cpufreq: conservative: Update sample_delay_ns immediately
[deliverable/linux.git] / net / rds / ib_rdma.c
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 #include <linux/llist.h>
37
38 #include "rds.h"
39 #include "ib.h"
40
41 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
42 #define CLEAN_LIST_BUSY_BIT 0
43
44 /*
45 * This is stored as mr->r_trans_private.
46 */
47 struct rds_ib_mr {
48 struct rds_ib_device *device;
49 struct rds_ib_mr_pool *pool;
50 struct ib_fmr *fmr;
51
52 struct llist_node llnode;
53
54 /* unmap_list is for freeing */
55 struct list_head unmap_list;
56 unsigned int remap_count;
57
58 struct scatterlist *sg;
59 unsigned int sg_len;
60 u64 *dma;
61 int sg_dma_len;
62 };
63
64 /*
65 * Our own little FMR pool
66 */
67 struct rds_ib_mr_pool {
68 unsigned int pool_type;
69 struct mutex flush_lock; /* serialize fmr invalidate */
70 struct delayed_work flush_worker; /* flush worker */
71
72 atomic_t item_count; /* total # of MRs */
73 atomic_t dirty_count; /* # dirty of MRs */
74
75 struct llist_head drop_list; /* MRs that have reached their max_maps limit */
76 struct llist_head free_list; /* unused MRs */
77 struct llist_head clean_list; /* global unused & unamapped MRs */
78 wait_queue_head_t flush_wait;
79
80 atomic_t free_pinned; /* memory pinned by free MRs */
81 unsigned long max_items;
82 unsigned long max_items_soft;
83 unsigned long max_free_pinned;
84 struct ib_fmr_attr fmr_attr;
85 };
86
87 static struct workqueue_struct *rds_ib_fmr_wq;
88
89 int rds_ib_fmr_init(void)
90 {
91 rds_ib_fmr_wq = create_workqueue("rds_fmr_flushd");
92 if (!rds_ib_fmr_wq)
93 return -ENOMEM;
94 return 0;
95 }
96
97 /* By the time this is called all the IB devices should have been torn down and
98 * had their pools freed. As each pool is freed its work struct is waited on,
99 * so the pool flushing work queue should be idle by the time we get here.
100 */
101 void rds_ib_fmr_exit(void)
102 {
103 destroy_workqueue(rds_ib_fmr_wq);
104 }
105
106 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
107 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
108 static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
109
110 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
111 {
112 struct rds_ib_device *rds_ibdev;
113 struct rds_ib_ipaddr *i_ipaddr;
114
115 rcu_read_lock();
116 list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
117 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
118 if (i_ipaddr->ipaddr == ipaddr) {
119 atomic_inc(&rds_ibdev->refcount);
120 rcu_read_unlock();
121 return rds_ibdev;
122 }
123 }
124 }
125 rcu_read_unlock();
126
127 return NULL;
128 }
129
130 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
131 {
132 struct rds_ib_ipaddr *i_ipaddr;
133
134 i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
135 if (!i_ipaddr)
136 return -ENOMEM;
137
138 i_ipaddr->ipaddr = ipaddr;
139
140 spin_lock_irq(&rds_ibdev->spinlock);
141 list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
142 spin_unlock_irq(&rds_ibdev->spinlock);
143
144 return 0;
145 }
146
147 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
148 {
149 struct rds_ib_ipaddr *i_ipaddr;
150 struct rds_ib_ipaddr *to_free = NULL;
151
152
153 spin_lock_irq(&rds_ibdev->spinlock);
154 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
155 if (i_ipaddr->ipaddr == ipaddr) {
156 list_del_rcu(&i_ipaddr->list);
157 to_free = i_ipaddr;
158 break;
159 }
160 }
161 spin_unlock_irq(&rds_ibdev->spinlock);
162
163 if (to_free)
164 kfree_rcu(to_free, rcu);
165 }
166
167 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
168 {
169 struct rds_ib_device *rds_ibdev_old;
170
171 rds_ibdev_old = rds_ib_get_device(ipaddr);
172 if (!rds_ibdev_old)
173 return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
174
175 if (rds_ibdev_old != rds_ibdev) {
