Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / net / sched / sch_netem.c
1 /*
2 * net/sched/sch_netem.c Network emulator
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License.
8 *
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
11 *
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14 */
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26
27 #include <net/netlink.h>
28 #include <net/pkt_sched.h>
29
30 #define VERSION "1.3"
31
32 /* Network Emulation Queuing algorithm.
33 ====================================
34
35 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
36 Network Emulation Tool
37 [2] Luigi Rizzo, DummyNet for FreeBSD
38
39 ----------------------------------------------------------------
40
41 This started out as a simple way to delay outgoing packets to
42 test TCP but has grown to include most of the functionality
43 of a full blown network emulator like NISTnet. It can delay
44 packets and add random jitter (and correlation). The random
45 distribution can be loaded from a table as well to provide
46 normal, Pareto, or experimental curves. Packet loss,
47 duplication, and reordering can also be emulated.
48
49 This qdisc does not do classification that can be handled in
50 layering other disciplines. It does not need to do bandwidth
51 control either since that can be handled by using token
52 bucket or other rate control.
53
54 Correlated Loss Generator models
55
56 Added generation of correlated loss according to the
57 "Gilbert-Elliot" model, a 4-state markov model.
58
59 References:
60 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
61 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
62 and intuitive loss model for packet networks and its implementation
63 in the Netem module in the Linux kernel", available in [1]
64
65 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
66 Fabio Ludovici <fabio.ludovici at yahoo.it>
67 */
68
69 struct netem_sched_data {
70 /* internal t(ime)fifo qdisc uses sch->q and sch->limit */
71
72 /* optional qdisc for classful handling (NULL at netem init) */
73 struct Qdisc *qdisc;
74
75 struct qdisc_watchdog watchdog;
76
77 psched_tdiff_t latency;
78 psched_tdiff_t jitter;
79
80 u32 loss;
81 u32 limit;
82 u32 counter;
83 u32 gap;
84 u32 duplicate;
85 u32 reorder;
86 u32 corrupt;
87 u32 rate;
88 s32 packet_overhead;
89 u32 cell_size;
90 u32 cell_size_reciprocal;
91 s32 cell_overhead;
92
93 struct crndstate {
94 u32 last;
95 u32 rho;
96 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
97
98 struct disttable {
99 u32 size;
100 s16 table[0];
101 } *delay_dist;
102
103 enum {
104 CLG_RANDOM,
105 CLG_4_STATES,
106 CLG_GILB_ELL,
107 } loss_model;
108
109 /* Correlated Loss Generation models */
110 struct clgstate {
111 /* state of the Markov chain */
112 u8 state;
113
114 /* 4-states and Gilbert-Elliot models */
115 u32 a1; /* p13 for 4-states or p for GE */
116 u32 a2; /* p31 for 4-states or r for GE */
117 u32 a3; /* p32 for 4-states or h for GE */
118 u32 a4; /* p14 for 4-states or 1-k for GE */
119 u32 a5; /* p23 used only in 4-states */
120 } clg;
121
122 };
123
124 /* Time stamp put into socket buffer control block
125 * Only valid when skbs are in our internal t(ime)fifo queue.
126 */
127 struct netem_skb_cb {
128 psched_time_t time_to_send;
129 };
130
131 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
132 {
133 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
134 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
135 }
136
137 /* init_crandom - initialize correlated random number generator
138 * Use entropy source for initial seed.
139 */
140 static void init_crandom(struct crndstate *state, unsigned long rho)
141 {
142 state->rho = rho;
143 state->last = net_random();
144 }
145
146 /* get_crandom - correlated random number generator
147 * Next number depends on last value.
148 * rho is scaled to avoid floating point.
149 */
150 static u32 get_crandom(struct crndstate *state)
151 {
152 u64 value, rho;
153 unsigned long answer;
154
155 if (state->rho == 0) /* no correlation */
156 return net_random();
157
158 value = net_random();
159 rho = (u64)state->rho + 1;
160 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
161 state->last = answer;
162 return answer;
163 }
164
165 /* loss_4state - 4-state model loss generator
166 * Generates losses according to the 4-state Markov chain adopted in
167 * the GI (General and Intuitive) loss model.
168 */
169 static bool loss_4state(struct netem_sched_data *q)
170 {
171 struct clgstate *clg = &q->clg;
172 u32 rnd = net_random();
173
174 /*
175 * Makes a comparison between rnd and the transition
176 * probabilities outgoing from the current state, then decides the
177 * next state and if the next packet has to be transmitted or lost.
