lwtunnel: rename ip lwtunnel attributes
[deliverable/linux.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95
96 #include "internal.h"
97
98 /*
99 Assumptions:
100 - if device has no dev->hard_header routine, it adds and removes ll header
101 inside itself. In this case ll header is invisible outside of device,
102 but higher levels still should reserve dev->hard_header_len.
103 Some devices are enough clever to reallocate skb, when header
104 will not fit to reserved space (tunnel), another ones are silly
105 (PPP).
106 - packet socket receives packets with pulled ll header,
107 so that SOCK_RAW should push it back.
108
109 On receive:
110 -----------
111
112 Incoming, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> data
115
116 Outgoing, dev->hard_header!=NULL
117 mac_header -> ll header
118 data -> ll header
119
120 Incoming, dev->hard_header==NULL
121 mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 header. PPP makes it, that is wrong, because introduce
123 assymetry between rx and tx paths.
124 data -> data
125
126 Outgoing, dev->hard_header==NULL
127 mac_header -> data. ll header is still not built!
128 data -> data
129
130 Resume
131 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132
133
134 On transmit:
135 ------------
136
137 dev->hard_header != NULL
138 mac_header -> ll header
139 data -> ll header
140
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142 mac_header -> data
143 data -> data
144
145 We should set nh.raw on output to correct posistion,
146 packet classifier depends on it.
147 */
148
149 /* Private packet socket structures. */
150
151 /* identical to struct packet_mreq except it has
152 * a longer address field.
153 */
154 struct packet_mreq_max {
155 int mr_ifindex;
156 unsigned short mr_type;
157 unsigned short mr_alen;
158 unsigned char mr_address[MAX_ADDR_LEN];
159 };
160
161 union tpacket_uhdr {
162 struct tpacket_hdr *h1;
163 struct tpacket2_hdr *h2;
164 struct tpacket3_hdr *h3;
165 void *raw;
166 };
167
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 int closing, int tx_ring);
170
171 #define V3_ALIGNMENT (8)
172
173 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177
178 #define PGV_FROM_VMALLOC 1
179
180 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
186 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 struct packet_type *pt, struct net_device *orig_dev);
192
193 static void *packet_previous_frame(struct packet_sock *po,
194 struct packet_ring_buffer *rb,
195 int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 struct tpacket_kbdq_core *,
210 void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217
218 struct packet_skb_cb {
219 union {
220 struct sockaddr_pkt pkt;
221 union {
222 /* Trick: alias skb original length with
223 * ll.sll_family and ll.protocol in order
224 * to save room.
225 */
226 unsigned int origlen;
227 struct sockaddr_ll ll;
228 };
229 } sa;
230 };
231
232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
233
234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
235 #define GET_PBLOCK_DESC(x, bid) \
236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
239 #define GET_NEXT_PRB_BLK_NUM(x) \
240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
241 ((x)->kactive_blk_num+1) : 0)
242
243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
244 static void __fanout_link(struct sock *sk, struct packet_sock *po);
245
246 static int packet_direct_xmit(struct sk_buff *skb)
247 {
248 struct net_device *dev = skb->dev;
249 netdev_features_t features;
250 struct netdev_queue *txq;
251 int ret = NETDEV_TX_BUSY;
252
253 if (unlikely(!netif_running(dev) ||
254 !netif_carrier_ok(dev)))
255 goto drop;
256
257 features = netif_skb_features(skb);
258 if (skb_needs_linearize(skb, features) &&
259 __skb_linearize(skb))
260 goto drop;
261
262 txq = skb_get_tx_queue(dev, skb);
263
264 local_bh_disable();
265
266 HARD_TX_LOCK(dev, txq, smp_processor_id());
267 if (!netif_xmit_frozen_or_drv_stopped(txq))
268 ret = netdev_start_xmit(skb, dev, txq, false);
269 HARD_TX_UNLOCK(dev, txq);
270
271 local_bh_enable();
272
273 if (!dev_xmit_complete(ret))
274 kfree_skb(skb);
275
276 return ret;
277 drop:
278 atomic_long_inc(&dev->tx_dropped);
279 kfree_skb(skb);
280 return NET_XMIT_DROP;
281 }
282
283 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
284 {
285 struct net_device *dev;
286
287 rcu_read_lock();
288 dev = rcu_dereference(po->cached_dev);
289 if (likely(dev))
290 dev_hold(dev);
291 rcu_read_unlock();
292
293 return dev;
294 }
295
296 static void packet_cached_dev_assign(struct packet_sock *po,
297 struct net_device *dev)
298 {
299 rcu_assign_pointer(po->cached_dev, dev);
300 }
301
302 static void packet_cached_dev_reset(struct packet_sock *po)
303 {
304 RCU_INIT_POINTER(po->cached_dev, NULL);
305 }
306
307 static bool packet_use_direct_xmit(const struct packet_sock *po)
308 {
309 return po->xmit == packet_direct_xmit;
310 }
311
312 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
313 {
314 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
315 }
316
317 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
318 {
319 const struct net_device_ops *ops = dev->netdev_ops;
320 u16 queue_index;
321
322 if (ops->ndo_select_queue) {
323 queue_index = ops->ndo_select_queue(dev, skb, NULL,
324 __packet_pick_tx_queue);
325 queue_index = netdev_cap_txqueue(dev, queue_index);
326 } else {
327 queue_index = __packet_pick_tx_queue(dev, skb);
328 }
329
330 skb_set_queue_mapping(skb, queue_index);
331 }
332
333 /* register_prot_hook must be invoked with the po->bind_lock held,
334 * or from a context in which asynchronous accesses to the packet
335 * socket is not possible (packet_create()).
336 */
337 static void register_prot_hook(struct sock *sk)
338 {
339 struct packet_sock *po = pkt_sk(sk);
340
341 if (!po->running) {
342 if (po->fanout)
343 __fanout_link(sk, po);
344 else
345 dev_add_pack(&po->prot_hook);
346
347 sock_hold(sk);
348 po->running = 1;
349 }
350 }
351
352 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
353 * held. If the sync parameter is true, we will temporarily drop
354 * the po->bind_lock and do a synchronize_net to make sure no
355 * asynchronous packet processing paths still refer to the elements
356 * of po->prot_hook. If the sync parameter is false, it is the
357 * callers responsibility to take care of this.
358 */
359 static void __unregister_prot_hook(struct sock *sk, bool sync)
360 {
361 struct packet_sock *po = pkt_sk(sk);
362
363 po->running = 0;
364
365 if (po->fanout)
366 __fanout_unlink(sk, po);
367 else
368 __dev_remove_pack(&po->prot_hook);
369
370 __sock_put(sk);
371
372 if (sync) {
373 spin_unlock(&po->bind_lock);
374 synchronize_net();
375 spin_lock(&po->bind_lock);
376 }
377 }
378
379 static void unregister_prot_hook(struct sock *sk, bool sync)
380 {
381 struct packet_sock *po = pkt_sk(sk);
382
383 if (po->running)
384 __unregister_prot_hook(sk, sync);
385 }
386
387 static inline struct page * __pure pgv_to_page(void *addr)
388 {
389 if (is_vmalloc_addr(addr))
390 return vmalloc_to_page(addr);
391 return virt_to_page(addr);
392 }
393
394 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
395 {
396 union tpacket_uhdr h;
397
398 h.raw = frame;
399 switch (po->tp_version) {
400 case TPACKET_V1:
401 h.h1->tp_status = status;
402 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
403 break;
404 case TPACKET_V2:
405 h.h2->tp_status = status;
406 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
407 break;
408 case TPACKET_V3:
409 default:
410 WARN(1, "TPACKET version not supported.\n");
411 BUG();
412 }
413
414 smp_wmb();
415 }
416
417 static int __packet_get_status(struct packet_sock *po, void *frame)
418 {
419 union tpacket_uhdr h;
420
421 smp_rmb();
422
423 h.raw = frame;
424 switch (po->tp_version) {
425 case TPACKET_V1:
426 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
427 return h.h1->tp_status;
428 case TPACKET_V2:
429 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
430 return h.h2->tp_status;
431 case TPACKET_V3:
432 default:
433 WARN(1, "TPACKET version not supported.\n");
434 BUG();
435 return 0;
436 }
437 }
438
439 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
440 unsigned int flags)
441 {
442 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
443
444 if (shhwtstamps &&
445 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
446 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
447 return TP_STATUS_TS_RAW_HARDWARE;
448
449 if (ktime_to_timespec_cond(skb->tstamp, ts))
450 return TP_STATUS_TS_SOFTWARE;
451
452 return 0;
453 }
454
455 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
456 struct sk_buff *skb)
457 {
458 union tpacket_uhdr h;
459 struct timespec ts;
460 __u32 ts_status;
461
462 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
463 return 0;
464
465 h.raw = frame;
466 switch (po->tp_version) {
467 case TPACKET_V1:
468 h.h1->tp_sec = ts.tv_sec;
469 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
470 break;
471 case TPACKET_V2:
472 h.h2->tp_sec = ts.tv_sec;
473 h.h2->tp_nsec = ts.tv_nsec;
474 break;
475 case TPACKET_V3:
476 default:
477 WARN(1, "TPACKET version not supported.\n");
478 BUG();
479 }
480
481 /* one flush is safe, as both fields always lie on the same cacheline */
482 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
483 smp_wmb();
484
485 return ts_status;
486 }
487
488 static void *packet_lookup_frame(struct packet_sock *po,
489 struct packet_ring_buffer *rb,
490 unsigned int position,
491 int status)
492 {
493 unsigned int pg_vec_pos, frame_offset;
494 union tpacket_uhdr h;
495
496 pg_vec_pos = position / rb->frames_per_block;
497 frame_offset = position % rb->frames_per_block;
498
499 h.raw = rb->pg_vec[pg_vec_pos].buffer +
500 (frame_offset * rb->frame_size);
501
502 if (status != __packet_get_status(po, h.raw))
503 return NULL;
504
505 return h.raw;
506 }
507
508 static void *packet_current_frame(struct packet_sock *po,
509 struct packet_ring_buffer *rb,
510 int status)
511 {
512 return packet_lookup_frame(po, rb, rb->head, status);
513 }
514
515 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
516 {
517 del_timer_sync(&pkc->retire_blk_timer);
518 }
519
520 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
521 struct sk_buff_head *rb_queue)
522 {
523 struct tpacket_kbdq_core *pkc;
524
525 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
526
527 spin_lock_bh(&rb_queue->lock);
528 pkc->delete_blk_timer = 1;
529 spin_unlock_bh(&rb_queue->lock);
530
531 prb_del_retire_blk_timer(pkc);
532 }
533
534 static void prb_init_blk_timer(struct packet_sock *po,
535 struct tpacket_kbdq_core *pkc,
536 void (*func) (unsigned long))
537 {
538 init_timer(&pkc->retire_blk_timer);
539 pkc->retire_blk_timer.data = (long)po;
540 pkc->retire_blk_timer.function = func;
541 pkc->retire_blk_timer.expires = jiffies;
542 }
543
544 static void prb_setup_retire_blk_timer(struct packet_sock *po)
545 {
546 struct tpacket_kbdq_core *pkc;
547
548 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
549 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
550 }
551
552 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
553 int blk_size_in_bytes)
554 {
555 struct net_device *dev;
556 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
557 struct ethtool_cmd ecmd;
558 int err;
559 u32 speed;
560
561 rtnl_lock();
562 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
563 if (unlikely(!dev)) {
564 rtnl_unlock();
565 return DEFAULT_PRB_RETIRE_TOV;
566 }
567 err = __ethtool_get_settings(dev, &ecmd);
568 speed = ethtool_cmd_speed(&ecmd);
569 rtnl_unlock();
570 if (!err) {
571 /*
572 * If the link speed is so slow you don't really
573 * need to worry about perf anyways
574 */
575 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
576 return DEFAULT_PRB_RETIRE_TOV;
577 } else {
578 msec = 1;
579 div = speed / 1000;
580 }
581 }
582
583 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
584
585 if (div)
586 mbits /= div;
587
588 tmo = mbits * msec;
589
590 if (div)
591 return tmo+1;
592 return tmo;
593 }
594
595 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
596 union tpacket_req_u *req_u)
597 {
598 p1->feature_req_word = req_u->req3.tp_feature_req_word;
599 }
600
601 static void init_prb_bdqc(struct packet_sock *po,
602 struct packet_ring_buffer *rb,
603 struct pgv *pg_vec,
604 union tpacket_req_u *req_u)
605 {
606 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
607 struct tpacket_block_desc *pbd;
608
609 memset(p1, 0x0, sizeof(*p1));
610
611 p1->knxt_seq_num = 1;
612 p1->pkbdq = pg_vec;
613 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
614 p1->pkblk_start = pg_vec[0].buffer;
615 p1->kblk_size = req_u->req3.tp_block_size;
616 p1->knum_blocks = req_u->req3.tp_block_nr;
617 p1->hdrlen = po->tp_hdrlen;
618 p1->version = po->tp_version;
619 p1->last_kactive_blk_num = 0;
620 po->stats.stats3.tp_freeze_q_cnt = 0;
621 if (req_u->req3.tp_retire_blk_tov)
622 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
623 else
624 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
625 req_u->req3.tp_block_size);
626 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
627 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
628
629 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
630 prb_init_ft_ops(p1, req_u);
631 prb_setup_retire_blk_timer(po);
632 prb_open_block(p1, pbd);
633 }
634
635 /* Do NOT update the last_blk_num first.
636 * Assumes sk_buff_head lock is held.
637 */
638 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
639 {
640 mod_timer(&pkc->retire_blk_timer,
641 jiffies + pkc->tov_in_jiffies);
642 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
643 }
644
645 /*
646 * Timer logic:
647 * 1) We refresh the timer only when we open a block.
648 * By doing this we don't waste cycles refreshing the timer
649 * on packet-by-packet basis.
650 *
651 * With a 1MB block-size, on a 1Gbps line, it will take
652 * i) ~8 ms to fill a block + ii) memcpy etc.
653 * In this cut we are not accounting for the memcpy time.
654 *
655 * So, if the user sets the 'tmo' to 10ms then the timer
656 * will never fire while the block is still getting filled
657 * (which is what we want). However, the user could choose
658 * to close a block early and that's fine.
659 *
660 * But when the timer does fire, we check whether or not to refresh it.
661 * Since the tmo granularity is in msecs, it is not too expensive
662 * to refresh the timer, lets say every '8' msecs.
663 * Either the user can set the 'tmo' or we can derive it based on
664 * a) line-speed and b) block-size.
665 * prb_calc_retire_blk_tmo() calculates the tmo.
666 *
667 */
668 static void prb_retire_rx_blk_timer_expired(unsigned long data)
669 {
670 struct packet_sock *po = (struct packet_sock *)data;
671 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
672 unsigned int frozen;
673 struct tpacket_block_desc *pbd;
674
675 spin_lock(&po->sk.sk_receive_queue.lock);
676
677 frozen = prb_queue_frozen(pkc);
678 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
679
680 if (unlikely(pkc->delete_blk_timer))
681 goto out;
682
683 /* We only need to plug the race when the block is partially filled.
684 * tpacket_rcv:
685 * lock(); increment BLOCK_NUM_PKTS; unlock()
686 * copy_bits() is in progress ...
687 * timer fires on other cpu:
688 * we can't retire the current block because copy_bits
689 * is in progress.
