net: macb: constify macb configuration data
[deliverable/linux.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95
96 #include "internal.h"
97
98 /*
99 Assumptions:
100 - if device has no dev->hard_header routine, it adds and removes ll header
101 inside itself. In this case ll header is invisible outside of device,
102 but higher levels still should reserve dev->hard_header_len.
103 Some devices are enough clever to reallocate skb, when header
104 will not fit to reserved space (tunnel), another ones are silly
105 (PPP).
106 - packet socket receives packets with pulled ll header,
107 so that SOCK_RAW should push it back.
108
109 On receive:
110 -----------
111
112 Incoming, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> data
115
116 Outgoing, dev->hard_header!=NULL
117 mac_header -> ll header
118 data -> ll header
119
120 Incoming, dev->hard_header==NULL
121 mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 header. PPP makes it, that is wrong, because introduce
123 assymetry between rx and tx paths.
124 data -> data
125
126 Outgoing, dev->hard_header==NULL
127 mac_header -> data. ll header is still not built!
128 data -> data
129
130 Resume
131 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132
133
134 On transmit:
135 ------------
136
137 dev->hard_header != NULL
138 mac_header -> ll header
139 data -> ll header
140
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142 mac_header -> data
143 data -> data
144
145 We should set nh.raw on output to correct posistion,
146 packet classifier depends on it.
147 */
148
149 /* Private packet socket structures. */
150
151 /* identical to struct packet_mreq except it has
152 * a longer address field.
153 */
154 struct packet_mreq_max {
155 int mr_ifindex;
156 unsigned short mr_type;
157 unsigned short mr_alen;
158 unsigned char mr_address[MAX_ADDR_LEN];
159 };
160
161 union tpacket_uhdr {
162 struct tpacket_hdr *h1;
163 struct tpacket2_hdr *h2;
164 struct tpacket3_hdr *h3;
165 void *raw;
166 };
167
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 int closing, int tx_ring);
170
171 #define V3_ALIGNMENT (8)
172
173 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177
178 #define PGV_FROM_VMALLOC 1
179
180 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
186 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 struct packet_type *pt, struct net_device *orig_dev);
192
193 static void *packet_previous_frame(struct packet_sock *po,
194 struct packet_ring_buffer *rb,
195 int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 struct tpacket_kbdq_core *,
210 void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217
218 struct packet_skb_cb {
219 unsigned int origlen;
220 union {
221 struct sockaddr_pkt pkt;
222 struct sockaddr_ll ll;
223 } sa;
224 };
225
226 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
227
228 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
229 #define GET_PBLOCK_DESC(x, bid) \
230 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
231 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
232 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
233 #define GET_NEXT_PRB_BLK_NUM(x) \
234 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
235 ((x)->kactive_blk_num+1) : 0)
236
237 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
238 static void __fanout_link(struct sock *sk, struct packet_sock *po);
239
240 static int packet_direct_xmit(struct sk_buff *skb)
241 {
242 struct net_device *dev = skb->dev;
243 netdev_features_t features;
244 struct netdev_queue *txq;
245 int ret = NETDEV_TX_BUSY;
246
247 if (unlikely(!netif_running(dev) ||
248 !netif_carrier_ok(dev)))
249 goto drop;
250
251 features = netif_skb_features(skb);
252 if (skb_needs_linearize(skb, features) &&
253 __skb_linearize(skb))
254 goto drop;
255
256 txq = skb_get_tx_queue(dev, skb);
257
258 local_bh_disable();
259
260 HARD_TX_LOCK(dev, txq, smp_processor_id());
261 if (!netif_xmit_frozen_or_drv_stopped(txq))
262 ret = netdev_start_xmit(skb, dev, txq, false);
263 HARD_TX_UNLOCK(dev, txq);
264
265 local_bh_enable();
266
267 if (!dev_xmit_complete(ret))
268 kfree_skb(skb);
269
270 return ret;
271 drop:
272 atomic_long_inc(&dev->tx_dropped);
273 kfree_skb(skb);
274 return NET_XMIT_DROP;
275 }
276
277 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
278 {
279 struct net_device *dev;
280
281 rcu_read_lock();
282 dev = rcu_dereference(po->cached_dev);
283 if (likely(dev))
284 dev_hold(dev);
285 rcu_read_unlock();
286
287 return dev;
288 }
289
290 static void packet_cached_dev_assign(struct packet_sock *po,
291 struct net_device *dev)
292 {
293 rcu_assign_pointer(po->cached_dev, dev);
294 }
295
296 static void packet_cached_dev_reset(struct packet_sock *po)
297 {
298 RCU_INIT_POINTER(po->cached_dev, NULL);
299 }
300
301 static bool packet_use_direct_xmit(const struct packet_sock *po)
302 {
303 return po->xmit == packet_direct_xmit;
304 }
305
306 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
307 {
308 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
309 }
310
311 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
312 {
313 const struct net_device_ops *ops = dev->netdev_ops;
314 u16 queue_index;
315
316 if (ops->ndo_select_queue) {
317 queue_index = ops->ndo_select_queue(dev, skb, NULL,
318 __packet_pick_tx_queue);
319 queue_index = netdev_cap_txqueue(dev, queue_index);
320 } else {
321 queue_index = __packet_pick_tx_queue(dev, skb);
322 }
323
324 skb_set_queue_mapping(skb, queue_index);
325 }
326
327 /* register_prot_hook must be invoked with the po->bind_lock held,
328 * or from a context in which asynchronous accesses to the packet
329 * socket is not possible (packet_create()).
330 */
331 static void register_prot_hook(struct sock *sk)
332 {
333 struct packet_sock *po = pkt_sk(sk);
334
335 if (!po->running) {
336 if (po->fanout)
337 __fanout_link(sk, po);
338 else
339 dev_add_pack(&po->prot_hook);
340
341 sock_hold(sk);
342 po->running = 1;
343 }
344 }
345
346 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
347 * held. If the sync parameter is true, we will temporarily drop
348 * the po->bind_lock and do a synchronize_net to make sure no
349 * asynchronous packet processing paths still refer to the elements
350 * of po->prot_hook. If the sync parameter is false, it is the
351 * callers responsibility to take care of this.
352 */
353 static void __unregister_prot_hook(struct sock *sk, bool sync)
354 {
355 struct packet_sock *po = pkt_sk(sk);
356
357 po->running = 0;
358
359 if (po->fanout)
360 __fanout_unlink(sk, po);
361 else
362 __dev_remove_pack(&po->prot_hook);
363
364 __sock_put(sk);
365
366 if (sync) {
367 spin_unlock(&po->bind_lock);
368 synchronize_net();
369 spin_lock(&po->bind_lock);
370 }
371 }
372
373 static void unregister_prot_hook(struct sock *sk, bool sync)
374 {
375 struct packet_sock *po = pkt_sk(sk);
376
377 if (po->running)
378 __unregister_prot_hook(sk, sync);
379 }
380
381 static inline struct page * __pure pgv_to_page(void *addr)
382 {
383 if (is_vmalloc_addr(addr))
384 return vmalloc_to_page(addr);
385 return virt_to_page(addr);
386 }
387
388 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
389 {
390 union tpacket_uhdr h;
391
392 h.raw = frame;
393 switch (po->tp_version) {
394 case TPACKET_V1:
395 h.h1->tp_status = status;
396 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
397 break;
398 case TPACKET_V2:
399 h.h2->tp_status = status;
400 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
401 break;
402 case TPACKET_V3:
403 default:
404 WARN(1, "TPACKET version not supported.\n");
405 BUG();
406 }
407
408 smp_wmb();
409 }
410
411 static int __packet_get_status(struct packet_sock *po, void *frame)
412 {
413 union tpacket_uhdr h;
414
415 smp_rmb();
416
417 h.raw = frame;
418 switch (po->tp_version) {
419 case TPACKET_V1:
420 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
421 return h.h1->tp_status;
422 case TPACKET_V2:
423 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
424 return h.h2->tp_status;
425 case TPACKET_V3:
426 default:
427 WARN(1, "TPACKET version not supported.\n");
428 BUG();
429 return 0;
430 }
431 }
432
433 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
434 unsigned int flags)
435 {
436 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
437
438 if (shhwtstamps &&
439 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
440 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
441 return TP_STATUS_TS_RAW_HARDWARE;
442
443 if (ktime_to_timespec_cond(skb->tstamp, ts))
444 return TP_STATUS_TS_SOFTWARE;
445
446 return 0;
447 }
448
449 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
450 struct sk_buff *skb)
451 {
452 union tpacket_uhdr h;
453 struct timespec ts;
454 __u32 ts_status;
455
456 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
457 return 0;
458
459 h.raw = frame;
460 switch (po->tp_version) {
461 case TPACKET_V1:
462 h.h1->tp_sec = ts.tv_sec;
463 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
464 break;
465 case TPACKET_V2:
466 h.h2->tp_sec = ts.tv_sec;
467 h.h2->tp_nsec = ts.tv_nsec;
468 break;
469 case TPACKET_V3:
470 default:
471 WARN(1, "TPACKET version not supported.\n");
472 BUG();
473 }
474
475 /* one flush is safe, as both fields always lie on the same cacheline */
476 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
477 smp_wmb();
478
479 return ts_status;
480 }
481
482 static void *packet_lookup_frame(struct packet_sock *po,
483 struct packet_ring_buffer *rb,
484 unsigned int position,
485 int status)
486 {
487 unsigned int pg_vec_pos, frame_offset;
488 union tpacket_uhdr h;
489
490 pg_vec_pos = position / rb->frames_per_block;
491 frame_offset = position % rb->frames_per_block;
492
493 h.raw = rb->pg_vec[pg_vec_pos].buffer +
494 (frame_offset * rb->frame_size);
495
496 if (status != __packet_get_status(po, h.raw))
497 return NULL;
498
499 return h.raw;
500 }
501
502 static void *packet_current_frame(struct packet_sock *po,
503 struct packet_ring_buffer *rb,
504 int status)
505 {
506 return packet_lookup_frame(po, rb, rb->head, status);
507 }
508
509 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
510 {
511 del_timer_sync(&pkc->retire_blk_timer);
512 }
513
514 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
515 int tx_ring,
516 struct sk_buff_head *rb_queue)
517 {
518 struct tpacket_kbdq_core *pkc;
519
520 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
521 GET_PBDQC_FROM_RB(&po->rx_ring);
522
523 spin_lock_bh(&rb_queue->lock);
524 pkc->delete_blk_timer = 1;
525 spin_unlock_bh(&rb_queue->lock);
526
527 prb_del_retire_blk_timer(pkc);
528 }
529
530 static void prb_init_blk_timer(struct packet_sock *po,
531 struct tpacket_kbdq_core *pkc,
532 void (*func) (unsigned long))
533 {
534 init_timer(&pkc->retire_blk_timer);
535 pkc->retire_blk_timer.data = (long)po;
536 pkc->retire_blk_timer.function = func;
537 pkc->retire_blk_timer.expires = jiffies;
538 }
539
540 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
541 {
542 struct tpacket_kbdq_core *pkc;
543
544 if (tx_ring)
545 BUG();
546
547 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
548 GET_PBDQC_FROM_RB(&po->rx_ring);
549 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
550 }
551
552 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
553 int blk_size_in_bytes)
554 {
555 struct net_device *dev;
556 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
557 struct ethtool_cmd ecmd;
558 int err;
559 u32 speed;
560
561 rtnl_lock();
562 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
563 if (unlikely(!dev)) {
564 rtnl_unlock();
565 return DEFAULT_PRB_RETIRE_TOV;
566 }
567 err = __ethtool_get_settings(dev, &ecmd);
568 speed = ethtool_cmd_speed(&ecmd);
569 rtnl_unlock();
570 if (!err) {
571 /*
572 * If the link speed is so slow you don't really
573 * need to worry about perf anyways
574 */
575 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
576 return DEFAULT_PRB_RETIRE_TOV;
577 } else {
578 msec = 1;
579 div = speed / 1000;
580 }
581 }
582
583 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
584
585 if (div)
586 mbits /= div;
587
588 tmo = mbits * msec;
589
590 if (div)
591 return tmo+1;
592 return tmo;
593 }
594
595 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
596 union tpacket_req_u *req_u)
597 {
598 p1->feature_req_word = req_u->req3.tp_feature_req_word;
599 }
600
601 static void init_prb_bdqc(struct packet_sock *po,
602 struct packet_ring_buffer *rb,
603 struct pgv *pg_vec,
604 union tpacket_req_u *req_u, int tx_ring)
605 {
606 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
607 struct tpacket_block_desc *pbd;
608
609 memset(p1, 0x0, sizeof(*p1));
610
611 p1->knxt_seq_num = 1;
612 p1->pkbdq = pg_vec;
613 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
614 p1->pkblk_start = pg_vec[0].buffer;
615 p1->kblk_size = req_u->req3.tp_block_size;
616 p1->knum_blocks = req_u->req3.tp_block_nr;
617 p1->hdrlen = po->tp_hdrlen;
618 p1->version = po->tp_version;
619 p1->last_kactive_blk_num = 0;
620 po->stats.stats3.tp_freeze_q_cnt = 0;
621 if (req_u->req3.tp_retire_blk_tov)
622 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
623 else
624 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
625 req_u->req3.tp_block_size);
626 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
627 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
628
629 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
630 prb_init_ft_ops(p1, req_u);
631 prb_setup_retire_blk_timer(po, tx_ring);
632 prb_open_block(p1, pbd);
633 }
634
635 /* Do NOT update the last_blk_num first.
636 * Assumes sk_buff_head lock is held.
637 */
638 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
639 {
640 mod_timer(&pkc->retire_blk_timer,
641 jiffies + pkc->tov_in_jiffies);
642 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
643 }
644
645 /*
646 * Timer logic:
647 * 1) We refresh the timer only when we open a block.
648 * By doing this we don't waste cycles refreshing the timer
649 * on packet-by-packet basis.
650 *
651 * With a 1MB block-size, on a 1Gbps line, it will take
652 * i) ~8 ms to fill a block + ii) memcpy etc.
653 * In this cut we are not accounting for the memcpy time.
654 *
655 * So, if the user sets the 'tmo' to 10ms then the timer
656 * will never fire while the block is still getting filled
657 * (which is what we want). However, the user could choose
658 * to close a block early and that's fine.
659 *
660 * But when the timer does fire, we check whether or not to refresh it.
661 * Since the tmo granularity is in msecs, it is not too expensive
662 * to refresh the timer, lets say every '8' msecs.
663 * Either the user can set the 'tmo' or we can derive it based on
664 * a) line-speed and b) block-size.
665 * prb_calc_retire_blk_tmo() calculates the tmo.