178 * The four states correspond to:
179 * 1 => successfully transmitted packets within a gap period
180 * 4 => isolated losses within a gap period
181 * 3 => lost packets within a burst period
182 * 2 => successfully transmitted packets within a burst period
183 */
184 switch (clg->state) {
185 case 1:
186 if (rnd < clg->a4) {
187 clg->state = 4;
188 return true;
189 } else if (clg->a4 < rnd && rnd < clg->a1) {
190 clg->state = 3;
191 return true;
192 } else if (clg->a1 < rnd)
193 clg->state = 1;
194
195 break;
196 case 2:
197 if (rnd < clg->a5) {
198 clg->state = 3;
199 return true;
200 } else
201 clg->state = 2;
202
203 break;
204 case 3:
205 if (rnd < clg->a3)
206 clg->state = 2;
207 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
208 clg->state = 1;
209 return true;
210 } else if (clg->a2 + clg->a3 < rnd) {
211 clg->state = 3;
212 return true;
213 }
214 break;
215 case 4:
216 clg->state = 1;
217 break;
218 }
219
220 return false;
221 }
222
223 /* loss_gilb_ell - Gilbert-Elliot model loss generator
224 * Generates losses according to the Gilbert-Elliot loss model or
225 * its special cases (Gilbert or Simple Gilbert)
226 *
227 * Makes a comparison between random number and the transition
228 * probabilities outgoing from the current state, then decides the
229 * next state. A second random number is extracted and the comparison
230 * with the loss probability of the current state decides if the next
231 * packet will be transmitted or lost.
232 */
233 static bool loss_gilb_ell(struct netem_sched_data *q)
234 {
235 struct clgstate *clg = &q->clg;
236
237 switch (clg->state) {
238 case 1:
239 if (net_random() < clg->a1)
240 clg->state = 2;
241 if (net_random() < clg->a4)
242 return true;
243 case 2:
244 if (net_random() < clg->a2)
245 clg->state = 1;
246 if (clg->a3 > net_random())
247 return true;
248 }
249
250 return false;
251 }
252
253 static bool loss_event(struct netem_sched_data *q)
254 {
255 switch (q->loss_model) {
256 case CLG_RANDOM:
257 /* Random packet drop 0 => none, ~0 => all */
258 return q->loss && q->loss >= get_crandom(&q->loss_cor);
259
260 case CLG_4_STATES:
261 /* 4state loss model algorithm (used also for GI model)
262 * Extracts a value from the markov 4 state loss generator,
263 * if it is 1 drops a packet and if needed writes the event in
264 * the kernel logs
265 */
266 return loss_4state(q);
267
268 case CLG_GILB_ELL:
269 /* Gilbert-Elliot loss model algorithm
270 * Extracts a value from the Gilbert-Elliot loss generator,
271 * if it is 1 drops a packet and if needed writes the event in
272 * the kernel logs
273 */
274 return loss_gilb_ell(q);
275 }
276
277 return false; /* not reached */
278 }
279
280
281 /* tabledist - return a pseudo-randomly distributed value with mean mu and
282 * std deviation sigma. Uses table lookup to approximate the desired
283 * distribution, and a uniformly-distributed pseudo-random source.
284 */
285 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
286 struct crndstate *state,
287 const struct disttable *dist)
288 {
289 psched_tdiff_t x;
290 long t;
291 u32 rnd;
292
293 if (sigma == 0)
294 return mu;
295
296 rnd = get_crandom(state);
297
298 /* default uniform distribution */
299 if (dist == NULL)
300 return (rnd % (2*sigma)) - sigma + mu;
301
302 t = dist->table[rnd % dist->size];
303 x = (sigma % NETEM_DIST_SCALE) * t;
304 if (x >= 0)
305 x += NETEM_DIST_SCALE/2;
306 else
307 x -= NETEM_DIST_SCALE/2;
308
309 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
310 }
311
312 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
313 {
314 u64 ticks;
315
316 len += q->packet_overhead;
317
318 if (q->cell_size) {
319 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
320
321 if (len > cells * q->cell_size) /* extra cell needed for remainder */
322 cells++;
323 len = cells * (q->cell_size + q->cell_overhead);
324 }
325
326 ticks = (u64)len * NSEC_PER_SEC;
327
328 do_div(ticks, q->rate);
329 return PSCHED_NS2TICKS(ticks);
330 }
331
332 static int tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
333 {
334 struct sk_buff_head *list = &sch->q;
335 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
336 struct sk_buff *skb;
337
338 if (likely(skb_queue_len(list) < sch->limit)) {
339 skb = skb_peek_tail(list);
340 /* Optimize for add at tail */
341 if (likely(!skb || tnext >= netem_skb_cb(skb)->time_to_send))
342 return qdisc_enqueue_tail(nskb, sch);
343
344 skb_queue_reverse_walk(list, skb) {
345 if (tnext >= netem_skb_cb(skb)->time_to_send)
346 break;
347 }
348
349 __skb_queue_after(list, skb, nskb);
350 sch->qstats.backlog += qdisc_pkt_len(nskb);
351 return NET_XMIT_SUCCESS;
352 }
353
354 return qdisc_reshape_fail(nskb, sch);
355 }
356
357 /*
358 * Insert one skb into qdisc.