176 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
177 rds_ib_dev_put(rds_ibdev_old);
178 return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
179 }
180 rds_ib_dev_put(rds_ibdev_old);
181
182 return 0;
183 }
184
185 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
186 {
187 struct rds_ib_connection *ic = conn->c_transport_data;
188
189 /* conn was previously on the nodev_conns_list */
190 spin_lock_irq(&ib_nodev_conns_lock);
191 BUG_ON(list_empty(&ib_nodev_conns));
192 BUG_ON(list_empty(&ic->ib_node));
193 list_del(&ic->ib_node);
194
195 spin_lock(&rds_ibdev->spinlock);
196 list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
197 spin_unlock(&rds_ibdev->spinlock);
198 spin_unlock_irq(&ib_nodev_conns_lock);
199
200 ic->rds_ibdev = rds_ibdev;
201 atomic_inc(&rds_ibdev->refcount);
202 }
203
204 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
205 {
206 struct rds_ib_connection *ic = conn->c_transport_data;
207
208 /* place conn on nodev_conns_list */
209 spin_lock(&ib_nodev_conns_lock);
210
211 spin_lock_irq(&rds_ibdev->spinlock);
212 BUG_ON(list_empty(&ic->ib_node));
213 list_del(&ic->ib_node);
214 spin_unlock_irq(&rds_ibdev->spinlock);
215
216 list_add_tail(&ic->ib_node, &ib_nodev_conns);
217
218 spin_unlock(&ib_nodev_conns_lock);
219
220 ic->rds_ibdev = NULL;
221 rds_ib_dev_put(rds_ibdev);
222 }
223
224 void rds_ib_destroy_nodev_conns(void)
225 {
226 struct rds_ib_connection *ic, *_ic;
227 LIST_HEAD(tmp_list);
228
229 /* avoid calling conn_destroy with irqs off */
230 spin_lock_irq(&ib_nodev_conns_lock);
231 list_splice(&ib_nodev_conns, &tmp_list);
232 spin_unlock_irq(&ib_nodev_conns_lock);
233
234 list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
235 rds_conn_destroy(ic->conn);
236 }
237
238 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev,
239 int pool_type)
240 {
241 struct rds_ib_mr_pool *pool;
242
243 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
244 if (!pool)
245 return ERR_PTR(-ENOMEM);
246
247 pool->pool_type = pool_type;
248 init_llist_head(&pool->free_list);
249 init_llist_head(&pool->drop_list);
250 init_llist_head(&pool->clean_list);
251 mutex_init(&pool->flush_lock);
252 init_waitqueue_head(&pool->flush_wait);
253 INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
254
255 if (pool_type == RDS_IB_MR_1M_POOL) {
256 /* +1 allows for unaligned MRs */
257 pool->fmr_attr.max_pages = RDS_FMR_1M_MSG_SIZE + 1;
258 pool->max_items = RDS_FMR_1M_POOL_SIZE;
259 } else {
260 /* pool_type == RDS_IB_MR_8K_POOL */
261 pool->fmr_attr.max_pages = RDS_FMR_8K_MSG_SIZE + 1;
262 pool->max_items = RDS_FMR_8K_POOL_SIZE;
263 }
264
265 pool->max_free_pinned = pool->max_items * pool->fmr_attr.max_pages / 4;
266 pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
267 pool->fmr_attr.page_shift = PAGE_SHIFT;
268 pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
269
270 return pool;
271 }
272
273 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
274 {
275 struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
276
277 iinfo->rdma_mr_max = pool_1m->max_items;
278 iinfo->rdma_mr_size = pool_1m->fmr_attr.max_pages;
279 }
280
281 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
282 {
283 cancel_delayed_work_sync(&pool->flush_worker);
284 rds_ib_flush_mr_pool(pool, 1, NULL);
285 WARN_ON(atomic_read(&pool->item_count));
286 WARN_ON(atomic_read(&pool->free_pinned));
287 kfree(pool);
288 }
289
290 static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
291 {
292 struct rds_ib_mr *ibmr = NULL;
293 struct llist_node *ret;
294 unsigned long *flag;
295
296 preempt_disable();
297 flag = this_cpu_ptr(&clean_list_grace);
298 set_bit(CLEAN_LIST_BUSY_BIT, flag);
299 ret = llist_del_first(&pool->clean_list);
300 if (ret)
301 ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
302
