0', user opens Rx ring.
885 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
886 * 4) user-space is either sleeping or processing block '0'.
887 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
888 * it will close block-7,loop around and try to fill block '0'.
889 * call-flow:
890 * __packet_lookup_frame_in_block
891 * prb_retire_current_block()
892 * prb_dispatch_next_block()
893 * |->(BLOCK_STATUS == USER) evaluates to true
894 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
895 * 6) Now there are two cases:
896 * 6.1) Link goes idle right after the queue is frozen.
897 * But remember, the last open_block() refreshed the timer.
898 * When this timer expires,it will refresh itself so that we can
899 * re-open block-0 in near future.
900 * 6.2) Link is busy and keeps on receiving packets. This is a simple
901 * case and __packet_lookup_frame_in_block will check if block-0
902 * is free and can now be re-used.
903 */
904 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
905 struct packet_sock *po)
906 {
907 pkc->reset_pending_on_curr_blk = 1;
908 po->stats.stats3.tp_freeze_q_cnt++;
909 }
910
911 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
912
913 /*
914 * If the next block is free then we will dispatch it
915 * and return a good offset.
916 * Else, we will freeze the queue.
917 * So, caller must check the return value.
918 */
919 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
920 struct packet_sock *po)
921 {
922 struct tpacket_block_desc *pbd;
923
924 smp_rmb();
925
926 /* 1. Get current block num */
927 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
928
929 /* 2. If this block is currently in_use then freeze the queue */
930 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
931 prb_freeze_queue(pkc, po);
932 return NULL;
933 }
934
935 /*
936 * 3.
937 * open this block and return the offset where the first packet
938 * needs to get stored.
939 */
940 prb_open_block(pkc, pbd);
941 return (void *)pkc->nxt_offset;
942 }
943
944 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
945 struct packet_sock *po, unsigned int status)
946 {
947 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
948
949 /* retire/close the current block */
950 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
951 /*
952 * Plug the case where copy_bits() is in progress on
953 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
954 * have space to copy the pkt in the current block and
955 * called prb_retire_current_block()
956 *
957 * We don't need to worry about the TMO case because
958 * the timer-handler already handled this case.
959 */
960 if (!(status & TP_STATUS_BLK_TMO)) {
961 while (atomic_read(&pkc->blk_fill_in_prog)) {
962 /* Waiting for skb_copy_bits to finish... */
963 cpu_relax();
964 }
965 }
966 prb_close_block(pkc, pbd, po, status);
967 return;
968 }
969 }
970
971 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
972 struct tpacket_block_desc *pbd)
973 {
974 return TP_STATUS_USER & BLOCK_STATUS(pbd);
975 }
976
977 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
978 {
979 return pkc->reset_pending_on_curr_blk;
980 }
981
982 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
983 {
984 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
985 atomic_dec(&pkc->blk_fill_in_prog);
986 }
987
988 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
989 struct tpacket3_hdr *ppd)
990 {
991 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
992 }
993
994 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
995 struct tpacket3_hdr *ppd)
996 {
997 ppd->hv1.tp_rxhash = 0;
998 }
999
1000 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
1001 struct tpacket3_hdr *ppd)
1002 {
1003 if (skb_vlan_tag_present(pkc->skb)) {
1004 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1005 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1006 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1007 } else {
1008 ppd->hv1.tp_vlan_tci = 0;
1009 ppd->hv1.tp_vlan_tpid = 0;
1010 ppd->tp_status = TP_STATUS_AVAILABLE;
1011 }
1012 }
1013
1014 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1015 struct tpacket3_hdr *ppd)
1016 {
1017 ppd->hv1.tp_padding = 0;
1018 prb_fill_vlan_info(pkc, ppd);
1019
1020 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1021 prb_fill_rxhash(pkc, ppd);
1022 else
1023 prb_clear_rxhash(pkc, ppd);
1024 }
1025
1026 static void prb_fill_curr_block(char *curr,
1027 struct tpacket_kbdq_core *pkc,
1028 struct tpacket_block_desc *pbd,
1029 unsigned int len)
1030 {
1031 struct tpacket3_hdr *ppd;
1032
1033 ppd = (struct tpacket3_hdr *)curr;
1034 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1035 pkc->prev = curr;
1036 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1037 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1038 BLOCK_NUM_PKTS(pbd) += 1;
1039 atomic_inc(&pkc->blk_fill_in_prog);
1040 prb_run_all_ft_ops(pkc, ppd);
1041 }
1042
1043 /* Assumes caller has the sk->rx_queue.lock */
1044 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1045 struct sk_buff *skb,
1046 int status,
1047 unsigned int len
1048 )
1049 {
1050 struct tpacket_kbdq_core *pkc;
1051 struct tpacket_block_desc *pbd;
1052 char *curr, *end;
1053
1054 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1055 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1056
1057 /* Queue is frozen when user space is lagging behind */
1058 if (prb_queue_frozen(pkc)) {
1059 /*
1060 * Check if that last block which caused the queue to freeze,
1061 * is still in_use by user-space.
1062 */
1063 if (prb_curr_blk_in_use(pkc, pbd)) {
1064 /* Can't record this packet */
1065 return NULL;
1066 } else {
1067 /*
1068 * Ok, the block was released by user-space.
1069 * Now let's open that block.
1070 * opening a block also thaws the queue.
1071 * Thawing is a side effect.
1072 */
1073 prb_open_block(pkc, pbd);
1074 }
1075 }
1076
1077 smp_mb();
1078 curr = pkc->nxt_offset;
1079 pkc->skb = skb;
1080 end = (char *)pbd + pkc->kblk_size;
1081
1082 /* first try the current block */
1083 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1084 prb_fill_curr_block(curr, pkc, pbd, len);
1085 return (void *)curr;
1086 }
1087
1088 /* Ok, close the current block */
1089 prb_retire_current_block(pkc, po, 0);
1090
1091 /* Now, try to dispatch the next block */
1092 curr = (char *)prb_dispatch_next_block(pkc, po);
1093 if (curr) {
1094 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1095 prb_fill_curr_block(curr, pkc, pbd, len);
1096 return (void *)curr;
1097 }
1098
1099 /*
1100 * No free blocks are available.user_space hasn't caught up yet.
1101 * Queue was just frozen and now this packet will get dropped.
1102 */
1103 return NULL;
1104 }
1105
1106 static void *packet_current_rx_frame(struct packet_sock *po,
1107 struct sk_buff *skb,
1108 int status, unsigned int len)
1109 {
1110 char *curr = NULL;
1111 switch (po->tp_version) {
1112 case TPACKET_V1:
1113 case TPACKET_V2:
1114 curr = packet_lookup_frame(po, &po->rx_ring,
1115 po->rx_ring.head, status);
1116 return curr;
1117 case TPACKET_V3:
1118 return __packet_lookup_frame_in_block(po, skb, status, len);
1119 default:
1120 WARN(1, "TPACKET version not supported\n");
1121 BUG();
1122 return NULL;
1123 }
1124 }
1125
1126 static void *prb_lookup_block(struct packet_sock *po,
1127 struct packet_ring_buffer *rb,
1128 unsigned int idx,
1129 int status)
1130 {
1131 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1132 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1133
1134 if (status != BLOCK_STATUS(pbd))
1135 return NULL;
1136 return pbd;
1137 }
1138
1139 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1140 {
1141 unsigned int prev;
1142 if (rb->prb_bdqc.kactive_blk_num)
1143 prev = rb->prb_bdqc.kactive_blk_num-1;
1144 else
1145 prev = rb->prb_bdqc.knum_blocks-1;
1146 return prev;
1147 }
1148
1149 /* Assumes caller has held the rx_queue.lock */
1150 static void *__prb_previous_block(struct packet_sock *po,
1151 struct packet_ring_buffer *rb,
1152 int status)
1153 {
1154 unsigned int previous = prb_previous_blk_num(rb);
1155 return prb_lookup_block(po, rb, previous, status);
1156 }
1157
1158 static void *packet_previous_rx_frame(struct packet_sock *po,
1159 struct packet_ring_buffer *rb,
1160 int status)
1161 {
1162 if (po->tp_version <= TPACKET_V2)
1163 return packet_previous_frame(po, rb, status);
1164
1165 return __prb_previous_block(po, rb, status);
1166 }
1167
1168 static void packet_increment_rx_head(struct packet_sock *po,
1169 struct packet_ring_buffer *rb)
1170 {
1171 switch (po->tp_version) {
1172 case TPACKET_V1:
1173 case TPACKET_V2:
1174 return packet_increment_head(rb);
1175 case TPACKET_V3:
1176 default:
1177 WARN(1, "TPACKET version not supported.\n");
1178 BUG();
1179 return;
1180 }
1181 }
1182
1183 static void *packet_previous_frame(struct packet_sock *po,
1184 struct packet_ring_buffer *rb,
1185 int status)
1186 {
1187 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1188 return packet_lookup_frame(po, rb, previous, status);
1189 }
1190
1191 static void packet_increment_head(struct packet_ring_buffer *buff)
1192 {
1193 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1194 }
1195
1196 static void packet_inc_pending(struct packet_ring_buffer *rb)
1197 {
1198 this_cpu_inc(*rb->pending_refcnt);
1199 }
1200
1201 static void packet_dec_pending(struct packet_ring_buffer *rb)
1202 {
1203 this_cpu_dec(*rb->pending_refcnt);
1204 }
1205
1206 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1207 {
1208 unsigned int refcnt = 0;
1209 int cpu;
1210
1211 /* We don't use pending refcount in rx_ring. */
1212 if (rb->pending_refcnt == NULL)
1213 return 0;
1214
1215 for_each_possible_cpu(cpu)
1216 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1217
1218 return refcnt;
1219 }
1220
1221 static int packet_alloc_pending(struct packet_sock *po)
1222 {
1223 po->rx_ring.pending_refcnt = NULL;
1224
1225 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1226 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1227 return -ENOBUFS;
1228
1229 return 0;
1230 }
1231
1232 static void packet_free_pending(struct packet_sock *po)
1233 {
1234 free_percpu(po->tx_ring.pending_refcnt);
1235 }
1236
1237 #define ROOM_POW_OFF 2
1238 #define ROOM_NONE 0x0
1239 #define ROOM_LOW 0x1
1240 #define ROOM_NORMAL 0x2
1241
1242 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1243 {
1244 int idx, len;
1245
1246 len = po->rx_ring.frame_max + 1;
1247 idx = po->rx_ring.head;
1248 if (pow_off)
1249 idx += len >> pow_off;
1250 if (idx >= len)
1251 idx -= len;
1252 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1253 }
1254
1255 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1256 {
1257 int idx, len;
1258
1259 len = po->rx_ring.prb_bdqc.knum_blocks;
1260 idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1261 if (pow_off)
1262 idx += len >> pow_off;
1263 if (idx >= len)
1264 idx -= len;
1265 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1266 }
1267
1268 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1269 {
1270 struct sock *sk = &po->sk;
1271 int ret = ROOM_NONE;
1272
1273 if (po->prot_hook.func != tpacket_rcv) {
1274 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1275 - skb->truesize;
1276 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1277 return ROOM_NORMAL;
1278 else if (avail > 0)
1279 return ROOM_LOW;
1280 else
1281 return ROOM_NONE;
1282 }
1283
1284 spin_lock(&sk->sk_receive_queue.lock);
1285 if (po->tp_version == TPACKET_V3) {
1286 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1287 ret = ROOM_NORMAL;
1288 else if (__tpacket_v3_has_room(po, 0))
1289 ret = ROOM_LOW;
1290 } else {
1291 if (__tpacket_has_room(po, ROOM_POW_OFF))
1292 ret = ROOM_NORMAL;
1293 else if (__tpacket_has_room(po, 0))
1294 ret = ROOM_LOW;
1295 }
1296 spin_unlock(&sk->sk_receive_queue.lock);
1297
1298 return ret;
