bridge: fix br_stp_set_bridge_priority race conditions
[deliverable/linux.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95
96 #include "internal.h"
97
98 /*
99 Assumptions:
100 - if device has no dev->hard_header routine, it adds and removes ll header
101 inside itself. In this case ll header is invisible outside of device,
102 but higher levels still should reserve dev->hard_header_len.
103 Some devices are enough clever to reallocate skb, when header
104 will not fit to reserved space (tunnel), another ones are silly
105 (PPP).
106 - packet socket receives packets with pulled ll header,
107 so that SOCK_RAW should push it back.
108
109 On receive:
110 -----------
111
112 Incoming, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> data
115
116 Outgoing, dev->hard_header!=NULL
117 mac_header -> ll header
118 data -> ll header
119
120 Incoming, dev->hard_header==NULL
121 mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 header. PPP makes it, that is wrong, because introduce
123 assymetry between rx and tx paths.
124 data -> data
125
126 Outgoing, dev->hard_header==NULL
127 mac_header -> data. ll header is still not built!
128 data -> data
129
130 Resume
131 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132
133
134 On transmit:
135 ------------
136
137 dev->hard_header != NULL
138 mac_header -> ll header
139 data -> ll header
140
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142 mac_header -> data
143 data -> data
144
145 We should set nh.raw on output to correct posistion,
146 packet classifier depends on it.
147 */
148
149 /* Private packet socket structures. */
150
151 /* identical to struct packet_mreq except it has
152 * a longer address field.
153 */
154 struct packet_mreq_max {
155 int mr_ifindex;
156 unsigned short mr_type;
157 unsigned short mr_alen;
158 unsigned char mr_address[MAX_ADDR_LEN];
159 };
160
161 union tpacket_uhdr {
162 struct tpacket_hdr *h1;
163 struct tpacket2_hdr *h2;
164 struct tpacket3_hdr *h3;
165 void *raw;
166 };
167
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 int closing, int tx_ring);
170
171 #define V3_ALIGNMENT (8)
172
173 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177
178 #define PGV_FROM_VMALLOC 1
179
180 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
186 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 struct packet_type *pt, struct net_device *orig_dev);
192
193 static void *packet_previous_frame(struct packet_sock *po,
194 struct packet_ring_buffer *rb,
195 int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 struct tpacket_kbdq_core *,
210 void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217
218 struct packet_skb_cb {
219 union {
220 struct sockaddr_pkt pkt;
221 union {
222 /* Trick: alias skb original length with
223 * ll.sll_family and ll.protocol in order
224 * to save room.
225 */
226 unsigned int origlen;
227 struct sockaddr_ll ll;
228 };
229 } sa;
230 };
231
232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
233
234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
235 #define GET_PBLOCK_DESC(x, bid) \
236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
239 #define GET_NEXT_PRB_BLK_NUM(x) \
240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
241 ((x)->kactive_blk_num+1) : 0)
242
243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
244 static void __fanout_link(struct sock *sk, struct packet_sock *po);
245
246 static int packet_direct_xmit(struct sk_buff *skb)
247 {
248 struct net_device *dev = skb->dev;
249 netdev_features_t features;
250 struct netdev_queue *txq;
251 int ret = NETDEV_TX_BUSY;
252
253 if (unlikely(!netif_running(dev) ||
254 !netif_carrier_ok(dev)))
255 goto drop;
256
257 features = netif_skb_features(skb);
258 if (skb_needs_linearize(skb, features) &&
259 __skb_linearize(skb))
260 goto drop;
261
262 txq = skb_get_tx_queue(dev, skb);
263
264 local_bh_disable();
265
266 HARD_TX_LOCK(dev, txq, smp_processor_id());
267 if (!netif_xmit_frozen_or_drv_stopped(txq))
268 ret = netdev_start_xmit(skb, dev, txq, false);
269 HARD_TX_UNLOCK(dev, txq);
270
271 local_bh_enable();
272
273 if (!dev_xmit_complete(ret))
274 kfree_skb(skb);
275
276 return ret;
277 drop:
278 atomic_long_inc(&dev->tx_dropped);
279 kfree_skb(skb);
280 return NET_XMIT_DROP;
281 }
282
283 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
284 {
285 struct net_device *dev;
286
287 rcu_read_lock();
288 dev = rcu_dereference(po->cached_dev);
289 if (likely(dev))
290 dev_hold(dev);
291 rcu_read_unlock();
292
293 return dev;
294 }
295
296 static void packet_cached_dev_assign(struct packet_sock *po,
297 struct net_device *dev)
298 {
299 rcu_assign_pointer(po->cached_dev, dev);
300 }
301
302 static void packet_cached_dev_reset(struct packet_sock *po)
303 {
304 RCU_INIT_POINTER(po->cached_dev, NULL);
305 }
306
307 static bool packet_use_direct_xmit(const struct packet_sock *po)
308 {
309 return po->xmit == packet_direct_xmit;
310 }
311
312 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
313 {
314 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
315 }
316
317 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
318 {
319 const struct net_device_ops *ops = dev->netdev_ops;
320 u16 queue_index;
321
322 if (ops->ndo_select_queue) {
323 queue_index = ops->ndo_select_queue(dev, skb, NULL,
324 __packet_pick_tx_queue);
325 queue_index = netdev_cap_txqueue(dev, queue_index);
326 } else {
327 queue_index = __packet_pick_tx_queue(dev, skb);
328 }
329
330 skb_set_queue_mapping(skb, queue_index);
331 }
332
333 /* register_prot_hook must be invoked with the po->bind_lock held,
334 * or from a context in which asynchronous accesses to the packet
335 * socket is not possible (packet_create()).
336 */
337 static void register_prot_hook(struct sock *sk)
338 {
339 struct packet_sock *po = pkt_sk(sk);
340
341 if (!po->running) {
342 if (po->fanout)
343 __fanout_link(sk, po);
344 else
345 dev_add_pack(&po->prot_hook);
346
347 sock_hold(sk);
348 po->running = 1;
349 }
350 }
351
352 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
353 * held. If the sync parameter is true, we will temporarily drop
354 * the po->bind_lock and do a synchronize_net to make sure no
355 * asynchronous packet processing paths still refer to the elements
356 * of po->prot_hook. If the sync parameter is false, it is the
357 * callers responsibility to take care of this.
358 */
359 static void __unregister_prot_hook(struct sock *sk, bool sync)
360 {
361 struct packet_sock *po = pkt_sk(sk);
362
363 po->running = 0;
364
365 if (po->fanout)
366 __fanout_unlink(sk, po);
367 else
368 __dev_remove_pack(&po->prot_hook);
369
370 __sock_put(sk);
371
372 if (sync) {
373 spin_unlock(&po->bind_lock);
374 synchronize_net();
375 spin_lock(&po->bind_lock);
376 }
377 }
378
379 static void unregister_prot_hook(struct sock *sk, bool sync)
380 {
381 struct packet_sock *po = pkt_sk(sk);
382
383 if (po->running)
384 __unregister_prot_hook(sk, sync);
385 }
386
387 static inline struct page * __pure pgv_to_page(void *addr)
388 {
389 if (is_vmalloc_addr(addr))
390 return vmalloc_to_page(addr);
391 return virt_to_page(addr);
392 }
393
394 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
395 {
396 union tpacket_uhdr h;
397
398 h.raw = frame;
399 switch (po->tp_version) {
400 case TPACKET_V1:
401 h.h1->tp_status = status;
402 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
403 break;
404 case TPACKET_V2:
405 h.h2->tp_status = status;
406 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
407 break;
408 case TPACKET_V3:
409 default:
410 WARN(1, "TPACKET version not supported.\n");
411 BUG();
412 }
413
414 smp_wmb();
415 }
416
417 static int __packet_get_status(struct packet_sock *po, void *frame)
418 {
419 union tpacket_uhdr h;
420
421 smp_rmb();
422
423 h.raw = frame;
424 switch (po->tp_version) {
425 case TPACKET_V1:
426 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
427 return h.h1->tp_status;
428 case TPACKET_V2:
429 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
430 return h.h2->tp_status;
431 case TPACKET_V3:
432 default:
433 WARN(1, "TPACKET version not supported.\n");
434 BUG();
435 return 0;
436 }
437 }
438
439 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
440 unsigned int flags)
441 {
442 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
443
444 if (shhwtstamps &&
445 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
446 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
447 return TP_STATUS_TS_RAW_HARDWARE;
448
449 if (ktime_to_timespec_cond(skb->tstamp, ts))
450 return TP_STATUS_TS_SOFTWARE;
451
452 return 0;
453 }
454
455 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
456 struct sk_buff *skb)
457 {
458 union tpacket_uhdr h;
459 struct timespec ts;
460 __u32 ts_status;
461
462 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
463 return 0;
464
465 h.raw = frame;
466 switch (po->tp_version) {
467 case TPACKET_V1:
468 h.h1->tp_sec = ts.tv_sec;
469 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
470 break;
471 case TPACKET_V2:
472 h.h2->tp_sec = ts.tv_sec;
473 h.h2->tp_nsec = ts.tv_nsec;
474 break;
475 case TPACKET_V3:
476 default:
477 WARN(1, "TPACKET version not supported.\n");
478 BUG();
479 }
480
481 /* one flush is safe, as both fields always lie on the same cacheline */
482 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
483 smp_wmb();
484
485 return ts_status;
486 }
487
488 static void *packet_lookup_frame(struct packet_sock *po,
489 struct packet_ring_buffer *rb,
490 unsigned int position,
491 int status)
492 {
493 unsigned int pg_vec_pos, frame_offset;
494 union tpacket_uhdr h;
495
496 pg_vec_pos = position / rb->frames_per_block;
497 frame_offset = position % rb->frames_per_block;
498
499 h.raw = rb->pg_vec[pg_vec_pos].buffer +
500 (frame_offset * rb->frame_size);
501
502 if (status != __packet_get_status(po, h.raw))
503 return NULL;
504
505 return h.raw;
506 }
507
508 static void *packet_current_frame(struct packet_sock *po,
509 struct packet_ring_buffer *rb,
510 int status)
511 {
512 return packet_lookup_frame(po, rb, rb->head, status);
513 }
514
515 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
516 {
517 del_timer_sync(&pkc->retire_blk_timer);
518 }
519
520 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
521 int tx_ring,
522 struct sk_buff_head *rb_queue)
523 {
524 struct tpacket_kbdq_core *pkc;
525
526 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
527 GET_PBDQC_FROM_RB(&po->rx_ring);
528
529 spin_lock_bh(&rb_queue->lock);
530 pkc->delete_blk_timer = 1;
531 spin_unlock_bh(&rb_queue->lock);
532
533 prb_del_retire_blk_timer(pkc);
534 }
535
536 static void prb_init_blk_timer(struct packet_sock *po,
537 struct tpacket_kbdq_core *pkc,
538 void (*func) (unsigned long))
539 {
540 init_timer(&pkc->retire_blk_timer);
541 pkc->retire_blk_timer.data = (long)po;
542 pkc->retire_blk_timer.function = func;
543 pkc->retire_blk_timer.expires = jiffies;
544 }
545
546 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
547 {
548 struct tpacket_kbdq_core *pkc;
549
550 if (tx_ring)
551 BUG();
552
553 pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
554 GET_PBDQC_FROM_RB(&po->rx_ring);
555 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
556 }
557
558 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
559 int blk_size_in_bytes)
560 {
561 struct net_device *dev;
562 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
563 struct ethtool_cmd ecmd;
564 int err;
565 u32 speed;
566
567 rtnl_lock();
568 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
569 if (unlikely(!dev)) {
570 rtnl_unlock();
571 return DEFAULT_PRB_RETIRE_TOV;
572 }
573 err = __ethtool_get_settings(dev, &ecmd);
574 speed = ethtool_cmd_speed(&ecmd);
575 rtnl_unlock();
576 if (!err) {
577 /*
578 * If the link speed is so slow you don't really
579 * need to worry about perf anyways
580 */
581 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
582 return DEFAULT_PRB_RETIRE_TOV;
583 } else {
584 msec = 1;
585 div = speed / 1000;
586 }
587 }
588
589 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
590
591 if (div)
592 mbits /= div;
593
594 tmo = mbits * msec;
595
596 if (div)
597 return tmo+1;
598 return tmo;
599 }
600
601 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
602 union tpacket_req_u *req_u)
603 {
604 p1->feature_req_word = req_u->req3.tp_feature_req_word;
605 }
606
607 static void init_prb_bdqc(struct packet_sock *po,
608 struct packet_ring_buffer *rb,
609 struct pgv *pg_vec,
610 union tpacket_req_u *req_u, int tx_ring)
611 {
612 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
613 struct tpacket_block_desc *pbd;
614
615 memset(p1, 0x0, sizeof(*p1));
616
617 p1->knxt_seq_num = 1;
618 p1->pkbdq = pg_vec;
619 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
620 p1->pkblk_start = pg_vec[0].buffer;
621 p1->kblk_size = req_u->req3.tp_block_size;
622 p1->knum_blocks = req_u->req3.tp_block_nr;
623 p1->hdrlen = po->tp_hdrlen;
624 p1->version = po->tp_version;
625 p1->last_kactive_blk_num = 0;
626 po->stats.stats3.tp_freeze_q_cnt = 0;
627 if (req_u->req3.tp_retire_blk_tov)
628 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
629 else
630 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
631 req_u->req3.tp_block_size);
632 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
633 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
634
635 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
636 prb_init_ft_ops(p1, req_u);
637 prb_setup_retire_blk_timer(po, tx_ring);
638 prb_open_block(p1, pbd);
639 }
640
641 /* Do NOT update the last_blk_num first.
642 * Assumes sk_buff_head lock is held.
643 */
644 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
645 {
646 mod_timer(&pkc->retire_blk_timer,
647 jiffies + pkc->tov_in_jiffies);
648 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
649 }
650
651 /*
652 * Timer logic:
653 * 1) We refresh the timer only when we open a block.
654 * By doing this we don't waste cycles refreshing the timer
655 * on packet-by-packet basis.
656 *
657 * With a 1MB block-size, on a 1Gbps line, it will take
658 * i) ~8 ms to fill a block + ii) memcpy etc.
659 * In this cut we are not accounting for the memcpy time.
660 *
661 * So, if the user sets the 'tmo' to 10ms then the timer
662 * will never fire while the block is still getting filled
663 * (which is what we want). However, the user could choose
664 * to close a block early and that's fine.
665 *
666 * But when the timer does fire, we check whether or not to refresh it.
667 * Since the tmo granularity is in msecs, it is not too expensive
668 * to refresh the timer, lets say every '8' msecs.
669 * Either the user can set the 'tmo' or we can derive it based on
670 * a) line-speed and b) block-size.
671 * prb_calc_retire_blk_tmo() calculates the tmo.
