net: packet: use sockaddr_ll fields as storage for skb original length in recvmsg...
[deliverable/linux.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95
96 #include "internal.h"
97
98 /*
99 Assumptions:
100 - if device has no dev->hard_header routine, it adds and removes ll header
101 inside itself. In this case ll header is invisible outside of device,
102 but higher levels still should reserve dev->hard_header_len.
103 Some devices are enough clever to reallocate skb, when header
104 will not fit to reserved space (tunnel), another ones are silly
105 (PPP).
106 - packet socket receives packets with pulled ll header,
107 so that SOCK_RAW should push it back.
108
109 On receive:
110 -----------
111
112 Incoming, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> data
115
116 Outgoing, dev->hard_header!=NULL
117 mac_header -> ll header
118 data -> ll header
119
120 Incoming, dev->hard_header==NULL
121 mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 header. PPP makes it, that is wrong, because introduce
123 assymetry between rx and tx paths.
124 data -> data
125
126 Outgoing, dev->hard_header==NULL
127 mac_header -> data. ll header is still not built!
128 data -> data
129
130 Resume
131 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132
133
134 On transmit:
135 ------------
136
137 dev->hard_header != NULL
138 mac_header -> ll header
139 data -> ll header
140
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142 mac_header -> data
143 data -> data
144
145 We should set nh.raw on output to correct posistion,
146 packet classifier depends on it.
147 */
148
149 /* Private packet socket structures. */
150
151 /* identical to struct packet_mreq except it has
152 * a longer address field.
153 */
154 struct packet_mreq_max {
155 int mr_ifindex;
156 unsigned short mr_type;
157 unsigned short mr_alen;
158 unsigned char mr_address[MAX_ADDR_LEN];
159 };
160
161 union tpacket_uhdr {
162 struct tpacket_hdr *h1;
163 struct tpacket2_hdr *h2;
164 struct tpacket3_hdr *h3;
165 void *raw;
166 };
167
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 int closing, int tx_ring);
170
171 #define V3_ALIGNMENT (8)
172
173 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177
178 #define PGV_FROM_VMALLOC 1
179
180 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
186 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 struct packet_type *pt, struct net_device *orig_dev);
192
193 static void *packet_previous_frame(struct packet_sock *po,
194 struct packet_ring_buffer *rb,
195 int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 struct tpacket_kbdq_core *,
210 void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217
218 struct packet_skb_cb {
219 union {
220 struct sockaddr_pkt pkt;
221 union {
222 /* Trick: alias skb original length with
223 * ll.sll_family and ll.protocol in order
224 * to save room.
225 */
226 unsigned int origlen;
227 struct sockaddr_ll ll;
228 };
229 } sa;
230 };
231
232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
233
234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
235 #define GET_PBLOCK_DESC(x, bid) \
236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
239 #define GET_NEXT_PRB_BLK_NUM(x) \
240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
241 ((x)->kactive_blk_num+1) : 0)
242
243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
244 static void __fanout_link(struct sock *sk, struct packet_sock *po);
245
246 static int packet_direct_xmit(struct sk_buff *skb)
247 {
248 struct net_device *dev = skb->dev;
249 netdev_features_t features;
250 struct netdev_queue *txq;
251 int ret = NETDEV_TX_BUSY;
252
253 if (unlikely(!netif_running(dev) ||
254 !netif_carrier_ok(dev)))
255 goto drop;
256
257 features = netif_skb_features(skb);
258 if (skb_needs_linearize(skb, features) &&
259 __skb_linearize(skb))
260 goto drop;
261
262 txq = skb_get_tx_queue(dev, skb);
263
264 local_bh_disable();
265
266 HARD_TX_LOCK(dev, txq, smp_processor_id());
267 if (!netif_xmit_frozen_or_drv_stopped(txq))
268 ret = netdev_start_xmit(skb, dev, txq, false);
269 HARD_TX_UNLOCK(dev, txq);
270
271 local_bh_enable();
272
273 if (!dev_xmit_complete(ret))
274 kfree_skb(skb);
275
276 return ret;
277 drop:
278 atomic_long_inc(&dev->tx_dropped);
279 kfree_skb(skb);
280 return NET_XMIT_DROP;
281 }
282
283 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
284 {
285 struct net_device *dev;
286
287 rcu_read_lock();
288 dev = rcu_dereference(po->cached_dev);
289 if (likely(dev))
290 dev_hold(dev);
291 rcu_read_unlock();
292
293 return dev;
294 }
295
296 static void packet_cached_dev_assign(struct packet_sock *po,
297 struct net_device *dev)
298 {
299 rcu_assign_pointer(po->cached_dev, dev);
300 }
301
302 static void packet_cached_dev_reset(struct packet_sock *po)
303 {
304 RCU_INIT_POINTER(po->cached_dev, NULL);
305 }
306
307 static bool packet_use_direct_xmit(const struct packet_sock *po)
308 {
309 return po->xmit == packet_direct_xmit;
310 }
311
312 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
313 {
314 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
315 }
316
317 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
318 {
319 const struct net_device_ops *ops = dev->netdev_ops;
320 u16 queue_index;
321
322 if (ops->ndo_select_queue) {
323 queue_index = ops->ndo_select_queue(dev, skb, NULL,
324 __packet_pick_tx_queue);
325 queue_index = netdev_cap_txqueue(dev, queue_index);
326 } else {
327 queue_index = __packet_pick_tx_queue(dev, skb);
328 }
329
330 skb_set_queue_mapping(skb, queue_index);
331 }
332
333 /* register_prot_hook must be invoked with the po->bind_lock held,
334 * or from a context in which asynchronous accesses to the packet
335 * socket is not possible (packet_create()).
336 */
337 static void register_prot_hook(struct sock *sk)
338 {
339 struct packet_sock *po = pkt_sk(sk);
340
341 if (!po->running) {
342 if (po->fanout)
343 __fanout_link(sk, po);
344 else
345 dev_add_pack(&po->prot_hook);
346
347 sock_hold(sk);
348 po->running = 1;
349 }
350 }
351
352 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
353 * held. If the sync parameter is true, we will temporarily drop
354 * the po->bind_lock and do a synchronize_net to make sure no
355 * asynchronous packet processing paths still refer to the elements
356 * of po->prot_hook. If the sync parameter is false, it is the
357 * callers responsibility to take care of this.
358 */
359 static void __unregister_prot_hook(struct sock *sk, bool sync)
360 {
361 struct packet_sock *po = pkt_sk(sk);
362
363 po->running = 0;
364
365 if (po->fanout)
366 __fanout_unlink(sk, po);
367 else
368 __dev_remove_pack(&po->prot_hook);
369
370 __sock_put(sk);
371
372 if (sync) {
373 spin_unlock(&po->bind_lock);
374 synchronize_net();
375 spin_lock(&po->bind_lock);
376 }
377 }
378
379 static void unregister_prot_hook(struct sock *sk, bool sync)
380 {
381 struct packet_sock *po = pkt_sk(sk);
382
383 if (po->running)
384 __unregister_prot_hook(sk, sync);
385 }
386
387 static inline struct page * __pure pgv_to_page(void *addr)
388 {
389 if (is_vmalloc_addr(addr))
390 return vmalloc_to_page(addr);
391 return virt_to_page(addr);
392 }
393
394 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
395 {
396 union tpacket_uhdr h;
397
398 h.raw = frame;
399 switch (po->tp_version) {
400 case TPACKET_V1:
401 h.h1->tp_status = status;
402 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
403 break;
404 case TPACKET_V2:
405 h.h2->tp_status = status;
406 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
407 break;
408 case TPACKET_V3:
409 default:
410 WARN(1, "TPACKET version not supported.\n");
411 BUG();
412 }
413
414 smp_wmb();
415 }
416
417 static int __packet_get_status(struct packet_sock *po, void *frame)
418 {
419 union tpacket_uhdr h;
420
421 smp_rmb();
422
423 h.raw = frame;
424 switch (po->tp_version) {
425 case TPACKET_V1:
426 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
427 return h.h1->tp_status;
428 case TPACKET_V2:
429 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
430 return h.h2->tp_status;
431 case TPACKET_V3:
432 default:
433 WARN(1, "TPACKET version not supported.\n");
434 BUG();
435 return 0;
436 }
437 }
438
439 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
440 unsigned int flags)
441 {
442 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
443
444 if (shhwtstamps &&
445 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
446 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
447 return TP_STATUS_TS_RAW_HARDWARE;
448
449 if (ktime_to_timespec_cond(skb->tstamp, ts))
450 return TP_STATUS_TS_SOFTWARE;
451
452 return 0;
453 }
454
455 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
456 struct sk_buff *skb)
457 {
458 union tpacket_uhdr h;
459 struct timespec ts;
460 __u32 ts_status;
461
462 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
463 return 0;
464
465 h.raw = frame;
466 switch (po->tp_version) {
467 case TPACKET_V1:
468 h.h1->tp_sec = ts.tv_sec;
469 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
470 break;
471 case TPACKET_V2:
472 h.h2->tp_sec = ts.tv_sec;
473 h.h2->tp_nsec = ts.tv_nsec;
474 break;
475 case TPACKET_V3:
476 default:
477 WARN(1, "TPACKET version not supported.\n");
478 BUG();
479 }
480
481 /* one flush is safe, as both fields always lie on the same cacheline */
482 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
483 smp_wmb();
484
485 return ts_status;
486 }
487
488 static void *packet_lookup_frame(struct packet_sock *po,
489 struct packet_ring_buffer *rb,
490 unsigned int position,
491 int status)
492 {
493 unsigned int pg_vec_pos, frame_offset;
494 union tpacket_uhdr h;
495
496 pg_vec_pos = position / rb->frames_per_block;
497 frame_offset = position % rb->frames_per_block;
498
499 h.raw = rb->pg_vec[pg_vec_pos].buffer +
500 (frame_offset * rb->frame_size);
501
502 if (status != __packet_get_status(po, h.raw))
503 return NULL;
504
505 return h.raw;
506 }
507
508 static void *packet_current_frame(struct packet_sock *po,
509 struct packet_ring_buffer *rb,
510 int status)
511 {
512 return packet_lookup_frame(po, rb, rb->head, status);
513 }
514
515 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
516 {
517 del_timer_sync(&pkc->retire_blk_timer);
518 }
519
520 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
521 int tx_ring,
522 struct sk_buff_head *rb_queue)
523 {
524 struct tpacket_kbdq_core *pkc;
525
526 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
527 GET_PBDQC_FROM_RB(&po->rx_ring);
528
529 spin_lock_bh(&rb_queue->lock);
530 pkc->delete_blk_timer = 1;
531 spin_unlock_bh(&rb_queue->lock);
532
533 prb_del_retire_blk_timer(pkc);
534 }
535
536 static void prb_init_blk_timer(struct packet_sock *po,
537 struct tpacket_kbdq_core *pkc,
538 void (*func) (unsigned long))
539 {
540 init_timer(&pkc->retire_blk_timer);
541 pkc->retire_blk_timer.data = (long)po;
542 pkc->retire_blk_timer.function = func;
543 pkc->retire_blk_timer.expires = jiffies;
544 }
545
546 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
547 {
548 struct tpacket_kbdq_core *pkc;
549
550 if (tx_ring)
551 BUG();
552
553 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
554 GET_PBDQC_FROM_RB(&po->rx_ring);
555 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
556 }
557
558 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
559 int blk_size_in_bytes)
560 {
561 struct net_device *dev;
562 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
563 struct ethtool_cmd ecmd;
564 int err;
565 u32 speed;
566
567 rtnl_lock();
568 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
569 if (unlikely(!dev)) {
570 rtnl_unlock();
571 return DEFAULT_PRB_RETIRE_TOV;
572 }
573 err = __ethtool_get_settings(dev, &ecmd);
574 speed = ethtool_cmd_speed(&ecmd);
575 rtnl_unlock();
576 if (!err) {
577 /*
578 * If the link speed is so slow you don't really
579 * need to worry about perf anyways
580 */
581 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
582 return DEFAULT_PRB_RETIRE_TOV;
583 } else {
584 msec = 1;
585 div = speed / 1000;
586 }
587 }
588
589 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
590
591 if (div)
592 mbits /= div;
593
594 tmo = mbits * msec;
595
596 if (div)
597 return tmo+1;
598 return tmo;
599 }
600
601 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
602 union tpacket_req_u *req_u)
603 {
604 p1->feature_req_word = req_u->req3.tp_feature_req_word;
605 }
606
607 static void init_prb_bdqc(struct packet_sock *po,
608 struct packet_ring_buffer *rb,
609 struct pgv *pg_vec,
610 union tpacket_req_u *req_u, int tx_ring)
611 {
612 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
613 struct tpacket_block_desc *pbd;
614
615 memset(p1, 0x0, sizeof(*p1));
616
617 p1->knxt_seq_num = 1;
618 p1->pkbdq = pg_vec;
619 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
620 p1->pkblk_start = pg_vec[0].buffer;
621 p1->kblk_size = req_u->req3.tp_block_size;
622 p1->knum_blocks = req_u->req3.tp_block_nr;
623 p1->hdrlen = po->tp_hdrlen;
624 p1->version = po->tp_version;
625 p1->last_kactive_blk_num = 0;
626 po->stats.stats3.tp_freeze_q_cnt = 0;
627 if (req_u->req3.tp_retire_blk_tov)
628 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
629 else
630 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
631 req_u->req3.tp_block_size);
632 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
633 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
634
635 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
636 prb_init_ft_ops(p1, req_u);
637 prb_setup_retire_blk_timer(po, tx_ring);
638 prb_open_block(p1, pbd);
639 }
640
641 /* Do NOT update the last_blk_num first.
642 * Assumes sk_buff_head lock is held.
643 */
644 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
645 {
646 mod_timer(&pkc->retire_blk_timer,
647 jiffies + pkc->tov_in_jiffies);
648 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
649 }
650
651 /*
652 * Timer logic:
653 * 1) We refresh the timer only when we open a block.
654 * By doing this we don't waste cycles refreshing the timer
655 * on packet-by-packet basis.
656 *
657 * With a 1MB block-size, on a 1Gbps line, it will take
658 * i) ~8 ms to fill a block + ii) memcpy etc.
659 * In this cut we are not accounting for the memcpy time.
660 *
661 * So, if the user sets the 'tmo' to 10ms then the timer
662 * will never fire while the block is still getting filled
663 * (which is what we want). However, the user could choose
664 * to close a block early and that's fine.
665 *
666 * But when the timer does fire, we check whether or not to refresh it.
667 * Since the tmo granularity is in msecs, it is not too expensive
668 * to refresh the timer, lets say every '8' msecs.
669 * Either the user can set the 'tmo' or we can derive it based on
670 * a) line-speed and b) block-size.
671 * prb_calc_retire_blk_tmo() calculates the tmo.
