Merge tag 'iwlwifi-next-for-kalle-2016-03-09_2' of https://git.kernel.org/pub/scm...
[deliverable/linux.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 #include <linux/bpf.h>
96
97 #include "internal.h"
98
99 /*
100 Assumptions:
101 - if device has no dev->hard_header routine, it adds and removes ll header
102 inside itself. In this case ll header is invisible outside of device,
103 but higher levels still should reserve dev->hard_header_len.
104 Some devices are enough clever to reallocate skb, when header
105 will not fit to reserved space (tunnel), another ones are silly
106 (PPP).
107 - packet socket receives packets with pulled ll header,
108 so that SOCK_RAW should push it back.
109
110 On receive:
111 -----------
112
113 Incoming, dev->hard_header!=NULL
114 mac_header -> ll header
115 data -> data
116
117 Outgoing, dev->hard_header!=NULL
118 mac_header -> ll header
119 data -> ll header
120
121 Incoming, dev->hard_header==NULL
122 mac_header -> UNKNOWN position. It is very likely, that it points to ll
123 header. PPP makes it, that is wrong, because introduce
124 assymetry between rx and tx paths.
125 data -> data
126
127 Outgoing, dev->hard_header==NULL
128 mac_header -> data. ll header is still not built!
129 data -> data
130
131 Resume
132 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
133
134
135 On transmit:
136 ------------
137
138 dev->hard_header != NULL
139 mac_header -> ll header
140 data -> ll header
141
142 dev->hard_header == NULL (ll header is added by device, we cannot control it)
143 mac_header -> data
144 data -> data
145
146 We should set nh.raw on output to correct posistion,
147 packet classifier depends on it.
148 */
149
150 /* Private packet socket structures. */
151
152 /* identical to struct packet_mreq except it has
153 * a longer address field.
154 */
155 struct packet_mreq_max {
156 int mr_ifindex;
157 unsigned short mr_type;
158 unsigned short mr_alen;
159 unsigned char mr_address[MAX_ADDR_LEN];
160 };
161
162 union tpacket_uhdr {
163 struct tpacket_hdr *h1;
164 struct tpacket2_hdr *h2;
165 struct tpacket3_hdr *h3;
166 void *raw;
167 };
168
169 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
170 int closing, int tx_ring);
171
172 #define V3_ALIGNMENT (8)
173
174 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
175
176 #define BLK_PLUS_PRIV(sz_of_priv) \
177 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
178
179 #define PGV_FROM_VMALLOC 1
180
181 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
182 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
183 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
184 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
185 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
186 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
187 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
188
189 struct packet_sock;
190 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
192 struct packet_type *pt, struct net_device *orig_dev);
193
194 static void *packet_previous_frame(struct packet_sock *po,
195 struct packet_ring_buffer *rb,
196 int status);
197 static void packet_increment_head(struct packet_ring_buffer *buff);
198 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
199 struct tpacket_block_desc *);
200 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
201 struct packet_sock *);
202 static void prb_retire_current_block(struct tpacket_kbdq_core *,
203 struct packet_sock *, unsigned int status);
204 static int prb_queue_frozen(struct tpacket_kbdq_core *);
205 static void prb_open_block(struct tpacket_kbdq_core *,
206 struct tpacket_block_desc *);
207 static void prb_retire_rx_blk_timer_expired(unsigned long);
208 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
209 static void prb_init_blk_timer(struct packet_sock *,
210 struct tpacket_kbdq_core *,
211 void (*func) (unsigned long));
212 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
213 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
214 struct tpacket3_hdr *);
215 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
216 struct tpacket3_hdr *);
217 static void packet_flush_mclist(struct sock *sk);
218
219 struct packet_skb_cb {
220 union {
221 struct sockaddr_pkt pkt;
222 union {
223 /* Trick: alias skb original length with
224 * ll.sll_family and ll.protocol in order
225 * to save room.
226 */
227 unsigned int origlen;
228 struct sockaddr_ll ll;
229 };
230 } sa;
231 };
232
233 #define vio_le() virtio_legacy_is_little_endian()
234
235 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
236
237 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
238 #define GET_PBLOCK_DESC(x, bid) \
239 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
240 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
241 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
242 #define GET_NEXT_PRB_BLK_NUM(x) \
243 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
244 ((x)->kactive_blk_num+1) : 0)
245
246 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
247 static void __fanout_link(struct sock *sk, struct packet_sock *po);
248
249 static int packet_direct_xmit(struct sk_buff *skb)
250 {
251 struct net_device *dev = skb->dev;
252 netdev_features_t features;
253 struct netdev_queue *txq;
254 int ret = NETDEV_TX_BUSY;
255
256 if (unlikely(!netif_running(dev) ||
257 !netif_carrier_ok(dev)))
258 goto drop;
259
260 features = netif_skb_features(skb);
261 if (skb_needs_linearize(skb, features) &&
262 __skb_linearize(skb))
263 goto drop;
264
265 txq = skb_get_tx_queue(dev, skb);
266
267 local_bh_disable();
268
269 HARD_TX_LOCK(dev, txq, smp_processor_id());
270 if (!netif_xmit_frozen_or_drv_stopped(txq))
271 ret = netdev_start_xmit(skb, dev, txq, false);
272 HARD_TX_UNLOCK(dev, txq);
273
274 local_bh_enable();
275
276 if (!dev_xmit_complete(ret))
277 kfree_skb(skb);
278
279 return ret;
280 drop:
281 atomic_long_inc(&dev->tx_dropped);
282 kfree_skb(skb);
283 return NET_XMIT_DROP;
284 }
285
286 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
287 {
288 struct net_device *dev;
289
290 rcu_read_lock();
291 dev = rcu_dereference(po->cached_dev);
292 if (likely(dev))
293 dev_hold(dev);
294 rcu_read_unlock();
295
296 return dev;
297 }
298
299 static void packet_cached_dev_assign(struct packet_sock *po,
300 struct net_device *dev)
301 {
302 rcu_assign_pointer(po->cached_dev, dev);
303 }
304
305 static void packet_cached_dev_reset(struct packet_sock *po)
306 {
307 RCU_INIT_POINTER(po->cached_dev, NULL);
308 }
309
310 static bool packet_use_direct_xmit(const struct packet_sock *po)
311 {
312 return po->xmit == packet_direct_xmit;
313 }
314
315 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
316 {
317 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
318 }
319
320 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
321 {
322 const struct net_device_ops *ops = dev->netdev_ops;
323 u16 queue_index;
324
325 if (ops->ndo_select_queue) {
326 queue_index = ops->ndo_select_queue(dev, skb, NULL,
327 __packet_pick_tx_queue);
328 queue_index = netdev_cap_txqueue(dev, queue_index);
329 } else {
330 queue_index = __packet_pick_tx_queue(dev, skb);
331 }
332
333 skb_set_queue_mapping(skb, queue_index);
334 }
335
336 /* register_prot_hook must be invoked with the po->bind_lock held,
337 * or from a context in which asynchronous accesses to the packet
338 * socket is not possible (packet_create()).
339 */
340 static void register_prot_hook(struct sock *sk)
341 {
342 struct packet_sock *po = pkt_sk(sk);
343
344 if (!po->running) {
345 if (po->fanout)
346 __fanout_link(sk, po);
347 else
348 dev_add_pack(&po->prot_hook);
349
350 sock_hold(sk);
351 po->running = 1;
352 }
353 }
354
355 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
356 * held. If the sync parameter is true, we will temporarily drop
357 * the po->bind_lock and do a synchronize_net to make sure no
358 * asynchronous packet processing paths still refer to the elements
359 * of po->prot_hook. If the sync parameter is false, it is the
360 * callers responsibility to take care of this.
361 */
362 static void __unregister_prot_hook(struct sock *sk, bool sync)
363 {
364 struct packet_sock *po = pkt_sk(sk);
365
366 po->running = 0;
367
368 if (po->fanout)
369 __fanout_unlink(sk, po);
370 else
371 __dev_remove_pack(&po->prot_hook);
372
373 __sock_put(sk);
374
375 if (sync) {
376 spin_unlock(&po->bind_lock);
377 synchronize_net();
378 spin_lock(&po->bind_lock);
379 }
380 }
381
382 static void unregister_prot_hook(struct sock *sk, bool sync)
383 {
384 struct packet_sock *po = pkt_sk(sk);
385
386 if (po->running)
387 __unregister_prot_hook(sk, sync);
388 }
389
390 static inline struct page * __pure pgv_to_page(void *addr)
391 {
392 if (is_vmalloc_addr(addr))
393 return vmalloc_to_page(addr);
394 return virt_to_page(addr);
395 }
396
397 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
398 {
399 union tpacket_uhdr h;
400
401 h.raw = frame;
402 switch (po->tp_version) {
403 case TPACKET_V1:
404 h.h1->tp_status = status;
405 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
406 break;
407 case TPACKET_V2:
408 h.h2->tp_status = status;
409 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
410 break;
411 case TPACKET_V3:
412 default:
413 WARN(1, "TPACKET version not supported.\n");
414 BUG();
415 }
416
417 smp_wmb();
418 }
419
420 static int __packet_get_status(struct packet_sock *po, void *frame)
421 {
422 union tpacket_uhdr h;
423
424 smp_rmb();
425
426 h.raw = frame;
427 switch (po->tp_version) {
428 case TPACKET_V1:
429 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
430 return h.h1->tp_status;
431 case TPACKET_V2:
432 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
433 return h.h2->tp_status;
434 case TPACKET_V3:
435 default:
436 WARN(1, "TPACKET version not supported.\n");
437 BUG();
438 return 0;
439 }
440 }
441
442 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
443 unsigned int flags)
444 {
445 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
446
447 if (shhwtstamps &&
448 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
449 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
450 return TP_STATUS_TS_RAW_HARDWARE;
451
452 if (ktime_to_timespec_cond(skb->tstamp, ts))
453 return TP_STATUS_TS_SOFTWARE;
454
455 return 0;
456 }
457
458 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
459 struct sk_buff *skb)
460 {
461 union tpacket_uhdr h;
462 struct timespec ts;
463 __u32 ts_status;
464
465 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
466 return 0;
467
468 h.raw = frame;
469 switch (po->tp_version) {
470 case TPACKET_V1:
471 h.h1->tp_sec = ts.tv_sec;
472 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
473 break;
474 case TPACKET_V2:
475 h.h2->tp_sec = ts.tv_sec;
476 h.h2->tp_nsec = ts.tv_nsec;
477 break;
478 case TPACKET_V3:
479 default:
480 WARN(1, "TPACKET version not supported.\n");
481 BUG();
482 }
483
484 /* one flush is safe, as both fields always lie on the same cacheline */
485 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
486 smp_wmb();
487
488 return ts_status;
489 }
490
491 static void *packet_lookup_frame(struct packet_sock *po,
492 struct packet_ring_buffer *rb,
493 unsigned int position,
494 int status)
495 {
496 unsigned int pg_vec_pos, frame_offset;
497 union tpacket_uhdr h;
498
499 pg_vec_pos = position / rb->frames_per_block;
500 frame_offset = position % rb->frames_per_block;
501
502 h.raw = rb->pg_vec[pg_vec_pos].buffer +
503 (frame_offset * rb->frame_size);
504
505 if (status != __packet_get_status(po, h.raw))
506 return NULL;
507
508 return h.raw;
509 }
510
511 static void *packet_current_frame(struct packet_sock *po,
512 struct packet_ring_buffer *rb,
513 int status)
514 {
515 return packet_lookup_frame(po, rb, rb->head, status);
516 }
517
518 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
519 {
520 del_timer_sync(&pkc->retire_blk_timer);
521 }
522
523 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
524 struct sk_buff_head *rb_queue)
525 {
526 struct tpacket_kbdq_core *pkc;
527
528 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
529
530 spin_lock_bh(&rb_queue->lock);
531 pkc->delete_blk_timer = 1;
532 spin_unlock_bh(&rb_queue->lock);
533
534 prb_del_retire_blk_timer(pkc);
535 }
536
537 static void prb_init_blk_timer(struct packet_sock *po,
538 struct tpacket_kbdq_core *pkc,
539 void (*func) (unsigned long))
540 {
541 init_timer(&pkc->retire_blk_timer);
542 pkc->retire_blk_timer.data = (long)po;
543 pkc->retire_blk_timer.function = func;
544 pkc->retire_blk_timer.expires = jiffies;
545 }
546
547 static void prb_setup_retire_blk_timer(struct packet_sock *po)
548 {
549 struct tpacket_kbdq_core *pkc;
550
551 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
552 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
553 }
554
555 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
556 int blk_size_in_bytes)
557 {
558 struct net_device *dev;
559 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
560 struct ethtool_link_ksettings ecmd;
561 int err;
562
563 rtnl_lock();
564 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
565 if (unlikely(!dev)) {
566 rtnl_unlock();
567 return DEFAULT_PRB_RETIRE_TOV;
568 }
569 err = __ethtool_get_link_ksettings(dev, &ecmd);
570 rtnl_unlock();
571 if (!err) {
572 /*
573 * If the link speed is so slow you don't really
574 * need to worry about perf anyways
575 */
576 if (ecmd.base.speed < SPEED_1000 ||
577 ecmd.base.speed == SPEED_UNKNOWN) {
578 return DEFAULT_PRB_RETIRE_TOV;
579 } else {
580 msec = 1;
581 div = ecmd.base.speed / 1000;
582 }
583 }
584
585 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
586
587 if (div)
588 mbits /= div;
589
590 tmo = mbits * msec;
591
592 if (div)
593 return tmo+1;
594 return tmo;
595 }
596
597 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
598 union tpacket_req_u *req_u)
599 {
600 p1->feature_req_word = req_u->req3.tp_feature_req_word;
601 }
602
603 static void init_prb_bdqc(struct packet_sock *po,
604 struct packet_ring_buffer *rb,
605 struct pgv *pg_vec,
606 union tpacket_req_u *req_u)
607 {
608 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
609 struct tpacket_block_desc *pbd;
610
611 memset(p1, 0x0, sizeof(*p1));
612
613 p1->knxt_seq_num = 1;
614 p1->pkbdq = pg_vec;
615 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
616 p1->pkblk_start = pg_vec[0].buffer;
617 p1->kblk_size = req_u->req3.tp_block_size;
618 p1->knum_blocks = req_u->req3.tp_block_nr;
619 p1->hdrlen = po->tp_hdrlen;
620 p1->version = po->tp_version;
621 p1->last_kactive_blk_num = 0;
622 po->stats.stats3.tp_freeze_q_cnt = 0;
623 if (req_u->req3.tp_retire_blk_tov)
624 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
625 else
626 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
627 req_u->req3.tp_block_size);
628 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
629 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
630
631 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
632 prb_init_ft_ops(p1, req_u);
633 prb_setup_retire_blk_timer(po);
634 prb_open_block(p1, pbd);
635 }
636
637 /* Do NOT update the last_blk_num first.
638 * Assumes sk_buff_head lock is held.
639 */
640 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
641 {
642 mod_timer(&pkc->retire_blk_timer,
643 jiffies + pkc->tov_in_jiffies);
644 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
645 }
646
647 /*
648 * Timer logic:
649 * 1) We refresh the timer only when we open a block.
650 * By doing this we don't waste cycles refreshing the timer
651 * on packet-by-packet basis.
652 *
653 * With a 1MB block-size, on a 1Gbps line, it will take
654 * i) ~8 ms to fill a block + ii) memcpy etc.
655 * In this cut we are not accounting for the memcpy time.
656 *
657 * So, if the user sets the 'tmo' to 10ms then the timer
658 * will never fire while the block is still getting filled
659 * (which is what we want). However, the user could choose
660 * to close a block early and that's fine.
661 *
662 * But when the timer does fire, we check whether or not to refresh it.
663 * Since the tmo granularity is in msecs, it is not too expensive
664 * to refresh the timer, lets say every '8' msecs.
665 * Either the user can set the 'tmo' or we can derive it based on
666 * a) line-speed and b) block-size.
667 * prb_calc_retire_blk_tmo() calculates the tmo.
668 *
669 */
670 static void prb_retire_rx_blk_timer_expired(unsigned long data)
671 {
672 struct packet_sock *po = (struct packet_sock *)data;
673 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
674 unsigned int frozen;
675 struct tpacket_block_desc *pbd;
676
677 spin_lock(&po->sk.sk_receive_queue.lock);
678
679 frozen = prb_queue_frozen(pkc);
680 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
681
682 if (unlikely(pkc->delete_blk_timer))
683 goto out;
684
685 /* We only need to plug the race when the block is partially filled.