672 *
673 */
674 static void prb_retire_rx_blk_timer_expired(unsigned long data)
675 {
676 struct packet_sock *po = (struct packet_sock *)data;
677 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
678 unsigned int frozen;
679 struct tpacket_block_desc *pbd;
680
681 spin_lock(&po->sk.sk_receive_queue.lock);
682
683 frozen = prb_queue_frozen(pkc);
684 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
685
686 if (unlikely(pkc->delete_blk_timer))
687 goto out;
688
689 /* We only need to plug the race when the block is partially filled.
690 * tpacket_rcv:
691 * lock(); increment BLOCK_NUM_PKTS; unlock()
692 * copy_bits() is in progress ...
693 * timer fires on other cpu:
694 * we can't retire the current block because copy_bits
695 * is in progress.
696 *
697 */
698 if (BLOCK_NUM_PKTS(pbd)) {
699 while (atomic_read(&pkc->blk_fill_in_prog)) {
700 /* Waiting for skb_copy_bits to finish... */
701 cpu_relax();
702 }
703 }
704
705 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
706 if (!frozen) {
707 if (!BLOCK_NUM_PKTS(pbd)) {
708 /* An empty block. Just refresh the timer. */
709 goto refresh_timer;
710 }
711 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
712 if (!prb_dispatch_next_block(pkc, po))
713 goto refresh_timer;
714 else
715 goto out;
716 } else {
717 /* Case 1. Queue was frozen because user-space was
718 * lagging behind.
719 */
720 if (prb_curr_blk_in_use(pkc, pbd)) {
721 /*
722 * Ok, user-space is still behind.
723 * So just refresh the timer.
724 */
725 goto refresh_timer;
726 } else {
727 /* Case 2. queue was frozen,user-space caught up,
728 * now the link went idle && the timer fired.
729 * We don't have a block to close.So we open this
730 * block and restart the timer.
731 * opening a block thaws the queue,restarts timer
732 * Thawing/timer-refresh is a side effect.
733 */
734 prb_open_block(pkc, pbd);
735 goto out;
736 }
737 }
738 }
739
740 refresh_timer:
741 _prb_refresh_rx_retire_blk_timer(pkc);
742
743 out:
744 spin_unlock(&po->sk.sk_receive_queue.lock);
745 }
746
747 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
748 struct tpacket_block_desc *pbd1, __u32 status)
749 {
750 /* Flush everything minus the block header */
751
752 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
753 u8 *start, *end;
754
755 start = (u8 *)pbd1;
756
757 /* Skip the block header(we know header WILL fit in 4K) */
758 start += PAGE_SIZE;
759
760 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
761 for (; start < end; start += PAGE_SIZE)
762 flush_dcache_page(pgv_to_page(start));
763
764 smp_wmb();
765 #endif
766
767 /* Now update the block status. */
768
769 BLOCK_STATUS(pbd1) = status;
770
771 /* Flush the block header */
772
773 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
774 start = (u8 *)pbd1;
775 flush_dcache_page(pgv_to_page(start));
776
777 smp_wmb();
778 #endif
779 }
780
781 /*
782 * Side effect:
783 *
784 * 1) flush the block
785 * 2) Increment active_blk_num
786 *
787 * Note:We DONT refresh the timer on purpose.
788 * Because almost always the next block will be opened.
789 */
790 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
791 struct tpacket_block_desc *pbd1,
792 struct packet_sock *po, unsigned int stat)
793 {
794 __u32 status = TP_STATUS_USER | stat;
795
796 struct tpacket3_hdr *last_pkt;
797 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
798 struct sock *sk = &po->sk;
799
800 if (po->stats.stats3.tp_drops)
801 status |= TP_STATUS_LOSING;
802
803 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
804 last_pkt->tp_next_offset = 0;
805
806 /* Get the ts of the last pkt */
807 if (BLOCK_NUM_PKTS(pbd1)) {
808 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
809 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
810 } else {
811 /* Ok, we tmo'd - so get the current time.
812 *
813 * It shouldn't really happen as we don't close empty
814 * blocks. See prb_retire_rx_blk_timer_expired().
815 */
816 struct timespec ts;
817 getnstimeofday(&ts);
818 h1->ts_last_pkt.ts_sec = ts.tv_sec;
819 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
820 }
821
822 smp_wmb();
823
824 /* Flush the block */
825 prb_flush_block(pkc1, pbd1, status);
826
827 sk->sk_data_ready(sk);
828
829 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
830 }
831
832 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
833 {
834 pkc->reset_pending_on_curr_blk = 0;
835 }
836
837 /*
838 * Side effect of opening a block:
839 *
840 * 1) prb_queue is thawed.
841 * 2) retire_blk_timer is refreshed.
842 *
843 */
844 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
845 struct tpacket_block_desc *pbd1)
846 {
847 struct timespec ts;
848 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
849
850 smp_rmb();
851
852 /* We could have just memset this but we will lose the
853 * flexibility of making the priv area sticky
854 */
855
856 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
857 BLOCK_NUM_PKTS(pbd1) = 0;
858 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
859
860 getnstimeofday(&ts);
861
862 h1->ts_first_pkt.ts_sec = ts.tv_sec;
863 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
864
865 pkc1->pkblk_start = (char *)pbd1;
866 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
867
868 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
869 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
870
871 pbd1->version = pkc1->version;
872 pkc1->prev = pkc1->nxt_offset;
873 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
874
875 prb_thaw_queue(pkc1);
876 _prb_refresh_rx_retire_blk_timer(pkc1);
877
878 smp_wmb();
879 }
880
881 /*
882 * Queue freeze logic:
883 * 1) Assume tp_block_nr = 8 blocks.
884 * 2) At time 't0', user opens Rx ring.
885 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
886 * 4) user-space is either sleeping or processing block '0'.
887 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
888 * it will close block-7,loop around and try to fill block '0'.
889 * call-flow:
890 * __packet_lookup_frame_in_block
891 * prb_retire_current_block()
892 * prb_dispatch_next_block()
893 * |->(BLOCK_STATUS == USER) evaluates to true
894 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
895 * 6) Now there are two cases:
896 * 6.1) Link goes idle right after the queue is frozen.
897 * But remember, the last open_block() refreshed the timer.
898 * When this timer expires,it will refresh itself so that we can
899 * re-open block-0 in near future.
900 * 6.2) Link is busy and keeps on receiving packets. This is a simple
901 * case and __packet_lookup_frame_in_block will check if block-0
902 * is free and can now be re-used.
903 */
904 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
905 struct packet_sock *po)
906 {
907 pkc->reset_pending_on_curr_blk = 1;
908 po->stats.stats3.tp_freeze_q_cnt++;
909 }
910
911 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
912
913 /*
914 * If the next block is free then we will dispatch it
915 * and return a good offset.
916 * Else, we will freeze the queue.
917 * So, caller must check the return value.
918 */
919 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
920 struct packet_sock *po)
921 {
922 struct tpacket_block_desc *pbd;
923
924 smp_rmb();
925
926 /* 1. Get current block num */
927 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
928
929 /* 2. If this block is currently in_use then freeze the queue */
930 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
931 prb_freeze_queue(pkc, po);
932 return NULL;
933 }
934
935 /*
936 * 3.
937 * open this block and return the offset where the first packet
938 * needs to get stored.
939 */
940 prb_open_block(pkc, pbd);
941 return (void *)pkc->nxt_offset;
942 }
943
944 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
945 struct packet_sock *po, unsigned int status)
946 {
947 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
948
949 /* retire/close the current block */
950 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
951 /*
952 * Plug the case where copy_bits() is in progress on
953 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
954 * have space to copy the pkt in the current block and
955 * called prb_retire_current_block()
956 *
957 * We don't need to worry about the TMO case because
958 * the timer-handler already handled this case.
959 */
960 if (!(status & TP_STATUS_BLK_TMO)) {
961 while (atomic_read(&pkc->blk_fill_in_prog)) {
962 /* Waiting for skb_copy_bits to finish... */
963 cpu_relax();
964 }
965 }
966 prb_close_block(pkc, pbd, po, status);
967 return;
968 }
969 }
970
971 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
972 struct tpacket_block_desc *pbd)
973 {
974 return TP_STATUS_USER & BLOCK_STATUS(pbd);
975 }
976
977 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
978 {
979 return pkc->reset_pending_on_curr_blk;
980 }
981
982 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
983 {
984 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
985 atomic_dec(&pkc->blk_fill_in_prog);
986 }
987
988 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
989 struct tpacket3_hdr *ppd)
990 {
991 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
992 }
993
994 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
995 struct tpacket3_hdr *ppd)
996 {
997 ppd->hv1.tp_rxhash = 0;
998 }
999
1000 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
1001 struct tpacket3_hdr *ppd)
1002 {
1003 if (skb_vlan_tag_present(pkc->skb)) {
1004 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1005 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1006 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1007 } else {
1008 ppd->hv1.tp_vlan_tci = 0;
1009 ppd->hv1.tp_vlan_tpid = 0;
1010 ppd->tp_status = TP_STATUS_AVAILABLE;
1011 }
1012 }
1013
1014 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1015 struct tpacket3_hdr *ppd)
1016 {
1017 ppd->hv1.tp_padding = 0;
1018 prb_fill_vlan_info(pkc, ppd);
1019
1020 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1021 prb_fill_rxhash(pkc, ppd);
1022 else
1023 prb_clear_rxhash(pkc, ppd);
1024 }
1025
1026 static void prb_fill_curr_block(char *curr,
1027 struct tpacket_kbdq_core *pkc,
1028 struct tpacket_block_desc *pbd,
1029 unsigned int len)
1030 {
1031 struct tpacket3_hdr *ppd;
1032
1033 ppd = (struct tpacket3_hdr *)curr;
1034 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1035 pkc->prev = curr;
1036 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1037 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1038 BLOCK_NUM_PKTS(pbd) += 1;
1039 atomic_inc(&pkc->blk_fill_in_prog);
1040 prb_run_all_ft_ops(pkc, ppd);
1041 }
1042
1043 /* Assumes caller has the sk->rx_queue.lock */
1044 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1045 struct sk_buff *skb,
1046 int status,
1047 unsigned int len
1048 )
1049 {
1050 struct tpacket_kbdq_core *pkc;
1051 struct tpacket_block_desc *pbd;
1052 char *curr, *end;
1053
1054 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1055 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1056
1057 /* Queue is frozen when user space is lagging behind */
1058 if (prb_queue_frozen(pkc)) {
1059 /*
1060 * Check if that last block which caused the queue to freeze,
1061 * is still in_use by user-space.
1062 */
1063 if (prb_curr_blk_in_use(pkc, pbd)) {
1064 /* Can't record this packet */
1065 return NULL;
1066 } else {
1067 /*
1068 * Ok, the block was released by user-space.
1069 * Now let's open that block.
1070 * opening a block also thaws the queue.
1071 * Thawing is a side effect.
1072 */
1073 prb_open_block(pkc, pbd);
1074 }
1075 }
1076
1077 smp_mb();
1078 curr = pkc->nxt_offset;
1079 pkc->skb = skb;
1080 end = (char *)pbd + pkc->kblk_size;
1081
1082 /* first try the current block */
1083 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1084 prb_fill_curr_block(curr, pkc, pbd, len);
1085 return (void *)curr;
1086 }
1087
1088 /* Ok, close the current block */
1089 prb_retire_current_block(pkc, po, 0);
1090
1091 /* Now, try to dispatch the next block */
1092 curr = (char *)prb_dispatch_next_block(pkc, po);
1093 if (curr) {
1094 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1095 prb_fill_curr_block(curr, pkc, pbd, len);
1096 return (void *)curr;
1097 }
1098
1099 /*
1100 * No free blocks are available.user_space hasn't caught up yet.
1101 * Queue was just frozen and now this packet will get dropped.