359 * Note: parent depends on return value to account for queue length.
360 * NET_XMIT_DROP: queue length didn't change.
361 * NET_XMIT_SUCCESS: one skb was queued.
362 */
363 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
364 {
365 struct netem_sched_data *q = qdisc_priv(sch);
366 /* We don't fill cb now as skb_unshare() may invalidate it */
367 struct netem_skb_cb *cb;
368 struct sk_buff *skb2;
369 int ret;
370 int count = 1;
371
372 /* Random duplication */
373 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
374 ++count;
375
376 /* Drop packet? */
377 if (loss_event(q))
378 --count;
379
380 if (count == 0) {
381 sch->qstats.drops++;
382 kfree_skb(skb);
383 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
384 }
385
386 skb_orphan(skb);
387
388 /*
389 * If we need to duplicate packet, then re-insert at top of the
390 * qdisc tree, since parent queuer expects that only one
391 * skb will be queued.
392 */
393 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
394 struct Qdisc *rootq = qdisc_root(sch);
395 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
396 q->duplicate = 0;
397
398 qdisc_enqueue_root(skb2, rootq);
399 q->duplicate = dupsave;
400 }
401
402 /*
403 * Randomized packet corruption.
404 * Make copy if needed since we are modifying
405 * If packet is going to be hardware checksummed, then
406 * do it now in software before we mangle it.
407 */
408 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
409 if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
410 (skb->ip_summed == CHECKSUM_PARTIAL &&
411 skb_checksum_help(skb))) {
412 sch->qstats.drops++;
413 return NET_XMIT_DROP;
414 }
415
416 skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
417 }
418
419 cb = netem_skb_cb(skb);
420 if (q->gap == 0 || /* not doing reordering */
421 q->counter < q->gap - 1 || /* inside last reordering gap */
422 q->reorder < get_crandom(&q->reorder_cor)) {
423 psched_time_t now;
424 psched_tdiff_t delay;
425
426 delay = tabledist(q->latency, q->jitter,
427 &q->delay_cor, q->delay_dist);
428
429 now = psched_get_time();
430
431 if (q->rate) {
432 struct sk_buff_head *list = &sch->q;
433
434 delay += packet_len_2_sched_time(skb->len, q);
435
436 if (!skb_queue_empty(list)) {
437 /*
438 * Last packet in queue is reference point (now).
439 * First packet in queue is already in flight,
440 * calculate this time bonus and substract
441 * from delay.
442 */
443 delay -= now - netem_skb_cb(skb_peek(list))->time_to_send;
444 now = netem_skb_cb(skb_peek_tail(list))->time_to_send;
445 }
446 }
447
448 cb->time_to_send = now + delay;
449 ++q->counter;
450 ret = tfifo_enqueue(skb, sch);
451 } else {
452 /*
453 * Do re-ordering by putting one out of N packets at the front
454 * of the queue.