1299 }
1300
1301 static void packet_sock_destruct(struct sock *sk)
1302 {
1303 skb_queue_purge(&sk->sk_error_queue);
1304
1305 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1306 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1307
1308 if (!sock_flag(sk, SOCK_DEAD)) {
1309 pr_err("Attempt to release alive packet socket: %p\n", sk);
1310 return;
1311 }
1312
1313 sk_refcnt_debug_dec(sk);
1314 }
1315
1316 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1317 {
1318 int x = atomic_read(&f->rr_cur) + 1;
1319
1320 if (x >= num)
1321 x = 0;
1322
1323 return x;
1324 }
1325
1326 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1327 struct sk_buff *skb,
1328 unsigned int num)
1329 {
1330 return reciprocal_scale(skb_get_hash(skb), num);
1331 }
1332
1333 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1334 struct sk_buff *skb,
1335 unsigned int num)
1336 {
1337 int cur, old;
1338
1339 cur = atomic_read(&f->rr_cur);
1340 while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1341 fanout_rr_next(f, num))) != cur)
1342 cur = old;
1343 return cur;
1344 }
1345
1346 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1347 struct sk_buff *skb,
1348 unsigned int num)
1349 {
1350 return smp_processor_id() % num;
1351 }
1352
1353 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1354 struct sk_buff *skb,
1355 unsigned int num)
1356 {
1357 return prandom_u32_max(num);
1358 }
1359
1360 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1361 struct sk_buff *skb,
1362 unsigned int idx, bool try_self,
1363 unsigned int num)
1364 {
1365 struct packet_sock *po;
1366 unsigned int i, j;
1367
1368 po = pkt_sk(f->arr[idx]);
1369 if (try_self && packet_rcv_has_room(po, skb) != ROOM_NONE)
1370 return idx;
1371
1372 i = j = min_t(int, po->rollover->sock, num - 1);
1373 do {
1374 if (i != idx &&
1375 packet_rcv_has_room(pkt_sk(f->arr[i]), skb) == ROOM_NORMAL) {
1376 if (i != j)
1377 po->rollover->sock = i;
1378 return i;
1379 }
1380
1381 if (++i == num)
1382 i = 0;
1383 } while (i != j);
1384
1385 return idx;
1386 }
1387
1388 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1389 struct sk_buff *skb,
1390 unsigned int num)
1391 {
1392 return skb_get_queue_mapping(skb) % num;
1393 }
1394
1395 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1396 {
1397 return f->flags & (flag >> 8);
1398 }
1399
1400 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1401 struct packet_type *pt, struct net_device *orig_dev)
1402 {
1403 struct packet_fanout *f = pt->af_packet_priv;
1404 unsigned int num = f->num_members;
1405 struct packet_sock *po;
1406 unsigned int idx;
1407
1408 if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1409 !num) {
1410 kfree_skb(skb);
1411 return 0;
1412 }
1413
1414 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1415 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1416 if (!skb)
1417 return 0;
1418 }
1419 switch (f->type) {
1420 case PACKET_FANOUT_HASH:
1421 default:
1422 idx = fanout_demux_hash(f, skb, num);
1423 break;
1424 case PACKET_FANOUT_LB:
1425 idx = fanout_demux_lb(f, skb, num);
1426 break;
1427 case PACKET_FANOUT_CPU:
1428 idx = fanout_demux_cpu(f, skb, num);
1429 break;
1430 case PACKET_FANOUT_RND:
1431 idx = fanout_demux_rnd(f, skb, num);
1432 break;
1433 case PACKET_FANOUT_QM:
1434 idx = fanout_demux_qm(f, skb, num);
1435 break;
1436 case PACKET_FANOUT_ROLLOVER:
1437 idx = fanout_demux_rollover(f, skb, 0, false, num);
1438 break;
1439 }
1440
1441 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1442 idx = fanout_demux_rollover(f, skb, idx, true, num);
1443
1444 po = pkt_sk(f->arr[idx]);
1445 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1446 }
1447
1448 DEFINE_MUTEX(fanout_mutex);
1449 EXPORT_SYMBOL_GPL(fanout_mutex);
1450 static LIST_HEAD(fanout_list);
1451
1452 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1453 {
1454 struct packet_fanout *f = po->fanout;
1455
1456 spin_lock(&f->lock);
1457 f->arr[f->num_members] = sk;
1458 smp_wmb();
1459 f->num_members++;
1460 spin_unlock(&f->lock);
1461 }
1462
1463 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1464 {
1465 struct packet_fanout *f = po->fanout;
1466 int i;
1467
1468 spin_lock(&f->lock);
1469 for (i = 0; i < f->num_members; i++) {
1470 if (f->arr[i] == sk)
1471 break;
1472 }
1473 BUG_ON(i >= f->num_members);
1474 f->arr[i] = f->arr[f->num_members - 1];
1475 f->num_members--;
1476 spin_unlock(&f->lock);
1477 }
1478
1479 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1480 {
1481 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1482 return true;
1483
1484 return false;
1485 }
1486
1487 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1488 {
1489 struct packet_sock *po = pkt_sk(sk);
1490 struct packet_fanout *f, *match;
1491 u8 type = type_flags & 0xff;
1492 u8 flags = type_flags >> 8;
1493 int err;
1494
1495 switch (type) {
1496 case PACKET_FANOUT_ROLLOVER:
1497 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1498 return -EINVAL;
1499 case PACKET_FANOUT_HASH:
1500 case PACKET_FANOUT_LB:
1501 case PACKET_FANOUT_CPU:
1502 case PACKET_FANOUT_RND:
1503 case PACKET_FANOUT_QM:
1504 break;
1505 default:
1506 return -EINVAL;
1507 }
1508
1509 if (!po->running)
1510 return -EINVAL;
1511
1512 if (po->fanout)
1513 return -EALREADY;
1514
1515 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) {
1516 po->rollover = kzalloc(sizeof(*po->rollover), GFP_KERNEL);
1517 if (!po->rollover)
1518 return -ENOMEM;
1519 }
1520
1521 mutex_lock(&fanout_mutex);
1522 match = NULL;
1523 list_for_each_entry(f, &fanout_list, list) {
1524 if (f->id == id &&
1525 read_pnet(&f->net) == sock_net(sk)) {
1526 match = f;
1527 break;
1528 }
1529 }
1530 err = -EINVAL;
1531 if (match && match->flags != flags)
1532 goto out;
1533 if (!match) {
1534 err = -ENOMEM;
1535 match = kzalloc(sizeof(*match), GFP_KERNEL);
1536 if (!match)
1537 goto out;
1538 write_pnet(&match->net, sock_net(sk));
1539 match->id = id;
1540 match->type = type;
1541 match->flags = flags;
1542 atomic_set(&match->rr_cur, 0);
1543 INIT_LIST_HEAD(&match->list);
1544 spin_lock_init(&match->lock);
1545 atomic_set(&match->sk_ref, 0);
1546 match->prot_hook.type = po->prot_hook.type;
1547 match->prot_hook.dev = po->prot_hook.dev;
1548 match->prot_hook.func = packet_rcv_fanout;
1549 match->prot_hook.af_packet_priv = match;
1550 match->prot_hook.id_match = match_fanout_group;
1551 dev_add_pack(&match->prot_hook);
1552 list_add(&match->list, &fanout_list);
1553 }
1554 err = -EINVAL;
1555 if (match->type == type &&
1556 match->prot_hook.type == po->prot_hook.type &&
1557 match->prot_hook.dev == po->prot_hook.dev) {
1558 err = -ENOSPC;
1559 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1560 __dev_remove_pack(&po->prot_hook);
1561 po->fanout = match;
1562 atomic_inc(&match->sk_ref);
1563 __fanout_link(sk, po);
1564 err = 0;
1565 }
1566 }
1567 out:
1568 mutex_unlock(&fanout_mutex);
1569 if (err) {
1570 kfree(po->rollover);
1571 po->rollover = NULL;
1572 }
1573 return err;
1574 }
1575
1576 static void fanout_release(struct sock *sk)
1577 {
1578 struct packet_sock *po = pkt_sk(sk);
1579 struct packet_fanout *f;
1580
1581 f = po->fanout;
1582 if (!f)
1583 return;
1584
1585 mutex_lock(&fanout_mutex);
1586 po->fanout = NULL;
1587
1588 if (atomic_dec_and_test(&f->sk_ref)) {
1589 list_del(&f->list);
1590 dev_remove_pack(&f->prot_hook);
1591 kfree(f);
1592 }
1593 mutex_unlock(&fanout_mutex);
1594
1595 kfree(po->rollover);
1596 }
1597
1598 static const struct proto_ops packet_ops;
1599
1600 static const struct proto_ops packet_ops_spkt;
1601
1602 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1603 struct packet_type *pt, struct net_device *orig_dev)
1604 {
1605 struct sock *sk;
1606 struct sockaddr_pkt *spkt;
1607
1608 /*
1609 * When we registered the protocol we saved the socket in the data
1610 * field for just this event.
1611 */
1612
1613 sk = pt->af_packet_priv;
1614
1615 /*
1616 * Yank back the headers [hope the device set this
1617 * right or kerboom...]
1618 *
1619 * Incoming packets have ll header pulled,
1620 * push it back.
1621 *
1622 * For outgoing ones skb->data == skb_mac_header(skb)
1623 * so that this procedure is noop.
1624 */
1625
1626 if (skb->pkt_type == PACKET_LOOPBACK)
1627 goto out;
1628
1629 if (!net_eq(dev_net(dev), sock_net(sk)))
1630 goto out;
1631
1632 skb = skb_share_check(skb, GFP_ATOMIC);
1633 if (skb == NULL)
1634 goto oom;
1635
1636 /* drop any routing info */
1637 skb_dst_drop(skb);
1638
1639 /* drop conntrack reference */
1640 nf_reset(skb);
1641
1642 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1643
1644 skb_push(skb, skb->data - skb_mac_header(skb));
1645
1646 /*
1647 * The SOCK_PACKET socket receives _all_ frames.
1648 */
1649
1650 spkt->spkt_family = dev->type;
1651 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1652 spkt->spkt_protocol = skb->protocol;
1653
1654 /*
1655 * Charge the memory to the socket. This is done specifically
1656 * to prevent sockets using all the memory up.
1657 */
1658
1659 if (sock_queue_rcv_skb(sk, skb) == 0)
1660 return 0;
1661
1662 out:
1663 kfree_skb(skb);
1664 oom:
1665 return 0;
1666 }
1667
1668
1669 /*
1670 * Output a raw packet to a device layer. This bypasses all the other
1671 * protocol layers and you must therefore supply it with a complete frame
1672 */
1673
1674 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1675 size_t len)
1676 {
1677 struct sock *sk = sock->sk;
1678 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1679 struct sk_buff *skb = NULL;
1680 struct net_device *dev;
1681 __be16 proto = 0;
1682 int err;
1683 int extra_len = 0;
1684
1685 /*
1686 * Get and verify the address.
1687 */
1688
1689 if (saddr) {
1690 if (msg->msg_namelen < sizeof(struct sockaddr))
1691 return -EINVAL;
1692 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1693 proto = saddr->spkt_protocol;
1694 } else
1695 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1696
1697 /*
1698 * Find the device first to size check it
1699 */
1700
1701 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1702 retry:
1703 rcu_read_lock();
1704 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1705 err = -ENODEV;
1706 if (dev == NULL)
1707 goto out_unlock;
1708
1709 err = -ENETDOWN;
1710 if (!(dev->flags & IFF_UP))
1711 goto out_unlock;
1712
1713 /*
1714 * You may not queue a frame bigger than the mtu. This is the lowest level
1715 * raw protocol and you must do your own fragmentation at this level.
1716 */
1717
1718 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1719 if (!netif_supports_nofcs(dev)) {
1720 err = -EPROTONOSUPPORT;
1721 goto out_unlock;
1722 }
1723 extra_len = 4; /* We're doing our own CRC */
1724 }
1725
1726 err = -EMSGSIZE;
1727 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1728 goto out_unlock;
1729
1730 if (!skb) {
1731 size_t reserved = LL_RESERVED_SPACE(dev);
1732 int tlen = dev->needed_tailroom;
1733 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1734
1735 rcu_read_unlock();
1736 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1737 if (skb == NULL)
1738 return -ENOBUFS;
1739 /* FIXME: Save some space for broken drivers that write a hard
1740 * header at transmission time by themselves. PPP is the notable
1741 * one here. This should really be fixed at the driver level.
1742 */
1743 skb_reserve(skb, reserved);
1744 skb_reset_network_header(skb);
1745
1746 /* Try to align data part correctly */
1747 if (hhlen) {
1748 skb->data -= hhlen;
1749 skb->tail -= hhlen;
1750 if (len < hhlen)
1751 skb_reset_network_header(skb);
1752 }
1753 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1754 if (err)
1755 goto out_free;
1756 goto retry;
1757 }
1758
1759 if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1760 /* Earlier code assumed this would be a VLAN pkt,
1761 * double-check this now that we have the actual
1762 * packet in hand.