686 * tpacket_rcv:
687 * lock(); increment BLOCK_NUM_PKTS; unlock()
688 * copy_bits() is in progress ...
689 * timer fires on other cpu:
690 * we can't retire the current block because copy_bits
691 * is in progress.
692 *
693 */
694 if (BLOCK_NUM_PKTS(pbd)) {
695 while (atomic_read(&pkc->blk_fill_in_prog)) {
696 /* Waiting for skb_copy_bits to finish... */
697 cpu_relax();
698 }
699 }
700
701 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
702 if (!frozen) {
703 if (!BLOCK_NUM_PKTS(pbd)) {
704 /* An empty block. Just refresh the timer. */
705 goto refresh_timer;
706 }
707 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
708 if (!prb_dispatch_next_block(pkc, po))
709 goto refresh_timer;
710 else
711 goto out;
712 } else {
713 /* Case 1. Queue was frozen because user-space was
714 * lagging behind.
715 */
716 if (prb_curr_blk_in_use(pkc, pbd)) {
717 /*
718 * Ok, user-space is still behind.
719 * So just refresh the timer.
720 */
721 goto refresh_timer;
722 } else {
723 /* Case 2. queue was frozen,user-space caught up,
724 * now the link went idle && the timer fired.
725 * We don't have a block to close.So we open this
726 * block and restart the timer.
727 * opening a block thaws the queue,restarts timer
728 * Thawing/timer-refresh is a side effect.
729 */
730 prb_open_block(pkc, pbd);
731 goto out;
732 }
733 }
734 }
735
736 refresh_timer:
737 _prb_refresh_rx_retire_blk_timer(pkc);
738
739 out:
740 spin_unlock(&po->sk.sk_receive_queue.lock);
741 }
742
743 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
744 struct tpacket_block_desc *pbd1, __u32 status)
745 {
746 /* Flush everything minus the block header */
747
748 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
749 u8 *start, *end;
750
751 start = (u8 *)pbd1;
752
753 /* Skip the block header(we know header WILL fit in 4K) */
754 start += PAGE_SIZE;
755
756 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
757 for (; start < end; start += PAGE_SIZE)
758 flush_dcache_page(pgv_to_page(start));
759
760 smp_wmb();
761 #endif
762
763 /* Now update the block status. */
764
765 BLOCK_STATUS(pbd1) = status;
766
767 /* Flush the block header */
768
769 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
770 start = (u8 *)pbd1;
771 flush_dcache_page(pgv_to_page(start));
772
773 smp_wmb();
774 #endif
775 }
776
777 /*
778 * Side effect:
779 *
780 * 1) flush the block
781 * 2) Increment active_blk_num
782 *
783 * Note:We DONT refresh the timer on purpose.
784 * Because almost always the next block will be opened.
785 */
786 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
787 struct tpacket_block_desc *pbd1,
788 struct packet_sock *po, unsigned int stat)
789 {
790 __u32 status = TP_STATUS_USER | stat;
791
792 struct tpacket3_hdr *last_pkt;
793 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
794 struct sock *sk = &po->sk;
795
796 if (po->stats.stats3.tp_drops)
797 status |= TP_STATUS_LOSING;
798
799 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
800 last_pkt->tp_next_offset = 0;
801
802 /* Get the ts of the last pkt */
803 if (BLOCK_NUM_PKTS(pbd1)) {
804 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
805 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
806 } else {
807 /* Ok, we tmo'd - so get the current time.
808 *
809 * It shouldn't really happen as we don't close empty
810 * blocks. See prb_retire_rx_blk_timer_expired().
811 */
812 struct timespec ts;
813 getnstimeofday(&ts);
814 h1->ts_last_pkt.ts_sec = ts.tv_sec;
815 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
816 }
817
818 smp_wmb();
819
820 /* Flush the block */
821 prb_flush_block(pkc1, pbd1, status);
822
823 sk->sk_data_ready(sk);
824
825 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
826 }
827
828 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
829 {
830 pkc->reset_pending_on_curr_blk = 0;
831 }
832
833 /*
834 * Side effect of opening a block:
835 *
836 * 1) prb_queue is thawed.
837 * 2) retire_blk_timer is refreshed.
838 *
839 */
840 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
841 struct tpacket_block_desc *pbd1)
842 {
843 struct timespec ts;
844 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
845
846 smp_rmb();
847
848 /* We could have just memset this but we will lose the
849 * flexibility of making the priv area sticky
850 */
851
852 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
853 BLOCK_NUM_PKTS(pbd1) = 0;
854 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
855
856 getnstimeofday(&ts);
857
858 h1->ts_first_pkt.ts_sec = ts.tv_sec;
859 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
860
861 pkc1->pkblk_start = (char *)pbd1;
862 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
863
864 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
865 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
866
867 pbd1->version = pkc1->version;
868 pkc1->prev = pkc1->nxt_offset;
869 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
870
871 prb_thaw_queue(pkc1);
872 _prb_refresh_rx_retire_blk_timer(pkc1);
873
874 smp_wmb();
875 }
876
877 /*
878 * Queue freeze logic:
879 * 1) Assume tp_block_nr = 8 blocks.
880 * 2) At time 't0', user opens Rx ring.
881 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
882 * 4) user-space is either sleeping or processing block '0'.
883 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
884 * it will close block-7,loop around and try to fill block '0'.
885 * call-flow:
886 * __packet_lookup_frame_in_block
887 * prb_retire_current_block()
888 * prb_dispatch_next_block()
889 * |->(BLOCK_STATUS == USER) evaluates to true
890 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
891 * 6) Now there are two cases:
892 * 6.1) Link goes idle right after the queue is frozen.
893 * But remember, the last open_block() refreshed the timer.
894 * When this timer expires,it will refresh itself so that we can
895 * re-open block-0 in near future.
896 * 6.2) Link is busy and keeps on receiving packets. This is a simple
897 * case and __packet_lookup_frame_in_block will check if block-0
898 * is free and can now be re-used.
899 */
900 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
901 struct packet_sock *po)
902 {
903 pkc->reset_pending_on_curr_blk = 1;
904 po->stats.stats3.tp_freeze_q_cnt++;
905 }
906
907 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
908
909 /*
910 * If the next block is free then we will dispatch it
911 * and return a good offset.
912 * Else, we will freeze the queue.
913 * So, caller must check the return value.
914 */
915 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
916 struct packet_sock *po)
917 {
918 struct tpacket_block_desc *pbd;
919
920 smp_rmb();
921
922 /* 1. Get current block num */
923 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
924
925 /* 2. If this block is currently in_use then freeze the queue */
926 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
927 prb_freeze_queue(pkc, po);
928 return NULL;
929 }
930
931 /*
932 * 3.
933 * open this block and return the offset where the first packet
934 * needs to get stored.
935 */
936 prb_open_block(pkc, pbd);
937 return (void *)pkc->nxt_offset;
938 }
939
940 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
941 struct packet_sock *po, unsigned int status)
942 {
943 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
944
945 /* retire/close the current block */
946 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
947 /*
948 * Plug the case where copy_bits() is in progress on
949 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
950 * have space to copy the pkt in the current block and
951 * called prb_retire_current_block()
952 *
953 * We don't need to worry about the TMO case because
954 * the timer-handler already handled this case.
955 */
956 if (!(status & TP_STATUS_BLK_TMO)) {
957 while (atomic_read(&pkc->blk_fill_in_prog)) {
958 /* Waiting for skb_copy_bits to finish... */
959 cpu_relax();
960 }
961 }
962 prb_close_block(pkc, pbd, po, status);
963 return;
964 }
965 }
966
967 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
968 struct tpacket_block_desc *pbd)
969 {
970 return TP_STATUS_USER & BLOCK_STATUS(pbd);
971 }
972
973 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
974 {
975 return pkc->reset_pending_on_curr_blk;
976 }
977
978 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
979 {
980 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
981 atomic_dec(&pkc->blk_fill_in_prog);
982 }
983
984 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
985 struct tpacket3_hdr *ppd)
986 {
987 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
988 }
989
990 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
991 struct tpacket3_hdr *ppd)
992 {
993 ppd->hv1.tp_rxhash = 0;
994 }
995
996 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
997 struct tpacket3_hdr *ppd)
998 {
999 if (skb_vlan_tag_present(pkc->skb)) {
1000 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1001 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1002 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1003 } else {
1004 ppd->hv1.tp_vlan_tci = 0;
1005 ppd->hv1.tp_vlan_tpid = 0;
1006 ppd->tp_status = TP_STATUS_AVAILABLE;
1007 }
1008 }
1009
1010 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1011 struct tpacket3_hdr *ppd)
1012 {
1013 ppd->hv1.tp_padding = 0;
1014 prb_fill_vlan_info(pkc, ppd);
1015
1016 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1017 prb_fill_rxhash(pkc, ppd);
1018 else
1019 prb_clear_rxhash(pkc, ppd);
1020 }
1021
1022 static void prb_fill_curr_block(char *curr,
1023 struct tpacket_kbdq_core *pkc,
1024 struct tpacket_block_desc *pbd,
1025 unsigned int len)
1026 {
1027 struct tpacket3_hdr *ppd;
1028
1029 ppd = (struct tpacket3_hdr *)curr;
1030 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1031 pkc->prev = curr;
1032 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1033 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1034 BLOCK_NUM_PKTS(pbd) += 1;
1035 atomic_inc(&pkc->blk_fill_in_prog);
1036 prb_run_all_ft_ops(pkc, ppd);
1037 }
1038
1039 /* Assumes caller has the sk->rx_queue.lock */
1040 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1041 struct sk_buff *skb,
1042 int status,
1043 unsigned int len
1044 )
1045 {
1046 struct tpacket_kbdq_core *pkc;
1047 struct tpacket_block_desc *pbd;
1048 char *curr, *end;
1049
1050 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1051 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1052
1053 /* Queue is frozen when user space is lagging behind */
1054 if (prb_queue_frozen(pkc)) {
1055 /*
1056 * Check if that last block which caused the queue to freeze,
1057 * is still in_use by user-space.
1058 */
1059 if (prb_curr_blk_in_use(pkc, pbd)) {
1060 /* Can't record this packet */
1061 return NULL;
1062 } else {
1063 /*
1064 * Ok, the block was released by user-space.
1065 * Now let's open that block.
1066 * opening a block also thaws the queue.
1067 * Thawing is a side effect.
1068 */
1069 prb_open_block(pkc, pbd);
1070 }
1071 }
1072
1073 smp_mb();
1074 curr = pkc->nxt_offset;
1075 pkc->skb = skb;
1076 end = (char *)pbd + pkc->kblk_size;
1077
1078 /* first try the current block */
1079 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1080 prb_fill_curr_block(curr, pkc, pbd, len);
1081 return (void *)curr;
1082 }
1083
1084 /* Ok, close the current block */
1085 prb_retire_current_block(pkc, po, 0);
1086
1087 /* Now, try to dispatch the next block */
1088 curr = (char *)prb_dispatch_next_block(pkc, po);
1089 if (curr) {
1090 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1091 prb_fill_curr_block(curr, pkc, pbd, len);
1092 return (void *)curr;
1093 }
1094
1095 /*
1096 * No free blocks are available.user_space hasn't caught up yet.
1097 * Queue was just frozen and now this packet will get dropped.
1098 */
1099 return NULL;
1100 }
1101
1102 static void *packet_current_rx_frame(struct packet_sock *po,
1103 struct sk_buff *skb,
1104 int status, unsigned int len)
1105 {
1106 char *curr = NULL;
1107 switch (po->tp_version) {
1108 case TPACKET_V1:
1109 case TPACKET_V2:
1110 curr = packet_lookup_frame(po, &po->rx_ring,
1111 po->rx_ring.head, status);
1112 return curr;
1113 case TPACKET_V3:
1114 return __packet_lookup_frame_in_block(po, skb, status, len);
1115 default:
1116 WARN(1, "TPACKET version not supported\n");
1117 BUG();
1118 return NULL;
1119 }
1120 }
1121
1122 static void *prb_lookup_block(struct packet_sock *po,
1123 struct packet_ring_buffer *rb,
1124 unsigned int idx,
1125 int status)
1126 {
1127 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1128 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1129
1130 if (status != BLOCK_STATUS(pbd))
1131 return NULL;
1132 return pbd;
1133 }
1134
1135 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1136 {
1137 unsigned int prev;
1138 if (rb->prb_bdqc.kactive_blk_num)
1139 prev = rb->prb_bdqc.kactive_blk_num-1;
1140 else
1141 prev = rb->prb_bdqc.knum_blocks-1;
1142 return prev;
1143 }
1144
1145 /* Assumes caller has held the rx_queue.lock */
1146 static void *__prb_previous_block(struct packet_sock *po,
1147 struct packet_ring_buffer *rb,
1148 int status)
1149 {
1150 unsigned int previous = prb_previous_blk_num(rb);
1151 return prb_lookup_block(po, rb, previous, status);
1152 }
1153
1154 static void *packet_previous_rx_frame(struct packet_sock *po,
1155 struct packet_ring_buffer *rb,
1156 int status)
1157 {
1158 if (po->tp_version <= TPACKET_V2)
1159 return packet_previous_frame(po, rb, status);
1160
1161 return __prb_previous_block(po, rb, status);
1162 }
1163
1164 static void packet_increment_rx_head(struct packet_sock *po,
1165 struct packet_ring_buffer *rb)
1166 {
1167 switch (po->tp_version) {
1168 case TPACKET_V1:
1169 case TPACKET_V2:
1170 return packet_increment_head(rb);
1171 case TPACKET_V3:
1172 default:
1173 WARN(1, "TPACKET version not supported.\n");
1174 BUG();
1175 return;
1176 }
1177 }
1178
1179 static void *packet_previous_frame(struct packet_sock *po,
1180 struct packet_ring_buffer *rb,
1181 int status)
1182 {
1183 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1184 return packet_lookup_frame(po, rb, previous, status);
1185 }
1186
1187 static void packet_increment_head(struct packet_ring_buffer *buff)
1188 {
1189 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1190 }
1191
1192 static void packet_inc_pending(struct packet_ring_buffer *rb)
1193 {
1194 this_cpu_inc(*rb->pending_refcnt);
1195 }
1196
1197 static void packet_dec_pending(struct packet_ring_buffer *rb)
1198 {
1199 this_cpu_dec(*rb->pending_refcnt);
1200 }
1201
1202 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1203 {
1204 unsigned int refcnt = 0;
1205 int cpu;
1206
1207 /* We don't use pending refcount in rx_ring. */
1208 if (rb->pending_refcnt == NULL)
1209 return 0;
1210
1211 for_each_possible_cpu(cpu)
1212 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1213
1214 return refcnt;
1215 }
1216
1217 static int packet_alloc_pending(struct packet_sock *po)
1218 {
1219 po->rx_ring.pending_refcnt = NULL;
1220
1221 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1222 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1223 return -ENOBUFS;
1224
1225 return 0;
1226 }
1227
1228 static void packet_free_pending(struct packet_sock *po)
1229 {
1230 free_percpu(po->tx_ring.pending_refcnt);
1231 }
1232
1233 #define ROOM_POW_OFF 2
1234 #define ROOM_NONE 0x0
1235 #define ROOM_LOW 0x1
1236 #define ROOM_NORMAL 0x2
1237
1238 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1239 {