690 *
691 */
692 if (BLOCK_NUM_PKTS(pbd)) {
693 while (atomic_read(&pkc->blk_fill_in_prog)) {
694 /* Waiting for skb_copy_bits to finish... */
695 cpu_relax();
696 }
697 }
698
699 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
700 if (!frozen) {
701 if (!BLOCK_NUM_PKTS(pbd)) {
702 /* An empty block. Just refresh the timer. */
703 goto refresh_timer;
704 }
705 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
706 if (!prb_dispatch_next_block(pkc, po))
707 goto refresh_timer;
708 else
709 goto out;
710 } else {
711 /* Case 1. Queue was frozen because user-space was
712 * lagging behind.
713 */
714 if (prb_curr_blk_in_use(pkc, pbd)) {
715 /*
716 * Ok, user-space is still behind.
717 * So just refresh the timer.
718 */
719 goto refresh_timer;
720 } else {
721 /* Case 2. queue was frozen,user-space caught up,
722 * now the link went idle && the timer fired.
723 * We don't have a block to close.So we open this
724 * block and restart the timer.
725 * opening a block thaws the queue,restarts timer
726 * Thawing/timer-refresh is a side effect.
727 */
728 prb_open_block(pkc, pbd);
729 goto out;
730 }
731 }
732 }
733
734 refresh_timer:
735 _prb_refresh_rx_retire_blk_timer(pkc);
736
737 out:
738 spin_unlock(&po->sk.sk_receive_queue.lock);
739 }
740
741 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
742 struct tpacket_block_desc *pbd1, __u32 status)
743 {
744 /* Flush everything minus the block header */
745
746 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
747 u8 *start, *end;
748
749 start = (u8 *)pbd1;
750
751 /* Skip the block header(we know header WILL fit in 4K) */
752 start += PAGE_SIZE;
753
754 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
755 for (; start < end; start += PAGE_SIZE)
756 flush_dcache_page(pgv_to_page(start));
757
758 smp_wmb();
759 #endif
760
761 /* Now update the block status. */
762
763 BLOCK_STATUS(pbd1) = status;
764
765 /* Flush the block header */
766
767 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
768 start = (u8 *)pbd1;
769 flush_dcache_page(pgv_to_page(start));
770
771 smp_wmb();
772 #endif
773 }
774
775 /*
776 * Side effect:
777 *
778 * 1) flush the block
779 * 2) Increment active_blk_num
780 *
781 * Note:We DONT refresh the timer on purpose.
782 * Because almost always the next block will be opened.
783 */
784 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
785 struct tpacket_block_desc *pbd1,
786 struct packet_sock *po, unsigned int stat)
787 {
788 __u32 status = TP_STATUS_USER | stat;
789
790 struct tpacket3_hdr *last_pkt;
791 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
792 struct sock *sk = &po->sk;
793
794 if (po->stats.stats3.tp_drops)
795 status |= TP_STATUS_LOSING;
796
797 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
798 last_pkt->tp_next_offset = 0;
799
800 /* Get the ts of the last pkt */
801 if (BLOCK_NUM_PKTS(pbd1)) {
802 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
803 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
804 } else {
805 /* Ok, we tmo'd - so get the current time.
806 *
807 * It shouldn't really happen as we don't close empty
808 * blocks. See prb_retire_rx_blk_timer_expired().
809 */
810 struct timespec ts;
811 getnstimeofday(&ts);
812 h1->ts_last_pkt.ts_sec = ts.tv_sec;
813 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
814 }
815
816 smp_wmb();
817
818 /* Flush the block */
819 prb_flush_block(pkc1, pbd1, status);
820
821 sk->sk_data_ready(sk);
822
823 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
824 }
825
826 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
827 {
828 pkc->reset_pending_on_curr_blk = 0;
829 }
830
831 /*
832 * Side effect of opening a block:
833 *
834 * 1) prb_queue is thawed.
835 * 2) retire_blk_timer is refreshed.
836 *
837 */
838 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
839 struct tpacket_block_desc *pbd1)
840 {
841 struct timespec ts;
842 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
843
844 smp_rmb();
845
846 /* We could have just memset this but we will lose the
847 * flexibility of making the priv area sticky
848 */
849
850 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
851 BLOCK_NUM_PKTS(pbd1) = 0;
852 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
853
854 getnstimeofday(&ts);
855
856 h1->ts_first_pkt.ts_sec = ts.tv_sec;
857 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
858
859 pkc1->pkblk_start = (char *)pbd1;
860 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
861
862 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
863 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
864
865 pbd1->version = pkc1->version;
866 pkc1->prev = pkc1->nxt_offset;
867 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
868
869 prb_thaw_queue(pkc1);
870 _prb_refresh_rx_retire_blk_timer(pkc1);
871
872 smp_wmb();
873 }
874
875 /*
876 * Queue freeze logic:
877 * 1) Assume tp_block_nr = 8 blocks.
878 * 2) At time 't0', user opens Rx ring.
879 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
880 * 4) user-space is either sleeping or processing block '0'.
881 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
882 * it will close block-7,loop around and try to fill block '0'.
883 * call-flow:
884 * __packet_lookup_frame_in_block
885 * prb_retire_current_block()
886 * prb_dispatch_next_block()
887 * |->(BLOCK_STATUS == USER) evaluates to true
888 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
889 * 6) Now there are two cases:
890 * 6.1) Link goes idle right after the queue is frozen.
891 * But remember, the last open_block() refreshed the timer.
892 * When this timer expires,it will refresh itself so that we can
893 * re-open block-0 in near future.
894 * 6.2) Link is busy and keeps on receiving packets. This is a simple
895 * case and __packet_lookup_frame_in_block will check if block-0
896 * is free and can now be re-used.
897 */
898 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
899 struct packet_sock *po)
900 {
901 pkc->reset_pending_on_curr_blk = 1;
902 po->stats.stats3.tp_freeze_q_cnt++;
903 }
904
905 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
906
907 /*
908 * If the next block is free then we will dispatch it
909 * and return a good offset.
910 * Else, we will freeze the queue.
911 * So, caller must check the return value.
912 */
913 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
914 struct packet_sock *po)
915 {
916 struct tpacket_block_desc *pbd;
917
918 smp_rmb();
919
920 /* 1. Get current block num */
921 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
922
923 /* 2. If this block is currently in_use then freeze the queue */
924 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
925 prb_freeze_queue(pkc, po);
926 return NULL;
927 }
928
929 /*
930 * 3.
931 * open this block and return the offset where the first packet
932 * needs to get stored.
933 */
934 prb_open_block(pkc, pbd);
935 return (void *)pkc->nxt_offset;
936 }
937
938 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
939 struct packet_sock *po, unsigned int status)
940 {
941 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
942
943 /* retire/close the current block */
944 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
945 /*
946 * Plug the case where copy_bits() is in progress on
947 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
948 * have space to copy the pkt in the current block and
949 * called prb_retire_current_block()
950 *
951 * We don't need to worry about the TMO case because
952 * the timer-handler already handled this case.
953 */
954 if (!(status & TP_STATUS_BLK_TMO)) {
955 while (atomic_read(&pkc->blk_fill_in_prog)) {
956 /* Waiting for skb_copy_bits to finish... */
957 cpu_relax();
958 }
959 }
960 prb_close_block(pkc, pbd, po, status);
961 return;
962 }
963 }
964
965 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
966 struct tpacket_block_desc *pbd)
967 {
968 return TP_STATUS_USER & BLOCK_STATUS(pbd);
969 }
970
971 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
972 {
973 return pkc->reset_pending_on_curr_blk;
974 }
975
976 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
977 {
978 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
979 atomic_dec(&pkc->blk_fill_in_prog);
980 }
981
982 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
983 struct tpacket3_hdr *ppd)
984 {
985 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
986 }
987
988 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
989 struct tpacket3_hdr *ppd)
990 {
991 ppd->hv1.tp_rxhash = 0;
992 }
993
994 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
995 struct tpacket3_hdr *ppd)
996 {
997 if (skb_vlan_tag_present(pkc->skb)) {
998 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
999 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1000 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1001 } else {
1002 ppd->hv1.tp_vlan_tci = 0;
1003 ppd->hv1.tp_vlan_tpid = 0;
1004 ppd->tp_status = TP_STATUS_AVAILABLE;
1005 }
1006 }
1007
1008 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1009 struct tpacket3_hdr *ppd)
1010 {
1011 ppd->hv1.tp_padding = 0;
1012 prb_fill_vlan_info(pkc, ppd);
1013
1014 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1015 prb_fill_rxhash(pkc, ppd);
1016 else
1017 prb_clear_rxhash(pkc, ppd);
1018 }
1019
1020 static void prb_fill_curr_block(char *curr,
1021 struct tpacket_kbdq_core *pkc,
1022 struct tpacket_block_desc *pbd,
1023 unsigned int len)
1024 {
1025 struct tpacket3_hdr *ppd;
1026
1027 ppd = (struct tpacket3_hdr *)curr;
1028 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1029 pkc->prev = curr;
1030 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1031 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1032 BLOCK_NUM_PKTS(pbd) += 1;
1033 atomic_inc(&pkc->blk_fill_in_prog);
1034 prb_run_all_ft_ops(pkc, ppd);
1035 }
1036
1037 /* Assumes caller has the sk->rx_queue.lock */
1038 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1039 struct sk_buff *skb,
1040 int status,
1041 unsigned int len
1042 )
1043 {
1044 struct tpacket_kbdq_core *pkc;
1045 struct tpacket_block_desc *pbd;
1046 char *curr, *end;
1047
1048 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1049 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1050
1051 /* Queue is frozen when user space is lagging behind */
1052 if (prb_queue_frozen(pkc)) {
1053 /*
1054 * Check if that last block which caused the queue to freeze,
1055 * is still in_use by user-space.
1056 */
1057 if (prb_curr_blk_in_use(pkc, pbd)) {
1058 /* Can't record this packet */
1059 return NULL;
1060 } else {
1061 /*
1062 * Ok, the block was released by user-space.
1063 * Now let's open that block.
1064 * opening a block also thaws the queue.
1065 * Thawing is a side effect.
1066 */
1067 prb_open_block(pkc, pbd);
1068 }
1069 }
1070
1071 smp_mb();
1072 curr = pkc->nxt_offset;
1073 pkc->skb = skb;
1074 end = (char *)pbd + pkc->kblk_size;
1075
1076 /* first try the current block */
1077 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1078 prb_fill_curr_block(curr, pkc, pbd, len);
1079 return (void *)curr;
1080 }
1081
1082 /* Ok, close the current block */
1083 prb_retire_current_block(pkc, po, 0);
1084
1085 /* Now, try to dispatch the next block */
1086 curr = (char *)prb_dispatch_next_block(pkc, po);
1087 if (curr) {
1088 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1089 prb_fill_curr_block(curr, pkc, pbd, len);
1090 return (void *)curr;
1091 }
1092
1093 /*
1094 * No free blocks are available.user_space hasn't caught up yet.
1095 * Queue was just frozen and now this packet will get dropped.