303 clear_bit(CLEAN_LIST_BUSY_BIT, flag);
304 preempt_enable();
305 return ibmr;
306 }
307
308 static inline void wait_clean_list_grace(void)
309 {
310 int cpu;
311 unsigned long *flag;
312
313 for_each_online_cpu(cpu) {
314 flag = &per_cpu(clean_list_grace, cpu);
315 while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
316 cpu_relax();
317 }
318 }
319
320 static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev,
321 int npages)
322 {
323 struct rds_ib_mr_pool *pool;
324 struct rds_ib_mr *ibmr = NULL;
325 int err = 0, iter = 0;
326
327 if (npages <= RDS_FMR_8K_MSG_SIZE)
328 pool = rds_ibdev->mr_8k_pool;
329 else
330 pool = rds_ibdev->mr_1m_pool;
331
332 if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
333 queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
334
335 /* Switch pools if one of the pool is reaching upper limit */
336 if (atomic_read(&pool->dirty_count) >= pool->max_items * 9 / 10) {
337 if (pool->pool_type == RDS_IB_MR_8K_POOL)
338 pool = rds_ibdev->mr_1m_pool;
339 else
340 pool = rds_ibdev->mr_8k_pool;
341 }
342
343 while (1) {
344 ibmr = rds_ib_reuse_fmr(pool);
345 if (ibmr)
346 return ibmr;
347
348 /* No clean MRs - now we have the choice of either
349 * allocating a fresh MR up to the limit imposed by the
350 * driver, or flush any dirty unused MRs.
351 * We try to avoid stalling in the send path if possible,
352 * so we allocate as long as we're allowed to.
353 *
354 * We're fussy with enforcing the FMR limit, though. If the driver
355 * tells us we can't use more than N fmrs, we shouldn't start
356 * arguing with it */
357 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
358 break;
359
360 atomic_dec(&pool->item_count);
361
362 if (++iter > 2) {
363 if (pool->pool_type == RDS_IB_MR_8K_POOL)
364 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted);
365 else
366 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted);
367 return ERR_PTR(-EAGAIN);
368 }
369
370 /* We do have some empty MRs. Flush them out. */
371 if (pool->pool_type == RDS_IB_MR_8K_POOL)
372 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait);
373 else
374 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait);
375 rds_ib_flush_mr_pool(pool, 0, &ibmr);
376 if (ibmr)
377 return ibmr;
378 }
379
380 ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
381 if (!ibmr) {
382 err = -ENOMEM;
383 goto out_no_cigar;
384 }
385
386 ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
387 (IB_ACCESS_LOCAL_WRITE |
388 IB_ACCESS_REMOTE_READ |
389 IB_ACCESS_REMOTE_WRITE|
390 IB_ACCESS_REMOTE_ATOMIC),
391 &pool->fmr_attr);
392 if (IS_ERR(ibmr->fmr)) {
393 err = PTR_ERR(ibmr->fmr);
394 ibmr->fmr = NULL;
395 printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
396 goto out_no_cigar;
397 }
398
399 ibmr->pool = pool;
400 if (pool->pool_type == RDS_IB_MR_8K_POOL)
401 rds_ib_stats_inc(s_ib_rdma_mr_8k_alloc);
402 else
403 rds_ib_stats_inc(s_ib_rdma_mr_1m_alloc);
404
405 return ibmr;
406
407 out_no_cigar:
408 if (ibmr) {
409 if (ibmr->fmr)
410 ib_dealloc_fmr(ibmr->fmr);
411 kfree(ibmr);
412 }
413 atomic_dec(&pool->item_count);
414 return ERR_PTR(err);
415 }
416
417 static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
418 struct scatterlist *sg, unsigned int nents)
419 {
420 struct ib_device *dev = rds_ibdev->dev;
421 struct scatterlist *scat = sg;
422 u64 io_addr = 0;
423 u64 *dma_pages;
424 u32 len;
425 int page_cnt, sg_dma_len;
426 int i, j;
427 int ret;
428
429 sg_dma_len = ib_dma_map_sg(dev, sg, nents,
430 DMA_BIDIRECTIONAL);
431 if (unlikely(!sg_dma_len)) {
432 printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
433 return -EBUSY;
434 }
435
436 len = 0;
437 page_cnt = 0;
438
439 for (i = 0; i < sg_dma_len; ++i) {
440 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
441 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
442