666 *
667 */
668 static void prb_retire_rx_blk_timer_expired(unsigned long data)
669 {
670 struct packet_sock *po = (struct packet_sock *)data;
671 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
672 unsigned int frozen;
673 struct tpacket_block_desc *pbd;
674
675 spin_lock(&po->sk.sk_receive_queue.lock);
676
677 frozen = prb_queue_frozen(pkc);
678 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
679
680 if (unlikely(pkc->delete_blk_timer))
681 goto out;
682
683 /* We only need to plug the race when the block is partially filled.
684 * tpacket_rcv:
685 * lock(); increment BLOCK_NUM_PKTS; unlock()
686 * copy_bits() is in progress ...
687 * timer fires on other cpu:
688 * we can't retire the current block because copy_bits
689 * is in progress.
690 *
691 */
692 if (BLOCK_NUM_PKTS(pbd)) {
693 while (atomic_read(&pkc->blk_fill_in_prog)) {
694 /* Waiting for skb_copy_bits to finish... */
695 cpu_relax();
696 }
697 }
698
699 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
700 if (!frozen) {
701 if (!BLOCK_NUM_PKTS(pbd)) {
702 /* An empty block. Just refresh the timer. */
703 goto refresh_timer;
704 }
705 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
706 if (!prb_dispatch_next_block(pkc, po))
707 goto refresh_timer;
708 else
709 goto out;
710 } else {
711 /* Case 1. Queue was frozen because user-space was
712 * lagging behind.
713 */
714 if (prb_curr_blk_in_use(pkc, pbd)) {
715 /*
716 * Ok, user-space is still behind.
717 * So just refresh the timer.
718 */
719 goto refresh_timer;
720 } else {
721 /* Case 2. queue was frozen,user-space caught up,
722 * now the link went idle && the timer fired.
723 * We don't have a block to close.So we open this
724 * block and restart the timer.
725 * opening a block thaws the queue,restarts timer
726 * Thawing/timer-refresh is a side effect.
727 */
728 prb_open_block(pkc, pbd);
729 goto out;
730 }
731 }
732 }
733
734 refresh_timer:
735 _prb_refresh_rx_retire_blk_timer(pkc);
736
737 out:
738 spin_unlock(&po->sk.sk_receive_queue.lock);
739 }
740
741 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
742 struct tpacket_block_desc *pbd1, __u32 status)
743 {
744 /* Flush everything minus the block header */
745
746 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
747 u8 *start, *end;
748
749 start = (u8 *)pbd1;
750
751 /* Skip the block header(we know header WILL fit in 4K) */
752 start += PAGE_SIZE;
753
754 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
755 for (; start < end; start += PAGE_SIZE)
756 flush_dcache_page(pgv_to_page(start));
757
758 smp_wmb();
759 #endif
760
761 /* Now update the block status. */
762
763 BLOCK_STATUS(pbd1) = status;
764
765 /* Flush the block header */
766
767 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
768 start = (u8 *)pbd1;
769 flush_dcache_page(pgv_to_page(start));
770
771 smp_wmb();
772 #endif
773 }
774
775 /*
776 * Side effect:
777 *
778 * 1) flush the block
779 * 2) Increment active_blk_num
780 *
781 * Note:We DONT refresh the timer on purpose.
782 * Because almost always the next block will be opened.
783 */
784 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
785 struct tpacket_block_desc *pbd1,
786 struct packet_sock *po, unsigned int stat)
787 {
788 __u32 status = TP_STATUS_USER | stat;
789
790 struct tpacket3_hdr *last_pkt;
791 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
792 struct sock *sk = &po->sk;
793
794 if (po->stats.stats3.tp_drops)
795 status |= TP_STATUS_LOSING;
796
797 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
798 last_pkt->tp_next_offset = 0;
799
800 /* Get the ts of the last pkt */
801 if (BLOCK_NUM_PKTS(pbd1)) {
802 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
803 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
804 } else {
805 /* Ok, we tmo'd - so get the current time.
806 *
807 * It shouldn't really happen as we don't close empty
808 * blocks. See prb_retire_rx_blk_timer_expired().
809 */
810 struct timespec ts;
811 getnstimeofday(&ts);
812 h1->ts_last_pkt.ts_sec = ts.tv_sec;
813 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
814 }
815
816 smp_wmb();
817
818 /* Flush the block */
819 prb_flush_block(pkc1, pbd1, status);
820
821 sk->sk_data_ready(sk);
822
823 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
824 }
825
826 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
827 {
828 pkc->reset_pending_on_curr_blk = 0;
829 }
830
831 /*
832 * Side effect of opening a block:
833 *
834 * 1) prb_queue is thawed.
835 * 2) retire_blk_timer is refreshed.
836 *
837 */
838 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
839 struct tpacket_block_desc *pbd1)
840 {
841 struct timespec ts;
842 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
843
844 smp_rmb();
845
846 /* We could have just memset this but we will lose the
847 * flexibility of making the priv area sticky
848 */
849
850 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
851 BLOCK_NUM_PKTS(pbd1) = 0;
852 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
853
854 getnstimeofday(&ts);
855
856 h1->ts_first_pkt.ts_sec = ts.tv_sec;
857 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
858
859 pkc1->pkblk_start = (char *)pbd1;
860 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
861
862 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
863 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
864
865 pbd1->version = pkc1->version;
866 pkc1->prev = pkc1->nxt_offset;
867 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
868
869 prb_thaw_queue(pkc1);
870 _prb_refresh_rx_retire_blk_timer(pkc1);
871
872 smp_wmb();
873 }
874
875 /*
876 * Queue freeze logic:
877 * 1) Assume tp_block_nr = 8 blocks.
878 * 2) At time 't0', user opens Rx ring.
879 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
880 * 4) user-space is either sleeping or processing block '0'.
881 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
882 * it will close block-7,loop around and try to fill block '0'.
883 * call-flow:
884 * __packet_lookup_frame_in_block
885 * prb_retire_current_block()
886 * prb_dispatch_next_block()
887 * |->(BLOCK_STATUS == USER) evaluates to true
888 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
889 * 6) Now there are two cases:
890 * 6.1) Link goes idle right after the queue is frozen.
891 * But remember, the last open_block() refreshed the timer.
892 * When this timer expires,it will refresh itself so that we can
893 * re-open block-0 in near future.
894 * 6.2) Link is busy and keeps on receiving packets. This is a simple
895 * case and __packet_lookup_frame_in_block will check if block-0
896 * is free and can now be re-used.
897 */
898 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
899 struct packet_sock *po)
900 {
901 pkc->reset_pending_on_curr_blk = 1;
902 po->stats.stats3.tp_freeze_q_cnt++;
903 }
904
905 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
906
907 /*
908 * If the next block is free then we will dispatch it
909 * and return a good offset.
910 * Else, we will freeze the queue.
911 * So, caller must check the return value.
912 */
913 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
914 struct packet_sock *po)
915 {
916 struct tpacket_block_desc *pbd;
917
918 smp_rmb();
919
920 /* 1. Get current block num */
921 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
922
923 /* 2. If this block is currently in_use then freeze the queue */
924 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
925 prb_freeze_queue(pkc, po);
926 return NULL;
927 }
928
929 /*
930 * 3.
931 * open this block and return the offset where the first packet
932 * needs to get stored.
933 */
934 prb_open_block(pkc, pbd);
935 return (void *)pkc->nxt_offset;
936 }
937
938 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
939 struct packet_sock *po, unsigned int status)
940 {
941 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
942
943 /* retire/close the current block */
944 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
945 /*
946 * Plug the case where copy_bits() is in progress on
947 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
948 * have space to copy the pkt in the current block and
949 * called prb_retire_current_block()
950 *
951 * We don't need to worry about the TMO case because
952 * the timer-handler already handled this case.
953 */
954 if (!(status & TP_STATUS_BLK_TMO)) {
955 while (atomic_read(&pkc->blk_fill_in_prog)) {
956 /* Waiting for skb_copy_bits to finish... */
957 cpu_relax();
958 }
959 }
960 prb_close_block(pkc, pbd, po, status);
961 return;
962 }
963 }
964
965 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
966 struct tpacket_block_desc *pbd)
967 {
968 return TP_STATUS_USER & BLOCK_STATUS(pbd);
969 }
970
971 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
972 {
973 return pkc->reset_pending_on_curr_blk;
974 }
975
976 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
977 {
978 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
979 atomic_dec(&pkc->blk_fill_in_prog);
980 }
981
982 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
983 struct tpacket3_hdr *ppd)
984 {
985 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
986 }
987
988 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
989 struct tpacket3_hdr *ppd)
990 {
991 ppd->hv1.tp_rxhash = 0;
992 }
993
994 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
995 struct tpacket3_hdr *ppd)
996 {
997 if (skb_vlan_tag_present(pkc->skb)) {
998 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
999 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1000 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1001 } else {
1002 ppd->hv1.tp_vlan_tci = 0;
1003 ppd->hv1.tp_vlan_tpid = 0;
1004 ppd->tp_status = TP_STATUS_AVAILABLE;
1005 }
1006 }
1007
1008 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1009 struct tpacket3_hdr *ppd)
1010 {
1011 ppd->hv1.tp_padding = 0;
1012 prb_fill_vlan_info(pkc, ppd);
1013
1014 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1015 prb_fill_rxhash(pkc, ppd);
1016 else
1017 prb_clear_rxhash(pkc, ppd);
1018 }
1019
1020 static void prb_fill_curr_block(char *curr,
1021 struct tpacket_kbdq_core *pkc,
1022 struct tpacket_block_desc *pbd,
1023 unsigned int len)
1024 {
1025 struct tpacket3_hdr *ppd;
1026
1027 ppd = (struct tpacket3_hdr *)curr;
1028 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1029 pkc->prev = curr;
1030 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1031 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1032 BLOCK_NUM_PKTS(pbd) += 1;
1033 atomic_inc(&pkc->blk_fill_in_prog);
1034 prb_run_all_ft_ops(pkc, ppd);
1035 }
1036
1037 /* Assumes caller has the sk->rx_queue.lock */
1038 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1039 struct sk_buff *skb,
1040 int status,
1041 unsigned int len
1042 )
1043 {
1044 struct tpacket_kbdq_core *pkc;
1045 struct tpacket_block_desc *pbd;
1046 char *curr, *end;
1047
1048 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1049 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1050
1051 /* Queue is frozen when user space is lagging behind */
1052 if (prb_queue_frozen(pkc)) {
1053 /*
1054 * Check if that last block which caused the queue to freeze,
1055 * is still in_use by user-space.
1056 */
1057 if (prb_curr_blk_in_use(pkc, pbd)) {
1058 /* Can't record this packet */
1059 return NULL;
1060 } else {
1061 /*
1062 * Ok, the block was released by user-space.
1063 * Now let's open that block.
1064 * opening a block also thaws the queue.
1065 * Thawing is a side effect.
1066 */
1067 prb_open_block(pkc, pbd);
1068 }
1069 }
1070
1071 smp_mb();
1072 curr = pkc->nxt_offset;
1073 pkc->skb = skb;
1074 end = (char *)pbd + pkc->kblk_size;
1075
1076 /* first try the current block */
1077 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1078 prb_fill_curr_block(curr, pkc, pbd, len);
1079 return (void *)curr;
1080 }
1081
1082 /* Ok, close the current block */
1083 prb_retire_current_block(pkc, po, 0);
1084
1085 /* Now, try to dispatch the next block */
1086 curr = (char *)prb_dispatch_next_block(pkc, po);
1087 if (curr) {
1088 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1089 prb_fill_curr_block(curr, pkc, pbd, len);
1090 return (void *)curr;
1091 }
1092
1093 /*
1094 * No free blocks are available.user_space hasn't caught up yet.
1095 * Queue was just frozen and now this packet will get dropped.
