bpf: fix arraymap NULL deref and missing overflow and zero size checks
[deliverable/linux.git] / net / sched / cls_u32.c
1 /*
2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 *
11 * The filters are packed to hash tables of key nodes
12 * with a set of 32bit key/mask pairs at every node.
13 * Nodes reference next level hash tables etc.
14 *
15 * This scheme is the best universal classifier I managed to
16 * invent; it is not super-fast, but it is not slow (provided you
17 * program it correctly), and general enough. And its relative
18 * speed grows as the number of rules becomes larger.
19 *
20 * It seems that it represents the best middle point between
21 * speed and manageability both by human and by machine.
22 *
23 * It is especially useful for link sharing combined with QoS;
24 * pure RSVP doesn't need such a general approach and can use
25 * much simpler (and faster) schemes, sort of cls_rsvp.c.
26 *
27 * JHS: We should remove the CONFIG_NET_CLS_IND from here
28 * eventually when the meta match extension is made available
29 *
30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
31 */
32
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/string.h>
38 #include <linux/errno.h>
39 #include <linux/percpu.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/skbuff.h>
42 #include <linux/bitmap.h>
43 #include <net/netlink.h>
44 #include <net/act_api.h>
45 #include <net/pkt_cls.h>
46
47 struct tc_u_knode {
48 struct tc_u_knode __rcu *next;
49 u32 handle;
50 struct tc_u_hnode __rcu *ht_up;
51 struct tcf_exts exts;
52 #ifdef CONFIG_NET_CLS_IND
53 int ifindex;
54 #endif
55 u8 fshift;
56 struct tcf_result res;
57 struct tc_u_hnode __rcu *ht_down;
58 #ifdef CONFIG_CLS_U32_PERF
59 struct tc_u32_pcnt __percpu *pf;
60 #endif
61 #ifdef CONFIG_CLS_U32_MARK
62 u32 val;
63 u32 mask;
64 u32 __percpu *pcpu_success;
65 #endif
66 struct tcf_proto *tp;
67 struct rcu_head rcu;
68 /* The 'sel' field MUST be the last field in structure to allow for
69 * tc_u32_keys allocated at end of structure.
70 */
71 struct tc_u32_sel sel;
72 };
73
74 struct tc_u_hnode {
75 struct tc_u_hnode __rcu *next;
76 u32 handle;
77 u32 prio;
78 struct tc_u_common *tp_c;
79 int refcnt;
80 unsigned int divisor;
81 struct tc_u_knode __rcu *ht[1];
82 struct rcu_head rcu;
83 };
84
85 struct tc_u_common {
86 struct tc_u_hnode __rcu *hlist;
87 struct Qdisc *q;
88 int refcnt;
89 u32 hgenerator;
90 struct rcu_head rcu;
91 };
92
93 static inline unsigned int u32_hash_fold(__be32 key,
94 const struct tc_u32_sel *sel,
95 u8 fshift)
96 {
97 unsigned int h = ntohl(key & sel->hmask) >> fshift;
98
99 return h;
100 }
101
102 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res)
103 {
104 struct {
105 struct tc_u_knode *knode;
106 unsigned int off;
107 } stack[TC_U32_MAXDEPTH];
108
109 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
110 unsigned int off = skb_network_offset(skb);
111 struct tc_u_knode *n;
112 int sdepth = 0;
113 int off2 = 0;
114 int sel = 0;
115 #ifdef CONFIG_CLS_U32_PERF
116 int j;
117 #endif
118 int i, r;