1240 int idx, len;
1241
1242 len = po->rx_ring.frame_max + 1;
1243 idx = po->rx_ring.head;
1244 if (pow_off)
1245 idx += len >> pow_off;
1246 if (idx >= len)
1247 idx -= len;
1248 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1249 }
1250
1251 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1252 {
1253 int idx, len;
1254
1255 len = po->rx_ring.prb_bdqc.knum_blocks;
1256 idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1257 if (pow_off)
1258 idx += len >> pow_off;
1259 if (idx >= len)
1260 idx -= len;
1261 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1262 }
1263
1264 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1265 {
1266 struct sock *sk = &po->sk;
1267 int ret = ROOM_NONE;
1268
1269 if (po->prot_hook.func != tpacket_rcv) {
1270 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1271 - (skb ? skb->truesize : 0);
1272 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1273 return ROOM_NORMAL;
1274 else if (avail > 0)
1275 return ROOM_LOW;
1276 else
1277 return ROOM_NONE;
1278 }
1279
1280 if (po->tp_version == TPACKET_V3) {
1281 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1282 ret = ROOM_NORMAL;
1283 else if (__tpacket_v3_has_room(po, 0))
1284 ret = ROOM_LOW;
1285 } else {
1286 if (__tpacket_has_room(po, ROOM_POW_OFF))
1287 ret = ROOM_NORMAL;
1288 else if (__tpacket_has_room(po, 0))
1289 ret = ROOM_LOW;
1290 }
1291
1292 return ret;
1293 }
1294
1295 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1296 {
1297 int ret;
1298 bool has_room;
1299
1300 spin_lock_bh(&po->sk.sk_receive_queue.lock);
1301 ret = __packet_rcv_has_room(po, skb);
1302 has_room = ret == ROOM_NORMAL;
1303 if (po->pressure == has_room)
1304 po->pressure = !has_room;
1305 spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1306
1307 return ret;
1308 }
1309
1310 static void packet_sock_destruct(struct sock *sk)
1311 {
1312 skb_queue_purge(&sk->sk_error_queue);
1313
1314 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1315 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1316
1317 if (!sock_flag(sk, SOCK_DEAD)) {
1318 pr_err("Attempt to release alive packet socket: %p\n", sk);
1319 return;
1320 }
1321
1322 sk_refcnt_debug_dec(sk);
1323 }
1324
1325 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1326 {
1327 u32 rxhash;
1328 int i, count = 0;
1329
1330 rxhash = skb_get_hash(skb);
1331 for (i = 0; i < ROLLOVER_HLEN; i++)
1332 if (po->rollover->history[i] == rxhash)
1333 count++;
1334
1335 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1336 return count > (ROLLOVER_HLEN >> 1);
1337 }
1338
1339 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1340 struct sk_buff *skb,
1341 unsigned int num)
1342 {
1343 return reciprocal_scale(skb_get_hash(skb), num);
1344 }
1345
1346 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1347 struct sk_buff *skb,
1348 unsigned int num)
1349 {
1350 unsigned int val = atomic_inc_return(&f->rr_cur);
1351
1352 return val % num;
1353 }
1354
1355 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1356 struct sk_buff *skb,
1357 unsigned int num)
1358 {
1359 return smp_processor_id() % num;
1360 }
1361
1362 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1363 struct sk_buff *skb,
1364 unsigned int num)
1365 {
1366 return prandom_u32_max(num);
1367 }
1368
1369 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1370 struct sk_buff *skb,
1371 unsigned int idx, bool try_self,
1372 unsigned int num)
1373 {
1374 struct packet_sock *po, *po_next, *po_skip = NULL;
1375 unsigned int i, j, room = ROOM_NONE;
1376
1377 po = pkt_sk(f->arr[idx]);
1378
1379 if (try_self) {
1380 room = packet_rcv_has_room(po, skb);
1381 if (room == ROOM_NORMAL ||
1382 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1383 return idx;
1384 po_skip = po;
1385 }
1386
1387 i = j = min_t(int, po->rollover->sock, num - 1);
1388 do {
1389 po_next = pkt_sk(f->arr[i]);
1390 if (po_next != po_skip && !po_next->pressure &&
1391 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1392 if (i != j)
1393 po->rollover->sock = i;
1394 atomic_long_inc(&po->rollover->num);
1395 if (room == ROOM_LOW)
1396 atomic_long_inc(&po->rollover->num_huge);
1397 return i;
1398 }
1399
1400 if (++i == num)
1401 i = 0;
1402 } while (i != j);
1403
1404 atomic_long_inc(&po->rollover->num_failed);
1405 return idx;
1406 }
1407
1408 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1409 struct sk_buff *skb,
1410 unsigned int num)
1411 {
1412 return skb_get_queue_mapping(skb) % num;
1413 }
1414
1415 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1416 struct sk_buff *skb,
1417 unsigned int num)
1418 {
1419 struct bpf_prog *prog;
1420 unsigned int ret = 0;
1421
1422 rcu_read_lock();
1423 prog = rcu_dereference(f->bpf_prog);
1424 if (prog)
1425 ret = bpf_prog_run_clear_cb(prog, skb) % num;
1426 rcu_read_unlock();
1427
1428 return ret;
1429 }
1430
1431 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1432 {
1433 return f->flags & (flag >> 8);
1434 }
1435
1436 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1437 struct packet_type *pt, struct net_device *orig_dev)
1438 {
1439 struct packet_fanout *f = pt->af_packet_priv;
1440 unsigned int num = READ_ONCE(f->num_members);
1441 struct net *net = read_pnet(&f->net);
1442 struct packet_sock *po;
1443 unsigned int idx;
1444
1445 if (!net_eq(dev_net(dev), net) || !num) {
1446 kfree_skb(skb);
1447 return 0;
1448 }
1449
1450 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1451 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1452 if (!skb)
1453 return 0;
1454 }
1455 switch (f->type) {
1456 case PACKET_FANOUT_HASH:
1457 default:
1458 idx = fanout_demux_hash(f, skb, num);
1459 break;
1460 case PACKET_FANOUT_LB:
1461 idx = fanout_demux_lb(f, skb, num);
1462 break;
1463 case PACKET_FANOUT_CPU:
1464 idx = fanout_demux_cpu(f, skb, num);
1465 break;
1466 case PACKET_FANOUT_RND:
1467 idx = fanout_demux_rnd(f, skb, num);
1468 break;
1469 case PACKET_FANOUT_QM:
1470 idx = fanout_demux_qm(f, skb, num);
1471 break;
1472 case PACKET_FANOUT_ROLLOVER:
1473 idx = fanout_demux_rollover(f, skb, 0, false, num);
1474 break;
1475 case PACKET_FANOUT_CBPF:
1476 case PACKET_FANOUT_EBPF:
1477 idx = fanout_demux_bpf(f, skb, num);
1478 break;
1479 }
1480
1481 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1482 idx = fanout_demux_rollover(f, skb, idx, true, num);
1483
1484 po = pkt_sk(f->arr[idx]);
1485 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1486 }
1487
1488 DEFINE_MUTEX(fanout_mutex);
1489 EXPORT_SYMBOL_GPL(fanout_mutex);
1490 static LIST_HEAD(fanout_list);
1491
1492 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1493 {
1494 struct packet_fanout *f = po->fanout;
1495
1496 spin_lock(&f->lock);
1497 f->arr[f->num_members] = sk;
1498 smp_wmb();
1499 f->num_members++;
1500 spin_unlock(&f->lock);
1501 }
1502
1503 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1504 {
1505 struct packet_fanout *f = po->fanout;
1506 int i;
1507
1508 spin_lock(&f->lock);
1509 for (i = 0; i < f->num_members; i++) {
1510 if (f->arr[i] == sk)
1511 break;
1512 }
1513 BUG_ON(i >= f->num_members);
1514 f->arr[i] = f->arr[f->num_members - 1];
1515 f->num_members--;
1516 spin_unlock(&f->lock);
1517 }
1518
1519 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1520 {
1521 if (sk->sk_family != PF_PACKET)
1522 return false;
1523
1524 return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1525 }
1526
1527 static void fanout_init_data(struct packet_fanout *f)
1528 {
1529 switch (f->type) {
1530 case PACKET_FANOUT_LB:
1531 atomic_set(&f->rr_cur, 0);
1532 break;
1533 case PACKET_FANOUT_CBPF:
1534 case PACKET_FANOUT_EBPF:
1535 RCU_INIT_POINTER(f->bpf_prog, NULL);
1536 break;
1537 }
1538 }
1539
1540 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1541 {
1542 struct bpf_prog *old;
1543
1544 spin_lock(&f->lock);
1545 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1546 rcu_assign_pointer(f->bpf_prog, new);
1547 spin_unlock(&f->lock);
1548
1549 if (old) {
1550 synchronize_net();
1551 bpf_prog_destroy(old);
1552 }
1553 }
1554
1555 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1556 unsigned int len)
1557 {
1558 struct bpf_prog *new;
1559 struct sock_fprog fprog;
1560 int ret;
1561
1562 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1563 return -EPERM;
1564 if (len != sizeof(fprog))
1565 return -EINVAL;
1566 if (copy_from_user(&fprog, data, len))
1567 return -EFAULT;
1568
1569 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1570 if (ret)
1571 return ret;
1572
1573 __fanout_set_data_bpf(po->fanout, new);
1574 return 0;
1575 }
1576
1577 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1578 unsigned int len)
1579 {
1580 struct bpf_prog *new;
1581 u32 fd;
1582
1583 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1584 return -EPERM;
1585 if (len != sizeof(fd))
1586 return -EINVAL;
1587 if (copy_from_user(&fd, data, len))
1588 return -EFAULT;
1589
1590 new = bpf_prog_get(fd);
1591 if (IS_ERR(new))
1592 return PTR_ERR(new);
1593 if (new->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1594 bpf_prog_put(new);
1595 return -EINVAL;
1596 }
1597
1598 __fanout_set_data_bpf(po->fanout, new);
1599 return 0;
1600 }
1601
1602 static int fanout_set_data(struct packet_sock *po, char __user *data,
1603 unsigned int len)
1604 {
1605 switch (po->fanout->type) {
1606 case PACKET_FANOUT_CBPF:
1607 return fanout_set_data_cbpf(po, data, len);
1608 case PACKET_FANOUT_EBPF:
1609 return fanout_set_data_ebpf(po, data, len);
1610 default:
1611 return -EINVAL;
1612 };
1613 }
1614
1615 static void fanout_release_data(struct packet_fanout *f)
1616 {
1617 switch (f->type) {
1618 case PACKET_FANOUT_CBPF:
1619 case PACKET_FANOUT_EBPF:
1620 __fanout_set_data_bpf(f, NULL);
1621 };
1622 }
1623
1624 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1625 {
1626 struct packet_sock *po = pkt_sk(sk);
1627 struct packet_fanout *f, *match;
1628 u8 type = type_flags & 0xff;
1629 u8 flags = type_flags >> 8;
1630 int err;
1631
1632 switch (type) {
1633 case PACKET_FANOUT_ROLLOVER:
1634 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1635 return -EINVAL;
1636 case PACKET_FANOUT_HASH:
1637 case PACKET_FANOUT_LB:
1638 case PACKET_FANOUT_CPU:
1639 case PACKET_FANOUT_RND:
1640 case PACKET_FANOUT_QM:
1641 case PACKET_FANOUT_CBPF:
1642 case PACKET_FANOUT_EBPF:
1643 break;
1644 default:
1645 return -EINVAL;
1646 }
1647
1648 if (!po->running)
1649 return -EINVAL;
1650
1651 if (po->fanout)
1652 return -EALREADY;
1653
1654 if (type == PACKET_FANOUT_ROLLOVER ||
1655 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1656 po->rollover = kzalloc(sizeof(*po->rollover), GFP_KERNEL);
1657 if (!po->rollover)
1658 return -ENOMEM;
1659 atomic_long_set(&po->rollover->num, 0);
1660 atomic_long_set(&po->rollover->num_huge, 0);
1661 atomic_long_set(&po->rollover->num_failed, 0);
1662 }
1663
1664 mutex_lock(&fanout_mutex);
1665 match = NULL;
1666 list_for_each_entry(f, &fanout_list, list) {
1667 if (f->id == id &&
1668 read_pnet(&f->net) == sock_net(sk)) {
1669 match = f;
1670 break;
1671 }
1672 }
1673 err = -EINVAL;
1674 if (match && match->flags != flags)
1675 goto out;
1676 if (!match) {
1677 err = -ENOMEM;
1678 match = kzalloc(sizeof(*match), GFP_KERNEL);
1679 if (!match)
1680 goto out;
1681 write_pnet(&match->net, sock_net(sk));
1682 match->id = id;
1683 match->type = type;
1684 match->flags = flags;
1685 INIT_LIST_HEAD(&match->list);
1686 spin_lock_init(&match->lock);
1687 atomic_set(&match->sk_ref, 0);
1688 fanout_init_data(match);
1689 match->prot_hook.type = po->prot_hook.type;
1690 match->prot_hook.dev = po->prot_hook.dev;
1691 match->prot_hook.func = packet_rcv_fanout;
1692 match->prot_hook.af_packet_priv = match;
1693 match->prot_hook.id_match = match_fanout_group;
1694 dev_add_pack(&match->prot_hook);
1695 list_add(&match->list, &fanout_list);
1696 }
1697 err = -EINVAL;
1698 if (match->type == type &&
1699 match->prot_hook.type == po->prot_hook.type &&
1700 match->prot_hook.dev == po->prot_hook.dev) {
1701 err = -ENOSPC;
1702 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1703 __dev_remove_pack(&po->prot_hook);
1704 po->fanout = match;
1705 atomic_inc(&match->sk_ref);
1706 __fanout_link(sk, po);
1707 err = 0;
1708 }
1709 }
1710 out:
1711 mutex_unlock(&fanout_mutex);
1712 if (err) {
1713 kfree(po->rollover);
1714 po->rollover = NULL;
1715 }
1716 return err;
1717 }
1718
1719 static void fanout_release(struct sock *sk)
1720 {
1721 struct packet_sock *po = pkt_sk(sk);
1722 struct packet_fanout *f;
1723
1724 f = po->fanout;
1725 if (!f)
1726 return;
1727
1728 mutex_lock(&fanout_mutex);
1729 po->fanout = NULL;
1730
1731 if (atomic_dec_and_test(&f->sk_ref)) {
1732 list_del(&f->list);
1733 dev_remove_pack(&f->prot_hook);
1734 fanout_release_data(f);
1735 kfree(f);
1736 }
1737 mutex_unlock(&fanout_mutex);
1738
1739 if (po->rollover)
1740 kfree_rcu(po->rollover, rcu);
1741 }
1742
1743 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1744 struct sk_buff *skb)
1745 {
1746 /* Earlier code assumed this would be a VLAN pkt, double-check
1747 * this now that we have the actual packet in hand. We can only
1748 * do this check on Ethernet devices.
1749 */
1750 if (unlikely(dev->type != ARPHRD_ETHER))
1751 return false;
1752
1753 skb_reset_mac_header(skb);
1754 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1755 }
1756
1757 static const struct proto_ops packet_ops;
1758
1759 static const struct proto_ops packet_ops_spkt;
1760
1761 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1762 struct packet_type *pt, struct net_device *orig_dev)
1763 {
1764 struct sock *sk;
1765 struct sockaddr_pkt *spkt;
1766
1767 /*
1768 * When we registered the protocol we saved the socket in the data
1769 * field for just this event.
1770 */
1771
1772 sk = pt->af_packet_priv;
1773
1774 /*
1775 * Yank back the headers [hope the device set this
1776 * right or kerboom...]
1777 *
1778 * Incoming packets have ll header pulled,
1779 * push it back.
1780 *
1781 * For outgoing ones skb->data == skb_mac_header(skb)
1782 * so that this procedure is noop.
1783 */
1784
1785 if (skb->pkt_type == PACKET_LOOPBACK)
1786 goto out;
1787
1788 if (!net_eq(dev_net(dev), sock_net(sk)))
1789 goto out;
1790
1791 skb = skb_share_check(skb, GFP_ATOMIC);
1792 if (skb == NULL)
1793 goto oom;
1794
1795 /* drop any routing info */
1796 skb_dst_drop(skb);
1797
1798 /* drop conntrack reference */
1799 nf_reset(skb);
1800
1801 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1802
1803 skb_push(skb, skb->data - skb_mac_header(skb));
1804
1805 /*
1806 * The SOCK_PACKET socket receives _all_ frames.
1807 */
1808
1809 spkt->spkt_family = dev->type;
1810 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1811 spkt->spkt_protocol = skb->protocol;
1812
1813 /*
1814 * Charge the memory to the socket. This is done specifically
1815 * to prevent sockets using all the memory up.
1816 */
1817
1818 if (sock_queue_rcv_skb(sk, skb) == 0)
1819 return 0;
1820
1821 out:
1822 kfree_skb(skb);
1823 oom:
1824 return 0;
1825 }
1826
1827
1828 /*
1829 * Output a raw packet to a device layer. This bypasses all the other
1830 * protocol layers and you must therefore supply it with a complete frame
1831 */
1832
1833 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1834 size_t len)
1835 {
1836 struct sock *sk = sock->sk;
1837 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1838 struct sk_buff *skb = NULL;
1839 struct net_device *dev;
1840 __be16 proto = 0;
1841 int err;
1842 int extra_len = 0;
1843
1844 /*
1845 * Get and verify the address.