672 *
673 */
674 static void prb_retire_rx_blk_timer_expired(unsigned long data)
675 {
676 struct packet_sock *po = (struct packet_sock *)data;
677 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
678 unsigned int frozen;
679 struct tpacket_block_desc *pbd;
680
681 spin_lock(&po->sk.sk_receive_queue.lock);
682
683 frozen = prb_queue_frozen(pkc);
684 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
685
686 if (unlikely(pkc->delete_blk_timer))
687 goto out;
688
689 /* We only need to plug the race when the block is partially filled.
690 * tpacket_rcv:
691 * lock(); increment BLOCK_NUM_PKTS; unlock()
692 * copy_bits() is in progress ...
693 * timer fires on other cpu:
694 * we can't retire the current block because copy_bits
695 * is in progress.
696 *
697 */
698 if (BLOCK_NUM_PKTS(pbd)) {
699 while (atomic_read(&pkc->blk_fill_in_prog)) {
700 /* Waiting for skb_copy_bits to finish... */
701 cpu_relax();
702 }
703 }
704
705 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
706 if (!frozen) {
707 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
708 if (!prb_dispatch_next_block(pkc, po))
709 goto refresh_timer;
710 else
711 goto out;
712 } else {
713 /* Case 1. Queue was frozen because user-space was
714 * lagging behind.
715 */
716 if (prb_curr_blk_in_use(pkc, pbd)) {
717 /*
718 * Ok, user-space is still behind.
719 * So just refresh the timer.
720 */
721 goto refresh_timer;
722 } else {
723 /* Case 2. queue was frozen,user-space caught up,
724 * now the link went idle && the timer fired.
725 * We don't have a block to close.So we open this
726 * block and restart the timer.
727 * opening a block thaws the queue,restarts timer
728 * Thawing/timer-refresh is a side effect.
729 */
730 prb_open_block(pkc, pbd);
731 goto out;
732 }
733 }
734 }
735
736 refresh_timer:
737 _prb_refresh_rx_retire_blk_timer(pkc);
738
739 out:
740 spin_unlock(&po->sk.sk_receive_queue.lock);
741 }
742
743 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
744 struct tpacket_block_desc *pbd1, __u32 status)
745 {
746 /* Flush everything minus the block header */
747
748 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
749 u8 *start, *end;
750
751 start = (u8 *)pbd1;
752
753 /* Skip the block header(we know header WILL fit in 4K) */
754 start += PAGE_SIZE;
755
756 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
757 for (; start < end; start += PAGE_SIZE)
758 flush_dcache_page(pgv_to_page(start));
759
760 smp_wmb();
761 #endif
762
763 /* Now update the block status. */
764
765 BLOCK_STATUS(pbd1) = status;
766
767 /* Flush the block header */
768
769 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
770 start = (u8 *)pbd1;
771 flush_dcache_page(pgv_to_page(start));
772
773 smp_wmb();
774 #endif
775 }
776
777 /*
778 * Side effect:
779 *
780 * 1) flush the block
781 * 2) Increment active_blk_num
782 *
783 * Note:We DONT refresh the timer on purpose.
784 * Because almost always the next block will be opened.
785 */
786 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
787 struct tpacket_block_desc *pbd1,
788 struct packet_sock *po, unsigned int stat)
789 {
790 __u32 status = TP_STATUS_USER | stat;
791
792 struct tpacket3_hdr *last_pkt;
793 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
794 struct sock *sk = &po->sk;
795
796 if (po->stats.stats3.tp_drops)
797 status |= TP_STATUS_LOSING;
798
799 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
800 last_pkt->tp_next_offset = 0;
801
802 /* Get the ts of the last pkt */
803 if (BLOCK_NUM_PKTS(pbd1)) {
804 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
805 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
806 } else {
807 /* Ok, we tmo'd - so get the current time */
808 struct timespec ts;
809 getnstimeofday(&ts);
810 h1->ts_last_pkt.ts_sec = ts.tv_sec;
811 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
812 }
813
814 smp_wmb();
815
816 /* Flush the block */
817 prb_flush_block(pkc1, pbd1, status);
818
819 sk->sk_data_ready(sk);
820
821 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
822 }
823
824 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
825 {
826 pkc->reset_pending_on_curr_blk = 0;
827 }
828
829 /*
830 * Side effect of opening a block:
831 *
832 * 1) prb_queue is thawed.
833 * 2) retire_blk_timer is refreshed.
834 *
835 */
836 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
837 struct tpacket_block_desc *pbd1)
838 {
839 struct timespec ts;
840 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
841
842 smp_rmb();
843
844 /* We could have just memset this but we will lose the
845 * flexibility of making the priv area sticky
846 */
847
848 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
849 BLOCK_NUM_PKTS(pbd1) = 0;
850 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
851
852 getnstimeofday(&ts);
853
854 h1->ts_first_pkt.ts_sec = ts.tv_sec;
855 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
856
857 pkc1->pkblk_start = (char *)pbd1;
858 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
859
860 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
861 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
862
863 pbd1->version = pkc1->version;
864 pkc1->prev = pkc1->nxt_offset;
865 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
866
867 prb_thaw_queue(pkc1);
868 _prb_refresh_rx_retire_blk_timer(pkc1);
869
870 smp_wmb();
871 }
872
873 /*
874 * Queue freeze logic:
875 * 1) Assume tp_block_nr = 8 blocks.
876 * 2) At time 't0', user opens Rx ring.
877 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
878 * 4) user-space is either sleeping or processing block '0'.
879 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
880 * it will close block-7,loop around and try to fill block '0'.
881 * call-flow:
882 * __packet_lookup_frame_in_block
883 * prb_retire_current_block()
884 * prb_dispatch_next_block()
885 * |->(BLOCK_STATUS == USER) evaluates to true
886 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
887 * 6) Now there are two cases:
888 * 6.1) Link goes idle right after the queue is frozen.
889 * But remember, the last open_block() refreshed the timer.
890 * When this timer expires,it will refresh itself so that we can
891 * re-open block-0 in near future.
892 * 6.2) Link is busy and keeps on receiving packets. This is a simple
893 * case and __packet_lookup_frame_in_block will check if block-0
894 * is free and can now be re-used.
895 */
896 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
897 struct packet_sock *po)
898 {
899 pkc->reset_pending_on_curr_blk = 1;
900 po->stats.stats3.tp_freeze_q_cnt++;
901 }
902
903 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
904
905 /*
906 * If the next block is free then we will dispatch it
907 * and return a good offset.
908 * Else, we will freeze the queue.
909 * So, caller must check the return value.
910 */
911 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
912 struct packet_sock *po)
913 {
914 struct tpacket_block_desc *pbd;
915
916 smp_rmb();
917
918 /* 1. Get current block num */
919 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
920
921 /* 2. If this block is currently in_use then freeze the queue */
922 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
923 prb_freeze_queue(pkc, po);
924 return NULL;
925 }
926
927 /*
928 * 3.
929 * open this block and return the offset where the first packet
930 * needs to get stored.
931 */
932 prb_open_block(pkc, pbd);
933 return (void *)pkc->nxt_offset;
934 }
935
936 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
937 struct packet_sock *po, unsigned int status)
938 {
939 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
940
941 /* retire/close the current block */
942 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
943 /*
944 * Plug the case where copy_bits() is in progress on
945 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
946 * have space to copy the pkt in the current block and
947 * called prb_retire_current_block()
948 *
949 * We don't need to worry about the TMO case because
950 * the timer-handler already handled this case.
951 */
952 if (!(status & TP_STATUS_BLK_TMO)) {
953 while (atomic_read(&pkc->blk_fill_in_prog)) {
954 /* Waiting for skb_copy_bits to finish... */
955 cpu_relax();
956 }
957 }
958 prb_close_block(pkc, pbd, po, status);
959 return;
960 }
961 }
962
963 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
964 struct tpacket_block_desc *pbd)
965 {
966 return TP_STATUS_USER & BLOCK_STATUS(pbd);
967 }
968
969 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
970 {
971 return pkc->reset_pending_on_curr_blk;
972 }
973
974 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
975 {
976 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
977 atomic_dec(&pkc->blk_fill_in_prog);
978 }
979
980 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
981 struct tpacket3_hdr *ppd)
982 {
983 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
984 }
985
986 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
987 struct tpacket3_hdr *ppd)
988 {
989 ppd->hv1.tp_rxhash = 0;
990 }
991
992 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
993 struct tpacket3_hdr *ppd)
994 {
995 if (skb_vlan_tag_present(pkc->skb)) {
996 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
997 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
998 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
999 } else {
1000 ppd->hv1.tp_vlan_tci = 0;
1001 ppd->hv1.tp_vlan_tpid = 0;
1002 ppd->tp_status = TP_STATUS_AVAILABLE;
1003 }
1004 }
1005
1006 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1007 struct tpacket3_hdr *ppd)
1008 {
1009 ppd->hv1.tp_padding = 0;
1010 prb_fill_vlan_info(pkc, ppd);
1011
1012 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1013 prb_fill_rxhash(pkc, ppd);
1014 else
1015 prb_clear_rxhash(pkc, ppd);
1016 }
1017
1018 static void prb_fill_curr_block(char *curr,
1019 struct tpacket_kbdq_core *pkc,
1020 struct tpacket_block_desc *pbd,
1021 unsigned int len)
1022 {
1023 struct tpacket3_hdr *ppd;
1024
1025 ppd = (struct tpacket3_hdr *)curr;
1026 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1027 pkc->prev = curr;
1028 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1029 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1030 BLOCK_NUM_PKTS(pbd) += 1;
1031 atomic_inc(&pkc->blk_fill_in_prog);
1032 prb_run_all_ft_ops(pkc, ppd);
1033 }
1034
1035 /* Assumes caller has the sk->rx_queue.lock */
1036 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1037 struct sk_buff *skb,
1038 int status,
1039 unsigned int len
1040 )
1041 {
1042 struct tpacket_kbdq_core *pkc;
1043 struct tpacket_block_desc *pbd;
1044 char *curr, *end;
1045
1046 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1047 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1048
1049 /* Queue is frozen when user space is lagging behind */
1050 if (prb_queue_frozen(pkc)) {
1051 /*
1052 * Check if that last block which caused the queue to freeze,
1053 * is still in_use by user-space.
1054 */
1055 if (prb_curr_blk_in_use(pkc, pbd)) {
1056 /* Can't record this packet */
1057 return NULL;
1058 } else {
1059 /*
1060 * Ok, the block was released by user-space.
1061 * Now let's open that block.
1062 * opening a block also thaws the queue.
1063 * Thawing is a side effect.
1064 */
1065 prb_open_block(pkc, pbd);
1066 }
1067 }
1068
1069 smp_mb();
1070 curr = pkc->nxt_offset;
1071 pkc->skb = skb;
1072 end = (char *)pbd + pkc->kblk_size;
1073
1074 /* first try the current block */
1075 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1076 prb_fill_curr_block(curr, pkc, pbd, len);
1077 return (void *)curr;
1078 }
1079
1080 /* Ok, close the current block */
1081 prb_retire_current_block(pkc, po, 0);
1082
1083 /* Now, try to dispatch the next block */
1084 curr = (char *)prb_dispatch_next_block(pkc, po);
1085 if (curr) {
1086 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1087 prb_fill_curr_block(curr, pkc, pbd, len);
1088 return (void *)curr;
1089 }
1090
1091 /*
1092 * No free blocks are available.user_space hasn't caught up yet.
1093 * Queue was just frozen and now this packet will get dropped.