443 if (dma_addr & ~PAGE_MASK) {
444 if (i > 0)
445 return -EINVAL;
446 else
447 ++page_cnt;
448 }
449 if ((dma_addr + dma_len) & ~PAGE_MASK) {
450 if (i < sg_dma_len - 1)
451 return -EINVAL;
452 else
453 ++page_cnt;
454 }
455
456 len += dma_len;
457 }
458
459 page_cnt += len >> PAGE_SHIFT;
460 if (page_cnt > ibmr->pool->fmr_attr.max_pages)
461 return -EINVAL;
462
463 dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
464 rdsibdev_to_node(rds_ibdev));
465 if (!dma_pages)
466 return -ENOMEM;
467
468 page_cnt = 0;
469 for (i = 0; i < sg_dma_len; ++i) {
470 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
471 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
472
473 for (j = 0; j < dma_len; j += PAGE_SIZE)
474 dma_pages[page_cnt++] =
475 (dma_addr & PAGE_MASK) + j;
476 }
477
478 ret = ib_map_phys_fmr(ibmr->fmr,
479 dma_pages, page_cnt, io_addr);
480 if (ret)
481 goto out;
482
483 /* Success - we successfully remapped the MR, so we can
484 * safely tear down the old mapping. */
485 rds_ib_teardown_mr(ibmr);
486
487 ibmr->sg = scat;
488 ibmr->sg_len = nents;
489 ibmr->sg_dma_len = sg_dma_len;
490 ibmr->remap_count++;
491
492 if (ibmr->pool->pool_type == RDS_IB_MR_8K_POOL)
493 rds_ib_stats_inc(s_ib_rdma_mr_8k_used);
494 else
495 rds_ib_stats_inc(s_ib_rdma_mr_1m_used);
496 ret = 0;
497
498 out:
499 kfree(dma_pages);
500
501 return ret;
502 }
503
504 void rds_ib_sync_mr(void *trans_private, int direction)
505 {
506 struct rds_ib_mr *ibmr = trans_private;
507 struct rds_ib_device *rds_ibdev = ibmr->device;
508
509 switch (direction) {
510 case DMA_FROM_DEVICE:
511 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
512 ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
513 break;
514 case DMA_TO_DEVICE:
515 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
516 ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
517 break;
518 }
519 }
520
521 static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
522 {
523 struct rds_ib_device *rds_ibdev = ibmr->device;
524
525 if (ibmr->sg_dma_len) {
526 ib_dma_unmap_sg(rds_ibdev->dev,
527 ibmr->sg, ibmr->sg_len,
528 DMA_BIDIRECTIONAL);
529 ibmr->sg_dma_len = 0;
530 }
531
532 /* Release the s/g list */
533 if (ibmr->sg_len) {
534 unsigned int i;
535
536 for (i = 0; i < ibmr->sg_len; ++i) {
537 struct page *page = sg_page(&ibmr->sg[i]);
538
539 /* FIXME we need a way to tell a r/w MR
540 * from a r/o MR */
541 WARN_ON(!page->mapping && irqs_disabled());
542 set_page_dirty(page);
543 put_page(page);
544 }
545 kfree(ibmr->sg);
546
547 ibmr->sg = NULL;
548 ibmr->sg_len = 0;
549 }
550 }
551
552 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
553 {
554 unsigned int pinned = ibmr->sg_len;
555
556 __rds_ib_teardown_mr(ibmr);
557 if (pinned) {
558 struct rds_ib_mr_pool *pool = ibmr->pool;
559
560 atomic_sub(pinned, &pool->free_pinned);
561 }
562 }
563
564 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
565 {
566 unsigned int item_count;
567
568 item_count = atomic_read(&pool->item_count);
569 if (free_all)
570 return item_count;
571
572 return 0;
573 }
574
575 /*
576 * given an llist of mrs, put them all into the list_head for more processing
577 */
578 static unsigned int llist_append_to_list(struct llist_head *llist,
579 struct list_head *list)
580 {
581 struct rds_ib_mr *ibmr;
582 struct llist_node *node;
583 struct llist_node *next;
584 unsigned int count = 0;
585
586 node = llist_del_all(llist);
587 while (node) {
588 next = node->next;
589 ibmr = llist_entry(node, struct rds_ib_mr, llnode);
590 list_add_tail(&ibmr->unmap_list, list);
591 node = next;
592 count++;
593 }
594 return count;
595 }
596
597 /*
598 * this takes a list head of mrs and turns it into linked llist nodes
599 * of clusters. Each cluster has linked llist nodes of
600 * MR_CLUSTER_SIZE mrs that are ready for reuse.