1846 */
1847
1848 if (saddr) {
1849 if (msg->msg_namelen < sizeof(struct sockaddr))
1850 return -EINVAL;
1851 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1852 proto = saddr->spkt_protocol;
1853 } else
1854 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1855
1856 /*
1857 * Find the device first to size check it
1858 */
1859
1860 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1861 retry:
1862 rcu_read_lock();
1863 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1864 err = -ENODEV;
1865 if (dev == NULL)
1866 goto out_unlock;
1867
1868 err = -ENETDOWN;
1869 if (!(dev->flags & IFF_UP))
1870 goto out_unlock;
1871
1872 /*
1873 * You may not queue a frame bigger than the mtu. This is the lowest level
1874 * raw protocol and you must do your own fragmentation at this level.
1875 */
1876
1877 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1878 if (!netif_supports_nofcs(dev)) {
1879 err = -EPROTONOSUPPORT;
1880 goto out_unlock;
1881 }
1882 extra_len = 4; /* We're doing our own CRC */
1883 }
1884
1885 err = -EMSGSIZE;
1886 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1887 goto out_unlock;
1888
1889 if (!skb) {
1890 size_t reserved = LL_RESERVED_SPACE(dev);
1891 int tlen = dev->needed_tailroom;
1892 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1893
1894 rcu_read_unlock();
1895 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1896 if (skb == NULL)
1897 return -ENOBUFS;
1898 /* FIXME: Save some space for broken drivers that write a hard
1899 * header at transmission time by themselves. PPP is the notable
1900 * one here. This should really be fixed at the driver level.
1901 */
1902 skb_reserve(skb, reserved);
1903 skb_reset_network_header(skb);
1904
1905 /* Try to align data part correctly */
1906 if (hhlen) {
1907 skb->data -= hhlen;
1908 skb->tail -= hhlen;
1909 if (len < hhlen)
1910 skb_reset_network_header(skb);
1911 }
1912 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1913 if (err)
1914 goto out_free;
1915 goto retry;
1916 }
1917
1918 if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1919 !packet_extra_vlan_len_allowed(dev, skb)) {
1920 err = -EMSGSIZE;
1921 goto out_unlock;
1922 }
1923
1924 skb->protocol = proto;
1925 skb->dev = dev;
1926 skb->priority = sk->sk_priority;
1927 skb->mark = sk->sk_mark;
1928
1929 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1930
1931 if (unlikely(extra_len == 4))
1932 skb->no_fcs = 1;
1933
1934 skb_probe_transport_header(skb, 0);
1935
1936 dev_queue_xmit(skb);
1937 rcu_read_unlock();
1938 return len;
1939
1940 out_unlock:
1941 rcu_read_unlock();
1942 out_free:
1943 kfree_skb(skb);
1944 return err;
1945 }
1946
1947 static unsigned int run_filter(struct sk_buff *skb,
1948 const struct sock *sk,
1949 unsigned int res)
1950 {
1951 struct sk_filter *filter;
1952
1953 rcu_read_lock();
1954 filter = rcu_dereference(sk->sk_filter);
1955 if (filter != NULL)
1956 res = bpf_prog_run_clear_cb(filter->prog, skb);
1957 rcu_read_unlock();
1958
1959 return res;
1960 }
1961
1962 static int __packet_rcv_vnet(const struct sk_buff *skb,
1963 struct virtio_net_hdr *vnet_hdr)
1964 {
1965 *vnet_hdr = (const struct virtio_net_hdr) { 0 };
1966
1967 if (skb_is_gso(skb)) {
1968 struct skb_shared_info *sinfo = skb_shinfo(skb);
1969
1970 /* This is a hint as to how much should be linear. */
1971 vnet_hdr->hdr_len =
1972 __cpu_to_virtio16(vio_le(), skb_headlen(skb));
1973 vnet_hdr->gso_size =
1974 __cpu_to_virtio16(vio_le(), sinfo->gso_size);
1975
1976 if (sinfo->gso_type & SKB_GSO_TCPV4)
1977 vnet_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
1978 else if (sinfo->gso_type & SKB_GSO_TCPV6)
1979 vnet_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
1980 else if (sinfo->gso_type & SKB_GSO_UDP)
1981 vnet_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
1982 else if (sinfo->gso_type & SKB_GSO_FCOE)
1983 return -EINVAL;
1984 else
1985 BUG();
1986
1987 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
1988 vnet_hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN;
1989 } else
1990 vnet_hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
1991
1992 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1993 vnet_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
1994 vnet_hdr->csum_start = __cpu_to_virtio16(vio_le(),
1995 skb_checksum_start_offset(skb));
1996 vnet_hdr->csum_offset = __cpu_to_virtio16(vio_le(),
1997 skb->csum_offset);
1998 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1999 vnet_hdr->flags = VIRTIO_NET_HDR_F_DATA_VALID;
2000 } /* else everything is zero */
2001
2002 return 0;
2003 }
2004
2005 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2006 size_t *len)
2007 {
2008 struct virtio_net_hdr vnet_hdr;
2009
2010 if (*len < sizeof(vnet_hdr))
2011 return -EINVAL;
2012 *len -= sizeof(vnet_hdr);
2013
2014 if (__packet_rcv_vnet(skb, &vnet_hdr))
2015 return -EINVAL;
2016
2017 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2018 }
2019
2020 /*
2021 * This function makes lazy skb cloning in hope that most of packets
2022 * are discarded by BPF.
2023 *
2024 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2025 * and skb->cb are mangled. It works because (and until) packets
2026 * falling here are owned by current CPU. Output packets are cloned
2027 * by dev_queue_xmit_nit(), input packets are processed by net_bh
2028 * sequencially, so that if we return skb to original state on exit,
2029 * we will not harm anyone.
2030 */
2031
2032 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2033 struct packet_type *pt, struct net_device *orig_dev)
2034 {
2035 struct sock *sk;
2036 struct sockaddr_ll *sll;
2037 struct packet_sock *po;
2038 u8 *skb_head = skb->data;
2039 int skb_len = skb->len;
2040 unsigned int snaplen, res;
2041
2042 if (skb->pkt_type == PACKET_LOOPBACK)
2043 goto drop;
2044
2045 sk = pt->af_packet_priv;
2046 po = pkt_sk(sk);
2047
2048 if (!net_eq(dev_net(dev), sock_net(sk)))
2049 goto drop;
2050
2051 skb->dev = dev;
2052
2053 if (dev->header_ops) {
2054 /* The device has an explicit notion of ll header,
2055 * exported to higher levels.
2056 *
2057 * Otherwise, the device hides details of its frame
2058 * structure, so that corresponding packet head is
2059 * never delivered to user.
2060 */
2061 if (sk->sk_type != SOCK_DGRAM)
2062 skb_push(skb, skb->data - skb_mac_header(skb));
2063 else if (skb->pkt_type == PACKET_OUTGOING) {
2064 /* Special case: outgoing packets have ll header at head */
2065 skb_pull(skb, skb_network_offset(skb));
2066 }
2067 }
2068
2069 snaplen = skb->len;
2070
2071 res = run_filter(skb, sk, snaplen);
2072 if (!res)
2073 goto drop_n_restore;
2074 if (snaplen > res)
2075 snaplen = res;
2076
2077 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2078 goto drop_n_acct;
2079
2080 if (skb_shared(skb)) {
2081 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2082 if (nskb == NULL)
2083 goto drop_n_acct;
2084
2085 if (skb_head != skb->data) {
2086 skb->data = skb_head;
2087 skb->len = skb_len;
2088 }
2089 consume_skb(skb);
2090 skb = nskb;
2091 }
2092
2093 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2094
2095 sll = &PACKET_SKB_CB(skb)->sa.ll;
2096 sll->sll_hatype = dev->type;
2097 sll->sll_pkttype = skb->pkt_type;
2098 if (unlikely(po->origdev))
2099 sll->sll_ifindex = orig_dev->ifindex;
2100 else
2101 sll->sll_ifindex = dev->ifindex;
2102
2103 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2104
2105 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2106 * Use their space for storing the original skb length.
2107 */
2108 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2109
2110 if (pskb_trim(skb, snaplen))
2111 goto drop_n_acct;
2112
2113 skb_set_owner_r(skb, sk);
2114 skb->dev = NULL;
2115 skb_dst_drop(skb);
2116
2117 /* drop conntrack reference */
2118 nf_reset(skb);
2119
2120 spin_lock(&sk->sk_receive_queue.lock);
2121 po->stats.stats1.tp_packets++;
2122 sock_skb_set_dropcount(sk, skb);
2123 __skb_queue_tail(&sk->sk_receive_queue, skb);
2124 spin_unlock(&sk->sk_receive_queue.lock);
2125 sk->sk_data_ready(sk);
2126 return 0;
2127
2128 drop_n_acct:
2129 spin_lock(&sk->sk_receive_queue.lock);
2130 po->stats.stats1.tp_drops++;
2131 atomic_inc(&sk->sk_drops);
2132 spin_unlock(&sk->sk_receive_queue.lock);
2133
2134 drop_n_restore:
2135 if (skb_head != skb->data && skb_shared(skb)) {
2136 skb->data = skb_head;
2137 skb->len = skb_len;
2138 }
2139 drop:
2140 consume_skb(skb);
2141 return 0;
2142 }
2143
2144 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2145 struct packet_type *pt, struct net_device *orig_dev)
2146 {
2147 struct sock *sk;
2148 struct packet_sock *po;
2149 struct sockaddr_ll *sll;
2150 union tpacket_uhdr h;
2151 u8 *skb_head = skb->data;
2152 int skb_len = skb->len;
2153 unsigned int snaplen, res;
2154 unsigned long status = TP_STATUS_USER;
2155 unsigned short macoff, netoff, hdrlen;
2156 struct sk_buff *copy_skb = NULL;
2157 struct timespec ts;
2158 __u32 ts_status;
2159
2160 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2161 * We may add members to them until current aligned size without forcing
2162 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2163 */
2164 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2165 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2166
2167 if (skb->pkt_type == PACKET_LOOPBACK)
2168 goto drop;
2169
2170 sk = pt->af_packet_priv;
2171 po = pkt_sk(sk);
2172
2173 if (!net_eq(dev_net(dev), sock_net(sk)))
2174 goto drop;
2175
2176 if (dev->header_ops) {
2177 if (sk->sk_type != SOCK_DGRAM)
2178 skb_push(skb, skb->data - skb_mac_header(skb));
2179 else if (skb->pkt_type == PACKET_OUTGOING) {
2180 /* Special case: outgoing packets have ll header at head */
2181 skb_pull(skb, skb_network_offset(skb));
2182 }
2183 }
2184
2185 snaplen = skb->len;
2186
2187 res = run_filter(skb, sk, snaplen);
2188 if (!res)
2189 goto drop_n_restore;
2190
2191 if (skb->ip_summed == CHECKSUM_PARTIAL)
2192 status |= TP_STATUS_CSUMNOTREADY;
2193 else if (skb->pkt_type != PACKET_OUTGOING &&
2194 (skb->ip_summed == CHECKSUM_COMPLETE ||
2195 skb_csum_unnecessary(skb)))
2196 status |= TP_STATUS_CSUM_VALID;
2197
2198 if (snaplen > res)
2199 snaplen = res;
2200
2201 if (sk->sk_type == SOCK_DGRAM) {
2202 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2203 po->tp_reserve;
2204 } else {
2205 unsigned int maclen = skb_network_offset(skb);
2206 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2207 (maclen < 16 ? 16 : maclen)) +
2208 po->tp_reserve;
2209 if (po->has_vnet_hdr)
2210 netoff += sizeof(struct virtio_net_hdr);
2211 macoff = netoff - maclen;
2212 }
2213 if (po->tp_version <= TPACKET_V2) {
2214 if (macoff + snaplen > po->rx_ring.frame_size) {
2215 if (po->copy_thresh &&
2216 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2217 if (skb_shared(skb)) {
2218 copy_skb = skb_clone(skb, GFP_ATOMIC);
2219 } else {
2220 copy_skb = skb_get(skb);
2221 skb_head = skb->data;
2222 }
2223 if (copy_skb)
2224 skb_set_owner_r(copy_skb, sk);
2225 }
2226 snaplen = po->rx_ring.frame_size - macoff;
2227 if ((int)snaplen < 0)
2228 snaplen = 0;
2229 }
2230 } else if (unlikely(macoff + snaplen >
2231 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2232 u32 nval;
2233
2234 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2235 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2236 snaplen, nval, macoff);
2237 snaplen = nval;
2238 if (unlikely((int)snaplen < 0)) {
2239 snaplen = 0;
2240 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2241 }
2242 }
2243 spin_lock(&sk->sk_receive_queue.lock);
2244 h.raw = packet_current_rx_frame(po, skb,
2245 TP_STATUS_KERNEL, (macoff+snaplen));
2246 if (!h.raw)
2247 goto drop_n_account;
2248 if (po->tp_version <= TPACKET_V2) {
2249 packet_increment_rx_head(po, &po->rx_ring);
2250 /*
2251 * LOSING will be reported till you read the stats,
2252 * because it's COR - Clear On Read.
2253 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2254 * at packet level.
2255 */
2256 if (po->stats.stats1.tp_drops)
2257 status |= TP_STATUS_LOSING;
2258 }
2259 po->stats.stats1.tp_packets++;
2260 if (copy_skb) {
2261 status |= TP_STATUS_COPY;
2262 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2263 }
2264 spin_unlock(&sk->sk_receive_queue.lock);
2265
2266 if (po->has_vnet_hdr) {
2267 if (__packet_rcv_vnet(skb, h.raw + macoff -
2268 sizeof(struct virtio_net_hdr))) {
2269 spin_lock(&sk->sk_receive_queue.lock);
2270 goto drop_n_account;
2271 }
2272 }
2273
2274 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2275
2276 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2277 getnstimeofday(&ts);
2278
2279 status |= ts_status;
2280
2281 switch (po->tp_version) {
2282 case TPACKET_V1:
2283 h.h1->tp_len = skb->len;
2284 h.h1->tp_snaplen = snaplen;
2285 h.h1->tp_mac = macoff;
2286 h.h1->tp_net = netoff;
2287 h.h1->tp_sec = ts.tv_sec;
2288 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2289 hdrlen = sizeof(*h.h1);
2290 break;
2291 case TPACKET_V2:
2292 h.h2->tp_len = skb->len;
2293 h.h2->tp_snaplen = snaplen;
2294 h.h2->tp_mac = macoff;
2295 h.h2->tp_net = netoff;
2296 h.h2->tp_sec = ts.tv_sec;
2297 h.h2->tp_nsec = ts.tv_nsec;
2298 if (skb_vlan_tag_present(skb)) {
2299 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2300 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2301 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2302 } else {
2303 h.h2->tp_vlan_tci = 0;
2304 h.h2->tp_vlan_tpid = 0;
2305 }
2306 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2307 hdrlen = sizeof(*h.h2);
2308 break;
2309 case TPACKET_V3:
2310 /* tp_nxt_offset,vlan are already populated above.