1094 */
1095 return NULL;
1096 }
1097
1098 static void *packet_current_rx_frame(struct packet_sock *po,
1099 struct sk_buff *skb,
1100 int status, unsigned int len)
1101 {
1102 char *curr = NULL;
1103 switch (po->tp_version) {
1104 case TPACKET_V1:
1105 case TPACKET_V2:
1106 curr = packet_lookup_frame(po, &po->rx_ring,
1107 po->rx_ring.head, status);
1108 return curr;
1109 case TPACKET_V3:
1110 return __packet_lookup_frame_in_block(po, skb, status, len);
1111 default:
1112 WARN(1, "TPACKET version not supported\n");
1113 BUG();
1114 return NULL;
1115 }
1116 }
1117
1118 static void *prb_lookup_block(struct packet_sock *po,
1119 struct packet_ring_buffer *rb,
1120 unsigned int idx,
1121 int status)
1122 {
1123 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1124 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1125
1126 if (status != BLOCK_STATUS(pbd))
1127 return NULL;
1128 return pbd;
1129 }
1130
1131 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1132 {
1133 unsigned int prev;
1134 if (rb->prb_bdqc.kactive_blk_num)
1135 prev = rb->prb_bdqc.kactive_blk_num-1;
1136 else
1137 prev = rb->prb_bdqc.knum_blocks-1;
1138 return prev;
1139 }
1140
1141 /* Assumes caller has held the rx_queue.lock */
1142 static void *__prb_previous_block(struct packet_sock *po,
1143 struct packet_ring_buffer *rb,
1144 int status)
1145 {
1146 unsigned int previous = prb_previous_blk_num(rb);
1147 return prb_lookup_block(po, rb, previous, status);
1148 }
1149
1150 static void *packet_previous_rx_frame(struct packet_sock *po,
1151 struct packet_ring_buffer *rb,
1152 int status)
1153 {
1154 if (po->tp_version <= TPACKET_V2)
1155 return packet_previous_frame(po, rb, status);
1156
1157 return __prb_previous_block(po, rb, status);
1158 }
1159
1160 static void packet_increment_rx_head(struct packet_sock *po,
1161 struct packet_ring_buffer *rb)
1162 {
1163 switch (po->tp_version) {
1164 case TPACKET_V1:
1165 case TPACKET_V2:
1166 return packet_increment_head(rb);
1167 case TPACKET_V3:
1168 default:
1169 WARN(1, "TPACKET version not supported.\n");
1170 BUG();
1171 return;
1172 }
1173 }
1174
1175 static void *packet_previous_frame(struct packet_sock *po,
1176 struct packet_ring_buffer *rb,
1177 int status)
1178 {
1179 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1180 return packet_lookup_frame(po, rb, previous, status);
1181 }
1182
1183 static void packet_increment_head(struct packet_ring_buffer *buff)
1184 {
1185 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1186 }
1187
1188 static void packet_inc_pending(struct packet_ring_buffer *rb)
1189 {
1190 this_cpu_inc(*rb->pending_refcnt);
1191 }
1192
1193 static void packet_dec_pending(struct packet_ring_buffer *rb)
1194 {
1195 this_cpu_dec(*rb->pending_refcnt);
1196 }
1197
1198 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1199 {
1200 unsigned int refcnt = 0;
1201 int cpu;
1202
1203 /* We don't use pending refcount in rx_ring. */
1204 if (rb->pending_refcnt == NULL)
1205 return 0;
1206
1207 for_each_possible_cpu(cpu)
1208 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1209
1210 return refcnt;
1211 }
1212
1213 static int packet_alloc_pending(struct packet_sock *po)
1214 {
1215 po->rx_ring.pending_refcnt = NULL;
1216
1217 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1218 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1219 return -ENOBUFS;
1220
1221 return 0;
1222 }
1223
1224 static void packet_free_pending(struct packet_sock *po)
1225 {
1226 free_percpu(po->tx_ring.pending_refcnt);
1227 }
1228
1229 static bool packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1230 {
1231 struct sock *sk = &po->sk;
1232 bool has_room;
1233
1234 if (po->prot_hook.func != tpacket_rcv)
1235 return (atomic_read(&sk->sk_rmem_alloc) + skb->truesize)
1236 <= sk->sk_rcvbuf;
1237
1238 spin_lock(&sk->sk_receive_queue.lock);
1239 if (po->tp_version == TPACKET_V3)
1240 has_room = prb_lookup_block(po, &po->rx_ring,
1241 po->rx_ring.prb_bdqc.kactive_blk_num,
1242 TP_STATUS_KERNEL);
1243 else
1244 has_room = packet_lookup_frame(po, &po->rx_ring,
1245 po->rx_ring.head,
1246 TP_STATUS_KERNEL);
1247 spin_unlock(&sk->sk_receive_queue.lock);
1248
1249 return has_room;
1250 }
1251
1252 static void packet_sock_destruct(struct sock *sk)
1253 {
1254 skb_queue_purge(&sk->sk_error_queue);
1255
1256 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1257 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1258
1259 if (!sock_flag(sk, SOCK_DEAD)) {
1260 pr_err("Attempt to release alive packet socket: %p\n", sk);
1261 return;
1262 }
1263
1264 sk_refcnt_debug_dec(sk);
1265 }
1266
1267 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1268 {
1269 int x = atomic_read(&f->rr_cur) + 1;
1270
1271 if (x >= num)
1272 x = 0;
1273
1274 return x;
1275 }
1276
1277 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1278 struct sk_buff *skb,
1279 unsigned int num)
1280 {
1281 return reciprocal_scale(skb_get_hash(skb), num);
1282 }
1283
1284 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1285 struct sk_buff *skb,
1286 unsigned int num)
1287 {
1288 int cur, old;
1289
1290 cur = atomic_read(&f->rr_cur);
1291 while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1292 fanout_rr_next(f, num))) != cur)
1293 cur = old;
1294 return cur;
1295 }
1296
1297 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1298 struct sk_buff *skb,
1299 unsigned int num)
1300 {
1301 return smp_processor_id() % num;
1302 }
1303
1304 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1305 struct sk_buff *skb,
1306 unsigned int num)
1307 {
1308 return prandom_u32_max(num);
1309 }
1310
1311 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1312 struct sk_buff *skb,
1313 unsigned int idx, unsigned int skip,
1314 unsigned int num)
1315 {
1316 unsigned int i, j;
1317
1318 i = j = min_t(int, f->next[idx], num - 1);
1319 do {
1320 if (i != skip && packet_rcv_has_room(pkt_sk(f->arr[i]), skb)) {
1321 if (i != j)
1322 f->next[idx] = i;
1323 return i;
1324 }
1325 if (++i == num)
1326 i = 0;
1327 } while (i != j);
1328
1329 return idx;
1330 }
1331
1332 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1333 struct sk_buff *skb,
1334 unsigned int num)
1335 {
1336 return skb_get_queue_mapping(skb) % num;
1337 }
1338
1339 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1340 {
1341 return f->flags & (flag >> 8);
1342 }
1343
1344 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1345 struct packet_type *pt, struct net_device *orig_dev)
1346 {
1347 struct packet_fanout *f = pt->af_packet_priv;
1348 unsigned int num = f->num_members;
1349 struct packet_sock *po;
1350 unsigned int idx;
1351
1352 if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1353 !num) {
1354 kfree_skb(skb);
1355 return 0;
1356 }
1357
1358 switch (f->type) {
1359 case PACKET_FANOUT_HASH:
1360 default:
1361 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1362 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1363 if (!skb)
1364 return 0;
1365 }
1366 idx = fanout_demux_hash(f, skb, num);
1367 break;
1368 case PACKET_FANOUT_LB:
1369 idx = fanout_demux_lb(f, skb, num);
1370 break;
1371 case PACKET_FANOUT_CPU:
1372 idx = fanout_demux_cpu(f, skb, num);
1373 break;
1374 case PACKET_FANOUT_RND:
1375 idx = fanout_demux_rnd(f, skb, num);
1376 break;
1377 case PACKET_FANOUT_QM:
1378 idx = fanout_demux_qm(f, skb, num);
1379 break;
1380 case PACKET_FANOUT_ROLLOVER:
1381 idx = fanout_demux_rollover(f, skb, 0, (unsigned int) -1, num);
1382 break;
1383 }
1384
1385 po = pkt_sk(f->arr[idx]);
1386 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER) &&
1387 unlikely(!packet_rcv_has_room(po, skb))) {
1388 idx = fanout_demux_rollover(f, skb, idx, idx, num);
1389 po = pkt_sk(f->arr[idx]);
1390 }
1391
1392 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1393 }
1394
1395 DEFINE_MUTEX(fanout_mutex);
1396 EXPORT_SYMBOL_GPL(fanout_mutex);
1397 static LIST_HEAD(fanout_list);
1398
1399 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1400 {
1401 struct packet_fanout *f = po->fanout;
1402
1403 spin_lock(&f->lock);
1404 f->arr[f->num_members] = sk;
1405 smp_wmb();
1406 f->num_members++;
1407 spin_unlock(&f->lock);
1408 }
1409
1410 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1411 {
1412 struct packet_fanout *f = po->fanout;
1413 int i;
1414
1415 spin_lock(&f->lock);
1416 for (i = 0; i < f->num_members; i++) {
1417 if (f->arr[i] == sk)
1418 break;
1419 }
1420 BUG_ON(i >= f->num_members);
1421 f->arr[i] = f->arr[f->num_members - 1];
1422 f->num_members--;
1423 spin_unlock(&f->lock);
1424 }
1425
1426 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1427 {
1428 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1429 return true;
1430
1431 return false;
1432 }
1433
1434 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1435 {
1436 struct packet_sock *po = pkt_sk(sk);
1437 struct packet_fanout *f, *match;
1438 u8 type = type_flags & 0xff;
1439 u8 flags = type_flags >> 8;
1440 int err;
1441
1442 switch (type) {
1443 case PACKET_FANOUT_ROLLOVER:
1444 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1445 return -EINVAL;
1446 case PACKET_FANOUT_HASH:
1447 case PACKET_FANOUT_LB:
1448 case PACKET_FANOUT_CPU:
1449 case PACKET_FANOUT_RND:
1450 case PACKET_FANOUT_QM:
1451 break;
1452 default:
1453 return -EINVAL;
1454 }
1455
1456 if (!po->running)
1457 return -EINVAL;
1458
1459 if (po->fanout)
1460 return -EALREADY;
1461
1462 mutex_lock(&fanout_mutex);
1463 match = NULL;
1464 list_for_each_entry(f, &fanout_list, list) {
1465 if (f->id == id &&
1466 read_pnet(&f->net) == sock_net(sk)) {
1467 match = f;
1468 break;
1469 }
1470 }
1471 err = -EINVAL;
1472 if (match && match->flags != flags)
1473 goto out;
1474 if (!match) {
1475 err = -ENOMEM;
1476 match = kzalloc(sizeof(*match), GFP_KERNEL);
1477 if (!match)
1478 goto out;
1479 write_pnet(&match->net, sock_net(sk));
1480 match->id = id;
1481 match->type = type;
1482 match->flags = flags;
1483 atomic_set(&match->rr_cur, 0);
1484 INIT_LIST_HEAD(&match->list);
1485 spin_lock_init(&match->lock);
1486 atomic_set(&match->sk_ref, 0);
1487 match->prot_hook.type = po->prot_hook.type;
1488 match->prot_hook.dev = po->prot_hook.dev;
1489 match->prot_hook.func = packet_rcv_fanout;
1490 match->prot_hook.af_packet_priv = match;
1491 match->prot_hook.id_match = match_fanout_group;
1492 dev_add_pack(&match->prot_hook);
1493 list_add(&match->list, &fanout_list);
1494 }
1495 err = -EINVAL;
1496 if (match->type == type &&
1497 match->prot_hook.type == po->prot_hook.type &&
1498 match->prot_hook.dev == po->prot_hook.dev) {
1499 err = -ENOSPC;
1500 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1501 __dev_remove_pack(&po->prot_hook);
1502 po->fanout = match;
1503 atomic_inc(&match->sk_ref);
1504 __fanout_link(sk, po);
1505 err = 0;
1506 }
1507 }
1508 out:
1509 mutex_unlock(&fanout_mutex);
1510 return err;
1511 }
1512
1513 static void fanout_release(struct sock *sk)
1514 {
1515 struct packet_sock *po = pkt_sk(sk);
1516 struct packet_fanout *f;
1517
1518 f = po->fanout;
1519 if (!f)
1520 return;
1521
1522 mutex_lock(&fanout_mutex);
1523 po->fanout = NULL;
1524
1525 if (atomic_dec_and_test(&f->sk_ref)) {
1526 list_del(&f->list);
1527 dev_remove_pack(&f->prot_hook);
1528 kfree(f);
1529 }
1530 mutex_unlock(&fanout_mutex);
1531 }
1532
1533 static const struct proto_ops packet_ops;
1534
1535 static const struct proto_ops packet_ops_spkt;
1536
1537 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1538 struct packet_type *pt, struct net_device *orig_dev)
1539 {
1540 struct sock *sk;
1541 struct sockaddr_pkt *spkt;
1542
1543 /*
1544 * When we registered the protocol we saved the socket in the data
1545 * field for just this event.
1546 */
1547
1548 sk = pt->af_packet_priv;
1549
1550 /*
1551 * Yank back the headers [hope the device set this
1552 * right or kerboom...]
1553 *
1554 * Incoming packets have ll header pulled,
1555 * push it back.
1556 *
1557 * For outgoing ones skb->data == skb_mac_header(skb)
1558 * so that this procedure is noop.
1559 */
1560
1561 if (skb->pkt_type == PACKET_LOOPBACK)
1562 goto out;
1563
1564 if (!net_eq(dev_net(dev), sock_net(sk)))
1565 goto out;
1566
1567 skb = skb_share_check(skb, GFP_ATOMIC);
1568 if (skb == NULL)
1569 goto oom;
1570
1571 /* drop any routing info */
1572 skb_dst_drop(skb);
1573
1574 /* drop conntrack reference */
1575 nf_reset(skb);
1576
1577 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1578
1579 skb_push(skb, skb->data - skb_mac_header(skb));
1580
1581 /*
1582 * The SOCK_PACKET socket receives _all_ frames.
1583 */
1584
1585 spkt->spkt_family = dev->type;
1586 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1587 spkt->spkt_protocol = skb->protocol;
1588
1589 /*
1590 * Charge the memory to the socket. This is done specifically
1591 * to prevent sockets using all the memory up.
1592 */
1593
1594 if (sock_queue_rcv_skb(sk, skb) == 0)
1595 return 0;
1596
1597 out:
1598 kfree_skb(skb);
1599 oom:
1600 return 0;
1601 }
1602
1603
1604 /*
1605 * Output a raw packet to a device layer. This bypasses all the other
1606 * protocol layers and you must therefore supply it with a complete frame
1607 */
1608
1609 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1610 struct msghdr *msg, size_t len)
1611 {
1612 struct sock *sk = sock->sk;
1613 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1614 struct sk_buff *skb = NULL;
1615 struct net_device *dev;
1616 __be16 proto = 0;
1617 int err;
1618 int extra_len = 0;
1619
1620 /*
1621 * Get and verify the address.
1622 */
1623
1624 if (saddr) {
1625 if (msg->msg_namelen < sizeof(struct sockaddr))
1626 return -EINVAL;
1627 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1628 proto = saddr->spkt_protocol;
1629 } else
1630 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1631
1632 /*
1633 * Find the device first to size check it
1634 */
1635
1636 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1637 retry:
1638 rcu_read_lock();
1639 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1640 err = -ENODEV;
1641 if (dev == NULL)
1642 goto out_unlock;
1643
1644 err = -ENETDOWN;
1645 if (!(dev->flags & IFF_UP))
1646 goto out_unlock;
1647
1648 /*
1649 * You may not queue a frame bigger than the mtu. This is the lowest level
1650 * raw protocol and you must do your own fragmentation at this level.
1651 */
1652
1653 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1654 if (!netif_supports_nofcs(dev)) {
1655 err = -EPROTONOSUPPORT;
1656 goto out_unlock;
1657 }
1658 extra_len = 4; /* We're doing our own CRC */
1659 }
1660
1661 err = -EMSGSIZE;
1662 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1663 goto out_unlock;
1664
1665 if (!skb) {
1666 size_t reserved = LL_RESERVED_SPACE(dev);
1667 int tlen = dev->needed_tailroom;
1668 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1669
1670 rcu_read_unlock();
1671 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1672 if (skb == NULL)
1673 return -ENOBUFS;
1674 /* FIXME: Save some space for broken drivers that write a hard
1675 * header at transmission time by themselves. PPP is the notable
1676 * one here. This should really be fixed at the driver level.
1677 */
1678 skb_reserve(skb, reserved);
1679 skb_reset_network_header(skb);
1680
1681 /* Try to align data part correctly */
1682 if (hhlen) {
1683 skb->data -= hhlen;
1684 skb->tail -= hhlen;
1685 if (len < hhlen)
1686 skb_reset_network_header(skb);
1687 }
1688 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1689 if (err)
1690 goto out_free;
1691 goto retry;
1692 }
1693
1694 if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1695 /* Earlier code assumed this would be a VLAN pkt,
1696 * double-check this now that we have the actual
1697 * packet in hand.
1698 */
1699 struct ethhdr *ehdr;
1700 skb_reset_mac_header(skb);
1701 ehdr = eth_hdr(skb);
1702 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1703 err = -EMSGSIZE;
1704 goto out_unlock;
1705 }
1706 }
1707
1708 skb->protocol = proto;
1709 skb->dev = dev;
1710 skb->priority = sk->sk_priority;
1711 skb->mark = sk->sk_mark;
1712
1713 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1714
1715 if (unlikely(extra_len == 4))
1716 skb->no_fcs = 1;
1717
1718 skb_probe_transport_header(skb, 0);
1719
1720 dev_queue_xmit(skb);
1721 rcu_read_unlock();
1722 return len;
1723
1724 out_unlock:
1725 rcu_read_unlock();
1726 out_free:
1727 kfree_skb(skb);
1728 return err;
1729 }
1730
1731 static unsigned int run_filter(const struct sk_buff *skb,
1732 const struct sock *sk,
1733 unsigned int res)
1734 {
1735 struct sk_filter *filter;
1736
1737 rcu_read_lock();
1738 filter = rcu_dereference(sk->sk_filter);
1739 if (filter != NULL)
1740 res = SK_RUN_FILTER(filter, skb);
1741 rcu_read_unlock();
1742
1743 return res;
1744 }
1745
1746 /*
1747 * This function makes lazy skb cloning in hope that most of packets
1748 * are discarded by BPF.