1096 */
1097 return NULL;
1098 }
1099
1100 static void *packet_current_rx_frame(struct packet_sock *po,
1101 struct sk_buff *skb,
1102 int status, unsigned int len)
1103 {
1104 char *curr = NULL;
1105 switch (po->tp_version) {
1106 case TPACKET_V1:
1107 case TPACKET_V2:
1108 curr = packet_lookup_frame(po, &po->rx_ring,
1109 po->rx_ring.head, status);
1110 return curr;
1111 case TPACKET_V3:
1112 return __packet_lookup_frame_in_block(po, skb, status, len);
1113 default:
1114 WARN(1, "TPACKET version not supported\n");
1115 BUG();
1116 return NULL;
1117 }
1118 }
1119
1120 static void *prb_lookup_block(struct packet_sock *po,
1121 struct packet_ring_buffer *rb,
1122 unsigned int idx,
1123 int status)
1124 {
1125 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1126 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1127
1128 if (status != BLOCK_STATUS(pbd))
1129 return NULL;
1130 return pbd;
1131 }
1132
1133 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1134 {
1135 unsigned int prev;
1136 if (rb->prb_bdqc.kactive_blk_num)
1137 prev = rb->prb_bdqc.kactive_blk_num-1;
1138 else
1139 prev = rb->prb_bdqc.knum_blocks-1;
1140 return prev;
1141 }
1142
1143 /* Assumes caller has held the rx_queue.lock */
1144 static void *__prb_previous_block(struct packet_sock *po,
1145 struct packet_ring_buffer *rb,
1146 int status)
1147 {
1148 unsigned int previous = prb_previous_blk_num(rb);
1149 return prb_lookup_block(po, rb, previous, status);
1150 }
1151
1152 static void *packet_previous_rx_frame(struct packet_sock *po,
1153 struct packet_ring_buffer *rb,
1154 int status)
1155 {
1156 if (po->tp_version <= TPACKET_V2)
1157 return packet_previous_frame(po, rb, status);
1158
1159 return __prb_previous_block(po, rb, status);
1160 }
1161
1162 static void packet_increment_rx_head(struct packet_sock *po,
1163 struct packet_ring_buffer *rb)
1164 {
1165 switch (po->tp_version) {
1166 case TPACKET_V1:
1167 case TPACKET_V2:
1168 return packet_increment_head(rb);
1169 case TPACKET_V3:
1170 default:
1171 WARN(1, "TPACKET version not supported.\n");
1172 BUG();
1173 return;
1174 }
1175 }
1176
1177 static void *packet_previous_frame(struct packet_sock *po,
1178 struct packet_ring_buffer *rb,
1179 int status)
1180 {
1181 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1182 return packet_lookup_frame(po, rb, previous, status);
1183 }
1184
1185 static void packet_increment_head(struct packet_ring_buffer *buff)
1186 {
1187 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1188 }
1189
1190 static void packet_inc_pending(struct packet_ring_buffer *rb)
1191 {
1192 this_cpu_inc(*rb->pending_refcnt);
1193 }
1194
1195 static void packet_dec_pending(struct packet_ring_buffer *rb)
1196 {
1197 this_cpu_dec(*rb->pending_refcnt);
1198 }
1199
1200 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1201 {
1202 unsigned int refcnt = 0;
1203 int cpu;
1204
1205 /* We don't use pending refcount in rx_ring. */
1206 if (rb->pending_refcnt == NULL)
1207 return 0;
1208
1209 for_each_possible_cpu(cpu)
1210 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1211
1212 return refcnt;
1213 }
1214
1215 static int packet_alloc_pending(struct packet_sock *po)
1216 {
1217 po->rx_ring.pending_refcnt = NULL;
1218
1219 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1220 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1221 return -ENOBUFS;
1222
1223 return 0;
1224 }
1225
1226 static void packet_free_pending(struct packet_sock *po)
1227 {
1228 free_percpu(po->tx_ring.pending_refcnt);
1229 }
1230
1231 static bool packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1232 {
1233 struct sock *sk = &po->sk;
1234 bool has_room;
1235
1236 if (po->prot_hook.func != tpacket_rcv)
1237 return (atomic_read(&sk->sk_rmem_alloc) + skb->truesize)
1238 <= sk->sk_rcvbuf;
1239
1240 spin_lock(&sk->sk_receive_queue.lock);
1241 if (po->tp_version == TPACKET_V3)
1242 has_room = prb_lookup_block(po, &po->rx_ring,
1243 po->rx_ring.prb_bdqc.kactive_blk_num,
1244 TP_STATUS_KERNEL);
1245 else
1246 has_room = packet_lookup_frame(po, &po->rx_ring,
1247 po->rx_ring.head,
1248 TP_STATUS_KERNEL);
1249 spin_unlock(&sk->sk_receive_queue.lock);
1250
1251 return has_room;
1252 }
1253
1254 static void packet_sock_destruct(struct sock *sk)
1255 {
1256 skb_queue_purge(&sk->sk_error_queue);
1257
1258 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1259 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1260
1261 if (!sock_flag(sk, SOCK_DEAD)) {
1262 pr_err("Attempt to release alive packet socket: %p\n", sk);
1263 return;
1264 }
1265
1266 sk_refcnt_debug_dec(sk);
1267 }
1268
1269 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1270 {
1271 int x = atomic_read(&f->rr_cur) + 1;
1272
1273 if (x >= num)
1274 x = 0;
1275
1276 return x;
1277 }
1278
1279 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1280 struct sk_buff *skb,
1281 unsigned int num)
1282 {
1283 return reciprocal_scale(skb_get_hash(skb), num);
1284 }
1285
1286 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1287 struct sk_buff *skb,
1288 unsigned int num)
1289 {
1290 int cur, old;
1291
1292 cur = atomic_read(&f->rr_cur);
1293 while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1294 fanout_rr_next(f, num))) != cur)
1295 cur = old;
1296 return cur;
1297 }
1298
1299 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1300 struct sk_buff *skb,
1301 unsigned int num)
1302 {
1303 return smp_processor_id() % num;
1304 }
1305
1306 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1307 struct sk_buff *skb,
1308 unsigned int num)
1309 {
1310 return prandom_u32_max(num);
1311 }
1312
1313 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1314 struct sk_buff *skb,
1315 unsigned int idx, unsigned int skip,
1316 unsigned int num)
1317 {
1318 unsigned int i, j;
1319
1320 i = j = min_t(int, f->next[idx], num - 1);
1321 do {
1322 if (i != skip && packet_rcv_has_room(pkt_sk(f->arr[i]), skb)) {
1323 if (i != j)
1324 f->next[idx] = i;
1325 return i;
1326 }
1327 if (++i == num)
1328 i = 0;
1329 } while (i != j);
1330
1331 return idx;
1332 }
1333
1334 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1335 struct sk_buff *skb,
1336 unsigned int num)
1337 {
1338 return skb_get_queue_mapping(skb) % num;
1339 }
1340
1341 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1342 {
1343 return f->flags & (flag >> 8);
1344 }
1345
1346 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1347 struct packet_type *pt, struct net_device *orig_dev)
1348 {
1349 struct packet_fanout *f = pt->af_packet_priv;
1350 unsigned int num = f->num_members;
1351 struct packet_sock *po;
1352 unsigned int idx;
1353
1354 if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1355 !num) {
1356 kfree_skb(skb);
1357 return 0;
1358 }
1359
1360 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1361 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1362 if (!skb)
1363 return 0;
1364 }
1365 switch (f->type) {
1366 case PACKET_FANOUT_HASH:
1367 default:
1368 idx = fanout_demux_hash(f, skb, num);
1369 break;
1370 case PACKET_FANOUT_LB:
1371 idx = fanout_demux_lb(f, skb, num);
1372 break;
1373 case PACKET_FANOUT_CPU:
1374 idx = fanout_demux_cpu(f, skb, num);
1375 break;
1376 case PACKET_FANOUT_RND:
1377 idx = fanout_demux_rnd(f, skb, num);
1378 break;
1379 case PACKET_FANOUT_QM:
1380 idx = fanout_demux_qm(f, skb, num);
1381 break;
1382 case PACKET_FANOUT_ROLLOVER:
1383 idx = fanout_demux_rollover(f, skb, 0, (unsigned int) -1, num);
1384 break;
1385 }
1386
1387 po = pkt_sk(f->arr[idx]);
1388 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER) &&
1389 unlikely(!packet_rcv_has_room(po, skb))) {
1390 idx = fanout_demux_rollover(f, skb, idx, idx, num);
1391 po = pkt_sk(f->arr[idx]);
1392 }
1393
1394 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1395 }
1396
1397 DEFINE_MUTEX(fanout_mutex);
1398 EXPORT_SYMBOL_GPL(fanout_mutex);
1399 static LIST_HEAD(fanout_list);
1400
1401 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1402 {
1403 struct packet_fanout *f = po->fanout;
1404
1405 spin_lock(&f->lock);
1406 f->arr[f->num_members] = sk;
1407 smp_wmb();
1408 f->num_members++;
1409 spin_unlock(&f->lock);
1410 }
1411
1412 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1413 {
1414 struct packet_fanout *f = po->fanout;
1415 int i;
1416
1417 spin_lock(&f->lock);
1418 for (i = 0; i < f->num_members; i++) {
1419 if (f->arr[i] == sk)
1420 break;
1421 }
1422 BUG_ON(i >= f->num_members);
1423 f->arr[i] = f->arr[f->num_members - 1];
1424 f->num_members--;
1425 spin_unlock(&f->lock);
1426 }
1427
1428 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1429 {
1430 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1431 return true;
1432
1433 return false;
1434 }
1435
1436 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1437 {
1438 struct packet_sock *po = pkt_sk(sk);
1439 struct packet_fanout *f, *match;
1440 u8 type = type_flags & 0xff;
1441 u8 flags = type_flags >> 8;
1442 int err;
1443
1444 switch (type) {
1445 case PACKET_FANOUT_ROLLOVER:
1446 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1447 return -EINVAL;
1448 case PACKET_FANOUT_HASH:
1449 case PACKET_FANOUT_LB:
1450 case PACKET_FANOUT_CPU:
1451 case PACKET_FANOUT_RND:
1452 case PACKET_FANOUT_QM:
1453 break;
1454 default:
1455 return -EINVAL;
1456 }
1457
1458 if (!po->running)
1459 return -EINVAL;
1460
1461 if (po->fanout)
1462 return -EALREADY;
1463
1464 mutex_lock(&fanout_mutex);
1465 match = NULL;
1466 list_for_each_entry(f, &fanout_list, list) {
1467 if (f->id == id &&
1468 read_pnet(&f->net) == sock_net(sk)) {
1469 match = f;
1470 break;
1471 }
1472 }
1473 err = -EINVAL;
1474 if (match && match->flags != flags)
1475 goto out;
1476 if (!match) {
1477 err = -ENOMEM;
1478 match = kzalloc(sizeof(*match), GFP_KERNEL);
1479 if (!match)
1480 goto out;
1481 write_pnet(&match->net, sock_net(sk));
1482 match->id = id;
1483 match->type = type;
1484 match->flags = flags;
1485 atomic_set(&match->rr_cur, 0);
1486 INIT_LIST_HEAD(&match->list);
1487 spin_lock_init(&match->lock);
1488 atomic_set(&match->sk_ref, 0);
1489 match->prot_hook.type = po->prot_hook.type;
1490 match->prot_hook.dev = po->prot_hook.dev;
1491 match->prot_hook.func = packet_rcv_fanout;
1492 match->prot_hook.af_packet_priv = match;
1493 match->prot_hook.id_match = match_fanout_group;
1494 dev_add_pack(&match->prot_hook);
1495 list_add(&match->list, &fanout_list);
1496 }
1497 err = -EINVAL;
1498 if (match->type == type &&
1499 match->prot_hook.type == po->prot_hook.type &&
1500 match->prot_hook.dev == po->prot_hook.dev) {
1501 err = -ENOSPC;
1502 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1503 __dev_remove_pack(&po->prot_hook);
1504 po->fanout = match;
1505 atomic_inc(&match->sk_ref);
1506 __fanout_link(sk, po);
1507 err = 0;
1508 }
1509 }
1510 out:
1511 mutex_unlock(&fanout_mutex);
1512 return err;
1513 }
1514
1515 static void fanout_release(struct sock *sk)
1516 {
1517 struct packet_sock *po = pkt_sk(sk);
1518 struct packet_fanout *f;
1519
1520 f = po->fanout;
1521 if (!f)
1522 return;
1523
1524 mutex_lock(&fanout_mutex);
1525 po->fanout = NULL;
1526
1527 if (atomic_dec_and_test(&f->sk_ref)) {
1528 list_del(&f->list);
1529 dev_remove_pack(&f->prot_hook);
1530 kfree(f);
1531 }
1532 mutex_unlock(&fanout_mutex);
1533 }
1534
1535 static const struct proto_ops packet_ops;
1536
1537 static const struct proto_ops packet_ops_spkt;
1538
1539 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1540 struct packet_type *pt, struct net_device *orig_dev)
1541 {
1542 struct sock *sk;
1543 struct sockaddr_pkt *spkt;
1544
1545 /*
1546 * When we registered the protocol we saved the socket in the data
1547 * field for just this event.
1548 */
1549
1550 sk = pt->af_packet_priv;
1551
1552 /*
1553 * Yank back the headers [hope the device set this
1554 * right or kerboom...]
1555 *
1556 * Incoming packets have ll header pulled,
1557 * push it back.
1558 *
1559 * For outgoing ones skb->data == skb_mac_header(skb)
1560 * so that this procedure is noop.
1561 */
1562
1563 if (skb->pkt_type == PACKET_LOOPBACK)
1564 goto out;
1565
1566 if (!net_eq(dev_net(dev), sock_net(sk)))
1567 goto out;
1568
1569 skb = skb_share_check(skb, GFP_ATOMIC);
1570 if (skb == NULL)
1571 goto oom;
1572
1573 /* drop any routing info */
1574 skb_dst_drop(skb);
1575
1576 /* drop conntrack reference */
1577 nf_reset(skb);
1578
1579 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1580
1581 skb_push(skb, skb->data - skb_mac_header(skb));
1582
1583 /*
1584 * The SOCK_PACKET socket receives _all_ frames.
1585 */
1586
1587 spkt->spkt_family = dev->type;
1588 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1589 spkt->spkt_protocol = skb->protocol;
1590
1591 /*
1592 * Charge the memory to the socket. This is done specifically
1593 * to prevent sockets using all the memory up.
1594 */
1595
1596 if (sock_queue_rcv_skb(sk, skb) == 0)
1597 return 0;
1598
1599 out:
1600 kfree_skb(skb);
1601 oom:
1602 return 0;
1603 }
1604
1605
1606 /*
1607 * Output a raw packet to a device layer. This bypasses all the other
1608 * protocol layers and you must therefore supply it with a complete frame
1609 */
1610
1611 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1612 struct msghdr *msg, size_t len)
1613 {
1614 struct sock *sk = sock->sk;
1615 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1616 struct sk_buff *skb = NULL;
1617 struct net_device *dev;
1618 __be16 proto = 0;
1619 int err;
1620 int extra_len = 0;
1621
1622 /*
1623 * Get and verify the address.
1624 */
1625
1626 if (saddr) {
1627 if (msg->msg_namelen < sizeof(struct sockaddr))
1628 return -EINVAL;
1629 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1630 proto = saddr->spkt_protocol;
1631 } else
1632 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1633
1634 /*
1635 * Find the device first to size check it
1636 */
1637
1638 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1639 retry:
1640 rcu_read_lock();
1641 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1642 err = -ENODEV;
1643 if (dev == NULL)
1644 goto out_unlock;
1645
1646 err = -ENETDOWN;
1647 if (!(dev->flags & IFF_UP))
1648 goto out_unlock;
1649
1650 /*
1651 * You may not queue a frame bigger than the mtu. This is the lowest level
1652 * raw protocol and you must do your own fragmentation at this level.
1653 */
1654
1655 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1656 if (!netif_supports_nofcs(dev)) {
1657 err = -EPROTONOSUPPORT;
1658 goto out_unlock;
1659 }
1660 extra_len = 4; /* We're doing our own CRC */
1661 }
1662
1663 err = -EMSGSIZE;
1664 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1665 goto out_unlock;
1666
1667 if (!skb) {
1668 size_t reserved = LL_RESERVED_SPACE(dev);
1669 int tlen = dev->needed_tailroom;
1670 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1671
1672 rcu_read_unlock();
1673 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1674 if (skb == NULL)
1675 return -ENOBUFS;
1676 /* FIXME: Save some space for broken drivers that write a hard
1677 * header at transmission time by themselves. PPP is the notable
1678 * one here. This should really be fixed at the driver level.
1679 */
1680 skb_reserve(skb, reserved);
1681 skb_reset_network_header(skb);
1682
1683 /* Try to align data part correctly */
1684 if (hhlen) {
1685 skb->data -= hhlen;
1686 skb->tail -= hhlen;
1687 if (len < hhlen)
1688 skb_reset_network_header(skb);
1689 }
1690 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1691 if (err)
1692 goto out_free;
1693 goto retry;
1694 }
1695
1696 if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1697 /* Earlier code assumed this would be a VLAN pkt,
1698 * double-check this now that we have the actual
1699 * packet in hand.
1700 */
1701 struct ethhdr *ehdr;
1702 skb_reset_mac_header(skb);
1703 ehdr = eth_hdr(skb);
1704 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1705 err = -EMSGSIZE;
1706 goto out_unlock;
1707 }
1708 }
1709
1710 skb->protocol = proto;
1711 skb->dev = dev;
1712 skb->priority = sk->sk_priority;
1713 skb->mark = sk->sk_mark;
1714
1715 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1716
1717 if (unlikely(extra_len == 4))
1718 skb->no_fcs = 1;
1719
1720 skb_probe_transport_header(skb, 0);
1721
1722 dev_queue_xmit(skb);
1723 rcu_read_unlock();
1724 return len;
1725
1726 out_unlock:
1727 rcu_read_unlock();
1728 out_free:
1729 kfree_skb(skb);
1730 return err;
1731 }
1732
1733 static unsigned int run_filter(const struct sk_buff *skb,
1734 const struct sock *sk,
1735 unsigned int res)
1736 {
1737 struct sk_filter *filter;
1738
1739 rcu_read_lock();
1740 filter = rcu_dereference(sk->sk_filter);
1741 if (filter != NULL)
1742 res = SK_RUN_FILTER(filter, skb);
1743 rcu_read_unlock();
1744
1745 return res;
1746 }
1747
1748 /*
1749 * This function makes lazy skb cloning in hope that most of packets
1750 * are discarded by BPF.