119
120 next_ht:
121 n = rcu_dereference_bh(ht->ht[sel]);
122
123 next_knode:
124 if (n) {
125 struct tc_u32_key *key = n->sel.keys;
126
127 #ifdef CONFIG_CLS_U32_PERF
128 __this_cpu_inc(n->pf->rcnt);
129 j = 0;
130 #endif
131
132 #ifdef CONFIG_CLS_U32_MARK
133 if ((skb->mark & n->mask) != n->val) {
134 n = rcu_dereference_bh(n->next);
135 goto next_knode;
136 } else {
137 __this_cpu_inc(*n->pcpu_success);
138 }
139 #endif
140
141 for (i = n->sel.nkeys; i > 0; i--, key++) {
142 int toff = off + key->off + (off2 & key->offmask);
143 __be32 *data, hdata;
144
145 if (skb_headroom(skb) + toff > INT_MAX)
146 goto out;
147
148 data = skb_header_pointer(skb, toff, 4, &hdata);
149 if (!data)
150 goto out;
151 if ((*data ^ key->val) & key->mask) {
152 n = rcu_dereference_bh(n->next);
153 goto next_knode;
154 }
155 #ifdef CONFIG_CLS_U32_PERF
156 __this_cpu_inc(n->pf->kcnts[j]);
157 j++;
158 #endif
159 }
160
161 ht = rcu_dereference_bh(n->ht_down);
162 if (!ht) {
163 check_terminal:
164 if (n->sel.flags & TC_U32_TERMINAL) {
165
166 *res = n->res;
167 #ifdef CONFIG_NET_CLS_IND
168 if (!tcf_match_indev(skb, n->ifindex)) {
169 n = rcu_dereference_bh(n->next);
170 goto next_knode;
171 }
172 #endif
173 #ifdef CONFIG_CLS_U32_PERF
174 __this_cpu_inc(n->pf->rhit);
175 #endif
176 r = tcf_exts_exec(skb, &n->exts, res);
177 if (r < 0) {
178 n = rcu_dereference_bh(n->next);
179 goto next_knode;
180 }
181
182 return r;
183 }
184 n = rcu_dereference_bh(n->next);
185 goto next_knode;
186 }
187
188 /* PUSH */
189 if (sdepth >= TC_U32_MAXDEPTH)
190 goto deadloop;
191 stack[sdepth].knode = n;
192 stack[sdepth].off = off;
193 sdepth++;
194
195 ht = rcu_dereference_bh(n->ht_down);
196 sel = 0;
197 if (ht->divisor) {
198 __be32 *data, hdata;
199
200 data = skb_header_pointer(skb, off + n->sel.hoff, 4,
201 &hdata);
202 if (!data)
203 goto out;
204 sel = ht->divisor & u32_hash_fold(*data, &n->sel,
205 n->fshift);
206 }
207 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
208 goto next_ht;
209
210 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
211 off2 = n->sel.off + 3;
212 if (n->sel.flags & TC_U32_VAROFFSET) {
213 __be16 *data, hdata;
214
215 data = skb_header_pointer(skb,
216 off + n->sel.offoff,
217 2, &hdata);
218 if (!data)
219 goto out;
220 off2 += ntohs(n->sel.offmask & *data) >>
221 n->sel.offshift;
222 }
223 off2 &= ~3;
224 }
225 if (n->sel.flags & TC_U32_EAT) {
226 off += off2;
227 off2 = 0;
228 }
229
230 if (off < skb->len)
231 goto next_ht;
232 }
233
234 /* POP */
235 if (sdepth--) {
236 n = stack[sdepth].knode;
237 ht = rcu_dereference_bh(n->ht_up);
238 off = stack[sdepth].off;
239 goto check_terminal;
240 }
241 out:
242 return -1;
243
244 deadloop:
245 net_warn_ratelimited("cls_u32: dead loop\n");
246 return -1;
247 }
248
249 static struct tc_u_hnode *
250 u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
251 {
252 struct tc_u_hnode *ht;
253
254 for (ht = rtnl_dereference(tp_c->hlist);
255 ht;
256 ht = rtnl_dereference(ht->next))
257 if (ht->handle == handle)
258 break;
259