1096 */
1097 return NULL;
1098 }
1099
1100 static void *packet_current_rx_frame(struct packet_sock *po,
1101 struct sk_buff *skb,
1102 int status, unsigned int len)
1103 {
1104 char *curr = NULL;
1105 switch (po->tp_version) {
1106 case TPACKET_V1:
1107 case TPACKET_V2:
1108 curr = packet_lookup_frame(po, &po->rx_ring,
1109 po->rx_ring.head, status);
1110 return curr;
1111 case TPACKET_V3:
1112 return __packet_lookup_frame_in_block(po, skb, status, len);
1113 default:
1114 WARN(1, "TPACKET version not supported\n");
1115 BUG();
1116 return NULL;
1117 }
1118 }
1119
1120 static void *prb_lookup_block(struct packet_sock *po,
1121 struct packet_ring_buffer *rb,
1122 unsigned int idx,
1123 int status)
1124 {
1125 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1126 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1127
1128 if (status != BLOCK_STATUS(pbd))
1129 return NULL;
1130 return pbd;
1131 }
1132
1133 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1134 {
1135 unsigned int prev;
1136 if (rb->prb_bdqc.kactive_blk_num)
1137 prev = rb->prb_bdqc.kactive_blk_num-1;
1138 else
1139 prev = rb->prb_bdqc.knum_blocks-1;
1140 return prev;
1141 }
1142
1143 /* Assumes caller has held the rx_queue.lock */
1144 static void *__prb_previous_block(struct packet_sock *po,
1145 struct packet_ring_buffer *rb,
1146 int status)
1147 {
1148 unsigned int previous = prb_previous_blk_num(rb);
1149 return prb_lookup_block(po, rb, previous, status);
1150 }
1151
1152 static void *packet_previous_rx_frame(struct packet_sock *po,
1153 struct packet_ring_buffer *rb,
1154 int status)
1155 {
1156 if (po->tp_version <= TPACKET_V2)
1157 return packet_previous_frame(po, rb, status);
1158
1159 return __prb_previous_block(po, rb, status);
1160 }
1161
1162 static void packet_increment_rx_head(struct packet_sock *po,
1163 struct packet_ring_buffer *rb)
1164 {
1165 switch (po->tp_version) {
1166 case TPACKET_V1:
1167 case TPACKET_V2:
1168 return packet_increment_head(rb);
1169 case TPACKET_V3:
1170 default:
1171 WARN(1, "TPACKET version not supported.\n");
1172 BUG();
1173 return;
1174 }
1175 }
1176
1177 static void *packet_previous_frame(struct packet_sock *po,
1178 struct packet_ring_buffer *rb,
1179 int status)
1180 {
1181 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1182 return packet_lookup_frame(po, rb, previous, status);
1183 }
1184
1185 static void packet_increment_head(struct packet_ring_buffer *buff)
1186 {
1187 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1188 }
1189
1190 static void packet_inc_pending(struct packet_ring_buffer *rb)
1191 {
1192 this_cpu_inc(*rb->pending_refcnt);
1193 }
1194
1195 static void packet_dec_pending(struct packet_ring_buffer *rb)
1196 {
1197 this_cpu_dec(*rb->pending_refcnt);
1198 }
1199
1200 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1201 {
1202 unsigned int refcnt = 0;
1203 int cpu;
1204
1205 /* We don't use pending refcount in rx_ring. */
1206 if (rb->pending_refcnt == NULL)
1207 return 0;
1208
1209 for_each_possible_cpu(cpu)
1210 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1211
1212 return refcnt;
1213 }
1214
1215 static int packet_alloc_pending(struct packet_sock *po)
1216 {
1217 po->rx_ring.pending_refcnt = NULL;
1218
1219 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1220 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1221 return -ENOBUFS;
1222
1223 return 0;
1224 }
1225
1226 static void packet_free_pending(struct packet_sock *po)
1227 {
1228 free_percpu(po->tx_ring.pending_refcnt);
1229 }
1230
1231 #define ROOM_POW_OFF 2
1232 #define ROOM_NONE 0x0
1233 #define ROOM_LOW 0x1
1234 #define ROOM_NORMAL 0x2
1235
1236 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1237 {
1238 int idx, len;
1239
1240 len = po->rx_ring.frame_max + 1;
1241 idx = po->rx_ring.head;
1242 if (pow_off)
1243 idx += len >> pow_off;
1244 if (idx >= len)
1245 idx -= len;
1246 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1247 }
1248
1249 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1250 {
1251 int idx, len;
1252
1253 len = po->rx_ring.prb_bdqc.knum_blocks;
1254 idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1255 if (pow_off)
1256 idx += len >> pow_off;
1257 if (idx >= len)
1258 idx -= len;
1259 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1260 }
1261
1262 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1263 {
1264 struct sock *sk = &po->sk;
1265 int ret = ROOM_NONE;
1266
1267 if (po->prot_hook.func != tpacket_rcv) {
1268 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1269 - (skb ? skb->truesize : 0);
1270 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1271 return ROOM_NORMAL;
1272 else if (avail > 0)
1273 return ROOM_LOW;
1274 else
1275 return ROOM_NONE;
1276 }
1277
1278 if (po->tp_version == TPACKET_V3) {
1279 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1280 ret = ROOM_NORMAL;
1281 else if (__tpacket_v3_has_room(po, 0))
1282 ret = ROOM_LOW;
1283 } else {
1284 if (__tpacket_has_room(po, ROOM_POW_OFF))
1285 ret = ROOM_NORMAL;
1286 else if (__tpacket_has_room(po, 0))
1287 ret = ROOM_LOW;
1288 }
1289
1290 return ret;
1291 }
1292
1293 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1294 {
1295 int ret;
1296 bool has_room;
1297
1298 spin_lock_bh(&po->sk.sk_receive_queue.lock);
1299 ret = __packet_rcv_has_room(po, skb);
1300 has_room = ret == ROOM_NORMAL;
1301 if (po->pressure == has_room)
1302 po->pressure = !has_room;
1303 spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1304
1305 return ret;
1306 }
1307
1308 static void packet_sock_destruct(struct sock *sk)
1309 {
1310 skb_queue_purge(&sk->sk_error_queue);
1311
1312 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1313 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1314
1315 if (!sock_flag(sk, SOCK_DEAD)) {
1316 pr_err("Attempt to release alive packet socket: %p\n", sk);
1317 return;
1318 }
1319
1320 sk_refcnt_debug_dec(sk);
1321 }
1322
1323 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1324 {
1325 u32 rxhash;
1326 int i, count = 0;
1327
1328 rxhash = skb_get_hash(skb);
1329 for (i = 0; i < ROLLOVER_HLEN; i++)
1330 if (po->rollover->history[i] == rxhash)
1331 count++;
1332
1333 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1334 return count > (ROLLOVER_HLEN >> 1);
1335 }
1336
1337 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1338 struct sk_buff *skb,
1339 unsigned int num)
1340 {
1341 return reciprocal_scale(skb_get_hash(skb), num);
1342 }
1343
1344 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1345 struct sk_buff *skb,
1346 unsigned int num)
1347 {
1348 unsigned int val = atomic_inc_return(&f->rr_cur);
1349
1350 return val % num;
1351 }
1352
1353 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1354 struct sk_buff *skb,
1355 unsigned int num)
1356 {
1357 return smp_processor_id() % num;
1358 }
1359
1360 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1361 struct sk_buff *skb,
1362 unsigned int num)
1363 {
1364 return prandom_u32_max(num);
1365 }
1366
1367 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1368 struct sk_buff *skb,
1369 unsigned int idx, bool try_self,
1370 unsigned int num)
1371 {
1372 struct packet_sock *po, *po_next, *po_skip = NULL;
1373 unsigned int i, j, room = ROOM_NONE;
1374
1375 po = pkt_sk(f->arr[idx]);
1376
1377 if (try_self) {
1378 room = packet_rcv_has_room(po, skb);
1379 if (room == ROOM_NORMAL ||
1380 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1381 return idx;
1382 po_skip = po;
1383 }
1384
1385 i = j = min_t(int, po->rollover->sock, num - 1);
1386 do {
1387 po_next = pkt_sk(f->arr[i]);
1388 if (po_next != po_skip && !po_next->pressure &&
1389 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1390 if (i != j)
1391 po->rollover->sock = i;
1392 atomic_long_inc(&po->rollover->num);
1393 if (room == ROOM_LOW)
1394 atomic_long_inc(&po->rollover->num_huge);
1395 return i;
1396 }
1397
1398 if (++i == num)
1399 i = 0;
1400 } while (i != j);
1401
1402 atomic_long_inc(&po->rollover->num_failed);
1403 return idx;
1404 }
1405
1406 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1407 struct sk_buff *skb,
1408 unsigned int num)
1409 {
1410 return skb_get_queue_mapping(skb) % num;
1411 }
1412
1413 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1414 {
1415 return f->flags & (flag >> 8);
1416 }
1417
1418 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1419 struct packet_type *pt, struct net_device *orig_dev)
1420 {
1421 struct packet_fanout *f = pt->af_packet_priv;
1422 unsigned int num = READ_ONCE(f->num_members);
1423 struct packet_sock *po;
1424 unsigned int idx;
1425
1426 if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1427 !num) {
1428 kfree_skb(skb);
1429 return 0;
1430 }
1431
1432 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1433 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1434 if (!skb)
1435 return 0;
1436 }
1437 switch (f->type) {
1438 case PACKET_FANOUT_HASH:
1439 default:
1440 idx = fanout_demux_hash(f, skb, num);
1441 break;
1442 case PACKET_FANOUT_LB:
1443 idx = fanout_demux_lb(f, skb, num);
1444 break;
1445 case PACKET_FANOUT_CPU:
1446 idx = fanout_demux_cpu(f, skb, num);
1447 break;
1448 case PACKET_FANOUT_RND:
1449 idx = fanout_demux_rnd(f, skb, num);
1450 break;
1451 case PACKET_FANOUT_QM:
1452 idx = fanout_demux_qm(f, skb, num);
1453 break;
1454 case PACKET_FANOUT_ROLLOVER:
1455 idx = fanout_demux_rollover(f, skb, 0, false, num);
1456 break;
1457 }
1458
1459 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1460 idx = fanout_demux_rollover(f, skb, idx, true, num);
1461
1462 po = pkt_sk(f->arr[idx]);
1463 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1464 }
1465
1466 DEFINE_MUTEX(fanout_mutex);
1467 EXPORT_SYMBOL_GPL(fanout_mutex);
1468 static LIST_HEAD(fanout_list);
1469
1470 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1471 {
1472 struct packet_fanout *f = po->fanout;
1473
1474 spin_lock(&f->lock);
1475 f->arr[f->num_members] = sk;
1476 smp_wmb();
1477 f->num_members++;
1478 spin_unlock(&f->lock);
1479 }
1480
1481 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1482 {
1483 struct packet_fanout *f = po->fanout;
1484 int i;
1485
1486 spin_lock(&f->lock);
1487 for (i = 0; i < f->num_members; i++) {
1488 if (f->arr[i] == sk)
1489 break;
1490 }
1491 BUG_ON(i >= f->num_members);
1492 f->arr[i] = f->arr[f->num_members - 1];
1493 f->num_members--;
1494 spin_unlock(&f->lock);
1495 }
1496
1497 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1498 {
1499 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1500 return true;
1501
1502 return false;
1503 }
1504
1505 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1506 {
1507 struct packet_sock *po = pkt_sk(sk);
1508 struct packet_fanout *f, *match;
1509 u8 type = type_flags & 0xff;
1510 u8 flags = type_flags >> 8;
1511 int err;
1512
1513 switch (type) {
1514 case PACKET_FANOUT_ROLLOVER:
1515 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1516 return -EINVAL;
1517 case PACKET_FANOUT_HASH:
1518 case PACKET_FANOUT_LB:
1519 case PACKET_FANOUT_CPU:
1520 case PACKET_FANOUT_RND:
1521 case PACKET_FANOUT_QM:
1522 break;
1523 default:
1524 return -EINVAL;
1525 }
1526
1527 if (!po->running)
1528 return -EINVAL;
1529
1530 if (po->fanout)
1531 return -EALREADY;
1532
1533 if (type == PACKET_FANOUT_ROLLOVER ||
1534 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1535 po->rollover = kzalloc(sizeof(*po->rollover), GFP_KERNEL);
1536 if (!po->rollover)
1537 return -ENOMEM;
1538 atomic_long_set(&po->rollover->num, 0);
1539 atomic_long_set(&po->rollover->num_huge, 0);
1540 atomic_long_set(&po->rollover->num_failed, 0);
1541 }
1542
1543 mutex_lock(&fanout_mutex);
1544 match = NULL;
1545 list_for_each_entry(f, &fanout_list, list) {
1546 if (f->id == id &&
1547 read_pnet(&f->net) == sock_net(sk)) {
1548 match = f;
1549 break;
1550 }
1551 }
1552 err = -EINVAL;
1553 if (match && match->flags != flags)
1554 goto out;
1555 if (!match) {
1556 err = -ENOMEM;
1557 match = kzalloc(sizeof(*match), GFP_KERNEL);
1558 if (!match)
1559 goto out;
1560 write_pnet(&match->net, sock_net(sk));
1561 match->id = id;
1562 match->type = type;
1563 match->flags = flags;
1564 atomic_set(&match->rr_cur, 0);
1565 INIT_LIST_HEAD(&match->list);
1566 spin_lock_init(&match->lock);
1567 atomic_set(&match->sk_ref, 0);
1568 match->prot_hook.type = po->prot_hook.type;
1569 match->prot_hook.dev = po->prot_hook.dev;
1570 match->prot_hook.func = packet_rcv_fanout;
1571 match->prot_hook.af_packet_priv = match;
1572 match->prot_hook.id_match = match_fanout_group;
1573 dev_add_pack(&match->prot_hook);
1574 list_add(&match->list, &fanout_list);
1575 }
1576 err = -EINVAL;
1577 if (match->type == type &&
1578 match->prot_hook.type == po->prot_hook.type &&
1579 match->prot_hook.dev == po->prot_hook.dev) {
1580 err = -ENOSPC;
1581 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1582 __dev_remove_pack(&po->prot_hook);
1583 po->fanout = match;
1584 atomic_inc(&match->sk_ref);
1585 __fanout_link(sk, po);
1586 err = 0;
1587 }
1588 }
1589 out:
1590 mutex_unlock(&fanout_mutex);
1591 if (err) {
1592 kfree(po->rollover);
1593 po->rollover = NULL;
1594 }
1595 return err;
1596 }
1597
1598 static void fanout_release(struct sock *sk)
1599 {
1600 struct packet_sock *po = pkt_sk(sk);
1601 struct packet_fanout *f;
1602
1603 f = po->fanout;
1604 if (!f)
1605 return;
1606
1607 mutex_lock(&fanout_mutex);
1608 po->fanout = NULL;
1609
1610 if (atomic_dec_and_test(&f->sk_ref)) {
1611 list_del(&f->list);
1612 dev_remove_pack(&f->prot_hook);
1613 kfree(f);
1614 }
1615 mutex_unlock(&fanout_mutex);
1616
1617 if (po->rollover)
1618 kfree_rcu(po->rollover, rcu);
1619 }
1620
1621 static const struct proto_ops packet_ops;
1622
1623 static const struct proto_ops packet_ops_spkt;
1624
1625 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1626 struct packet_type *pt, struct net_device *orig_dev)
1627 {
1628 struct sock *sk;
1629 struct sockaddr_pkt *spkt;
1630
1631 /*
1632 * When we registered the protocol we saved the socket in the data
1633 * field for just this event.
1634 */
1635
1636 sk = pt->af_packet_priv;
1637
1638 /*
1639 * Yank back the headers [hope the device set this
1640 * right or kerboom...]
1641 *
1642 * Incoming packets have ll header pulled,
1643 * push it back.
1644 *
1645 * For outgoing ones skb->data == skb_mac_header(skb)
1646 * so that this procedure is noop.
1647 */
1648
1649 if (skb->pkt_type == PACKET_LOOPBACK)
1650 goto out;
1651
1652 if (!net_eq(dev_net(dev), sock_net(sk)))
1653 goto out;
1654
1655 skb = skb_share_check(skb, GFP_ATOMIC);
1656 if (skb == NULL)
1657 goto oom;
1658
1659 /* drop any routing info */
1660 skb_dst_drop(skb);
1661
1662 /* drop conntrack reference */
1663 nf_reset(skb);
1664
1665 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1666
1667 skb_push(skb, skb->data - skb_mac_header(skb));
1668
1669 /*
1670 * The SOCK_PACKET socket receives _all_ frames.
1671 */
1672
1673 spkt->spkt_family = dev->type;
1674 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1675 spkt->spkt_protocol = skb->protocol;
1676
1677 /*
1678 * Charge the memory to the socket. This is done specifically
1679 * to prevent sockets using all the memory up.
1680 */
1681
1682 if (sock_queue_rcv_skb(sk, skb) == 0)
1683 return 0;
1684
1685 out:
1686 kfree_skb(skb);
1687 oom:
1688 return 0;
1689 }
1690
1691
1692 /*
1693 * Output a raw packet to a device layer. This bypasses all the other
1694 * protocol layers and you must therefore supply it with a complete frame
1695 */
1696
1697 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1698 size_t len)
1699 {
1700 struct sock *sk = sock->sk;
1701 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1702 struct sk_buff *skb = NULL;
1703 struct net_device *dev;
1704 __be16 proto = 0;
1705 int err;
1706 int extra_len = 0;
1707
1708 /*
1709 * Get and verify the address.
1710 */
1711
1712 if (saddr) {
1713 if (msg->msg_namelen < sizeof(struct sockaddr))
1714 return -EINVAL;
1715 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1716 proto = saddr->spkt_protocol;
1717 } else
1718 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1719
1720 /*
1721 * Find the device first to size check it
1722 */
1723
1724 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1725 retry:
1726 rcu_read_lock();
1727 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1728 err = -ENODEV;
1729 if (dev == NULL)
1730 goto out_unlock;
1731
1732 err = -ENETDOWN;
1733 if (!(dev->flags & IFF_UP))
1734 goto out_unlock;
1735
1736 /*
1737 * You may not queue a frame bigger than the mtu. This is the lowest level
1738 * raw protocol and you must do your own fragmentation at this level.
1739 */
1740
1741 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1742 if (!netif_supports_nofcs(dev)) {
1743 err = -EPROTONOSUPPORT;
1744 goto out_unlock;
1745 }
1746 extra_len = 4; /* We're doing our own CRC */
1747 }
1748
1749 err = -EMSGSIZE;
1750 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1751 goto out_unlock;
1752
1753 if (!skb) {
1754 size_t reserved = LL_RESERVED_SPACE(dev);
1755 int tlen = dev->needed_tailroom;
1756 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1757
1758 rcu_read_unlock();
1759 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1760 if (skb == NULL)
1761 return -ENOBUFS;
1762 /* FIXME: Save some space for broken drivers that write a hard
1763 * header at transmission time by themselves. PPP is the notable
1764 * one here. This should really be fixed at the driver level.
1765 */
1766 skb_reserve(skb, reserved);
1767 skb_reset_network_header(skb);
1768
1769 /* Try to align data part correctly */
1770 if (hhlen) {
1771 skb->data -= hhlen;
1772 skb->tail -= hhlen;
1773 if (len < hhlen)
1774 skb_reset_network_header(skb);
1775 }
1776 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1777 if (err)
1778 goto out_free;
1779 goto retry;
1780 }
1781
1782 if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1783 /* Earlier code assumed this would be a VLAN pkt,
1784 * double-check this now that we have the actual
1785 * packet in hand.