1751 *
1752 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1753 * and skb->cb are mangled. It works because (and until) packets
1754 * falling here are owned by current CPU. Output packets are cloned
1755 * by dev_queue_xmit_nit(), input packets are processed by net_bh
1756 * sequencially, so that if we return skb to original state on exit,
1757 * we will not harm anyone.
1758 */
1759
1760 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1761 struct packet_type *pt, struct net_device *orig_dev)
1762 {
1763 struct sock *sk;
1764 struct sockaddr_ll *sll;
1765 struct packet_sock *po;
1766 u8 *skb_head = skb->data;
1767 int skb_len = skb->len;
1768 unsigned int snaplen, res;
1769
1770 if (skb->pkt_type == PACKET_LOOPBACK)
1771 goto drop;
1772
1773 sk = pt->af_packet_priv;
1774 po = pkt_sk(sk);
1775
1776 if (!net_eq(dev_net(dev), sock_net(sk)))
1777 goto drop;
1778
1779 skb->dev = dev;
1780
1781 if (dev->header_ops) {
1782 /* The device has an explicit notion of ll header,
1783 * exported to higher levels.
1784 *
1785 * Otherwise, the device hides details of its frame
1786 * structure, so that corresponding packet head is
1787 * never delivered to user.
1788 */
1789 if (sk->sk_type != SOCK_DGRAM)
1790 skb_push(skb, skb->data - skb_mac_header(skb));
1791 else if (skb->pkt_type == PACKET_OUTGOING) {
1792 /* Special case: outgoing packets have ll header at head */
1793 skb_pull(skb, skb_network_offset(skb));
1794 }
1795 }
1796
1797 snaplen = skb->len;
1798
1799 res = run_filter(skb, sk, snaplen);
1800 if (!res)
1801 goto drop_n_restore;
1802 if (snaplen > res)
1803 snaplen = res;
1804
1805 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1806 goto drop_n_acct;
1807
1808 if (skb_shared(skb)) {
1809 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1810 if (nskb == NULL)
1811 goto drop_n_acct;
1812
1813 if (skb_head != skb->data) {
1814 skb->data = skb_head;
1815 skb->len = skb_len;
1816 }
1817 consume_skb(skb);
1818 skb = nskb;
1819 }
1820
1821 BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1822 sizeof(skb->cb));
1823
1824 sll = &PACKET_SKB_CB(skb)->sa.ll;
1825 sll->sll_family = AF_PACKET;
1826 sll->sll_hatype = dev->type;
1827 sll->sll_protocol = skb->protocol;
1828 sll->sll_pkttype = skb->pkt_type;
1829 if (unlikely(po->origdev))
1830 sll->sll_ifindex = orig_dev->ifindex;
1831 else
1832 sll->sll_ifindex = dev->ifindex;
1833
1834 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1835
1836 PACKET_SKB_CB(skb)->origlen = skb->len;
1837
1838 if (pskb_trim(skb, snaplen))
1839 goto drop_n_acct;
1840
1841 skb_set_owner_r(skb, sk);
1842 skb->dev = NULL;
1843 skb_dst_drop(skb);
1844
1845 /* drop conntrack reference */
1846 nf_reset(skb);
1847
1848 spin_lock(&sk->sk_receive_queue.lock);
1849 po->stats.stats1.tp_packets++;
1850 skb->dropcount = atomic_read(&sk->sk_drops);
1851 __skb_queue_tail(&sk->sk_receive_queue, skb);
1852 spin_unlock(&sk->sk_receive_queue.lock);
1853 sk->sk_data_ready(sk);
1854 return 0;
1855
1856 drop_n_acct:
1857 spin_lock(&sk->sk_receive_queue.lock);
1858 po->stats.stats1.tp_drops++;
1859 atomic_inc(&sk->sk_drops);
1860 spin_unlock(&sk->sk_receive_queue.lock);
1861
1862 drop_n_restore:
1863 if (skb_head != skb->data && skb_shared(skb)) {
1864 skb->data = skb_head;
1865 skb->len = skb_len;
1866 }
1867 drop:
1868 consume_skb(skb);
1869 return 0;
1870 }
1871
1872 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1873 struct packet_type *pt, struct net_device *orig_dev)
1874 {
1875 struct sock *sk;
1876 struct packet_sock *po;
1877 struct sockaddr_ll *sll;
1878 union tpacket_uhdr h;
1879 u8 *skb_head = skb->data;
1880 int skb_len = skb->len;
1881 unsigned int snaplen, res;
1882 unsigned long status = TP_STATUS_USER;
1883 unsigned short macoff, netoff, hdrlen;
1884 struct sk_buff *copy_skb = NULL;
1885 struct timespec ts;
1886 __u32 ts_status;
1887
1888 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
1889 * We may add members to them until current aligned size without forcing
1890 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
1891 */
1892 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
1893 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
1894
1895 if (skb->pkt_type == PACKET_LOOPBACK)
1896 goto drop;
1897
1898 sk = pt->af_packet_priv;
1899 po = pkt_sk(sk);
1900
1901 if (!net_eq(dev_net(dev), sock_net(sk)))
1902 goto drop;
1903
1904 if (dev->header_ops) {
1905 if (sk->sk_type != SOCK_DGRAM)
1906 skb_push(skb, skb->data - skb_mac_header(skb));
1907 else if (skb->pkt_type == PACKET_OUTGOING) {
1908 /* Special case: outgoing packets have ll header at head */
1909 skb_pull(skb, skb_network_offset(skb));
1910 }
1911 }
1912
1913 if (skb->ip_summed == CHECKSUM_PARTIAL)
1914 status |= TP_STATUS_CSUMNOTREADY;
1915
1916 snaplen = skb->len;
1917
1918 res = run_filter(skb, sk, snaplen);
1919 if (!res)
1920 goto drop_n_restore;
1921 if (snaplen > res)
1922 snaplen = res;
1923
1924 if (sk->sk_type == SOCK_DGRAM) {
1925 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1926 po->tp_reserve;
1927 } else {
1928 unsigned int maclen = skb_network_offset(skb);
1929 netoff = TPACKET_ALIGN(po->tp_hdrlen +
1930 (maclen < 16 ? 16 : maclen)) +
1931 po->tp_reserve;
1932 macoff = netoff - maclen;
1933 }
1934 if (po->tp_version <= TPACKET_V2) {
1935 if (macoff + snaplen > po->rx_ring.frame_size) {
1936 if (po->copy_thresh &&
1937 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1938 if (skb_shared(skb)) {
1939 copy_skb = skb_clone(skb, GFP_ATOMIC);
1940 } else {
1941 copy_skb = skb_get(skb);
1942 skb_head = skb->data;
1943 }
1944 if (copy_skb)
1945 skb_set_owner_r(copy_skb, sk);
1946 }
1947 snaplen = po->rx_ring.frame_size - macoff;
1948 if ((int)snaplen < 0)
1949 snaplen = 0;
1950 }
1951 } else if (unlikely(macoff + snaplen >
1952 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
1953 u32 nval;
1954
1955 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
1956 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
1957 snaplen, nval, macoff);
1958 snaplen = nval;
1959 if (unlikely((int)snaplen < 0)) {
1960 snaplen = 0;
1961 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
1962 }
1963 }
1964 spin_lock(&sk->sk_receive_queue.lock);
1965 h.raw = packet_current_rx_frame(po, skb,
1966 TP_STATUS_KERNEL, (macoff+snaplen));
1967 if (!h.raw)
1968 goto ring_is_full;
1969 if (po->tp_version <= TPACKET_V2) {
1970 packet_increment_rx_head(po, &po->rx_ring);
1971 /*
1972 * LOSING will be reported till you read the stats,
1973 * because it's COR - Clear On Read.
1974 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1975 * at packet level.
1976 */
1977 if (po->stats.stats1.tp_drops)
1978 status |= TP_STATUS_LOSING;
1979 }
1980 po->stats.stats1.tp_packets++;
1981 if (copy_skb) {
1982 status |= TP_STATUS_COPY;
1983 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1984 }
1985 spin_unlock(&sk->sk_receive_queue.lock);
1986
1987 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1988
1989 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
1990 getnstimeofday(&ts);
1991
1992 status |= ts_status;
1993
1994 switch (po->tp_version) {
1995 case TPACKET_V1:
1996 h.h1->tp_len = skb->len;
1997 h.h1->tp_snaplen = snaplen;
1998 h.h1->tp_mac = macoff;
1999 h.h1->tp_net = netoff;
2000 h.h1->tp_sec = ts.tv_sec;
2001 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2002 hdrlen = sizeof(*h.h1);
2003 break;
2004 case TPACKET_V2:
2005 h.h2->tp_len = skb->len;
2006 h.h2->tp_snaplen = snaplen;
2007 h.h2->tp_mac = macoff;
2008 h.h2->tp_net = netoff;
2009 h.h2->tp_sec = ts.tv_sec;
2010 h.h2->tp_nsec = ts.tv_nsec;
2011 if (skb_vlan_tag_present(skb)) {
2012 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2013 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2014 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2015 } else {
2016 h.h2->tp_vlan_tci = 0;
2017 h.h2->tp_vlan_tpid = 0;
2018 }
2019 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2020 hdrlen = sizeof(*h.h2);
2021 break;
2022 case TPACKET_V3:
2023 /* tp_nxt_offset,vlan are already populated above.
2024 * So DONT clear those fields here
2025 */
2026 h.h3->tp_status |= status;
2027 h.h3->tp_len = skb->len;
2028 h.h3->tp_snaplen = snaplen;
2029 h.h3->tp_mac = macoff;
2030 h.h3->tp_net = netoff;
2031 h.h3->tp_sec = ts.tv_sec;
2032 h.h3->tp_nsec = ts.tv_nsec;
2033 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2034 hdrlen = sizeof(*h.h3);
2035 break;
2036 default:
2037 BUG();
2038 }
2039
2040 sll = h.raw + TPACKET_ALIGN(hdrlen);
2041 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2042 sll->sll_family = AF_PACKET;
2043 sll->sll_hatype = dev->type;
2044 sll->sll_protocol = skb->protocol;
2045 sll->sll_pkttype = skb->pkt_type;
2046 if (unlikely(po->origdev))
2047 sll->sll_ifindex = orig_dev->ifindex;
2048 else
2049 sll->sll_ifindex = dev->ifindex;
2050
2051 smp_mb();
2052
2053 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2054 if (po->tp_version <= TPACKET_V2) {
2055 u8 *start, *end;
2056
2057 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2058 macoff + snaplen);
2059
2060 for (start = h.raw; start < end; start += PAGE_SIZE)
2061 flush_dcache_page(pgv_to_page(start));
2062 }
2063 smp_wmb();
2064 #endif
2065
2066 if (po->tp_version <= TPACKET_V2) {
2067 __packet_set_status(po, h.raw, status);
2068 sk->sk_data_ready(sk);
2069 } else {
2070 prb_clear_blk_fill_status(&po->rx_ring);
2071 }
2072
2073 drop_n_restore:
2074 if (skb_head != skb->data && skb_shared(skb)) {
2075 skb->data = skb_head;
2076 skb->len = skb_len;
2077 }
2078 drop:
2079 kfree_skb(skb);
2080 return 0;
2081
2082 ring_is_full:
2083 po->stats.stats1.tp_drops++;
2084 spin_unlock(&sk->sk_receive_queue.lock);
2085
2086 sk->sk_data_ready(sk);
2087 kfree_skb(copy_skb);
2088 goto drop_n_restore;
2089 }
2090
2091 static void tpacket_destruct_skb(struct sk_buff *skb)
2092 {
2093 struct packet_sock *po = pkt_sk(skb->sk);
2094
2095 if (likely(po->tx_ring.pg_vec)) {
2096 void *ph;
2097 __u32 ts;
2098
2099 ph = skb_shinfo(skb)->destructor_arg;
2100 packet_dec_pending(&po->tx_ring);
2101
2102 ts = __packet_set_timestamp(po, ph, skb);
2103 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2104 }
2105
2106 sock_wfree(skb);
2107 }
2108
2109 static bool ll_header_truncated(const struct net_device *dev, int len)
2110 {
2111 /* net device doesn't like empty head */
2112 if (unlikely(len <= dev->hard_header_len)) {
2113 net_warn_ratelimited("%s: packet size is too short (%d <= %d)\n",
2114 current->comm, len, dev->hard_header_len);
2115 return true;
2116 }
2117
2118 return false;
2119 }
2120
2121 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2122 void *frame, struct net_device *dev, int size_max,
2123 __be16 proto, unsigned char *addr, int hlen)
2124 {
2125 union tpacket_uhdr ph;
2126 int to_write, offset, len, tp_len, nr_frags, len_max;
2127 struct socket *sock = po->sk.sk_socket;
2128 struct page *page;
2129 void *data;
2130 int err;
2131
2132 ph.raw = frame;
2133
2134 skb->protocol = proto;
2135 skb->dev = dev;
2136 skb->priority = po->sk.sk_priority;
2137 skb->mark = po->sk.sk_mark;
2138 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2139 skb_shinfo(skb)->destructor_arg = ph.raw;
2140
2141 switch (po->tp_version) {
2142 case TPACKET_V2:
2143 tp_len = ph.h2->tp_len;
2144 break;
2145 default:
2146 tp_len = ph.h1->tp_len;
2147 break;
2148 }
2149 if (unlikely(tp_len > size_max)) {
2150 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2151 return -EMSGSIZE;
2152 }
2153
2154 skb_reserve(skb, hlen);
2155 skb_reset_network_header(skb);
2156
2157 if (!packet_use_direct_xmit(po))
2158 skb_probe_transport_header(skb, 0);
2159 if (unlikely(po->tp_tx_has_off)) {
2160 int off_min, off_max, off;
2161 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2162 off_max = po->tx_ring.frame_size - tp_len;
2163 if (sock->type == SOCK_DGRAM) {
2164 switch (po->tp_version) {
2165 case TPACKET_V2:
2166 off = ph.h2->tp_net;
2167 break;
2168 default:
2169 off = ph.h1->tp_net;
2170 break;
2171 }
2172 } else {
2173 switch (po->tp_version) {
2174 case TPACKET_V2:
2175 off = ph.h2->tp_mac;
2176 break;
2177 default:
2178 off = ph.h1->tp_mac;
2179 break;
2180 }
2181 }
2182 if (unlikely((off < off_min) || (off_max < off)))
2183 return -EINVAL;
2184 data = ph.raw + off;
2185 } else {
2186 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2187 }
2188 to_write = tp_len;
2189
2190 if (sock->type == SOCK_DGRAM) {
2191 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2192 NULL, tp_len);
2193 if (unlikely(err < 0))
2194 return -EINVAL;
2195 } else if (dev->hard_header_len) {
2196 if (ll_header_truncated(dev, tp_len))
2197 return -EINVAL;
2198
2199 skb_push(skb, dev->hard_header_len);
2200 err = skb_store_bits(skb, 0, data,
2201 dev->hard_header_len);
2202 if (unlikely(err))
2203 return err;
2204
2205 data += dev->hard_header_len;
2206 to_write -= dev->hard_header_len;
2207 }
2208
2209 offset = offset_in_page(data);
2210 len_max = PAGE_SIZE - offset;
2211 len = ((to_write > len_max) ? len_max : to_write);
2212
2213 skb->data_len = to_write;
2214 skb->len += to_write;
2215 skb->truesize += to_write;
2216 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2217
2218 while (likely(to_write)) {
2219 nr_frags = skb_shinfo(skb)->nr_frags;
2220
2221 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2222 pr_err("Packet exceed the number of skb frags(%lu)\n",
2223 MAX_SKB_FRAGS);
2224 return -EFAULT;
2225 }
2226
2227 page = pgv_to_page(data);
2228 data += len;
2229 flush_dcache_page(page);
2230 get_page(page);
2231 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2232 to_write -= len;
2233 offset = 0;
2234 len_max = PAGE_SIZE;
2235 len = ((to_write > len_max) ? len_max : to_write);
2236 }
2237
2238 return tp_len;
2239 }
2240
2241 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2242 {
2243 struct sk_buff *skb;
2244 struct net_device *dev;
2245 __be16 proto;
2246 int err, reserve = 0;
2247 void *ph;
2248 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2249 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2250 int tp_len, size_max;
2251 unsigned char *addr;
2252 int len_sum = 0;
2253 int status = TP_STATUS_AVAILABLE;
2254 int hlen, tlen;
2255
2256 mutex_lock(&po->pg_vec_lock);
2257
2258 if (likely(saddr == NULL)) {
2259 dev = packet_cached_dev_get(po);
2260 proto = po->num;
2261 addr = NULL;
2262 } else {
2263 err = -EINVAL;
2264 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2265 goto out;
2266 if (msg->msg_namelen < (saddr->sll_halen
2267 + offsetof(struct sockaddr_ll,
2268 sll_addr)))
2269 goto out;
2270 proto = saddr->sll_protocol;
2271 addr = saddr->sll_addr;
2272 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2273 }
2274
2275 err = -ENXIO;
2276 if (unlikely(dev == NULL))
2277 goto out;
2278 err = -ENETDOWN;
2279 if (unlikely(!(dev->flags & IFF_UP)))
2280 goto out_put;
2281
2282 reserve = dev->hard_header_len + VLAN_HLEN;
2283 size_max = po->tx_ring.frame_size
2284 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2285
2286 if (size_max > dev->mtu + reserve)
2287 size_max = dev->mtu + reserve;
2288
2289 do {
2290 ph = packet_current_frame(po, &po->tx_ring,
2291 TP_STATUS_SEND_REQUEST);
2292 if (unlikely(ph == NULL)) {
2293 if (need_wait && need_resched())
2294 schedule();
2295 continue;
2296 }
2297
2298 status = TP_STATUS_SEND_REQUEST;
2299 hlen = LL_RESERVED_SPACE(dev);
2300 tlen = dev->needed_tailroom;
2301 skb = sock_alloc_send_skb(&po->sk,
2302 hlen + tlen + sizeof(struct sockaddr_ll),
2303 0, &err);
2304
2305 if (unlikely(skb == NULL))
2306 goto out_status;
2307
2308 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2309 addr, hlen);
2310 if (tp_len > dev->mtu + dev->hard_header_len) {
2311 struct ethhdr *ehdr;
2312 /* Earlier code assumed this would be a VLAN pkt,
2313 * double-check this now that we have the actual
2314 * packet in hand.