2311 * So DONT clear those fields here
2312 */
2313 h.h3->tp_status |= status;
2314 h.h3->tp_len = skb->len;
2315 h.h3->tp_snaplen = snaplen;
2316 h.h3->tp_mac = macoff;
2317 h.h3->tp_net = netoff;
2318 h.h3->tp_sec = ts.tv_sec;
2319 h.h3->tp_nsec = ts.tv_nsec;
2320 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2321 hdrlen = sizeof(*h.h3);
2322 break;
2323 default:
2324 BUG();
2325 }
2326
2327 sll = h.raw + TPACKET_ALIGN(hdrlen);
2328 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2329 sll->sll_family = AF_PACKET;
2330 sll->sll_hatype = dev->type;
2331 sll->sll_protocol = skb->protocol;
2332 sll->sll_pkttype = skb->pkt_type;
2333 if (unlikely(po->origdev))
2334 sll->sll_ifindex = orig_dev->ifindex;
2335 else
2336 sll->sll_ifindex = dev->ifindex;
2337
2338 smp_mb();
2339
2340 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2341 if (po->tp_version <= TPACKET_V2) {
2342 u8 *start, *end;
2343
2344 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2345 macoff + snaplen);
2346
2347 for (start = h.raw; start < end; start += PAGE_SIZE)
2348 flush_dcache_page(pgv_to_page(start));
2349 }
2350 smp_wmb();
2351 #endif
2352
2353 if (po->tp_version <= TPACKET_V2) {
2354 __packet_set_status(po, h.raw, status);
2355 sk->sk_data_ready(sk);
2356 } else {
2357 prb_clear_blk_fill_status(&po->rx_ring);
2358 }
2359
2360 drop_n_restore:
2361 if (skb_head != skb->data && skb_shared(skb)) {
2362 skb->data = skb_head;
2363 skb->len = skb_len;
2364 }
2365 drop:
2366 kfree_skb(skb);
2367 return 0;
2368
2369 drop_n_account:
2370 po->stats.stats1.tp_drops++;
2371 spin_unlock(&sk->sk_receive_queue.lock);
2372
2373 sk->sk_data_ready(sk);
2374 kfree_skb(copy_skb);
2375 goto drop_n_restore;
2376 }
2377
2378 static void tpacket_destruct_skb(struct sk_buff *skb)
2379 {
2380 struct packet_sock *po = pkt_sk(skb->sk);
2381
2382 if (likely(po->tx_ring.pg_vec)) {
2383 void *ph;
2384 __u32 ts;
2385
2386 ph = skb_shinfo(skb)->destructor_arg;
2387 packet_dec_pending(&po->tx_ring);
2388
2389 ts = __packet_set_timestamp(po, ph, skb);
2390 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2391 }
2392
2393 sock_wfree(skb);
2394 }
2395
2396 static bool ll_header_truncated(const struct net_device *dev, int len)
2397 {
2398 /* net device doesn't like empty head */
2399 if (unlikely(len < dev->hard_header_len)) {
2400 net_warn_ratelimited("%s: packet size is too short (%d < %d)\n",
2401 current->comm, len, dev->hard_header_len);
2402 return true;
2403 }
2404
2405 return false;
2406 }
2407
2408 static void tpacket_set_protocol(const struct net_device *dev,
2409 struct sk_buff *skb)
2410 {
2411 if (dev->type == ARPHRD_ETHER) {
2412 skb_reset_mac_header(skb);
2413 skb->protocol = eth_hdr(skb)->h_proto;
2414 }
2415 }
2416
2417 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2418 {
2419 unsigned short gso_type = 0;
2420
2421 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2422 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2423 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2424 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2425 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2426 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2427 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2428
2429 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2430 return -EINVAL;
2431
2432 if (vnet_hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2433 switch (vnet_hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2434 case VIRTIO_NET_HDR_GSO_TCPV4:
2435 gso_type = SKB_GSO_TCPV4;
2436 break;
2437 case VIRTIO_NET_HDR_GSO_TCPV6:
2438 gso_type = SKB_GSO_TCPV6;
2439 break;
2440 case VIRTIO_NET_HDR_GSO_UDP:
2441 gso_type = SKB_GSO_UDP;
2442 break;
2443 default:
2444 return -EINVAL;
2445 }
2446
2447 if (vnet_hdr->gso_type & VIRTIO_NET_HDR_GSO_ECN)
2448 gso_type |= SKB_GSO_TCP_ECN;
2449
2450 if (vnet_hdr->gso_size == 0)
2451 return -EINVAL;
2452 }
2453
2454 vnet_hdr->gso_type = gso_type; /* changes type, temporary storage */
2455 return 0;
2456 }
2457
2458 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2459 struct virtio_net_hdr *vnet_hdr)
2460 {
2461 int n;
2462
2463 if (*len < sizeof(*vnet_hdr))
2464 return -EINVAL;
2465 *len -= sizeof(*vnet_hdr);
2466
2467 n = copy_from_iter(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter);
2468 if (n != sizeof(*vnet_hdr))
2469 return -EFAULT;
2470
2471 return __packet_snd_vnet_parse(vnet_hdr, *len);
2472 }
2473
2474 static int packet_snd_vnet_gso(struct sk_buff *skb,
2475 struct virtio_net_hdr *vnet_hdr)
2476 {
2477 if (vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2478 u16 s = __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start);
2479 u16 o = __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset);
2480
2481 if (!skb_partial_csum_set(skb, s, o))
2482 return -EINVAL;
2483 }
2484
2485 skb_shinfo(skb)->gso_size =
2486 __virtio16_to_cpu(vio_le(), vnet_hdr->gso_size);
2487 skb_shinfo(skb)->gso_type = vnet_hdr->gso_type;
2488
2489 /* Header must be checked, and gso_segs computed. */
2490 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2491 skb_shinfo(skb)->gso_segs = 0;
2492 return 0;
2493 }
2494
2495 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2496 void *frame, struct net_device *dev, void *data, int tp_len,
2497 __be16 proto, unsigned char *addr, int hlen, int copylen)
2498 {
2499 union tpacket_uhdr ph;
2500 int to_write, offset, len, nr_frags, len_max;
2501 struct socket *sock = po->sk.sk_socket;
2502 struct page *page;
2503 int err;
2504
2505 ph.raw = frame;
2506
2507 skb->protocol = proto;
2508 skb->dev = dev;
2509 skb->priority = po->sk.sk_priority;
2510 skb->mark = po->sk.sk_mark;
2511 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2512 skb_shinfo(skb)->destructor_arg = ph.raw;
2513
2514 skb_reserve(skb, hlen);
2515 skb_reset_network_header(skb);
2516
2517 to_write = tp_len;
2518
2519 if (sock->type == SOCK_DGRAM) {
2520 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2521 NULL, tp_len);
2522 if (unlikely(err < 0))
2523 return -EINVAL;
2524 } else if (copylen) {
2525 skb_push(skb, dev->hard_header_len);
2526 skb_put(skb, copylen - dev->hard_header_len);
2527 err = skb_store_bits(skb, 0, data, copylen);
2528 if (unlikely(err))
2529 return err;
2530 if (!skb->protocol)
2531 tpacket_set_protocol(dev, skb);
2532
2533 data += copylen;
2534 to_write -= copylen;
2535 }
2536
2537 offset = offset_in_page(data);
2538 len_max = PAGE_SIZE - offset;
2539 len = ((to_write > len_max) ? len_max : to_write);
2540
2541 skb->data_len = to_write;
2542 skb->len += to_write;
2543 skb->truesize += to_write;
2544 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2545
2546 while (likely(to_write)) {
2547 nr_frags = skb_shinfo(skb)->nr_frags;
2548
2549 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2550 pr_err("Packet exceed the number of skb frags(%lu)\n",
2551 MAX_SKB_FRAGS);
2552 return -EFAULT;
2553 }
2554
2555 page = pgv_to_page(data);
2556 data += len;
2557 flush_dcache_page(page);
2558 get_page(page);
2559 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2560 to_write -= len;
2561 offset = 0;
2562 len_max = PAGE_SIZE;
2563 len = ((to_write > len_max) ? len_max : to_write);
2564 }
2565
2566 skb_probe_transport_header(skb, 0);
2567
2568 return tp_len;
2569 }
2570
2571 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2572 int size_max, void **data)
2573 {
2574 union tpacket_uhdr ph;
2575 int tp_len, off;
2576
2577 ph.raw = frame;
2578
2579 switch (po->tp_version) {
2580 case TPACKET_V2:
2581 tp_len = ph.h2->tp_len;
2582 break;
2583 default:
2584 tp_len = ph.h1->tp_len;
2585 break;
2586 }
2587 if (unlikely(tp_len > size_max)) {
2588 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2589 return -EMSGSIZE;
2590 }
2591
2592 if (unlikely(po->tp_tx_has_off)) {
2593 int off_min, off_max;
2594
2595 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2596 off_max = po->tx_ring.frame_size - tp_len;
2597 if (po->sk.sk_type == SOCK_DGRAM) {
2598 switch (po->tp_version) {
2599 case TPACKET_V2:
2600 off = ph.h2->tp_net;
2601 break;
2602 default:
2603 off = ph.h1->tp_net;
2604 break;
2605 }
2606 } else {
2607 switch (po->tp_version) {
2608 case TPACKET_V2:
2609 off = ph.h2->tp_mac;
2610 break;
2611 default:
2612 off = ph.h1->tp_mac;
2613 break;
2614 }
2615 }
2616 if (unlikely((off < off_min) || (off_max < off)))
2617 return -EINVAL;
2618 } else {
2619 off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2620 }
2621
2622 *data = frame + off;
2623 return tp_len;
2624 }
2625
2626 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2627 {
2628 struct sk_buff *skb;
2629 struct net_device *dev;
2630 struct virtio_net_hdr *vnet_hdr = NULL;
2631 __be16 proto;
2632 int err, reserve = 0;
2633 void *ph;
2634 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2635 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2636 int tp_len, size_max;
2637 unsigned char *addr;
2638 void *data;
2639 int len_sum = 0;
2640 int status = TP_STATUS_AVAILABLE;
2641 int hlen, tlen, copylen = 0;
2642
2643 mutex_lock(&po->pg_vec_lock);
2644
2645 if (likely(saddr == NULL)) {
2646 dev = packet_cached_dev_get(po);
2647 proto = po->num;
2648 addr = NULL;
2649 } else {
2650 err = -EINVAL;
2651 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2652 goto out;
2653 if (msg->msg_namelen < (saddr->sll_halen
2654 + offsetof(struct sockaddr_ll,
2655 sll_addr)))
2656 goto out;
2657 proto = saddr->sll_protocol;
2658 addr = saddr->sll_addr;
2659 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2660 }
2661
2662 err = -ENXIO;
2663 if (unlikely(dev == NULL))
2664 goto out;
2665 err = -ENETDOWN;
2666 if (unlikely(!(dev->flags & IFF_UP)))
2667 goto out_put;
2668
2669 if (po->sk.sk_socket->type == SOCK_RAW)
2670 reserve = dev->hard_header_len;
2671 size_max = po->tx_ring.frame_size
2672 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2673
2674 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2675 size_max = dev->mtu + reserve + VLAN_HLEN;
2676
2677 do {
2678 ph = packet_current_frame(po, &po->tx_ring,
2679 TP_STATUS_SEND_REQUEST);
2680 if (unlikely(ph == NULL)) {
2681 if (need_wait && need_resched())
2682 schedule();
2683 continue;
2684 }
2685
2686 skb = NULL;
2687 tp_len = tpacket_parse_header(po, ph, size_max, &data);
2688 if (tp_len < 0)
2689 goto tpacket_error;
2690
2691 status = TP_STATUS_SEND_REQUEST;
2692 hlen = LL_RESERVED_SPACE(dev);
2693 tlen = dev->needed_tailroom;
2694 if (po->has_vnet_hdr) {
2695 vnet_hdr = data;
2696 data += sizeof(*vnet_hdr);
2697 tp_len -= sizeof(*vnet_hdr);
2698 if (tp_len < 0 ||
2699 __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2700 tp_len = -EINVAL;
2701 goto tpacket_error;
2702 }
2703 copylen = __virtio16_to_cpu(vio_le(),
2704 vnet_hdr->hdr_len);
2705 }
2706 if (dev->hard_header_len) {
2707 if (ll_header_truncated(dev, tp_len)) {
2708 tp_len = -EINVAL;
2709 goto tpacket_error;
2710 }
2711 copylen = max_t(int, copylen, dev->hard_header_len);
2712 }
2713 skb = sock_alloc_send_skb(&po->sk,
2714 hlen + tlen + sizeof(struct sockaddr_ll) +
2715 (copylen - dev->hard_header_len),
2716 !need_wait, &err);
2717
2718 if (unlikely(skb == NULL)) {
2719 /* we assume the socket was initially writeable ... */
2720 if (likely(len_sum > 0))
2721 err = len_sum;
2722 goto out_status;
2723 }
2724 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2725 addr, hlen, copylen);
2726 if (likely(tp_len >= 0) &&
2727 tp_len > dev->mtu + reserve &&
2728 !po->has_vnet_hdr &&
2729 !packet_extra_vlan_len_allowed(dev, skb))
2730 tp_len = -EMSGSIZE;
2731
2732 if (unlikely(tp_len < 0)) {
2733 tpacket_error:
2734 if (po->tp_loss) {
2735 __packet_set_status(po, ph,
2736 TP_STATUS_AVAILABLE);
2737 packet_increment_head(&po->tx_ring);
2738 kfree_skb(skb);
2739 continue;
2740 } else {
2741 status = TP_STATUS_WRONG_FORMAT;
2742 err = tp_len;
2743 goto out_status;
2744 }
2745 }
2746
2747 if (po->has_vnet_hdr && packet_snd_vnet_gso(skb, vnet_hdr)) {
2748 tp_len = -EINVAL;
2749 goto tpacket_error;
2750 }
2751
2752 packet_pick_tx_queue(dev, skb);
2753
2754 skb->destructor = tpacket_destruct_skb;
2755 __packet_set_status(po, ph, TP_STATUS_SENDING);
2756 packet_inc_pending(&po->tx_ring);
2757
2758 status = TP_STATUS_SEND_REQUEST;
2759 err = po->xmit(skb);
2760 if (unlikely(err > 0)) {
2761 err = net_xmit_errno(err);
2762 if (err && __packet_get_status(po, ph) ==
2763 TP_STATUS_AVAILABLE) {
2764 /* skb was destructed already */
2765 skb = NULL;
2766 goto out_status;
2767 }
2768 /*
2769 * skb was dropped but not destructed yet;
2770 * let's treat it like congestion or err < 0
2771 */
2772 err = 0;
2773 }
2774 packet_increment_head(&po->tx_ring);
2775 len_sum += tp_len;
2776 } while (likely((ph != NULL) ||
2777 /* Note: packet_read_pending() might be slow if we have
2778 * to call it as it's per_cpu variable, but in fast-path
2779 * we already short-circuit the loop with the first
2780 * condition, and luckily don't have to go that path
2781 * anyway.
2782 */
2783 (need_wait && packet_read_pending(&po->tx_ring))));
2784
2785 err = len_sum;
2786 goto out_put;
2787
2788 out_status:
2789 __packet_set_status(po, ph, status);
2790 kfree_skb(skb);
2791 out_put:
2792 dev_put(dev);
2793 out:
2794 mutex_unlock(&po->pg_vec_lock);
2795 return err;
2796 }
2797
2798 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2799 size_t reserve, size_t len,
2800 size_t linear, int noblock,
2801 int *err)
2802 {
2803 struct sk_buff *skb;
2804
2805 /* Under a page? Don't bother with paged skb. */
2806 if (prepad + len < PAGE_SIZE || !linear)
2807 linear = len;
2808
2809 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2810 err, 0);
2811 if (!skb)
2812 return NULL;
2813
2814 skb_reserve(skb, reserve);
2815 skb_put(skb, linear);
2816 skb->data_len = len - linear;
2817 skb->len += len - linear;
2818
2819 return skb;
2820 }
2821
2822 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2823 {
2824 struct sock *sk = sock->sk;
2825 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2826 struct sk_buff *skb;
2827 struct net_device *dev;
2828 __be16 proto;
2829 unsigned char *addr;
2830 int err, reserve = 0;
2831 struct sockcm_cookie sockc;
2832 struct virtio_net_hdr vnet_hdr = { 0 };
2833 int offset = 0;
2834 struct packet_sock *po = pkt_sk(sk);
2835 int hlen, tlen;
2836 int extra_len = 0;
2837
2838 /*
2839 * Get and verify the address.