1763 */
1764 struct ethhdr *ehdr;
1765 skb_reset_mac_header(skb);
1766 ehdr = eth_hdr(skb);
1767 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1768 err = -EMSGSIZE;
1769 goto out_unlock;
1770 }
1771 }
1772
1773 skb->protocol = proto;
1774 skb->dev = dev;
1775 skb->priority = sk->sk_priority;
1776 skb->mark = sk->sk_mark;
1777
1778 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1779
1780 if (unlikely(extra_len == 4))
1781 skb->no_fcs = 1;
1782
1783 skb_probe_transport_header(skb, 0);
1784
1785 dev_queue_xmit(skb);
1786 rcu_read_unlock();
1787 return len;
1788
1789 out_unlock:
1790 rcu_read_unlock();
1791 out_free:
1792 kfree_skb(skb);
1793 return err;
1794 }
1795
1796 static unsigned int run_filter(const struct sk_buff *skb,
1797 const struct sock *sk,
1798 unsigned int res)
1799 {
1800 struct sk_filter *filter;
1801
1802 rcu_read_lock();
1803 filter = rcu_dereference(sk->sk_filter);
1804 if (filter != NULL)
1805 res = SK_RUN_FILTER(filter, skb);
1806 rcu_read_unlock();
1807
1808 return res;
1809 }
1810
1811 /*
1812 * This function makes lazy skb cloning in hope that most of packets
1813 * are discarded by BPF.
1814 *
1815 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1816 * and skb->cb are mangled. It works because (and until) packets
1817 * falling here are owned by current CPU. Output packets are cloned
1818 * by dev_queue_xmit_nit(), input packets are processed by net_bh
1819 * sequencially, so that if we return skb to original state on exit,
1820 * we will not harm anyone.
1821 */
1822
1823 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1824 struct packet_type *pt, struct net_device *orig_dev)
1825 {
1826 struct sock *sk;
1827 struct sockaddr_ll *sll;
1828 struct packet_sock *po;
1829 u8 *skb_head = skb->data;
1830 int skb_len = skb->len;
1831 unsigned int snaplen, res;
1832
1833 if (skb->pkt_type == PACKET_LOOPBACK)
1834 goto drop;
1835
1836 sk = pt->af_packet_priv;
1837 po = pkt_sk(sk);
1838
1839 if (!net_eq(dev_net(dev), sock_net(sk)))
1840 goto drop;
1841
1842 skb->dev = dev;
1843
1844 if (dev->header_ops) {
1845 /* The device has an explicit notion of ll header,
1846 * exported to higher levels.
1847 *
1848 * Otherwise, the device hides details of its frame
1849 * structure, so that corresponding packet head is
1850 * never delivered to user.
1851 */
1852 if (sk->sk_type != SOCK_DGRAM)
1853 skb_push(skb, skb->data - skb_mac_header(skb));
1854 else if (skb->pkt_type == PACKET_OUTGOING) {
1855 /* Special case: outgoing packets have ll header at head */
1856 skb_pull(skb, skb_network_offset(skb));
1857 }
1858 }
1859
1860 snaplen = skb->len;
1861
1862 res = run_filter(skb, sk, snaplen);
1863 if (!res)
1864 goto drop_n_restore;
1865 if (snaplen > res)
1866 snaplen = res;
1867
1868 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1869 goto drop_n_acct;
1870
1871 if (skb_shared(skb)) {
1872 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1873 if (nskb == NULL)
1874 goto drop_n_acct;
1875
1876 if (skb_head != skb->data) {
1877 skb->data = skb_head;
1878 skb->len = skb_len;
1879 }
1880 consume_skb(skb);
1881 skb = nskb;
1882 }
1883
1884 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
1885
1886 sll = &PACKET_SKB_CB(skb)->sa.ll;
1887 sll->sll_hatype = dev->type;
1888 sll->sll_pkttype = skb->pkt_type;
1889 if (unlikely(po->origdev))
1890 sll->sll_ifindex = orig_dev->ifindex;
1891 else
1892 sll->sll_ifindex = dev->ifindex;
1893
1894 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1895
1896 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
1897 * Use their space for storing the original skb length.
1898 */
1899 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
1900
1901 if (pskb_trim(skb, snaplen))
1902 goto drop_n_acct;
1903
1904 skb_set_owner_r(skb, sk);
1905 skb->dev = NULL;
1906 skb_dst_drop(skb);
1907
1908 /* drop conntrack reference */
1909 nf_reset(skb);
1910
1911 spin_lock(&sk->sk_receive_queue.lock);
1912 po->stats.stats1.tp_packets++;
1913 sock_skb_set_dropcount(sk, skb);
1914 __skb_queue_tail(&sk->sk_receive_queue, skb);
1915 spin_unlock(&sk->sk_receive_queue.lock);
1916 sk->sk_data_ready(sk);
1917 return 0;
1918
1919 drop_n_acct:
1920 spin_lock(&sk->sk_receive_queue.lock);
1921 po->stats.stats1.tp_drops++;
1922 atomic_inc(&sk->sk_drops);
1923 spin_unlock(&sk->sk_receive_queue.lock);
1924
1925 drop_n_restore:
1926 if (skb_head != skb->data && skb_shared(skb)) {
1927 skb->data = skb_head;
1928 skb->len = skb_len;
1929 }
1930 drop:
1931 consume_skb(skb);
1932 return 0;
1933 }
1934
1935 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1936 struct packet_type *pt, struct net_device *orig_dev)
1937 {
1938 struct sock *sk;
1939 struct packet_sock *po;
1940 struct sockaddr_ll *sll;
1941 union tpacket_uhdr h;
1942 u8 *skb_head = skb->data;
1943 int skb_len = skb->len;
1944 unsigned int snaplen, res;
1945 unsigned long status = TP_STATUS_USER;
1946 unsigned short macoff, netoff, hdrlen;
1947 struct sk_buff *copy_skb = NULL;
1948 struct timespec ts;
1949 __u32 ts_status;
1950
1951 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
1952 * We may add members to them until current aligned size without forcing
1953 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
1954 */
1955 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
1956 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
1957
1958 if (skb->pkt_type == PACKET_LOOPBACK)
1959 goto drop;
1960
1961 sk = pt->af_packet_priv;
1962 po = pkt_sk(sk);
1963
1964 if (!net_eq(dev_net(dev), sock_net(sk)))
1965 goto drop;
1966
1967 if (dev->header_ops) {
1968 if (sk->sk_type != SOCK_DGRAM)
1969 skb_push(skb, skb->data - skb_mac_header(skb));
1970 else if (skb->pkt_type == PACKET_OUTGOING) {
1971 /* Special case: outgoing packets have ll header at head */
1972 skb_pull(skb, skb_network_offset(skb));
1973 }
1974 }
1975
1976 snaplen = skb->len;
1977
1978 res = run_filter(skb, sk, snaplen);
1979 if (!res)
1980 goto drop_n_restore;
1981
1982 if (skb->ip_summed == CHECKSUM_PARTIAL)
1983 status |= TP_STATUS_CSUMNOTREADY;
1984 else if (skb->pkt_type != PACKET_OUTGOING &&
1985 (skb->ip_summed == CHECKSUM_COMPLETE ||
1986 skb_csum_unnecessary(skb)))
1987 status |= TP_STATUS_CSUM_VALID;
1988
1989 if (snaplen > res)
1990 snaplen = res;
1991
1992 if (sk->sk_type == SOCK_DGRAM) {
1993 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1994 po->tp_reserve;
1995 } else {
1996 unsigned int maclen = skb_network_offset(skb);
1997 netoff = TPACKET_ALIGN(po->tp_hdrlen +
1998 (maclen < 16 ? 16 : maclen)) +
1999 po->tp_reserve;
2000 macoff = netoff - maclen;
2001 }
2002 if (po->tp_version <= TPACKET_V2) {
2003 if (macoff + snaplen > po->rx_ring.frame_size) {
2004 if (po->copy_thresh &&
2005 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2006 if (skb_shared(skb)) {
2007 copy_skb = skb_clone(skb, GFP_ATOMIC);
2008 } else {
2009 copy_skb = skb_get(skb);
2010 skb_head = skb->data;
2011 }
2012 if (copy_skb)
2013 skb_set_owner_r(copy_skb, sk);
2014 }
2015 snaplen = po->rx_ring.frame_size - macoff;
2016 if ((int)snaplen < 0)
2017 snaplen = 0;
2018 }
2019 } else if (unlikely(macoff + snaplen >
2020 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2021 u32 nval;
2022
2023 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2024 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2025 snaplen, nval, macoff);
2026 snaplen = nval;
2027 if (unlikely((int)snaplen < 0)) {
2028 snaplen = 0;
2029 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2030 }
2031 }
2032 spin_lock(&sk->sk_receive_queue.lock);
2033 h.raw = packet_current_rx_frame(po, skb,
2034 TP_STATUS_KERNEL, (macoff+snaplen));
2035 if (!h.raw)
2036 goto ring_is_full;
2037 if (po->tp_version <= TPACKET_V2) {
2038 packet_increment_rx_head(po, &po->rx_ring);
2039 /*
2040 * LOSING will be reported till you read the stats,
2041 * because it's COR - Clear On Read.
2042 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2043 * at packet level.
2044 */
2045 if (po->stats.stats1.tp_drops)
2046 status |= TP_STATUS_LOSING;
2047 }
2048 po->stats.stats1.tp_packets++;
2049 if (copy_skb) {
2050 status |= TP_STATUS_COPY;
2051 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2052 }
2053 spin_unlock(&sk->sk_receive_queue.lock);
2054
2055 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2056
2057 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2058 getnstimeofday(&ts);
2059
2060 status |= ts_status;
2061
2062 switch (po->tp_version) {
2063 case TPACKET_V1:
2064 h.h1->tp_len = skb->len;
2065 h.h1->tp_snaplen = snaplen;
2066 h.h1->tp_mac = macoff;
2067 h.h1->tp_net = netoff;
2068 h.h1->tp_sec = ts.tv_sec;
2069 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2070 hdrlen = sizeof(*h.h1);
2071 break;
2072 case TPACKET_V2:
2073 h.h2->tp_len = skb->len;
2074 h.h2->tp_snaplen = snaplen;
2075 h.h2->tp_mac = macoff;
2076 h.h2->tp_net = netoff;
2077 h.h2->tp_sec = ts.tv_sec;
2078 h.h2->tp_nsec = ts.tv_nsec;
2079 if (skb_vlan_tag_present(skb)) {
2080 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2081 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2082 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2083 } else {
2084 h.h2->tp_vlan_tci = 0;
2085 h.h2->tp_vlan_tpid = 0;
2086 }
2087 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2088 hdrlen = sizeof(*h.h2);
2089 break;
2090 case TPACKET_V3:
2091 /* tp_nxt_offset,vlan are already populated above.