2315 */
2316
2317 skb_reset_mac_header(skb);
2318 ehdr = eth_hdr(skb);
2319 if (ehdr->h_proto != htons(ETH_P_8021Q))
2320 tp_len = -EMSGSIZE;
2321 }
2322 if (unlikely(tp_len < 0)) {
2323 if (po->tp_loss) {
2324 __packet_set_status(po, ph,
2325 TP_STATUS_AVAILABLE);
2326 packet_increment_head(&po->tx_ring);
2327 kfree_skb(skb);
2328 continue;
2329 } else {
2330 status = TP_STATUS_WRONG_FORMAT;
2331 err = tp_len;
2332 goto out_status;
2333 }
2334 }
2335
2336 packet_pick_tx_queue(dev, skb);
2337
2338 skb->destructor = tpacket_destruct_skb;
2339 __packet_set_status(po, ph, TP_STATUS_SENDING);
2340 packet_inc_pending(&po->tx_ring);
2341
2342 status = TP_STATUS_SEND_REQUEST;
2343 err = po->xmit(skb);
2344 if (unlikely(err > 0)) {
2345 err = net_xmit_errno(err);
2346 if (err && __packet_get_status(po, ph) ==
2347 TP_STATUS_AVAILABLE) {
2348 /* skb was destructed already */
2349 skb = NULL;
2350 goto out_status;
2351 }
2352 /*
2353 * skb was dropped but not destructed yet;
2354 * let's treat it like congestion or err < 0
2355 */
2356 err = 0;
2357 }
2358 packet_increment_head(&po->tx_ring);
2359 len_sum += tp_len;
2360 } while (likely((ph != NULL) ||
2361 /* Note: packet_read_pending() might be slow if we have
2362 * to call it as it's per_cpu variable, but in fast-path
2363 * we already short-circuit the loop with the first
2364 * condition, and luckily don't have to go that path
2365 * anyway.
2366 */
2367 (need_wait && packet_read_pending(&po->tx_ring))));
2368
2369 err = len_sum;
2370 goto out_put;
2371
2372 out_status:
2373 __packet_set_status(po, ph, status);
2374 kfree_skb(skb);
2375 out_put:
2376 dev_put(dev);
2377 out:
2378 mutex_unlock(&po->pg_vec_lock);
2379 return err;
2380 }
2381
2382 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2383 size_t reserve, size_t len,
2384 size_t linear, int noblock,
2385 int *err)
2386 {
2387 struct sk_buff *skb;
2388
2389 /* Under a page? Don't bother with paged skb. */
2390 if (prepad + len < PAGE_SIZE || !linear)
2391 linear = len;
2392
2393 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2394 err, 0);
2395 if (!skb)
2396 return NULL;
2397
2398 skb_reserve(skb, reserve);
2399 skb_put(skb, linear);
2400 skb->data_len = len - linear;
2401 skb->len += len - linear;
2402
2403 return skb;
2404 }
2405
2406 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2407 {
2408 struct sock *sk = sock->sk;
2409 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2410 struct sk_buff *skb;
2411 struct net_device *dev;
2412 __be16 proto;
2413 unsigned char *addr;
2414 int err, reserve = 0;
2415 struct virtio_net_hdr vnet_hdr = { 0 };
2416 int offset = 0;
2417 int vnet_hdr_len;
2418 struct packet_sock *po = pkt_sk(sk);
2419 unsigned short gso_type = 0;
2420 int hlen, tlen;
2421 int extra_len = 0;
2422 ssize_t n;
2423
2424 /*
2425 * Get and verify the address.
2426 */
2427
2428 if (likely(saddr == NULL)) {
2429 dev = packet_cached_dev_get(po);
2430 proto = po->num;
2431 addr = NULL;
2432 } else {
2433 err = -EINVAL;
2434 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2435 goto out;
2436 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2437 goto out;
2438 proto = saddr->sll_protocol;
2439 addr = saddr->sll_addr;
2440 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2441 }
2442
2443 err = -ENXIO;
2444 if (unlikely(dev == NULL))
2445 goto out_unlock;
2446 err = -ENETDOWN;
2447 if (unlikely(!(dev->flags & IFF_UP)))
2448 goto out_unlock;
2449
2450 if (sock->type == SOCK_RAW)
2451 reserve = dev->hard_header_len;
2452 if (po->has_vnet_hdr) {
2453 vnet_hdr_len = sizeof(vnet_hdr);
2454
2455 err = -EINVAL;
2456 if (len < vnet_hdr_len)
2457 goto out_unlock;
2458
2459 len -= vnet_hdr_len;
2460
2461 err = -EFAULT;
2462 n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter);
2463 if (n != vnet_hdr_len)
2464 goto out_unlock;
2465
2466 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2467 (__virtio16_to_cpu(false, vnet_hdr.csum_start) +
2468 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2 >
2469 __virtio16_to_cpu(false, vnet_hdr.hdr_len)))
2470 vnet_hdr.hdr_len = __cpu_to_virtio16(false,
2471 __virtio16_to_cpu(false, vnet_hdr.csum_start) +
2472 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2);
2473
2474 err = -EINVAL;
2475 if (__virtio16_to_cpu(false, vnet_hdr.hdr_len) > len)
2476 goto out_unlock;
2477
2478 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2479 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2480 case VIRTIO_NET_HDR_GSO_TCPV4:
2481 gso_type = SKB_GSO_TCPV4;
2482 break;
2483 case VIRTIO_NET_HDR_GSO_TCPV6:
2484 gso_type = SKB_GSO_TCPV6;
2485 break;
2486 case VIRTIO_NET_HDR_GSO_UDP:
2487 gso_type = SKB_GSO_UDP;
2488 break;
2489 default:
2490 goto out_unlock;
2491 }
2492
2493 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2494 gso_type |= SKB_GSO_TCP_ECN;
2495
2496 if (vnet_hdr.gso_size == 0)
2497 goto out_unlock;
2498
2499 }
2500 }
2501
2502 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2503 if (!netif_supports_nofcs(dev)) {
2504 err = -EPROTONOSUPPORT;
2505 goto out_unlock;
2506 }
2507 extra_len = 4; /* We're doing our own CRC */
2508 }
2509
2510 err = -EMSGSIZE;
2511 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2512 goto out_unlock;
2513
2514 err = -ENOBUFS;
2515 hlen = LL_RESERVED_SPACE(dev);
2516 tlen = dev->needed_tailroom;
2517 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,
2518 __virtio16_to_cpu(false, vnet_hdr.hdr_len),
2519 msg->msg_flags & MSG_DONTWAIT, &err);
2520 if (skb == NULL)
2521 goto out_unlock;
2522
2523 skb_set_network_header(skb, reserve);
2524
2525 err = -EINVAL;
2526 if (sock->type == SOCK_DGRAM) {
2527 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2528 if (unlikely(offset < 0))
2529 goto out_free;
2530 } else {
2531 if (ll_header_truncated(dev, len))
2532 goto out_free;
2533 }
2534
2535 /* Returns -EFAULT on error */
2536 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2537 if (err)
2538 goto out_free;
2539
2540 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2541
2542 if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2543 /* Earlier code assumed this would be a VLAN pkt,
2544 * double-check this now that we have the actual
2545 * packet in hand.
2546 */
2547 struct ethhdr *ehdr;
2548 skb_reset_mac_header(skb);
2549 ehdr = eth_hdr(skb);
2550 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2551 err = -EMSGSIZE;
2552 goto out_free;
2553 }
2554 }
2555
2556 skb->protocol = proto;
2557 skb->dev = dev;
2558 skb->priority = sk->sk_priority;
2559 skb->mark = sk->sk_mark;
2560
2561 packet_pick_tx_queue(dev, skb);
2562
2563 if (po->has_vnet_hdr) {
2564 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2565 u16 s = __virtio16_to_cpu(false, vnet_hdr.csum_start);
2566 u16 o = __virtio16_to_cpu(false, vnet_hdr.csum_offset);
2567 if (!skb_partial_csum_set(skb, s, o)) {
2568 err = -EINVAL;
2569 goto out_free;
2570 }
2571 }
2572
2573 skb_shinfo(skb)->gso_size =
2574 __virtio16_to_cpu(false, vnet_hdr.gso_size);
2575 skb_shinfo(skb)->gso_type = gso_type;
2576
2577 /* Header must be checked, and gso_segs computed. */
2578 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2579 skb_shinfo(skb)->gso_segs = 0;
2580
2581 len += vnet_hdr_len;
2582 }
2583
2584 if (!packet_use_direct_xmit(po))
2585 skb_probe_transport_header(skb, reserve);
2586 if (unlikely(extra_len == 4))
2587 skb->no_fcs = 1;
2588
2589 err = po->xmit(skb);
2590 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2591 goto out_unlock;
2592
2593 dev_put(dev);
2594
2595 return len;
2596
2597 out_free:
2598 kfree_skb(skb);
2599 out_unlock:
2600 if (dev)
2601 dev_put(dev);
2602 out:
2603 return err;
2604 }
2605
2606 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2607 struct msghdr *msg, size_t len)
2608 {
2609 struct sock *sk = sock->sk;
2610 struct packet_sock *po = pkt_sk(sk);
2611
2612 if (po->tx_ring.pg_vec)
2613 return tpacket_snd(po, msg);
2614 else
2615 return packet_snd(sock, msg, len);
2616 }
2617
2618 /*
2619 * Close a PACKET socket. This is fairly simple. We immediately go
2620 * to 'closed' state and remove our protocol entry in the device list.
2621 */
2622
2623 static int packet_release(struct socket *sock)
2624 {
2625 struct sock *sk = sock->sk;
2626 struct packet_sock *po;
2627 struct net *net;
2628 union tpacket_req_u req_u;
2629
2630 if (!sk)
2631 return 0;
2632
2633 net = sock_net(sk);
2634 po = pkt_sk(sk);
2635
2636 mutex_lock(&net->packet.sklist_lock);
2637 sk_del_node_init_rcu(sk);
2638 mutex_unlock(&net->packet.sklist_lock);
2639
2640 preempt_disable();
2641 sock_prot_inuse_add(net, sk->sk_prot, -1);
2642 preempt_enable();
2643
2644 spin_lock(&po->bind_lock);
2645 unregister_prot_hook(sk, false);
2646 packet_cached_dev_reset(po);
2647
2648 if (po->prot_hook.dev) {
2649 dev_put(po->prot_hook.dev);
2650 po->prot_hook.dev = NULL;
2651 }
2652 spin_unlock(&po->bind_lock);
2653
2654 packet_flush_mclist(sk);
2655
2656 if (po->rx_ring.pg_vec) {
2657 memset(&req_u, 0, sizeof(req_u));
2658 packet_set_ring(sk, &req_u, 1, 0);
2659 }
2660
2661 if (po->tx_ring.pg_vec) {
2662 memset(&req_u, 0, sizeof(req_u));
2663 packet_set_ring(sk, &req_u, 1, 1);
2664 }
2665
2666 fanout_release(sk);
2667
2668 synchronize_net();
2669 /*
2670 * Now the socket is dead. No more input will appear.