260 return ht;
261 }
262
263 static struct tc_u_knode *
264 u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
265 {
266 unsigned int sel;
267 struct tc_u_knode *n = NULL;
268
269 sel = TC_U32_HASH(handle);
270 if (sel > ht->divisor)
271 goto out;
272
273 for (n = rtnl_dereference(ht->ht[sel]);
274 n;
275 n = rtnl_dereference(n->next))
276 if (n->handle == handle)
277 break;
278 out:
279 return n;
280 }
281
282
283 static unsigned long u32_get(struct tcf_proto *tp, u32 handle)
284 {
285 struct tc_u_hnode *ht;
286 struct tc_u_common *tp_c = tp->data;
287
288 if (TC_U32_HTID(handle) == TC_U32_ROOT)
289 ht = rtnl_dereference(tp->root);
290 else
291 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
292
293 if (!ht)
294 return 0;
295
296 if (TC_U32_KEY(handle) == 0)
297 return (unsigned long)ht;
298
299 return (unsigned long)u32_lookup_key(ht, handle);
300 }
301
302 static void u32_put(struct tcf_proto *tp, unsigned long f)
303 {
304 }
305
306 static u32 gen_new_htid(struct tc_u_common *tp_c)
307 {
308 int i = 0x800;
309
310 /* hgenerator only used inside rtnl lock it is safe to increment
311 * without read _copy_ update semantics
312 */
313 do {
314 if (++tp_c->hgenerator == 0x7FF)
315 tp_c->hgenerator = 1;
316 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20));
317
318 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0;
319 }
320
321 static int u32_init(struct tcf_proto *tp)
322 {
323 struct tc_u_hnode *root_ht;
324 struct tc_u_common *tp_c;
325
326 tp_c = tp->q->u32_node;
327
328 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
329 if (root_ht == NULL)
330 return -ENOBUFS;
331
332 root_ht->divisor = 0;
333 root_ht->refcnt++;
334 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000;
335 root_ht->prio = tp->prio;
336
337 if (tp_c == NULL) {
338 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
339 if (tp_c == NULL) {
340 kfree(root_ht);
341 return -ENOBUFS;
342 }
343 tp_c->q = tp->q;
344 tp->q->u32_node = tp_c;
345 }
346
347 tp_c->refcnt++;
348 RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
349 rcu_assign_pointer(tp_c->hlist, root_ht);
350 root_ht->tp_c = tp_c;
351
352 rcu_assign_pointer(tp->root, root_ht);
353 tp->data = tp_c;
354 return 0;
355 }
356
357 static int u32_destroy_key(struct tcf_proto *tp,
358 struct tc_u_knode *n,
359 bool free_pf)
360 {
361 tcf_exts_destroy(&n->exts);
362 if (n->ht_down)
363 n->ht_down->refcnt--;
364 #ifdef CONFIG_CLS_U32_PERF
365 if (free_pf)
366 free_percpu(n->pf);
367 #endif
368 #ifdef CONFIG_CLS_U32_MARK
369 if (free_pf)
370 free_percpu(n->pcpu_success);
371 #endif
372 kfree(n);
373 return 0;
374 }
375
376 /* u32_delete_key_rcu should be called when free'ing a copied
377 * version of a tc_u_knode obtained from u32_init_knode(). When
378 * copies are obtained from u32_init_knode() the statistics are
379 * shared between the old and new copies to allow readers to
380 * continue to update the statistics during the copy. To support
381 * this the u32_delete_key_rcu variant does not free the percpu
382 * statistics.