2092 * So DONT clear those fields here
2093 */
2094 h.h3->tp_status |= status;
2095 h.h3->tp_len = skb->len;
2096 h.h3->tp_snaplen = snaplen;
2097 h.h3->tp_mac = macoff;
2098 h.h3->tp_net = netoff;
2099 h.h3->tp_sec = ts.tv_sec;
2100 h.h3->tp_nsec = ts.tv_nsec;
2101 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2102 hdrlen = sizeof(*h.h3);
2103 break;
2104 default:
2105 BUG();
2106 }
2107
2108 sll = h.raw + TPACKET_ALIGN(hdrlen);
2109 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2110 sll->sll_family = AF_PACKET;
2111 sll->sll_hatype = dev->type;
2112 sll->sll_protocol = skb->protocol;
2113 sll->sll_pkttype = skb->pkt_type;
2114 if (unlikely(po->origdev))
2115 sll->sll_ifindex = orig_dev->ifindex;
2116 else
2117 sll->sll_ifindex = dev->ifindex;
2118
2119 smp_mb();
2120
2121 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2122 if (po->tp_version <= TPACKET_V2) {
2123 u8 *start, *end;
2124
2125 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2126 macoff + snaplen);
2127
2128 for (start = h.raw; start < end; start += PAGE_SIZE)
2129 flush_dcache_page(pgv_to_page(start));
2130 }
2131 smp_wmb();
2132 #endif
2133
2134 if (po->tp_version <= TPACKET_V2) {
2135 __packet_set_status(po, h.raw, status);
2136 sk->sk_data_ready(sk);
2137 } else {
2138 prb_clear_blk_fill_status(&po->rx_ring);
2139 }
2140
2141 drop_n_restore:
2142 if (skb_head != skb->data && skb_shared(skb)) {
2143 skb->data = skb_head;
2144 skb->len = skb_len;
2145 }
2146 drop:
2147 kfree_skb(skb);
2148 return 0;
2149
2150 ring_is_full:
2151 po->stats.stats1.tp_drops++;
2152 spin_unlock(&sk->sk_receive_queue.lock);
2153
2154 sk->sk_data_ready(sk);
2155 kfree_skb(copy_skb);
2156 goto drop_n_restore;
2157 }
2158
2159 static void tpacket_destruct_skb(struct sk_buff *skb)
2160 {
2161 struct packet_sock *po = pkt_sk(skb->sk);
2162
2163 if (likely(po->tx_ring.pg_vec)) {
2164 void *ph;
2165 __u32 ts;
2166
2167 ph = skb_shinfo(skb)->destructor_arg;
2168 packet_dec_pending(&po->tx_ring);
2169
2170 ts = __packet_set_timestamp(po, ph, skb);
2171 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2172 }
2173
2174 sock_wfree(skb);
2175 }
2176
2177 static bool ll_header_truncated(const struct net_device *dev, int len)
2178 {
2179 /* net device doesn't like empty head */
2180 if (unlikely(len <= dev->hard_header_len)) {
2181 net_warn_ratelimited("%s: packet size is too short (%d <= %d)\n",
2182 current->comm, len, dev->hard_header_len);
2183 return true;
2184 }
2185
2186 return false;
2187 }
2188
2189 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2190 void *frame, struct net_device *dev, int size_max,
2191 __be16 proto, unsigned char *addr, int hlen)
2192 {
2193 union tpacket_uhdr ph;
2194 int to_write, offset, len, tp_len, nr_frags, len_max;
2195 struct socket *sock = po->sk.sk_socket;
2196 struct page *page;
2197 void *data;
2198 int err;
2199
2200 ph.raw = frame;
2201
2202 skb->protocol = proto;
2203 skb->dev = dev;
2204 skb->priority = po->sk.sk_priority;
2205 skb->mark = po->sk.sk_mark;
2206 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2207 skb_shinfo(skb)->destructor_arg = ph.raw;
2208
2209 switch (po->tp_version) {
2210 case TPACKET_V2:
2211 tp_len = ph.h2->tp_len;
2212 break;
2213 default:
2214 tp_len = ph.h1->tp_len;
2215 break;
2216 }
2217 if (unlikely(tp_len > size_max)) {
2218 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2219 return -EMSGSIZE;
2220 }
2221
2222 skb_reserve(skb, hlen);
2223 skb_reset_network_header(skb);
2224
2225 if (!packet_use_direct_xmit(po))
2226 skb_probe_transport_header(skb, 0);
2227 if (unlikely(po->tp_tx_has_off)) {
2228 int off_min, off_max, off;
2229 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2230 off_max = po->tx_ring.frame_size - tp_len;
2231 if (sock->type == SOCK_DGRAM) {
2232 switch (po->tp_version) {
2233 case TPACKET_V2:
2234 off = ph.h2->tp_net;
2235 break;
2236 default:
2237 off = ph.h1->tp_net;
2238 break;
2239 }
2240 } else {
2241 switch (po->tp_version) {
2242 case TPACKET_V2:
2243 off = ph.h2->tp_mac;
2244 break;
2245 default:
2246 off = ph.h1->tp_mac;
2247 break;
2248 }
2249 }
2250 if (unlikely((off < off_min) || (off_max < off)))
2251 return -EINVAL;
2252 data = ph.raw + off;
2253 } else {
2254 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2255 }
2256 to_write = tp_len;
2257
2258 if (sock->type == SOCK_DGRAM) {
2259 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2260 NULL, tp_len);
2261 if (unlikely(err < 0))
2262 return -EINVAL;
2263 } else if (dev->hard_header_len) {
2264 if (ll_header_truncated(dev, tp_len))
2265 return -EINVAL;
2266
2267 skb_push(skb, dev->hard_header_len);
2268 err = skb_store_bits(skb, 0, data,
2269 dev->hard_header_len);
2270 if (unlikely(err))
2271 return err;
2272
2273 data += dev->hard_header_len;
2274 to_write -= dev->hard_header_len;
2275 }
2276
2277 offset = offset_in_page(data);
2278 len_max = PAGE_SIZE - offset;
2279 len = ((to_write > len_max) ? len_max : to_write);
2280
2281 skb->data_len = to_write;
2282 skb->len += to_write;
2283 skb->truesize += to_write;
2284 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2285
2286 while (likely(to_write)) {
2287 nr_frags = skb_shinfo(skb)->nr_frags;
2288
2289 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2290 pr_err("Packet exceed the number of skb frags(%lu)\n",
2291 MAX_SKB_FRAGS);
2292 return -EFAULT;
2293 }
2294
2295 page = pgv_to_page(data);
2296 data += len;
2297 flush_dcache_page(page);
2298 get_page(page);
2299 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2300 to_write -= len;
2301 offset = 0;
2302 len_max = PAGE_SIZE;
2303 len = ((to_write > len_max) ? len_max : to_write);
2304 }
2305
2306 return tp_len;
2307 }
2308
2309 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2310 {
2311 struct sk_buff *skb;
2312 struct net_device *dev;
2313 __be16 proto;
2314 int err, reserve = 0;
2315 void *ph;
2316 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2317 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2318 int tp_len, size_max;
2319 unsigned char *addr;
2320 int len_sum = 0;
2321 int status = TP_STATUS_AVAILABLE;
2322 int hlen, tlen;
2323
2324 mutex_lock(&po->pg_vec_lock);
2325
2326 if (likely(saddr == NULL)) {
2327 dev = packet_cached_dev_get(po);
2328 proto = po->num;
2329 addr = NULL;
2330 } else {
2331 err = -EINVAL;
2332 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2333 goto out;
2334 if (msg->msg_namelen < (saddr->sll_halen
2335 + offsetof(struct sockaddr_ll,
2336 sll_addr)))
2337 goto out;
2338 proto = saddr->sll_protocol;
2339 addr = saddr->sll_addr;
2340 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2341 }
2342
2343 err = -ENXIO;
2344 if (unlikely(dev == NULL))
2345 goto out;
2346 err = -ENETDOWN;
2347 if (unlikely(!(dev->flags & IFF_UP)))
2348 goto out_put;
2349
2350 reserve = dev->hard_header_len + VLAN_HLEN;
2351 size_max = po->tx_ring.frame_size
2352 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2353
2354 if (size_max > dev->mtu + reserve)
2355 size_max = dev->mtu + reserve;
2356
2357 do {
2358 ph = packet_current_frame(po, &po->tx_ring,
2359 TP_STATUS_SEND_REQUEST);
2360 if (unlikely(ph == NULL)) {
2361 if (need_wait && need_resched())
2362 schedule();
2363 continue;
2364 }
2365
2366 status = TP_STATUS_SEND_REQUEST;
2367 hlen = LL_RESERVED_SPACE(dev);
2368 tlen = dev->needed_tailroom;
2369 skb = sock_alloc_send_skb(&po->sk,
2370 hlen + tlen + sizeof(struct sockaddr_ll),
2371 !need_wait, &err);
2372
2373 if (unlikely(skb == NULL)) {
2374 /* we assume the socket was initially writeable ... */
2375 if (likely(len_sum > 0))
2376 err = len_sum;
2377 goto out_status;
2378 }
2379 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2380 addr, hlen);
2381 if (tp_len > dev->mtu + dev->hard_header_len) {
2382 struct ethhdr *ehdr;
2383 /* Earlier code assumed this would be a VLAN pkt,
2384 * double-check this now that we have the actual
2385 * packet in hand.
2386 */
2387
2388 skb_reset_mac_header(skb);
2389 ehdr = eth_hdr(skb);
2390 if (ehdr->h_proto != htons(ETH_P_8021Q))
2391 tp_len = -EMSGSIZE;
2392 }
2393 if (unlikely(tp_len < 0)) {
2394 if (po->tp_loss) {
2395 __packet_set_status(po, ph,
2396 TP_STATUS_AVAILABLE);
2397 packet_increment_head(&po->tx_ring);
2398 kfree_skb(skb);
2399 continue;
2400 } else {
2401 status = TP_STATUS_WRONG_FORMAT;
2402 err = tp_len;
2403 goto out_status;
2404 }
2405 }
2406
2407 packet_pick_tx_queue(dev, skb);
2408
2409 skb->destructor = tpacket_destruct_skb;
2410 __packet_set_status(po, ph, TP_STATUS_SENDING);
2411 packet_inc_pending(&po->tx_ring);
2412
2413 status = TP_STATUS_SEND_REQUEST;
2414 err = po->xmit(skb);
2415 if (unlikely(err > 0)) {
2416 err = net_xmit_errno(err);
2417 if (err && __packet_get_status(po, ph) ==
2418 TP_STATUS_AVAILABLE) {
2419 /* skb was destructed already */
2420 skb = NULL;
2421 goto out_status;
2422 }
2423 /*
2424 * skb was dropped but not destructed yet;
2425 * let's treat it like congestion or err < 0
2426 */
2427 err = 0;
2428 }
2429 packet_increment_head(&po->tx_ring);
2430 len_sum += tp_len;
2431 } while (likely((ph != NULL) ||
2432 /* Note: packet_read_pending() might be slow if we have
2433 * to call it as it's per_cpu variable, but in fast-path
2434 * we already short-circuit the loop with the first
2435 * condition, and luckily don't have to go that path
2436 * anyway.
2437 */
2438 (need_wait && packet_read_pending(&po->tx_ring))));
2439
2440 err = len_sum;
2441 goto out_put;
2442
2443 out_status:
2444 __packet_set_status(po, ph, status);
2445 kfree_skb(skb);
2446 out_put:
2447 dev_put(dev);
2448 out:
2449 mutex_unlock(&po->pg_vec_lock);
2450 return err;
2451 }
2452
2453 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2454 size_t reserve, size_t len,
2455 size_t linear, int noblock,
2456 int *err)
2457 {
2458 struct sk_buff *skb;
2459
2460 /* Under a page? Don't bother with paged skb. */
2461 if (prepad + len < PAGE_SIZE || !linear)
2462 linear = len;
2463
2464 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2465 err, 0);
2466 if (!skb)
2467 return NULL;
2468
2469 skb_reserve(skb, reserve);
2470 skb_put(skb, linear);
2471 skb->data_len = len - linear;
2472 skb->len += len - linear;
2473
2474 return skb;
2475 }
2476
2477 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2478 {
2479 struct sock *sk = sock->sk;
2480 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2481 struct sk_buff *skb;
2482 struct net_device *dev;
2483 __be16 proto;
2484 unsigned char *addr;
2485 int err, reserve = 0;
2486 struct virtio_net_hdr vnet_hdr = { 0 };
2487 int offset = 0;
2488 int vnet_hdr_len;
2489 struct packet_sock *po = pkt_sk(sk);
2490 unsigned short gso_type = 0;
2491 int hlen, tlen;
2492 int extra_len = 0;
2493 ssize_t n;
2494
2495 /*
2496 * Get and verify the address.
2497 */
2498
2499 if (likely(saddr == NULL)) {
2500 dev = packet_cached_dev_get(po);
2501 proto = po->num;
2502 addr = NULL;
2503 } else {
2504 err = -EINVAL;
2505 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2506 goto out;
2507 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2508 goto out;
2509 proto = saddr->sll_protocol;
2510 addr = saddr->sll_addr;
2511 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2512 }
2513
2514 err = -ENXIO;
2515 if (unlikely(dev == NULL))
2516 goto out_unlock;
2517 err = -ENETDOWN;
2518 if (unlikely(!(dev->flags & IFF_UP)))
2519 goto out_unlock;
2520
2521 if (sock->type == SOCK_RAW)
2522 reserve = dev->hard_header_len;
2523 if (po->has_vnet_hdr) {
2524 vnet_hdr_len = sizeof(vnet_hdr);
2525
2526 err = -EINVAL;
2527 if (len < vnet_hdr_len)
2528 goto out_unlock;
2529
2530 len -= vnet_hdr_len;
2531
2532 err = -EFAULT;
2533 n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter);
2534 if (n != vnet_hdr_len)
2535 goto out_unlock;
2536
2537 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2538 (__virtio16_to_cpu(false, vnet_hdr.csum_start) +
2539 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2 >
2540 __virtio16_to_cpu(false, vnet_hdr.hdr_len)))
2541 vnet_hdr.hdr_len = __cpu_to_virtio16(false,
2542 __virtio16_to_cpu(false, vnet_hdr.csum_start) +
2543 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2);
2544
2545 err = -EINVAL;
2546 if (__virtio16_to_cpu(false, vnet_hdr.hdr_len) > len)
2547 goto out_unlock;
2548
2549 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2550 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2551 case VIRTIO_NET_HDR_GSO_TCPV4:
2552 gso_type = SKB_GSO_TCPV4;
2553 break;
2554 case VIRTIO_NET_HDR_GSO_TCPV6:
2555 gso_type = SKB_GSO_TCPV6;
2556 break;
2557 case VIRTIO_NET_HDR_GSO_UDP:
2558 gso_type = SKB_GSO_UDP;
2559 break;
2560 default:
2561 goto out_unlock;
2562 }
2563
2564 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2565 gso_type |= SKB_GSO_TCP_ECN;
2566
2567 if (vnet_hdr.gso_size == 0)
2568 goto out_unlock;
2569
2570 }
2571 }
2572
2573 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2574 if (!netif_supports_nofcs(dev)) {
2575 err = -EPROTONOSUPPORT;
2576 goto out_unlock;
2577 }
2578 extra_len = 4; /* We're doing our own CRC */
2579 }
2580
2581 err = -EMSGSIZE;
2582 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2583 goto out_unlock;
2584
2585 err = -ENOBUFS;
2586 hlen = LL_RESERVED_SPACE(dev);
2587 tlen = dev->needed_tailroom;
2588 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,
2589 __virtio16_to_cpu(false, vnet_hdr.hdr_len),
2590 msg->msg_flags & MSG_DONTWAIT, &err);
2591 if (skb == NULL)
2592 goto out_unlock;
2593
2594 skb_set_network_header(skb, reserve);
2595
2596 err = -EINVAL;
2597 if (sock->type == SOCK_DGRAM) {
2598 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2599 if (unlikely(offset < 0))
2600 goto out_free;
2601 } else {
2602 if (ll_header_truncated(dev, len))
2603 goto out_free;
2604 }
2605
2606 /* Returns -EFAULT on error */
2607 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2608 if (err)
2609 goto out_free;
2610
2611 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2612
2613 if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2614 /* Earlier code assumed this would be a VLAN pkt,
2615 * double-check this now that we have the actual
2616 * packet in hand.