2671 */
2672 sock_orphan(sk);
2673 sock->sk = NULL;
2674
2675 /* Purge queues */
2676
2677 skb_queue_purge(&sk->sk_receive_queue);
2678 packet_free_pending(po);
2679 sk_refcnt_debug_release(sk);
2680
2681 sock_put(sk);
2682 return 0;
2683 }
2684
2685 /*
2686 * Attach a packet hook.
2687 */
2688
2689 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2690 {
2691 struct packet_sock *po = pkt_sk(sk);
2692 const struct net_device *dev_curr;
2693 __be16 proto_curr;
2694 bool need_rehook;
2695
2696 if (po->fanout) {
2697 if (dev)
2698 dev_put(dev);
2699
2700 return -EINVAL;
2701 }
2702
2703 lock_sock(sk);
2704 spin_lock(&po->bind_lock);
2705
2706 proto_curr = po->prot_hook.type;
2707 dev_curr = po->prot_hook.dev;
2708
2709 need_rehook = proto_curr != proto || dev_curr != dev;
2710
2711 if (need_rehook) {
2712 unregister_prot_hook(sk, true);
2713
2714 po->num = proto;
2715 po->prot_hook.type = proto;
2716
2717 if (po->prot_hook.dev)
2718 dev_put(po->prot_hook.dev);
2719
2720 po->prot_hook.dev = dev;
2721
2722 po->ifindex = dev ? dev->ifindex : 0;
2723 packet_cached_dev_assign(po, dev);
2724 }
2725
2726 if (proto == 0 || !need_rehook)
2727 goto out_unlock;
2728
2729 if (!dev || (dev->flags & IFF_UP)) {
2730 register_prot_hook(sk);
2731 } else {
2732 sk->sk_err = ENETDOWN;
2733 if (!sock_flag(sk, SOCK_DEAD))
2734 sk->sk_error_report(sk);
2735 }
2736
2737 out_unlock:
2738 spin_unlock(&po->bind_lock);
2739 release_sock(sk);
2740 return 0;
2741 }
2742
2743 /*
2744 * Bind a packet socket to a device
2745 */
2746
2747 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2748 int addr_len)
2749 {
2750 struct sock *sk = sock->sk;
2751 char name[15];
2752 struct net_device *dev;
2753 int err = -ENODEV;
2754
2755 /*
2756 * Check legality
2757 */
2758
2759 if (addr_len != sizeof(struct sockaddr))
2760 return -EINVAL;
2761 strlcpy(name, uaddr->sa_data, sizeof(name));
2762
2763 dev = dev_get_by_name(sock_net(sk), name);
2764 if (dev)
2765 err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2766 return err;
2767 }
2768
2769 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2770 {
2771 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2772 struct sock *sk = sock->sk;
2773 struct net_device *dev = NULL;
2774 int err;
2775
2776
2777 /*
2778 * Check legality
2779 */
2780
2781 if (addr_len < sizeof(struct sockaddr_ll))
2782 return -EINVAL;
2783 if (sll->sll_family != AF_PACKET)
2784 return -EINVAL;
2785
2786 if (sll->sll_ifindex) {
2787 err = -ENODEV;
2788 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2789 if (dev == NULL)
2790 goto out;
2791 }
2792 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2793
2794 out:
2795 return err;
2796 }
2797
2798 static struct proto packet_proto = {
2799 .name = "PACKET",
2800 .owner = THIS_MODULE,
2801 .obj_size = sizeof(struct packet_sock),
2802 };
2803
2804 /*
2805 * Create a packet of type SOCK_PACKET.
2806 */
2807
2808 static int packet_create(struct net *net, struct socket *sock, int protocol,
2809 int kern)
2810 {
2811 struct sock *sk;
2812 struct packet_sock *po;
2813 __be16 proto = (__force __be16)protocol; /* weird, but documented */
2814 int err;
2815
2816 if (!ns_capable(net->user_ns, CAP_NET_RAW))
2817 return -EPERM;
2818 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2819 sock->type != SOCK_PACKET)
2820 return -ESOCKTNOSUPPORT;
2821
2822 sock->state = SS_UNCONNECTED;
2823
2824 err = -ENOBUFS;
2825 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2826 if (sk == NULL)
2827 goto out;
2828
2829 sock->ops = &packet_ops;
2830 if (sock->type == SOCK_PACKET)
2831 sock->ops = &packet_ops_spkt;
2832
2833 sock_init_data(sock, sk);
2834
2835 po = pkt_sk(sk);
2836 sk->sk_family = PF_PACKET;
2837 po->num = proto;
2838 po->xmit = dev_queue_xmit;
2839
2840 err = packet_alloc_pending(po);
2841 if (err)
2842 goto out2;
2843
2844 packet_cached_dev_reset(po);
2845
2846 sk->sk_destruct = packet_sock_destruct;
2847 sk_refcnt_debug_inc(sk);
2848
2849 /*
2850 * Attach a protocol block
2851 */
2852
2853 spin_lock_init(&po->bind_lock);
2854 mutex_init(&po->pg_vec_lock);
2855 po->prot_hook.func = packet_rcv;
2856
2857 if (sock->type == SOCK_PACKET)
2858 po->prot_hook.func = packet_rcv_spkt;
2859
2860 po->prot_hook.af_packet_priv = sk;
2861
2862 if (proto) {
2863 po->prot_hook.type = proto;
2864 register_prot_hook(sk);
2865 }
2866
2867 mutex_lock(&net->packet.sklist_lock);
2868 sk_add_node_rcu(sk, &net->packet.sklist);
2869 mutex_unlock(&net->packet.sklist_lock);
2870
2871 preempt_disable();
2872 sock_prot_inuse_add(net, &packet_proto, 1);
2873 preempt_enable();
2874
2875 return 0;
2876 out2:
2877 sk_free(sk);
2878 out:
2879 return err;
2880 }
2881
2882 /*
2883 * Pull a packet from our receive queue and hand it to the user.
2884 * If necessary we block.
2885 */
2886
2887 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2888 struct msghdr *msg, size_t len, int flags)
2889 {
2890 struct sock *sk = sock->sk;
2891 struct sk_buff *skb;
2892 int copied, err;
2893 int vnet_hdr_len = 0;
2894
2895 err = -EINVAL;
2896 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2897 goto out;
2898
2899 #if 0
2900 /* What error should we return now? EUNATTACH? */
2901 if (pkt_sk(sk)->ifindex < 0)
2902 return -ENODEV;
2903 #endif
2904
2905 if (flags & MSG_ERRQUEUE) {
2906 err = sock_recv_errqueue(sk, msg, len,
2907 SOL_PACKET, PACKET_TX_TIMESTAMP);
2908 goto out;
2909 }
2910
2911 /*
2912 * Call the generic datagram receiver. This handles all sorts
2913 * of horrible races and re-entrancy so we can forget about it
2914 * in the protocol layers.
2915 *
2916 * Now it will return ENETDOWN, if device have just gone down,
2917 * but then it will block.
2918 */
2919
2920 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2921
2922 /*
2923 * An error occurred so return it. Because skb_recv_datagram()
2924 * handles the blocking we don't see and worry about blocking
2925 * retries.
2926 */
2927
2928 if (skb == NULL)
2929 goto out;
2930
2931 if (pkt_sk(sk)->has_vnet_hdr) {
2932 struct virtio_net_hdr vnet_hdr = { 0 };
2933
2934 err = -EINVAL;
2935 vnet_hdr_len = sizeof(vnet_hdr);
2936 if (len < vnet_hdr_len)
2937 goto out_free;
2938
2939 len -= vnet_hdr_len;
2940
2941 if (skb_is_gso(skb)) {
2942 struct skb_shared_info *sinfo = skb_shinfo(skb);
2943
2944 /* This is a hint as to how much should be linear. */
2945 vnet_hdr.hdr_len =
2946 __cpu_to_virtio16(false, skb_headlen(skb));
2947 vnet_hdr.gso_size =
2948 __cpu_to_virtio16(false, sinfo->gso_size);
2949 if (sinfo->gso_type & SKB_GSO_TCPV4)
2950 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2951 else if (sinfo->gso_type & SKB_GSO_TCPV6)
2952 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2953 else if (sinfo->gso_type & SKB_GSO_UDP)
2954 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2955 else if (sinfo->gso_type & SKB_GSO_FCOE)
2956 goto out_free;
2957 else
2958 BUG();
2959 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2960 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2961 } else
2962 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2963
2964 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2965 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2966 vnet_hdr.csum_start = __cpu_to_virtio16(false,
2967 skb_checksum_start_offset(skb));
2968 vnet_hdr.csum_offset = __cpu_to_virtio16(false,
2969 skb->csum_offset);
2970 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2971 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2972 } /* else everything is zero */
2973
2974 err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len);
2975 if (err < 0)
2976 goto out_free;
2977 }
2978
2979 /* You lose any data beyond the buffer you gave. If it worries
2980 * a user program they can ask the device for its MTU
2981 * anyway.
2982 */
2983 copied = skb->len;
2984 if (copied > len) {
2985 copied = len;
2986 msg->msg_flags |= MSG_TRUNC;
2987 }
2988
2989 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2990 if (err)
2991 goto out_free;
2992
2993 sock_recv_ts_and_drops(msg, sk, skb);
2994
2995 if (msg->msg_name) {
2996 /* If the address length field is there to be filled
2997 * in, we fill it in now.
2998 */
2999 if (sock->type == SOCK_PACKET) {
3000 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3001 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3002 } else {
3003 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3004 msg->msg_namelen = sll->sll_halen +
3005 offsetof(struct sockaddr_ll, sll_addr);
3006 }
3007 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3008 msg->msg_namelen);
3009 }
3010
3011 if (pkt_sk(sk)->auxdata) {
3012 struct tpacket_auxdata aux;
3013
3014 aux.tp_status = TP_STATUS_USER;
3015 if (skb->ip_summed == CHECKSUM_PARTIAL)
3016 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3017 aux.tp_len = PACKET_SKB_CB(skb)->origlen;
3018 aux.tp_snaplen = skb->len;
3019 aux.tp_mac = 0;
3020 aux.tp_net = skb_network_offset(skb);
3021 if (skb_vlan_tag_present(skb)) {
3022 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3023 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3024 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3025 } else {
3026 aux.tp_vlan_tci = 0;
3027 aux.tp_vlan_tpid = 0;
3028 }
3029 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3030 }
3031
3032 /*
3033 * Free or return the buffer as appropriate. Again this
3034 * hides all the races and re-entrancy issues from us.