1786 */
1787 struct ethhdr *ehdr;
1788 skb_reset_mac_header(skb);
1789 ehdr = eth_hdr(skb);
1790 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1791 err = -EMSGSIZE;
1792 goto out_unlock;
1793 }
1794 }
1795
1796 skb->protocol = proto;
1797 skb->dev = dev;
1798 skb->priority = sk->sk_priority;
1799 skb->mark = sk->sk_mark;
1800
1801 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1802
1803 if (unlikely(extra_len == 4))
1804 skb->no_fcs = 1;
1805
1806 skb_probe_transport_header(skb, 0);
1807
1808 dev_queue_xmit(skb);
1809 rcu_read_unlock();
1810 return len;
1811
1812 out_unlock:
1813 rcu_read_unlock();
1814 out_free:
1815 kfree_skb(skb);
1816 return err;
1817 }
1818
1819 static unsigned int run_filter(const struct sk_buff *skb,
1820 const struct sock *sk,
1821 unsigned int res)
1822 {
1823 struct sk_filter *filter;
1824
1825 rcu_read_lock();
1826 filter = rcu_dereference(sk->sk_filter);
1827 if (filter != NULL)
1828 res = SK_RUN_FILTER(filter, skb);
1829 rcu_read_unlock();
1830
1831 return res;
1832 }
1833
1834 /*
1835 * This function makes lazy skb cloning in hope that most of packets
1836 * are discarded by BPF.
1837 *
1838 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1839 * and skb->cb are mangled. It works because (and until) packets
1840 * falling here are owned by current CPU. Output packets are cloned
1841 * by dev_queue_xmit_nit(), input packets are processed by net_bh
1842 * sequencially, so that if we return skb to original state on exit,
1843 * we will not harm anyone.
1844 */
1845
1846 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1847 struct packet_type *pt, struct net_device *orig_dev)
1848 {
1849 struct sock *sk;
1850 struct sockaddr_ll *sll;
1851 struct packet_sock *po;
1852 u8 *skb_head = skb->data;
1853 int skb_len = skb->len;
1854 unsigned int snaplen, res;
1855
1856 if (skb->pkt_type == PACKET_LOOPBACK)
1857 goto drop;
1858
1859 sk = pt->af_packet_priv;
1860 po = pkt_sk(sk);
1861
1862 if (!net_eq(dev_net(dev), sock_net(sk)))
1863 goto drop;
1864
1865 skb->dev = dev;
1866
1867 if (dev->header_ops) {
1868 /* The device has an explicit notion of ll header,
1869 * exported to higher levels.
1870 *
1871 * Otherwise, the device hides details of its frame
1872 * structure, so that corresponding packet head is
1873 * never delivered to user.
1874 */
1875 if (sk->sk_type != SOCK_DGRAM)
1876 skb_push(skb, skb->data - skb_mac_header(skb));
1877 else if (skb->pkt_type == PACKET_OUTGOING) {
1878 /* Special case: outgoing packets have ll header at head */
1879 skb_pull(skb, skb_network_offset(skb));
1880 }
1881 }
1882
1883 snaplen = skb->len;
1884
1885 res = run_filter(skb, sk, snaplen);
1886 if (!res)
1887 goto drop_n_restore;
1888 if (snaplen > res)
1889 snaplen = res;
1890
1891 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1892 goto drop_n_acct;
1893
1894 if (skb_shared(skb)) {
1895 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1896 if (nskb == NULL)
1897 goto drop_n_acct;
1898
1899 if (skb_head != skb->data) {
1900 skb->data = skb_head;
1901 skb->len = skb_len;
1902 }
1903 consume_skb(skb);
1904 skb = nskb;
1905 }
1906
1907 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
1908
1909 sll = &PACKET_SKB_CB(skb)->sa.ll;
1910 sll->sll_hatype = dev->type;
1911 sll->sll_pkttype = skb->pkt_type;
1912 if (unlikely(po->origdev))
1913 sll->sll_ifindex = orig_dev->ifindex;
1914 else
1915 sll->sll_ifindex = dev->ifindex;
1916
1917 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1918
1919 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
1920 * Use their space for storing the original skb length.
1921 */
1922 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
1923
1924 if (pskb_trim(skb, snaplen))
1925 goto drop_n_acct;
1926
1927 skb_set_owner_r(skb, sk);
1928 skb->dev = NULL;
1929 skb_dst_drop(skb);
1930
1931 /* drop conntrack reference */
1932 nf_reset(skb);
1933
1934 spin_lock(&sk->sk_receive_queue.lock);
1935 po->stats.stats1.tp_packets++;
1936 sock_skb_set_dropcount(sk, skb);
1937 __skb_queue_tail(&sk->sk_receive_queue, skb);
1938 spin_unlock(&sk->sk_receive_queue.lock);
1939 sk->sk_data_ready(sk);
1940 return 0;
1941
1942 drop_n_acct:
1943 spin_lock(&sk->sk_receive_queue.lock);
1944 po->stats.stats1.tp_drops++;
1945 atomic_inc(&sk->sk_drops);
1946 spin_unlock(&sk->sk_receive_queue.lock);
1947
1948 drop_n_restore:
1949 if (skb_head != skb->data && skb_shared(skb)) {
1950 skb->data = skb_head;
1951 skb->len = skb_len;
1952 }
1953 drop:
1954 consume_skb(skb);
1955 return 0;
1956 }
1957
1958 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1959 struct packet_type *pt, struct net_device *orig_dev)
1960 {
1961 struct sock *sk;
1962 struct packet_sock *po;
1963 struct sockaddr_ll *sll;
1964 union tpacket_uhdr h;
1965 u8 *skb_head = skb->data;
1966 int skb_len = skb->len;
1967 unsigned int snaplen, res;
1968 unsigned long status = TP_STATUS_USER;
1969 unsigned short macoff, netoff, hdrlen;
1970 struct sk_buff *copy_skb = NULL;
1971 struct timespec ts;
1972 __u32 ts_status;
1973
1974 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
1975 * We may add members to them until current aligned size without forcing
1976 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
1977 */
1978 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
1979 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
1980
1981 if (skb->pkt_type == PACKET_LOOPBACK)
1982 goto drop;
1983
1984 sk = pt->af_packet_priv;
1985 po = pkt_sk(sk);
1986
1987 if (!net_eq(dev_net(dev), sock_net(sk)))
1988 goto drop;
1989
1990 if (dev->header_ops) {
1991 if (sk->sk_type != SOCK_DGRAM)
1992 skb_push(skb, skb->data - skb_mac_header(skb));
1993 else if (skb->pkt_type == PACKET_OUTGOING) {
1994 /* Special case: outgoing packets have ll header at head */
1995 skb_pull(skb, skb_network_offset(skb));
1996 }
1997 }
1998
1999 snaplen = skb->len;
2000
2001 res = run_filter(skb, sk, snaplen);
2002 if (!res)
2003 goto drop_n_restore;
2004
2005 if (skb->ip_summed == CHECKSUM_PARTIAL)
2006 status |= TP_STATUS_CSUMNOTREADY;
2007 else if (skb->pkt_type != PACKET_OUTGOING &&
2008 (skb->ip_summed == CHECKSUM_COMPLETE ||
2009 skb_csum_unnecessary(skb)))
2010 status |= TP_STATUS_CSUM_VALID;
2011
2012 if (snaplen > res)
2013 snaplen = res;
2014
2015 if (sk->sk_type == SOCK_DGRAM) {
2016 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2017 po->tp_reserve;
2018 } else {
2019 unsigned int maclen = skb_network_offset(skb);
2020 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2021 (maclen < 16 ? 16 : maclen)) +
2022 po->tp_reserve;
2023 macoff = netoff - maclen;
2024 }
2025 if (po->tp_version <= TPACKET_V2) {
2026 if (macoff + snaplen > po->rx_ring.frame_size) {
2027 if (po->copy_thresh &&
2028 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2029 if (skb_shared(skb)) {
2030 copy_skb = skb_clone(skb, GFP_ATOMIC);
2031 } else {
2032 copy_skb = skb_get(skb);
2033 skb_head = skb->data;
2034 }
2035 if (copy_skb)
2036 skb_set_owner_r(copy_skb, sk);
2037 }
2038 snaplen = po->rx_ring.frame_size - macoff;
2039 if ((int)snaplen < 0)
2040 snaplen = 0;
2041 }
2042 } else if (unlikely(macoff + snaplen >
2043 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2044 u32 nval;
2045
2046 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2047 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2048 snaplen, nval, macoff);
2049 snaplen = nval;
2050 if (unlikely((int)snaplen < 0)) {
2051 snaplen = 0;
2052 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2053 }
2054 }
2055 spin_lock(&sk->sk_receive_queue.lock);
2056 h.raw = packet_current_rx_frame(po, skb,
2057 TP_STATUS_KERNEL, (macoff+snaplen));
2058 if (!h.raw)
2059 goto ring_is_full;
2060 if (po->tp_version <= TPACKET_V2) {
2061 packet_increment_rx_head(po, &po->rx_ring);
2062 /*
2063 * LOSING will be reported till you read the stats,
2064 * because it's COR - Clear On Read.
2065 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2066 * at packet level.
2067 */
2068 if (po->stats.stats1.tp_drops)
2069 status |= TP_STATUS_LOSING;
2070 }
2071 po->stats.stats1.tp_packets++;
2072 if (copy_skb) {
2073 status |= TP_STATUS_COPY;
2074 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2075 }
2076 spin_unlock(&sk->sk_receive_queue.lock);
2077
2078 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2079
2080 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2081 getnstimeofday(&ts);
2082
2083 status |= ts_status;
2084
2085 switch (po->tp_version) {
2086 case TPACKET_V1:
2087 h.h1->tp_len = skb->len;
2088 h.h1->tp_snaplen = snaplen;
2089 h.h1->tp_mac = macoff;
2090 h.h1->tp_net = netoff;
2091 h.h1->tp_sec = ts.tv_sec;
2092 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2093 hdrlen = sizeof(*h.h1);
2094 break;
2095 case TPACKET_V2:
2096 h.h2->tp_len = skb->len;
2097 h.h2->tp_snaplen = snaplen;
2098 h.h2->tp_mac = macoff;
2099 h.h2->tp_net = netoff;
2100 h.h2->tp_sec = ts.tv_sec;
2101 h.h2->tp_nsec = ts.tv_nsec;
2102 if (skb_vlan_tag_present(skb)) {
2103 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2104 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2105 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2106 } else {
2107 h.h2->tp_vlan_tci = 0;
2108 h.h2->tp_vlan_tpid = 0;
2109 }
2110 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2111 hdrlen = sizeof(*h.h2);
2112 break;
2113 case TPACKET_V3:
2114 /* tp_nxt_offset,vlan are already populated above.