1749 *
1750 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1751 * and skb->cb are mangled. It works because (and until) packets
1752 * falling here are owned by current CPU. Output packets are cloned
1753 * by dev_queue_xmit_nit(), input packets are processed by net_bh
1754 * sequencially, so that if we return skb to original state on exit,
1755 * we will not harm anyone.
1756 */
1757
1758 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1759 struct packet_type *pt, struct net_device *orig_dev)
1760 {
1761 struct sock *sk;
1762 struct sockaddr_ll *sll;
1763 struct packet_sock *po;
1764 u8 *skb_head = skb->data;
1765 int skb_len = skb->len;
1766 unsigned int snaplen, res;
1767
1768 if (skb->pkt_type == PACKET_LOOPBACK)
1769 goto drop;
1770
1771 sk = pt->af_packet_priv;
1772 po = pkt_sk(sk);
1773
1774 if (!net_eq(dev_net(dev), sock_net(sk)))
1775 goto drop;
1776
1777 skb->dev = dev;
1778
1779 if (dev->header_ops) {
1780 /* The device has an explicit notion of ll header,
1781 * exported to higher levels.
1782 *
1783 * Otherwise, the device hides details of its frame
1784 * structure, so that corresponding packet head is
1785 * never delivered to user.
1786 */
1787 if (sk->sk_type != SOCK_DGRAM)
1788 skb_push(skb, skb->data - skb_mac_header(skb));
1789 else if (skb->pkt_type == PACKET_OUTGOING) {
1790 /* Special case: outgoing packets have ll header at head */
1791 skb_pull(skb, skb_network_offset(skb));
1792 }
1793 }
1794
1795 snaplen = skb->len;
1796
1797 res = run_filter(skb, sk, snaplen);
1798 if (!res)
1799 goto drop_n_restore;
1800 if (snaplen > res)
1801 snaplen = res;
1802
1803 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1804 goto drop_n_acct;
1805
1806 if (skb_shared(skb)) {
1807 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1808 if (nskb == NULL)
1809 goto drop_n_acct;
1810
1811 if (skb_head != skb->data) {
1812 skb->data = skb_head;
1813 skb->len = skb_len;
1814 }
1815 consume_skb(skb);
1816 skb = nskb;
1817 }
1818
1819 BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1820 sizeof(skb->cb));
1821
1822 sll = &PACKET_SKB_CB(skb)->sa.ll;
1823 sll->sll_hatype = dev->type;
1824 sll->sll_pkttype = skb->pkt_type;
1825 if (unlikely(po->origdev))
1826 sll->sll_ifindex = orig_dev->ifindex;
1827 else
1828 sll->sll_ifindex = dev->ifindex;
1829
1830 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1831
1832 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
1833 * Use their space for storing the original skb length.
1834 */
1835 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
1836
1837 if (pskb_trim(skb, snaplen))
1838 goto drop_n_acct;
1839
1840 skb_set_owner_r(skb, sk);
1841 skb->dev = NULL;
1842 skb_dst_drop(skb);
1843
1844 /* drop conntrack reference */
1845 nf_reset(skb);
1846
1847 spin_lock(&sk->sk_receive_queue.lock);
1848 po->stats.stats1.tp_packets++;
1849 skb->dropcount = atomic_read(&sk->sk_drops);
1850 __skb_queue_tail(&sk->sk_receive_queue, skb);
1851 spin_unlock(&sk->sk_receive_queue.lock);
1852 sk->sk_data_ready(sk);
1853 return 0;
1854
1855 drop_n_acct:
1856 spin_lock(&sk->sk_receive_queue.lock);
1857 po->stats.stats1.tp_drops++;
1858 atomic_inc(&sk->sk_drops);
1859 spin_unlock(&sk->sk_receive_queue.lock);
1860
1861 drop_n_restore:
1862 if (skb_head != skb->data && skb_shared(skb)) {
1863 skb->data = skb_head;
1864 skb->len = skb_len;
1865 }
1866 drop:
1867 consume_skb(skb);
1868 return 0;
1869 }
1870
1871 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1872 struct packet_type *pt, struct net_device *orig_dev)
1873 {
1874 struct sock *sk;
1875 struct packet_sock *po;
1876 struct sockaddr_ll *sll;
1877 union tpacket_uhdr h;
1878 u8 *skb_head = skb->data;
1879 int skb_len = skb->len;
1880 unsigned int snaplen, res;
1881 unsigned long status = TP_STATUS_USER;
1882 unsigned short macoff, netoff, hdrlen;
1883 struct sk_buff *copy_skb = NULL;
1884 struct timespec ts;
1885 __u32 ts_status;
1886
1887 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
1888 * We may add members to them until current aligned size without forcing
1889 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
1890 */
1891 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
1892 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
1893
1894 if (skb->pkt_type == PACKET_LOOPBACK)
1895 goto drop;
1896
1897 sk = pt->af_packet_priv;
1898 po = pkt_sk(sk);
1899
1900 if (!net_eq(dev_net(dev), sock_net(sk)))
1901 goto drop;
1902
1903 if (dev->header_ops) {
1904 if (sk->sk_type != SOCK_DGRAM)
1905 skb_push(skb, skb->data - skb_mac_header(skb));
1906 else if (skb->pkt_type == PACKET_OUTGOING) {
1907 /* Special case: outgoing packets have ll header at head */
1908 skb_pull(skb, skb_network_offset(skb));
1909 }
1910 }
1911
1912 if (skb->ip_summed == CHECKSUM_PARTIAL)
1913 status |= TP_STATUS_CSUMNOTREADY;
1914
1915 snaplen = skb->len;
1916
1917 res = run_filter(skb, sk, snaplen);
1918 if (!res)
1919 goto drop_n_restore;
1920 if (snaplen > res)
1921 snaplen = res;
1922
1923 if (sk->sk_type == SOCK_DGRAM) {
1924 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1925 po->tp_reserve;
1926 } else {
1927 unsigned int maclen = skb_network_offset(skb);
1928 netoff = TPACKET_ALIGN(po->tp_hdrlen +
1929 (maclen < 16 ? 16 : maclen)) +
1930 po->tp_reserve;
1931 macoff = netoff - maclen;
1932 }
1933 if (po->tp_version <= TPACKET_V2) {
1934 if (macoff + snaplen > po->rx_ring.frame_size) {
1935 if (po->copy_thresh &&
1936 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1937 if (skb_shared(skb)) {
1938 copy_skb = skb_clone(skb, GFP_ATOMIC);
1939 } else {
1940 copy_skb = skb_get(skb);
1941 skb_head = skb->data;
1942 }
1943 if (copy_skb)
1944 skb_set_owner_r(copy_skb, sk);
1945 }
1946 snaplen = po->rx_ring.frame_size - macoff;
1947 if ((int)snaplen < 0)
1948 snaplen = 0;
1949 }
1950 } else if (unlikely(macoff + snaplen >
1951 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
1952 u32 nval;
1953
1954 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
1955 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
1956 snaplen, nval, macoff);
1957 snaplen = nval;
1958 if (unlikely((int)snaplen < 0)) {
1959 snaplen = 0;
1960 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
1961 }
1962 }
1963 spin_lock(&sk->sk_receive_queue.lock);
1964 h.raw = packet_current_rx_frame(po, skb,
1965 TP_STATUS_KERNEL, (macoff+snaplen));
1966 if (!h.raw)
1967 goto ring_is_full;
1968 if (po->tp_version <= TPACKET_V2) {
1969 packet_increment_rx_head(po, &po->rx_ring);
1970 /*
1971 * LOSING will be reported till you read the stats,
1972 * because it's COR - Clear On Read.
1973 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1974 * at packet level.
1975 */
1976 if (po->stats.stats1.tp_drops)
1977 status |= TP_STATUS_LOSING;
1978 }
1979 po->stats.stats1.tp_packets++;
1980 if (copy_skb) {
1981 status |= TP_STATUS_COPY;
1982 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1983 }
1984 spin_unlock(&sk->sk_receive_queue.lock);
1985
1986 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1987
1988 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
1989 getnstimeofday(&ts);
1990
1991 status |= ts_status;
1992
1993 switch (po->tp_version) {
1994 case TPACKET_V1:
1995 h.h1->tp_len = skb->len;
1996 h.h1->tp_snaplen = snaplen;
1997 h.h1->tp_mac = macoff;
1998 h.h1->tp_net = netoff;
1999 h.h1->tp_sec = ts.tv_sec;
2000 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2001 hdrlen = sizeof(*h.h1);
2002 break;
2003 case TPACKET_V2:
2004 h.h2->tp_len = skb->len;
2005 h.h2->tp_snaplen = snaplen;
2006 h.h2->tp_mac = macoff;
2007 h.h2->tp_net = netoff;
2008 h.h2->tp_sec = ts.tv_sec;
2009 h.h2->tp_nsec = ts.tv_nsec;
2010 if (skb_vlan_tag_present(skb)) {
2011 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2012 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2013 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2014 } else {
2015 h.h2->tp_vlan_tci = 0;
2016 h.h2->tp_vlan_tpid = 0;
2017 }
2018 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2019 hdrlen = sizeof(*h.h2);
2020 break;
2021 case TPACKET_V3:
2022 /* tp_nxt_offset,vlan are already populated above.
2023 * So DONT clear those fields here
2024 */
2025 h.h3->tp_status |= status;
2026 h.h3->tp_len = skb->len;
2027 h.h3->tp_snaplen = snaplen;
2028 h.h3->tp_mac = macoff;
2029 h.h3->tp_net = netoff;
2030 h.h3->tp_sec = ts.tv_sec;
2031 h.h3->tp_nsec = ts.tv_nsec;
2032 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2033 hdrlen = sizeof(*h.h3);
2034 break;
2035 default:
2036 BUG();
2037 }
2038
2039 sll = h.raw + TPACKET_ALIGN(hdrlen);
2040 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2041 sll->sll_family = AF_PACKET;
2042 sll->sll_hatype = dev->type;
2043 sll->sll_protocol = skb->protocol;
2044 sll->sll_pkttype = skb->pkt_type;
2045 if (unlikely(po->origdev))
2046 sll->sll_ifindex = orig_dev->ifindex;
2047 else
2048 sll->sll_ifindex = dev->ifindex;
2049
2050 smp_mb();
2051
2052 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2053 if (po->tp_version <= TPACKET_V2) {
2054 u8 *start, *end;
2055
2056 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2057 macoff + snaplen);
2058
2059 for (start = h.raw; start < end; start += PAGE_SIZE)
2060 flush_dcache_page(pgv_to_page(start));
2061 }
2062 smp_wmb();
2063 #endif
2064
2065 if (po->tp_version <= TPACKET_V2) {
2066 __packet_set_status(po, h.raw, status);
2067 sk->sk_data_ready(sk);
2068 } else {
2069 prb_clear_blk_fill_status(&po->rx_ring);
2070 }
2071
2072 drop_n_restore:
2073 if (skb_head != skb->data && skb_shared(skb)) {
2074 skb->data = skb_head;
2075 skb->len = skb_len;
2076 }
2077 drop:
2078 kfree_skb(skb);
2079 return 0;
2080
2081 ring_is_full:
2082 po->stats.stats1.tp_drops++;
2083 spin_unlock(&sk->sk_receive_queue.lock);
2084
2085 sk->sk_data_ready(sk);
2086 kfree_skb(copy_skb);
2087 goto drop_n_restore;
2088 }
2089
2090 static void tpacket_destruct_skb(struct sk_buff *skb)
2091 {
2092 struct packet_sock *po = pkt_sk(skb->sk);
2093
2094 if (likely(po->tx_ring.pg_vec)) {
2095 void *ph;
2096 __u32 ts;
2097
2098 ph = skb_shinfo(skb)->destructor_arg;
2099 packet_dec_pending(&po->tx_ring);
2100
2101 ts = __packet_set_timestamp(po, ph, skb);
2102 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2103 }
2104
2105 sock_wfree(skb);
2106 }
2107
2108 static bool ll_header_truncated(const struct net_device *dev, int len)
2109 {
2110 /* net device doesn't like empty head */
2111 if (unlikely(len <= dev->hard_header_len)) {
2112 net_warn_ratelimited("%s: packet size is too short (%d <= %d)\n",
2113 current->comm, len, dev->hard_header_len);
2114 return true;
2115 }
2116
2117 return false;
2118 }
2119
2120 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2121 void *frame, struct net_device *dev, int size_max,
2122 __be16 proto, unsigned char *addr, int hlen)
2123 {
2124 union tpacket_uhdr ph;
2125 int to_write, offset, len, tp_len, nr_frags, len_max;
2126 struct socket *sock = po->sk.sk_socket;
2127 struct page *page;
2128 void *data;
2129 int err;
2130
2131 ph.raw = frame;
2132
2133 skb->protocol = proto;
2134 skb->dev = dev;
2135 skb->priority = po->sk.sk_priority;
2136 skb->mark = po->sk.sk_mark;
2137 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2138 skb_shinfo(skb)->destructor_arg = ph.raw;
2139
2140 switch (po->tp_version) {
2141 case TPACKET_V2:
2142 tp_len = ph.h2->tp_len;
2143 break;
2144 default:
2145 tp_len = ph.h1->tp_len;
2146 break;
2147 }
2148 if (unlikely(tp_len > size_max)) {
2149 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2150 return -EMSGSIZE;
2151 }
2152
2153 skb_reserve(skb, hlen);
2154 skb_reset_network_header(skb);
2155
2156 if (!packet_use_direct_xmit(po))
2157 skb_probe_transport_header(skb, 0);
2158 if (unlikely(po->tp_tx_has_off)) {
2159 int off_min, off_max, off;
2160 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2161 off_max = po->tx_ring.frame_size - tp_len;
2162 if (sock->type == SOCK_DGRAM) {
2163 switch (po->tp_version) {
2164 case TPACKET_V2:
2165 off = ph.h2->tp_net;
2166 break;
2167 default:
2168 off = ph.h1->tp_net;
2169 break;
2170 }
2171 } else {
2172 switch (po->tp_version) {
2173 case TPACKET_V2:
2174 off = ph.h2->tp_mac;
2175 break;
2176 default:
2177 off = ph.h1->tp_mac;
2178 break;
2179 }
2180 }
2181 if (unlikely((off < off_min) || (off_max < off)))
2182 return -EINVAL;
2183 data = ph.raw + off;
2184 } else {
2185 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2186 }
2187 to_write = tp_len;
2188
2189 if (sock->type == SOCK_DGRAM) {
2190 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2191 NULL, tp_len);
2192 if (unlikely(err < 0))
2193 return -EINVAL;
2194 } else if (dev->hard_header_len) {
2195 if (ll_header_truncated(dev, tp_len))
2196 return -EINVAL;
2197
2198 skb_push(skb, dev->hard_header_len);
2199 err = skb_store_bits(skb, 0, data,
2200 dev->hard_header_len);
2201 if (unlikely(err))
2202 return err;
2203
2204 data += dev->hard_header_len;
2205 to_write -= dev->hard_header_len;
2206 }
2207
2208 offset = offset_in_page(data);
2209 len_max = PAGE_SIZE - offset;
2210 len = ((to_write > len_max) ? len_max : to_write);
2211
2212 skb->data_len = to_write;
2213 skb->len += to_write;
2214 skb->truesize += to_write;
2215 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2216
2217 while (likely(to_write)) {
2218 nr_frags = skb_shinfo(skb)->nr_frags;
2219
2220 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2221 pr_err("Packet exceed the number of skb frags(%lu)\n",
2222 MAX_SKB_FRAGS);
2223 return -EFAULT;
2224 }
2225
2226 page = pgv_to_page(data);
2227 data += len;
2228 flush_dcache_page(page);
2229 get_page(page);
2230 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2231 to_write -= len;
2232 offset = 0;
2233 len_max = PAGE_SIZE;
2234 len = ((to_write > len_max) ? len_max : to_write);
2235 }
2236
2237 return tp_len;
2238 }
2239
2240 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2241 {
2242 struct sk_buff *skb;
2243 struct net_device *dev;
2244 __be16 proto;
2245 int err, reserve = 0;
2246 void *ph;
2247 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2248 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2249 int tp_len, size_max;
2250 unsigned char *addr;
2251 int len_sum = 0;
2252 int status = TP_STATUS_AVAILABLE;
2253 int hlen, tlen;
2254
2255 mutex_lock(&po->pg_vec_lock);
2256
2257 if (likely(saddr == NULL)) {
2258 dev = packet_cached_dev_get(po);
2259 proto = po->num;
2260 addr = NULL;
2261 } else {
2262 err = -EINVAL;
2263 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2264 goto out;
2265 if (msg->msg_namelen < (saddr->sll_halen
2266 + offsetof(struct sockaddr_ll,
2267 sll_addr)))
2268 goto out;
2269 proto = saddr->sll_protocol;
2270 addr = saddr->sll_addr;
2271 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2272 }
2273
2274 err = -ENXIO;
2275 if (unlikely(dev == NULL))
2276 goto out;
2277 err = -ENETDOWN;
2278 if (unlikely(!(dev->flags & IFF_UP)))
2279 goto out_put;
2280
2281 reserve = dev->hard_header_len + VLAN_HLEN;
2282 size_max = po->tx_ring.frame_size
2283 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2284
2285 if (size_max > dev->mtu + reserve)
2286 size_max = dev->mtu + reserve;
2287
2288 do {
2289 ph = packet_current_frame(po, &po->tx_ring,
2290 TP_STATUS_SEND_REQUEST);
2291 if (unlikely(ph == NULL)) {
2292 if (need_wait && need_resched())
2293 schedule();
2294 continue;
2295 }
2296
2297 status = TP_STATUS_SEND_REQUEST;
2298 hlen = LL_RESERVED_SPACE(dev);
2299 tlen = dev->needed_tailroom;
2300 skb = sock_alloc_send_skb(&po->sk,
2301 hlen + tlen + sizeof(struct sockaddr_ll),
2302 0, &err);
2303
2304 if (unlikely(skb == NULL))
2305 goto out_status;
2306
2307 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2308 addr, hlen);
2309 if (tp_len > dev->mtu + dev->hard_header_len) {
2310 struct ethhdr *ehdr;
2311 /* Earlier code assumed this would be a VLAN pkt,
2312 * double-check this now that we have the actual
2313 * packet in hand.