2840 */
2841
2842 if (likely(saddr == NULL)) {
2843 dev = packet_cached_dev_get(po);
2844 proto = po->num;
2845 addr = NULL;
2846 } else {
2847 err = -EINVAL;
2848 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2849 goto out;
2850 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2851 goto out;
2852 proto = saddr->sll_protocol;
2853 addr = saddr->sll_addr;
2854 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2855 }
2856
2857 err = -ENXIO;
2858 if (unlikely(dev == NULL))
2859 goto out_unlock;
2860 err = -ENETDOWN;
2861 if (unlikely(!(dev->flags & IFF_UP)))
2862 goto out_unlock;
2863
2864 sockc.mark = sk->sk_mark;
2865 if (msg->msg_controllen) {
2866 err = sock_cmsg_send(sk, msg, &sockc);
2867 if (unlikely(err))
2868 goto out_unlock;
2869 }
2870
2871 if (sock->type == SOCK_RAW)
2872 reserve = dev->hard_header_len;
2873 if (po->has_vnet_hdr) {
2874 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2875 if (err)
2876 goto out_unlock;
2877 }
2878
2879 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2880 if (!netif_supports_nofcs(dev)) {
2881 err = -EPROTONOSUPPORT;
2882 goto out_unlock;
2883 }
2884 extra_len = 4; /* We're doing our own CRC */
2885 }
2886
2887 err = -EMSGSIZE;
2888 if (!vnet_hdr.gso_type &&
2889 (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2890 goto out_unlock;
2891
2892 err = -ENOBUFS;
2893 hlen = LL_RESERVED_SPACE(dev);
2894 tlen = dev->needed_tailroom;
2895 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,
2896 __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len),
2897 msg->msg_flags & MSG_DONTWAIT, &err);
2898 if (skb == NULL)
2899 goto out_unlock;
2900
2901 skb_set_network_header(skb, reserve);
2902
2903 err = -EINVAL;
2904 if (sock->type == SOCK_DGRAM) {
2905 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2906 if (unlikely(offset < 0))
2907 goto out_free;
2908 } else {
2909 if (ll_header_truncated(dev, len))
2910 goto out_free;
2911 }
2912
2913 /* Returns -EFAULT on error */
2914 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2915 if (err)
2916 goto out_free;
2917
2918 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2919
2920 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2921 !packet_extra_vlan_len_allowed(dev, skb)) {
2922 err = -EMSGSIZE;
2923 goto out_free;
2924 }
2925
2926 skb->protocol = proto;
2927 skb->dev = dev;
2928 skb->priority = sk->sk_priority;
2929 skb->mark = sockc.mark;
2930
2931 packet_pick_tx_queue(dev, skb);
2932
2933 if (po->has_vnet_hdr) {
2934 err = packet_snd_vnet_gso(skb, &vnet_hdr);
2935 if (err)
2936 goto out_free;
2937 len += sizeof(vnet_hdr);
2938 }
2939
2940 skb_probe_transport_header(skb, reserve);
2941
2942 if (unlikely(extra_len == 4))
2943 skb->no_fcs = 1;
2944
2945 err = po->xmit(skb);
2946 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2947 goto out_unlock;
2948
2949 dev_put(dev);
2950
2951 return len;
2952
2953 out_free:
2954 kfree_skb(skb);
2955 out_unlock:
2956 if (dev)
2957 dev_put(dev);
2958 out:
2959 return err;
2960 }
2961
2962 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2963 {
2964 struct sock *sk = sock->sk;
2965 struct packet_sock *po = pkt_sk(sk);
2966
2967 if (po->tx_ring.pg_vec)
2968 return tpacket_snd(po, msg);
2969 else
2970 return packet_snd(sock, msg, len);
2971 }
2972
2973 /*
2974 * Close a PACKET socket. This is fairly simple. We immediately go
2975 * to 'closed' state and remove our protocol entry in the device list.
2976 */
2977
2978 static int packet_release(struct socket *sock)
2979 {
2980 struct sock *sk = sock->sk;
2981 struct packet_sock *po;
2982 struct net *net;
2983 union tpacket_req_u req_u;
2984
2985 if (!sk)
2986 return 0;
2987
2988 net = sock_net(sk);
2989 po = pkt_sk(sk);
2990
2991 mutex_lock(&net->packet.sklist_lock);
2992 sk_del_node_init_rcu(sk);
2993 mutex_unlock(&net->packet.sklist_lock);
2994
2995 preempt_disable();
2996 sock_prot_inuse_add(net, sk->sk_prot, -1);
2997 preempt_enable();
2998
2999 spin_lock(&po->bind_lock);
3000 unregister_prot_hook(sk, false);
3001 packet_cached_dev_reset(po);
3002
3003 if (po->prot_hook.dev) {
3004 dev_put(po->prot_hook.dev);
3005 po->prot_hook.dev = NULL;
3006 }
3007 spin_unlock(&po->bind_lock);
3008
3009 packet_flush_mclist(sk);
3010
3011 if (po->rx_ring.pg_vec) {
3012 memset(&req_u, 0, sizeof(req_u));
3013 packet_set_ring(sk, &req_u, 1, 0);
3014 }
3015
3016 if (po->tx_ring.pg_vec) {
3017 memset(&req_u, 0, sizeof(req_u));
3018 packet_set_ring(sk, &req_u, 1, 1);
3019 }
3020
3021 fanout_release(sk);
3022
3023 synchronize_net();
3024 /*
3025 * Now the socket is dead. No more input will appear.
3026 */
3027 sock_orphan(sk);
3028 sock->sk = NULL;
3029
3030 /* Purge queues */
3031
3032 skb_queue_purge(&sk->sk_receive_queue);
3033 packet_free_pending(po);
3034 sk_refcnt_debug_release(sk);
3035
3036 sock_put(sk);
3037 return 0;
3038 }
3039
3040 /*
3041 * Attach a packet hook.
3042 */
3043
3044 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3045 __be16 proto)
3046 {
3047 struct packet_sock *po = pkt_sk(sk);
3048 struct net_device *dev_curr;
3049 __be16 proto_curr;
3050 bool need_rehook;
3051 struct net_device *dev = NULL;
3052 int ret = 0;
3053 bool unlisted = false;
3054
3055 if (po->fanout)
3056 return -EINVAL;
3057
3058 lock_sock(sk);
3059 spin_lock(&po->bind_lock);
3060 rcu_read_lock();
3061
3062 if (name) {
3063 dev = dev_get_by_name_rcu(sock_net(sk), name);
3064 if (!dev) {
3065 ret = -ENODEV;
3066 goto out_unlock;
3067 }
3068 } else if (ifindex) {
3069 dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3070 if (!dev) {
3071 ret = -ENODEV;
3072 goto out_unlock;
3073 }
3074 }
3075
3076 if (dev)
3077 dev_hold(dev);
3078
3079 proto_curr = po->prot_hook.type;
3080 dev_curr = po->prot_hook.dev;
3081
3082 need_rehook = proto_curr != proto || dev_curr != dev;
3083
3084 if (need_rehook) {
3085 if (po->running) {
3086 rcu_read_unlock();
3087 __unregister_prot_hook(sk, true);
3088 rcu_read_lock();
3089 dev_curr = po->prot_hook.dev;
3090 if (dev)
3091 unlisted = !dev_get_by_index_rcu(sock_net(sk),
3092 dev->ifindex);
3093 }
3094
3095 po->num = proto;
3096 po->prot_hook.type = proto;
3097
3098 if (unlikely(unlisted)) {
3099 dev_put(dev);
3100 po->prot_hook.dev = NULL;
3101 po->ifindex = -1;
3102 packet_cached_dev_reset(po);
3103 } else {
3104 po->prot_hook.dev = dev;
3105 po->ifindex = dev ? dev->ifindex : 0;
3106 packet_cached_dev_assign(po, dev);
3107 }
3108 }
3109 if (dev_curr)
3110 dev_put(dev_curr);
3111
3112 if (proto == 0 || !need_rehook)
3113 goto out_unlock;
3114
3115 if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3116 register_prot_hook(sk);
3117 } else {
3118 sk->sk_err = ENETDOWN;
3119 if (!sock_flag(sk, SOCK_DEAD))
3120 sk->sk_error_report(sk);
3121 }
3122
3123 out_unlock:
3124 rcu_read_unlock();
3125 spin_unlock(&po->bind_lock);
3126 release_sock(sk);
3127 return ret;
3128 }
3129
3130 /*
3131 * Bind a packet socket to a device
3132 */
3133
3134 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3135 int addr_len)
3136 {
3137 struct sock *sk = sock->sk;
3138 char name[15];
3139
3140 /*
3141 * Check legality
3142 */
3143
3144 if (addr_len != sizeof(struct sockaddr))
3145 return -EINVAL;
3146 strlcpy(name, uaddr->sa_data, sizeof(name));
3147
3148 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3149 }
3150
3151 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3152 {
3153 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3154 struct sock *sk = sock->sk;
3155
3156 /*
3157 * Check legality
3158 */
3159
3160 if (addr_len < sizeof(struct sockaddr_ll))
3161 return -EINVAL;
3162 if (sll->sll_family != AF_PACKET)
3163 return -EINVAL;
3164
3165 return packet_do_bind(sk, NULL, sll->sll_ifindex,
3166 sll->sll_protocol ? : pkt_sk(sk)->num);
3167 }
3168
3169 static struct proto packet_proto = {
3170 .name = "PACKET",
3171 .owner = THIS_MODULE,
3172 .obj_size = sizeof(struct packet_sock),
3173 };
3174
3175 /*
3176 * Create a packet of type SOCK_PACKET.
3177 */
3178
3179 static int packet_create(struct net *net, struct socket *sock, int protocol,
3180 int kern)
3181 {
3182 struct sock *sk;
3183 struct packet_sock *po;
3184 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3185 int err;
3186
3187 if (!ns_capable(net->user_ns, CAP_NET_RAW))
3188 return -EPERM;
3189 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3190 sock->type != SOCK_PACKET)
3191 return -ESOCKTNOSUPPORT;
3192
3193 sock->state = SS_UNCONNECTED;
3194
3195 err = -ENOBUFS;
3196 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3197 if (sk == NULL)
3198 goto out;
3199
3200 sock->ops = &packet_ops;
3201 if (sock->type == SOCK_PACKET)
3202 sock->ops = &packet_ops_spkt;
3203
3204 sock_init_data(sock, sk);
3205
3206 po = pkt_sk(sk);
3207 sk->sk_family = PF_PACKET;
3208 po->num = proto;
3209 po->xmit = dev_queue_xmit;
3210
3211 err = packet_alloc_pending(po);
3212 if (err)
3213 goto out2;
3214
3215 packet_cached_dev_reset(po);
3216
3217 sk->sk_destruct = packet_sock_destruct;
3218 sk_refcnt_debug_inc(sk);
3219
3220 /*
3221 * Attach a protocol block
3222 */
3223
3224 spin_lock_init(&po->bind_lock);
3225 mutex_init(&po->pg_vec_lock);
3226 po->rollover = NULL;
3227 po->prot_hook.func = packet_rcv;
3228
3229 if (sock->type == SOCK_PACKET)
3230 po->prot_hook.func = packet_rcv_spkt;
3231
3232 po->prot_hook.af_packet_priv = sk;
3233
3234 if (proto) {
3235 po->prot_hook.type = proto;
3236 register_prot_hook(sk);
3237 }
3238
3239 mutex_lock(&net->packet.sklist_lock);
3240 sk_add_node_rcu(sk, &net->packet.sklist);
3241 mutex_unlock(&net->packet.sklist_lock);
3242
3243 preempt_disable();
3244 sock_prot_inuse_add(net, &packet_proto, 1);
3245 preempt_enable();
3246
3247 return 0;
3248 out2:
3249 sk_free(sk);
3250 out:
3251 return err;
3252 }
3253
3254 /*
3255 * Pull a packet from our receive queue and hand it to the user.
3256 * If necessary we block.
3257 */
3258
3259 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3260 int flags)
3261 {
3262 struct sock *sk = sock->sk;
3263 struct sk_buff *skb;
3264 int copied, err;
3265 int vnet_hdr_len = 0;
3266 unsigned int origlen = 0;
3267
3268 err = -EINVAL;
3269 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3270 goto out;
3271
3272 #if 0
3273 /* What error should we return now? EUNATTACH? */
3274 if (pkt_sk(sk)->ifindex < 0)
3275 return -ENODEV;
3276 #endif
3277
3278 if (flags & MSG_ERRQUEUE) {
3279 err = sock_recv_errqueue(sk, msg, len,
3280 SOL_PACKET, PACKET_TX_TIMESTAMP);
3281 goto out;
3282 }
3283
3284 /*
3285 * Call the generic datagram receiver. This handles all sorts
3286 * of horrible races and re-entrancy so we can forget about it
3287 * in the protocol layers.
3288 *
3289 * Now it will return ENETDOWN, if device have just gone down,
3290 * but then it will block.
3291 */
3292
3293 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3294
3295 /*
3296 * An error occurred so return it. Because skb_recv_datagram()
3297 * handles the blocking we don't see and worry about blocking
3298 * retries.
3299 */
3300
3301 if (skb == NULL)
3302 goto out;
3303
3304 if (pkt_sk(sk)->pressure)
3305 packet_rcv_has_room(pkt_sk(sk), NULL);
3306
3307 if (pkt_sk(sk)->has_vnet_hdr) {
3308 err = packet_rcv_vnet(msg, skb, &len);
3309 if (err)
3310 goto out_free;
3311 vnet_hdr_len = sizeof(struct virtio_net_hdr);
3312 }
3313
3314 /* You lose any data beyond the buffer you gave. If it worries
3315 * a user program they can ask the device for its MTU
3316 * anyway.
3317 */
3318 copied = skb->len;
3319 if (copied > len) {
3320 copied = len;
3321 msg->msg_flags |= MSG_TRUNC;
3322 }
3323
3324 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3325 if (err)
3326 goto out_free;
3327
3328 if (sock->type != SOCK_PACKET) {
3329 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3330
3331 /* Original length was stored in sockaddr_ll fields */
3332 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3333 sll->sll_family = AF_PACKET;
3334 sll->sll_protocol = skb->protocol;
3335 }
3336
3337 sock_recv_ts_and_drops(msg, sk, skb);
3338
3339 if (msg->msg_name) {
3340 /* If the address length field is there to be filled
3341 * in, we fill it in now.
3342 */
3343 if (sock->type == SOCK_PACKET) {
3344 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3345 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3346 } else {
3347 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3348
3349 msg->msg_namelen = sll->sll_halen +
3350 offsetof(struct sockaddr_ll, sll_addr);
3351 }
3352 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3353 msg->msg_namelen);
3354 }
3355
3356 if (pkt_sk(sk)->auxdata) {
3357 struct tpacket_auxdata aux;
3358
3359 aux.tp_status = TP_STATUS_USER;
3360 if (skb->ip_summed == CHECKSUM_PARTIAL)
3361 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3362 else if (skb->pkt_type != PACKET_OUTGOING &&
3363 (skb->ip_summed == CHECKSUM_COMPLETE ||
3364 skb_csum_unnecessary(skb)))
3365 aux.tp_status |= TP_STATUS_CSUM_VALID;
3366
3367 aux.tp_len = origlen;
3368 aux.tp_snaplen = skb->len;
3369 aux.tp_mac = 0;
3370 aux.tp_net = skb_network_offset(skb);
3371 if (skb_vlan_tag_present(skb)) {
3372 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3373 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3374 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3375 } else {
3376 aux.tp_vlan_tci = 0;
3377 aux.tp_vlan_tpid = 0;
3378 }
3379 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3380 }
3381
3382 /*
3383 * Free or return the buffer as appropriate. Again this
3384 * hides all the races and re-entrancy issues from us.