383 */
384 static void u32_delete_key_rcu(struct rcu_head *rcu)
385 {
386 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
387
388 u32_destroy_key(key->tp, key, false);
389 }
390
391 /* u32_delete_key_freepf_rcu is the rcu callback variant
392 * that free's the entire structure including the statistics
393 * percpu variables. Only use this if the key is not a copy
394 * returned by u32_init_knode(). See u32_delete_key_rcu()
395 * for the variant that should be used with keys return from
396 * u32_init_knode()
397 */
398 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu)
399 {
400 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
401
402 u32_destroy_key(key->tp, key, true);
403 }
404
405 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
406 {
407 struct tc_u_knode __rcu **kp;
408 struct tc_u_knode *pkp;
409 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
410
411 if (ht) {
412 kp = &ht->ht[TC_U32_HASH(key->handle)];
413 for (pkp = rtnl_dereference(*kp); pkp;
414 kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
415 if (pkp == key) {
416 RCU_INIT_POINTER(*kp, key->next);
417
418 tcf_unbind_filter(tp, &key->res);
419 call_rcu(&key->rcu, u32_delete_key_freepf_rcu);
420 return 0;
421 }
422 }
423 }
424 WARN_ON(1);
425 return 0;
426 }
427
428 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
429 {
430 struct tc_u_knode *n;
431 unsigned int h;
432
433 for (h = 0; h <= ht->divisor; h++) {
434 while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
435 RCU_INIT_POINTER(ht->ht[h],
436 rtnl_dereference(n->next));
437 tcf_unbind_filter(tp, &n->res);
438 call_rcu(&n->rcu, u32_delete_key_freepf_rcu);
439 }
440 }
441 }
442
443 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
444 {
445 struct tc_u_common *tp_c = tp->data;
446 struct tc_u_hnode __rcu **hn;
447 struct tc_u_hnode *phn;
448
449 WARN_ON(ht->refcnt);
450
451 u32_clear_hnode(tp, ht);
452
453 hn = &tp_c->hlist;
454 for (phn = rtnl_dereference(*hn);
455 phn;
456 hn = &phn->next, phn = rtnl_dereference(*hn)) {
457 if (phn == ht) {
458 RCU_INIT_POINTER(*hn, ht->next);
459 kfree_rcu(ht, rcu);
460 return 0;
461 }
462 }
463
464 return -ENOENT;
465 }
466
467 static void u32_destroy(struct tcf_proto *tp)
468 {
469 struct tc_u_common *tp_c = tp->data;
470 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
471
472 WARN_ON(root_ht == NULL);
473
474 if (root_ht && --root_ht->refcnt == 0)
475 u32_destroy_hnode(tp, root_ht);
476
477 if (--tp_c->refcnt == 0) {
478 struct tc_u_hnode *ht;
479
480 tp->q->u32_node = NULL;
481
482 for (ht = rtnl_dereference(tp_c->hlist);
483 ht;
484 ht = rtnl_dereference(ht->next)) {
485 ht->refcnt--;
486 u32_clear_hnode(tp, ht);
487 }
488
489 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
490 RCU_INIT_POINTER(tp_c->hlist, ht->next);
491 kfree_rcu(ht, rcu);
492 }
493
494 kfree(tp_c);
495 }
496
497 tp->data = NULL;
498 }
499
500 static int u32_delete(struct tcf_proto *tp, unsigned long arg)
501 {
502 struct tc_u_hnode *ht = (struct tc_u_hnode *)arg;
503 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
504
505 if (ht == NULL)
506 return 0;
507
508 if (TC_U32_KEY(ht->handle))
509 return u32_delete_key(tp, (struct tc_u_knode *)ht);
510
511 if (root_ht == ht)
512 return -EINVAL;
513
514 if (ht->refcnt == 1) {
515 ht->refcnt--;
516 u32_destroy_hnode(tp, ht);
517 } else {
518 return -EBUSY;
519 }
520
521 return 0;
522 }
523
524 #define NR_U32_NODE (1<<12)
525 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle)
526 {
527 struct tc_u_knode *n;
528 unsigned long i;
529 unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long),
530 GFP_KERNEL);
531 if (!bitmap)
532 return handle | 0xFFF;
533
534 for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]);
535 n;
536 n = rtnl_dereference(n->next))