2314 */
2315
2316 skb_reset_mac_header(skb);
2317 ehdr = eth_hdr(skb);
2318 if (ehdr->h_proto != htons(ETH_P_8021Q))
2319 tp_len = -EMSGSIZE;
2320 }
2321 if (unlikely(tp_len < 0)) {
2322 if (po->tp_loss) {
2323 __packet_set_status(po, ph,
2324 TP_STATUS_AVAILABLE);
2325 packet_increment_head(&po->tx_ring);
2326 kfree_skb(skb);
2327 continue;
2328 } else {
2329 status = TP_STATUS_WRONG_FORMAT;
2330 err = tp_len;
2331 goto out_status;
2332 }
2333 }
2334
2335 packet_pick_tx_queue(dev, skb);
2336
2337 skb->destructor = tpacket_destruct_skb;
2338 __packet_set_status(po, ph, TP_STATUS_SENDING);
2339 packet_inc_pending(&po->tx_ring);
2340
2341 status = TP_STATUS_SEND_REQUEST;
2342 err = po->xmit(skb);
2343 if (unlikely(err > 0)) {
2344 err = net_xmit_errno(err);
2345 if (err && __packet_get_status(po, ph) ==
2346 TP_STATUS_AVAILABLE) {
2347 /* skb was destructed already */
2348 skb = NULL;
2349 goto out_status;
2350 }
2351 /*
2352 * skb was dropped but not destructed yet;
2353 * let's treat it like congestion or err < 0
2354 */
2355 err = 0;
2356 }
2357 packet_increment_head(&po->tx_ring);
2358 len_sum += tp_len;
2359 } while (likely((ph != NULL) ||
2360 /* Note: packet_read_pending() might be slow if we have
2361 * to call it as it's per_cpu variable, but in fast-path
2362 * we already short-circuit the loop with the first
2363 * condition, and luckily don't have to go that path
2364 * anyway.
2365 */
2366 (need_wait && packet_read_pending(&po->tx_ring))));
2367
2368 err = len_sum;
2369 goto out_put;
2370
2371 out_status:
2372 __packet_set_status(po, ph, status);
2373 kfree_skb(skb);
2374 out_put:
2375 dev_put(dev);
2376 out:
2377 mutex_unlock(&po->pg_vec_lock);
2378 return err;
2379 }
2380
2381 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2382 size_t reserve, size_t len,
2383 size_t linear, int noblock,
2384 int *err)
2385 {
2386 struct sk_buff *skb;
2387
2388 /* Under a page? Don't bother with paged skb. */
2389 if (prepad + len < PAGE_SIZE || !linear)
2390 linear = len;
2391
2392 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2393 err, 0);
2394 if (!skb)
2395 return NULL;
2396
2397 skb_reserve(skb, reserve);
2398 skb_put(skb, linear);
2399 skb->data_len = len - linear;
2400 skb->len += len - linear;
2401
2402 return skb;
2403 }
2404
2405 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2406 {
2407 struct sock *sk = sock->sk;
2408 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2409 struct sk_buff *skb;
2410 struct net_device *dev;
2411 __be16 proto;
2412 unsigned char *addr;
2413 int err, reserve = 0;
2414 struct virtio_net_hdr vnet_hdr = { 0 };
2415 int offset = 0;
2416 int vnet_hdr_len;
2417 struct packet_sock *po = pkt_sk(sk);
2418 unsigned short gso_type = 0;
2419 int hlen, tlen;
2420 int extra_len = 0;
2421 ssize_t n;
2422
2423 /*
2424 * Get and verify the address.
2425 */
2426
2427 if (likely(saddr == NULL)) {
2428 dev = packet_cached_dev_get(po);
2429 proto = po->num;
2430 addr = NULL;
2431 } else {
2432 err = -EINVAL;
2433 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2434 goto out;
2435 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2436 goto out;
2437 proto = saddr->sll_protocol;
2438 addr = saddr->sll_addr;
2439 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2440 }
2441
2442 err = -ENXIO;
2443 if (unlikely(dev == NULL))
2444 goto out_unlock;
2445 err = -ENETDOWN;
2446 if (unlikely(!(dev->flags & IFF_UP)))
2447 goto out_unlock;
2448
2449 if (sock->type == SOCK_RAW)
2450 reserve = dev->hard_header_len;
2451 if (po->has_vnet_hdr) {
2452 vnet_hdr_len = sizeof(vnet_hdr);
2453
2454 err = -EINVAL;
2455 if (len < vnet_hdr_len)
2456 goto out_unlock;
2457
2458 len -= vnet_hdr_len;
2459
2460 err = -EFAULT;
2461 n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter);
2462 if (n != vnet_hdr_len)
2463 goto out_unlock;
2464
2465 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2466 (__virtio16_to_cpu(false, vnet_hdr.csum_start) +
2467 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2 >
2468 __virtio16_to_cpu(false, vnet_hdr.hdr_len)))
2469 vnet_hdr.hdr_len = __cpu_to_virtio16(false,
2470 __virtio16_to_cpu(false, vnet_hdr.csum_start) +
2471 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2);
2472
2473 err = -EINVAL;
2474 if (__virtio16_to_cpu(false, vnet_hdr.hdr_len) > len)
2475 goto out_unlock;
2476
2477 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2478 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2479 case VIRTIO_NET_HDR_GSO_TCPV4:
2480 gso_type = SKB_GSO_TCPV4;
2481 break;
2482 case VIRTIO_NET_HDR_GSO_TCPV6:
2483 gso_type = SKB_GSO_TCPV6;
2484 break;
2485 case VIRTIO_NET_HDR_GSO_UDP:
2486 gso_type = SKB_GSO_UDP;
2487 break;
2488 default:
2489 goto out_unlock;
2490 }
2491
2492 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2493 gso_type |= SKB_GSO_TCP_ECN;
2494
2495 if (vnet_hdr.gso_size == 0)
2496 goto out_unlock;
2497
2498 }
2499 }
2500
2501 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2502 if (!netif_supports_nofcs(dev)) {
2503 err = -EPROTONOSUPPORT;
2504 goto out_unlock;
2505 }
2506 extra_len = 4; /* We're doing our own CRC */
2507 }
2508
2509 err = -EMSGSIZE;
2510 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2511 goto out_unlock;
2512
2513 err = -ENOBUFS;
2514 hlen = LL_RESERVED_SPACE(dev);
2515 tlen = dev->needed_tailroom;
2516 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,
2517 __virtio16_to_cpu(false, vnet_hdr.hdr_len),
2518 msg->msg_flags & MSG_DONTWAIT, &err);
2519 if (skb == NULL)
2520 goto out_unlock;
2521
2522 skb_set_network_header(skb, reserve);
2523
2524 err = -EINVAL;
2525 if (sock->type == SOCK_DGRAM) {
2526 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2527 if (unlikely(offset < 0))
2528 goto out_free;
2529 } else {
2530 if (ll_header_truncated(dev, len))
2531 goto out_free;
2532 }
2533
2534 /* Returns -EFAULT on error */
2535 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2536 if (err)
2537 goto out_free;
2538
2539 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2540
2541 if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2542 /* Earlier code assumed this would be a VLAN pkt,
2543 * double-check this now that we have the actual
2544 * packet in hand.
2545 */
2546 struct ethhdr *ehdr;
2547 skb_reset_mac_header(skb);
2548 ehdr = eth_hdr(skb);
2549 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2550 err = -EMSGSIZE;
2551 goto out_free;
2552 }
2553 }
2554
2555 skb->protocol = proto;
2556 skb->dev = dev;
2557 skb->priority = sk->sk_priority;
2558 skb->mark = sk->sk_mark;
2559
2560 packet_pick_tx_queue(dev, skb);
2561
2562 if (po->has_vnet_hdr) {
2563 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2564 u16 s = __virtio16_to_cpu(false, vnet_hdr.csum_start);
2565 u16 o = __virtio16_to_cpu(false, vnet_hdr.csum_offset);
2566 if (!skb_partial_csum_set(skb, s, o)) {
2567 err = -EINVAL;
2568 goto out_free;
2569 }
2570 }
2571
2572 skb_shinfo(skb)->gso_size =
2573 __virtio16_to_cpu(false, vnet_hdr.gso_size);
2574 skb_shinfo(skb)->gso_type = gso_type;
2575
2576 /* Header must be checked, and gso_segs computed. */
2577 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2578 skb_shinfo(skb)->gso_segs = 0;
2579
2580 len += vnet_hdr_len;
2581 }
2582
2583 if (!packet_use_direct_xmit(po))
2584 skb_probe_transport_header(skb, reserve);
2585 if (unlikely(extra_len == 4))
2586 skb->no_fcs = 1;
2587
2588 err = po->xmit(skb);
2589 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2590 goto out_unlock;
2591
2592 dev_put(dev);
2593
2594 return len;
2595
2596 out_free:
2597 kfree_skb(skb);
2598 out_unlock:
2599 if (dev)
2600 dev_put(dev);
2601 out:
2602 return err;
2603 }
2604
2605 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2606 struct msghdr *msg, size_t len)
2607 {
2608 struct sock *sk = sock->sk;
2609 struct packet_sock *po = pkt_sk(sk);
2610
2611 if (po->tx_ring.pg_vec)
2612 return tpacket_snd(po, msg);
2613 else
2614 return packet_snd(sock, msg, len);
2615 }
2616
2617 /*
2618 * Close a PACKET socket. This is fairly simple. We immediately go
2619 * to 'closed' state and remove our protocol entry in the device list.
2620 */
2621
2622 static int packet_release(struct socket *sock)
2623 {
2624 struct sock *sk = sock->sk;
2625 struct packet_sock *po;
2626 struct net *net;
2627 union tpacket_req_u req_u;
2628
2629 if (!sk)
2630 return 0;
2631
2632 net = sock_net(sk);
2633 po = pkt_sk(sk);
2634
2635 mutex_lock(&net->packet.sklist_lock);
2636 sk_del_node_init_rcu(sk);
2637 mutex_unlock(&net->packet.sklist_lock);
2638
2639 preempt_disable();
2640 sock_prot_inuse_add(net, sk->sk_prot, -1);
2641 preempt_enable();
2642
2643 spin_lock(&po->bind_lock);
2644 unregister_prot_hook(sk, false);
2645 packet_cached_dev_reset(po);
2646
2647 if (po->prot_hook.dev) {
2648 dev_put(po->prot_hook.dev);
2649 po->prot_hook.dev = NULL;
2650 }
2651 spin_unlock(&po->bind_lock);
2652
2653 packet_flush_mclist(sk);
2654
2655 if (po->rx_ring.pg_vec) {
2656 memset(&req_u, 0, sizeof(req_u));
2657 packet_set_ring(sk, &req_u, 1, 0);
2658 }
2659
2660 if (po->tx_ring.pg_vec) {
2661 memset(&req_u, 0, sizeof(req_u));
2662 packet_set_ring(sk, &req_u, 1, 1);
2663 }
2664
2665 fanout_release(sk);
2666
2667 synchronize_net();
2668 /*
2669 * Now the socket is dead. No more input will appear.