2617 */
2618 struct ethhdr *ehdr;
2619 skb_reset_mac_header(skb);
2620 ehdr = eth_hdr(skb);
2621 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2622 err = -EMSGSIZE;
2623 goto out_free;
2624 }
2625 }
2626
2627 skb->protocol = proto;
2628 skb->dev = dev;
2629 skb->priority = sk->sk_priority;
2630 skb->mark = sk->sk_mark;
2631
2632 packet_pick_tx_queue(dev, skb);
2633
2634 if (po->has_vnet_hdr) {
2635 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2636 u16 s = __virtio16_to_cpu(false, vnet_hdr.csum_start);
2637 u16 o = __virtio16_to_cpu(false, vnet_hdr.csum_offset);
2638 if (!skb_partial_csum_set(skb, s, o)) {
2639 err = -EINVAL;
2640 goto out_free;
2641 }
2642 }
2643
2644 skb_shinfo(skb)->gso_size =
2645 __virtio16_to_cpu(false, vnet_hdr.gso_size);
2646 skb_shinfo(skb)->gso_type = gso_type;
2647
2648 /* Header must be checked, and gso_segs computed. */
2649 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2650 skb_shinfo(skb)->gso_segs = 0;
2651
2652 len += vnet_hdr_len;
2653 }
2654
2655 if (!packet_use_direct_xmit(po))
2656 skb_probe_transport_header(skb, reserve);
2657 if (unlikely(extra_len == 4))
2658 skb->no_fcs = 1;
2659
2660 err = po->xmit(skb);
2661 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2662 goto out_unlock;
2663
2664 dev_put(dev);
2665
2666 return len;
2667
2668 out_free:
2669 kfree_skb(skb);
2670 out_unlock:
2671 if (dev)
2672 dev_put(dev);
2673 out:
2674 return err;
2675 }
2676
2677 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2678 {
2679 struct sock *sk = sock->sk;
2680 struct packet_sock *po = pkt_sk(sk);
2681
2682 if (po->tx_ring.pg_vec)
2683 return tpacket_snd(po, msg);
2684 else
2685 return packet_snd(sock, msg, len);
2686 }
2687
2688 /*
2689 * Close a PACKET socket. This is fairly simple. We immediately go
2690 * to 'closed' state and remove our protocol entry in the device list.
2691 */
2692
2693 static int packet_release(struct socket *sock)
2694 {
2695 struct sock *sk = sock->sk;
2696 struct packet_sock *po;
2697 struct net *net;
2698 union tpacket_req_u req_u;
2699
2700 if (!sk)
2701 return 0;
2702
2703 net = sock_net(sk);
2704 po = pkt_sk(sk);
2705
2706 mutex_lock(&net->packet.sklist_lock);
2707 sk_del_node_init_rcu(sk);
2708 mutex_unlock(&net->packet.sklist_lock);
2709
2710 preempt_disable();
2711 sock_prot_inuse_add(net, sk->sk_prot, -1);
2712 preempt_enable();
2713
2714 spin_lock(&po->bind_lock);
2715 unregister_prot_hook(sk, false);
2716 packet_cached_dev_reset(po);
2717
2718 if (po->prot_hook.dev) {
2719 dev_put(po->prot_hook.dev);
2720 po->prot_hook.dev = NULL;
2721 }
2722 spin_unlock(&po->bind_lock);
2723
2724 packet_flush_mclist(sk);
2725
2726 if (po->rx_ring.pg_vec) {
2727 memset(&req_u, 0, sizeof(req_u));
2728 packet_set_ring(sk, &req_u, 1, 0);
2729 }
2730
2731 if (po->tx_ring.pg_vec) {
2732 memset(&req_u, 0, sizeof(req_u));
2733 packet_set_ring(sk, &req_u, 1, 1);
2734 }
2735
2736 fanout_release(sk);
2737
2738 synchronize_net();
2739 /*
2740 * Now the socket is dead. No more input will appear.
2741 */
2742 sock_orphan(sk);
2743 sock->sk = NULL;
2744
2745 /* Purge queues */
2746
2747 skb_queue_purge(&sk->sk_receive_queue);
2748 packet_free_pending(po);
2749 sk_refcnt_debug_release(sk);
2750
2751 sock_put(sk);
2752 return 0;
2753 }
2754
2755 /*
2756 * Attach a packet hook.
2757 */
2758
2759 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2760 {
2761 struct packet_sock *po = pkt_sk(sk);
2762 const struct net_device *dev_curr;
2763 __be16 proto_curr;
2764 bool need_rehook;
2765
2766 if (po->fanout) {
2767 if (dev)
2768 dev_put(dev);
2769
2770 return -EINVAL;
2771 }
2772
2773 lock_sock(sk);
2774 spin_lock(&po->bind_lock);
2775
2776 proto_curr = po->prot_hook.type;
2777 dev_curr = po->prot_hook.dev;
2778
2779 need_rehook = proto_curr != proto || dev_curr != dev;
2780
2781 if (need_rehook) {
2782 unregister_prot_hook(sk, true);
2783
2784 po->num = proto;
2785 po->prot_hook.type = proto;
2786
2787 if (po->prot_hook.dev)
2788 dev_put(po->prot_hook.dev);
2789
2790 po->prot_hook.dev = dev;
2791
2792 po->ifindex = dev ? dev->ifindex : 0;
2793 packet_cached_dev_assign(po, dev);
2794 }
2795
2796 if (proto == 0 || !need_rehook)
2797 goto out_unlock;
2798
2799 if (!dev || (dev->flags & IFF_UP)) {
2800 register_prot_hook(sk);
2801 } else {
2802 sk->sk_err = ENETDOWN;
2803 if (!sock_flag(sk, SOCK_DEAD))
2804 sk->sk_error_report(sk);
2805 }
2806
2807 out_unlock:
2808 spin_unlock(&po->bind_lock);
2809 release_sock(sk);
2810 return 0;
2811 }
2812
2813 /*
2814 * Bind a packet socket to a device
2815 */
2816
2817 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2818 int addr_len)
2819 {
2820 struct sock *sk = sock->sk;
2821 char name[15];
2822 struct net_device *dev;
2823 int err = -ENODEV;
2824
2825 /*
2826 * Check legality
2827 */
2828
2829 if (addr_len != sizeof(struct sockaddr))
2830 return -EINVAL;
2831 strlcpy(name, uaddr->sa_data, sizeof(name));
2832
2833 dev = dev_get_by_name(sock_net(sk), name);
2834 if (dev)
2835 err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2836 return err;
2837 }
2838
2839 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2840 {
2841 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2842 struct sock *sk = sock->sk;
2843 struct net_device *dev = NULL;
2844 int err;
2845
2846
2847 /*
2848 * Check legality
2849 */
2850
2851 if (addr_len < sizeof(struct sockaddr_ll))
2852 return -EINVAL;
2853 if (sll->sll_family != AF_PACKET)
2854 return -EINVAL;
2855
2856 if (sll->sll_ifindex) {
2857 err = -ENODEV;
2858 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2859 if (dev == NULL)
2860 goto out;
2861 }
2862 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2863
2864 out:
2865 return err;
2866 }
2867
2868 static struct proto packet_proto = {
2869 .name = "PACKET",
2870 .owner = THIS_MODULE,
2871 .obj_size = sizeof(struct packet_sock),
2872 };
2873
2874 /*
2875 * Create a packet of type SOCK_PACKET.
2876 */
2877
2878 static int packet_create(struct net *net, struct socket *sock, int protocol,
2879 int kern)
2880 {
2881 struct sock *sk;
2882 struct packet_sock *po;
2883 __be16 proto = (__force __be16)protocol; /* weird, but documented */
2884 int err;
2885
2886 if (!ns_capable(net->user_ns, CAP_NET_RAW))
2887 return -EPERM;
2888 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2889 sock->type != SOCK_PACKET)
2890 return -ESOCKTNOSUPPORT;
2891
2892 sock->state = SS_UNCONNECTED;
2893
2894 err = -ENOBUFS;
2895 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
2896 if (sk == NULL)
2897 goto out;
2898
2899 sock->ops = &packet_ops;
2900 if (sock->type == SOCK_PACKET)
2901 sock->ops = &packet_ops_spkt;
2902
2903 sock_init_data(sock, sk);
2904
2905 po = pkt_sk(sk);
2906 sk->sk_family = PF_PACKET;
2907 po->num = proto;
2908 po->xmit = dev_queue_xmit;
2909
2910 err = packet_alloc_pending(po);
2911 if (err)
2912 goto out2;
2913
2914 packet_cached_dev_reset(po);
2915
2916 sk->sk_destruct = packet_sock_destruct;
2917 sk_refcnt_debug_inc(sk);
2918
2919 /*
2920 * Attach a protocol block
2921 */
2922
2923 spin_lock_init(&po->bind_lock);
2924 mutex_init(&po->pg_vec_lock);
2925 po->rollover = NULL;
2926 po->prot_hook.func = packet_rcv;
2927
2928 if (sock->type == SOCK_PACKET)
2929 po->prot_hook.func = packet_rcv_spkt;
2930
2931 po->prot_hook.af_packet_priv = sk;
2932
2933 if (proto) {
2934 po->prot_hook.type = proto;
2935 register_prot_hook(sk);
2936 }
2937
2938 mutex_lock(&net->packet.sklist_lock);
2939 sk_add_node_rcu(sk, &net->packet.sklist);
2940 mutex_unlock(&net->packet.sklist_lock);
2941
2942 preempt_disable();
2943 sock_prot_inuse_add(net, &packet_proto, 1);
2944 preempt_enable();
2945
2946 return 0;
2947 out2:
2948 sk_free(sk);
2949 out:
2950 return err;
2951 }
2952
2953 /*
2954 * Pull a packet from our receive queue and hand it to the user.
2955 * If necessary we block.
2956 */
2957
2958 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2959 int flags)
2960 {
2961 struct sock *sk = sock->sk;
2962 struct sk_buff *skb;
2963 int copied, err;
2964 int vnet_hdr_len = 0;
2965 unsigned int origlen = 0;
2966
2967 err = -EINVAL;
2968 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2969 goto out;
2970
2971 #if 0
2972 /* What error should we return now? EUNATTACH? */
2973 if (pkt_sk(sk)->ifindex < 0)
2974 return -ENODEV;
2975 #endif
2976
2977 if (flags & MSG_ERRQUEUE) {
2978 err = sock_recv_errqueue(sk, msg, len,
2979 SOL_PACKET, PACKET_TX_TIMESTAMP);
2980 goto out;
2981 }
2982
2983 /*
2984 * Call the generic datagram receiver. This handles all sorts
2985 * of horrible races and re-entrancy so we can forget about it
2986 * in the protocol layers.
2987 *
2988 * Now it will return ENETDOWN, if device have just gone down,
2989 * but then it will block.
2990 */
2991
2992 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2993
2994 /*
2995 * An error occurred so return it. Because skb_recv_datagram()
2996 * handles the blocking we don't see and worry about blocking
2997 * retries.