3385 */
3386 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3387
3388 out_free:
3389 skb_free_datagram(sk, skb);
3390 out:
3391 return err;
3392 }
3393
3394 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3395 int *uaddr_len, int peer)
3396 {
3397 struct net_device *dev;
3398 struct sock *sk = sock->sk;
3399
3400 if (peer)
3401 return -EOPNOTSUPP;
3402
3403 uaddr->sa_family = AF_PACKET;
3404 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3405 rcu_read_lock();
3406 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3407 if (dev)
3408 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3409 rcu_read_unlock();
3410 *uaddr_len = sizeof(*uaddr);
3411
3412 return 0;
3413 }
3414
3415 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3416 int *uaddr_len, int peer)
3417 {
3418 struct net_device *dev;
3419 struct sock *sk = sock->sk;
3420 struct packet_sock *po = pkt_sk(sk);
3421 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3422
3423 if (peer)
3424 return -EOPNOTSUPP;
3425
3426 sll->sll_family = AF_PACKET;
3427 sll->sll_ifindex = po->ifindex;
3428 sll->sll_protocol = po->num;
3429 sll->sll_pkttype = 0;
3430 rcu_read_lock();
3431 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3432 if (dev) {
3433 sll->sll_hatype = dev->type;
3434 sll->sll_halen = dev->addr_len;
3435 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3436 } else {
3437 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3438 sll->sll_halen = 0;
3439 }
3440 rcu_read_unlock();
3441 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3442
3443 return 0;
3444 }
3445
3446 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3447 int what)
3448 {
3449 switch (i->type) {
3450 case PACKET_MR_MULTICAST:
3451 if (i->alen != dev->addr_len)
3452 return -EINVAL;
3453 if (what > 0)
3454 return dev_mc_add(dev, i->addr);
3455 else
3456 return dev_mc_del(dev, i->addr);
3457 break;
3458 case PACKET_MR_PROMISC:
3459 return dev_set_promiscuity(dev, what);
3460 case PACKET_MR_ALLMULTI:
3461 return dev_set_allmulti(dev, what);
3462 case PACKET_MR_UNICAST:
3463 if (i->alen != dev->addr_len)
3464 return -EINVAL;
3465 if (what > 0)
3466 return dev_uc_add(dev, i->addr);
3467 else
3468 return dev_uc_del(dev, i->addr);
3469 break;
3470 default:
3471 break;
3472 }
3473 return 0;
3474 }
3475
3476 static void packet_dev_mclist_delete(struct net_device *dev,
3477 struct packet_mclist **mlp)
3478 {
3479 struct packet_mclist *ml;
3480
3481 while ((ml = *mlp) != NULL) {
3482 if (ml->ifindex == dev->ifindex) {
3483 packet_dev_mc(dev, ml, -1);
3484 *mlp = ml->next;
3485 kfree(ml);
3486 } else
3487 mlp = &ml->next;
3488 }
3489 }
3490
3491 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3492 {
3493 struct packet_sock *po = pkt_sk(sk);
3494 struct packet_mclist *ml, *i;
3495 struct net_device *dev;
3496 int err;
3497
3498 rtnl_lock();
3499
3500 err = -ENODEV;
3501 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3502 if (!dev)
3503 goto done;
3504
3505 err = -EINVAL;
3506 if (mreq->mr_alen > dev->addr_len)
3507 goto done;
3508
3509 err = -ENOBUFS;
3510 i = kmalloc(sizeof(*i), GFP_KERNEL);
3511 if (i == NULL)
3512 goto done;
3513
3514 err = 0;
3515 for (ml = po->mclist; ml; ml = ml->next) {
3516 if (ml->ifindex == mreq->mr_ifindex &&
3517 ml->type == mreq->mr_type &&
3518 ml->alen == mreq->mr_alen &&
3519 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3520 ml->count++;
3521 /* Free the new element ... */
3522 kfree(i);
3523 goto done;
3524 }
3525 }
3526
3527 i->type = mreq->mr_type;
3528 i->ifindex = mreq->mr_ifindex;
3529 i->alen = mreq->mr_alen;
3530 memcpy(i->addr, mreq->mr_address, i->alen);
3531 i->count = 1;
3532 i->next = po->mclist;
3533 po->mclist = i;
3534 err = packet_dev_mc(dev, i, 1);
3535 if (err) {
3536 po->mclist = i->next;
3537 kfree(i);
3538 }
3539
3540 done:
3541 rtnl_unlock();
3542 return err;
3543 }
3544
3545 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3546 {
3547 struct packet_mclist *ml, **mlp;
3548
3549 rtnl_lock();
3550
3551 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3552 if (ml->ifindex == mreq->mr_ifindex &&
3553 ml->type == mreq->mr_type &&
3554 ml->alen == mreq->mr_alen &&
3555 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3556 if (--ml->count == 0) {
3557 struct net_device *dev;
3558 *mlp = ml->next;
3559 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3560 if (dev)
3561 packet_dev_mc(dev, ml, -1);
3562 kfree(ml);
3563 }
3564 break;
3565 }
3566 }
3567 rtnl_unlock();
3568 return 0;
3569 }
3570
3571 static void packet_flush_mclist(struct sock *sk)
3572 {
3573 struct packet_sock *po = pkt_sk(sk);
3574 struct packet_mclist *ml;
3575
3576 if (!po->mclist)
3577 return;
3578
3579 rtnl_lock();
3580 while ((ml = po->mclist) != NULL) {
3581 struct net_device *dev;
3582
3583 po->mclist = ml->next;
3584 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3585 if (dev != NULL)
3586 packet_dev_mc(dev, ml, -1);
3587 kfree(ml);
3588 }
3589 rtnl_unlock();
3590 }
3591
3592 static int
3593 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3594 {
3595 struct sock *sk = sock->sk;
3596 struct packet_sock *po = pkt_sk(sk);
3597 int ret;
3598
3599 if (level != SOL_PACKET)
3600 return -ENOPROTOOPT;
3601
3602 switch (optname) {
3603 case PACKET_ADD_MEMBERSHIP:
3604 case PACKET_DROP_MEMBERSHIP:
3605 {
3606 struct packet_mreq_max mreq;
3607 int len = optlen;
3608 memset(&mreq, 0, sizeof(mreq));
3609 if (len < sizeof(struct packet_mreq))
3610 return -EINVAL;
3611 if (len > sizeof(mreq))
3612 len = sizeof(mreq);
3613 if (copy_from_user(&mreq, optval, len))
3614 return -EFAULT;
3615 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3616 return -EINVAL;
3617 if (optname == PACKET_ADD_MEMBERSHIP)
3618 ret = packet_mc_add(sk, &mreq);
3619 else
3620 ret = packet_mc_drop(sk, &mreq);
3621 return ret;
3622 }
3623
3624 case PACKET_RX_RING:
3625 case PACKET_TX_RING:
3626 {
3627 union tpacket_req_u req_u;
3628 int len;
3629
3630 switch (po->tp_version) {
3631 case TPACKET_V1:
3632 case TPACKET_V2:
3633 len = sizeof(req_u.req);
3634 break;
3635 case TPACKET_V3:
3636 default:
3637 len = sizeof(req_u.req3);
3638 break;
3639 }
3640 if (optlen < len)
3641 return -EINVAL;
3642 if (copy_from_user(&req_u.req, optval, len))
3643 return -EFAULT;
3644 return packet_set_ring(sk, &req_u, 0,
3645 optname == PACKET_TX_RING);
3646 }
3647 case PACKET_COPY_THRESH:
3648 {
3649 int val;
3650
3651 if (optlen != sizeof(val))
3652 return -EINVAL;
3653 if (copy_from_user(&val, optval, sizeof(val)))
3654 return -EFAULT;
3655
3656 pkt_sk(sk)->copy_thresh = val;
3657 return 0;
3658 }
3659 case PACKET_VERSION:
3660 {
3661 int val;
3662
3663 if (optlen != sizeof(val))
3664 return -EINVAL;
3665 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3666 return -EBUSY;
3667 if (copy_from_user(&val, optval, sizeof(val)))
3668 return -EFAULT;
3669 switch (val) {
3670 case TPACKET_V1:
3671 case TPACKET_V2:
3672 case TPACKET_V3:
3673 po->tp_version = val;
3674 return 0;
3675 default:
3676 return -EINVAL;
3677 }
3678 }
3679 case PACKET_RESERVE:
3680 {
3681 unsigned int val;
3682
3683 if (optlen != sizeof(val))
3684 return -EINVAL;
3685 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3686 return -EBUSY;
3687 if (copy_from_user(&val, optval, sizeof(val)))
3688 return -EFAULT;
3689 po->tp_reserve = val;
3690 return 0;
3691 }
3692 case PACKET_LOSS:
3693 {
3694 unsigned int val;
3695
3696 if (optlen != sizeof(val))
3697 return -EINVAL;
3698 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3699 return -EBUSY;
3700 if (copy_from_user(&val, optval, sizeof(val)))
3701 return -EFAULT;
3702 po->tp_loss = !!val;
3703 return 0;
3704 }
3705 case PACKET_AUXDATA:
3706 {
3707 int val;
3708
3709 if (optlen < sizeof(val))
3710 return -EINVAL;
3711 if (copy_from_user(&val, optval, sizeof(val)))
3712 return -EFAULT;
3713
3714 po->auxdata = !!val;
3715 return 0;
3716 }
3717 case PACKET_ORIGDEV:
3718 {
3719 int val;
3720
3721 if (optlen < sizeof(val))
3722 return -EINVAL;
3723 if (copy_from_user(&val, optval, sizeof(val)))
3724 return -EFAULT;
3725
3726 po->origdev = !!val;
3727 return 0;
3728 }
3729 case PACKET_VNET_HDR:
3730 {
3731 int val;
3732
3733 if (sock->type != SOCK_RAW)
3734 return -EINVAL;
3735 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3736 return -EBUSY;
3737 if (optlen < sizeof(val))
3738 return -EINVAL;
3739 if (copy_from_user(&val, optval, sizeof(val)))
3740 return -EFAULT;
3741
3742 po->has_vnet_hdr = !!val;
3743 return 0;
3744 }
3745 case PACKET_TIMESTAMP:
3746 {
3747 int val;
3748
3749 if (optlen != sizeof(val))
3750 return -EINVAL;
3751 if (copy_from_user(&val, optval, sizeof(val)))
3752 return -EFAULT;
3753
3754 po->tp_tstamp = val;
3755 return 0;
3756 }
3757 case PACKET_FANOUT:
3758 {
3759 int val;
3760
3761 if (optlen != sizeof(val))
3762 return -EINVAL;
3763 if (copy_from_user(&val, optval, sizeof(val)))
3764 return -EFAULT;
3765
3766 return fanout_add(sk, val & 0xffff, val >> 16);
3767 }
3768 case PACKET_FANOUT_DATA:
3769 {
3770 if (!po->fanout)
3771 return -EINVAL;
3772
3773 return fanout_set_data(po, optval, optlen);
3774 }
3775 case PACKET_TX_HAS_OFF:
3776 {
3777 unsigned int val;
3778
3779 if (optlen != sizeof(val))
3780 return -EINVAL;
3781 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3782 return -EBUSY;
3783 if (copy_from_user(&val, optval, sizeof(val)))
3784 return -EFAULT;
3785 po->tp_tx_has_off = !!val;
3786 return 0;
3787 }
3788 case PACKET_QDISC_BYPASS:
3789 {
3790 int val;
3791
3792 if (optlen != sizeof(val))
3793 return -EINVAL;
3794 if (copy_from_user(&val, optval, sizeof(val)))
3795 return -EFAULT;
3796
3797 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3798 return 0;
3799 }
3800 default:
3801 return -ENOPROTOOPT;
3802 }
3803 }
3804
3805 static int packet_getsockopt(struct socket *sock, int level, int optname,
3806 char __user *optval, int __user *optlen)
3807 {
3808 int len;
3809 int val, lv = sizeof(val);
3810 struct sock *sk = sock->sk;
3811 struct packet_sock *po = pkt_sk(sk);
3812 void *data = &val;
3813 union tpacket_stats_u st;
3814 struct tpacket_rollover_stats rstats;
3815
3816 if (level != SOL_PACKET)
3817 return -ENOPROTOOPT;
3818
3819 if (get_user(len, optlen))
3820 return -EFAULT;
3821
3822 if (len < 0)
3823 return -EINVAL;
3824
3825 switch (optname) {
3826 case PACKET_STATISTICS:
3827 spin_lock_bh(&sk->sk_receive_queue.lock);
3828 memcpy(&st, &po->stats, sizeof(st));
3829 memset(&po->stats, 0, sizeof(po->stats));
3830 spin_unlock_bh(&sk->sk_receive_queue.lock);
3831
3832 if (po->tp_version == TPACKET_V3) {
3833 lv = sizeof(struct tpacket_stats_v3);
3834 st.stats3.tp_packets += st.stats3.tp_drops;
3835 data = &st.stats3;
3836 } else {
3837 lv = sizeof(struct tpacket_stats);
3838 st.stats1.tp_packets += st.stats1.tp_drops;
3839 data = &st.stats1;
3840 }
3841
3842 break;
3843 case PACKET_AUXDATA:
3844 val = po->auxdata;
3845 break;
3846 case PACKET_ORIGDEV:
3847 val = po->origdev;
3848 break;
3849 case PACKET_VNET_HDR:
3850 val = po->has_vnet_hdr;
3851 break;
3852 case PACKET_VERSION:
3853 val = po->tp_version;
3854 break;
3855 case PACKET_HDRLEN:
3856 if (len > sizeof(int))
3857 len = sizeof(int);
3858 if (copy_from_user(&val, optval, len))
3859 return -EFAULT;
3860 switch (val) {
3861 case TPACKET_V1:
3862 val = sizeof(struct tpacket_hdr);
3863 break;
3864 case TPACKET_V2:
3865 val = sizeof(struct tpacket2_hdr);
3866 break;
3867 case TPACKET_V3:
3868 val = sizeof(struct tpacket3_hdr);
3869 break;
3870 default:
3871 return -EINVAL;
3872 }
3873 break;
3874 case PACKET_RESERVE:
3875 val = po->tp_reserve;
3876 break;
3877 case PACKET_LOSS:
3878 val = po->tp_loss;
3879 break;
3880 case PACKET_TIMESTAMP:
3881 val = po->tp_tstamp;
3882 break;
3883 case PACKET_FANOUT:
3884 val = (po->fanout ?
3885 ((u32)po->fanout->id |
3886 ((u32)po->fanout->type << 16) |
3887 ((u32)po->fanout->flags << 24)) :
3888 0);
3889 break;
3890 case PACKET_ROLLOVER_STATS:
3891 if (!po->rollover)
3892 return -EINVAL;
3893 rstats.tp_all = atomic_long_read(&po->rollover->num);
3894 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3895 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3896 data = &rstats;
3897 lv = sizeof(rstats);
3898 break;
3899 case PACKET_TX_HAS_OFF:
3900 val = po->tp_tx_has_off;
3901 break;
3902 case PACKET_QDISC_BYPASS:
3903 val = packet_use_direct_xmit(po);
3904 break;
3905 default:
3906 return -ENOPROTOOPT;
3907 }
3908
3909 if (len > lv)
3910 len = lv;
3911 if (put_user(len, optlen))
3912 return -EFAULT;
3913 if (copy_to_user(optval, data, len))
3914 return -EFAULT;
3915 return 0;
3916 }
3917
3918
3919 static int packet_notifier(struct notifier_block *this,
3920 unsigned long msg, void *ptr)
3921 {
3922 struct sock *sk;
3923 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3924 struct net *net = dev_net(dev);
3925
3926 rcu_read_lock();
3927 sk_for_each_rcu(sk, &net->packet.sklist) {
3928 struct packet_sock *po = pkt_sk(sk);
3929
3930 switch (msg) {
3931 case NETDEV_UNREGISTER:
3932 if (po->mclist)
3933 packet_dev_mclist_delete(dev, &po->mclist);
3934 /* fallthrough */
3935
3936 case NETDEV_DOWN:
3937 if (dev->ifindex == po->ifindex) {
3938 spin_lock(&po->bind_lock);
3939 if (po->running) {
3940 __unregister_prot_hook(sk, false);
3941 sk->sk_err = ENETDOWN;
3942 if (!sock_flag(sk, SOCK_DEAD))
3943 sk->sk_error_report(sk);
3944 }
3945 if (msg == NETDEV_UNREGISTER) {
3946 packet_cached_dev_reset(po);
3947 po->ifindex = -1;
3948 if (po->prot_hook.dev)
3949 dev_put(po->prot_hook.dev);
3950 po->prot_hook.dev = NULL;
3951 }
3952 spin_unlock(&po->bind_lock);
3953 }
3954 break;
3955 case NETDEV_UP:
3956 if (dev->ifindex == po->ifindex) {
3957 spin_lock(&po->bind_lock);
3958 if (po->num)
3959 register_prot_hook(sk);
3960 spin_unlock(&po->bind_lock);
3961 }
3962 break;
3963 }
3964 }
3965 rcu_read_unlock();
3966 return NOTIFY_DONE;
3967 }
3968
3969
3970 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3971 unsigned long arg)
3972 {
3973 struct sock *sk = sock->sk;
3974
3975 switch (cmd) {
3976 case SIOCOUTQ:
3977 {
3978 int amount = sk_wmem_alloc_get(sk);
3979
3980 return put_user(amount, (int __user *)arg);
3981 }
3982 case SIOCINQ:
3983 {
3984 struct sk_buff *skb;
3985 int amount = 0;
3986
3987 spin_lock_bh(&sk->sk_receive_queue.lock);
3988 skb = skb_peek(&sk->sk_receive_queue);
3989 if (skb)
3990 amount = skb->len;
3991 spin_unlock_bh(&sk->sk_receive_queue.lock);
3992 return put_user(amount, (int __user *)arg);
3993 }
3994 case SIOCGSTAMP:
3995 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3996 case SIOCGSTAMPNS:
3997 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3998
3999 #ifdef CONFIG_INET
4000 case SIOCADDRT:
4001 case SIOCDELRT:
4002 case SIOCDARP:
4003 case SIOCGARP:
4004 case SIOCSARP:
4005 case SIOCGIFADDR:
4006 case SIOCSIFADDR:
4007 case SIOCGIFBRDADDR:
4008 case SIOCSIFBRDADDR:
4009 case SIOCGIFNETMASK:
4010 case SIOCSIFNETMASK:
4011 case SIOCGIFDSTADDR:
4012 case SIOCSIFDSTADDR:
4013 case SIOCSIFFLAGS:
4014 return inet_dgram_ops.ioctl(sock, cmd, arg);
4015 #endif
4016
4017 default:
4018 return -ENOIOCTLCMD;
4019 }
4020 return 0;
4021 }
4022
4023 static unsigned int packet_poll(struct file *file, struct socket *sock,
4024 poll_table *wait)
4025 {
4026 struct sock *sk = sock->sk;
4027 struct packet_sock *po = pkt_sk(sk);
4028 unsigned int mask = datagram_poll(file, sock, wait);
4029
4030 spin_lock_bh(&sk->sk_receive_queue.lock);
4031 if (po->rx_ring.pg_vec) {
4032 if (!packet_previous_rx_frame(po, &po->rx_ring,
4033 TP_STATUS_KERNEL))
4034 mask |= POLLIN | POLLRDNORM;
4035 }
4036 if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
4037 po->pressure = 0;
4038 spin_unlock_bh(&sk->sk_receive_queue.lock);
4039 spin_lock_bh(&sk->sk_write_queue.lock);
4040 if (po->tx_ring.pg_vec) {
4041 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4042 mask |= POLLOUT | POLLWRNORM;
4043 }
4044 spin_unlock_bh(&sk->sk_write_queue.lock);
4045 return mask;
4046 }
4047
4048
4049 /* Dirty? Well, I still did not learn better way to account
4050 * for user mmaps.