1102 */
1103 return NULL;
1104 }
1105
1106 static void *packet_current_rx_frame(struct packet_sock *po,
1107 struct sk_buff *skb,
1108 int status, unsigned int len)
1109 {
1110 char *curr = NULL;
1111 switch (po->tp_version) {
1112 case TPACKET_V1:
1113 case TPACKET_V2:
1114 curr = packet_lookup_frame(po, &po->rx_ring,
1115 po->rx_ring.head, status);
1116 return curr;
1117 case TPACKET_V3:
1118 return __packet_lookup_frame_in_block(po, skb, status, len);
1119 default:
1120 WARN(1, "TPACKET version not supported\n");
1121 BUG();
1122 return NULL;
1123 }
1124 }
1125
1126 static void *prb_lookup_block(struct packet_sock *po,
1127 struct packet_ring_buffer *rb,
1128 unsigned int idx,
1129 int status)
1130 {
1131 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1132 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1133
1134 if (status != BLOCK_STATUS(pbd))
1135 return NULL;
1136 return pbd;
1137 }
1138
1139 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1140 {
1141 unsigned int prev;
1142 if (rb->prb_bdqc.kactive_blk_num)
1143 prev = rb->prb_bdqc.kactive_blk_num-1;
1144 else
1145 prev = rb->prb_bdqc.knum_blocks-1;
1146 return prev;
1147 }
1148
1149 /* Assumes caller has held the rx_queue.lock */
1150 static void *__prb_previous_block(struct packet_sock *po,
1151 struct packet_ring_buffer *rb,
1152 int status)
1153 {
1154 unsigned int previous = prb_previous_blk_num(rb);
1155 return prb_lookup_block(po, rb, previous, status);
1156 }
1157
1158 static void *packet_previous_rx_frame(struct packet_sock *po,
1159 struct packet_ring_buffer *rb,
1160 int status)
1161 {
1162 if (po->tp_version <= TPACKET_V2)
1163 return packet_previous_frame(po, rb, status);
1164
1165 return __prb_previous_block(po, rb, status);
1166 }
1167
1168 static void packet_increment_rx_head(struct packet_sock *po,
1169 struct packet_ring_buffer *rb)
1170 {
1171 switch (po->tp_version) {
1172 case TPACKET_V1:
1173 case TPACKET_V2:
1174 return packet_increment_head(rb);
1175 case TPACKET_V3:
1176 default:
1177 WARN(1, "TPACKET version not supported.\n");
1178 BUG();
1179 return;
1180 }
1181 }
1182
1183 static void *packet_previous_frame(struct packet_sock *po,
1184 struct packet_ring_buffer *rb,
1185 int status)
1186 {
1187 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1188 return packet_lookup_frame(po, rb, previous, status);
1189 }
1190
1191 static void packet_increment_head(struct packet_ring_buffer *buff)
1192 {
1193 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1194 }
1195
1196 static void packet_inc_pending(struct packet_ring_buffer *rb)
1197 {
1198 this_cpu_inc(*rb->pending_refcnt);
1199 }
1200
1201 static void packet_dec_pending(struct packet_ring_buffer *rb)
1202 {
1203 this_cpu_dec(*rb->pending_refcnt);
1204 }
1205
1206 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1207 {
1208 unsigned int refcnt = 0;
1209 int cpu;
1210
1211 /* We don't use pending refcount in rx_ring. */
1212 if (rb->pending_refcnt == NULL)
1213 return 0;
1214
1215 for_each_possible_cpu(cpu)
1216 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1217
1218 return refcnt;
1219 }
1220
1221 static int packet_alloc_pending(struct packet_sock *po)
1222 {
1223 po->rx_ring.pending_refcnt = NULL;
1224
1225 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1226 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1227 return -ENOBUFS;
1228
1229 return 0;
1230 }
1231
1232 static void packet_free_pending(struct packet_sock *po)
1233 {
1234 free_percpu(po->tx_ring.pending_refcnt);
1235 }
1236
1237 static bool packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1238 {
1239 struct sock *sk = &po->sk;
1240 bool has_room;
1241
1242 if (po->prot_hook.func != tpacket_rcv)
1243 return (atomic_read(&sk->sk_rmem_alloc) + skb->truesize)
1244 <= sk->sk_rcvbuf;
1245
1246 spin_lock(&sk->sk_receive_queue.lock);
1247 if (po->tp_version == TPACKET_V3)
1248 has_room = prb_lookup_block(po, &po->rx_ring,
1249 po->rx_ring.prb_bdqc.kactive_blk_num,
1250 TP_STATUS_KERNEL);
1251 else
1252 has_room = packet_lookup_frame(po, &po->rx_ring,
1253 po->rx_ring.head,
1254 TP_STATUS_KERNEL);
1255 spin_unlock(&sk->sk_receive_queue.lock);
1256
1257 return has_room;
1258 }
1259
1260 static void packet_sock_destruct(struct sock *sk)
1261 {
1262 skb_queue_purge(&sk->sk_error_queue);
1263
1264 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1265 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1266
1267 if (!sock_flag(sk, SOCK_DEAD)) {
1268 pr_err("Attempt to release alive packet socket: %p\n", sk);
1269 return;
1270 }
1271
1272 sk_refcnt_debug_dec(sk);
1273 }
1274
1275 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1276 {
1277 int x = atomic_read(&f->rr_cur) + 1;
1278
1279 if (x >= num)
1280 x = 0;
1281
1282 return x;
1283 }
1284
1285 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1286 struct sk_buff *skb,
1287 unsigned int num)
1288 {
1289 return reciprocal_scale(skb_get_hash(skb), num);
1290 }
1291
1292 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1293 struct sk_buff *skb,
1294 unsigned int num)
1295 {
1296 int cur, old;
1297
1298 cur = atomic_read(&f->rr_cur);
1299 while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1300 fanout_rr_next(f, num))) != cur)
1301 cur = old;
1302 return cur;
1303 }
1304
1305 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1306 struct sk_buff *skb,
1307 unsigned int num)
1308 {
1309 return smp_processor_id() % num;
1310 }
1311
1312 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1313 struct sk_buff *skb,
1314 unsigned int num)
1315 {
1316 return prandom_u32_max(num);
1317 }
1318
1319 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1320 struct sk_buff *skb,
1321 unsigned int idx, unsigned int skip,
1322 unsigned int num)
1323 {
1324 unsigned int i, j;
1325
1326 i = j = min_t(int, f->next[idx], num - 1);
1327 do {
1328 if (i != skip && packet_rcv_has_room(pkt_sk(f->arr[i]), skb)) {
1329 if (i != j)
1330 f->next[idx] = i;
1331 return i;
1332 }
1333 if (++i == num)
1334 i = 0;
1335 } while (i != j);
1336
1337 return idx;
1338 }
1339
1340 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1341 struct sk_buff *skb,
1342 unsigned int num)
1343 {
1344 return skb_get_queue_mapping(skb) % num;
1345 }
1346
1347 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1348 {
1349 return f->flags & (flag >> 8);
1350 }
1351
1352 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1353 struct packet_type *pt, struct net_device *orig_dev)
1354 {
1355 struct packet_fanout *f = pt->af_packet_priv;
1356 unsigned int num = f->num_members;
1357 struct packet_sock *po;
1358 unsigned int idx;
1359
1360 if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1361 !num) {
1362 kfree_skb(skb);
1363 return 0;
1364 }
1365
1366 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1367 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1368 if (!skb)
1369 return 0;
1370 }
1371 switch (f->type) {
1372 case PACKET_FANOUT_HASH:
1373 default:
1374 idx = fanout_demux_hash(f, skb, num);
1375 break;
1376 case PACKET_FANOUT_LB:
1377 idx = fanout_demux_lb(f, skb, num);
1378 break;
1379 case PACKET_FANOUT_CPU:
1380 idx = fanout_demux_cpu(f, skb, num);
1381 break;
1382 case PACKET_FANOUT_RND:
1383 idx = fanout_demux_rnd(f, skb, num);
1384 break;
1385 case PACKET_FANOUT_QM:
1386 idx = fanout_demux_qm(f, skb, num);
1387 break;
1388 case PACKET_FANOUT_ROLLOVER:
1389 idx = fanout_demux_rollover(f, skb, 0, (unsigned int) -1, num);
1390 break;
1391 }
1392
1393 po = pkt_sk(f->arr[idx]);
1394 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER) &&
1395 unlikely(!packet_rcv_has_room(po, skb))) {
1396 idx = fanout_demux_rollover(f, skb, idx, idx, num);
1397 po = pkt_sk(f->arr[idx]);
1398 }
1399
1400 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1401 }
1402
1403 DEFINE_MUTEX(fanout_mutex);
1404 EXPORT_SYMBOL_GPL(fanout_mutex);
1405 static LIST_HEAD(fanout_list);
1406
1407 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1408 {
1409 struct packet_fanout *f = po->fanout;
1410
1411 spin_lock(&f->lock);
1412 f->arr[f->num_members] = sk;
1413 smp_wmb();
1414 f->num_members++;
1415 spin_unlock(&f->lock);
1416 }
1417
1418 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1419 {
1420 struct packet_fanout *f = po->fanout;
1421 int i;
1422
1423 spin_lock(&f->lock);
1424 for (i = 0; i < f->num_members; i++) {
1425 if (f->arr[i] == sk)
1426 break;
1427 }
1428 BUG_ON(i >= f->num_members);
1429 f->arr[i] = f->arr[f->num_members - 1];
1430 f->num_members--;
1431 spin_unlock(&f->lock);
1432 }
1433
1434 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1435 {
1436 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1437 return true;
1438
1439 return false;
1440 }
1441
1442 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1443 {
1444 struct packet_sock *po = pkt_sk(sk);
1445 struct packet_fanout *f, *match;
1446 u8 type = type_flags & 0xff;
1447 u8 flags = type_flags >> 8;
1448 int err;
1449
1450 switch (type) {
1451 case PACKET_FANOUT_ROLLOVER:
1452 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1453 return -EINVAL;
1454 case PACKET_FANOUT_HASH:
1455 case PACKET_FANOUT_LB:
1456 case PACKET_FANOUT_CPU:
1457 case PACKET_FANOUT_RND:
1458 case PACKET_FANOUT_QM:
1459 break;
1460 default:
1461 return -EINVAL;
1462 }
1463
1464 if (!po->running)
1465 return -EINVAL;
1466
1467 if (po->fanout)
1468 return -EALREADY;
1469
1470 mutex_lock(&fanout_mutex);
1471 match = NULL;
1472 list_for_each_entry(f, &fanout_list, list) {
1473 if (f->id == id &&
1474 read_pnet(&f->net) == sock_net(sk)) {
1475 match = f;
1476 break;
1477 }
1478 }
1479 err = -EINVAL;
1480 if (match && match->flags != flags)
1481 goto out;
1482 if (!match) {
1483 err = -ENOMEM;
1484 match = kzalloc(sizeof(*match), GFP_KERNEL);
1485 if (!match)
1486 goto out;
1487 write_pnet(&match->net, sock_net(sk));
1488 match->id = id;
1489 match->type = type;
1490 match->flags = flags;
1491 atomic_set(&match->rr_cur, 0);
1492 INIT_LIST_HEAD(&match->list);
1493 spin_lock_init(&match->lock);
1494 atomic_set(&match->sk_ref, 0);
1495 match->prot_hook.type = po->prot_hook.type;
1496 match->prot_hook.dev = po->prot_hook.dev;
1497 match->prot_hook.func = packet_rcv_fanout;
1498 match->prot_hook.af_packet_priv = match;
1499 match->prot_hook.id_match = match_fanout_group;
1500 dev_add_pack(&match->prot_hook);
1501 list_add(&match->list, &fanout_list);
1502 }
1503 err = -EINVAL;
1504 if (match->type == type &&
1505 match->prot_hook.type == po->prot_hook.type &&
1506 match->prot_hook.dev == po->prot_hook.dev) {
1507 err = -ENOSPC;
1508 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1509 __dev_remove_pack(&po->prot_hook);
1510 po->fanout = match;
1511 atomic_inc(&match->sk_ref);
1512 __fanout_link(sk, po);
1513 err = 0;
1514 }
1515 }
1516 out:
1517 mutex_unlock(&fanout_mutex);
1518 return err;
1519 }
1520
1521 static void fanout_release(struct sock *sk)
1522 {
1523 struct packet_sock *po = pkt_sk(sk);
1524 struct packet_fanout *f;
1525
1526 f = po->fanout;
1527 if (!f)
1528 return;
1529
1530 mutex_lock(&fanout_mutex);
1531 po->fanout = NULL;
1532
1533 if (atomic_dec_and_test(&f->sk_ref)) {
1534 list_del(&f->list);
1535 dev_remove_pack(&f->prot_hook);
1536 kfree(f);
1537 }
1538 mutex_unlock(&fanout_mutex);
1539 }
1540
1541 static const struct proto_ops packet_ops;
1542
1543 static const struct proto_ops packet_ops_spkt;
1544
1545 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1546 struct packet_type *pt, struct net_device *orig_dev)
1547 {
1548 struct sock *sk;
1549 struct sockaddr_pkt *spkt;
1550
1551 /*
1552 * When we registered the protocol we saved the socket in the data
1553 * field for just this event.
1554 */
1555
1556 sk = pt->af_packet_priv;
1557
1558 /*
1559 * Yank back the headers [hope the device set this
1560 * right or kerboom...]
1561 *
1562 * Incoming packets have ll header pulled,
1563 * push it back.
1564 *
1565 * For outgoing ones skb->data == skb_mac_header(skb)
1566 * so that this procedure is noop.
1567 */
1568
1569 if (skb->pkt_type == PACKET_LOOPBACK)
1570 goto out;
1571
1572 if (!net_eq(dev_net(dev), sock_net(sk)))
1573 goto out;
1574
1575 skb = skb_share_check(skb, GFP_ATOMIC);
1576 if (skb == NULL)
1577 goto oom;
1578
1579 /* drop any routing info */
1580 skb_dst_drop(skb);
1581
1582 /* drop conntrack reference */
1583 nf_reset(skb);
1584
1585 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1586
1587 skb_push(skb, skb->data - skb_mac_header(skb));
1588
1589 /*
1590 * The SOCK_PACKET socket receives _all_ frames.
1591 */
1592
1593 spkt->spkt_family = dev->type;
1594 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1595 spkt->spkt_protocol = skb->protocol;
1596
1597 /*
1598 * Charge the memory to the socket. This is done specifically
1599 * to prevent sockets using all the memory up.
1600 */
1601
1602 if (sock_queue_rcv_skb(sk, skb) == 0)
1603 return 0;
1604
1605 out:
1606 kfree_skb(skb);
1607 oom:
1608 return 0;
1609 }
1610
1611
1612 /*
1613 * Output a raw packet to a device layer. This bypasses all the other
1614 * protocol layers and you must therefore supply it with a complete frame
1615 */
1616
1617 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1618 size_t len)
1619 {
1620 struct sock *sk = sock->sk;
1621 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1622 struct sk_buff *skb = NULL;
1623 struct net_device *dev;
1624 __be16 proto = 0;
1625 int err;
1626 int extra_len = 0;
1627
1628 /*
1629 * Get and verify the address.
1630 */
1631
1632 if (saddr) {
1633 if (msg->msg_namelen < sizeof(struct sockaddr))
1634 return -EINVAL;
1635 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1636 proto = saddr->spkt_protocol;
1637 } else
1638 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1639
1640 /*
1641 * Find the device first to size check it
1642 */
1643
1644 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1645 retry:
1646 rcu_read_lock();
1647 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1648 err = -ENODEV;
1649 if (dev == NULL)
1650 goto out_unlock;
1651
1652 err = -ENETDOWN;
1653 if (!(dev->flags & IFF_UP))
1654 goto out_unlock;
1655
1656 /*
1657 * You may not queue a frame bigger than the mtu. This is the lowest level
1658 * raw protocol and you must do your own fragmentation at this level.
1659 */
1660
1661 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1662 if (!netif_supports_nofcs(dev)) {
1663 err = -EPROTONOSUPPORT;
1664 goto out_unlock;
1665 }
1666 extra_len = 4; /* We're doing our own CRC */
1667 }
1668
1669 err = -EMSGSIZE;
1670 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1671 goto out_unlock;
1672
1673 if (!skb) {
1674 size_t reserved = LL_RESERVED_SPACE(dev);
1675 int tlen = dev->needed_tailroom;
1676 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1677
1678 rcu_read_unlock();
1679 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1680 if (skb == NULL)
1681 return -ENOBUFS;
1682 /* FIXME: Save some space for broken drivers that write a hard
1683 * header at transmission time by themselves. PPP is the notable
1684 * one here. This should really be fixed at the driver level.
1685 */
1686 skb_reserve(skb, reserved);
1687 skb_reset_network_header(skb);
1688
1689 /* Try to align data part correctly */
1690 if (hhlen) {
1691 skb->data -= hhlen;
1692 skb->tail -= hhlen;
1693 if (len < hhlen)
1694 skb_reset_network_header(skb);
1695 }
1696 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1697 if (err)
1698 goto out_free;
1699 goto retry;
1700 }
1701
1702 if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1703 /* Earlier code assumed this would be a VLAN pkt,
1704 * double-check this now that we have the actual
1705 * packet in hand.
1706 */
1707 struct ethhdr *ehdr;
1708 skb_reset_mac_header(skb);
1709 ehdr = eth_hdr(skb);
1710 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1711 err = -EMSGSIZE;
1712 goto out_unlock;
1713 }
1714 }
1715
1716 skb->protocol = proto;
1717 skb->dev = dev;
1718 skb->priority = sk->sk_priority;
1719 skb->mark = sk->sk_mark;
1720
1721 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1722
1723 if (unlikely(extra_len == 4))
1724 skb->no_fcs = 1;
1725
1726 skb_probe_transport_header(skb, 0);
1727
1728 dev_queue_xmit(skb);
1729 rcu_read_unlock();
1730 return len;
1731
1732 out_unlock:
1733 rcu_read_unlock();
1734 out_free:
1735 kfree_skb(skb);
1736 return err;
1737 }
1738
1739 static unsigned int run_filter(const struct sk_buff *skb,
1740 const struct sock *sk,
1741 unsigned int res)
1742 {
1743 struct sk_filter *filter;
1744
1745 rcu_read_lock();
1746 filter = rcu_dereference(sk->sk_filter);
1747 if (filter != NULL)
1748 res = SK_RUN_FILTER(filter, skb);
1749 rcu_read_unlock();
1750
1751 return res;
1752 }
1753
1754 /*
1755 * This function makes lazy skb cloning in hope that most of packets
1756 * are discarded by BPF.