3035 */
3036 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3037
3038 out_free:
3039 skb_free_datagram(sk, skb);
3040 out:
3041 return err;
3042 }
3043
3044 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3045 int *uaddr_len, int peer)
3046 {
3047 struct net_device *dev;
3048 struct sock *sk = sock->sk;
3049
3050 if (peer)
3051 return -EOPNOTSUPP;
3052
3053 uaddr->sa_family = AF_PACKET;
3054 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3055 rcu_read_lock();
3056 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3057 if (dev)
3058 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3059 rcu_read_unlock();
3060 *uaddr_len = sizeof(*uaddr);
3061
3062 return 0;
3063 }
3064
3065 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3066 int *uaddr_len, int peer)
3067 {
3068 struct net_device *dev;
3069 struct sock *sk = sock->sk;
3070 struct packet_sock *po = pkt_sk(sk);
3071 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3072
3073 if (peer)
3074 return -EOPNOTSUPP;
3075
3076 sll->sll_family = AF_PACKET;
3077 sll->sll_ifindex = po->ifindex;
3078 sll->sll_protocol = po->num;
3079 sll->sll_pkttype = 0;
3080 rcu_read_lock();
3081 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3082 if (dev) {
3083 sll->sll_hatype = dev->type;
3084 sll->sll_halen = dev->addr_len;
3085 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3086 } else {
3087 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3088 sll->sll_halen = 0;
3089 }
3090 rcu_read_unlock();
3091 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3092
3093 return 0;
3094 }
3095
3096 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3097 int what)
3098 {
3099 switch (i->type) {
3100 case PACKET_MR_MULTICAST:
3101 if (i->alen != dev->addr_len)
3102 return -EINVAL;
3103 if (what > 0)
3104 return dev_mc_add(dev, i->addr);
3105 else
3106 return dev_mc_del(dev, i->addr);
3107 break;
3108 case PACKET_MR_PROMISC:
3109 return dev_set_promiscuity(dev, what);
3110 case PACKET_MR_ALLMULTI:
3111 return dev_set_allmulti(dev, what);
3112 case PACKET_MR_UNICAST:
3113 if (i->alen != dev->addr_len)
3114 return -EINVAL;
3115 if (what > 0)
3116 return dev_uc_add(dev, i->addr);
3117 else
3118 return dev_uc_del(dev, i->addr);
3119 break;
3120 default:
3121 break;
3122 }
3123 return 0;
3124 }
3125
3126 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
3127 {
3128 for ( ; i; i = i->next) {
3129 if (i->ifindex == dev->ifindex)
3130 packet_dev_mc(dev, i, what);
3131 }
3132 }
3133
3134 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3135 {
3136 struct packet_sock *po = pkt_sk(sk);
3137 struct packet_mclist *ml, *i;
3138 struct net_device *dev;
3139 int err;
3140
3141 rtnl_lock();
3142
3143 err = -ENODEV;
3144 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3145 if (!dev)
3146 goto done;
3147
3148 err = -EINVAL;
3149 if (mreq->mr_alen > dev->addr_len)
3150 goto done;
3151
3152 err = -ENOBUFS;
3153 i = kmalloc(sizeof(*i), GFP_KERNEL);
3154 if (i == NULL)
3155 goto done;
3156
3157 err = 0;
3158 for (ml = po->mclist; ml; ml = ml->next) {
3159 if (ml->ifindex == mreq->mr_ifindex &&
3160 ml->type == mreq->mr_type &&
3161 ml->alen == mreq->mr_alen &&
3162 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3163 ml->count++;
3164 /* Free the new element ... */
3165 kfree(i);
3166 goto done;
3167 }
3168 }
3169
3170 i->type = mreq->mr_type;
3171 i->ifindex = mreq->mr_ifindex;
3172 i->alen = mreq->mr_alen;
3173 memcpy(i->addr, mreq->mr_address, i->alen);
3174 i->count = 1;
3175 i->next = po->mclist;
3176 po->mclist = i;
3177 err = packet_dev_mc(dev, i, 1);
3178 if (err) {
3179 po->mclist = i->next;
3180 kfree(i);
3181 }
3182
3183 done:
3184 rtnl_unlock();
3185 return err;
3186 }
3187
3188 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3189 {
3190 struct packet_mclist *ml, **mlp;
3191
3192 rtnl_lock();
3193
3194 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3195 if (ml->ifindex == mreq->mr_ifindex &&
3196 ml->type == mreq->mr_type &&
3197 ml->alen == mreq->mr_alen &&
3198 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3199 if (--ml->count == 0) {
3200 struct net_device *dev;
3201 *mlp = ml->next;
3202 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3203 if (dev)
3204 packet_dev_mc(dev, ml, -1);
3205 kfree(ml);
3206 }
3207 rtnl_unlock();
3208 return 0;
3209 }
3210 }
3211 rtnl_unlock();
3212 return -EADDRNOTAVAIL;
3213 }
3214
3215 static void packet_flush_mclist(struct sock *sk)
3216 {
3217 struct packet_sock *po = pkt_sk(sk);
3218 struct packet_mclist *ml;
3219
3220 if (!po->mclist)
3221 return;
3222
3223 rtnl_lock();
3224 while ((ml = po->mclist) != NULL) {
3225 struct net_device *dev;
3226
3227 po->mclist = ml->next;
3228 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3229 if (dev != NULL)
3230 packet_dev_mc(dev, ml, -1);
3231 kfree(ml);
3232 }
3233 rtnl_unlock();
3234 }
3235
3236 static int
3237 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3238 {
3239 struct sock *sk = sock->sk;
3240 struct packet_sock *po = pkt_sk(sk);
3241 int ret;
3242
3243 if (level != SOL_PACKET)
3244 return -ENOPROTOOPT;
3245
3246 switch (optname) {
3247 case PACKET_ADD_MEMBERSHIP:
3248 case PACKET_DROP_MEMBERSHIP:
3249 {
3250 struct packet_mreq_max mreq;
3251 int len = optlen;
3252 memset(&mreq, 0, sizeof(mreq));
3253 if (len < sizeof(struct packet_mreq))
3254 return -EINVAL;
3255 if (len > sizeof(mreq))
3256 len = sizeof(mreq);
3257 if (copy_from_user(&mreq, optval, len))
3258 return -EFAULT;
3259 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3260 return -EINVAL;
3261 if (optname == PACKET_ADD_MEMBERSHIP)
3262 ret = packet_mc_add(sk, &mreq);
3263 else
3264 ret = packet_mc_drop(sk, &mreq);
3265 return ret;
3266 }
3267
3268 case PACKET_RX_RING:
3269 case PACKET_TX_RING:
3270 {
3271 union tpacket_req_u req_u;
3272 int len;
3273
3274 switch (po->tp_version) {
3275 case TPACKET_V1:
3276 case TPACKET_V2:
3277 len = sizeof(req_u.req);
3278 break;
3279 case TPACKET_V3:
3280 default:
3281 len = sizeof(req_u.req3);
3282 break;
3283 }
3284 if (optlen < len)
3285 return -EINVAL;
3286 if (pkt_sk(sk)->has_vnet_hdr)
3287 return -EINVAL;
3288 if (copy_from_user(&req_u.req, optval, len))
3289 return -EFAULT;
3290 return packet_set_ring(sk, &req_u, 0,
3291 optname == PACKET_TX_RING);
3292 }
3293 case PACKET_COPY_THRESH:
3294 {
3295 int val;
3296
3297 if (optlen != sizeof(val))
3298 return -EINVAL;
3299 if (copy_from_user(&val, optval, sizeof(val)))
3300 return -EFAULT;
3301
3302 pkt_sk(sk)->copy_thresh = val;
3303 return 0;
3304 }
3305 case PACKET_VERSION:
3306 {
3307 int val;
3308
3309 if (optlen != sizeof(val))
3310 return -EINVAL;
3311 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3312 return -EBUSY;
3313 if (copy_from_user(&val, optval, sizeof(val)))
3314 return -EFAULT;
3315 switch (val) {
3316 case TPACKET_V1:
3317 case TPACKET_V2:
3318 case TPACKET_V3:
3319 po->tp_version = val;
3320 return 0;
3321 default:
3322 return -EINVAL;
3323 }
3324 }
3325 case PACKET_RESERVE:
3326 {
3327 unsigned int val;
3328
3329 if (optlen != sizeof(val))
3330 return -EINVAL;
3331 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3332 return -EBUSY;
3333 if (copy_from_user(&val, optval, sizeof(val)))
3334 return -EFAULT;
3335 po->tp_reserve = val;
3336 return 0;
3337 }
3338 case PACKET_LOSS:
3339 {
3340 unsigned int val;
3341
3342 if (optlen != sizeof(val))
3343 return -EINVAL;
3344 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3345 return -EBUSY;
3346 if (copy_from_user(&val, optval, sizeof(val)))
3347 return -EFAULT;
3348 po->tp_loss = !!val;
3349 return 0;
3350 }
3351 case PACKET_AUXDATA:
3352 {
3353 int val;
3354
3355 if (optlen < sizeof(val))
3356 return -EINVAL;
3357 if (copy_from_user(&val, optval, sizeof(val)))
3358 return -EFAULT;
3359
3360 po->auxdata = !!val;
3361 return 0;
3362 }
3363 case PACKET_ORIGDEV:
3364 {
3365 int val;
3366
3367 if (optlen < sizeof(val))
3368 return -EINVAL;
3369 if (copy_from_user(&val, optval, sizeof(val)))
3370 return -EFAULT;
3371
3372 po->origdev = !!val;
3373 return 0;
3374 }
3375 case PACKET_VNET_HDR:
3376 {
3377 int val;
3378
3379 if (sock->type != SOCK_RAW)
3380 return -EINVAL;
3381 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3382 return -EBUSY;
3383 if (optlen < sizeof(val))
3384 return -EINVAL;
3385 if (copy_from_user(&val, optval, sizeof(val)))
3386 return -EFAULT;
3387
3388 po->has_vnet_hdr = !!val;
3389 return 0;
3390 }
3391 case PACKET_TIMESTAMP:
3392 {
3393 int val;
3394
3395 if (optlen != sizeof(val))
3396 return -EINVAL;
3397 if (copy_from_user(&val, optval, sizeof(val)))
3398 return -EFAULT;
3399
3400 po->tp_tstamp = val;
3401 return 0;
3402 }
3403 case PACKET_FANOUT:
3404 {
3405 int val;
3406
3407 if (optlen != sizeof(val))
3408 return -EINVAL;
3409 if (copy_from_user(&val, optval, sizeof(val)))
3410 return -EFAULT;
3411
3412 return fanout_add(sk, val & 0xffff, val >> 16);
3413 }
3414 case PACKET_TX_HAS_OFF:
3415 {
3416 unsigned int val;
3417
3418 if (optlen != sizeof(val))
3419 return -EINVAL;
3420 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3421 return -EBUSY;
3422 if (copy_from_user(&val, optval, sizeof(val)))
3423 return -EFAULT;
3424 po->tp_tx_has_off = !!val;
3425 return 0;
3426 }
3427 case PACKET_QDISC_BYPASS:
3428 {
3429 int val;
3430
3431 if (optlen != sizeof(val))
3432 return -EINVAL;
3433 if (copy_from_user(&val, optval, sizeof(val)))
3434 return -EFAULT;
3435
3436 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3437 return 0;
3438 }
3439 default:
3440 return -ENOPROTOOPT;
3441 }
3442 }
3443
3444 static int packet_getsockopt(struct socket *sock, int level, int optname,
3445 char __user *optval, int __user *optlen)
3446 {
3447 int len;
3448 int val, lv = sizeof(val);
3449 struct sock *sk = sock->sk;
3450 struct packet_sock *po = pkt_sk(sk);
3451 void *data = &val;
3452 union tpacket_stats_u st;
3453
3454 if (level != SOL_PACKET)
3455 return -ENOPROTOOPT;
3456
3457 if (get_user(len, optlen))
3458 return -EFAULT;
3459
3460 if (len < 0)
3461 return -EINVAL;
3462
3463 switch (optname) {
3464 case PACKET_STATISTICS:
3465 spin_lock_bh(&sk->sk_receive_queue.lock);
3466 memcpy(&st, &po->stats, sizeof(st));
3467 memset(&po->stats, 0, sizeof(po->stats));
3468 spin_unlock_bh(&sk->sk_receive_queue.lock);
3469
3470 if (po->tp_version == TPACKET_V3) {
3471 lv = sizeof(struct tpacket_stats_v3);
3472 st.stats3.tp_packets += st.stats3.tp_drops;
3473 data = &st.stats3;
3474 } else {
3475 lv = sizeof(struct tpacket_stats);
3476 st.stats1.tp_packets += st.stats1.tp_drops;
3477 data = &st.stats1;
3478 }
3479
3480 break;
3481 case PACKET_AUXDATA:
3482 val = po->auxdata;
3483 break;
3484 case PACKET_ORIGDEV:
3485 val = po->origdev;
3486 break;
3487 case PACKET_VNET_HDR:
3488 val = po->has_vnet_hdr;
3489 break;
3490 case PACKET_VERSION:
3491 val = po->tp_version;
3492 break;
3493 case PACKET_HDRLEN:
3494 if (len > sizeof(int))
3495 len = sizeof(int);
3496 if (copy_from_user(&val, optval, len))
3497 return -EFAULT;
3498 switch (val) {
3499 case TPACKET_V1:
3500 val = sizeof(struct tpacket_hdr);
3501 break;
3502 case TPACKET_V2:
3503 val = sizeof(struct tpacket2_hdr);
3504 break;
3505 case TPACKET_V3:
3506 val = sizeof(struct tpacket3_hdr);
3507 break;
3508 default:
3509 return -EINVAL;
3510 }
3511 break;
3512 case PACKET_RESERVE:
3513 val = po->tp_reserve;
3514 break;
3515 case PACKET_LOSS:
3516 val = po->tp_loss;
3517 break;
3518 case PACKET_TIMESTAMP:
3519 val = po->tp_tstamp;
3520 break;
3521 case PACKET_FANOUT:
3522 val = (po->fanout ?
3523 ((u32)po->fanout->id |
3524 ((u32)po->fanout->type << 16) |
3525 ((u32)po->fanout->flags << 24)) :
3526 0);
3527 break;
3528 case PACKET_TX_HAS_OFF:
3529 val = po->tp_tx_has_off;
3530 break;
3531 case PACKET_QDISC_BYPASS:
3532 val = packet_use_direct_xmit(po);
3533 break;
3534 default:
3535 return -ENOPROTOOPT;
3536 }
3537
3538 if (len > lv)
3539 len = lv;
3540 if (put_user(len, optlen))
3541 return -EFAULT;
3542 if (copy_to_user(optval, data, len))
3543 return -EFAULT;
3544 return 0;
3545 }
3546
3547
3548 static int packet_notifier(struct notifier_block *this,
3549 unsigned long msg, void *ptr)
3550 {
3551 struct sock *sk;
3552 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3553 struct net *net = dev_net(dev);
3554
3555 rcu_read_lock();
3556 sk_for_each_rcu(sk, &net->packet.sklist) {
3557 struct packet_sock *po = pkt_sk(sk);
3558
3559 switch (msg) {
3560 case NETDEV_UNREGISTER:
3561 if (po->mclist)
3562 packet_dev_mclist(dev, po->mclist, -1);
3563 /* fallthrough */
3564
3565 case NETDEV_DOWN:
3566 if (dev->ifindex == po->ifindex) {
3567 spin_lock(&po->bind_lock);
3568 if (po->running) {
3569 __unregister_prot_hook(sk, false);
3570 sk->sk_err = ENETDOWN;
3571 if (!sock_flag(sk, SOCK_DEAD))
3572 sk->sk_error_report(sk);
3573 }
3574 if (msg == NETDEV_UNREGISTER) {
3575 packet_cached_dev_reset(po);
3576 po->ifindex = -1;
3577 if (po->prot_hook.dev)
3578 dev_put(po->prot_hook.dev);
3579 po->prot_hook.dev = NULL;
3580 }
3581 spin_unlock(&po->bind_lock);
3582 }
3583 break;
3584 case NETDEV_UP:
3585 if (dev->ifindex == po->ifindex) {
3586 spin_lock(&po->bind_lock);
3587 if (po->num)
3588 register_prot_hook(sk);
3589 spin_unlock(&po->bind_lock);
3590 }
3591 break;
3592 }
3593 }
3594 rcu_read_unlock();
3595 return NOTIFY_DONE;
3596 }
3597
3598
3599 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3600 unsigned long arg)
3601 {
3602 struct sock *sk = sock->sk;
3603
3604 switch (cmd) {
3605 case SIOCOUTQ:
3606 {
3607 int amount = sk_wmem_alloc_get(sk);
3608
3609 return put_user(amount, (int __user *)arg);
3610 }
3611 case SIOCINQ:
3612 {
3613 struct sk_buff *skb;
3614 int amount = 0;
3615
3616 spin_lock_bh(&sk->sk_receive_queue.lock);
3617 skb = skb_peek(&sk->sk_receive_queue);
3618 if (skb)
3619 amount = skb->len;
3620 spin_unlock_bh(&sk->sk_receive_queue.lock);
3621 return put_user(amount, (int __user *)arg);
3622 }
3623 case SIOCGSTAMP:
3624 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3625 case SIOCGSTAMPNS:
3626 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3627
3628 #ifdef CONFIG_INET
3629 case SIOCADDRT:
3630 case SIOCDELRT:
3631 case SIOCDARP:
3632 case SIOCGARP:
3633 case SIOCSARP:
3634 case SIOCGIFADDR:
3635 case SIOCSIFADDR:
3636 case SIOCGIFBRDADDR:
3637 case SIOCSIFBRDADDR:
3638 case SIOCGIFNETMASK:
3639 case SIOCSIFNETMASK:
3640 case SIOCGIFDSTADDR:
3641 case SIOCSIFDSTADDR:
3642 case SIOCSIFFLAGS:
3643 return inet_dgram_ops.ioctl(sock, cmd, arg);
3644 #endif
3645
3646 default:
3647 return -ENOIOCTLCMD;
3648 }
3649 return 0;
3650 }
3651
3652 static unsigned int packet_poll(struct file *file, struct socket *sock,
3653 poll_table *wait)
3654 {
3655 struct sock *sk = sock->sk;
3656 struct packet_sock *po = pkt_sk(sk);
3657 unsigned int mask = datagram_poll(file, sock, wait);
3658
3659 spin_lock_bh(&sk->sk_receive_queue.lock);
3660 if (po->rx_ring.pg_vec) {
3661 if (!packet_previous_rx_frame(po, &po->rx_ring,
3662 TP_STATUS_KERNEL))
3663 mask |= POLLIN | POLLRDNORM;
3664 }
3665 spin_unlock_bh(&sk->sk_receive_queue.lock);
3666 spin_lock_bh(&sk->sk_write_queue.lock);
3667 if (po->tx_ring.pg_vec) {
3668 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3669 mask |= POLLOUT | POLLWRNORM;
3670 }
3671 spin_unlock_bh(&sk->sk_write_queue.lock);
3672 return mask;
3673 }
3674
3675
3676 /* Dirty? Well, I still did not learn better way to account
3677 * for user mmaps.