537 set_bit(TC_U32_NODE(n->handle), bitmap);
538
539 i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800);
540 if (i >= NR_U32_NODE)
541 i = find_next_zero_bit(bitmap, NR_U32_NODE, 1);
542
543 kfree(bitmap);
544 return handle | (i >= NR_U32_NODE ? 0xFFF : i);
545 }
546
547 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
548 [TCA_U32_CLASSID] = { .type = NLA_U32 },
549 [TCA_U32_HASH] = { .type = NLA_U32 },
550 [TCA_U32_LINK] = { .type = NLA_U32 },
551 [TCA_U32_DIVISOR] = { .type = NLA_U32 },
552 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
553 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
554 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
555 };
556
557 static int u32_set_parms(struct net *net, struct tcf_proto *tp,
558 unsigned long base, struct tc_u_hnode *ht,
559 struct tc_u_knode *n, struct nlattr **tb,
560 struct nlattr *est, bool ovr)
561 {
562 int err;
563 struct tcf_exts e;
564
565 tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE);
566 err = tcf_exts_validate(net, tp, tb, est, &e, ovr);
567 if (err < 0)
568 return err;
569
570 err = -EINVAL;
571 if (tb[TCA_U32_LINK]) {
572 u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
573 struct tc_u_hnode *ht_down = NULL, *ht_old;
574
575 if (TC_U32_KEY(handle))
576 goto errout;
577
578 if (handle) {
579 ht_down = u32_lookup_ht(ht->tp_c, handle);
580
581 if (ht_down == NULL)
582 goto errout;
583 ht_down->refcnt++;
584 }
585
586 ht_old = rtnl_dereference(n->ht_down);
587 rcu_assign_pointer(n->ht_down, ht_down);
588
589 if (ht_old)
590 ht_old->refcnt--;
591 }
592 if (tb[TCA_U32_CLASSID]) {
593 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
594 tcf_bind_filter(tp, &n->res, base);
595 }
596
597 #ifdef CONFIG_NET_CLS_IND
598 if (tb[TCA_U32_INDEV]) {
599 int ret;
600 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]);
601 if (ret < 0)
602 goto errout;
603 n->ifindex = ret;
604 }
605 #endif
606 tcf_exts_change(tp, &n->exts, &e);
607
608 return 0;
609 errout:
610 tcf_exts_destroy(&e);
611 return err;
612 }
613
614 static void u32_replace_knode(struct tcf_proto *tp,
615 struct tc_u_common *tp_c,
616 struct tc_u_knode *n)
617 {
618 struct tc_u_knode __rcu **ins;
619 struct tc_u_knode *pins;
620 struct tc_u_hnode *ht;
621
622 if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
623 ht = rtnl_dereference(tp->root);
624 else
625 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
626
627 ins = &ht->ht[TC_U32_HASH(n->handle)];
628
629 /* The node must always exist for it to be replaced if this is not the
630 * case then something went very wrong elsewhere.
631 */
632 for (pins = rtnl_dereference(*ins); ;
633 ins = &pins->next, pins = rtnl_dereference(*ins))
634 if (pins->handle == n->handle)
635 break;
636
637 RCU_INIT_POINTER(n->next, pins->next);
638 rcu_assign_pointer(*ins, n);
639 }
640
641 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp,
642 struct tc_u_knode *n)
643 {
644 struct tc_u_knode *new;
645 struct tc_u32_sel *s = &n->sel;
646
647 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key),
648 GFP_KERNEL);
649
650 if (!new)
651 return NULL;
652
653 RCU_INIT_POINTER(new->next, n->next);
654 new->handle = n->handle;
655 RCU_INIT_POINTER(new->ht_up, n->ht_up);
656
657 #ifdef CONFIG_NET_CLS_IND
658 new->ifindex = n->ifindex;
659 #endif
660 new->fshift = n->fshift;
661 new->res = n->res;
662 RCU_INIT_POINTER(new->ht_down, n->ht_down);
663
664 /* bump reference count as long as we hold pointer to structure */
665 if (new->ht_down)
666 new->ht_down->refcnt++;
667
668 #ifdef CONFIG_CLS_U32_PERF
669 /* Statistics may be incremented by readers during update
670 * so we must keep them in tact. When the node is later destroyed
671 * a special destroy call must be made to not free the pf memory.