4051 */
4052
4053 static void packet_mm_open(struct vm_area_struct *vma)
4054 {
4055 struct file *file = vma->vm_file;
4056 struct socket *sock = file->private_data;
4057 struct sock *sk = sock->sk;
4058
4059 if (sk)
4060 atomic_inc(&pkt_sk(sk)->mapped);
4061 }
4062
4063 static void packet_mm_close(struct vm_area_struct *vma)
4064 {
4065 struct file *file = vma->vm_file;
4066 struct socket *sock = file->private_data;
4067 struct sock *sk = sock->sk;
4068
4069 if (sk)
4070 atomic_dec(&pkt_sk(sk)->mapped);
4071 }
4072
4073 static const struct vm_operations_struct packet_mmap_ops = {
4074 .open = packet_mm_open,
4075 .close = packet_mm_close,
4076 };
4077
4078 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4079 unsigned int len)
4080 {
4081 int i;
4082
4083 for (i = 0; i < len; i++) {
4084 if (likely(pg_vec[i].buffer)) {
4085 if (is_vmalloc_addr(pg_vec[i].buffer))
4086 vfree(pg_vec[i].buffer);
4087 else
4088 free_pages((unsigned long)pg_vec[i].buffer,
4089 order);
4090 pg_vec[i].buffer = NULL;
4091 }
4092 }
4093 kfree(pg_vec);
4094 }
4095
4096 static char *alloc_one_pg_vec_page(unsigned long order)
4097 {
4098 char *buffer;
4099 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4100 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4101
4102 buffer = (char *) __get_free_pages(gfp_flags, order);
4103 if (buffer)
4104 return buffer;
4105
4106 /* __get_free_pages failed, fall back to vmalloc */
4107 buffer = vzalloc((1 << order) * PAGE_SIZE);
4108 if (buffer)
4109 return buffer;
4110
4111 /* vmalloc failed, lets dig into swap here */
4112 gfp_flags &= ~__GFP_NORETRY;
4113 buffer = (char *) __get_free_pages(gfp_flags, order);
4114 if (buffer)
4115 return buffer;
4116
4117 /* complete and utter failure */
4118 return NULL;
4119 }
4120
4121 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4122 {
4123 unsigned int block_nr = req->tp_block_nr;
4124 struct pgv *pg_vec;
4125 int i;
4126
4127 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
4128 if (unlikely(!pg_vec))
4129 goto out;
4130
4131 for (i = 0; i < block_nr; i++) {
4132 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4133 if (unlikely(!pg_vec[i].buffer))
4134 goto out_free_pgvec;
4135 }
4136
4137 out:
4138 return pg_vec;
4139
4140 out_free_pgvec:
4141 free_pg_vec(pg_vec, order, block_nr);
4142 pg_vec = NULL;
4143 goto out;
4144 }
4145
4146 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4147 int closing, int tx_ring)
4148 {
4149 struct pgv *pg_vec = NULL;
4150 struct packet_sock *po = pkt_sk(sk);
4151 int was_running, order = 0;
4152 struct packet_ring_buffer *rb;
4153 struct sk_buff_head *rb_queue;
4154 __be16 num;
4155 int err = -EINVAL;
4156 /* Added to avoid minimal code churn */
4157 struct tpacket_req *req = &req_u->req;
4158
4159 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
4160 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
4161 WARN(1, "Tx-ring is not supported.\n");
4162 goto out;
4163 }
4164
4165 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4166 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4167
4168 err = -EBUSY;
4169 if (!closing) {
4170 if (atomic_read(&po->mapped))
4171 goto out;
4172 if (packet_read_pending(rb))
4173 goto out;
4174 }
4175
4176 if (req->tp_block_nr) {
4177 /* Sanity tests and some calculations */
4178 err = -EBUSY;
4179 if (unlikely(rb->pg_vec))
4180 goto out;
4181
4182 switch (po->tp_version) {
4183 case TPACKET_V1:
4184 po->tp_hdrlen = TPACKET_HDRLEN;
4185 break;
4186 case TPACKET_V2:
4187 po->tp_hdrlen = TPACKET2_HDRLEN;
4188 break;
4189 case TPACKET_V3:
4190 po->tp_hdrlen = TPACKET3_HDRLEN;
4191 break;
4192 }
4193
4194 err = -EINVAL;
4195 if (unlikely((int)req->tp_block_size <= 0))
4196 goto out;
4197 if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4198 goto out;
4199 if (po->tp_version >= TPACKET_V3 &&
4200 (int)(req->tp_block_size -
4201 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
4202 goto out;
4203 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
4204 po->tp_reserve))
4205 goto out;
4206 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4207 goto out;
4208
4209 rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4210 if (unlikely(rb->frames_per_block == 0))
4211 goto out;
4212 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4213 req->tp_frame_nr))
4214 goto out;
4215
4216 err = -ENOMEM;
4217 order = get_order(req->tp_block_size);
4218 pg_vec = alloc_pg_vec(req, order);
4219 if (unlikely(!pg_vec))
4220 goto out;
4221 switch (po->tp_version) {
4222 case TPACKET_V3:
4223 /* Transmit path is not supported. We checked
4224 * it above but just being paranoid
4225 */
4226 if (!tx_ring)
4227 init_prb_bdqc(po, rb, pg_vec, req_u);
4228 break;
4229 default:
4230 break;
4231 }
4232 }
4233 /* Done */
4234 else {
4235 err = -EINVAL;
4236 if (unlikely(req->tp_frame_nr))
4237 goto out;
4238 }
4239
4240 lock_sock(sk);
4241
4242 /* Detach socket from network */
4243 spin_lock(&po->bind_lock);
4244 was_running = po->running;
4245 num = po->num;
4246 if (was_running) {
4247 po->num = 0;
4248 __unregister_prot_hook(sk, false);
4249 }
4250 spin_unlock(&po->bind_lock);
4251
4252 synchronize_net();
4253
4254 err = -EBUSY;
4255 mutex_lock(&po->pg_vec_lock);
4256 if (closing || atomic_read(&po->mapped) == 0) {
4257 err = 0;
4258 spin_lock_bh(&rb_queue->lock);
4259 swap(rb->pg_vec, pg_vec);
4260 rb->frame_max = (req->tp_frame_nr - 1);
4261 rb->head = 0;
4262 rb->frame_size = req->tp_frame_size;
4263 spin_unlock_bh(&rb_queue->lock);
4264
4265 swap(rb->pg_vec_order, order);
4266 swap(rb->pg_vec_len, req->tp_block_nr);
4267
4268 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4269 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4270 tpacket_rcv : packet_rcv;
4271 skb_queue_purge(rb_queue);
4272 if (atomic_read(&po->mapped))
4273 pr_err("packet_mmap: vma is busy: %d\n",
4274 atomic_read(&po->mapped));
4275 }
4276 mutex_unlock(&po->pg_vec_lock);
4277
4278 spin_lock(&po->bind_lock);
4279 if (was_running) {
4280 po->num = num;
4281 register_prot_hook(sk);
4282 }
4283 spin_unlock(&po->bind_lock);
4284 if (closing && (po->tp_version > TPACKET_V2)) {
4285 /* Because we don't support block-based V3 on tx-ring */
4286 if (!tx_ring)
4287 prb_shutdown_retire_blk_timer(po, rb_queue);
4288 }
4289 release_sock(sk);
4290
4291 if (pg_vec)
4292 free_pg_vec(pg_vec, order, req->tp_block_nr);
4293 out:
4294 return err;
4295 }
4296
4297 static int packet_mmap(struct file *file, struct socket *sock,
4298 struct vm_area_struct *vma)
4299 {
4300 struct sock *sk = sock->sk;
4301 struct packet_sock *po = pkt_sk(sk);
4302 unsigned long size, expected_size;
4303 struct packet_ring_buffer *rb;
4304 unsigned long start;
4305 int err = -EINVAL;
4306 int i;
4307
4308 if (vma->vm_pgoff)
4309 return -EINVAL;
4310
4311 mutex_lock(&po->pg_vec_lock);
4312
4313 expected_size = 0;
4314 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4315 if (rb->pg_vec) {
4316 expected_size += rb->pg_vec_len
4317 * rb->pg_vec_pages
4318 * PAGE_SIZE;
4319 }
4320 }
4321
4322 if (expected_size == 0)
4323 goto out;
4324
4325 size = vma->vm_end - vma->vm_start;
4326 if (size != expected_size)
4327 goto out;
4328
4329 start = vma->vm_start;
4330 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4331 if (rb->pg_vec == NULL)
4332 continue;
4333
4334 for (i = 0; i < rb->pg_vec_len; i++) {
4335 struct page *page;
4336 void *kaddr = rb->pg_vec[i].buffer;
4337 int pg_num;
4338
4339 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4340 page = pgv_to_page(kaddr);
4341 err = vm_insert_page(vma, start, page);
4342 if (unlikely(err))
4343 goto out;
4344 start += PAGE_SIZE;
4345 kaddr += PAGE_SIZE;
4346 }
4347 }
4348 }
4349
4350 atomic_inc(&po->mapped);
4351 vma->vm_ops = &packet_mmap_ops;
4352 err = 0;
4353
4354 out:
4355 mutex_unlock(&po->pg_vec_lock);
4356 return err;
4357 }
4358
4359 static const struct proto_ops packet_ops_spkt = {
4360 .family = PF_PACKET,
4361 .owner = THIS_MODULE,
4362 .release = packet_release,
4363 .bind = packet_bind_spkt,
4364 .connect = sock_no_connect,
4365 .socketpair = sock_no_socketpair,
4366 .accept = sock_no_accept,
4367 .getname = packet_getname_spkt,
4368 .poll = datagram_poll,
4369 .ioctl = packet_ioctl,
4370 .listen = sock_no_listen,
4371 .shutdown = sock_no_shutdown,
4372 .setsockopt = sock_no_setsockopt,
4373 .getsockopt = sock_no_getsockopt,
4374 .sendmsg = packet_sendmsg_spkt,
4375 .recvmsg = packet_recvmsg,
4376 .mmap = sock_no_mmap,
4377 .sendpage = sock_no_sendpage,
4378 };
4379
4380 static const struct proto_ops packet_ops = {
4381 .family = PF_PACKET,
4382 .owner = THIS_MODULE,
4383 .release = packet_release,
4384 .bind = packet_bind,
4385 .connect = sock_no_connect,
4386 .socketpair = sock_no_socketpair,
4387 .accept = sock_no_accept,
4388 .getname = packet_getname,
4389 .poll = packet_poll,
4390 .ioctl = packet_ioctl,
4391 .listen = sock_no_listen,
4392 .shutdown = sock_no_shutdown,
4393 .setsockopt = packet_setsockopt,
4394 .getsockopt = packet_getsockopt,
4395 .sendmsg = packet_sendmsg,
4396 .recvmsg = packet_recvmsg,
4397 .mmap = packet_mmap,
4398 .sendpage = sock_no_sendpage,
4399 };
4400
4401 static const struct net_proto_family packet_family_ops = {
4402 .family = PF_PACKET,
4403 .create = packet_create,
4404 .owner = THIS_MODULE,
4405 };
4406
4407 static struct notifier_block packet_netdev_notifier = {
4408 .notifier_call = packet_notifier,
4409 };
4410
4411 #ifdef CONFIG_PROC_FS
4412
4413 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4414 __acquires(RCU)
4415 {
4416 struct net *net = seq_file_net(seq);
4417
4418 rcu_read_lock();
4419 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4420 }
4421
4422 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4423 {
4424 struct net *net = seq_file_net(seq);
4425 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4426 }
4427
4428 static void packet_seq_stop(struct seq_file *seq, void *v)
4429 __releases(RCU)
4430 {
4431 rcu_read_unlock();
4432 }
4433
4434 static int packet_seq_show(struct seq_file *seq, void *v)
4435 {
4436 if (v == SEQ_START_TOKEN)
4437 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4438 else {
4439 struct sock *s = sk_entry(v);
4440 const struct packet_sock *po = pkt_sk(s);
4441
4442 seq_printf(seq,
4443 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4444 s,
4445 atomic_read(&s->sk_refcnt),
4446 s->sk_type,
4447 ntohs(po->num),
4448 po->ifindex,
4449 po->running,
4450 atomic_read(&s->sk_rmem_alloc),
4451 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4452 sock_i_ino(s));
4453 }
4454
4455 return 0;
4456 }
4457
4458 static const struct seq_operations packet_seq_ops = {
4459 .start = packet_seq_start,
4460 .next = packet_seq_next,
4461 .stop = packet_seq_stop,
4462 .show = packet_seq_show,
4463 };
4464
4465 static int packet_seq_open(struct inode *inode, struct file *file)
4466 {
4467 return seq_open_net(inode, file, &packet_seq_ops,
4468 sizeof(struct seq_net_private));
4469 }
4470
4471 static const struct file_operations packet_seq_fops = {
4472 .owner = THIS_MODULE,
4473 .open = packet_seq_open,
4474 .read = seq_read,
4475 .llseek = seq_lseek,
4476 .release = seq_release_net,
4477 };
4478
4479 #endif
4480
4481 static int __net_init packet_net_init(struct net *net)
4482 {
4483 mutex_init(&net->packet.sklist_lock);
4484 INIT_HLIST_HEAD(&net->packet.sklist);
4485
4486 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4487 return -ENOMEM;
4488
4489 return 0;
4490 }
4491
4492 static void __net_exit packet_net_exit(struct net *net)
4493 {
4494 remove_proc_entry("packet", net->proc_net);
4495 }
4496
4497 static struct pernet_operations packet_net_ops = {
4498 .init = packet_net_init,
4499 .exit = packet_net_exit,
4500 };
4501
4502
4503 static void __exit packet_exit(void)
4504 {
4505 unregister_netdevice_notifier(&packet_netdev_notifier);
4506 unregister_pernet_subsys(&packet_net_ops);
4507 sock_unregister(PF_PACKET);
4508 proto_unregister(&packet_proto);
4509 }
4510
4511 static int __init packet_init(void)
4512 {
4513 int rc = proto_register(&packet_proto, 0);
4514
4515 if (rc != 0)
4516 goto out;
4517
4518 sock_register(&packet_family_ops);
4519 register_pernet_subsys(&packet_net_ops);
4520 register_netdevice_notifier(&packet_netdev_notifier);
4521 out:
4522 return rc;
4523 }
4524
4525 module_init(packet_init);
4526 module_exit(packet_exit);
4527 MODULE_LICENSE("GPL");
4528 MODULE_ALIAS_NETPROTO(PF_PACKET);
This page took 0.191946 seconds and 6 git commands to generate.