2998 */
2999
3000 if (skb == NULL)
3001 goto out;
3002
3003 if (pkt_sk(sk)->has_vnet_hdr) {
3004 struct virtio_net_hdr vnet_hdr = { 0 };
3005
3006 err = -EINVAL;
3007 vnet_hdr_len = sizeof(vnet_hdr);
3008 if (len < vnet_hdr_len)
3009 goto out_free;
3010
3011 len -= vnet_hdr_len;
3012
3013 if (skb_is_gso(skb)) {
3014 struct skb_shared_info *sinfo = skb_shinfo(skb);
3015
3016 /* This is a hint as to how much should be linear. */
3017 vnet_hdr.hdr_len =
3018 __cpu_to_virtio16(false, skb_headlen(skb));
3019 vnet_hdr.gso_size =
3020 __cpu_to_virtio16(false, sinfo->gso_size);
3021 if (sinfo->gso_type & SKB_GSO_TCPV4)
3022 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
3023 else if (sinfo->gso_type & SKB_GSO_TCPV6)
3024 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
3025 else if (sinfo->gso_type & SKB_GSO_UDP)
3026 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
3027 else if (sinfo->gso_type & SKB_GSO_FCOE)
3028 goto out_free;
3029 else
3030 BUG();
3031 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
3032 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
3033 } else
3034 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
3035
3036 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3037 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
3038 vnet_hdr.csum_start = __cpu_to_virtio16(false,
3039 skb_checksum_start_offset(skb));
3040 vnet_hdr.csum_offset = __cpu_to_virtio16(false,
3041 skb->csum_offset);
3042 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3043 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
3044 } /* else everything is zero */
3045
3046 err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len);
3047 if (err < 0)
3048 goto out_free;
3049 }
3050
3051 /* You lose any data beyond the buffer you gave. If it worries
3052 * a user program they can ask the device for its MTU
3053 * anyway.
3054 */
3055 copied = skb->len;
3056 if (copied > len) {
3057 copied = len;
3058 msg->msg_flags |= MSG_TRUNC;
3059 }
3060
3061 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3062 if (err)
3063 goto out_free;
3064
3065 if (sock->type != SOCK_PACKET) {
3066 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3067
3068 /* Original length was stored in sockaddr_ll fields */
3069 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3070 sll->sll_family = AF_PACKET;
3071 sll->sll_protocol = skb->protocol;
3072 }
3073
3074 sock_recv_ts_and_drops(msg, sk, skb);
3075
3076 if (msg->msg_name) {
3077 /* If the address length field is there to be filled
3078 * in, we fill it in now.
3079 */
3080 if (sock->type == SOCK_PACKET) {
3081 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3082 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3083 } else {
3084 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3085
3086 msg->msg_namelen = sll->sll_halen +
3087 offsetof(struct sockaddr_ll, sll_addr);
3088 }
3089 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3090 msg->msg_namelen);
3091 }
3092
3093 if (pkt_sk(sk)->auxdata) {
3094 struct tpacket_auxdata aux;
3095
3096 aux.tp_status = TP_STATUS_USER;
3097 if (skb->ip_summed == CHECKSUM_PARTIAL)
3098 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3099 else if (skb->pkt_type != PACKET_OUTGOING &&
3100 (skb->ip_summed == CHECKSUM_COMPLETE ||
3101 skb_csum_unnecessary(skb)))
3102 aux.tp_status |= TP_STATUS_CSUM_VALID;
3103
3104 aux.tp_len = origlen;
3105 aux.tp_snaplen = skb->len;
3106 aux.tp_mac = 0;
3107 aux.tp_net = skb_network_offset(skb);
3108 if (skb_vlan_tag_present(skb)) {
3109 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3110 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3111 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3112 } else {
3113 aux.tp_vlan_tci = 0;
3114 aux.tp_vlan_tpid = 0;
3115 }
3116 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3117 }
3118
3119 /*
3120 * Free or return the buffer as appropriate. Again this
3121 * hides all the races and re-entrancy issues from us.
3122 */
3123 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3124
3125 out_free:
3126 skb_free_datagram(sk, skb);
3127 out:
3128 return err;
3129 }
3130
3131 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3132 int *uaddr_len, int peer)
3133 {
3134 struct net_device *dev;
3135 struct sock *sk = sock->sk;
3136
3137 if (peer)
3138 return -EOPNOTSUPP;
3139
3140 uaddr->sa_family = AF_PACKET;
3141 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3142 rcu_read_lock();
3143 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3144 if (dev)
3145 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3146 rcu_read_unlock();
3147 *uaddr_len = sizeof(*uaddr);
3148
3149 return 0;
3150 }
3151
3152 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3153 int *uaddr_len, int peer)
3154 {
3155 struct net_device *dev;
3156 struct sock *sk = sock->sk;
3157 struct packet_sock *po = pkt_sk(sk);
3158 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3159
3160 if (peer)
3161 return -EOPNOTSUPP;
3162
3163 sll->sll_family = AF_PACKET;
3164 sll->sll_ifindex = po->ifindex;
3165 sll->sll_protocol = po->num;
3166 sll->sll_pkttype = 0;
3167 rcu_read_lock();
3168 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3169 if (dev) {
3170 sll->sll_hatype = dev->type;
3171 sll->sll_halen = dev->addr_len;
3172 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3173 } else {
3174 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3175 sll->sll_halen = 0;
3176 }
3177 rcu_read_unlock();
3178 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3179
3180 return 0;
3181 }
3182
3183 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3184 int what)
3185 {
3186 switch (i->type) {
3187 case PACKET_MR_MULTICAST:
3188 if (i->alen != dev->addr_len)
3189 return -EINVAL;
3190 if (what > 0)
3191 return dev_mc_add(dev, i->addr);
3192 else
3193 return dev_mc_del(dev, i->addr);
3194 break;
3195 case PACKET_MR_PROMISC:
3196 return dev_set_promiscuity(dev, what);
3197 case PACKET_MR_ALLMULTI:
3198 return dev_set_allmulti(dev, what);
3199 case PACKET_MR_UNICAST:
3200 if (i->alen != dev->addr_len)
3201 return -EINVAL;
3202 if (what > 0)
3203 return dev_uc_add(dev, i->addr);
3204 else
3205 return dev_uc_del(dev, i->addr);
3206 break;
3207 default:
3208 break;
3209 }
3210 return 0;
3211 }
3212
3213 static void packet_dev_mclist_delete(struct net_device *dev,
3214 struct packet_mclist **mlp)
3215 {
3216 struct packet_mclist *ml;
3217
3218 while ((ml = *mlp) != NULL) {
3219 if (ml->ifindex == dev->ifindex) {
3220 packet_dev_mc(dev, ml, -1);
3221 *mlp = ml->next;
3222 kfree(ml);
3223 } else
3224 mlp = &ml->next;
3225 }
3226 }
3227
3228 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3229 {
3230 struct packet_sock *po = pkt_sk(sk);
3231 struct packet_mclist *ml, *i;
3232 struct net_device *dev;
3233 int err;
3234
3235 rtnl_lock();
3236
3237 err = -ENODEV;
3238 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3239 if (!dev)
3240 goto done;
3241
3242 err = -EINVAL;
3243 if (mreq->mr_alen > dev->addr_len)
3244 goto done;
3245
3246 err = -ENOBUFS;
3247 i = kmalloc(sizeof(*i), GFP_KERNEL);
3248 if (i == NULL)
3249 goto done;
3250
3251 err = 0;
3252 for (ml = po->mclist; ml; ml = ml->next) {
3253 if (ml->ifindex == mreq->mr_ifindex &&
3254 ml->type == mreq->mr_type &&
3255 ml->alen == mreq->mr_alen &&
3256 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3257 ml->count++;
3258 /* Free the new element ... */
3259 kfree(i);
3260 goto done;
3261 }
3262 }
3263
3264 i->type = mreq->mr_type;
3265 i->ifindex = mreq->mr_ifindex;
3266 i->alen = mreq->mr_alen;
3267 memcpy(i->addr, mreq->mr_address, i->alen);
3268 i->count = 1;
3269 i->next = po->mclist;
3270 po->mclist = i;
3271 err = packet_dev_mc(dev, i, 1);
3272 if (err) {
3273 po->mclist = i->next;
3274 kfree(i);
3275 }
3276
3277 done:
3278 rtnl_unlock();
3279 return err;
3280 }
3281
3282 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3283 {
3284 struct packet_mclist *ml, **mlp;
3285
3286 rtnl_lock();
3287
3288 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3289 if (ml->ifindex == mreq->mr_ifindex &&
3290 ml->type == mreq->mr_type &&
3291 ml->alen == mreq->mr_alen &&
3292 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3293 if (--ml->count == 0) {
3294 struct net_device *dev;
3295 *mlp = ml->next;
3296 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3297 if (dev)
3298 packet_dev_mc(dev, ml, -1);
3299 kfree(ml);
3300 }
3301 break;
3302 }
3303 }
3304 rtnl_unlock();
3305 return 0;
3306 }
3307
3308 static void packet_flush_mclist(struct sock *sk)
3309 {
3310 struct packet_sock *po = pkt_sk(sk);
3311 struct packet_mclist *ml;
3312
3313 if (!po->mclist)
3314 return;
3315
3316 rtnl_lock();
3317 while ((ml = po->mclist) != NULL) {
3318 struct net_device *dev;
3319
3320 po->mclist = ml->next;
3321 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3322 if (dev != NULL)
3323 packet_dev_mc(dev, ml, -1);
3324 kfree(ml);
3325 }
3326 rtnl_unlock();
3327 }
3328
3329 static int
3330 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3331 {
3332 struct sock *sk = sock->sk;
3333 struct packet_sock *po = pkt_sk(sk);
3334 int ret;
3335
3336 if (level != SOL_PACKET)
3337 return -ENOPROTOOPT;
3338
3339 switch (optname) {
3340 case PACKET_ADD_MEMBERSHIP:
3341 case PACKET_DROP_MEMBERSHIP:
3342 {
3343 struct packet_mreq_max mreq;
3344 int len = optlen;
3345 memset(&mreq, 0, sizeof(mreq));
3346 if (len < sizeof(struct packet_mreq))
3347 return -EINVAL;
3348 if (len > sizeof(mreq))
3349 len = sizeof(mreq);
3350 if (copy_from_user(&mreq, optval, len))
3351 return -EFAULT;
3352 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3353 return -EINVAL;
3354 if (optname == PACKET_ADD_MEMBERSHIP)
3355 ret = packet_mc_add(sk, &mreq);