672 */
673 new->pf = n->pf;
674 #endif
675
676 #ifdef CONFIG_CLS_U32_MARK
677 new->val = n->val;
678 new->mask = n->mask;
679 /* Similarly success statistics must be moved as pointers */
680 new->pcpu_success = n->pcpu_success;
681 #endif
682 new->tp = tp;
683 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
684
685 tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE);
686
687 return new;
688 }
689
690 static int u32_change(struct net *net, struct sk_buff *in_skb,
691 struct tcf_proto *tp, unsigned long base, u32 handle,
692 struct nlattr **tca,
693 unsigned long *arg, bool ovr)
694 {
695 struct tc_u_common *tp_c = tp->data;
696 struct tc_u_hnode *ht;
697 struct tc_u_knode *n;
698 struct tc_u32_sel *s;
699 struct nlattr *opt = tca[TCA_OPTIONS];
700 struct nlattr *tb[TCA_U32_MAX + 1];
701 u32 htid;
702 int err;
703 #ifdef CONFIG_CLS_U32_PERF
704 size_t size;
705 #endif
706
707 if (opt == NULL)
708 return handle ? -EINVAL : 0;
709
710 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy);
711 if (err < 0)
712 return err;
713
714 n = (struct tc_u_knode *)*arg;
715 if (n) {
716 struct tc_u_knode *new;
717
718 if (TC_U32_KEY(n->handle) == 0)
719 return -EINVAL;
720
721 new = u32_init_knode(tp, n);
722 if (!new)
723 return -ENOMEM;
724
725 err = u32_set_parms(net, tp, base,
726 rtnl_dereference(n->ht_up), new, tb,
727 tca[TCA_RATE], ovr);
728
729 if (err) {
730 u32_destroy_key(tp, new, false);
731 return err;
732 }
733
734 u32_replace_knode(tp, tp_c, new);
735 tcf_unbind_filter(tp, &n->res);
736 call_rcu(&n->rcu, u32_delete_key_rcu);
737 return 0;
738 }
739
740 if (tb[TCA_U32_DIVISOR]) {
741 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
742
743 if (--divisor > 0x100)
744 return -EINVAL;
745 if (TC_U32_KEY(handle))
746 return -EINVAL;
747 if (handle == 0) {
748 handle = gen_new_htid(tp->data);
749 if (handle == 0)
750 return -ENOMEM;
751 }
752 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL);
753 if (ht == NULL)
754 return -ENOBUFS;
755 ht->tp_c = tp_c;
756 ht->refcnt = 1;
757 ht->divisor = divisor;
758 ht->handle = handle;
759 ht->prio = tp->prio;
760 RCU_INIT_POINTER(ht->next, tp_c->hlist);
761 rcu_assign_pointer(tp_c->hlist, ht);
762 *arg = (unsigned long)ht;
763 return 0;
764 }
765
766 if (tb[TCA_U32_HASH]) {
767 htid = nla_get_u32(tb[TCA_U32_HASH]);
768 if (TC_U32_HTID(htid) == TC_U32_ROOT) {
769 ht = rtnl_dereference(tp->root);
770 htid = ht->handle;
771 } else {
772 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
773 if (ht == NULL)
774 return -EINVAL;
775 }
776 } else {
777 ht = rtnl_dereference(tp->root);
778 htid = ht->handle;
779 }
780
781 if (ht->divisor < TC_U32_HASH(htid))
782 return -EINVAL;
783
784 if (handle) {
785 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid))
786 return -EINVAL;
787 handle = htid | TC_U32_NODE(handle);
788 } else
789 handle = gen_new_kid(ht, htid);
790
791 if (tb[TCA_U32_SEL] == NULL)
792 return -EINVAL;
793
794 s = nla_data(tb[TCA_U32_SEL]);
795
796 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL);
797 if (n == NULL)
798 return -ENOBUFS;
799