2115 * So DONT clear those fields here
2116 */
2117 h.h3->tp_status |= status;
2118 h.h3->tp_len = skb->len;
2119 h.h3->tp_snaplen = snaplen;
2120 h.h3->tp_mac = macoff;
2121 h.h3->tp_net = netoff;
2122 h.h3->tp_sec = ts.tv_sec;
2123 h.h3->tp_nsec = ts.tv_nsec;
2124 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2125 hdrlen = sizeof(*h.h3);
2126 break;
2127 default:
2128 BUG();
2129 }
2130
2131 sll = h.raw + TPACKET_ALIGN(hdrlen);
2132 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2133 sll->sll_family = AF_PACKET;
2134 sll->sll_hatype = dev->type;
2135 sll->sll_protocol = skb->protocol;
2136 sll->sll_pkttype = skb->pkt_type;
2137 if (unlikely(po->origdev))
2138 sll->sll_ifindex = orig_dev->ifindex;
2139 else
2140 sll->sll_ifindex = dev->ifindex;
2141
2142 smp_mb();
2143
2144 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2145 if (po->tp_version <= TPACKET_V2) {
2146 u8 *start, *end;
2147
2148 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2149 macoff + snaplen);
2150
2151 for (start = h.raw; start < end; start += PAGE_SIZE)
2152 flush_dcache_page(pgv_to_page(start));
2153 }
2154 smp_wmb();
2155 #endif
2156
2157 if (po->tp_version <= TPACKET_V2) {
2158 __packet_set_status(po, h.raw, status);
2159 sk->sk_data_ready(sk);
2160 } else {
2161 prb_clear_blk_fill_status(&po->rx_ring);
2162 }
2163
2164 drop_n_restore:
2165 if (skb_head != skb->data && skb_shared(skb)) {
2166 skb->data = skb_head;
2167 skb->len = skb_len;
2168 }
2169 drop:
2170 kfree_skb(skb);
2171 return 0;
2172
2173 ring_is_full:
2174 po->stats.stats1.tp_drops++;
2175 spin_unlock(&sk->sk_receive_queue.lock);
2176
2177 sk->sk_data_ready(sk);
2178 kfree_skb(copy_skb);
2179 goto drop_n_restore;
2180 }
2181
2182 static void tpacket_destruct_skb(struct sk_buff *skb)
2183 {
2184 struct packet_sock *po = pkt_sk(skb->sk);
2185
2186 if (likely(po->tx_ring.pg_vec)) {
2187 void *ph;
2188 __u32 ts;
2189
2190 ph = skb_shinfo(skb)->destructor_arg;
2191 packet_dec_pending(&po->tx_ring);
2192
2193 ts = __packet_set_timestamp(po, ph, skb);
2194 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2195 }
2196
2197 sock_wfree(skb);
2198 }
2199
2200 static bool ll_header_truncated(const struct net_device *dev, int len)
2201 {
2202 /* net device doesn't like empty head */
2203 if (unlikely(len <= dev->hard_header_len)) {
2204 net_warn_ratelimited("%s: packet size is too short (%d <= %d)\n",
2205 current->comm, len, dev->hard_header_len);
2206 return true;
2207 }
2208
2209 return false;
2210 }
2211
2212 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2213 void *frame, struct net_device *dev, int size_max,
2214 __be16 proto, unsigned char *addr, int hlen)
2215 {
2216 union tpacket_uhdr ph;
2217 int to_write, offset, len, tp_len, nr_frags, len_max;
2218 struct socket *sock = po->sk.sk_socket;
2219 struct page *page;
2220 void *data;
2221 int err;
2222
2223 ph.raw = frame;
2224
2225 skb->protocol = proto;
2226 skb->dev = dev;
2227 skb->priority = po->sk.sk_priority;
2228 skb->mark = po->sk.sk_mark;
2229 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2230 skb_shinfo(skb)->destructor_arg = ph.raw;
2231
2232 switch (po->tp_version) {
2233 case TPACKET_V2:
2234 tp_len = ph.h2->tp_len;
2235 break;
2236 default:
2237 tp_len = ph.h1->tp_len;
2238 break;
2239 }
2240 if (unlikely(tp_len > size_max)) {
2241 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2242 return -EMSGSIZE;
2243 }
2244
2245 skb_reserve(skb, hlen);
2246 skb_reset_network_header(skb);
2247
2248 if (!packet_use_direct_xmit(po))
2249 skb_probe_transport_header(skb, 0);
2250 if (unlikely(po->tp_tx_has_off)) {
2251 int off_min, off_max, off;
2252 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2253 off_max = po->tx_ring.frame_size - tp_len;
2254 if (sock->type == SOCK_DGRAM) {
2255 switch (po->tp_version) {
2256 case TPACKET_V2:
2257 off = ph.h2->tp_net;
2258 break;
2259 default:
2260 off = ph.h1->tp_net;
2261 break;
2262 }
2263 } else {
2264 switch (po->tp_version) {
2265 case TPACKET_V2:
2266 off = ph.h2->tp_mac;
2267 break;
2268 default:
2269 off = ph.h1->tp_mac;
2270 break;
2271 }
2272 }
2273 if (unlikely((off < off_min) || (off_max < off)))
2274 return -EINVAL;
2275 data = ph.raw + off;
2276 } else {
2277 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2278 }
2279 to_write = tp_len;
2280
2281 if (sock->type == SOCK_DGRAM) {
2282 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2283 NULL, tp_len);
2284 if (unlikely(err < 0))
2285 return -EINVAL;
2286 } else if (dev->hard_header_len) {
2287 if (ll_header_truncated(dev, tp_len))
2288 return -EINVAL;
2289
2290 skb_push(skb, dev->hard_header_len);
2291 err = skb_store_bits(skb, 0, data,
2292 dev->hard_header_len);
2293 if (unlikely(err))
2294 return err;
2295
2296 data += dev->hard_header_len;
2297 to_write -= dev->hard_header_len;
2298 }
2299
2300 offset = offset_in_page(data);
2301 len_max = PAGE_SIZE - offset;
2302 len = ((to_write > len_max) ? len_max : to_write);
2303
2304 skb->data_len = to_write;
2305 skb->len += to_write;
2306 skb->truesize += to_write;
2307 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2308
2309 while (likely(to_write)) {
2310 nr_frags = skb_shinfo(skb)->nr_frags;
2311
2312 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2313 pr_err("Packet exceed the number of skb frags(%lu)\n",
2314 MAX_SKB_FRAGS);
2315 return -EFAULT;
2316 }
2317
2318 page = pgv_to_page(data);
2319 data += len;
2320 flush_dcache_page(page);
2321 get_page(page);
2322 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2323 to_write -= len;
2324 offset = 0;
2325 len_max = PAGE_SIZE;
2326 len = ((to_write > len_max) ? len_max : to_write);
2327 }
2328
2329 return tp_len;
2330 }
2331
2332 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2333 {
2334 struct sk_buff *skb;
2335 struct net_device *dev;
2336 __be16 proto;
2337 int err, reserve = 0;
2338 void *ph;
2339 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2340 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2341 int tp_len, size_max;
2342 unsigned char *addr;
2343 int len_sum = 0;
2344 int status = TP_STATUS_AVAILABLE;
2345 int hlen, tlen;
2346
2347 mutex_lock(&po->pg_vec_lock);
2348
2349 if (likely(saddr == NULL)) {
2350 dev = packet_cached_dev_get(po);
2351 proto = po->num;
2352 addr = NULL;
2353 } else {
2354 err = -EINVAL;
2355 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2356 goto out;
2357 if (msg->msg_namelen < (saddr->sll_halen
2358 + offsetof(struct sockaddr_ll,
2359 sll_addr)))
2360 goto out;
2361 proto = saddr->sll_protocol;
2362 addr = saddr->sll_addr;
2363 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2364 }
2365
2366 err = -ENXIO;
2367 if (unlikely(dev == NULL))
2368 goto out;
2369 err = -ENETDOWN;
2370 if (unlikely(!(dev->flags & IFF_UP)))
2371 goto out_put;
2372
2373 reserve = dev->hard_header_len + VLAN_HLEN;
2374 size_max = po->tx_ring.frame_size
2375 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2376
2377 if (size_max > dev->mtu + reserve)
2378 size_max = dev->mtu + reserve;
2379
2380 do {
2381 ph = packet_current_frame(po, &po->tx_ring,
2382 TP_STATUS_SEND_REQUEST);
2383 if (unlikely(ph == NULL)) {
2384 if (need_wait && need_resched())
2385 schedule();
2386 continue;
2387 }
2388
2389 status = TP_STATUS_SEND_REQUEST;
2390 hlen = LL_RESERVED_SPACE(dev);
2391 tlen = dev->needed_tailroom;
2392 skb = sock_alloc_send_skb(&po->sk,
2393 hlen + tlen + sizeof(struct sockaddr_ll),
2394 !need_wait, &err);
2395
2396 if (unlikely(skb == NULL)) {
2397 /* we assume the socket was initially writeable ... */
2398 if (likely(len_sum > 0))
2399 err = len_sum;
2400 goto out_status;
2401 }
2402 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2403 addr, hlen);
2404 if (likely(tp_len >= 0) &&
2405 tp_len > dev->mtu + dev->hard_header_len) {
2406 struct ethhdr *ehdr;
2407 /* Earlier code assumed this would be a VLAN pkt,
2408 * double-check this now that we have the actual
2409 * packet in hand.
2410 */
2411
2412 skb_reset_mac_header(skb);
2413 ehdr = eth_hdr(skb);
2414 if (ehdr->h_proto != htons(ETH_P_8021Q))
2415 tp_len = -EMSGSIZE;
2416 }
2417 if (unlikely(tp_len < 0)) {
2418 if (po->tp_loss) {
2419 __packet_set_status(po, ph,
2420 TP_STATUS_AVAILABLE);
2421 packet_increment_head(&po->tx_ring);
2422 kfree_skb(skb);
2423 continue;
2424 } else {
2425 status = TP_STATUS_WRONG_FORMAT;
2426 err = tp_len;
2427 goto out_status;
2428 }
2429 }
2430
2431 packet_pick_tx_queue(dev, skb);
2432
2433 skb->destructor = tpacket_destruct_skb;
2434 __packet_set_status(po, ph, TP_STATUS_SENDING);
2435 packet_inc_pending(&po->tx_ring);
2436
2437 status = TP_STATUS_SEND_REQUEST;
2438 err = po->xmit(skb);
2439 if (unlikely(err > 0)) {
2440 err = net_xmit_errno(err);
2441 if (err && __packet_get_status(po, ph) ==
2442 TP_STATUS_AVAILABLE) {
2443 /* skb was destructed already */
2444 skb = NULL;
2445 goto out_status;
2446 }
2447 /*
2448 * skb was dropped but not destructed yet;
2449 * let's treat it like congestion or err < 0
2450 */
2451 err = 0;
2452 }
2453 packet_increment_head(&po->tx_ring);
2454 len_sum += tp_len;
2455 } while (likely((ph != NULL) ||
2456 /* Note: packet_read_pending() might be slow if we have
2457 * to call it as it's per_cpu variable, but in fast-path
2458 * we already short-circuit the loop with the first
2459 * condition, and luckily don't have to go that path
2460 * anyway.
2461 */
2462 (need_wait && packet_read_pending(&po->tx_ring))));
2463
2464 err = len_sum;
2465 goto out_put;
2466
2467 out_status:
2468 __packet_set_status(po, ph, status);
2469 kfree_skb(skb);
2470 out_put:
2471 dev_put(dev);
2472 out:
2473 mutex_unlock(&po->pg_vec_lock);
2474 return err;
2475 }
2476
2477 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2478 size_t reserve, size_t len,
2479 size_t linear, int noblock,
2480 int *err)
2481 {
2482 struct sk_buff *skb;
2483
2484 /* Under a page? Don't bother with paged skb. */
2485 if (prepad + len < PAGE_SIZE || !linear)
2486 linear = len;
2487
2488 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2489 err, 0);
2490 if (!skb)
2491 return NULL;
2492
2493 skb_reserve(skb, reserve);
2494 skb_put(skb, linear);
2495 skb->data_len = len - linear;
2496 skb->len += len - linear;
2497
2498 return skb;
2499 }
2500
2501 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2502 {
2503 struct sock *sk = sock->sk;
2504 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2505 struct sk_buff *skb;
2506 struct net_device *dev;
2507 __be16 proto;
2508 unsigned char *addr;
2509 int err, reserve = 0;
2510 struct virtio_net_hdr vnet_hdr = { 0 };
2511 int offset = 0;
2512 int vnet_hdr_len;
2513 struct packet_sock *po = pkt_sk(sk);
2514 unsigned short gso_type = 0;
2515 int hlen, tlen;
2516 int extra_len = 0;
2517 ssize_t n;
2518
2519 /*
2520 * Get and verify the address.
2521 */
2522
2523 if (likely(saddr == NULL)) {
2524 dev = packet_cached_dev_get(po);
2525 proto = po->num;
2526 addr = NULL;
2527 } else {
2528 err = -EINVAL;
2529 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2530 goto out;
2531 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2532 goto out;
2533 proto = saddr->sll_protocol;
2534 addr = saddr->sll_addr;
2535 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2536 }
2537
2538 err = -ENXIO;
2539 if (unlikely(dev == NULL))
2540 goto out_unlock;
2541 err = -ENETDOWN;
2542 if (unlikely(!(dev->flags & IFF_UP)))
2543 goto out_unlock;
2544
2545 if (sock->type == SOCK_RAW)
2546 reserve = dev->hard_header_len;
2547 if (po->has_vnet_hdr) {
2548 vnet_hdr_len = sizeof(vnet_hdr);
2549
2550 err = -EINVAL;
2551 if (len < vnet_hdr_len)
2552 goto out_unlock;
2553
2554 len -= vnet_hdr_len;
2555
2556 err = -EFAULT;
2557 n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter);
2558 if (n != vnet_hdr_len)
2559 goto out_unlock;
2560
2561 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2562 (__virtio16_to_cpu(false, vnet_hdr.csum_start) +
2563 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2 >
2564 __virtio16_to_cpu(false, vnet_hdr.hdr_len)))
2565 vnet_hdr.hdr_len = __cpu_to_virtio16(false,
2566 __virtio16_to_cpu(false, vnet_hdr.csum_start) +
2567 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2);
2568
2569 err = -EINVAL;
2570 if (__virtio16_to_cpu(false, vnet_hdr.hdr_len) > len)
2571 goto out_unlock;
2572
2573 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2574 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2575 case VIRTIO_NET_HDR_GSO_TCPV4:
2576 gso_type = SKB_GSO_TCPV4;
2577 break;
2578 case VIRTIO_NET_HDR_GSO_TCPV6:
2579 gso_type = SKB_GSO_TCPV6;
2580 break;
2581 case VIRTIO_NET_HDR_GSO_UDP:
2582 gso_type = SKB_GSO_UDP;
2583 break;
2584 default:
2585 goto out_unlock;
2586 }
2587
2588 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2589 gso_type |= SKB_GSO_TCP_ECN;
2590
2591 if (vnet_hdr.gso_size == 0)
2592 goto out_unlock;
2593
2594 }
2595 }
2596
2597 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2598 if (!netif_supports_nofcs(dev)) {
2599 err = -EPROTONOSUPPORT;
2600 goto out_unlock;
2601 }
2602 extra_len = 4; /* We're doing our own CRC */
2603 }
2604
2605 err = -EMSGSIZE;
2606 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2607 goto out_unlock;
2608
2609 err = -ENOBUFS;
2610 hlen = LL_RESERVED_SPACE(dev);
2611 tlen = dev->needed_tailroom;
2612 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,
2613 __virtio16_to_cpu(false, vnet_hdr.hdr_len),
2614 msg->msg_flags & MSG_DONTWAIT, &err);
2615 if (skb == NULL)
2616 goto out_unlock;
2617
2618 skb_set_network_header(skb, reserve);
2619
2620 err = -EINVAL;
2621 if (sock->type == SOCK_DGRAM) {
2622 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2623 if (unlikely(offset < 0))
2624 goto out_free;
2625 } else {
2626 if (ll_header_truncated(dev, len))
2627 goto out_free;
2628 }
2629
2630 /* Returns -EFAULT on error */
2631 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2632 if (err)
2633 goto out_free;
2634
2635 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2636
2637 if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2638 /* Earlier code assumed this would be a VLAN pkt,
2639 * double-check this now that we have the actual
2640 * packet in hand.
2641 */
2642 struct ethhdr *ehdr;
2643 skb_reset_mac_header(skb);
2644 ehdr = eth_hdr(skb);
2645 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2646 err = -EMSGSIZE;
2647 goto out_free;
2648 }
2649 }
2650
2651 skb->protocol = proto;
2652 skb->dev = dev;
2653 skb->priority = sk->sk_priority;
2654 skb->mark = sk->sk_mark;
2655
2656 packet_pick_tx_queue(dev, skb);
2657
2658 if (po->has_vnet_hdr) {
2659 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2660 u16 s = __virtio16_to_cpu(false, vnet_hdr.csum_start);
2661 u16 o = __virtio16_to_cpu(false, vnet_hdr.csum_offset);
2662 if (!skb_partial_csum_set(skb, s, o)) {
2663 err = -EINVAL;
2664 goto out_free;
2665 }
2666 }
2667
2668 skb_shinfo(skb)->gso_size =
2669 __virtio16_to_cpu(false, vnet_hdr.gso_size);
2670 skb_shinfo(skb)->gso_type = gso_type;
2671
2672 /* Header must be checked, and gso_segs computed. */
2673 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2674 skb_shinfo(skb)->gso_segs = 0;
2675
2676 len += vnet_hdr_len;
2677 }
2678
2679 if (!packet_use_direct_xmit(po))
2680 skb_probe_transport_header(skb, reserve);
2681 if (unlikely(extra_len == 4))
2682 skb->no_fcs = 1;
2683
2684 err = po->xmit(skb);
2685 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2686 goto out_unlock;
2687
2688 dev_put(dev);
2689
2690 return len;
2691
2692 out_free:
2693 kfree_skb(skb);
2694 out_unlock:
2695 if (dev)
2696 dev_put(dev);
2697 out:
2698 return err;
2699 }
2700
2701 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2702 {
2703 struct sock *sk = sock->sk;
2704 struct packet_sock *po = pkt_sk(sk);
2705
2706 if (po->tx_ring.pg_vec)
2707 return tpacket_snd(po, msg);
2708 else
2709 return packet_snd(sock, msg, len);
2710 }
2711
2712 /*
2713 * Close a PACKET socket. This is fairly simple. We immediately go
2714 * to 'closed' state and remove our protocol entry in the device list.
2715 */
2716
2717 static int packet_release(struct socket *sock)
2718 {
2719 struct sock *sk = sock->sk;
2720 struct packet_sock *po;
2721 struct net *net;
2722 union tpacket_req_u req_u;
2723
2724 if (!sk)
2725 return 0;
2726
2727 net = sock_net(sk);
2728 po = pkt_sk(sk);
2729
2730 mutex_lock(&net->packet.sklist_lock);
2731 sk_del_node_init_rcu(sk);
2732 mutex_unlock(&net->packet.sklist_lock);
2733
2734 preempt_disable();
2735 sock_prot_inuse_add(net, sk->sk_prot, -1);
2736 preempt_enable();
2737
2738 spin_lock(&po->bind_lock);
2739 unregister_prot_hook(sk, false);
2740 packet_cached_dev_reset(po);
2741
2742 if (po->prot_hook.dev) {
2743 dev_put(po->prot_hook.dev);
2744 po->prot_hook.dev = NULL;
2745 }
2746 spin_unlock(&po->bind_lock);
2747
2748 packet_flush_mclist(sk);
2749
2750 if (po->rx_ring.pg_vec) {
2751 memset(&req_u, 0, sizeof(req_u));
2752 packet_set_ring(sk, &req_u, 1, 0);
2753 }
2754
2755 if (po->tx_ring.pg_vec) {
2756 memset(&req_u, 0, sizeof(req_u));
2757 packet_set_ring(sk, &req_u, 1, 1);
2758 }
2759
2760 fanout_release(sk);
2761
2762 synchronize_net();
2763 /*
2764 * Now the socket is dead. No more input will appear.