3356 else
3357 ret = packet_mc_drop(sk, &mreq);
3358 return ret;
3359 }
3360
3361 case PACKET_RX_RING:
3362 case PACKET_TX_RING:
3363 {
3364 union tpacket_req_u req_u;
3365 int len;
3366
3367 switch (po->tp_version) {
3368 case TPACKET_V1:
3369 case TPACKET_V2:
3370 len = sizeof(req_u.req);
3371 break;
3372 case TPACKET_V3:
3373 default:
3374 len = sizeof(req_u.req3);
3375 break;
3376 }
3377 if (optlen < len)
3378 return -EINVAL;
3379 if (pkt_sk(sk)->has_vnet_hdr)
3380 return -EINVAL;
3381 if (copy_from_user(&req_u.req, optval, len))
3382 return -EFAULT;
3383 return packet_set_ring(sk, &req_u, 0,
3384 optname == PACKET_TX_RING);
3385 }
3386 case PACKET_COPY_THRESH:
3387 {
3388 int val;
3389
3390 if (optlen != sizeof(val))
3391 return -EINVAL;
3392 if (copy_from_user(&val, optval, sizeof(val)))
3393 return -EFAULT;
3394
3395 pkt_sk(sk)->copy_thresh = val;
3396 return 0;
3397 }
3398 case PACKET_VERSION:
3399 {
3400 int val;
3401
3402 if (optlen != sizeof(val))
3403 return -EINVAL;
3404 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3405 return -EBUSY;
3406 if (copy_from_user(&val, optval, sizeof(val)))
3407 return -EFAULT;
3408 switch (val) {
3409 case TPACKET_V1:
3410 case TPACKET_V2:
3411 case TPACKET_V3:
3412 po->tp_version = val;
3413 return 0;
3414 default:
3415 return -EINVAL;
3416 }
3417 }
3418 case PACKET_RESERVE:
3419 {
3420 unsigned int val;
3421
3422 if (optlen != sizeof(val))
3423 return -EINVAL;
3424 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3425 return -EBUSY;
3426 if (copy_from_user(&val, optval, sizeof(val)))
3427 return -EFAULT;
3428 po->tp_reserve = val;
3429 return 0;
3430 }
3431 case PACKET_LOSS:
3432 {
3433 unsigned int val;
3434
3435 if (optlen != sizeof(val))
3436 return -EINVAL;
3437 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3438 return -EBUSY;
3439 if (copy_from_user(&val, optval, sizeof(val)))
3440 return -EFAULT;
3441 po->tp_loss = !!val;
3442 return 0;
3443 }
3444 case PACKET_AUXDATA:
3445 {
3446 int val;
3447
3448 if (optlen < sizeof(val))
3449 return -EINVAL;
3450 if (copy_from_user(&val, optval, sizeof(val)))
3451 return -EFAULT;
3452
3453 po->auxdata = !!val;
3454 return 0;
3455 }
3456 case PACKET_ORIGDEV:
3457 {
3458 int val;
3459
3460 if (optlen < sizeof(val))
3461 return -EINVAL;
3462 if (copy_from_user(&val, optval, sizeof(val)))
3463 return -EFAULT;
3464
3465 po->origdev = !!val;
3466 return 0;
3467 }
3468 case PACKET_VNET_HDR:
3469 {
3470 int val;
3471
3472 if (sock->type != SOCK_RAW)
3473 return -EINVAL;
3474 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3475 return -EBUSY;
3476 if (optlen < sizeof(val))
3477 return -EINVAL;
3478 if (copy_from_user(&val, optval, sizeof(val)))
3479 return -EFAULT;
3480
3481 po->has_vnet_hdr = !!val;
3482 return 0;
3483 }
3484 case PACKET_TIMESTAMP:
3485 {
3486 int val;
3487
3488 if (optlen != sizeof(val))
3489 return -EINVAL;
3490 if (copy_from_user(&val, optval, sizeof(val)))
3491 return -EFAULT;
3492
3493 po->tp_tstamp = val;
3494 return 0;
3495 }
3496 case PACKET_FANOUT:
3497 {
3498 int val;
3499
3500 if (optlen != sizeof(val))
3501 return -EINVAL;
3502 if (copy_from_user(&val, optval, sizeof(val)))
3503 return -EFAULT;
3504
3505 return fanout_add(sk, val & 0xffff, val >> 16);
3506 }
3507 case PACKET_TX_HAS_OFF:
3508 {
3509 unsigned int val;
3510
3511 if (optlen != sizeof(val))
3512 return -EINVAL;
3513 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3514 return -EBUSY;
3515 if (copy_from_user(&val, optval, sizeof(val)))
3516 return -EFAULT;
3517 po->tp_tx_has_off = !!val;
3518 return 0;
3519 }
3520 case PACKET_QDISC_BYPASS:
3521 {
3522 int val;
3523
3524 if (optlen != sizeof(val))
3525 return -EINVAL;
3526 if (copy_from_user(&val, optval, sizeof(val)))
3527 return -EFAULT;
3528
3529 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3530 return 0;
3531 }
3532 default:
3533 return -ENOPROTOOPT;
3534 }
3535 }
3536
3537 static int packet_getsockopt(struct socket *sock, int level, int optname,
3538 char __user *optval, int __user *optlen)
3539 {
3540 int len;
3541 int val, lv = sizeof(val);
3542 struct sock *sk = sock->sk;
3543 struct packet_sock *po = pkt_sk(sk);
3544 void *data = &val;
3545 union tpacket_stats_u st;
3546
3547 if (level != SOL_PACKET)
3548 return -ENOPROTOOPT;
3549
3550 if (get_user(len, optlen))
3551 return -EFAULT;
3552
3553 if (len < 0)
3554 return -EINVAL;
3555
3556 switch (optname) {
3557 case PACKET_STATISTICS:
3558 spin_lock_bh(&sk->sk_receive_queue.lock);
3559 memcpy(&st, &po->stats, sizeof(st));
3560 memset(&po->stats, 0, sizeof(po->stats));
3561 spin_unlock_bh(&sk->sk_receive_queue.lock);
3562
3563 if (po->tp_version == TPACKET_V3) {
3564 lv = sizeof(struct tpacket_stats_v3);
3565 st.stats3.tp_packets += st.stats3.tp_drops;
3566 data = &st.stats3;
3567 } else {
3568 lv = sizeof(struct tpacket_stats);
3569 st.stats1.tp_packets += st.stats1.tp_drops;
3570 data = &st.stats1;
3571 }
3572
3573 break;
3574 case PACKET_AUXDATA:
3575 val = po->auxdata;
3576 break;
3577 case PACKET_ORIGDEV:
3578 val = po->origdev;
3579 break;
3580 case PACKET_VNET_HDR:
3581 val = po->has_vnet_hdr;
3582 break;
3583 case PACKET_VERSION:
3584 val = po->tp_version;
3585 break;
3586 case PACKET_HDRLEN:
3587 if (len > sizeof(int))
3588 len = sizeof(int);
3589 if (copy_from_user(&val, optval, len))
3590 return -EFAULT;
3591 switch (val) {
3592 case TPACKET_V1:
3593 val = sizeof(struct tpacket_hdr);
3594 break;
3595 case TPACKET_V2:
3596 val = sizeof(struct tpacket2_hdr);
3597 break;
3598 case TPACKET_V3:
3599 val = sizeof(struct tpacket3_hdr);
3600 break;
3601 default:
3602 return -EINVAL;
3603 }
3604 break;
3605 case PACKET_RESERVE:
3606 val = po->tp_reserve;
3607 break;
3608 case PACKET_LOSS:
3609 val = po->tp_loss;
3610 break;
3611 case PACKET_TIMESTAMP:
3612 val = po->tp_tstamp;
3613 break;
3614 case PACKET_FANOUT:
3615 val = (po->fanout ?
3616 ((u32)po->fanout->id |
3617 ((u32)po->fanout->type << 16) |
3618 ((u32)po->fanout->flags << 24)) :
3619 0);
3620 break;
3621 case PACKET_TX_HAS_OFF:
3622 val = po->tp_tx_has_off;
3623 break;
3624 case PACKET_QDISC_BYPASS:
3625 val = packet_use_direct_xmit(po);
3626 break;
3627 default:
3628 return -ENOPROTOOPT;
3629 }
3630
3631 if (len > lv)
3632 len = lv;
3633 if (put_user(len, optlen))
3634 return -EFAULT;
3635 if (copy_to_user(optval, data, len))
3636 return -EFAULT;
3637 return 0;
3638 }
3639
3640
3641 static int packet_notifier(struct notifier_block *this,
3642 unsigned long msg, void *ptr)
3643 {
3644 struct sock *sk;
3645 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3646 struct net *net = dev_net(dev);
3647
3648 rcu_read_lock();
3649 sk_for_each_rcu(sk, &net->packet.sklist) {
3650 struct packet_sock *po = pkt_sk(sk);
3651
3652 switch (msg) {
3653 case NETDEV_UNREGISTER:
3654 if (po->mclist)
3655 packet_dev_mclist_delete(dev, &po->mclist);
3656 /* fallthrough */
3657
3658 case NETDEV_DOWN:
3659 if (dev->ifindex == po->ifindex) {
3660 spin_lock(&po->bind_lock);
3661 if (po->running) {
3662 __unregister_prot_hook(sk, false);
3663 sk->sk_err = ENETDOWN;
3664 if (!sock_flag(sk, SOCK_DEAD))
3665 sk->sk_error_report(sk);
3666 }
3667 if (msg == NETDEV_UNREGISTER) {
3668 packet_cached_dev_reset(po);
3669 po->ifindex = -1;
3670 if (po->prot_hook.dev)
3671 dev_put(po->prot_hook.dev);
3672 po->prot_hook.dev = NULL;
3673 }
3674 spin_unlock(&po->bind_lock);
3675 }
3676 break;
3677 case NETDEV_UP:
3678 if (dev->ifindex == po->ifindex) {
3679 spin_lock(&po->bind_lock);
3680 if (po->num)
3681 register_prot_hook(sk);
3682 spin_unlock(&po->bind_lock);
3683 }
3684 break;
3685 }
3686 }
3687 rcu_read_unlock();
3688 return NOTIFY_DONE;
3689 }
3690
3691
3692 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3693 unsigned long arg)
3694 {
3695 struct sock *sk = sock->sk;
3696
3697 switch (cmd) {
3698 case SIOCOUTQ:
3699 {
3700 int amount = sk_wmem_alloc_get(sk);
3701
3702 return put_user(amount, (int __user *)arg);
3703 }
3704 case SIOCINQ:
3705 {
3706 struct sk_buff *skb;
3707 int amount = 0;
3708
3709 spin_lock_bh(&sk->sk_receive_queue.lock);
3710 skb = skb_peek(&sk->sk_receive_queue);
3711 if (skb)
3712 amount = skb->len;
3713 spin_unlock_bh(&sk->sk_receive_queue.lock);
3714 return put_user(amount, (int __user *)arg);
3715 }
3716 case SIOCGSTAMP:
3717 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3718 case SIOCGSTAMPNS:
3719 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3720
3721 #ifdef CONFIG_INET
3722 case SIOCADDRT:
3723 case SIOCDELRT:
3724 case SIOCDARP:
3725 case SIOCGARP:
3726 case SIOCSARP:
3727 case SIOCGIFADDR:
3728 case SIOCSIFADDR:
3729 case SIOCGIFBRDADDR:
3730 case SIOCSIFBRDADDR:
3731 case SIOCGIFNETMASK:
3732 case SIOCSIFNETMASK:
3733 case SIOCGIFDSTADDR:
3734 case SIOCSIFDSTADDR:
3735 case SIOCSIFFLAGS:
3736 return inet_dgram_ops.ioctl(sock, cmd, arg);
3737 #endif
3738
3739 default:
3740 return -ENOIOCTLCMD;
3741 }
3742 return 0;
3743 }
3744
3745 static unsigned int packet_poll(struct file *file, struct socket *sock,
3746 poll_table *wait)
3747 {
3748 struct sock *sk = sock->sk;
3749 struct packet_sock *po = pkt_sk(sk);
3750 unsigned int mask = datagram_poll(file, sock, wait);
3751
3752 spin_lock_bh(&sk->sk_receive_queue.lock);
3753 if (po->rx_ring.pg_vec) {
3754 if (!packet_previous_rx_frame(po, &po->rx_ring,
3755 TP_STATUS_KERNEL))
3756 mask |= POLLIN | POLLRDNORM;
3757 }
3758 spin_unlock_bh(&sk->sk_receive_queue.lock);
3759 spin_lock_bh(&sk->sk_write_queue.lock);
3760 if (po->tx_ring.pg_vec) {
3761 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3762 mask |= POLLOUT | POLLWRNORM;
3763 }
3764 spin_unlock_bh(&sk->sk_write_queue.lock);
3765 return mask;
3766 }
3767
3768
3769 /* Dirty? Well, I still did not learn better way to account
3770 * for user mmaps.