601 */
602 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
603 struct list_head *list,
604 struct llist_node **nodes_head,
605 struct llist_node **nodes_tail)
606 {
607 struct rds_ib_mr *ibmr;
608 struct llist_node *cur = NULL;
609 struct llist_node **next = nodes_head;
610
611 list_for_each_entry(ibmr, list, unmap_list) {
612 cur = &ibmr->llnode;
613 *next = cur;
614 next = &cur->next;
615 }
616 *next = NULL;
617 *nodes_tail = cur;
618 }
619
620 /*
621 * Flush our pool of MRs.
622 * At a minimum, all currently unused MRs are unmapped.
623 * If the number of MRs allocated exceeds the limit, we also try
624 * to free as many MRs as needed to get back to this limit.
625 */
626 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
627 int free_all, struct rds_ib_mr **ibmr_ret)
628 {
629 struct rds_ib_mr *ibmr, *next;
630 struct llist_node *clean_nodes;
631 struct llist_node *clean_tail;
632 LIST_HEAD(unmap_list);
633 LIST_HEAD(fmr_list);
634 unsigned long unpinned = 0;
635 unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
636 int ret = 0;
637
638 if (pool->pool_type == RDS_IB_MR_8K_POOL)
639 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush);
640 else
641 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush);
642
643 if (ibmr_ret) {
644 DEFINE_WAIT(wait);
645 while (!mutex_trylock(&pool->flush_lock)) {
646 ibmr = rds_ib_reuse_fmr(pool);
647 if (ibmr) {
648 *ibmr_ret = ibmr;
649 finish_wait(&pool->flush_wait, &wait);
650 goto out_nolock;
651 }
652
653 prepare_to_wait(&pool->flush_wait, &wait,
654 TASK_UNINTERRUPTIBLE);
655 if (llist_empty(&pool->clean_list))
656 schedule();
657
658 ibmr = rds_ib_reuse_fmr(pool);
659 if (ibmr) {
660 *ibmr_ret = ibmr;
661 finish_wait(&pool->flush_wait, &wait);
662 goto out_nolock;
663 }
664 }
665 finish_wait(&pool->flush_wait, &wait);
666 } else
667 mutex_lock(&pool->flush_lock);
668
669 if (ibmr_ret) {
670 ibmr = rds_ib_reuse_fmr(pool);
671 if (ibmr) {
672 *ibmr_ret = ibmr;
673 goto out;
674 }
675 }
676
677 /* Get the list of all MRs to be dropped. Ordering matters -
678 * we want to put drop_list ahead of free_list.
679 */
680 dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
681 dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
682 if (free_all)
683 llist_append_to_list(&pool->clean_list, &unmap_list);
684
685 free_goal = rds_ib_flush_goal(pool, free_all);
686
687 if (list_empty(&unmap_list))
688 goto out;
689
690 /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
691 list_for_each_entry(ibmr, &unmap_list, unmap_list)
692 list_add(&ibmr->fmr->list, &fmr_list);
693
694 ret = ib_unmap_fmr(&fmr_list);
695 if (ret)
696 printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
697
698 /* Now we can destroy the DMA mapping and unpin any pages */
699 list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
700 unpinned += ibmr->sg_len;
701 __rds_ib_teardown_mr(ibmr);
702 if (nfreed < free_goal ||
703 ibmr->remap_count >= pool->fmr_attr.max_maps) {
704 if (ibmr->pool->pool_type == RDS_IB_MR_8K_POOL)
705 rds_ib_stats_inc(s_ib_rdma_mr_8k_free);
706 else
707 rds_ib_stats_inc(s_ib_rdma_mr_1m_free);
708 list_del(&ibmr->unmap_list);
709 ib_dealloc_fmr(ibmr->fmr);
710 kfree(ibmr);
711 nfreed++;
712 }
713 }
714
715 if (!list_empty(&unmap_list)) {
716 /* we have to make sure that none of the things we're about
717 * to put on the clean list would race with other cpus trying
718 * to pull items off. The llist would explode if we managed to
719 * remove something from the clean list and then add it back again
720 * while another CPU was spinning on that same item in llist_del_first.