800 #ifdef CONFIG_CLS_U32_PERF
801 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64);
802 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt));
803 if (!n->pf) {
804 kfree(n);
805 return -ENOBUFS;
806 }
807 #endif
808
809 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
810 RCU_INIT_POINTER(n->ht_up, ht);
811 n->handle = handle;
812 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
813 tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE);
814 n->tp = tp;
815
816 #ifdef CONFIG_CLS_U32_MARK
817 n->pcpu_success = alloc_percpu(u32);
818 if (!n->pcpu_success) {
819 err = -ENOMEM;
820 goto errout;
821 }
822
823 if (tb[TCA_U32_MARK]) {
824 struct tc_u32_mark *mark;
825
826 mark = nla_data(tb[TCA_U32_MARK]);
827 n->val = mark->val;
828 n->mask = mark->mask;
829 }
830 #endif
831
832 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr);
833 if (err == 0) {
834 struct tc_u_knode __rcu **ins;
835 struct tc_u_knode *pins;
836
837 ins = &ht->ht[TC_U32_HASH(handle)];
838 for (pins = rtnl_dereference(*ins); pins;
839 ins = &pins->next, pins = rtnl_dereference(*ins))
840 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
841 break;
842
843 RCU_INIT_POINTER(n->next, pins);
844 rcu_assign_pointer(*ins, n);
845
846 *arg = (unsigned long)n;
847 return 0;
848 }
849
850 #ifdef CONFIG_CLS_U32_MARK
851 free_percpu(n->pcpu_success);
852 errout:
853 #endif
854
855 #ifdef CONFIG_CLS_U32_PERF
856 free_percpu(n->pf);
857 #endif
858 kfree(n);
859 return err;
860 }
861
862 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg)
863 {
864 struct tc_u_common *tp_c = tp->data;
865 struct tc_u_hnode *ht;
866 struct tc_u_knode *n;
867 unsigned int h;
868
869 if (arg->stop)
870 return;
871
872 for (ht = rtnl_dereference(tp_c->hlist);
873 ht;
874 ht = rtnl_dereference(ht->next)) {
875 if (ht->prio != tp->prio)
876 continue;
877 if (arg->count >= arg->skip) {
878 if (arg->fn(tp, (unsigned long)ht, arg) < 0) {
879 arg->stop = 1;
880 return;
881 }
882 }
883 arg->count++;
884 for (h = 0; h <= ht->divisor; h++) {
885 for (n = rtnl_dereference(ht->ht[h]);
886 n;
887 n = rtnl_dereference(n->next)) {
888 if (arg->count < arg->skip) {
889 arg->count++;
890 continue;
891 }
892 if (arg->fn(tp, (unsigned long)n, arg) < 0) {
893 arg->stop = 1;
894 return;
895 }
896 arg->count++;
897 }
898 }
899 }
900 }
901
902 static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
903 struct sk_buff *skb, struct tcmsg *t)
904 {
905 struct tc_u_knode *n = (struct tc_u_knode *)fh;
906 struct tc_u_hnode *ht_up, *ht_down;
907 struct nlattr *nest;
908
909 if (n == NULL)
910 return skb->len;
911
912 t->tcm_handle = n->handle;
913
914 nest = nla_nest_start(skb, TCA_OPTIONS);
915 if (nest == NULL)
916 goto nla_put_failure;
917
918 if (TC_U32_KEY(n->handle) == 0) {
919 struct tc_u_hnode *ht = (struct tc_u_hnode *)fh;
920 u32 divisor = ht->divisor + 1;
921
922 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
923 goto nla_put_failure;
924 } else {
925 #ifdef CONFIG_CLS_U32_PERF
926 struct tc_u32_pcnt *gpf;
927 int cpu;
928 #endif
929
930 if (nla_put(skb, TCA_U32_SEL,