3678 */
3679
3680 static void packet_mm_open(struct vm_area_struct *vma)
3681 {
3682 struct file *file = vma->vm_file;
3683 struct socket *sock = file->private_data;
3684 struct sock *sk = sock->sk;
3685
3686 if (sk)
3687 atomic_inc(&pkt_sk(sk)->mapped);
3688 }
3689
3690 static void packet_mm_close(struct vm_area_struct *vma)
3691 {
3692 struct file *file = vma->vm_file;
3693 struct socket *sock = file->private_data;
3694 struct sock *sk = sock->sk;
3695
3696 if (sk)
3697 atomic_dec(&pkt_sk(sk)->mapped);
3698 }
3699
3700 static const struct vm_operations_struct packet_mmap_ops = {
3701 .open = packet_mm_open,
3702 .close = packet_mm_close,
3703 };
3704
3705 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3706 unsigned int len)
3707 {
3708 int i;
3709
3710 for (i = 0; i < len; i++) {
3711 if (likely(pg_vec[i].buffer)) {
3712 if (is_vmalloc_addr(pg_vec[i].buffer))
3713 vfree(pg_vec[i].buffer);
3714 else
3715 free_pages((unsigned long)pg_vec[i].buffer,
3716 order);
3717 pg_vec[i].buffer = NULL;
3718 }
3719 }
3720 kfree(pg_vec);
3721 }
3722
3723 static char *alloc_one_pg_vec_page(unsigned long order)
3724 {
3725 char *buffer;
3726 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3727 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3728
3729 buffer = (char *) __get_free_pages(gfp_flags, order);
3730 if (buffer)
3731 return buffer;
3732
3733 /* __get_free_pages failed, fall back to vmalloc */
3734 buffer = vzalloc((1 << order) * PAGE_SIZE);
3735 if (buffer)
3736 return buffer;
3737
3738 /* vmalloc failed, lets dig into swap here */
3739 gfp_flags &= ~__GFP_NORETRY;
3740 buffer = (char *) __get_free_pages(gfp_flags, order);
3741 if (buffer)
3742 return buffer;
3743
3744 /* complete and utter failure */
3745 return NULL;
3746 }
3747
3748 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3749 {
3750 unsigned int block_nr = req->tp_block_nr;
3751 struct pgv *pg_vec;
3752 int i;
3753
3754 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3755 if (unlikely(!pg_vec))
3756 goto out;
3757
3758 for (i = 0; i < block_nr; i++) {
3759 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3760 if (unlikely(!pg_vec[i].buffer))
3761 goto out_free_pgvec;
3762 }
3763
3764 out:
3765 return pg_vec;
3766
3767 out_free_pgvec:
3768 free_pg_vec(pg_vec, order, block_nr);
3769 pg_vec = NULL;
3770 goto out;
3771 }
3772
3773 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3774 int closing, int tx_ring)
3775 {
3776 struct pgv *pg_vec = NULL;
3777 struct packet_sock *po = pkt_sk(sk);
3778 int was_running, order = 0;
3779 struct packet_ring_buffer *rb;
3780 struct sk_buff_head *rb_queue;
3781 __be16 num;
3782 int err = -EINVAL;
3783 /* Added to avoid minimal code churn */
3784 struct tpacket_req *req = &req_u->req;
3785
3786 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3787 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3788 WARN(1, "Tx-ring is not supported.\n");
3789 goto out;
3790 }
3791
3792 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3793 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3794
3795 err = -EBUSY;
3796 if (!closing) {
3797 if (atomic_read(&po->mapped))
3798 goto out;
3799 if (packet_read_pending(rb))
3800 goto out;
3801 }
3802
3803 if (req->tp_block_nr) {
3804 /* Sanity tests and some calculations */
3805 err = -EBUSY;
3806 if (unlikely(rb->pg_vec))
3807 goto out;
3808
3809 switch (po->tp_version) {
3810 case TPACKET_V1:
3811 po->tp_hdrlen = TPACKET_HDRLEN;
3812 break;
3813 case TPACKET_V2:
3814 po->tp_hdrlen = TPACKET2_HDRLEN;
3815 break;
3816 case TPACKET_V3:
3817 po->tp_hdrlen = TPACKET3_HDRLEN;
3818 break;
3819 }
3820
3821 err = -EINVAL;
3822 if (unlikely((int)req->tp_block_size <= 0))
3823 goto out;
3824 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3825 goto out;
3826 if (po->tp_version >= TPACKET_V3 &&
3827 (int)(req->tp_block_size -
3828 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
3829 goto out;
3830 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3831 po->tp_reserve))
3832 goto out;
3833 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3834 goto out;
3835
3836 rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3837 if (unlikely(rb->frames_per_block <= 0))
3838 goto out;
3839 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3840 req->tp_frame_nr))
3841 goto out;
3842
3843 err = -ENOMEM;
3844 order = get_order(req->tp_block_size);
3845 pg_vec = alloc_pg_vec(req, order);
3846 if (unlikely(!pg_vec))
3847 goto out;
3848 switch (po->tp_version) {
3849 case TPACKET_V3:
3850 /* Transmit path is not supported. We checked
3851 * it above but just being paranoid
3852 */
3853 if (!tx_ring)
3854 init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3855 break;
3856 default:
3857 break;
3858 }
3859 }
3860 /* Done */
3861 else {
3862 err = -EINVAL;
3863 if (unlikely(req->tp_frame_nr))
3864 goto out;
3865 }
3866
3867 lock_sock(sk);
3868
3869 /* Detach socket from network */
3870 spin_lock(&po->bind_lock);
3871 was_running = po->running;
3872 num = po->num;
3873 if (was_running) {
3874 po->num = 0;
3875 __unregister_prot_hook(sk, false);
3876 }
3877 spin_unlock(&po->bind_lock);
3878
3879 synchronize_net();
3880
3881 err = -EBUSY;
3882 mutex_lock(&po->pg_vec_lock);
3883 if (closing || atomic_read(&po->mapped) == 0) {
3884 err = 0;
3885 spin_lock_bh(&rb_queue->lock);
3886 swap(rb->pg_vec, pg_vec);
3887 rb->frame_max = (req->tp_frame_nr - 1);
3888 rb->head = 0;
3889 rb->frame_size = req->tp_frame_size;
3890 spin_unlock_bh(&rb_queue->lock);
3891
3892 swap(rb->pg_vec_order, order);
3893 swap(rb->pg_vec_len, req->tp_block_nr);
3894
3895 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3896 po->prot_hook.func = (po->rx_ring.pg_vec) ?
3897 tpacket_rcv : packet_rcv;
3898 skb_queue_purge(rb_queue);
3899 if (atomic_read(&po->mapped))
3900 pr_err("packet_mmap: vma is busy: %d\n",
3901 atomic_read(&po->mapped));
3902 }
3903 mutex_unlock(&po->pg_vec_lock);
3904
3905 spin_lock(&po->bind_lock);
3906 if (was_running) {
3907 po->num = num;
3908 register_prot_hook(sk);
3909 }
3910 spin_unlock(&po->bind_lock);
3911 if (closing && (po->tp_version > TPACKET_V2)) {
3912 /* Because we don't support block-based V3 on tx-ring */
3913 if (!tx_ring)
3914 prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3915 }
3916 release_sock(sk);
3917
3918 if (pg_vec)
3919 free_pg_vec(pg_vec, order, req->tp_block_nr);
3920 out:
3921 return err;
3922 }
3923
3924 static int packet_mmap(struct file *file, struct socket *sock,
3925 struct vm_area_struct *vma)
3926 {
3927 struct sock *sk = sock->sk;
3928 struct packet_sock *po = pkt_sk(sk);
3929 unsigned long size, expected_size;
3930 struct packet_ring_buffer *rb;
3931 unsigned long start;
3932 int err = -EINVAL;
3933 int i;
3934
3935 if (vma->vm_pgoff)
3936 return -EINVAL;
3937
3938 mutex_lock(&po->pg_vec_lock);
3939
3940 expected_size = 0;
3941 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3942 if (rb->pg_vec) {
3943 expected_size += rb->pg_vec_len
3944 * rb->pg_vec_pages
3945 * PAGE_SIZE;
3946 }
3947 }
3948
3949 if (expected_size == 0)
3950 goto out;
3951
3952 size = vma->vm_end - vma->vm_start;
3953 if (size != expected_size)
3954 goto out;
3955
3956 start = vma->vm_start;
3957 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3958 if (rb->pg_vec == NULL)
3959 continue;
3960
3961 for (i = 0; i < rb->pg_vec_len; i++) {
3962 struct page *page;
3963 void *kaddr = rb->pg_vec[i].buffer;
3964 int pg_num;
3965
3966 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3967 page = pgv_to_page(kaddr);
3968 err = vm_insert_page(vma, start, page);
3969 if (unlikely(err))
3970 goto out;
3971 start += PAGE_SIZE;
3972 kaddr += PAGE_SIZE;
3973 }
3974 }
3975 }
3976
3977 atomic_inc(&po->mapped);
3978 vma->vm_ops = &packet_mmap_ops;
3979 err = 0;
3980
3981 out:
3982 mutex_unlock(&po->pg_vec_lock);
3983 return err;
3984 }
3985
3986 static const struct proto_ops packet_ops_spkt = {
3987 .family = PF_PACKET,
3988 .owner = THIS_MODULE,
3989 .release = packet_release,
3990 .bind = packet_bind_spkt,
3991 .connect = sock_no_connect,
3992 .socketpair = sock_no_socketpair,
3993 .accept = sock_no_accept,
3994 .getname = packet_getname_spkt,
3995 .poll = datagram_poll,
3996 .ioctl = packet_ioctl,
3997 .listen = sock_no_listen,
3998 .shutdown = sock_no_shutdown,
3999 .setsockopt = sock_no_setsockopt,
4000 .getsockopt = sock_no_getsockopt,
4001 .sendmsg = packet_sendmsg_spkt,
4002 .recvmsg = packet_recvmsg,
4003 .mmap = sock_no_mmap,
4004 .sendpage = sock_no_sendpage,
4005 };
4006
4007 static const struct proto_ops packet_ops = {
4008 .family = PF_PACKET,
4009 .owner = THIS_MODULE,
4010 .release = packet_release,
4011 .bind = packet_bind,
4012 .connect = sock_no_connect,
4013 .socketpair = sock_no_socketpair,
4014 .accept = sock_no_accept,
4015 .getname = packet_getname,
4016 .poll = packet_poll,
4017 .ioctl = packet_ioctl,
4018 .listen = sock_no_listen,
4019 .shutdown = sock_no_shutdown,
4020 .setsockopt = packet_setsockopt,
4021 .getsockopt = packet_getsockopt,
4022 .sendmsg = packet_sendmsg,
4023 .recvmsg = packet_recvmsg,
4024 .mmap = packet_mmap,
4025 .sendpage = sock_no_sendpage,
4026 };
4027
4028 static const struct net_proto_family packet_family_ops = {
4029 .family = PF_PACKET,
4030 .create = packet_create,
4031 .owner = THIS_MODULE,
4032 };
4033
4034 static struct notifier_block packet_netdev_notifier = {
4035 .notifier_call = packet_notifier,
4036 };
4037
4038 #ifdef CONFIG_PROC_FS
4039
4040 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4041 __acquires(RCU)
4042 {
4043 struct net *net = seq_file_net(seq);
4044
4045 rcu_read_lock();
4046 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4047 }
4048
4049 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4050 {
4051 struct net *net = seq_file_net(seq);
4052 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4053 }
4054
4055 static void packet_seq_stop(struct seq_file *seq, void *v)
4056 __releases(RCU)
4057 {
4058 rcu_read_unlock();
4059 }
4060
4061 static int packet_seq_show(struct seq_file *seq, void *v)
4062 {
4063 if (v == SEQ_START_TOKEN)
4064 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4065 else {
4066 struct sock *s = sk_entry(v);
4067 const struct packet_sock *po = pkt_sk(s);
4068
4069 seq_printf(seq,
4070 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4071 s,
4072 atomic_read(&s->sk_refcnt),
4073 s->sk_type,
4074 ntohs(po->num),
4075 po->ifindex,
4076 po->running,
4077 atomic_read(&s->sk_rmem_alloc),
4078 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4079 sock_i_ino(s));
4080 }
4081
4082 return 0;
4083 }
4084
4085 static const struct seq_operations packet_seq_ops = {
4086 .start = packet_seq_start,
4087 .next = packet_seq_next,
4088 .stop = packet_seq_stop,
4089 .show = packet_seq_show,
4090 };
4091
4092 static int packet_seq_open(struct inode *inode, struct file *file)
4093 {
4094 return seq_open_net(inode, file, &packet_seq_ops,
4095 sizeof(struct seq_net_private));
4096 }
4097
4098 static const struct file_operations packet_seq_fops = {
4099 .owner = THIS_MODULE,
4100 .open = packet_seq_open,
4101 .read = seq_read,
4102 .llseek = seq_lseek,
4103 .release = seq_release_net,
4104 };
4105
4106 #endif
4107
4108 static int __net_init packet_net_init(struct net *net)
4109 {
4110 mutex_init(&net->packet.sklist_lock);
4111 INIT_HLIST_HEAD(&net->packet.sklist);
4112
4113 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4114 return -ENOMEM;
4115
4116 return 0;
4117 }
4118
4119 static void __net_exit packet_net_exit(struct net *net)
4120 {
4121 remove_proc_entry("packet", net->proc_net);
4122 }
4123
4124 static struct pernet_operations packet_net_ops = {
4125 .init = packet_net_init,
4126 .exit = packet_net_exit,
4127 };
4128
4129
4130 static void __exit packet_exit(void)
4131 {
4132 unregister_netdevice_notifier(&packet_netdev_notifier);
4133 unregister_pernet_subsys(&packet_net_ops);
4134 sock_unregister(PF_PACKET);
4135 proto_unregister(&packet_proto);
4136 }
4137
4138 static int __init packet_init(void)
4139 {
4140 int rc = proto_register(&packet_proto, 0);
4141
4142 if (rc != 0)
4143 goto out;
4144
4145 sock_register(&packet_family_ops);
4146 register_pernet_subsys(&packet_net_ops);
4147 register_netdevice_notifier(&packet_netdev_notifier);
4148 out:
4149 return rc;
4150 }
4151
4152 module_init(packet_init);
4153 module_exit(packet_exit);
4154 MODULE_LICENSE("GPL");
4155 MODULE_ALIAS_NETPROTO(PF_PACKET);
This page took 0.261193 seconds and 6 git commands to generate.