2670 */
2671 sock_orphan(sk);
2672 sock->sk = NULL;
2673
2674 /* Purge queues */
2675
2676 skb_queue_purge(&sk->sk_receive_queue);
2677 packet_free_pending(po);
2678 sk_refcnt_debug_release(sk);
2679
2680 sock_put(sk);
2681 return 0;
2682 }
2683
2684 /*
2685 * Attach a packet hook.
2686 */
2687
2688 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2689 {
2690 struct packet_sock *po = pkt_sk(sk);
2691 const struct net_device *dev_curr;
2692 __be16 proto_curr;
2693 bool need_rehook;
2694
2695 if (po->fanout) {
2696 if (dev)
2697 dev_put(dev);
2698
2699 return -EINVAL;
2700 }
2701
2702 lock_sock(sk);
2703 spin_lock(&po->bind_lock);
2704
2705 proto_curr = po->prot_hook.type;
2706 dev_curr = po->prot_hook.dev;
2707
2708 need_rehook = proto_curr != proto || dev_curr != dev;
2709
2710 if (need_rehook) {
2711 unregister_prot_hook(sk, true);
2712
2713 po->num = proto;
2714 po->prot_hook.type = proto;
2715
2716 if (po->prot_hook.dev)
2717 dev_put(po->prot_hook.dev);
2718
2719 po->prot_hook.dev = dev;
2720
2721 po->ifindex = dev ? dev->ifindex : 0;
2722 packet_cached_dev_assign(po, dev);
2723 }
2724
2725 if (proto == 0 || !need_rehook)
2726 goto out_unlock;
2727
2728 if (!dev || (dev->flags & IFF_UP)) {
2729 register_prot_hook(sk);
2730 } else {
2731 sk->sk_err = ENETDOWN;
2732 if (!sock_flag(sk, SOCK_DEAD))
2733 sk->sk_error_report(sk);
2734 }
2735
2736 out_unlock:
2737 spin_unlock(&po->bind_lock);
2738 release_sock(sk);
2739 return 0;
2740 }
2741
2742 /*
2743 * Bind a packet socket to a device
2744 */
2745
2746 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2747 int addr_len)
2748 {
2749 struct sock *sk = sock->sk;
2750 char name[15];
2751 struct net_device *dev;
2752 int err = -ENODEV;
2753
2754 /*
2755 * Check legality
2756 */
2757
2758 if (addr_len != sizeof(struct sockaddr))
2759 return -EINVAL;
2760 strlcpy(name, uaddr->sa_data, sizeof(name));
2761
2762 dev = dev_get_by_name(sock_net(sk), name);
2763 if (dev)
2764 err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2765 return err;
2766 }
2767
2768 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2769 {
2770 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2771 struct sock *sk = sock->sk;
2772 struct net_device *dev = NULL;
2773 int err;
2774
2775
2776 /*
2777 * Check legality
2778 */
2779
2780 if (addr_len < sizeof(struct sockaddr_ll))
2781 return -EINVAL;
2782 if (sll->sll_family != AF_PACKET)
2783 return -EINVAL;
2784
2785 if (sll->sll_ifindex) {
2786 err = -ENODEV;
2787 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2788 if (dev == NULL)
2789 goto out;
2790 }
2791 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2792
2793 out:
2794 return err;
2795 }
2796
2797 static struct proto packet_proto = {
2798 .name = "PACKET",
2799 .owner = THIS_MODULE,
2800 .obj_size = sizeof(struct packet_sock),
2801 };
2802
2803 /*
2804 * Create a packet of type SOCK_PACKET.
2805 */
2806
2807 static int packet_create(struct net *net, struct socket *sock, int protocol,
2808 int kern)
2809 {
2810 struct sock *sk;
2811 struct packet_sock *po;
2812 __be16 proto = (__force __be16)protocol; /* weird, but documented */
2813 int err;
2814
2815 if (!ns_capable(net->user_ns, CAP_NET_RAW))
2816 return -EPERM;
2817 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2818 sock->type != SOCK_PACKET)
2819 return -ESOCKTNOSUPPORT;
2820
2821 sock->state = SS_UNCONNECTED;
2822
2823 err = -ENOBUFS;
2824 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2825 if (sk == NULL)
2826 goto out;
2827
2828 sock->ops = &packet_ops;
2829 if (sock->type == SOCK_PACKET)
2830 sock->ops = &packet_ops_spkt;
2831
2832 sock_init_data(sock, sk);
2833
2834 po = pkt_sk(sk);
2835 sk->sk_family = PF_PACKET;
2836 po->num = proto;
2837 po->xmit = dev_queue_xmit;
2838
2839 err = packet_alloc_pending(po);
2840 if (err)
2841 goto out2;
2842
2843 packet_cached_dev_reset(po);
2844
2845 sk->sk_destruct = packet_sock_destruct;
2846 sk_refcnt_debug_inc(sk);
2847
2848 /*
2849 * Attach a protocol block
2850 */
2851
2852 spin_lock_init(&po->bind_lock);
2853 mutex_init(&po->pg_vec_lock);
2854 po->prot_hook.func = packet_rcv;
2855
2856 if (sock->type == SOCK_PACKET)
2857 po->prot_hook.func = packet_rcv_spkt;
2858
2859 po->prot_hook.af_packet_priv = sk;
2860
2861 if (proto) {
2862 po->prot_hook.type = proto;
2863 register_prot_hook(sk);
2864 }
2865
2866 mutex_lock(&net->packet.sklist_lock);
2867 sk_add_node_rcu(sk, &net->packet.sklist);
2868 mutex_unlock(&net->packet.sklist_lock);
2869
2870 preempt_disable();
2871 sock_prot_inuse_add(net, &packet_proto, 1);
2872 preempt_enable();
2873
2874 return 0;
2875 out2:
2876 sk_free(sk);
2877 out:
2878 return err;
2879 }
2880
2881 /*
2882 * Pull a packet from our receive queue and hand it to the user.
2883 * If necessary we block.
2884 */
2885
2886 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2887 struct msghdr *msg, size_t len, int flags)
2888 {
2889 struct sock *sk = sock->sk;
2890 struct sk_buff *skb;
2891 int copied, err;
2892 int vnet_hdr_len = 0;
2893 unsigned int origlen = 0;
2894
2895 err = -EINVAL;
2896 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2897 goto out;
2898
2899 #if 0
2900 /* What error should we return now? EUNATTACH? */
2901 if (pkt_sk(sk)->ifindex < 0)
2902 return -ENODEV;
2903 #endif
2904
2905 if (flags & MSG_ERRQUEUE) {
2906 err = sock_recv_errqueue(sk, msg, len,
2907 SOL_PACKET, PACKET_TX_TIMESTAMP);
2908 goto out;
2909 }
2910
2911 /*
2912 * Call the generic datagram receiver. This handles all sorts
2913 * of horrible races and re-entrancy so we can forget about it
2914 * in the protocol layers.
2915 *
2916 * Now it will return ENETDOWN, if device have just gone down,
2917 * but then it will block.
2918 */
2919
2920 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2921
2922 /*
2923 * An error occurred so return it. Because skb_recv_datagram()
2924 * handles the blocking we don't see and worry about blocking
2925 * retries.
2926 */
2927
2928 if (skb == NULL)
2929 goto out;
2930
2931 if (pkt_sk(sk)->has_vnet_hdr) {
2932 struct virtio_net_hdr vnet_hdr = { 0 };
2933
2934 err = -EINVAL;
2935 vnet_hdr_len = sizeof(vnet_hdr);
2936 if (len < vnet_hdr_len)
2937 goto out_free;
2938
2939 len -= vnet_hdr_len;
2940
2941 if (skb_is_gso(skb)) {
2942 struct skb_shared_info *sinfo = skb_shinfo(skb);
2943
2944 /* This is a hint as to how much should be linear. */
2945 vnet_hdr.hdr_len =
2946 __cpu_to_virtio16(false, skb_headlen(skb));
2947 vnet_hdr.gso_size =
2948 __cpu_to_virtio16(false, sinfo->gso_size);
2949 if (sinfo->gso_type & SKB_GSO_TCPV4)
2950 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2951 else if (sinfo->gso_type & SKB_GSO_TCPV6)
2952 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2953 else if (sinfo->gso_type & SKB_GSO_UDP)
2954 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2955 else if (sinfo->gso_type & SKB_GSO_FCOE)
2956 goto out_free;
2957 else
2958 BUG();
2959 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2960 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2961 } else
2962 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2963
2964 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2965 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2966 vnet_hdr.csum_start = __cpu_to_virtio16(false,
2967 skb_checksum_start_offset(skb));
2968 vnet_hdr.csum_offset = __cpu_to_virtio16(false,
2969 skb->csum_offset);
2970 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2971 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2972 } /* else everything is zero */
2973
2974 err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len);
2975 if (err < 0)
2976 goto out_free;
2977 }
2978
2979 /* You lose any data beyond the buffer you gave. If it worries
2980 * a user program they can ask the device for its MTU
2981 * anyway.
2982 */
2983 copied = skb->len;
2984 if (copied > len) {
2985 copied = len;
2986 msg->msg_flags |= MSG_TRUNC;
2987 }
2988
2989 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2990 if (err)
2991 goto out_free;
2992
2993 if (sock->type != SOCK_PACKET) {
2994 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
2995
2996 /* Original length was stored in sockaddr_ll fields */
2997 origlen = PACKET_SKB_CB(skb)->sa.origlen;
2998 sll->sll_family = AF_PACKET;
2999 sll->sll_protocol = skb->protocol;
3000 }
3001
3002 sock_recv_ts_and_drops(msg, sk, skb);
3003
3004 if (msg->msg_name) {
3005 /* If the address length field is there to be filled
3006 * in, we fill it in now.
3007 */
3008 if (sock->type == SOCK_PACKET) {
3009 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3010 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3011 } else {
3012 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3013
3014 msg->msg_namelen = sll->sll_halen +
3015 offsetof(struct sockaddr_ll, sll_addr);
3016 }
3017 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3018 msg->msg_namelen);
3019 }
3020
3021 if (pkt_sk(sk)->auxdata) {
3022 struct tpacket_auxdata aux;
3023
3024 aux.tp_status = TP_STATUS_USER;
3025 if (skb->ip_summed == CHECKSUM_PARTIAL)
3026 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3027 aux.tp_len = origlen;
3028 aux.tp_snaplen = skb->len;
3029 aux.tp_mac = 0;
3030 aux.tp_net = skb_network_offset(skb);
3031 if (skb_vlan_tag_present(skb)) {
3032 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3033 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3034 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3035 } else {
3036 aux.tp_vlan_tci = 0;
3037 aux.tp_vlan_tpid = 0;
3038 }
3039 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3040 }
3041
3042 /*
3043 * Free or return the buffer as appropriate. Again this
3044 * hides all the races and re-entrancy issues from us.