1757 *
1758 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1759 * and skb->cb are mangled. It works because (and until) packets
1760 * falling here are owned by current CPU. Output packets are cloned
1761 * by dev_queue_xmit_nit(), input packets are processed by net_bh
1762 * sequencially, so that if we return skb to original state on exit,
1763 * we will not harm anyone.
1764 */
1765
1766 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1767 struct packet_type *pt, struct net_device *orig_dev)
1768 {
1769 struct sock *sk;
1770 struct sockaddr_ll *sll;
1771 struct packet_sock *po;
1772 u8 *skb_head = skb->data;
1773 int skb_len = skb->len;
1774 unsigned int snaplen, res;
1775
1776 if (skb->pkt_type == PACKET_LOOPBACK)
1777 goto drop;
1778
1779 sk = pt->af_packet_priv;
1780 po = pkt_sk(sk);
1781
1782 if (!net_eq(dev_net(dev), sock_net(sk)))
1783 goto drop;
1784
1785 skb->dev = dev;
1786
1787 if (dev->header_ops) {
1788 /* The device has an explicit notion of ll header,
1789 * exported to higher levels.
1790 *
1791 * Otherwise, the device hides details of its frame
1792 * structure, so that corresponding packet head is
1793 * never delivered to user.
1794 */
1795 if (sk->sk_type != SOCK_DGRAM)
1796 skb_push(skb, skb->data - skb_mac_header(skb));
1797 else if (skb->pkt_type == PACKET_OUTGOING) {
1798 /* Special case: outgoing packets have ll header at head */
1799 skb_pull(skb, skb_network_offset(skb));
1800 }
1801 }
1802
1803 snaplen = skb->len;
1804
1805 res = run_filter(skb, sk, snaplen);
1806 if (!res)
1807 goto drop_n_restore;
1808 if (snaplen > res)
1809 snaplen = res;
1810
1811 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1812 goto drop_n_acct;
1813
1814 if (skb_shared(skb)) {
1815 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1816 if (nskb == NULL)
1817 goto drop_n_acct;
1818
1819 if (skb_head != skb->data) {
1820 skb->data = skb_head;
1821 skb->len = skb_len;
1822 }
1823 consume_skb(skb);
1824 skb = nskb;
1825 }
1826
1827 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
1828
1829 sll = &PACKET_SKB_CB(skb)->sa.ll;
1830 sll->sll_hatype = dev->type;
1831 sll->sll_pkttype = skb->pkt_type;
1832 if (unlikely(po->origdev))
1833 sll->sll_ifindex = orig_dev->ifindex;
1834 else
1835 sll->sll_ifindex = dev->ifindex;
1836
1837 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1838
1839 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
1840 * Use their space for storing the original skb length.
1841 */
1842 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
1843
1844 if (pskb_trim(skb, snaplen))
1845 goto drop_n_acct;
1846
1847 skb_set_owner_r(skb, sk);
1848 skb->dev = NULL;
1849 skb_dst_drop(skb);
1850
1851 /* drop conntrack reference */
1852 nf_reset(skb);
1853
1854 spin_lock(&sk->sk_receive_queue.lock);
1855 po->stats.stats1.tp_packets++;
1856 sock_skb_set_dropcount(sk, skb);
1857 __skb_queue_tail(&sk->sk_receive_queue, skb);
1858 spin_unlock(&sk->sk_receive_queue.lock);
1859 sk->sk_data_ready(sk);
1860 return 0;
1861
1862 drop_n_acct:
1863 spin_lock(&sk->sk_receive_queue.lock);
1864 po->stats.stats1.tp_drops++;
1865 atomic_inc(&sk->sk_drops);
1866 spin_unlock(&sk->sk_receive_queue.lock);
1867
1868 drop_n_restore:
1869 if (skb_head != skb->data && skb_shared(skb)) {
1870 skb->data = skb_head;
1871 skb->len = skb_len;
1872 }
1873 drop:
1874 consume_skb(skb);
1875 return 0;
1876 }
1877
1878 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1879 struct packet_type *pt, struct net_device *orig_dev)
1880 {
1881 struct sock *sk;
1882 struct packet_sock *po;
1883 struct sockaddr_ll *sll;
1884 union tpacket_uhdr h;
1885 u8 *skb_head = skb->data;
1886 int skb_len = skb->len;
1887 unsigned int snaplen, res;
1888 unsigned long status = TP_STATUS_USER;
1889 unsigned short macoff, netoff, hdrlen;
1890 struct sk_buff *copy_skb = NULL;
1891 struct timespec ts;
1892 __u32 ts_status;
1893
1894 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
1895 * We may add members to them until current aligned size without forcing
1896 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
1897 */
1898 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
1899 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
1900
1901 if (skb->pkt_type == PACKET_LOOPBACK)
1902 goto drop;
1903
1904 sk = pt->af_packet_priv;
1905 po = pkt_sk(sk);
1906
1907 if (!net_eq(dev_net(dev), sock_net(sk)))
1908 goto drop;
1909
1910 if (dev->header_ops) {
1911 if (sk->sk_type != SOCK_DGRAM)
1912 skb_push(skb, skb->data - skb_mac_header(skb));
1913 else if (skb->pkt_type == PACKET_OUTGOING) {
1914 /* Special case: outgoing packets have ll header at head */
1915 skb_pull(skb, skb_network_offset(skb));
1916 }
1917 }
1918
1919 snaplen = skb->len;
1920
1921 res = run_filter(skb, sk, snaplen);
1922 if (!res)
1923 goto drop_n_restore;
1924
1925 if (skb->ip_summed == CHECKSUM_PARTIAL)
1926 status |= TP_STATUS_CSUMNOTREADY;
1927 else if (skb->pkt_type != PACKET_OUTGOING &&
1928 (skb->ip_summed == CHECKSUM_COMPLETE ||
1929 skb_csum_unnecessary(skb)))
1930 status |= TP_STATUS_CSUM_VALID;
1931
1932 if (snaplen > res)
1933 snaplen = res;
1934
1935 if (sk->sk_type == SOCK_DGRAM) {
1936 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1937 po->tp_reserve;
1938 } else {
1939 unsigned int maclen = skb_network_offset(skb);
1940 netoff = TPACKET_ALIGN(po->tp_hdrlen +
1941 (maclen < 16 ? 16 : maclen)) +
1942 po->tp_reserve;
1943 macoff = netoff - maclen;
1944 }
1945 if (po->tp_version <= TPACKET_V2) {
1946 if (macoff + snaplen > po->rx_ring.frame_size) {
1947 if (po->copy_thresh &&
1948 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1949 if (skb_shared(skb)) {
1950 copy_skb = skb_clone(skb, GFP_ATOMIC);
1951 } else {
1952 copy_skb = skb_get(skb);
1953 skb_head = skb->data;
1954 }
1955 if (copy_skb)
1956 skb_set_owner_r(copy_skb, sk);
1957 }
1958 snaplen = po->rx_ring.frame_size - macoff;
1959 if ((int)snaplen < 0)
1960 snaplen = 0;
1961 }
1962 } else if (unlikely(macoff + snaplen >
1963 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
1964 u32 nval;
1965
1966 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
1967 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
1968 snaplen, nval, macoff);
1969 snaplen = nval;
1970 if (unlikely((int)snaplen < 0)) {
1971 snaplen = 0;
1972 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
1973 }
1974 }
1975 spin_lock(&sk->sk_receive_queue.lock);
1976 h.raw = packet_current_rx_frame(po, skb,
1977 TP_STATUS_KERNEL, (macoff+snaplen));
1978 if (!h.raw)
1979 goto ring_is_full;
1980 if (po->tp_version <= TPACKET_V2) {
1981 packet_increment_rx_head(po, &po->rx_ring);
1982 /*
1983 * LOSING will be reported till you read the stats,
1984 * because it's COR - Clear On Read.
1985 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1986 * at packet level.
1987 */
1988 if (po->stats.stats1.tp_drops)
1989 status |= TP_STATUS_LOSING;
1990 }
1991 po->stats.stats1.tp_packets++;
1992 if (copy_skb) {
1993 status |= TP_STATUS_COPY;
1994 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1995 }
1996 spin_unlock(&sk->sk_receive_queue.lock);
1997
1998 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1999
2000 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2001 getnstimeofday(&ts);
2002
2003 status |= ts_status;
2004
2005 switch (po->tp_version) {
2006 case TPACKET_V1:
2007 h.h1->tp_len = skb->len;
2008 h.h1->tp_snaplen = snaplen;
2009 h.h1->tp_mac = macoff;
2010 h.h1->tp_net = netoff;
2011 h.h1->tp_sec = ts.tv_sec;
2012 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2013 hdrlen = sizeof(*h.h1);
2014 break;
2015 case TPACKET_V2:
2016 h.h2->tp_len = skb->len;
2017 h.h2->tp_snaplen = snaplen;
2018 h.h2->tp_mac = macoff;
2019 h.h2->tp_net = netoff;
2020 h.h2->tp_sec = ts.tv_sec;
2021 h.h2->tp_nsec = ts.tv_nsec;
2022 if (skb_vlan_tag_present(skb)) {
2023 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2024 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2025 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2026 } else {
2027 h.h2->tp_vlan_tci = 0;
2028 h.h2->tp_vlan_tpid = 0;
2029 }
2030 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2031 hdrlen = sizeof(*h.h2);
2032 break;
2033 case TPACKET_V3:
2034 /* tp_nxt_offset,vlan are already populated above.
2035 * So DONT clear those fields here
2036 */
2037 h.h3->tp_status |= status;
2038 h.h3->tp_len = skb->len;
2039 h.h3->tp_snaplen = snaplen;
2040 h.h3->tp_mac = macoff;
2041 h.h3->tp_net = netoff;
2042 h.h3->tp_sec = ts.tv_sec;
2043 h.h3->tp_nsec = ts.tv_nsec;
2044 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2045 hdrlen = sizeof(*h.h3);
2046 break;
2047 default:
2048 BUG();
2049 }
2050
2051 sll = h.raw + TPACKET_ALIGN(hdrlen);
2052 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2053 sll->sll_family = AF_PACKET;
2054 sll->sll_hatype = dev->type;
2055 sll->sll_protocol = skb->protocol;
2056 sll->sll_pkttype = skb->pkt_type;
2057 if (unlikely(po->origdev))
2058 sll->sll_ifindex = orig_dev->ifindex;
2059 else
2060 sll->sll_ifindex = dev->ifindex;
2061
2062 smp_mb();
2063
2064 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2065 if (po->tp_version <= TPACKET_V2) {
2066 u8 *start, *end;
2067
2068 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2069 macoff + snaplen);
2070
2071 for (start = h.raw; start < end; start += PAGE_SIZE)
2072 flush_dcache_page(pgv_to_page(start));
2073 }
2074 smp_wmb();
2075 #endif
2076
2077 if (po->tp_version <= TPACKET_V2) {
2078 __packet_set_status(po, h.raw, status);
2079 sk->sk_data_ready(sk);
2080 } else {
2081 prb_clear_blk_fill_status(&po->rx_ring);
2082 }
2083
2084 drop_n_restore:
2085 if (skb_head != skb->data && skb_shared(skb)) {
2086 skb->data = skb_head;
2087 skb->len = skb_len;
2088 }
2089 drop:
2090 kfree_skb(skb);
2091 return 0;
2092
2093 ring_is_full:
2094 po->stats.stats1.tp_drops++;
2095 spin_unlock(&sk->sk_receive_queue.lock);
2096
2097 sk->sk_data_ready(sk);
2098 kfree_skb(copy_skb);
2099 goto drop_n_restore;
2100 }
2101
2102 static void tpacket_destruct_skb(struct sk_buff *skb)
2103 {
2104 struct packet_sock *po = pkt_sk(skb->sk);
2105
2106 if (likely(po->tx_ring.pg_vec)) {
2107 void *ph;
2108 __u32 ts;
2109
2110 ph = skb_shinfo(skb)->destructor_arg;
2111 packet_dec_pending(&po->tx_ring);
2112
2113 ts = __packet_set_timestamp(po, ph, skb);
2114 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2115 }
2116
2117 sock_wfree(skb);
2118 }
2119
2120 static bool ll_header_truncated(const struct net_device *dev, int len)
2121 {
2122 /* net device doesn't like empty head */
2123 if (unlikely(len <= dev->hard_header_len)) {
2124 net_warn_ratelimited("%s: packet size is too short (%d <= %d)\n",
2125 current->comm, len, dev->hard_header_len);
2126 return true;
2127 }
2128
2129 return false;
2130 }
2131
2132 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2133 void *frame, struct net_device *dev, int size_max,
2134 __be16 proto, unsigned char *addr, int hlen)
2135 {
2136 union tpacket_uhdr ph;
2137 int to_write, offset, len, tp_len, nr_frags, len_max;
2138 struct socket *sock = po->sk.sk_socket;
2139 struct page *page;
2140 void *data;
2141 int err;
2142
2143 ph.raw = frame;
2144
2145 skb->protocol = proto;
2146 skb->dev = dev;
2147 skb->priority = po->sk.sk_priority;
2148 skb->mark = po->sk.sk_mark;
2149 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2150 skb_shinfo(skb)->destructor_arg = ph.raw;
2151
2152 switch (po->tp_version) {
2153 case TPACKET_V2:
2154 tp_len = ph.h2->tp_len;
2155 break;
2156 default:
2157 tp_len = ph.h1->tp_len;
2158 break;
2159 }
2160 if (unlikely(tp_len > size_max)) {
2161 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2162 return -EMSGSIZE;
2163 }
2164
2165 skb_reserve(skb, hlen);
2166 skb_reset_network_header(skb);
2167
2168 if (!packet_use_direct_xmit(po))
2169 skb_probe_transport_header(skb, 0);
2170 if (unlikely(po->tp_tx_has_off)) {
2171 int off_min, off_max, off;
2172 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2173 off_max = po->tx_ring.frame_size - tp_len;
2174 if (sock->type == SOCK_DGRAM) {
2175 switch (po->tp_version) {
2176 case TPACKET_V2:
2177 off = ph.h2->tp_net;
2178 break;
2179 default:
2180 off = ph.h1->tp_net;
2181 break;
2182 }
2183 } else {
2184 switch (po->tp_version) {
2185 case TPACKET_V2:
2186 off = ph.h2->tp_mac;
2187 break;
2188 default:
2189 off = ph.h1->tp_mac;
2190 break;
2191 }
2192 }
2193 if (unlikely((off < off_min) || (off_max < off)))
2194 return -EINVAL;
2195 data = ph.raw + off;
2196 } else {
2197 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2198 }
2199 to_write = tp_len;
2200
2201 if (sock->type == SOCK_DGRAM) {
2202 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2203 NULL, tp_len);
2204 if (unlikely(err < 0))
2205 return -EINVAL;
2206 } else if (dev->hard_header_len) {
2207 if (ll_header_truncated(dev, tp_len))
2208 return -EINVAL;
2209
2210 skb_push(skb, dev->hard_header_len);
2211 err = skb_store_bits(skb, 0, data,
2212 dev->hard_header_len);
2213 if (unlikely(err))
2214 return err;
2215
2216 data += dev->hard_header_len;
2217 to_write -= dev->hard_header_len;
2218 }
2219
2220 offset = offset_in_page(data);
2221 len_max = PAGE_SIZE - offset;
2222 len = ((to_write > len_max) ? len_max : to_write);
2223
2224 skb->data_len = to_write;
2225 skb->len += to_write;
2226 skb->truesize += to_write;
2227 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2228
2229 while (likely(to_write)) {
2230 nr_frags = skb_shinfo(skb)->nr_frags;
2231
2232 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2233 pr_err("Packet exceed the number of skb frags(%lu)\n",
2234 MAX_SKB_FRAGS);
2235 return -EFAULT;
2236 }
2237
2238 page = pgv_to_page(data);
2239 data += len;
2240 flush_dcache_page(page);
2241 get_page(page);
2242 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2243 to_write -= len;
2244 offset = 0;
2245 len_max = PAGE_SIZE;
2246 len = ((to_write > len_max) ? len_max : to_write);
2247 }
2248
2249 return tp_len;
2250 }
2251
2252 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2253 {
2254 struct sk_buff *skb;
2255 struct net_device *dev;
2256 __be16 proto;
2257 int err, reserve = 0;
2258 void *ph;
2259 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2260 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2261 int tp_len, size_max;
2262 unsigned char *addr;
2263 int len_sum = 0;
2264 int status = TP_STATUS_AVAILABLE;
2265 int hlen, tlen;
2266
2267 mutex_lock(&po->pg_vec_lock);
2268
2269 if (likely(saddr == NULL)) {
2270 dev = packet_cached_dev_get(po);
2271 proto = po->num;
2272 addr = NULL;
2273 } else {
2274 err = -EINVAL;
2275 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2276 goto out;
2277 if (msg->msg_namelen < (saddr->sll_halen
2278 + offsetof(struct sockaddr_ll,
2279 sll_addr)))
2280 goto out;
2281 proto = saddr->sll_protocol;
2282 addr = saddr->sll_addr;
2283 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2284 }
2285
2286 err = -ENXIO;
2287 if (unlikely(dev == NULL))
2288 goto out;
2289 err = -ENETDOWN;
2290 if (unlikely(!(dev->flags & IFF_UP)))
2291 goto out_put;
2292
2293 reserve = dev->hard_header_len + VLAN_HLEN;
2294 size_max = po->tx_ring.frame_size
2295 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2296
2297 if (size_max > dev->mtu + reserve)
2298 size_max = dev->mtu + reserve;
2299
2300 do {
2301 ph = packet_current_frame(po, &po->tx_ring,
2302 TP_STATUS_SEND_REQUEST);
2303 if (unlikely(ph == NULL)) {
2304 if (need_wait && need_resched())
2305 schedule();
2306 continue;
2307 }
2308
2309 status = TP_STATUS_SEND_REQUEST;
2310 hlen = LL_RESERVED_SPACE(dev);
2311 tlen = dev->needed_tailroom;
2312 skb = sock_alloc_send_skb(&po->sk,
2313 hlen + tlen + sizeof(struct sockaddr_ll),
2314 !need_wait, &err);
2315
2316 if (unlikely(skb == NULL)) {
2317 /* we assume the socket was initially writeable ... */
2318 if (likely(len_sum > 0))
2319 err = len_sum;
2320 goto out_status;
2321 }
2322 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2323 addr, hlen);
2324 if (tp_len > dev->mtu + dev->hard_header_len) {
2325 struct ethhdr *ehdr;
2326 /* Earlier code assumed this would be a VLAN pkt,
2327 * double-check this now that we have the actual
2328 * packet in hand.