931 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
932 &n->sel))
933 goto nla_put_failure;
934
935 ht_up = rtnl_dereference(n->ht_up);
936 if (ht_up) {
937 u32 htid = n->handle & 0xFFFFF000;
938 if (nla_put_u32(skb, TCA_U32_HASH, htid))
939 goto nla_put_failure;
940 }
941 if (n->res.classid &&
942 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
943 goto nla_put_failure;
944
945 ht_down = rtnl_dereference(n->ht_down);
946 if (ht_down &&
947 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
948 goto nla_put_failure;
949
950 #ifdef CONFIG_CLS_U32_MARK
951 if ((n->val || n->mask)) {
952 struct tc_u32_mark mark = {.val = n->val,
953 .mask = n->mask,
954 .success = 0};
955 int cpum;
956
957 for_each_possible_cpu(cpum) {
958 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
959
960 mark.success += cnt;
961 }
962
963 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
964 goto nla_put_failure;
965 }
966 #endif
967
968 if (tcf_exts_dump(skb, &n->exts) < 0)
969 goto nla_put_failure;
970
971 #ifdef CONFIG_NET_CLS_IND
972 if (n->ifindex) {
973 struct net_device *dev;
974 dev = __dev_get_by_index(net, n->ifindex);
975 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
976 goto nla_put_failure;
977 }
978 #endif
979 #ifdef CONFIG_CLS_U32_PERF
980 gpf = kzalloc(sizeof(struct tc_u32_pcnt) +
981 n->sel.nkeys * sizeof(u64),
982 GFP_KERNEL);
983 if (!gpf)
984 goto nla_put_failure;
985
986 for_each_possible_cpu(cpu) {
987 int i;
988 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
989
990 gpf->rcnt += pf->rcnt;
991 gpf->rhit += pf->rhit;
992 for (i = 0; i < n->sel.nkeys; i++)
993 gpf->kcnts[i] += pf->kcnts[i];
994 }
995
996 if (nla_put(skb, TCA_U32_PCNT,
997 sizeof(struct tc_u32_pcnt) + n->sel.nkeys*sizeof(u64),
998 gpf)) {
999 kfree(gpf);
1000 goto nla_put_failure;
1001 }
1002 kfree(gpf);
1003 #endif
1004 }
1005
1006 nla_nest_end(skb, nest);
1007
1008 if (TC_U32_KEY(n->handle))
1009 if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1010 goto nla_put_failure;
1011 return skb->len;
1012
1013 nla_put_failure:
1014 nla_nest_cancel(skb, nest);
1015 return -1;
1016 }
1017
1018 static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1019 .kind = "u32",
1020 .classify = u32_classify,
1021 .init = u32_init,
1022 .destroy = u32_destroy,
1023 .get = u32_get,
1024 .put = u32_put,
1025 .change = u32_change,
1026 .delete = u32_delete,
1027 .walk = u32_walk,
1028 .dump = u32_dump,
1029 .owner = THIS_MODULE,
1030 };
1031
1032 static int __init init_u32(void)
1033 {
1034 pr_info("u32 classifier\n");
1035 #ifdef CONFIG_CLS_U32_PERF
1036 pr_info(" Performance counters on\n");
1037 #endif
1038 #ifdef CONFIG_NET_CLS_IND
1039 pr_info(" input device check on\n");
1040 #endif
1041 #ifdef CONFIG_NET_CLS_ACT
1042 pr_info(" Actions configured\n");
1043 #endif
1044 return register_tcf_proto_ops(&cls_u32_ops);
1045 }
1046
1047 static void __exit exit_u32(void)
1048 {
1049 unregister_tcf_proto_ops(&cls_u32_ops);
1050 }
1051
1052 module_init(init_u32)
1053 module_exit(exit_u32)
1054 MODULE_LICENSE("GPL");
This page took 0.053667 seconds and 5 git commands to generate.