3045 */
3046 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3047
3048 out_free:
3049 skb_free_datagram(sk, skb);
3050 out:
3051 return err;
3052 }
3053
3054 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3055 int *uaddr_len, int peer)
3056 {
3057 struct net_device *dev;
3058 struct sock *sk = sock->sk;
3059
3060 if (peer)
3061 return -EOPNOTSUPP;
3062
3063 uaddr->sa_family = AF_PACKET;
3064 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3065 rcu_read_lock();
3066 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3067 if (dev)
3068 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3069 rcu_read_unlock();
3070 *uaddr_len = sizeof(*uaddr);
3071
3072 return 0;
3073 }
3074
3075 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3076 int *uaddr_len, int peer)
3077 {
3078 struct net_device *dev;
3079 struct sock *sk = sock->sk;
3080 struct packet_sock *po = pkt_sk(sk);
3081 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3082
3083 if (peer)
3084 return -EOPNOTSUPP;
3085
3086 sll->sll_family = AF_PACKET;
3087 sll->sll_ifindex = po->ifindex;
3088 sll->sll_protocol = po->num;
3089 sll->sll_pkttype = 0;
3090 rcu_read_lock();
3091 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3092 if (dev) {
3093 sll->sll_hatype = dev->type;
3094 sll->sll_halen = dev->addr_len;
3095 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3096 } else {
3097 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3098 sll->sll_halen = 0;
3099 }
3100 rcu_read_unlock();
3101 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3102
3103 return 0;
3104 }
3105
3106 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3107 int what)
3108 {
3109 switch (i->type) {
3110 case PACKET_MR_MULTICAST:
3111 if (i->alen != dev->addr_len)
3112 return -EINVAL;
3113 if (what > 0)
3114 return dev_mc_add(dev, i->addr);
3115 else
3116 return dev_mc_del(dev, i->addr);
3117 break;
3118 case PACKET_MR_PROMISC:
3119 return dev_set_promiscuity(dev, what);
3120 case PACKET_MR_ALLMULTI:
3121 return dev_set_allmulti(dev, what);
3122 case PACKET_MR_UNICAST:
3123 if (i->alen != dev->addr_len)
3124 return -EINVAL;
3125 if (what > 0)
3126 return dev_uc_add(dev, i->addr);
3127 else
3128 return dev_uc_del(dev, i->addr);
3129 break;
3130 default:
3131 break;
3132 }
3133 return 0;
3134 }
3135
3136 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
3137 {
3138 for ( ; i; i = i->next) {
3139 if (i->ifindex == dev->ifindex)
3140 packet_dev_mc(dev, i, what);
3141 }
3142 }
3143
3144 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3145 {
3146 struct packet_sock *po = pkt_sk(sk);
3147 struct packet_mclist *ml, *i;
3148 struct net_device *dev;
3149 int err;
3150
3151 rtnl_lock();
3152
3153 err = -ENODEV;
3154 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3155 if (!dev)
3156 goto done;
3157
3158 err = -EINVAL;
3159 if (mreq->mr_alen > dev->addr_len)
3160 goto done;
3161
3162 err = -ENOBUFS;
3163 i = kmalloc(sizeof(*i), GFP_KERNEL);
3164 if (i == NULL)
3165 goto done;
3166
3167 err = 0;
3168 for (ml = po->mclist; ml; ml = ml->next) {
3169 if (ml->ifindex == mreq->mr_ifindex &&
3170 ml->type == mreq->mr_type &&
3171 ml->alen == mreq->mr_alen &&
3172 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3173 ml->count++;
3174 /* Free the new element ... */
3175 kfree(i);
3176 goto done;
3177 }
3178 }
3179
3180 i->type = mreq->mr_type;
3181 i->ifindex = mreq->mr_ifindex;
3182 i->alen = mreq->mr_alen;
3183 memcpy(i->addr, mreq->mr_address, i->alen);
3184 i->count = 1;
3185 i->next = po->mclist;
3186 po->mclist = i;
3187 err = packet_dev_mc(dev, i, 1);
3188 if (err) {
3189 po->mclist = i->next;
3190 kfree(i);
3191 }
3192
3193 done:
3194 rtnl_unlock();
3195 return err;
3196 }
3197
3198 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3199 {
3200 struct packet_mclist *ml, **mlp;
3201
3202 rtnl_lock();
3203
3204 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3205 if (ml->ifindex == mreq->mr_ifindex &&
3206 ml->type == mreq->mr_type &&
3207 ml->alen == mreq->mr_alen &&
3208 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3209 if (--ml->count == 0) {
3210 struct net_device *dev;
3211 *mlp = ml->next;
3212 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3213 if (dev)
3214 packet_dev_mc(dev, ml, -1);
3215 kfree(ml);
3216 }
3217 rtnl_unlock();
3218 return 0;
3219 }
3220 }
3221 rtnl_unlock();
3222 return -EADDRNOTAVAIL;
3223 }
3224
3225 static void packet_flush_mclist(struct sock *sk)
3226 {
3227 struct packet_sock *po = pkt_sk(sk);
3228 struct packet_mclist *ml;
3229
3230 if (!po->mclist)
3231 return;
3232
3233 rtnl_lock();
3234 while ((ml = po->mclist) != NULL) {
3235 struct net_device *dev;
3236
3237 po->mclist = ml->next;
3238 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3239 if (dev != NULL)
3240 packet_dev_mc(dev, ml, -1);
3241 kfree(ml);
3242 }
3243 rtnl_unlock();
3244 }
3245
3246 static int
3247 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3248 {
3249 struct sock *sk = sock->sk;
3250 struct packet_sock *po = pkt_sk(sk);
3251 int ret;
3252
3253 if (level != SOL_PACKET)
3254 return -ENOPROTOOPT;
3255
3256 switch (optname) {
3257 case PACKET_ADD_MEMBERSHIP:
3258 case PACKET_DROP_MEMBERSHIP:
3259 {
3260 struct packet_mreq_max mreq;
3261 int len = optlen;
3262 memset(&mreq, 0, sizeof(mreq));
3263 if (len < sizeof(struct packet_mreq))
3264 return -EINVAL;
3265 if (len > sizeof(mreq))
3266 len = sizeof(mreq);
3267 if (copy_from_user(&mreq, optval, len))
3268 return -EFAULT;
3269 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3270 return -EINVAL;
3271 if (optname == PACKET_ADD_MEMBERSHIP)
3272 ret = packet_mc_add(sk, &mreq);
3273 else
3274 ret = packet_mc_drop(sk, &mreq);
3275 return ret;
3276 }
3277
3278 case PACKET_RX_RING:
3279 case PACKET_TX_RING:
3280 {
3281 union tpacket_req_u req_u;
3282 int len;
3283
3284 switch (po->tp_version) {
3285 case TPACKET_V1:
3286 case TPACKET_V2:
3287 len = sizeof(req_u.req);
3288 break;
3289 case TPACKET_V3:
3290 default:
3291 len = sizeof(req_u.req3);
3292 break;
3293 }
3294 if (optlen < len)
3295 return -EINVAL;
3296 if (pkt_sk(sk)->has_vnet_hdr)
3297 return -EINVAL;
3298 if (copy_from_user(&req_u.req, optval, len))
3299 return -EFAULT;
3300 return packet_set_ring(sk, &req_u, 0,
3301 optname == PACKET_TX_RING);
3302 }
3303 case PACKET_COPY_THRESH:
3304 {
3305 int val;
3306
3307 if (optlen != sizeof(val))
3308 return -EINVAL;
3309 if (copy_from_user(&val, optval, sizeof(val)))
3310 return -EFAULT;
3311
3312 pkt_sk(sk)->copy_thresh = val;
3313 return 0;
3314 }
3315 case PACKET_VERSION:
3316 {
3317 int val;
3318
3319 if (optlen != sizeof(val))
3320 return -EINVAL;
3321 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3322 return -EBUSY;
3323 if (copy_from_user(&val, optval, sizeof(val)))
3324 return -EFAULT;
3325 switch (val) {
3326 case TPACKET_V1:
3327 case TPACKET_V2:
3328 case TPACKET_V3:
3329 po->tp_version = val;
3330 return 0;
3331 default:
3332 return -EINVAL;
3333 }
3334 }
3335 case PACKET_RESERVE:
3336 {
3337 unsigned int val;
3338
3339 if (optlen != sizeof(val))
3340 return -EINVAL;
3341 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3342 return -EBUSY;
3343 if (copy_from_user(&val, optval, sizeof(val)))
3344 return -EFAULT;
3345 po->tp_reserve = val;
3346 return 0;
3347 }
3348 case PACKET_LOSS:
3349 {
3350 unsigned int val;
3351
3352 if (optlen != sizeof(val))
3353 return -EINVAL;
3354 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3355 return -EBUSY;
3356 if (copy_from_user(&val, optval, sizeof(val)))
3357 return -EFAULT;
3358 po->tp_loss = !!val;
3359 return 0;
3360 }
3361 case PACKET_AUXDATA:
3362 {
3363 int val;
3364
3365 if (optlen < sizeof(val))
3366 return -EINVAL;
3367 if (copy_from_user(&val, optval, sizeof(val)))
3368 return -EFAULT;
3369
3370 po->auxdata = !!val;
3371 return 0;
3372 }
3373 case PACKET_ORIGDEV:
3374 {
3375 int val;
3376
3377 if (optlen < sizeof(val))
3378 return -EINVAL;
3379 if (copy_from_user(&val, optval, sizeof(val)))
3380 return -EFAULT;
3381
3382 po->origdev = !!val;
3383 return 0;
3384 }
3385 case PACKET_VNET_HDR:
3386 {
3387 int val;
3388
3389 if (sock->type != SOCK_RAW)
3390 return -EINVAL;
3391 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3392 return -EBUSY;
3393 if (optlen < sizeof(val))
3394 return -EINVAL;
3395 if (copy_from_user(&val, optval, sizeof(val)))
3396 return -EFAULT;
3397
3398 po->has_vnet_hdr = !!val;
3399 return 0;
3400 }
3401 case PACKET_TIMESTAMP:
3402 {
3403 int val;
3404
3405 if (optlen != sizeof(val))
3406 return -EINVAL;
3407 if (copy_from_user(&val, optval, sizeof(val)))
3408 return -EFAULT;
3409
3410 po->tp_tstamp = val;
3411 return 0;
3412 }
3413 case PACKET_FANOUT:
3414 {
3415 int val;
3416
3417 if (optlen != sizeof(val))
3418 return -EINVAL;
3419 if (copy_from_user(&val, optval, sizeof(val)))
3420 return -EFAULT;
3421
3422 return fanout_add(sk, val & 0xffff, val >> 16);
3423 }
3424 case PACKET_TX_HAS_OFF:
3425 {
3426 unsigned int val;
3427
3428 if (optlen != sizeof(val))
3429 return -EINVAL;
3430 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3431 return -EBUSY;
3432 if (copy_from_user(&val, optval, sizeof(val)))
3433 return -EFAULT;
3434 po->tp_tx_has_off = !!val;
3435 return 0;
3436 }
3437 case PACKET_QDISC_BYPASS:
3438 {
3439 int val;
3440
3441 if (optlen != sizeof(val))
3442 return -EINVAL;
3443 if (copy_from_user(&val, optval, sizeof(val)))
3444 return -EFAULT;
3445
3446 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3447 return 0;
3448 }
3449 default:
3450 return -ENOPROTOOPT;
3451 }
3452 }
3453
3454 static int packet_getsockopt(struct socket *sock, int level, int optname,
3455 char __user *optval, int __user *optlen)
3456 {
3457 int len;
3458 int val, lv = sizeof(val);
3459 struct sock *sk = sock->sk;
3460 struct packet_sock *po = pkt_sk(sk);
3461 void *data = &val;
3462 union tpacket_stats_u st;
3463
3464 if (level != SOL_PACKET)
3465 return -ENOPROTOOPT;
3466
3467 if (get_user(len, optlen))
3468 return -EFAULT;
3469
3470 if (len < 0)
3471 return -EINVAL;
3472
3473 switch (optname) {
3474 case PACKET_STATISTICS:
3475 spin_lock_bh(&sk->sk_receive_queue.lock);
3476 memcpy(&st, &po->stats, sizeof(st));
3477 memset(&po->stats, 0, sizeof(po->stats));
3478 spin_unlock_bh(&sk->sk_receive_queue.lock);
3479
3480 if (po->tp_version == TPACKET_V3) {
3481 lv = sizeof(struct tpacket_stats_v3);
3482 st.stats3.tp_packets += st.stats3.tp_drops;
3483 data = &st.stats3;
3484 } else {
3485 lv = sizeof(struct tpacket_stats);
3486 st.stats1.tp_packets += st.stats1.tp_drops;
3487 data = &st.stats1;
3488 }
3489
3490 break;
3491 case PACKET_AUXDATA:
3492 val = po->auxdata;
3493 break;
3494 case PACKET_ORIGDEV:
3495 val = po->origdev;
3496 break;
3497 case PACKET_VNET_HDR:
3498 val = po->has_vnet_hdr;
3499 break;
3500 case PACKET_VERSION:
3501 val = po->tp_version;
3502 break;
3503 case PACKET_HDRLEN:
3504 if (len > sizeof(int))
3505 len = sizeof(int);
3506 if (copy_from_user(&val, optval, len))
3507 return -EFAULT;
3508 switch (val) {
3509 case TPACKET_V1:
3510 val = sizeof(struct tpacket_hdr);
3511 break;
3512 case TPACKET_V2:
3513 val = sizeof(struct tpacket2_hdr);
3514 break;
3515 case TPACKET_V3:
3516 val = sizeof(struct tpacket3_hdr);
3517 break;
3518 default:
3519 return -EINVAL;
3520 }
3521 break;
3522 case PACKET_RESERVE:
3523 val = po->tp_reserve;
3524 break;
3525 case PACKET_LOSS:
3526 val = po->tp_loss;
3527 break;
3528 case PACKET_TIMESTAMP:
3529 val = po->tp_tstamp;
3530 break;
3531 case PACKET_FANOUT:
3532 val = (po->fanout ?
3533 ((u32)po->fanout->id |
3534 ((u32)po->fanout->type << 16) |
3535 ((u32)po->fanout->flags << 24)) :
3536 0);
3537 break;
3538 case PACKET_TX_HAS_OFF:
3539 val = po->tp_tx_has_off;
3540 break;
3541 case PACKET_QDISC_BYPASS:
3542 val = packet_use_direct_xmit(po);
3543 break;
3544 default:
3545 return -ENOPROTOOPT;
3546 }
3547
3548 if (len > lv)
3549 len = lv;
3550 if (put_user(len, optlen))
3551 return -EFAULT;
3552 if (copy_to_user(optval, data, len))
3553 return -EFAULT;
3554 return 0;
3555 }
3556
3557
3558 static int packet_notifier(struct notifier_block *this,
3559 unsigned long msg, void *ptr)
3560 {
3561 struct sock *sk;
3562 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3563 struct net *net = dev_net(dev);
3564
3565 rcu_read_lock();
3566 sk_for_each_rcu(sk, &net->packet.sklist) {
3567 struct packet_sock *po = pkt_sk(sk);
3568
3569 switch (msg) {
3570 case NETDEV_UNREGISTER:
3571 if (po->mclist)
3572 packet_dev_mclist(dev, po->mclist, -1);
3573 /* fallthrough */
3574
3575 case NETDEV_DOWN:
3576 if (dev->ifindex == po->ifindex) {
3577 spin_lock(&po->bind_lock);
3578 if (po->running) {
3579 __unregister_prot_hook(sk, false);
3580 sk->sk_err = ENETDOWN;
3581 if (!sock_flag(sk, SOCK_DEAD))
3582 sk->sk_error_report(sk);
3583 }
3584 if (msg == NETDEV_UNREGISTER) {
3585 packet_cached_dev_reset(po);
3586 po->ifindex = -1;
3587 if (po->prot_hook.dev)
3588 dev_put(po->prot_hook.dev);
3589 po->prot_hook.dev = NULL;
3590 }
3591 spin_unlock(&po->bind_lock);
3592 }
3593 break;
3594 case NETDEV_UP:
3595 if (dev->ifindex == po->ifindex) {
3596 spin_lock(&po->bind_lock);
3597 if (po->num)
3598 register_prot_hook(sk);
3599 spin_unlock(&po->bind_lock);
3600 }
3601 break;
3602 }
3603 }
3604 rcu_read_unlock();
3605 return NOTIFY_DONE;
3606 }
3607
3608
3609 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3610 unsigned long arg)
3611 {
3612 struct sock *sk = sock->sk;
3613
3614 switch (cmd) {
3615 case SIOCOUTQ:
3616 {
3617 int amount = sk_wmem_alloc_get(sk);
3618
3619 return put_user(amount, (int __user *)arg);
3620 }
3621 case SIOCINQ:
3622 {
3623 struct sk_buff *skb;
3624 int amount = 0;
3625
3626 spin_lock_bh(&sk->sk_receive_queue.lock);
3627 skb = skb_peek(&sk->sk_receive_queue);
3628 if (skb)
3629 amount = skb->len;
3630 spin_unlock_bh(&sk->sk_receive_queue.lock);
3631 return put_user(amount, (int __user *)arg);
3632 }
3633 case SIOCGSTAMP:
3634 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3635 case SIOCGSTAMPNS:
3636 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3637
3638 #ifdef CONFIG_INET
3639 case SIOCADDRT:
3640 case SIOCDELRT:
3641 case SIOCDARP:
3642 case SIOCGARP:
3643 case SIOCSARP:
3644 case SIOCGIFADDR:
3645 case SIOCSIFADDR:
3646 case SIOCGIFBRDADDR:
3647 case SIOCSIFBRDADDR:
3648 case SIOCGIFNETMASK:
3649 case SIOCSIFNETMASK:
3650 case SIOCGIFDSTADDR:
3651 case SIOCSIFDSTADDR:
3652 case SIOCSIFFLAGS:
3653 return inet_dgram_ops.ioctl(sock, cmd, arg);
3654 #endif
3655
3656 default:
3657 return -ENOIOCTLCMD;
3658 }
3659 return 0;
3660 }
3661
3662 static unsigned int packet_poll(struct file *file, struct socket *sock,
3663 poll_table *wait)
3664 {
3665 struct sock *sk = sock->sk;
3666 struct packet_sock *po = pkt_sk(sk);
3667 unsigned int mask = datagram_poll(file, sock, wait);
3668
3669 spin_lock_bh(&sk->sk_receive_queue.lock);
3670 if (po->rx_ring.pg_vec) {
3671 if (!packet_previous_rx_frame(po, &po->rx_ring,
3672 TP_STATUS_KERNEL))
3673 mask |= POLLIN | POLLRDNORM;
3674 }
3675 spin_unlock_bh(&sk->sk_receive_queue.lock);
3676 spin_lock_bh(&sk->sk_write_queue.lock);
3677 if (po->tx_ring.pg_vec) {
3678 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3679 mask |= POLLOUT | POLLWRNORM;
3680 }
3681 spin_unlock_bh(&sk->sk_write_queue.lock);
3682 return mask;
3683 }
3684
3685
3686 /* Dirty? Well, I still did not learn better way to account
3687 * for user mmaps.