2329 */
2330
2331 skb_reset_mac_header(skb);
2332 ehdr = eth_hdr(skb);
2333 if (ehdr->h_proto != htons(ETH_P_8021Q))
2334 tp_len = -EMSGSIZE;
2335 }
2336 if (unlikely(tp_len < 0)) {
2337 if (po->tp_loss) {
2338 __packet_set_status(po, ph,
2339 TP_STATUS_AVAILABLE);
2340 packet_increment_head(&po->tx_ring);
2341 kfree_skb(skb);
2342 continue;
2343 } else {
2344 status = TP_STATUS_WRONG_FORMAT;
2345 err = tp_len;
2346 goto out_status;
2347 }
2348 }
2349
2350 packet_pick_tx_queue(dev, skb);
2351
2352 skb->destructor = tpacket_destruct_skb;
2353 __packet_set_status(po, ph, TP_STATUS_SENDING);
2354 packet_inc_pending(&po->tx_ring);
2355
2356 status = TP_STATUS_SEND_REQUEST;
2357 err = po->xmit(skb);
2358 if (unlikely(err > 0)) {
2359 err = net_xmit_errno(err);
2360 if (err && __packet_get_status(po, ph) ==
2361 TP_STATUS_AVAILABLE) {
2362 /* skb was destructed already */
2363 skb = NULL;
2364 goto out_status;
2365 }
2366 /*
2367 * skb was dropped but not destructed yet;
2368 * let's treat it like congestion or err < 0
2369 */
2370 err = 0;
2371 }
2372 packet_increment_head(&po->tx_ring);
2373 len_sum += tp_len;
2374 } while (likely((ph != NULL) ||
2375 /* Note: packet_read_pending() might be slow if we have
2376 * to call it as it's per_cpu variable, but in fast-path
2377 * we already short-circuit the loop with the first
2378 * condition, and luckily don't have to go that path
2379 * anyway.
2380 */
2381 (need_wait && packet_read_pending(&po->tx_ring))));
2382
2383 err = len_sum;
2384 goto out_put;
2385
2386 out_status:
2387 __packet_set_status(po, ph, status);
2388 kfree_skb(skb);
2389 out_put:
2390 dev_put(dev);
2391 out:
2392 mutex_unlock(&po->pg_vec_lock);
2393 return err;
2394 }
2395
2396 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2397 size_t reserve, size_t len,
2398 size_t linear, int noblock,
2399 int *err)
2400 {
2401 struct sk_buff *skb;
2402
2403 /* Under a page? Don't bother with paged skb. */
2404 if (prepad + len < PAGE_SIZE || !linear)
2405 linear = len;
2406
2407 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2408 err, 0);
2409 if (!skb)
2410 return NULL;
2411
2412 skb_reserve(skb, reserve);
2413 skb_put(skb, linear);
2414 skb->data_len = len - linear;
2415 skb->len += len - linear;
2416
2417 return skb;
2418 }
2419
2420 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2421 {
2422 struct sock *sk = sock->sk;
2423 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2424 struct sk_buff *skb;
2425 struct net_device *dev;
2426 __be16 proto;
2427 unsigned char *addr;
2428 int err, reserve = 0;
2429 struct virtio_net_hdr vnet_hdr = { 0 };
2430 int offset = 0;
2431 int vnet_hdr_len;
2432 struct packet_sock *po = pkt_sk(sk);
2433 unsigned short gso_type = 0;
2434 int hlen, tlen;
2435 int extra_len = 0;
2436 ssize_t n;
2437
2438 /*
2439 * Get and verify the address.
2440 */
2441
2442 if (likely(saddr == NULL)) {
2443 dev = packet_cached_dev_get(po);
2444 proto = po->num;
2445 addr = NULL;
2446 } else {
2447 err = -EINVAL;
2448 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2449 goto out;
2450 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2451 goto out;
2452 proto = saddr->sll_protocol;
2453 addr = saddr->sll_addr;
2454 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2455 }
2456
2457 err = -ENXIO;
2458 if (unlikely(dev == NULL))
2459 goto out_unlock;
2460 err = -ENETDOWN;
2461 if (unlikely(!(dev->flags & IFF_UP)))
2462 goto out_unlock;
2463
2464 if (sock->type == SOCK_RAW)
2465 reserve = dev->hard_header_len;
2466 if (po->has_vnet_hdr) {
2467 vnet_hdr_len = sizeof(vnet_hdr);
2468
2469 err = -EINVAL;
2470 if (len < vnet_hdr_len)
2471 goto out_unlock;
2472
2473 len -= vnet_hdr_len;
2474
2475 err = -EFAULT;
2476 n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter);
2477 if (n != vnet_hdr_len)
2478 goto out_unlock;
2479
2480 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2481 (__virtio16_to_cpu(false, vnet_hdr.csum_start) +
2482 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2 >
2483 __virtio16_to_cpu(false, vnet_hdr.hdr_len)))
2484 vnet_hdr.hdr_len = __cpu_to_virtio16(false,
2485 __virtio16_to_cpu(false, vnet_hdr.csum_start) +
2486 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2);
2487
2488 err = -EINVAL;
2489 if (__virtio16_to_cpu(false, vnet_hdr.hdr_len) > len)
2490 goto out_unlock;
2491
2492 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2493 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2494 case VIRTIO_NET_HDR_GSO_TCPV4:
2495 gso_type = SKB_GSO_TCPV4;
2496 break;
2497 case VIRTIO_NET_HDR_GSO_TCPV6:
2498 gso_type = SKB_GSO_TCPV6;
2499 break;
2500 case VIRTIO_NET_HDR_GSO_UDP:
2501 gso_type = SKB_GSO_UDP;
2502 break;
2503 default:
2504 goto out_unlock;
2505 }
2506
2507 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2508 gso_type |= SKB_GSO_TCP_ECN;
2509
2510 if (vnet_hdr.gso_size == 0)
2511 goto out_unlock;
2512
2513 }
2514 }
2515
2516 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2517 if (!netif_supports_nofcs(dev)) {
2518 err = -EPROTONOSUPPORT;
2519 goto out_unlock;
2520 }
2521 extra_len = 4; /* We're doing our own CRC */
2522 }
2523
2524 err = -EMSGSIZE;
2525 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2526 goto out_unlock;
2527
2528 err = -ENOBUFS;
2529 hlen = LL_RESERVED_SPACE(dev);
2530 tlen = dev->needed_tailroom;
2531 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,
2532 __virtio16_to_cpu(false, vnet_hdr.hdr_len),
2533 msg->msg_flags & MSG_DONTWAIT, &err);
2534 if (skb == NULL)
2535 goto out_unlock;
2536
2537 skb_set_network_header(skb, reserve);
2538
2539 err = -EINVAL;
2540 if (sock->type == SOCK_DGRAM) {
2541 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2542 if (unlikely(offset < 0))
2543 goto out_free;
2544 } else {
2545 if (ll_header_truncated(dev, len))
2546 goto out_free;
2547 }
2548
2549 /* Returns -EFAULT on error */
2550 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2551 if (err)
2552 goto out_free;
2553
2554 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2555
2556 if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2557 /* Earlier code assumed this would be a VLAN pkt,
2558 * double-check this now that we have the actual
2559 * packet in hand.
2560 */
2561 struct ethhdr *ehdr;
2562 skb_reset_mac_header(skb);
2563 ehdr = eth_hdr(skb);
2564 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2565 err = -EMSGSIZE;
2566 goto out_free;
2567 }
2568 }
2569
2570 skb->protocol = proto;
2571 skb->dev = dev;
2572 skb->priority = sk->sk_priority;
2573 skb->mark = sk->sk_mark;
2574
2575 packet_pick_tx_queue(dev, skb);
2576
2577 if (po->has_vnet_hdr) {
2578 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2579 u16 s = __virtio16_to_cpu(false, vnet_hdr.csum_start);
2580 u16 o = __virtio16_to_cpu(false, vnet_hdr.csum_offset);
2581 if (!skb_partial_csum_set(skb, s, o)) {
2582 err = -EINVAL;
2583 goto out_free;
2584 }
2585 }
2586
2587 skb_shinfo(skb)->gso_size =
2588 __virtio16_to_cpu(false, vnet_hdr.gso_size);
2589 skb_shinfo(skb)->gso_type = gso_type;
2590
2591 /* Header must be checked, and gso_segs computed. */
2592 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2593 skb_shinfo(skb)->gso_segs = 0;
2594
2595 len += vnet_hdr_len;
2596 }
2597
2598 if (!packet_use_direct_xmit(po))
2599 skb_probe_transport_header(skb, reserve);
2600 if (unlikely(extra_len == 4))
2601 skb->no_fcs = 1;
2602
2603 err = po->xmit(skb);
2604 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2605 goto out_unlock;
2606
2607 dev_put(dev);
2608
2609 return len;
2610
2611 out_free:
2612 kfree_skb(skb);
2613 out_unlock:
2614 if (dev)
2615 dev_put(dev);
2616 out:
2617 return err;
2618 }
2619
2620 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2621 {
2622 struct sock *sk = sock->sk;
2623 struct packet_sock *po = pkt_sk(sk);
2624
2625 if (po->tx_ring.pg_vec)
2626 return tpacket_snd(po, msg);
2627 else
2628 return packet_snd(sock, msg, len);
2629 }
2630
2631 /*
2632 * Close a PACKET socket. This is fairly simple. We immediately go
2633 * to 'closed' state and remove our protocol entry in the device list.
2634 */
2635
2636 static int packet_release(struct socket *sock)
2637 {
2638 struct sock *sk = sock->sk;
2639 struct packet_sock *po;
2640 struct net *net;
2641 union tpacket_req_u req_u;
2642
2643 if (!sk)
2644 return 0;
2645
2646 net = sock_net(sk);
2647 po = pkt_sk(sk);
2648
2649 mutex_lock(&net->packet.sklist_lock);
2650 sk_del_node_init_rcu(sk);
2651 mutex_unlock(&net->packet.sklist_lock);
2652
2653 preempt_disable();
2654 sock_prot_inuse_add(net, sk->sk_prot, -1);
2655 preempt_enable();
2656
2657 spin_lock(&po->bind_lock);
2658 unregister_prot_hook(sk, false);
2659 packet_cached_dev_reset(po);
2660
2661 if (po->prot_hook.dev) {
2662 dev_put(po->prot_hook.dev);
2663 po->prot_hook.dev = NULL;
2664 }
2665 spin_unlock(&po->bind_lock);
2666
2667 packet_flush_mclist(sk);
2668
2669 if (po->rx_ring.pg_vec) {
2670 memset(&req_u, 0, sizeof(req_u));
2671 packet_set_ring(sk, &req_u, 1, 0);
2672 }
2673
2674 if (po->tx_ring.pg_vec) {
2675 memset(&req_u, 0, sizeof(req_u));
2676 packet_set_ring(sk, &req_u, 1, 1);
2677 }
2678
2679 fanout_release(sk);
2680
2681 synchronize_net();
2682 /*
2683 * Now the socket is dead. No more input will appear.