721 *
722 * This is pretty unlikely, but just in case wait for an llist grace period
723 * here before adding anything back into the clean list.
724 */
725 wait_clean_list_grace();
726
727 list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
728 if (ibmr_ret)
729 *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
730
731 /* more than one entry in llist nodes */
732 if (clean_nodes->next)
733 llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
734
735 }
736
737 atomic_sub(unpinned, &pool->free_pinned);
738 atomic_sub(dirty_to_clean, &pool->dirty_count);
739 atomic_sub(nfreed, &pool->item_count);
740
741 out:
742 mutex_unlock(&pool->flush_lock);
743 if (waitqueue_active(&pool->flush_wait))
744 wake_up(&pool->flush_wait);
745 out_nolock:
746 return ret;
747 }
748
749 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
750 {
751 struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
752
753 rds_ib_flush_mr_pool(pool, 0, NULL);
754 }
755
756 void rds_ib_free_mr(void *trans_private, int invalidate)
757 {
758 struct rds_ib_mr *ibmr = trans_private;
759 struct rds_ib_mr_pool *pool = ibmr->pool;
760 struct rds_ib_device *rds_ibdev = ibmr->device;
761
762 rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
763
764 /* Return it to the pool's free list */
765 if (ibmr->remap_count >= pool->fmr_attr.max_maps)
766 llist_add(&ibmr->llnode, &pool->drop_list);
767 else
768 llist_add(&ibmr->llnode, &pool->free_list);
769
770 atomic_add(ibmr->sg_len, &pool->free_pinned);
771 atomic_inc(&pool->dirty_count);
772
773 /* If we've pinned too many pages, request a flush */
774 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
775 atomic_read(&pool->dirty_count) >= pool->max_items / 5)
776 queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
777
778 if (invalidate) {
779 if (likely(!in_interrupt())) {
780 rds_ib_flush_mr_pool(pool, 0, NULL);
781 } else {
782 /* We get here if the user created a MR marked
783 * as use_once and invalidate at the same time.
784 */
785 queue_delayed_work(rds_ib_fmr_wq,
786 &pool->flush_worker, 10);
787 }
788 }
789
790 rds_ib_dev_put(rds_ibdev);
791 }
792
793 void rds_ib_flush_mrs(void)
794 {
795 struct rds_ib_device *rds_ibdev;
796
797 down_read(&rds_ib_devices_lock);
798 list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
799 if (rds_ibdev->mr_8k_pool)
800 rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL);
801
802 if (rds_ibdev->mr_1m_pool)
803 rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL);
804 }
805 up_read(&rds_ib_devices_lock);
806 }
807
808 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
809 struct rds_sock *rs, u32 *key_ret)
810 {
811 struct rds_ib_device *rds_ibdev;
812 struct rds_ib_mr *ibmr = NULL;
813 int ret;
814
815 rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
816 if (!rds_ibdev) {
817 ret = -ENODEV;
818 goto out;
819 }
820
821 if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) {
822 ret = -ENODEV;
823 goto out;
824 }
825
826 ibmr = rds_ib_alloc_fmr(rds_ibdev, nents);
827 if (IS_ERR(ibmr)) {
828 rds_ib_dev_put(rds_ibdev);
829 return ibmr;
830 }
831
832 ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
833 if (ret == 0)
834 *key_ret = ibmr->fmr->rkey;
835 else
836 printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
837
838 ibmr->device = rds_ibdev;
839 rds_ibdev = NULL;
840
841 out:
842 if (ret) {
843 if (ibmr)
844 rds_ib_free_mr(ibmr, 0);
845 ibmr = ERR_PTR(ret);
846 }
847 if (rds_ibdev)
848 rds_ib_dev_put(rds_ibdev);
849 return ibmr;
850 }
851
This page took 0.071854 seconds and 5 git commands to generate.