2765 */
2766 sock_orphan(sk);
2767 sock->sk = NULL;
2768
2769 /* Purge queues */
2770
2771 skb_queue_purge(&sk->sk_receive_queue);
2772 packet_free_pending(po);
2773 sk_refcnt_debug_release(sk);
2774
2775 sock_put(sk);
2776 return 0;
2777 }
2778
2779 /*
2780 * Attach a packet hook.
2781 */
2782
2783 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2784 {
2785 struct packet_sock *po = pkt_sk(sk);
2786 struct net_device *dev_curr;
2787 __be16 proto_curr;
2788 bool need_rehook;
2789
2790 if (po->fanout) {
2791 if (dev)
2792 dev_put(dev);
2793
2794 return -EINVAL;
2795 }
2796
2797 lock_sock(sk);
2798 spin_lock(&po->bind_lock);
2799
2800 proto_curr = po->prot_hook.type;
2801 dev_curr = po->prot_hook.dev;
2802
2803 need_rehook = proto_curr != proto || dev_curr != dev;
2804
2805 if (need_rehook) {
2806 unregister_prot_hook(sk, true);
2807
2808 po->num = proto;
2809 po->prot_hook.type = proto;
2810 po->prot_hook.dev = dev;
2811
2812 po->ifindex = dev ? dev->ifindex : 0;
2813 packet_cached_dev_assign(po, dev);
2814 }
2815 if (dev_curr)
2816 dev_put(dev_curr);
2817
2818 if (proto == 0 || !need_rehook)
2819 goto out_unlock;
2820
2821 if (!dev || (dev->flags & IFF_UP)) {
2822 register_prot_hook(sk);
2823 } else {
2824 sk->sk_err = ENETDOWN;
2825 if (!sock_flag(sk, SOCK_DEAD))
2826 sk->sk_error_report(sk);
2827 }
2828
2829 out_unlock:
2830 spin_unlock(&po->bind_lock);
2831 release_sock(sk);
2832 return 0;
2833 }
2834
2835 /*
2836 * Bind a packet socket to a device
2837 */
2838
2839 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2840 int addr_len)
2841 {
2842 struct sock *sk = sock->sk;
2843 char name[15];
2844 struct net_device *dev;
2845 int err = -ENODEV;
2846
2847 /*
2848 * Check legality
2849 */
2850
2851 if (addr_len != sizeof(struct sockaddr))
2852 return -EINVAL;
2853 strlcpy(name, uaddr->sa_data, sizeof(name));
2854
2855 dev = dev_get_by_name(sock_net(sk), name);
2856 if (dev)
2857 err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2858 return err;
2859 }
2860
2861 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2862 {
2863 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2864 struct sock *sk = sock->sk;
2865 struct net_device *dev = NULL;
2866 int err;
2867
2868
2869 /*
2870 * Check legality
2871 */
2872
2873 if (addr_len < sizeof(struct sockaddr_ll))
2874 return -EINVAL;
2875 if (sll->sll_family != AF_PACKET)
2876 return -EINVAL;
2877
2878 if (sll->sll_ifindex) {
2879 err = -ENODEV;
2880 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2881 if (dev == NULL)
2882 goto out;
2883 }
2884 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2885
2886 out:
2887 return err;
2888 }
2889
2890 static struct proto packet_proto = {
2891 .name = "PACKET",
2892 .owner = THIS_MODULE,
2893 .obj_size = sizeof(struct packet_sock),
2894 };
2895
2896 /*
2897 * Create a packet of type SOCK_PACKET.
2898 */
2899
2900 static int packet_create(struct net *net, struct socket *sock, int protocol,
2901 int kern)
2902 {
2903 struct sock *sk;
2904 struct packet_sock *po;
2905 __be16 proto = (__force __be16)protocol; /* weird, but documented */
2906 int err;
2907
2908 if (!ns_capable(net->user_ns, CAP_NET_RAW))
2909 return -EPERM;
2910 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2911 sock->type != SOCK_PACKET)
2912 return -ESOCKTNOSUPPORT;
2913
2914 sock->state = SS_UNCONNECTED;
2915
2916 err = -ENOBUFS;
2917 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
2918 if (sk == NULL)
2919 goto out;
2920
2921 sock->ops = &packet_ops;
2922 if (sock->type == SOCK_PACKET)
2923 sock->ops = &packet_ops_spkt;
2924
2925 sock_init_data(sock, sk);
2926
2927 po = pkt_sk(sk);
2928 sk->sk_family = PF_PACKET;
2929 po->num = proto;
2930 po->xmit = dev_queue_xmit;
2931
2932 err = packet_alloc_pending(po);
2933 if (err)
2934 goto out2;
2935
2936 packet_cached_dev_reset(po);
2937
2938 sk->sk_destruct = packet_sock_destruct;
2939 sk_refcnt_debug_inc(sk);
2940
2941 /*
2942 * Attach a protocol block
2943 */
2944
2945 spin_lock_init(&po->bind_lock);
2946 mutex_init(&po->pg_vec_lock);
2947 po->rollover = NULL;
2948 po->prot_hook.func = packet_rcv;
2949
2950 if (sock->type == SOCK_PACKET)
2951 po->prot_hook.func = packet_rcv_spkt;
2952
2953 po->prot_hook.af_packet_priv = sk;
2954
2955 if (proto) {
2956 po->prot_hook.type = proto;
2957 register_prot_hook(sk);
2958 }
2959
2960 mutex_lock(&net->packet.sklist_lock);
2961 sk_add_node_rcu(sk, &net->packet.sklist);
2962 mutex_unlock(&net->packet.sklist_lock);
2963
2964 preempt_disable();
2965 sock_prot_inuse_add(net, &packet_proto, 1);
2966 preempt_enable();
2967
2968 return 0;
2969 out2:
2970 sk_free(sk);
2971 out:
2972 return err;
2973 }
2974
2975 /*
2976 * Pull a packet from our receive queue and hand it to the user.
2977 * If necessary we block.
2978 */
2979
2980 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2981 int flags)
2982 {
2983 struct sock *sk = sock->sk;
2984 struct sk_buff *skb;
2985 int copied, err;
2986 int vnet_hdr_len = 0;
2987 unsigned int origlen = 0;
2988
2989 err = -EINVAL;
2990 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2991 goto out;
2992
2993 #if 0
2994 /* What error should we return now? EUNATTACH? */
2995 if (pkt_sk(sk)->ifindex < 0)
2996 return -ENODEV;
2997 #endif
2998
2999 if (flags & MSG_ERRQUEUE) {
3000 err = sock_recv_errqueue(sk, msg, len,
3001 SOL_PACKET, PACKET_TX_TIMESTAMP);
3002 goto out;
3003 }
3004
3005 /*
3006 * Call the generic datagram receiver. This handles all sorts
3007 * of horrible races and re-entrancy so we can forget about it
3008 * in the protocol layers.
3009 *
3010 * Now it will return ENETDOWN, if device have just gone down,
3011 * but then it will block.
3012 */
3013
3014 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3015
3016 /*
3017 * An error occurred so return it. Because skb_recv_datagram()
3018 * handles the blocking we don't see and worry about blocking
3019 * retries.
3020 */
3021
3022 if (skb == NULL)
3023 goto out;
3024
3025 if (pkt_sk(sk)->pressure)
3026 packet_rcv_has_room(pkt_sk(sk), NULL);
3027
3028 if (pkt_sk(sk)->has_vnet_hdr) {
3029 struct virtio_net_hdr vnet_hdr = { 0 };
3030
3031 err = -EINVAL;
3032 vnet_hdr_len = sizeof(vnet_hdr);
3033 if (len < vnet_hdr_len)
3034 goto out_free;
3035
3036 len -= vnet_hdr_len;
3037
3038 if (skb_is_gso(skb)) {
3039 struct skb_shared_info *sinfo = skb_shinfo(skb);
3040
3041 /* This is a hint as to how much should be linear. */
3042 vnet_hdr.hdr_len =
3043 __cpu_to_virtio16(false, skb_headlen(skb));
3044 vnet_hdr.gso_size =
3045 __cpu_to_virtio16(false, sinfo->gso_size);
3046 if (sinfo->gso_type & SKB_GSO_TCPV4)
3047 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
3048 else if (sinfo->gso_type & SKB_GSO_TCPV6)
3049 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
3050 else if (sinfo->gso_type & SKB_GSO_UDP)
3051 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
3052 else if (sinfo->gso_type & SKB_GSO_FCOE)
3053 goto out_free;
3054 else
3055 BUG();
3056 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
3057 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
3058 } else
3059 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
3060
3061 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3062 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
3063 vnet_hdr.csum_start = __cpu_to_virtio16(false,
3064 skb_checksum_start_offset(skb));
3065 vnet_hdr.csum_offset = __cpu_to_virtio16(false,
3066 skb->csum_offset);
3067 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3068 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
3069 } /* else everything is zero */
3070
3071 err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len);
3072 if (err < 0)
3073 goto out_free;
3074 }
3075
3076 /* You lose any data beyond the buffer you gave. If it worries
3077 * a user program they can ask the device for its MTU
3078 * anyway.
3079 */
3080 copied = skb->len;
3081 if (copied > len) {
3082 copied = len;
3083 msg->msg_flags |= MSG_TRUNC;
3084 }
3085
3086 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3087 if (err)
3088 goto out_free;
3089
3090 if (sock->type != SOCK_PACKET) {
3091 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3092
3093 /* Original length was stored in sockaddr_ll fields */
3094 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3095 sll->sll_family = AF_PACKET;
3096 sll->sll_protocol = skb->protocol;
3097 }
3098
3099 sock_recv_ts_and_drops(msg, sk, skb);
3100
3101 if (msg->msg_name) {
3102 /* If the address length field is there to be filled
3103 * in, we fill it in now.
3104 */
3105 if (sock->type == SOCK_PACKET) {
3106 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3107 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3108 } else {
3109 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3110
3111 msg->msg_namelen = sll->sll_halen +
3112 offsetof(struct sockaddr_ll, sll_addr);
3113 }
3114 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3115 msg->msg_namelen);
3116 }
3117
3118 if (pkt_sk(sk)->auxdata) {
3119 struct tpacket_auxdata aux;
3120
3121 aux.tp_status = TP_STATUS_USER;
3122 if (skb->ip_summed == CHECKSUM_PARTIAL)
3123 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3124 else if (skb->pkt_type != PACKET_OUTGOING &&
3125 (skb->ip_summed == CHECKSUM_COMPLETE ||
3126 skb_csum_unnecessary(skb)))
3127 aux.tp_status |= TP_STATUS_CSUM_VALID;
3128
3129 aux.tp_len = origlen;
3130 aux.tp_snaplen = skb->len;
3131 aux.tp_mac = 0;
3132 aux.tp_net = skb_network_offset(skb);
3133 if (skb_vlan_tag_present(skb)) {
3134 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3135 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3136 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3137 } else {
3138 aux.tp_vlan_tci = 0;
3139 aux.tp_vlan_tpid = 0;
3140 }
3141 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3142 }
3143
3144 /*
3145 * Free or return the buffer as appropriate. Again this
3146 * hides all the races and re-entrancy issues from us.