3688 */
3689
3690 static void packet_mm_open(struct vm_area_struct *vma)
3691 {
3692 struct file *file = vma->vm_file;
3693 struct socket *sock = file->private_data;
3694 struct sock *sk = sock->sk;
3695
3696 if (sk)
3697 atomic_inc(&pkt_sk(sk)->mapped);
3698 }
3699
3700 static void packet_mm_close(struct vm_area_struct *vma)
3701 {
3702 struct file *file = vma->vm_file;
3703 struct socket *sock = file->private_data;
3704 struct sock *sk = sock->sk;
3705
3706 if (sk)
3707 atomic_dec(&pkt_sk(sk)->mapped);
3708 }
3709
3710 static const struct vm_operations_struct packet_mmap_ops = {
3711 .open = packet_mm_open,
3712 .close = packet_mm_close,
3713 };
3714
3715 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3716 unsigned int len)
3717 {
3718 int i;
3719
3720 for (i = 0; i < len; i++) {
3721 if (likely(pg_vec[i].buffer)) {
3722 if (is_vmalloc_addr(pg_vec[i].buffer))
3723 vfree(pg_vec[i].buffer);
3724 else
3725 free_pages((unsigned long)pg_vec[i].buffer,
3726 order);
3727 pg_vec[i].buffer = NULL;
3728 }
3729 }
3730 kfree(pg_vec);
3731 }
3732
3733 static char *alloc_one_pg_vec_page(unsigned long order)
3734 {
3735 char *buffer;
3736 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3737 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3738
3739 buffer = (char *) __get_free_pages(gfp_flags, order);
3740 if (buffer)
3741 return buffer;
3742
3743 /* __get_free_pages failed, fall back to vmalloc */
3744 buffer = vzalloc((1 << order) * PAGE_SIZE);
3745 if (buffer)
3746 return buffer;
3747
3748 /* vmalloc failed, lets dig into swap here */
3749 gfp_flags &= ~__GFP_NORETRY;
3750 buffer = (char *) __get_free_pages(gfp_flags, order);
3751 if (buffer)
3752 return buffer;
3753
3754 /* complete and utter failure */
3755 return NULL;
3756 }
3757
3758 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3759 {
3760 unsigned int block_nr = req->tp_block_nr;
3761 struct pgv *pg_vec;
3762 int i;
3763
3764 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3765 if (unlikely(!pg_vec))
3766 goto out;
3767
3768 for (i = 0; i < block_nr; i++) {
3769 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3770 if (unlikely(!pg_vec[i].buffer))
3771 goto out_free_pgvec;
3772 }
3773
3774 out:
3775 return pg_vec;
3776
3777 out_free_pgvec:
3778 free_pg_vec(pg_vec, order, block_nr);
3779 pg_vec = NULL;
3780 goto out;
3781 }
3782
3783 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3784 int closing, int tx_ring)
3785 {
3786 struct pgv *pg_vec = NULL;
3787 struct packet_sock *po = pkt_sk(sk);
3788 int was_running, order = 0;
3789 struct packet_ring_buffer *rb;
3790 struct sk_buff_head *rb_queue;
3791 __be16 num;
3792 int err = -EINVAL;
3793 /* Added to avoid minimal code churn */
3794 struct tpacket_req *req = &req_u->req;
3795
3796 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3797 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3798 WARN(1, "Tx-ring is not supported.\n");
3799 goto out;
3800 }
3801
3802 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3803 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3804
3805 err = -EBUSY;
3806 if (!closing) {
3807 if (atomic_read(&po->mapped))
3808 goto out;
3809 if (packet_read_pending(rb))
3810 goto out;
3811 }
3812
3813 if (req->tp_block_nr) {
3814 /* Sanity tests and some calculations */
3815 err = -EBUSY;
3816 if (unlikely(rb->pg_vec))
3817 goto out;
3818
3819 switch (po->tp_version) {
3820 case TPACKET_V1:
3821 po->tp_hdrlen = TPACKET_HDRLEN;
3822 break;
3823 case TPACKET_V2:
3824 po->tp_hdrlen = TPACKET2_HDRLEN;
3825 break;
3826 case TPACKET_V3:
3827 po->tp_hdrlen = TPACKET3_HDRLEN;
3828 break;
3829 }
3830
3831 err = -EINVAL;
3832 if (unlikely((int)req->tp_block_size <= 0))
3833 goto out;
3834 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3835 goto out;
3836 if (po->tp_version >= TPACKET_V3 &&
3837 (int)(req->tp_block_size -
3838 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
3839 goto out;
3840 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3841 po->tp_reserve))
3842 goto out;
3843 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3844 goto out;
3845
3846 rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3847 if (unlikely(rb->frames_per_block <= 0))
3848 goto out;
3849 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3850 req->tp_frame_nr))
3851 goto out;
3852
3853 err = -ENOMEM;
3854 order = get_order(req->tp_block_size);
3855 pg_vec = alloc_pg_vec(req, order);
3856 if (unlikely(!pg_vec))
3857 goto out;
3858 switch (po->tp_version) {
3859 case TPACKET_V3:
3860 /* Transmit path is not supported. We checked
3861 * it above but just being paranoid
3862 */
3863 if (!tx_ring)
3864 init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3865 break;
3866 default:
3867 break;
3868 }
3869 }
3870 /* Done */
3871 else {
3872 err = -EINVAL;
3873 if (unlikely(req->tp_frame_nr))
3874 goto out;
3875 }
3876
3877 lock_sock(sk);
3878
3879 /* Detach socket from network */
3880 spin_lock(&po->bind_lock);
3881 was_running = po->running;
3882 num = po->num;
3883 if (was_running) {
3884 po->num = 0;
3885 __unregister_prot_hook(sk, false);
3886 }
3887 spin_unlock(&po->bind_lock);
3888
3889 synchronize_net();
3890
3891 err = -EBUSY;
3892 mutex_lock(&po->pg_vec_lock);
3893 if (closing || atomic_read(&po->mapped) == 0) {
3894 err = 0;
3895 spin_lock_bh(&rb_queue->lock);
3896 swap(rb->pg_vec, pg_vec);
3897 rb->frame_max = (req->tp_frame_nr - 1);
3898 rb->head = 0;
3899 rb->frame_size = req->tp_frame_size;
3900 spin_unlock_bh(&rb_queue->lock);
3901
3902 swap(rb->pg_vec_order, order);
3903 swap(rb->pg_vec_len, req->tp_block_nr);
3904
3905 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3906 po->prot_hook.func = (po->rx_ring.pg_vec) ?
3907 tpacket_rcv : packet_rcv;
3908 skb_queue_purge(rb_queue);
3909 if (atomic_read(&po->mapped))
3910 pr_err("packet_mmap: vma is busy: %d\n",
3911 atomic_read(&po->mapped));
3912 }
3913 mutex_unlock(&po->pg_vec_lock);
3914
3915 spin_lock(&po->bind_lock);
3916 if (was_running) {
3917 po->num = num;
3918 register_prot_hook(sk);
3919 }
3920 spin_unlock(&po->bind_lock);
3921 if (closing && (po->tp_version > TPACKET_V2)) {
3922 /* Because we don't support block-based V3 on tx-ring */
3923 if (!tx_ring)
3924 prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3925 }
3926 release_sock(sk);
3927
3928 if (pg_vec)
3929 free_pg_vec(pg_vec, order, req->tp_block_nr);
3930 out:
3931 return err;
3932 }
3933
3934 static int packet_mmap(struct file *file, struct socket *sock,
3935 struct vm_area_struct *vma)
3936 {
3937 struct sock *sk = sock->sk;
3938 struct packet_sock *po = pkt_sk(sk);
3939 unsigned long size, expected_size;
3940 struct packet_ring_buffer *rb;
3941 unsigned long start;
3942 int err = -EINVAL;
3943 int i;
3944
3945 if (vma->vm_pgoff)
3946 return -EINVAL;
3947
3948 mutex_lock(&po->pg_vec_lock);
3949
3950 expected_size = 0;
3951 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3952 if (rb->pg_vec) {
3953 expected_size += rb->pg_vec_len
3954 * rb->pg_vec_pages
3955 * PAGE_SIZE;
3956 }
3957 }
3958
3959 if (expected_size == 0)
3960 goto out;
3961
3962 size = vma->vm_end - vma->vm_start;
3963 if (size != expected_size)
3964 goto out;
3965
3966 start = vma->vm_start;
3967 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3968 if (rb->pg_vec == NULL)
3969 continue;
3970
3971 for (i = 0; i < rb->pg_vec_len; i++) {
3972 struct page *page;
3973 void *kaddr = rb->pg_vec[i].buffer;
3974 int pg_num;
3975
3976 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3977 page = pgv_to_page(kaddr);
3978 err = vm_insert_page(vma, start, page);
3979 if (unlikely(err))
3980 goto out;
3981 start += PAGE_SIZE;
3982 kaddr += PAGE_SIZE;
3983 }
3984 }
3985 }
3986
3987 atomic_inc(&po->mapped);
3988 vma->vm_ops = &packet_mmap_ops;
3989 err = 0;
3990
3991 out:
3992 mutex_unlock(&po->pg_vec_lock);
3993 return err;
3994 }
3995
3996 static const struct proto_ops packet_ops_spkt = {
3997 .family = PF_PACKET,
3998 .owner = THIS_MODULE,
3999 .release = packet_release,
4000 .bind = packet_bind_spkt,
4001 .connect = sock_no_connect,
4002 .socketpair = sock_no_socketpair,
4003 .accept = sock_no_accept,
4004 .getname = packet_getname_spkt,
4005 .poll = datagram_poll,
4006 .ioctl = packet_ioctl,
4007 .listen = sock_no_listen,
4008 .shutdown = sock_no_shutdown,
4009 .setsockopt = sock_no_setsockopt,
4010 .getsockopt = sock_no_getsockopt,
4011 .sendmsg = packet_sendmsg_spkt,
4012 .recvmsg = packet_recvmsg,
4013 .mmap = sock_no_mmap,
4014 .sendpage = sock_no_sendpage,
4015 };
4016
4017 static const struct proto_ops packet_ops = {
4018 .family = PF_PACKET,
4019 .owner = THIS_MODULE,
4020 .release = packet_release,
4021 .bind = packet_bind,
4022 .connect = sock_no_connect,
4023 .socketpair = sock_no_socketpair,
4024 .accept = sock_no_accept,
4025 .getname = packet_getname,
4026 .poll = packet_poll,
4027 .ioctl = packet_ioctl,
4028 .listen = sock_no_listen,
4029 .shutdown = sock_no_shutdown,
4030 .setsockopt = packet_setsockopt,
4031 .getsockopt = packet_getsockopt,
4032 .sendmsg = packet_sendmsg,
4033 .recvmsg = packet_recvmsg,
4034 .mmap = packet_mmap,
4035 .sendpage = sock_no_sendpage,
4036 };
4037
4038 static const struct net_proto_family packet_family_ops = {
4039 .family = PF_PACKET,
4040 .create = packet_create,
4041 .owner = THIS_MODULE,
4042 };
4043
4044 static struct notifier_block packet_netdev_notifier = {
4045 .notifier_call = packet_notifier,
4046 };
4047
4048 #ifdef CONFIG_PROC_FS
4049
4050 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4051 __acquires(RCU)
4052 {
4053 struct net *net = seq_file_net(seq);
4054
4055 rcu_read_lock();
4056 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4057 }
4058
4059 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4060 {
4061 struct net *net = seq_file_net(seq);
4062 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4063 }
4064
4065 static void packet_seq_stop(struct seq_file *seq, void *v)
4066 __releases(RCU)
4067 {
4068 rcu_read_unlock();
4069 }
4070
4071 static int packet_seq_show(struct seq_file *seq, void *v)
4072 {
4073 if (v == SEQ_START_TOKEN)
4074 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4075 else {
4076 struct sock *s = sk_entry(v);
4077 const struct packet_sock *po = pkt_sk(s);
4078
4079 seq_printf(seq,
4080 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4081 s,
4082 atomic_read(&s->sk_refcnt),
4083 s->sk_type,
4084 ntohs(po->num),
4085 po->ifindex,
4086 po->running,
4087 atomic_read(&s->sk_rmem_alloc),
4088 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4089 sock_i_ino(s));
4090 }
4091
4092 return 0;
4093 }
4094
4095 static const struct seq_operations packet_seq_ops = {
4096 .start = packet_seq_start,
4097 .next = packet_seq_next,
4098 .stop = packet_seq_stop,
4099 .show = packet_seq_show,
4100 };
4101
4102 static int packet_seq_open(struct inode *inode, struct file *file)
4103 {
4104 return seq_open_net(inode, file, &packet_seq_ops,
4105 sizeof(struct seq_net_private));
4106 }
4107
4108 static const struct file_operations packet_seq_fops = {
4109 .owner = THIS_MODULE,
4110 .open = packet_seq_open,
4111 .read = seq_read,
4112 .llseek = seq_lseek,
4113 .release = seq_release_net,
4114 };
4115
4116 #endif
4117
4118 static int __net_init packet_net_init(struct net *net)
4119 {
4120 mutex_init(&net->packet.sklist_lock);
4121 INIT_HLIST_HEAD(&net->packet.sklist);
4122
4123 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4124 return -ENOMEM;
4125
4126 return 0;
4127 }
4128
4129 static void __net_exit packet_net_exit(struct net *net)
4130 {
4131 remove_proc_entry("packet", net->proc_net);
4132 }
4133
4134 static struct pernet_operations packet_net_ops = {
4135 .init = packet_net_init,
4136 .exit = packet_net_exit,
4137 };
4138
4139
4140 static void __exit packet_exit(void)
4141 {
4142 unregister_netdevice_notifier(&packet_netdev_notifier);
4143 unregister_pernet_subsys(&packet_net_ops);
4144 sock_unregister(PF_PACKET);
4145 proto_unregister(&packet_proto);
4146 }
4147
4148 static int __init packet_init(void)
4149 {
4150 int rc = proto_register(&packet_proto, 0);
4151
4152 if (rc != 0)
4153 goto out;
4154
4155 sock_register(&packet_family_ops);
4156 register_pernet_subsys(&packet_net_ops);
4157 register_netdevice_notifier(&packet_netdev_notifier);
4158 out:
4159 return rc;
4160 }
4161
4162 module_init(packet_init);
4163 module_exit(packet_exit);
4164 MODULE_LICENSE("GPL");
4165 MODULE_ALIAS_NETPROTO(PF_PACKET);
This page took 0.15983 seconds and 6 git commands to generate.