2684 */
2685 sock_orphan(sk);
2686 sock->sk = NULL;
2687
2688 /* Purge queues */
2689
2690 skb_queue_purge(&sk->sk_receive_queue);
2691 packet_free_pending(po);
2692 sk_refcnt_debug_release(sk);
2693
2694 sock_put(sk);
2695 return 0;
2696 }
2697
2698 /*
2699 * Attach a packet hook.
2700 */
2701
2702 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2703 {
2704 struct packet_sock *po = pkt_sk(sk);
2705 const struct net_device *dev_curr;
2706 __be16 proto_curr;
2707 bool need_rehook;
2708
2709 if (po->fanout) {
2710 if (dev)
2711 dev_put(dev);
2712
2713 return -EINVAL;
2714 }
2715
2716 lock_sock(sk);
2717 spin_lock(&po->bind_lock);
2718
2719 proto_curr = po->prot_hook.type;
2720 dev_curr = po->prot_hook.dev;
2721
2722 need_rehook = proto_curr != proto || dev_curr != dev;
2723
2724 if (need_rehook) {
2725 unregister_prot_hook(sk, true);
2726
2727 po->num = proto;
2728 po->prot_hook.type = proto;
2729
2730 if (po->prot_hook.dev)
2731 dev_put(po->prot_hook.dev);
2732
2733 po->prot_hook.dev = dev;
2734
2735 po->ifindex = dev ? dev->ifindex : 0;
2736 packet_cached_dev_assign(po, dev);
2737 }
2738
2739 if (proto == 0 || !need_rehook)
2740 goto out_unlock;
2741
2742 if (!dev || (dev->flags & IFF_UP)) {
2743 register_prot_hook(sk);
2744 } else {
2745 sk->sk_err = ENETDOWN;
2746 if (!sock_flag(sk, SOCK_DEAD))
2747 sk->sk_error_report(sk);
2748 }
2749
2750 out_unlock:
2751 spin_unlock(&po->bind_lock);
2752 release_sock(sk);
2753 return 0;
2754 }
2755
2756 /*
2757 * Bind a packet socket to a device
2758 */
2759
2760 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2761 int addr_len)
2762 {
2763 struct sock *sk = sock->sk;
2764 char name[15];
2765 struct net_device *dev;
2766 int err = -ENODEV;
2767
2768 /*
2769 * Check legality
2770 */
2771
2772 if (addr_len != sizeof(struct sockaddr))
2773 return -EINVAL;
2774 strlcpy(name, uaddr->sa_data, sizeof(name));
2775
2776 dev = dev_get_by_name(sock_net(sk), name);
2777 if (dev)
2778 err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2779 return err;
2780 }
2781
2782 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2783 {
2784 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2785 struct sock *sk = sock->sk;
2786 struct net_device *dev = NULL;
2787 int err;
2788
2789
2790 /*
2791 * Check legality
2792 */
2793
2794 if (addr_len < sizeof(struct sockaddr_ll))
2795 return -EINVAL;
2796 if (sll->sll_family != AF_PACKET)
2797 return -EINVAL;
2798
2799 if (sll->sll_ifindex) {
2800 err = -ENODEV;
2801 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2802 if (dev == NULL)
2803 goto out;
2804 }
2805 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2806
2807 out:
2808 return err;
2809 }
2810
2811 static struct proto packet_proto = {
2812 .name = "PACKET",
2813 .owner = THIS_MODULE,
2814 .obj_size = sizeof(struct packet_sock),
2815 };
2816
2817 /*
2818 * Create a packet of type SOCK_PACKET.
2819 */
2820
2821 static int packet_create(struct net *net, struct socket *sock, int protocol,
2822 int kern)
2823 {
2824 struct sock *sk;
2825 struct packet_sock *po;
2826 __be16 proto = (__force __be16)protocol; /* weird, but documented */
2827 int err;
2828
2829 if (!ns_capable(net->user_ns, CAP_NET_RAW))
2830 return -EPERM;
2831 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2832 sock->type != SOCK_PACKET)
2833 return -ESOCKTNOSUPPORT;
2834
2835 sock->state = SS_UNCONNECTED;
2836
2837 err = -ENOBUFS;
2838 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2839 if (sk == NULL)
2840 goto out;
2841
2842 sock->ops = &packet_ops;
2843 if (sock->type == SOCK_PACKET)
2844 sock->ops = &packet_ops_spkt;
2845
2846 sock_init_data(sock, sk);
2847
2848 po = pkt_sk(sk);
2849 sk->sk_family = PF_PACKET;
2850 po->num = proto;
2851 po->xmit = dev_queue_xmit;
2852
2853 err = packet_alloc_pending(po);
2854 if (err)
2855 goto out2;
2856
2857 packet_cached_dev_reset(po);
2858
2859 sk->sk_destruct = packet_sock_destruct;
2860 sk_refcnt_debug_inc(sk);
2861
2862 /*
2863 * Attach a protocol block
2864 */
2865
2866 spin_lock_init(&po->bind_lock);
2867 mutex_init(&po->pg_vec_lock);
2868 po->prot_hook.func = packet_rcv;
2869
2870 if (sock->type == SOCK_PACKET)
2871 po->prot_hook.func = packet_rcv_spkt;
2872
2873 po->prot_hook.af_packet_priv = sk;
2874
2875 if (proto) {
2876 po->prot_hook.type = proto;
2877 register_prot_hook(sk);
2878 }
2879
2880 mutex_lock(&net->packet.sklist_lock);
2881 sk_add_node_rcu(sk, &net->packet.sklist);
2882 mutex_unlock(&net->packet.sklist_lock);
2883
2884 preempt_disable();
2885 sock_prot_inuse_add(net, &packet_proto, 1);
2886 preempt_enable();
2887
2888 return 0;
2889 out2:
2890 sk_free(sk);
2891 out:
2892 return err;
2893 }
2894
2895 /*
2896 * Pull a packet from our receive queue and hand it to the user.
2897 * If necessary we block.
2898 */
2899
2900 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2901 int flags)
2902 {
2903 struct sock *sk = sock->sk;
2904 struct sk_buff *skb;
2905 int copied, err;
2906 int vnet_hdr_len = 0;
2907 unsigned int origlen = 0;
2908
2909 err = -EINVAL;
2910 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2911 goto out;
2912
2913 #if 0
2914 /* What error should we return now? EUNATTACH? */
2915 if (pkt_sk(sk)->ifindex < 0)
2916 return -ENODEV;
2917 #endif
2918
2919 if (flags & MSG_ERRQUEUE) {
2920 err = sock_recv_errqueue(sk, msg, len,
2921 SOL_PACKET, PACKET_TX_TIMESTAMP);
2922 goto out;
2923 }
2924
2925 /*
2926 * Call the generic datagram receiver. This handles all sorts
2927 * of horrible races and re-entrancy so we can forget about it
2928 * in the protocol layers.
2929 *
2930 * Now it will return ENETDOWN, if device have just gone down,
2931 * but then it will block.
2932 */
2933
2934 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2935
2936 /*
2937 * An error occurred so return it. Because skb_recv_datagram()
2938 * handles the blocking we don't see and worry about blocking
2939 * retries.
2940 */
2941
2942 if (skb == NULL)
2943 goto out;
2944
2945 if (pkt_sk(sk)->has_vnet_hdr) {
2946 struct virtio_net_hdr vnet_hdr = { 0 };
2947
2948 err = -EINVAL;
2949 vnet_hdr_len = sizeof(vnet_hdr);
2950 if (len < vnet_hdr_len)
2951 goto out_free;
2952
2953 len -= vnet_hdr_len;
2954
2955 if (skb_is_gso(skb)) {
2956 struct skb_shared_info *sinfo = skb_shinfo(skb);
2957
2958 /* This is a hint as to how much should be linear. */
2959 vnet_hdr.hdr_len =
2960 __cpu_to_virtio16(false, skb_headlen(skb));
2961 vnet_hdr.gso_size =
2962 __cpu_to_virtio16(false, sinfo->gso_size);
2963 if (sinfo->gso_type & SKB_GSO_TCPV4)
2964 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2965 else if (sinfo->gso_type & SKB_GSO_TCPV6)
2966 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2967 else if (sinfo->gso_type & SKB_GSO_UDP)
2968 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2969 else if (sinfo->gso_type & SKB_GSO_FCOE)
2970 goto out_free;
2971 else
2972 BUG();
2973 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2974 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2975 } else
2976 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2977
2978 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2979 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2980 vnet_hdr.csum_start = __cpu_to_virtio16(false,
2981 skb_checksum_start_offset(skb));
2982 vnet_hdr.csum_offset = __cpu_to_virtio16(false,
2983 skb->csum_offset);
2984 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2985 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2986 } /* else everything is zero */
2987
2988 err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len);
2989 if (err < 0)
2990 goto out_free;
2991 }
2992
2993 /* You lose any data beyond the buffer you gave. If it worries
2994 * a user program they can ask the device for its MTU
2995 * anyway.
2996 */
2997 copied = skb->len;
2998 if (copied > len) {
2999 copied = len;
3000 msg->msg_flags |= MSG_TRUNC;
3001 }
3002
3003 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3004 if (err)
3005 goto out_free;
3006
3007 if (sock->type != SOCK_PACKET) {
3008 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3009
3010 /* Original length was stored in sockaddr_ll fields */
3011 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3012 sll->sll_family = AF_PACKET;
3013 sll->sll_protocol = skb->protocol;
3014 }
3015
3016 sock_recv_ts_and_drops(msg, sk, skb);
3017
3018 if (msg->msg_name) {
3019 /* If the address length field is there to be filled
3020 * in, we fill it in now.
3021 */
3022 if (sock->type == SOCK_PACKET) {
3023 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3024 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3025 } else {
3026 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3027
3028 msg->msg_namelen = sll->sll_halen +
3029 offsetof(struct sockaddr_ll, sll_addr);
3030 }
3031 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3032 msg->msg_namelen);
3033 }
3034
3035 if (pkt_sk(sk)->auxdata) {
3036 struct tpacket_auxdata aux;
3037
3038 aux.tp_status = TP_STATUS_USER;
3039 if (skb->ip_summed == CHECKSUM_PARTIAL)
3040 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3041 else if (skb->pkt_type != PACKET_OUTGOING &&
3042 (skb->ip_summed == CHECKSUM_COMPLETE ||
3043 skb_csum_unnecessary(skb)))
3044 aux.tp_status |= TP_STATUS_CSUM_VALID;
3045
3046 aux.tp_len = origlen;
3047 aux.tp_snaplen = skb->len;
3048 aux.tp_mac = 0;
3049 aux.tp_net = skb_network_offset(skb);
3050 if (skb_vlan_tag_present(skb)) {
3051 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3052 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3053 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3054 } else {
3055 aux.tp_vlan_tci = 0;
3056 aux.tp_vlan_tpid = 0;
3057 }
3058 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3059 }
3060
3061 /*
3062 * Free or return the buffer as appropriate. Again this
3063 * hides all the races and re-entrancy issues from us.