3771 */
3772
3773 static void packet_mm_open(struct vm_area_struct *vma)
3774 {
3775 struct file *file = vma->vm_file;
3776 struct socket *sock = file->private_data;
3777 struct sock *sk = sock->sk;
3778
3779 if (sk)
3780 atomic_inc(&pkt_sk(sk)->mapped);
3781 }
3782
3783 static void packet_mm_close(struct vm_area_struct *vma)
3784 {
3785 struct file *file = vma->vm_file;
3786 struct socket *sock = file->private_data;
3787 struct sock *sk = sock->sk;
3788
3789 if (sk)
3790 atomic_dec(&pkt_sk(sk)->mapped);
3791 }
3792
3793 static const struct vm_operations_struct packet_mmap_ops = {
3794 .open = packet_mm_open,
3795 .close = packet_mm_close,
3796 };
3797
3798 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3799 unsigned int len)
3800 {
3801 int i;
3802
3803 for (i = 0; i < len; i++) {
3804 if (likely(pg_vec[i].buffer)) {
3805 if (is_vmalloc_addr(pg_vec[i].buffer))
3806 vfree(pg_vec[i].buffer);
3807 else
3808 free_pages((unsigned long)pg_vec[i].buffer,
3809 order);
3810 pg_vec[i].buffer = NULL;
3811 }
3812 }
3813 kfree(pg_vec);
3814 }
3815
3816 static char *alloc_one_pg_vec_page(unsigned long order)
3817 {
3818 char *buffer;
3819 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3820 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3821
3822 buffer = (char *) __get_free_pages(gfp_flags, order);
3823 if (buffer)
3824 return buffer;
3825
3826 /* __get_free_pages failed, fall back to vmalloc */
3827 buffer = vzalloc((1 << order) * PAGE_SIZE);
3828 if (buffer)
3829 return buffer;
3830
3831 /* vmalloc failed, lets dig into swap here */
3832 gfp_flags &= ~__GFP_NORETRY;
3833 buffer = (char *) __get_free_pages(gfp_flags, order);
3834 if (buffer)
3835 return buffer;
3836
3837 /* complete and utter failure */
3838 return NULL;
3839 }
3840
3841 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3842 {
3843 unsigned int block_nr = req->tp_block_nr;
3844 struct pgv *pg_vec;
3845 int i;
3846
3847 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3848 if (unlikely(!pg_vec))
3849 goto out;
3850
3851 for (i = 0; i < block_nr; i++) {
3852 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3853 if (unlikely(!pg_vec[i].buffer))
3854 goto out_free_pgvec;
3855 }
3856
3857 out:
3858 return pg_vec;
3859
3860 out_free_pgvec:
3861 free_pg_vec(pg_vec, order, block_nr);
3862 pg_vec = NULL;
3863 goto out;
3864 }
3865
3866 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3867 int closing, int tx_ring)
3868 {
3869 struct pgv *pg_vec = NULL;
3870 struct packet_sock *po = pkt_sk(sk);
3871 int was_running, order = 0;
3872 struct packet_ring_buffer *rb;
3873 struct sk_buff_head *rb_queue;
3874 __be16 num;
3875 int err = -EINVAL;
3876 /* Added to avoid minimal code churn */
3877 struct tpacket_req *req = &req_u->req;
3878
3879 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3880 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3881 WARN(1, "Tx-ring is not supported.\n");
3882 goto out;
3883 }
3884
3885 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3886 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3887
3888 err = -EBUSY;
3889 if (!closing) {
3890 if (atomic_read(&po->mapped))
3891 goto out;
3892 if (packet_read_pending(rb))
3893 goto out;
3894 }
3895
3896 if (req->tp_block_nr) {
3897 /* Sanity tests and some calculations */
3898 err = -EBUSY;
3899 if (unlikely(rb->pg_vec))
3900 goto out;
3901
3902 switch (po->tp_version) {
3903 case TPACKET_V1:
3904 po->tp_hdrlen = TPACKET_HDRLEN;
3905 break;
3906 case TPACKET_V2:
3907 po->tp_hdrlen = TPACKET2_HDRLEN;
3908 break;
3909 case TPACKET_V3:
3910 po->tp_hdrlen = TPACKET3_HDRLEN;
3911 break;
3912 }
3913
3914 err = -EINVAL;
3915 if (unlikely((int)req->tp_block_size <= 0))
3916 goto out;
3917 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3918 goto out;
3919 if (po->tp_version >= TPACKET_V3 &&
3920 (int)(req->tp_block_size -
3921 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
3922 goto out;
3923 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3924 po->tp_reserve))
3925 goto out;
3926 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3927 goto out;
3928
3929 rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3930 if (unlikely(rb->frames_per_block <= 0))
3931 goto out;
3932 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3933 req->tp_frame_nr))
3934 goto out;
3935
3936 err = -ENOMEM;
3937 order = get_order(req->tp_block_size);
3938 pg_vec = alloc_pg_vec(req, order);
3939 if (unlikely(!pg_vec))
3940 goto out;
3941 switch (po->tp_version) {
3942 case TPACKET_V3:
3943 /* Transmit path is not supported. We checked
3944 * it above but just being paranoid
3945 */
3946 if (!tx_ring)
3947 init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3948 break;
3949 default:
3950 break;
3951 }
3952 }
3953 /* Done */
3954 else {
3955 err = -EINVAL;
3956 if (unlikely(req->tp_frame_nr))
3957 goto out;
3958 }
3959
3960 lock_sock(sk);
3961
3962 /* Detach socket from network */
3963 spin_lock(&po->bind_lock);
3964 was_running = po->running;
3965 num = po->num;
3966 if (was_running) {
3967 po->num = 0;
3968 __unregister_prot_hook(sk, false);
3969 }
3970 spin_unlock(&po->bind_lock);
3971
3972 synchronize_net();
3973
3974 err = -EBUSY;
3975 mutex_lock(&po->pg_vec_lock);
3976 if (closing || atomic_read(&po->mapped) == 0) {
3977 err = 0;
3978 spin_lock_bh(&rb_queue->lock);
3979 swap(rb->pg_vec, pg_vec);
3980 rb->frame_max = (req->tp_frame_nr - 1);
3981 rb->head = 0;
3982 rb->frame_size = req->tp_frame_size;
3983 spin_unlock_bh(&rb_queue->lock);
3984
3985 swap(rb->pg_vec_order, order);
3986 swap(rb->pg_vec_len, req->tp_block_nr);
3987
3988 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3989 po->prot_hook.func = (po->rx_ring.pg_vec) ?
3990 tpacket_rcv : packet_rcv;
3991 skb_queue_purge(rb_queue);
3992 if (atomic_read(&po->mapped))
3993 pr_err("packet_mmap: vma is busy: %d\n",
3994 atomic_read(&po->mapped));
3995 }
3996 mutex_unlock(&po->pg_vec_lock);
3997
3998 spin_lock(&po->bind_lock);
3999 if (was_running) {
4000 po->num = num;
4001 register_prot_hook(sk);
4002 }
4003 spin_unlock(&po->bind_lock);
4004 if (closing && (po->tp_version > TPACKET_V2)) {
4005 /* Because we don't support block-based V3 on tx-ring */
4006 if (!tx_ring)
4007 prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
4008 }
4009 release_sock(sk);
4010
4011 if (pg_vec)
4012 free_pg_vec(pg_vec, order, req->tp_block_nr);
4013 out:
4014 return err;
4015 }
4016
4017 static int packet_mmap(struct file *file, struct socket *sock,
4018 struct vm_area_struct *vma)
4019 {
4020 struct sock *sk = sock->sk;
4021 struct packet_sock *po = pkt_sk(sk);
4022 unsigned long size, expected_size;
4023 struct packet_ring_buffer *rb;
4024 unsigned long start;
4025 int err = -EINVAL;
4026 int i;
4027
4028 if (vma->vm_pgoff)
4029 return -EINVAL;
4030
4031 mutex_lock(&po->pg_vec_lock);
4032
4033 expected_size = 0;
4034 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4035 if (rb->pg_vec) {
4036 expected_size += rb->pg_vec_len
4037 * rb->pg_vec_pages
4038 * PAGE_SIZE;
4039 }
4040 }
4041
4042 if (expected_size == 0)
4043 goto out;
4044
4045 size = vma->vm_end - vma->vm_start;
4046 if (size != expected_size)
4047 goto out;
4048
4049 start = vma->vm_start;
4050 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4051 if (rb->pg_vec == NULL)
4052 continue;
4053
4054 for (i = 0; i < rb->pg_vec_len; i++) {
4055 struct page *page;
4056 void *kaddr = rb->pg_vec[i].buffer;
4057 int pg_num;
4058
4059 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4060 page = pgv_to_page(kaddr);
4061 err = vm_insert_page(vma, start, page);
4062 if (unlikely(err))
4063 goto out;
4064 start += PAGE_SIZE;
4065 kaddr += PAGE_SIZE;
4066 }
4067 }
4068 }
4069
4070 atomic_inc(&po->mapped);
4071 vma->vm_ops = &packet_mmap_ops;
4072 err = 0;
4073
4074 out:
4075 mutex_unlock(&po->pg_vec_lock);
4076 return err;
4077 }
4078
4079 static const struct proto_ops packet_ops_spkt = {
4080 .family = PF_PACKET,
4081 .owner = THIS_MODULE,
4082 .release = packet_release,
4083 .bind = packet_bind_spkt,
4084 .connect = sock_no_connect,
4085 .socketpair = sock_no_socketpair,
4086 .accept = sock_no_accept,
4087 .getname = packet_getname_spkt,
4088 .poll = datagram_poll,
4089 .ioctl = packet_ioctl,
4090 .listen = sock_no_listen,
4091 .shutdown = sock_no_shutdown,
4092 .setsockopt = sock_no_setsockopt,
4093 .getsockopt = sock_no_getsockopt,
4094 .sendmsg = packet_sendmsg_spkt,
4095 .recvmsg = packet_recvmsg,
4096 .mmap = sock_no_mmap,
4097 .sendpage = sock_no_sendpage,
4098 };
4099
4100 static const struct proto_ops packet_ops = {
4101 .family = PF_PACKET,
4102 .owner = THIS_MODULE,
4103 .release = packet_release,
4104 .bind = packet_bind,
4105 .connect = sock_no_connect,
4106 .socketpair = sock_no_socketpair,
4107 .accept = sock_no_accept,
4108 .getname = packet_getname,
4109 .poll = packet_poll,
4110 .ioctl = packet_ioctl,
4111 .listen = sock_no_listen,
4112 .shutdown = sock_no_shutdown,
4113 .setsockopt = packet_setsockopt,
4114 .getsockopt = packet_getsockopt,
4115 .sendmsg = packet_sendmsg,
4116 .recvmsg = packet_recvmsg,
4117 .mmap = packet_mmap,
4118 .sendpage = sock_no_sendpage,
4119 };
4120
4121 static const struct net_proto_family packet_family_ops = {
4122 .family = PF_PACKET,
4123 .create = packet_create,
4124 .owner = THIS_MODULE,
4125 };
4126
4127 static struct notifier_block packet_netdev_notifier = {
4128 .notifier_call = packet_notifier,
4129 };
4130
4131 #ifdef CONFIG_PROC_FS
4132
4133 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4134 __acquires(RCU)
4135 {
4136 struct net *net = seq_file_net(seq);
4137
4138 rcu_read_lock();
4139 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4140 }
4141
4142 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4143 {
4144 struct net *net = seq_file_net(seq);
4145 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4146 }
4147
4148 static void packet_seq_stop(struct seq_file *seq, void *v)
4149 __releases(RCU)
4150 {
4151 rcu_read_unlock();
4152 }
4153
4154 static int packet_seq_show(struct seq_file *seq, void *v)
4155 {
4156 if (v == SEQ_START_TOKEN)
4157 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4158 else {
4159 struct sock *s = sk_entry(v);
4160 const struct packet_sock *po = pkt_sk(s);
4161
4162 seq_printf(seq,
4163 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4164 s,
4165 atomic_read(&s->sk_refcnt),
4166 s->sk_type,
4167 ntohs(po->num),
4168 po->ifindex,
4169 po->running,
4170 atomic_read(&s->sk_rmem_alloc),
4171 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4172 sock_i_ino(s));
4173 }
4174
4175 return 0;
4176 }
4177
4178 static const struct seq_operations packet_seq_ops = {
4179 .start = packet_seq_start,
4180 .next = packet_seq_next,
4181 .stop = packet_seq_stop,
4182 .show = packet_seq_show,
4183 };
4184
4185 static int packet_seq_open(struct inode *inode, struct file *file)
4186 {
4187 return seq_open_net(inode, file, &packet_seq_ops,
4188 sizeof(struct seq_net_private));
4189 }
4190
4191 static const struct file_operations packet_seq_fops = {
4192 .owner = THIS_MODULE,
4193 .open = packet_seq_open,
4194 .read = seq_read,
4195 .llseek = seq_lseek,
4196 .release = seq_release_net,
4197 };
4198
4199 #endif
4200
4201 static int __net_init packet_net_init(struct net *net)
4202 {
4203 mutex_init(&net->packet.sklist_lock);
4204 INIT_HLIST_HEAD(&net->packet.sklist);
4205
4206 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4207 return -ENOMEM;
4208
4209 return 0;
4210 }
4211
4212 static void __net_exit packet_net_exit(struct net *net)
4213 {
4214 remove_proc_entry("packet", net->proc_net);
4215 }
4216
4217 static struct pernet_operations packet_net_ops = {
4218 .init = packet_net_init,
4219 .exit = packet_net_exit,
4220 };
4221
4222
4223 static void __exit packet_exit(void)
4224 {
4225 unregister_netdevice_notifier(&packet_netdev_notifier);
4226 unregister_pernet_subsys(&packet_net_ops);
4227 sock_unregister(PF_PACKET);
4228 proto_unregister(&packet_proto);
4229 }
4230
4231 static int __init packet_init(void)
4232 {
4233 int rc = proto_register(&packet_proto, 0);
4234
4235 if (rc != 0)
4236 goto out;
4237
4238 sock_register(&packet_family_ops);
4239 register_pernet_subsys(&packet_net_ops);
4240 register_netdevice_notifier(&packet_netdev_notifier);
4241 out:
4242 return rc;
4243 }
4244
4245 module_init(packet_init);
4246 module_exit(packet_exit);
4247 MODULE_LICENSE("GPL");
4248 MODULE_ALIAS_NETPROTO(PF_PACKET);
This page took 0.498397 seconds and 5 git commands to generate.