3147 */
3148 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3149
3150 out_free:
3151 skb_free_datagram(sk, skb);
3152 out:
3153 return err;
3154 }
3155
3156 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3157 int *uaddr_len, int peer)
3158 {
3159 struct net_device *dev;
3160 struct sock *sk = sock->sk;
3161
3162 if (peer)
3163 return -EOPNOTSUPP;
3164
3165 uaddr->sa_family = AF_PACKET;
3166 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3167 rcu_read_lock();
3168 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3169 if (dev)
3170 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3171 rcu_read_unlock();
3172 *uaddr_len = sizeof(*uaddr);
3173
3174 return 0;
3175 }
3176
3177 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3178 int *uaddr_len, int peer)
3179 {
3180 struct net_device *dev;
3181 struct sock *sk = sock->sk;
3182 struct packet_sock *po = pkt_sk(sk);
3183 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3184
3185 if (peer)
3186 return -EOPNOTSUPP;
3187
3188 sll->sll_family = AF_PACKET;
3189 sll->sll_ifindex = po->ifindex;
3190 sll->sll_protocol = po->num;
3191 sll->sll_pkttype = 0;
3192 rcu_read_lock();
3193 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3194 if (dev) {
3195 sll->sll_hatype = dev->type;
3196 sll->sll_halen = dev->addr_len;
3197 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3198 } else {
3199 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3200 sll->sll_halen = 0;
3201 }
3202 rcu_read_unlock();
3203 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3204
3205 return 0;
3206 }
3207
3208 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3209 int what)
3210 {
3211 switch (i->type) {
3212 case PACKET_MR_MULTICAST:
3213 if (i->alen != dev->addr_len)
3214 return -EINVAL;
3215 if (what > 0)
3216 return dev_mc_add(dev, i->addr);
3217 else
3218 return dev_mc_del(dev, i->addr);
3219 break;
3220 case PACKET_MR_PROMISC:
3221 return dev_set_promiscuity(dev, what);
3222 case PACKET_MR_ALLMULTI:
3223 return dev_set_allmulti(dev, what);
3224 case PACKET_MR_UNICAST:
3225 if (i->alen != dev->addr_len)
3226 return -EINVAL;
3227 if (what > 0)
3228 return dev_uc_add(dev, i->addr);
3229 else
3230 return dev_uc_del(dev, i->addr);
3231 break;
3232 default:
3233 break;
3234 }
3235 return 0;
3236 }
3237
3238 static void packet_dev_mclist_delete(struct net_device *dev,
3239 struct packet_mclist **mlp)
3240 {
3241 struct packet_mclist *ml;
3242
3243 while ((ml = *mlp) != NULL) {
3244 if (ml->ifindex == dev->ifindex) {
3245 packet_dev_mc(dev, ml, -1);
3246 *mlp = ml->next;
3247 kfree(ml);
3248 } else
3249 mlp = &ml->next;
3250 }
3251 }
3252
3253 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3254 {
3255 struct packet_sock *po = pkt_sk(sk);
3256 struct packet_mclist *ml, *i;
3257 struct net_device *dev;
3258 int err;
3259
3260 rtnl_lock();
3261
3262 err = -ENODEV;
3263 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3264 if (!dev)
3265 goto done;
3266
3267 err = -EINVAL;
3268 if (mreq->mr_alen > dev->addr_len)
3269 goto done;
3270
3271 err = -ENOBUFS;
3272 i = kmalloc(sizeof(*i), GFP_KERNEL);
3273 if (i == NULL)
3274 goto done;
3275
3276 err = 0;
3277 for (ml = po->mclist; ml; ml = ml->next) {
3278 if (ml->ifindex == mreq->mr_ifindex &&
3279 ml->type == mreq->mr_type &&
3280 ml->alen == mreq->mr_alen &&
3281 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3282 ml->count++;
3283 /* Free the new element ... */
3284 kfree(i);
3285 goto done;
3286 }
3287 }
3288
3289 i->type = mreq->mr_type;
3290 i->ifindex = mreq->mr_ifindex;
3291 i->alen = mreq->mr_alen;
3292 memcpy(i->addr, mreq->mr_address, i->alen);
3293 i->count = 1;
3294 i->next = po->mclist;
3295 po->mclist = i;
3296 err = packet_dev_mc(dev, i, 1);
3297 if (err) {
3298 po->mclist = i->next;
3299 kfree(i);
3300 }
3301
3302 done:
3303 rtnl_unlock();
3304 return err;
3305 }
3306
3307 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3308 {
3309 struct packet_mclist *ml, **mlp;
3310
3311 rtnl_lock();
3312
3313 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3314 if (ml->ifindex == mreq->mr_ifindex &&
3315 ml->type == mreq->mr_type &&
3316 ml->alen == mreq->mr_alen &&
3317 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3318 if (--ml->count == 0) {
3319 struct net_device *dev;
3320 *mlp = ml->next;
3321 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3322 if (dev)
3323 packet_dev_mc(dev, ml, -1);
3324 kfree(ml);
3325 }
3326 break;
3327 }
3328 }
3329 rtnl_unlock();
3330 return 0;
3331 }
3332
3333 static void packet_flush_mclist(struct sock *sk)
3334 {
3335 struct packet_sock *po = pkt_sk(sk);
3336 struct packet_mclist *ml;
3337
3338 if (!po->mclist)
3339 return;
3340
3341 rtnl_lock();
3342 while ((ml = po->mclist) != NULL) {
3343 struct net_device *dev;
3344
3345 po->mclist = ml->next;
3346 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3347 if (dev != NULL)
3348 packet_dev_mc(dev, ml, -1);
3349 kfree(ml);
3350 }
3351 rtnl_unlock();
3352 }
3353
3354 static int
3355 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3356 {
3357 struct sock *sk = sock->sk;
3358 struct packet_sock *po = pkt_sk(sk);
3359 int ret;
3360
3361 if (level != SOL_PACKET)
3362 return -ENOPROTOOPT;
3363
3364 switch (optname) {
3365 case PACKET_ADD_MEMBERSHIP:
3366 case PACKET_DROP_MEMBERSHIP:
3367 {
3368 struct packet_mreq_max mreq;
3369 int len = optlen;
3370 memset(&mreq, 0, sizeof(mreq));
3371 if (len < sizeof(struct packet_mreq))
3372 return -EINVAL;
3373 if (len > sizeof(mreq))
3374 len = sizeof(mreq);
3375 if (copy_from_user(&mreq, optval, len))
3376 return -EFAULT;
3377 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3378 return -EINVAL;
3379 if (optname == PACKET_ADD_MEMBERSHIP)
3380 ret = packet_mc_add(sk, &mreq);
3381 else
3382 ret = packet_mc_drop(sk, &mreq);
3383 return ret;
3384 }
3385
3386 case PACKET_RX_RING:
3387 case PACKET_TX_RING:
3388 {
3389 union tpacket_req_u req_u;
3390 int len;
3391
3392 switch (po->tp_version) {
3393 case TPACKET_V1:
3394 case TPACKET_V2:
3395 len = sizeof(req_u.req);
3396 break;
3397 case TPACKET_V3:
3398 default:
3399 len = sizeof(req_u.req3);
3400 break;
3401 }
3402 if (optlen < len)
3403 return -EINVAL;
3404 if (pkt_sk(sk)->has_vnet_hdr)
3405 return -EINVAL;
3406 if (copy_from_user(&req_u.req, optval, len))
3407 return -EFAULT;
3408 return packet_set_ring(sk, &req_u, 0,
3409 optname == PACKET_TX_RING);
3410 }
3411 case PACKET_COPY_THRESH:
3412 {
3413 int val;
3414
3415 if (optlen != sizeof(val))
3416 return -EINVAL;
3417 if (copy_from_user(&val, optval, sizeof(val)))
3418 return -EFAULT;
3419
3420 pkt_sk(sk)->copy_thresh = val;
3421 return 0;
3422 }
3423 case PACKET_VERSION:
3424 {
3425 int val;
3426
3427 if (optlen != sizeof(val))
3428 return -EINVAL;
3429 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3430 return -EBUSY;
3431 if (copy_from_user(&val, optval, sizeof(val)))
3432 return -EFAULT;
3433 switch (val) {
3434 case TPACKET_V1:
3435 case TPACKET_V2:
3436 case TPACKET_V3:
3437 po->tp_version = val;
3438 return 0;
3439 default:
3440 return -EINVAL;
3441 }
3442 }
3443 case PACKET_RESERVE:
3444 {
3445 unsigned int val;
3446
3447 if (optlen != sizeof(val))
3448 return -EINVAL;
3449 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3450 return -EBUSY;
3451 if (copy_from_user(&val, optval, sizeof(val)))
3452 return -EFAULT;
3453 po->tp_reserve = val;
3454 return 0;
3455 }
3456 case PACKET_LOSS:
3457 {
3458 unsigned int val;
3459
3460 if (optlen != sizeof(val))
3461 return -EINVAL;
3462 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3463 return -EBUSY;
3464 if (copy_from_user(&val, optval, sizeof(val)))
3465 return -EFAULT;
3466 po->tp_loss = !!val;
3467 return 0;
3468 }
3469 case PACKET_AUXDATA:
3470 {
3471 int val;
3472
3473 if (optlen < sizeof(val))
3474 return -EINVAL;
3475 if (copy_from_user(&val, optval, sizeof(val)))
3476 return -EFAULT;
3477
3478 po->auxdata = !!val;
3479 return 0;
3480 }
3481 case PACKET_ORIGDEV:
3482 {
3483 int val;
3484
3485 if (optlen < sizeof(val))
3486 return -EINVAL;
3487 if (copy_from_user(&val, optval, sizeof(val)))
3488 return -EFAULT;
3489
3490 po->origdev = !!val;
3491 return 0;
3492 }
3493 case PACKET_VNET_HDR:
3494 {
3495 int val;
3496
3497 if (sock->type != SOCK_RAW)
3498 return -EINVAL;
3499 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3500 return -EBUSY;
3501 if (optlen < sizeof(val))
3502 return -EINVAL;
3503 if (copy_from_user(&val, optval, sizeof(val)))
3504 return -EFAULT;
3505
3506 po->has_vnet_hdr = !!val;
3507 return 0;
3508 }
3509 case PACKET_TIMESTAMP:
3510 {
3511 int val;
3512
3513 if (optlen != sizeof(val))
3514 return -EINVAL;
3515 if (copy_from_user(&val, optval, sizeof(val)))
3516 return -EFAULT;
3517
3518 po->tp_tstamp = val;
3519 return 0;
3520 }
3521 case PACKET_FANOUT:
3522 {
3523 int val;
3524
3525 if (optlen != sizeof(val))
3526 return -EINVAL;
3527 if (copy_from_user(&val, optval, sizeof(val)))
3528 return -EFAULT;
3529
3530 return fanout_add(sk, val & 0xffff, val >> 16);
3531 }
3532 case PACKET_TX_HAS_OFF:
3533 {
3534 unsigned int val;
3535
3536 if (optlen != sizeof(val))
3537 return -EINVAL;
3538 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3539 return -EBUSY;
3540 if (copy_from_user(&val, optval, sizeof(val)))
3541 return -EFAULT;
3542 po->tp_tx_has_off = !!val;
3543 return 0;
3544 }
3545 case PACKET_QDISC_BYPASS:
3546 {
3547 int val;
3548
3549 if (optlen != sizeof(val))
3550 return -EINVAL;
3551 if (copy_from_user(&val, optval, sizeof(val)))
3552 return -EFAULT;
3553
3554 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3555 return 0;
3556 }
3557 default:
3558 return -ENOPROTOOPT;
3559 }
3560 }
3561
3562 static int packet_getsockopt(struct socket *sock, int level, int optname,
3563 char __user *optval, int __user *optlen)
3564 {
3565 int len;
3566 int val, lv = sizeof(val);
3567 struct sock *sk = sock->sk;
3568 struct packet_sock *po = pkt_sk(sk);
3569 void *data = &val;
3570 union tpacket_stats_u st;
3571 struct tpacket_rollover_stats rstats;
3572
3573 if (level != SOL_PACKET)
3574 return -ENOPROTOOPT;
3575
3576 if (get_user(len, optlen))
3577 return -EFAULT;
3578
3579 if (len < 0)
3580 return -EINVAL;
3581
3582 switch (optname) {
3583 case PACKET_STATISTICS:
3584 spin_lock_bh(&sk->sk_receive_queue.lock);
3585 memcpy(&st, &po->stats, sizeof(st));
3586 memset(&po->stats, 0, sizeof(po->stats));
3587 spin_unlock_bh(&sk->sk_receive_queue.lock);
3588
3589 if (po->tp_version == TPACKET_V3) {
3590 lv = sizeof(struct tpacket_stats_v3);
3591 st.stats3.tp_packets += st.stats3.tp_drops;
3592 data = &st.stats3;
3593 } else {
3594 lv = sizeof(struct tpacket_stats);
3595 st.stats1.tp_packets += st.stats1.tp_drops;
3596 data = &st.stats1;
3597 }
3598
3599 break;
3600 case PACKET_AUXDATA:
3601 val = po->auxdata;
3602 break;
3603 case PACKET_ORIGDEV:
3604 val = po->origdev;
3605 break;
3606 case PACKET_VNET_HDR:
3607 val = po->has_vnet_hdr;
3608 break;
3609 case PACKET_VERSION:
3610 val = po->tp_version;
3611 break;
3612 case PACKET_HDRLEN:
3613 if (len > sizeof(int))
3614 len = sizeof(int);
3615 if (copy_from_user(&val, optval, len))
3616 return -EFAULT;
3617 switch (val) {
3618 case TPACKET_V1:
3619 val = sizeof(struct tpacket_hdr);
3620 break;
3621 case TPACKET_V2:
3622 val = sizeof(struct tpacket2_hdr);
3623 break;
3624 case TPACKET_V3:
3625 val = sizeof(struct tpacket3_hdr);
3626 break;
3627 default:
3628 return -EINVAL;
3629 }
3630 break;
3631 case PACKET_RESERVE:
3632 val = po->tp_reserve;
3633 break;
3634 case PACKET_LOSS:
3635 val = po->tp_loss;
3636 break;
3637 case PACKET_TIMESTAMP:
3638 val = po->tp_tstamp;
3639 break;
3640 case PACKET_FANOUT:
3641 val = (po->fanout ?
3642 ((u32)po->fanout->id |
3643 ((u32)po->fanout->type << 16) |
3644 ((u32)po->fanout->flags << 24)) :
3645 0);
3646 break;
3647 case PACKET_ROLLOVER_STATS:
3648 if (!po->rollover)
3649 return -EINVAL;
3650 rstats.tp_all = atomic_long_read(&po->rollover->num);
3651 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3652 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3653 data = &rstats;
3654 lv = sizeof(rstats);
3655 break;
3656 case PACKET_TX_HAS_OFF:
3657 val = po->tp_tx_has_off;
3658 break;
3659 case PACKET_QDISC_BYPASS:
3660 val = packet_use_direct_xmit(po);
3661 break;
3662 default:
3663 return -ENOPROTOOPT;
3664 }
3665
3666 if (len > lv)
3667 len = lv;
3668 if (put_user(len, optlen))
3669 return -EFAULT;
3670 if (copy_to_user(optval, data, len))
3671 return -EFAULT;
3672 return 0;
3673 }
3674
3675
3676 static int packet_notifier(struct notifier_block *this,
3677 unsigned long msg, void *ptr)
3678 {
3679 struct sock *sk;
3680 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3681 struct net *net = dev_net(dev);
3682
3683 rcu_read_lock();
3684 sk_for_each_rcu(sk, &net->packet.sklist) {
3685 struct packet_sock *po = pkt_sk(sk);
3686
3687 switch (msg) {
3688 case NETDEV_UNREGISTER:
3689 if (po->mclist)
3690 packet_dev_mclist_delete(dev, &po->mclist);
3691 /* fallthrough */
3692
3693 case NETDEV_DOWN:
3694 if (dev->ifindex == po->ifindex) {
3695 spin_lock(&po->bind_lock);
3696 if (po->running) {
3697 __unregister_prot_hook(sk, false);
3698 sk->sk_err = ENETDOWN;
3699 if (!sock_flag(sk, SOCK_DEAD))
3700 sk->sk_error_report(sk);
3701 }
3702 if (msg == NETDEV_UNREGISTER) {
3703 packet_cached_dev_reset(po);
3704 po->ifindex = -1;
3705 if (po->prot_hook.dev)
3706 dev_put(po->prot_hook.dev);
3707 po->prot_hook.dev = NULL;
3708 }
3709 spin_unlock(&po->bind_lock);
3710 }
3711 break;
3712 case NETDEV_UP:
3713 if (dev->ifindex == po->ifindex) {
3714 spin_lock(&po->bind_lock);
3715 if (po->num)
3716 register_prot_hook(sk);
3717 spin_unlock(&po->bind_lock);
3718 }
3719 break;
3720 }
3721 }
3722 rcu_read_unlock();
3723 return NOTIFY_DONE;
3724 }
3725
3726
3727 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3728 unsigned long arg)
3729 {
3730 struct sock *sk = sock->sk;
3731
3732 switch (cmd) {
3733 case SIOCOUTQ:
3734 {
3735 int amount = sk_wmem_alloc_get(sk);
3736
3737 return put_user(amount, (int __user *)arg);
3738 }
3739 case SIOCINQ:
3740 {
3741 struct sk_buff *skb;
3742 int amount = 0;
3743
3744 spin_lock_bh(&sk->sk_receive_queue.lock);
3745 skb = skb_peek(&sk->sk_receive_queue);
3746 if (skb)
3747 amount = skb->len;
3748 spin_unlock_bh(&sk->sk_receive_queue.lock);
3749 return put_user(amount, (int __user *)arg);
3750 }
3751 case SIOCGSTAMP:
3752 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3753 case SIOCGSTAMPNS:
3754 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3755
3756 #ifdef CONFIG_INET
3757 case SIOCADDRT:
3758 case SIOCDELRT:
3759 case SIOCDARP:
3760 case SIOCGARP:
3761 case SIOCSARP:
3762 case SIOCGIFADDR:
3763 case SIOCSIFADDR:
3764 case SIOCGIFBRDADDR:
3765 case SIOCSIFBRDADDR:
3766 case SIOCGIFNETMASK:
3767 case SIOCSIFNETMASK:
3768 case SIOCGIFDSTADDR:
3769 case SIOCSIFDSTADDR:
3770 case SIOCSIFFLAGS:
3771 return inet_dgram_ops.ioctl(sock, cmd, arg);
3772 #endif
3773
3774 default:
3775 return -ENOIOCTLCMD;
3776 }
3777 return 0;
3778 }
3779
3780 static unsigned int packet_poll(struct file *file, struct socket *sock,
3781 poll_table *wait)
3782 {
3783 struct sock *sk = sock->sk;
3784 struct packet_sock *po = pkt_sk(sk);
3785 unsigned int mask = datagram_poll(file, sock, wait);
3786
3787 spin_lock_bh(&sk->sk_receive_queue.lock);
3788 if (po->rx_ring.pg_vec) {
3789 if (!packet_previous_rx_frame(po, &po->rx_ring,
3790 TP_STATUS_KERNEL))
3791 mask |= POLLIN | POLLRDNORM;
3792 }
3793 if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
3794 po->pressure = 0;
3795 spin_unlock_bh(&sk->sk_receive_queue.lock);
3796 spin_lock_bh(&sk->sk_write_queue.lock);
3797 if (po->tx_ring.pg_vec) {
3798 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3799 mask |= POLLOUT | POLLWRNORM;
3800 }
3801 spin_unlock_bh(&sk->sk_write_queue.lock);
3802 return mask;
3803 }
3804
3805
3806 /* Dirty? Well, I still did not learn better way to account
3807 * for user mmaps.