3064 */
3065 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3066
3067 out_free:
3068 skb_free_datagram(sk, skb);
3069 out:
3070 return err;
3071 }
3072
3073 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3074 int *uaddr_len, int peer)
3075 {
3076 struct net_device *dev;
3077 struct sock *sk = sock->sk;
3078
3079 if (peer)
3080 return -EOPNOTSUPP;
3081
3082 uaddr->sa_family = AF_PACKET;
3083 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3084 rcu_read_lock();
3085 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3086 if (dev)
3087 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3088 rcu_read_unlock();
3089 *uaddr_len = sizeof(*uaddr);
3090
3091 return 0;
3092 }
3093
3094 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3095 int *uaddr_len, int peer)
3096 {
3097 struct net_device *dev;
3098 struct sock *sk = sock->sk;
3099 struct packet_sock *po = pkt_sk(sk);
3100 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3101
3102 if (peer)
3103 return -EOPNOTSUPP;
3104
3105 sll->sll_family = AF_PACKET;
3106 sll->sll_ifindex = po->ifindex;
3107 sll->sll_protocol = po->num;
3108 sll->sll_pkttype = 0;
3109 rcu_read_lock();
3110 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3111 if (dev) {
3112 sll->sll_hatype = dev->type;
3113 sll->sll_halen = dev->addr_len;
3114 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3115 } else {
3116 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3117 sll->sll_halen = 0;
3118 }
3119 rcu_read_unlock();
3120 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3121
3122 return 0;
3123 }
3124
3125 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3126 int what)
3127 {
3128 switch (i->type) {
3129 case PACKET_MR_MULTICAST:
3130 if (i->alen != dev->addr_len)
3131 return -EINVAL;
3132 if (what > 0)
3133 return dev_mc_add(dev, i->addr);
3134 else
3135 return dev_mc_del(dev, i->addr);
3136 break;
3137 case PACKET_MR_PROMISC:
3138 return dev_set_promiscuity(dev, what);
3139 case PACKET_MR_ALLMULTI:
3140 return dev_set_allmulti(dev, what);
3141 case PACKET_MR_UNICAST:
3142 if (i->alen != dev->addr_len)
3143 return -EINVAL;
3144 if (what > 0)
3145 return dev_uc_add(dev, i->addr);
3146 else
3147 return dev_uc_del(dev, i->addr);
3148 break;
3149 default:
3150 break;
3151 }
3152 return 0;
3153 }
3154
3155 static void packet_dev_mclist_delete(struct net_device *dev,
3156 struct packet_mclist **mlp)
3157 {
3158 struct packet_mclist *ml;
3159
3160 while ((ml = *mlp) != NULL) {
3161 if (ml->ifindex == dev->ifindex) {
3162 packet_dev_mc(dev, ml, -1);
3163 *mlp = ml->next;
3164 kfree(ml);
3165 } else
3166 mlp = &ml->next;
3167 }
3168 }
3169
3170 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3171 {
3172 struct packet_sock *po = pkt_sk(sk);
3173 struct packet_mclist *ml, *i;
3174 struct net_device *dev;
3175 int err;
3176
3177 rtnl_lock();
3178
3179 err = -ENODEV;
3180 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3181 if (!dev)
3182 goto done;
3183
3184 err = -EINVAL;
3185 if (mreq->mr_alen > dev->addr_len)
3186 goto done;
3187
3188 err = -ENOBUFS;
3189 i = kmalloc(sizeof(*i), GFP_KERNEL);
3190 if (i == NULL)
3191 goto done;
3192
3193 err = 0;
3194 for (ml = po->mclist; ml; ml = ml->next) {
3195 if (ml->ifindex == mreq->mr_ifindex &&
3196 ml->type == mreq->mr_type &&
3197 ml->alen == mreq->mr_alen &&
3198 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3199 ml->count++;
3200 /* Free the new element ... */
3201 kfree(i);
3202 goto done;
3203 }
3204 }
3205
3206 i->type = mreq->mr_type;
3207 i->ifindex = mreq->mr_ifindex;
3208 i->alen = mreq->mr_alen;
3209 memcpy(i->addr, mreq->mr_address, i->alen);
3210 i->count = 1;
3211 i->next = po->mclist;
3212 po->mclist = i;
3213 err = packet_dev_mc(dev, i, 1);
3214 if (err) {
3215 po->mclist = i->next;
3216 kfree(i);
3217 }
3218
3219 done:
3220 rtnl_unlock();
3221 return err;
3222 }
3223
3224 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3225 {
3226 struct packet_mclist *ml, **mlp;
3227
3228 rtnl_lock();
3229
3230 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3231 if (ml->ifindex == mreq->mr_ifindex &&
3232 ml->type == mreq->mr_type &&
3233 ml->alen == mreq->mr_alen &&
3234 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3235 if (--ml->count == 0) {
3236 struct net_device *dev;
3237 *mlp = ml->next;
3238 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3239 if (dev)
3240 packet_dev_mc(dev, ml, -1);
3241 kfree(ml);
3242 }
3243 break;
3244 }
3245 }
3246 rtnl_unlock();
3247 return 0;
3248 }
3249
3250 static void packet_flush_mclist(struct sock *sk)
3251 {
3252 struct packet_sock *po = pkt_sk(sk);
3253 struct packet_mclist *ml;
3254
3255 if (!po->mclist)
3256 return;
3257
3258 rtnl_lock();
3259 while ((ml = po->mclist) != NULL) {
3260 struct net_device *dev;
3261
3262 po->mclist = ml->next;
3263 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3264 if (dev != NULL)
3265 packet_dev_mc(dev, ml, -1);
3266 kfree(ml);
3267 }
3268 rtnl_unlock();
3269 }
3270
3271 static int
3272 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3273 {
3274 struct sock *sk = sock->sk;
3275 struct packet_sock *po = pkt_sk(sk);
3276 int ret;
3277
3278 if (level != SOL_PACKET)
3279 return -ENOPROTOOPT;
3280
3281 switch (optname) {
3282 case PACKET_ADD_MEMBERSHIP:
3283 case PACKET_DROP_MEMBERSHIP:
3284 {
3285 struct packet_mreq_max mreq;
3286 int len = optlen;
3287 memset(&mreq, 0, sizeof(mreq));
3288 if (len < sizeof(struct packet_mreq))
3289 return -EINVAL;
3290 if (len > sizeof(mreq))
3291 len = sizeof(mreq);
3292 if (copy_from_user(&mreq, optval, len))
3293 return -EFAULT;
3294 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3295 return -EINVAL;
3296 if (optname == PACKET_ADD_MEMBERSHIP)
3297 ret = packet_mc_add(sk, &mreq);
3298 else
3299 ret = packet_mc_drop(sk, &mreq);
3300 return ret;
3301 }
3302
3303 case PACKET_RX_RING:
3304 case PACKET_TX_RING:
3305 {
3306 union tpacket_req_u req_u;
3307 int len;
3308
3309 switch (po->tp_version) {
3310 case TPACKET_V1:
3311 case TPACKET_V2:
3312 len = sizeof(req_u.req);
3313 break;
3314 case TPACKET_V3:
3315 default:
3316 len = sizeof(req_u.req3);
3317 break;
3318 }
3319 if (optlen < len)
3320 return -EINVAL;
3321 if (pkt_sk(sk)->has_vnet_hdr)
3322 return -EINVAL;
3323 if (copy_from_user(&req_u.req, optval, len))
3324 return -EFAULT;
3325 return packet_set_ring(sk, &req_u, 0,
3326 optname == PACKET_TX_RING);
3327 }
3328 case PACKET_COPY_THRESH:
3329 {
3330 int val;
3331
3332 if (optlen != sizeof(val))
3333 return -EINVAL;
3334 if (copy_from_user(&val, optval, sizeof(val)))
3335 return -EFAULT;
3336
3337 pkt_sk(sk)->copy_thresh = val;
3338 return 0;
3339 }
3340 case PACKET_VERSION:
3341 {
3342 int val;
3343
3344 if (optlen != sizeof(val))
3345 return -EINVAL;
3346 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3347 return -EBUSY;
3348 if (copy_from_user(&val, optval, sizeof(val)))
3349 return -EFAULT;
3350 switch (val) {
3351 case TPACKET_V1:
3352 case TPACKET_V2:
3353 case TPACKET_V3:
3354 po->tp_version = val;
3355 return 0;
3356 default:
3357 return -EINVAL;
3358 }
3359 }
3360 case PACKET_RESERVE:
3361 {
3362 unsigned int val;
3363
3364 if (optlen != sizeof(val))
3365 return -EINVAL;
3366 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3367 return -EBUSY;
3368 if (copy_from_user(&val, optval, sizeof(val)))
3369 return -EFAULT;
3370 po->tp_reserve = val;
3371 return 0;
3372 }
3373 case PACKET_LOSS:
3374 {
3375 unsigned int val;
3376
3377 if (optlen != sizeof(val))
3378 return -EINVAL;
3379 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3380 return -EBUSY;
3381 if (copy_from_user(&val, optval, sizeof(val)))
3382 return -EFAULT;
3383 po->tp_loss = !!val;
3384 return 0;
3385 }
3386 case PACKET_AUXDATA:
3387 {
3388 int val;
3389
3390 if (optlen < sizeof(val))
3391 return -EINVAL;
3392 if (copy_from_user(&val, optval, sizeof(val)))
3393 return -EFAULT;
3394
3395 po->auxdata = !!val;
3396 return 0;
3397 }
3398 case PACKET_ORIGDEV:
3399 {
3400 int val;
3401
3402 if (optlen < sizeof(val))
3403 return -EINVAL;
3404 if (copy_from_user(&val, optval, sizeof(val)))
3405 return -EFAULT;
3406
3407 po->origdev = !!val;
3408 return 0;
3409 }
3410 case PACKET_VNET_HDR:
3411 {
3412 int val;
3413
3414 if (sock->type != SOCK_RAW)
3415 return -EINVAL;
3416 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3417 return -EBUSY;
3418 if (optlen < sizeof(val))
3419 return -EINVAL;
3420 if (copy_from_user(&val, optval, sizeof(val)))
3421 return -EFAULT;
3422
3423 po->has_vnet_hdr = !!val;
3424 return 0;
3425 }
3426 case PACKET_TIMESTAMP:
3427 {
3428 int val;
3429
3430 if (optlen != sizeof(val))
3431 return -EINVAL;
3432 if (copy_from_user(&val, optval, sizeof(val)))
3433 return -EFAULT;
3434
3435 po->tp_tstamp = val;
3436 return 0;
3437 }
3438 case PACKET_FANOUT:
3439 {
3440 int val;
3441
3442 if (optlen != sizeof(val))
3443 return -EINVAL;
3444 if (copy_from_user(&val, optval, sizeof(val)))
3445 return -EFAULT;
3446
3447 return fanout_add(sk, val & 0xffff, val >> 16);
3448 }
3449 case PACKET_TX_HAS_OFF:
3450 {
3451 unsigned int val;
3452
3453 if (optlen != sizeof(val))
3454 return -EINVAL;
3455 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3456 return -EBUSY;
3457 if (copy_from_user(&val, optval, sizeof(val)))
3458 return -EFAULT;
3459 po->tp_tx_has_off = !!val;
3460 return 0;
3461 }
3462 case PACKET_QDISC_BYPASS:
3463 {
3464 int val;
3465
3466 if (optlen != sizeof(val))
3467 return -EINVAL;
3468 if (copy_from_user(&val, optval, sizeof(val)))
3469 return -EFAULT;
3470
3471 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3472 return 0;
3473 }
3474 default:
3475 return -ENOPROTOOPT;
3476 }
3477 }
3478
3479 static int packet_getsockopt(struct socket *sock, int level, int optname,
3480 char __user *optval, int __user *optlen)
3481 {
3482 int len;
3483 int val, lv = sizeof(val);
3484 struct sock *sk = sock->sk;
3485 struct packet_sock *po = pkt_sk(sk);
3486 void *data = &val;
3487 union tpacket_stats_u st;
3488
3489 if (level != SOL_PACKET)
3490 return -ENOPROTOOPT;
3491
3492 if (get_user(len, optlen))
3493 return -EFAULT;
3494
3495 if (len < 0)
3496 return -EINVAL;
3497
3498 switch (optname) {
3499 case PACKET_STATISTICS:
3500 spin_lock_bh(&sk->sk_receive_queue.lock);
3501 memcpy(&st, &po->stats, sizeof(st));
3502 memset(&po->stats, 0, sizeof(po->stats));
3503 spin_unlock_bh(&sk->sk_receive_queue.lock);
3504
3505 if (po->tp_version == TPACKET_V3) {
3506 lv = sizeof(struct tpacket_stats_v3);
3507 st.stats3.tp_packets += st.stats3.tp_drops;
3508 data = &st.stats3;
3509 } else {
3510 lv = sizeof(struct tpacket_stats);
3511 st.stats1.tp_packets += st.stats1.tp_drops;
3512 data = &st.stats1;
3513 }
3514
3515 break;
3516 case PACKET_AUXDATA:
3517 val = po->auxdata;
3518 break;
3519 case PACKET_ORIGDEV:
3520 val = po->origdev;
3521 break;
3522 case PACKET_VNET_HDR:
3523 val = po->has_vnet_hdr;
3524 break;
3525 case PACKET_VERSION:
3526 val = po->tp_version;
3527 break;
3528 case PACKET_HDRLEN:
3529 if (len > sizeof(int))
3530 len = sizeof(int);
3531 if (copy_from_user(&val, optval, len))
3532 return -EFAULT;
3533 switch (val) {
3534 case TPACKET_V1:
3535 val = sizeof(struct tpacket_hdr);
3536 break;
3537 case TPACKET_V2:
3538 val = sizeof(struct tpacket2_hdr);
3539 break;
3540 case TPACKET_V3:
3541 val = sizeof(struct tpacket3_hdr);
3542 break;
3543 default:
3544 return -EINVAL;
3545 }
3546 break;
3547 case PACKET_RESERVE:
3548 val = po->tp_reserve;
3549 break;
3550 case PACKET_LOSS:
3551 val = po->tp_loss;
3552 break;
3553 case PACKET_TIMESTAMP:
3554 val = po->tp_tstamp;
3555 break;
3556 case PACKET_FANOUT:
3557 val = (po->fanout ?
3558 ((u32)po->fanout->id |
3559 ((u32)po->fanout->type << 16) |
3560 ((u32)po->fanout->flags << 24)) :
3561 0);
3562 break;
3563 case PACKET_TX_HAS_OFF:
3564 val = po->tp_tx_has_off;
3565 break;
3566 case PACKET_QDISC_BYPASS:
3567 val = packet_use_direct_xmit(po);
3568 break;
3569 default:
3570 return -ENOPROTOOPT;
3571 }
3572
3573 if (len > lv)
3574 len = lv;
3575 if (put_user(len, optlen))
3576 return -EFAULT;
3577 if (copy_to_user(optval, data, len))
3578 return -EFAULT;
3579 return 0;
3580 }
3581
3582
3583 static int packet_notifier(struct notifier_block *this,
3584 unsigned long msg, void *ptr)
3585 {
3586 struct sock *sk;
3587 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3588 struct net *net = dev_net(dev);
3589
3590 rcu_read_lock();
3591 sk_for_each_rcu(sk, &net->packet.sklist) {
3592 struct packet_sock *po = pkt_sk(sk);
3593
3594 switch (msg) {
3595 case NETDEV_UNREGISTER:
3596 if (po->mclist)
3597 packet_dev_mclist_delete(dev, &po->mclist);
3598 /* fallthrough */
3599
3600 case NETDEV_DOWN:
3601 if (dev->ifindex == po->ifindex) {
3602 spin_lock(&po->bind_lock);
3603 if (po->running) {
3604 __unregister_prot_hook(sk, false);
3605 sk->sk_err = ENETDOWN;
3606 if (!sock_flag(sk, SOCK_DEAD))
3607 sk->sk_error_report(sk);
3608 }
3609 if (msg == NETDEV_UNREGISTER) {
3610 packet_cached_dev_reset(po);
3611 po->ifindex = -1;
3612 if (po->prot_hook.dev)
3613 dev_put(po->prot_hook.dev);
3614 po->prot_hook.dev = NULL;
3615 }
3616 spin_unlock(&po->bind_lock);
3617 }
3618 break;
3619 case NETDEV_UP:
3620 if (dev->ifindex == po->ifindex) {
3621 spin_lock(&po->bind_lock);
3622 if (po->num)
3623 register_prot_hook(sk);
3624 spin_unlock(&po->bind_lock);
3625 }
3626 break;
3627 }
3628 }
3629 rcu_read_unlock();
3630 return NOTIFY_DONE;
3631 }
3632
3633
3634 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3635 unsigned long arg)
3636 {
3637 struct sock *sk = sock->sk;
3638
3639 switch (cmd) {
3640 case SIOCOUTQ:
3641 {
3642 int amount = sk_wmem_alloc_get(sk);
3643
3644 return put_user(amount, (int __user *)arg);
3645 }
3646 case SIOCINQ:
3647 {
3648 struct sk_buff *skb;
3649 int amount = 0;
3650
3651 spin_lock_bh(&sk->sk_receive_queue.lock);
3652 skb = skb_peek(&sk->sk_receive_queue);
3653 if (skb)
3654 amount = skb->len;
3655 spin_unlock_bh(&sk->sk_receive_queue.lock);
3656 return put_user(amount, (int __user *)arg);
3657 }
3658 case SIOCGSTAMP:
3659 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3660 case SIOCGSTAMPNS:
3661 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3662
3663 #ifdef CONFIG_INET
3664 case SIOCADDRT:
3665 case SIOCDELRT:
3666 case SIOCDARP:
3667 case SIOCGARP:
3668 case SIOCSARP:
3669 case SIOCGIFADDR:
3670 case SIOCSIFADDR:
3671 case SIOCGIFBRDADDR:
3672 case SIOCSIFBRDADDR:
3673 case SIOCGIFNETMASK:
3674 case SIOCSIFNETMASK:
3675 case SIOCGIFDSTADDR:
3676 case SIOCSIFDSTADDR:
3677 case SIOCSIFFLAGS:
3678 return inet_dgram_ops.ioctl(sock, cmd, arg);
3679 #endif
3680
3681 default:
3682 return -ENOIOCTLCMD;
3683 }
3684 return 0;
3685 }
3686
3687 static unsigned int packet_poll(struct file *file, struct socket *sock,
3688 poll_table *wait)
3689 {
3690 struct sock *sk = sock->sk;
3691 struct packet_sock *po = pkt_sk(sk);
3692 unsigned int mask = datagram_poll(file, sock, wait);
3693
3694 spin_lock_bh(&sk->sk_receive_queue.lock);
3695 if (po->rx_ring.pg_vec) {
3696 if (!packet_previous_rx_frame(po, &po->rx_ring,
3697 TP_STATUS_KERNEL))
3698 mask |= POLLIN | POLLRDNORM;
3699 }
3700 spin_unlock_bh(&sk->sk_receive_queue.lock);
3701 spin_lock_bh(&sk->sk_write_queue.lock);
3702 if (po->tx_ring.pg_vec) {
3703 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3704 mask |= POLLOUT | POLLWRNORM;
3705 }
3706 spin_unlock_bh(&sk->sk_write_queue.lock);
3707 return mask;
3708 }
3709
3710
3711 /* Dirty? Well, I still did not learn better way to account
3712 * for user mmaps.
3713 */
3714
3715 static void packet_mm_open(struct vm_area_struct *vma)
3716 {
3717 struct file *file = vma->vm_file;
3718 struct socket *sock = file->private_data;
3719 struct sock *sk = sock->sk;
3720
3721 if (sk)
3722 atomic_inc(&pkt_sk(sk)->mapped);
3723 }
3724
3725 static void packet_mm_close(struct vm_area_struct *vma)
3726 {
3727 struct file *file = vma->vm_file;
3728 struct socket *sock = file->private_data;
3729 struct sock *sk = sock->sk;
3730
3731 if (sk)
3732 atomic_dec(&pkt_sk(sk)->mapped);
3733 }
3734
3735 static const struct vm_operations_struct packet_mmap_ops = {
3736 .open = packet_mm_open,
3737 .close = packet_mm_close,
3738 };
3739
3740 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3741 unsigned int len)
3742 {
3743 int i;
3744
3745 for (i = 0; i < len; i++) {
3746 if (likely(pg_vec[i].buffer)) {
3747 if (is_vmalloc_addr(pg_vec[i].buffer))
3748 vfree(pg_vec[i].buffer);
3749 else
3750 free_pages((unsigned long)pg_vec[i].buffer,
3751 order);
3752 pg_vec[i].buffer = NULL;
3753 }
3754 }
3755 kfree(pg_vec);
3756 }
3757
3758 static char *alloc_one_pg_vec_page(unsigned long order)
3759 {
3760 char *buffer;
3761 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3762 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3763
3764 buffer = (char *) __get_free_pages(gfp_flags, order);
3765 if (buffer)
3766 return buffer;
3767
3768 /* __get_free_pages failed, fall back to vmalloc */
3769 buffer = vzalloc((1 << order) * PAGE_SIZE);
3770 if (buffer)
3771 return buffer;
3772
3773 /* vmalloc failed, lets dig into swap here */
3774 gfp_flags &= ~__GFP_NORETRY;
3775 buffer = (char *) __get_free_pages(gfp_flags, order);
3776 if (buffer)
3777 return buffer;
3778
3779 /* complete and utter failure */
3780 return NULL;
3781 }
3782
3783 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3784 {
3785 unsigned int block_nr = req->tp_block_nr;
3786 struct pgv *pg_vec;
3787 int i;
3788
3789 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3790 if (unlikely(!pg_vec))
3791 goto out;
3792
3793 for (i = 0; i < block_nr; i++) {
3794 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3795 if (unlikely(!pg_vec[i].buffer))
3796 goto out_free_pgvec;
3797 }
3798
3799 out:
3800 return pg_vec;
3801
3802 out_free_pgvec:
3803 free_pg_vec(pg_vec, order, block_nr);
3804 pg_vec = NULL;
3805 goto out;
3806 }
3807
3808 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3809 int closing, int tx_ring)
3810 {
3811 struct pgv *pg_vec = NULL;
3812 struct packet_sock *po = pkt_sk(sk);
3813 int was_running, order = 0;
3814 struct packet_ring_buffer *rb;
3815 struct sk_buff_head *rb_queue;
3816 __be16 num;
3817 int err = -EINVAL;
3818 /* Added to avoid minimal code churn */
3819 struct tpacket_req *req = &req_u->req;
3820
3821 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3822 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3823 WARN(1, "Tx-ring is not supported.\n");
3824 goto out;
3825 }
3826
3827 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3828 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3829
3830 err = -EBUSY;
3831 if (!closing) {
3832 if (atomic_read(&po->mapped))
3833 goto out;
3834 if (packet_read_pending(rb))
3835 goto out;
3836 }
3837
3838 if (req->tp_block_nr) {
3839 /* Sanity tests and some calculations */
3840 err = -EBUSY;
3841 if (unlikely(rb->pg_vec))
3842 goto out;
3843
3844 switch (po->tp_version) {
3845 case TPACKET_V1:
3846 po->tp_hdrlen = TPACKET_HDRLEN;
3847 break;
3848 case TPACKET_V2:
3849 po->tp_hdrlen = TPACKET2_HDRLEN;
3850 break;
3851 case TPACKET_V3:
3852 po->tp_hdrlen = TPACKET3_HDRLEN;
3853 break;
3854 }
3855
3856 err = -EINVAL;
3857 if (unlikely((int)req->tp_block_size <= 0))
3858 goto out;
3859 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3860 goto out;
3861 if (po->tp_version >= TPACKET_V3 &&
3862 (int)(req->tp_block_size -
3863 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
3864 goto out;
3865 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3866 po->tp_reserve))
3867 goto out;
3868 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3869 goto out;
3870
3871 rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3872 if (unlikely(rb->frames_per_block <= 0))
3873 goto out;
3874 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3875 req->tp_frame_nr))
3876 goto out;
3877
3878 err = -ENOMEM;
3879 order = get_order(req->tp_block_size);
3880 pg_vec = alloc_pg_vec(req, order);
3881 if (unlikely(!pg_vec))
3882 goto out;
3883 switch (po->tp_version) {
3884 case TPACKET_V3:
3885 /* Transmit path is not supported. We checked
3886 * it above but just being paranoid
3887 */
3888 if (!tx_ring)
3889 init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3890 break;
3891 default:
3892 break;
3893 }
3894 }
3895 /* Done */
3896 else {
3897 err = -EINVAL;
3898 if (unlikely(req->tp_frame_nr))
3899 goto out;
3900 }
3901
3902 lock_sock(sk);
3903
3904 /* Detach socket from network */
3905 spin_lock(&po->bind_lock);
3906 was_running = po->running;
3907 num = po->num;
3908 if (was_running) {
3909 po->num = 0;
3910 __unregister_prot_hook(sk, false);
3911 }
3912 spin_unlock(&po->bind_lock);
3913
3914 synchronize_net();
3915
3916 err = -EBUSY;
3917 mutex_lock(&po->pg_vec_lock);
3918 if (closing || atomic_read(&po->mapped) == 0) {
3919 err = 0;
3920 spin_lock_bh(&rb_queue->lock);
3921 swap(rb->pg_vec, pg_vec);
3922 rb->frame_max = (req->tp_frame_nr - 1);
3923 rb->head = 0;
3924 rb->frame_size = req->tp_frame_size;
3925 spin_unlock_bh(&rb_queue->lock);
3926
3927 swap(rb->pg_vec_order, order);
3928 swap(rb->pg_vec_len, req->tp_block_nr);
3929
3930 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3931 po->prot_hook.func = (po->rx_ring.pg_vec) ?
3932 tpacket_rcv : packet_rcv;
3933 skb_queue_purge(rb_queue);
3934 if (atomic_read(&po->mapped))
3935 pr_err("packet_mmap: vma is busy: %d\n",
3936 atomic_read(&po->mapped));
3937 }
3938 mutex_unlock(&po->pg_vec_lock);
3939
3940 spin_lock(&po->bind_lock);
3941 if (was_running) {
3942 po->num = num;
3943 register_prot_hook(sk);
3944 }
3945 spin_unlock(&po->bind_lock);
3946 if (closing && (po->tp_version > TPACKET_V2)) {
3947 /* Because we don't support block-based V3 on tx-ring */
3948 if (!tx_ring)
3949 prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3950 }
3951 release_sock(sk);
3952
3953 if (pg_vec)
3954 free_pg_vec(pg_vec, order, req->tp_block_nr);
3955 out:
3956 return err;
3957 }
3958
3959 static int packet_mmap(struct file *file, struct socket *sock,
3960 struct vm_area_struct *vma)
3961 {
3962 struct sock *sk = sock->sk;
3963 struct packet_sock *po = pkt_sk(sk);
3964 unsigned long size, expected_size;
3965 struct packet_ring_buffer *rb;
3966 unsigned long start;
3967 int err = -EINVAL;
3968 int i;
3969
3970 if (vma->vm_pgoff)
3971 return -EINVAL;
3972
3973 mutex_lock(&po->pg_vec_lock);
3974
3975 expected_size = 0;
3976 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3977 if (rb->pg_vec) {
3978 expected_size += rb->pg_vec_len
3979 * rb->pg_vec_pages
3980 * PAGE_SIZE;
3981 }
3982 }
3983
3984 if (expected_size == 0)
3985 goto out;
3986
3987 size = vma->vm_end - vma->vm_start;
3988 if (size != expected_size)
3989 goto out;
3990
3991 start = vma->vm_start;
3992 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3993 if (rb->pg_vec == NULL)
3994 continue;
3995
3996 for (i = 0; i < rb->pg_vec_len; i++) {
3997 struct page *page;
3998 void *kaddr = rb->pg_vec[i].buffer;
3999 int pg_num;
4000
4001 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4002 page = pgv_to_page(kaddr);
4003 err = vm_insert_page(vma, start, page);
4004 if (unlikely(err))
4005 goto out;
4006 start += PAGE_SIZE;
4007 kaddr += PAGE_SIZE;
4008 }
4009 }
4010 }
4011
4012 atomic_inc(&po->mapped);
4013 vma->vm_ops = &packet_mmap_ops;
4014 err = 0;
4015
4016 out:
4017 mutex_unlock(&po->pg_vec_lock);
4018 return err;
4019 }
4020
4021 static const struct proto_ops packet_ops_spkt = {
4022 .family = PF_PACKET,
4023 .owner = THIS_MODULE,
4024 .release = packet_release,
4025 .bind = packet_bind_spkt,
4026 .connect = sock_no_connect,
4027 .socketpair = sock_no_socketpair,
4028 .accept = sock_no_accept,
4029 .getname = packet_getname_spkt,
4030 .poll = datagram_poll,
4031 .ioctl = packet_ioctl,
4032 .listen = sock_no_listen,
4033 .shutdown = sock_no_shutdown,
4034 .setsockopt = sock_no_setsockopt,
4035 .getsockopt = sock_no_getsockopt,
4036 .sendmsg = packet_sendmsg_spkt,
4037 .recvmsg = packet_recvmsg,
4038 .mmap = sock_no_mmap,
4039 .sendpage = sock_no_sendpage,
4040 };
4041
4042 static const struct proto_ops packet_ops = {
4043 .family = PF_PACKET,
4044 .owner = THIS_MODULE,
4045 .release = packet_release,
4046 .bind = packet_bind,
4047 .connect = sock_no_connect,
4048 .socketpair = sock_no_socketpair,
4049 .accept = sock_no_accept,
4050 .getname = packet_getname,
4051 .poll = packet_poll,
4052 .ioctl = packet_ioctl,
4053 .listen = sock_no_listen,
4054 .shutdown = sock_no_shutdown,
4055 .setsockopt = packet_setsockopt,
4056 .getsockopt = packet_getsockopt,
4057 .sendmsg = packet_sendmsg,
4058 .recvmsg = packet_recvmsg,
4059 .mmap = packet_mmap,
4060 .sendpage = sock_no_sendpage,
4061 };
4062
4063 static const struct net_proto_family packet_family_ops = {
4064 .family = PF_PACKET,
4065 .create = packet_create,
4066 .owner = THIS_MODULE,
4067 };
4068
4069 static struct notifier_block packet_netdev_notifier = {
4070 .notifier_call = packet_notifier,
4071 };
4072
4073 #ifdef CONFIG_PROC_FS
4074
4075 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4076 __acquires(RCU)
4077 {
4078 struct net *net = seq_file_net(seq);
4079
4080 rcu_read_lock();
4081 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4082 }
4083
4084 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4085 {
4086 struct net *net = seq_file_net(seq);
4087 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4088 }
4089
4090 static void packet_seq_stop(struct seq_file *seq, void *v)
4091 __releases(RCU)
4092 {
4093 rcu_read_unlock();
4094 }
4095
4096 static int packet_seq_show(struct seq_file *seq, void *v)
4097 {
4098 if (v == SEQ_START_TOKEN)
4099 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4100 else {
4101 struct sock *s = sk_entry(v);
4102 const struct packet_sock *po = pkt_sk(s);
4103
4104 seq_printf(seq,
4105 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4106 s,
4107 atomic_read(&s->sk_refcnt),
4108 s->sk_type,
4109 ntohs(po->num),
4110 po->ifindex,
4111 po->running,
4112 atomic_read(&s->sk_rmem_alloc),
4113 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4114 sock_i_ino(s));
4115 }
4116
4117 return 0;
4118 }
4119
4120 static const struct seq_operations packet_seq_ops = {
4121 .start = packet_seq_start,
4122 .next = packet_seq_next,
4123 .stop = packet_seq_stop,
4124 .show = packet_seq_show,
4125 };
4126
4127 static int packet_seq_open(struct inode *inode, struct file *file)
4128 {
4129 return seq_open_net(inode, file, &packet_seq_ops,
4130 sizeof(struct seq_net_private));
4131 }
4132
4133 static const struct file_operations packet_seq_fops = {
4134 .owner = THIS_MODULE,
4135 .open = packet_seq_open,
4136 .read = seq_read,
4137 .llseek = seq_lseek,
4138 .release = seq_release_net,
4139 };
4140
4141 #endif
4142
4143 static int __net_init packet_net_init(struct net *net)
4144 {
4145 mutex_init(&net->packet.sklist_lock);
4146 INIT_HLIST_HEAD(&net->packet.sklist);
4147
4148 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4149 return -ENOMEM;
4150
4151 return 0;
4152 }
4153
4154 static void __net_exit packet_net_exit(struct net *net)
4155 {
4156 remove_proc_entry("packet", net->proc_net);
4157 }
4158
4159 static struct pernet_operations packet_net_ops = {
4160 .init = packet_net_init,
4161 .exit = packet_net_exit,
4162 };
4163
4164
4165 static void __exit packet_exit(void)
4166 {
4167 unregister_netdevice_notifier(&packet_netdev_notifier);
4168 unregister_pernet_subsys(&packet_net_ops);
4169 sock_unregister(PF_PACKET);
4170 proto_unregister(&packet_proto);
4171 }
4172
4173 static int __init packet_init(void)
4174 {
4175 int rc = proto_register(&packet_proto, 0);
4176
4177 if (rc != 0)
4178 goto out;
4179
4180 sock_register(&packet_family_ops);
4181 register_pernet_subsys(&packet_net_ops);
4182 register_netdevice_notifier(&packet_netdev_notifier);
4183 out:
4184 return rc;
4185 }
4186
4187 module_init(packet_init);
4188 module_exit(packet_exit);
4189 MODULE_LICENSE("GPL");
4190 MODULE_ALIAS_NETPROTO(PF_PACKET);
This page took 0.155653 seconds and 6 git commands to generate.