3808 */
3809
3810 static void packet_mm_open(struct vm_area_struct *vma)
3811 {
3812 struct file *file = vma->vm_file;
3813 struct socket *sock = file->private_data;
3814 struct sock *sk = sock->sk;
3815
3816 if (sk)
3817 atomic_inc(&pkt_sk(sk)->mapped);
3818 }
3819
3820 static void packet_mm_close(struct vm_area_struct *vma)
3821 {
3822 struct file *file = vma->vm_file;
3823 struct socket *sock = file->private_data;
3824 struct sock *sk = sock->sk;
3825
3826 if (sk)
3827 atomic_dec(&pkt_sk(sk)->mapped);
3828 }
3829
3830 static const struct vm_operations_struct packet_mmap_ops = {
3831 .open = packet_mm_open,
3832 .close = packet_mm_close,
3833 };
3834
3835 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3836 unsigned int len)
3837 {
3838 int i;
3839
3840 for (i = 0; i < len; i++) {
3841 if (likely(pg_vec[i].buffer)) {
3842 if (is_vmalloc_addr(pg_vec[i].buffer))
3843 vfree(pg_vec[i].buffer);
3844 else
3845 free_pages((unsigned long)pg_vec[i].buffer,
3846 order);
3847 pg_vec[i].buffer = NULL;
3848 }
3849 }
3850 kfree(pg_vec);
3851 }
3852
3853 static char *alloc_one_pg_vec_page(unsigned long order)
3854 {
3855 char *buffer;
3856 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3857 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3858
3859 buffer = (char *) __get_free_pages(gfp_flags, order);
3860 if (buffer)
3861 return buffer;
3862
3863 /* __get_free_pages failed, fall back to vmalloc */
3864 buffer = vzalloc((1 << order) * PAGE_SIZE);
3865 if (buffer)
3866 return buffer;
3867
3868 /* vmalloc failed, lets dig into swap here */
3869 gfp_flags &= ~__GFP_NORETRY;
3870 buffer = (char *) __get_free_pages(gfp_flags, order);
3871 if (buffer)
3872 return buffer;
3873
3874 /* complete and utter failure */
3875 return NULL;
3876 }
3877
3878 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3879 {
3880 unsigned int block_nr = req->tp_block_nr;
3881 struct pgv *pg_vec;
3882 int i;
3883
3884 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3885 if (unlikely(!pg_vec))
3886 goto out;
3887
3888 for (i = 0; i < block_nr; i++) {
3889 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3890 if (unlikely(!pg_vec[i].buffer))
3891 goto out_free_pgvec;
3892 }
3893
3894 out:
3895 return pg_vec;
3896
3897 out_free_pgvec:
3898 free_pg_vec(pg_vec, order, block_nr);
3899 pg_vec = NULL;
3900 goto out;
3901 }
3902
3903 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3904 int closing, int tx_ring)
3905 {
3906 struct pgv *pg_vec = NULL;
3907 struct packet_sock *po = pkt_sk(sk);
3908 int was_running, order = 0;
3909 struct packet_ring_buffer *rb;
3910 struct sk_buff_head *rb_queue;
3911 __be16 num;
3912 int err = -EINVAL;
3913 /* Added to avoid minimal code churn */
3914 struct tpacket_req *req = &req_u->req;
3915
3916 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3917 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3918 WARN(1, "Tx-ring is not supported.\n");
3919 goto out;
3920 }
3921
3922 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3923 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3924
3925 err = -EBUSY;
3926 if (!closing) {
3927 if (atomic_read(&po->mapped))
3928 goto out;
3929 if (packet_read_pending(rb))
3930 goto out;
3931 }
3932
3933 if (req->tp_block_nr) {
3934 /* Sanity tests and some calculations */
3935 err = -EBUSY;
3936 if (unlikely(rb->pg_vec))
3937 goto out;
3938
3939 switch (po->tp_version) {
3940 case TPACKET_V1:
3941 po->tp_hdrlen = TPACKET_HDRLEN;
3942 break;
3943 case TPACKET_V2:
3944 po->tp_hdrlen = TPACKET2_HDRLEN;
3945 break;
3946 case TPACKET_V3:
3947 po->tp_hdrlen = TPACKET3_HDRLEN;
3948 break;
3949 }
3950
3951 err = -EINVAL;
3952 if (unlikely((int)req->tp_block_size <= 0))
3953 goto out;
3954 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3955 goto out;
3956 if (po->tp_version >= TPACKET_V3 &&
3957 (int)(req->tp_block_size -
3958 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
3959 goto out;
3960 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3961 po->tp_reserve))
3962 goto out;
3963 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3964 goto out;
3965
3966 rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3967 if (unlikely(rb->frames_per_block <= 0))
3968 goto out;
3969 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3970 req->tp_frame_nr))
3971 goto out;
3972
3973 err = -ENOMEM;
3974 order = get_order(req->tp_block_size);
3975 pg_vec = alloc_pg_vec(req, order);
3976 if (unlikely(!pg_vec))
3977 goto out;
3978 switch (po->tp_version) {
3979 case TPACKET_V3:
3980 /* Transmit path is not supported. We checked
3981 * it above but just being paranoid
3982 */
3983 if (!tx_ring)
3984 init_prb_bdqc(po, rb, pg_vec, req_u);
3985 break;
3986 default:
3987 break;
3988 }
3989 }
3990 /* Done */
3991 else {
3992 err = -EINVAL;
3993 if (unlikely(req->tp_frame_nr))
3994 goto out;
3995 }
3996
3997 lock_sock(sk);
3998
3999 /* Detach socket from network */
4000 spin_lock(&po->bind_lock);
4001 was_running = po->running;
4002 num = po->num;
4003 if (was_running) {
4004 po->num = 0;
4005 __unregister_prot_hook(sk, false);
4006 }
4007 spin_unlock(&po->bind_lock);
4008
4009 synchronize_net();
4010
4011 err = -EBUSY;
4012 mutex_lock(&po->pg_vec_lock);
4013 if (closing || atomic_read(&po->mapped) == 0) {
4014 err = 0;
4015 spin_lock_bh(&rb_queue->lock);
4016 swap(rb->pg_vec, pg_vec);
4017 rb->frame_max = (req->tp_frame_nr - 1);
4018 rb->head = 0;
4019 rb->frame_size = req->tp_frame_size;
4020 spin_unlock_bh(&rb_queue->lock);
4021
4022 swap(rb->pg_vec_order, order);
4023 swap(rb->pg_vec_len, req->tp_block_nr);
4024
4025 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4026 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4027 tpacket_rcv : packet_rcv;
4028 skb_queue_purge(rb_queue);
4029 if (atomic_read(&po->mapped))
4030 pr_err("packet_mmap: vma is busy: %d\n",
4031 atomic_read(&po->mapped));
4032 }
4033 mutex_unlock(&po->pg_vec_lock);
4034
4035 spin_lock(&po->bind_lock);
4036 if (was_running) {
4037 po->num = num;
4038 register_prot_hook(sk);
4039 }
4040 spin_unlock(&po->bind_lock);
4041 if (closing && (po->tp_version > TPACKET_V2)) {
4042 /* Because we don't support block-based V3 on tx-ring */
4043 if (!tx_ring)
4044 prb_shutdown_retire_blk_timer(po, rb_queue);
4045 }
4046 release_sock(sk);
4047
4048 if (pg_vec)
4049 free_pg_vec(pg_vec, order, req->tp_block_nr);
4050 out:
4051 return err;
4052 }
4053
4054 static int packet_mmap(struct file *file, struct socket *sock,
4055 struct vm_area_struct *vma)
4056 {
4057 struct sock *sk = sock->sk;
4058 struct packet_sock *po = pkt_sk(sk);
4059 unsigned long size, expected_size;
4060 struct packet_ring_buffer *rb;
4061 unsigned long start;
4062 int err = -EINVAL;
4063 int i;
4064
4065 if (vma->vm_pgoff)
4066 return -EINVAL;
4067
4068 mutex_lock(&po->pg_vec_lock);
4069
4070 expected_size = 0;
4071 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4072 if (rb->pg_vec) {
4073 expected_size += rb->pg_vec_len
4074 * rb->pg_vec_pages
4075 * PAGE_SIZE;
4076 }
4077 }
4078
4079 if (expected_size == 0)
4080 goto out;
4081
4082 size = vma->vm_end - vma->vm_start;
4083 if (size != expected_size)
4084 goto out;
4085
4086 start = vma->vm_start;
4087 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4088 if (rb->pg_vec == NULL)
4089 continue;
4090
4091 for (i = 0; i < rb->pg_vec_len; i++) {
4092 struct page *page;
4093 void *kaddr = rb->pg_vec[i].buffer;
4094 int pg_num;
4095
4096 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4097 page = pgv_to_page(kaddr);
4098 err = vm_insert_page(vma, start, page);
4099 if (unlikely(err))
4100 goto out;
4101 start += PAGE_SIZE;
4102 kaddr += PAGE_SIZE;
4103 }
4104 }
4105 }
4106
4107 atomic_inc(&po->mapped);
4108 vma->vm_ops = &packet_mmap_ops;
4109 err = 0;
4110
4111 out:
4112 mutex_unlock(&po->pg_vec_lock);
4113 return err;
4114 }
4115
4116 static const struct proto_ops packet_ops_spkt = {
4117 .family = PF_PACKET,
4118 .owner = THIS_MODULE,
4119 .release = packet_release,
4120 .bind = packet_bind_spkt,
4121 .connect = sock_no_connect,
4122 .socketpair = sock_no_socketpair,
4123 .accept = sock_no_accept,
4124 .getname = packet_getname_spkt,
4125 .poll = datagram_poll,
4126 .ioctl = packet_ioctl,
4127 .listen = sock_no_listen,
4128 .shutdown = sock_no_shutdown,
4129 .setsockopt = sock_no_setsockopt,
4130 .getsockopt = sock_no_getsockopt,
4131 .sendmsg = packet_sendmsg_spkt,
4132 .recvmsg = packet_recvmsg,
4133 .mmap = sock_no_mmap,
4134 .sendpage = sock_no_sendpage,
4135 };
4136
4137 static const struct proto_ops packet_ops = {
4138 .family = PF_PACKET,
4139 .owner = THIS_MODULE,
4140 .release = packet_release,
4141 .bind = packet_bind,
4142 .connect = sock_no_connect,
4143 .socketpair = sock_no_socketpair,
4144 .accept = sock_no_accept,
4145 .getname = packet_getname,
4146 .poll = packet_poll,
4147 .ioctl = packet_ioctl,
4148 .listen = sock_no_listen,
4149 .shutdown = sock_no_shutdown,
4150 .setsockopt = packet_setsockopt,
4151 .getsockopt = packet_getsockopt,
4152 .sendmsg = packet_sendmsg,
4153 .recvmsg = packet_recvmsg,
4154 .mmap = packet_mmap,
4155 .sendpage = sock_no_sendpage,
4156 };
4157
4158 static const struct net_proto_family packet_family_ops = {
4159 .family = PF_PACKET,
4160 .create = packet_create,
4161 .owner = THIS_MODULE,
4162 };
4163
4164 static struct notifier_block packet_netdev_notifier = {
4165 .notifier_call = packet_notifier,
4166 };
4167
4168 #ifdef CONFIG_PROC_FS
4169
4170 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4171 __acquires(RCU)
4172 {
4173 struct net *net = seq_file_net(seq);
4174
4175 rcu_read_lock();
4176 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4177 }
4178
4179 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4180 {
4181 struct net *net = seq_file_net(seq);
4182 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4183 }
4184
4185 static void packet_seq_stop(struct seq_file *seq, void *v)
4186 __releases(RCU)
4187 {
4188 rcu_read_unlock();
4189 }
4190
4191 static int packet_seq_show(struct seq_file *seq, void *v)
4192 {
4193 if (v == SEQ_START_TOKEN)
4194 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4195 else {
4196 struct sock *s = sk_entry(v);
4197 const struct packet_sock *po = pkt_sk(s);
4198
4199 seq_printf(seq,
4200 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4201 s,
4202 atomic_read(&s->sk_refcnt),
4203 s->sk_type,
4204 ntohs(po->num),
4205 po->ifindex,
4206 po->running,
4207 atomic_read(&s->sk_rmem_alloc),
4208 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4209 sock_i_ino(s));
4210 }
4211
4212 return 0;
4213 }
4214
4215 static const struct seq_operations packet_seq_ops = {
4216 .start = packet_seq_start,
4217 .next = packet_seq_next,
4218 .stop = packet_seq_stop,
4219 .show = packet_seq_show,
4220 };
4221
4222 static int packet_seq_open(struct inode *inode, struct file *file)
4223 {
4224 return seq_open_net(inode, file, &packet_seq_ops,
4225 sizeof(struct seq_net_private));
4226 }
4227
4228 static const struct file_operations packet_seq_fops = {
4229 .owner = THIS_MODULE,
4230 .open = packet_seq_open,
4231 .read = seq_read,
4232 .llseek = seq_lseek,
4233 .release = seq_release_net,
4234 };
4235
4236 #endif
4237
4238 static int __net_init packet_net_init(struct net *net)
4239 {
4240 mutex_init(&net->packet.sklist_lock);
4241 INIT_HLIST_HEAD(&net->packet.sklist);
4242
4243 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4244 return -ENOMEM;
4245
4246 return 0;
4247 }
4248
4249 static void __net_exit packet_net_exit(struct net *net)
4250 {
4251 remove_proc_entry("packet", net->proc_net);
4252 }
4253
4254 static struct pernet_operations packet_net_ops = {
4255 .init = packet_net_init,
4256 .exit = packet_net_exit,
4257 };
4258
4259
4260 static void __exit packet_exit(void)
4261 {
4262 unregister_netdevice_notifier(&packet_netdev_notifier);
4263 unregister_pernet_subsys(&packet_net_ops);
4264 sock_unregister(PF_PACKET);
4265 proto_unregister(&packet_proto);
4266 }
4267
4268 static int __init packet_init(void)
4269 {
4270 int rc = proto_register(&packet_proto, 0);
4271
4272 if (rc != 0)
4273 goto out;
4274
4275 sock_register(&packet_family_ops);
4276 register_pernet_subsys(&packet_net_ops);
4277 register_netdevice_notifier(&packet_netdev_notifier);
4278 out:
4279 return rc;
4280 }
4281
4282 module_init(packet_init);
4283 module_exit(packet_exit);
4284 MODULE_LICENSE("GPL");
4285 MODULE_ALIAS_NETPROTO(PF_PACKET);
This page took 0.114813 seconds and 6 git commands to generate.