455 */
456 cb->time_to_send = psched_get_time();
457 q->counter = 0;
458
459 __skb_queue_head(&sch->q, skb);
460 sch->qstats.backlog += qdisc_pkt_len(skb);
461 sch->qstats.requeues++;
462 ret = NET_XMIT_SUCCESS;
463 }
464
465 if (ret != NET_XMIT_SUCCESS) {
466 if (net_xmit_drop_count(ret)) {
467 sch->qstats.drops++;
468 return ret;
469 }
470 }
471
472 return NET_XMIT_SUCCESS;
473 }
474
475 static unsigned int netem_drop(struct Qdisc *sch)
476 {
477 struct netem_sched_data *q = qdisc_priv(sch);
478 unsigned int len;
479
480 len = qdisc_queue_drop(sch);
481 if (!len && q->qdisc && q->qdisc->ops->drop)
482 len = q->qdisc->ops->drop(q->qdisc);
483 if (len)
484 sch->qstats.drops++;
485
486 return len;
487 }
488
489 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
490 {
491 struct netem_sched_data *q = qdisc_priv(sch);
492 struct sk_buff *skb;
493
494 if (qdisc_is_throttled(sch))
495 return NULL;
496
497 tfifo_dequeue:
498 skb = qdisc_peek_head(sch);
499 if (skb) {
500 const struct netem_skb_cb *cb = netem_skb_cb(skb);
501
502 /* if more time remaining? */
503 if (cb->time_to_send <= psched_get_time()) {
504 __skb_unlink(skb, &sch->q);
505 sch->qstats.backlog -= qdisc_pkt_len(skb);
506
507 #ifdef CONFIG_NET_CLS_ACT
508 /*
509 * If it's at ingress let's pretend the delay is
510 * from the network (tstamp will be updated).
511 */
512 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
513 skb->tstamp.tv64 = 0;
514 #endif
515
516 if (q->qdisc) {
517 int err = qdisc_enqueue(skb, q->qdisc);
518
519 if (unlikely(err != NET_XMIT_SUCCESS)) {
520 if (net_xmit_drop_count(err)) {
521 sch->qstats.drops++;
522 qdisc_tree_decrease_qlen(sch, 1);
523 }
524 }
525 goto tfifo_dequeue;
526 }
527 deliver:
528 qdisc_unthrottled(sch);
529 qdisc_bstats_update(sch, skb);
530 return skb;
531 }
532
533 if (q->qdisc) {
534 skb = q->qdisc->ops->dequeue(q->qdisc);
535 if (skb)
536 goto deliver;
537 }
538 qdisc_watchdog_schedule(&q->watchdog, cb->time_to_send);
539 }
540
541 if (q->qdisc) {
542 skb = q->qdisc->ops->dequeue(q->qdisc);
543 if (skb)
544 goto deliver;
545 }
546 return NULL;
547 }
548
549 static void netem_reset(struct Qdisc *sch)
550 {
551 struct netem_sched_data *q = qdisc_priv(sch);
552
553 qdisc_reset_queue(sch);
554 if (q->qdisc)
555 qdisc_reset(q->qdisc);
556 qdisc_watchdog_cancel(&q->watchdog);
557 }
558
559 static void dist_free(struct disttable *d)
560 {
561 if (d) {
562 if (is_vmalloc_addr(d))
563 vfree(d);
564 else
565 kfree(d);
566 }
567 }
568
569 /*
570 * Distribution data is a variable size payload containing
571 * signed 16 bit values.
572 */
573 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
574 {
575 struct netem_sched_data *q = qdisc_priv(sch);
576 size_t n = nla_len(attr)/sizeof(__s16);
577 const __s16 *data = nla_data(attr);
578 spinlock_t *root_lock;
579 struct disttable *d;
580 int i;
581 size_t s;
582
583 if (n > NETEM_DIST_MAX)
584 return -EINVAL;
585
586 s = sizeof(struct disttable) + n * sizeof(s16);
587 d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
588 if (!d)
589 d = vmalloc(s);
590 if (!d)
591 return -ENOMEM;
592
593 d->size = n;
594 for (i = 0; i < n; i++)
595 d->table[i] = data[i];
596
597 root_lock = qdisc_root_sleeping_lock(sch);
598
599 spin_lock_bh(root_lock);
600 swap(q->delay_dist, d);
601 spin_unlock_bh(root_lock);
602
603 dist_free(d);
604 return 0;
605 }
606
607 static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
608 {
609 struct netem_sched_data *q = qdisc_priv(sch);
610 const struct tc_netem_corr *c = nla_data(attr);
611
612 init_crandom(&q->delay_cor, c->delay_corr);
613 init_crandom(&q->loss_cor, c->loss_corr);
614 init_crandom(&q->dup_cor, c->dup_corr);
615 }
616
617 static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
618 {
619 struct netem_sched_data *q = qdisc_priv(sch);
620 const struct tc_netem_reorder *r = nla_data(attr);
621
622 q->reorder = r->probability;
623 init_crandom(&q->reorder_cor, r->correlation);
624 }
625
626 static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
627 {
628 struct netem_sched_data *q = qdisc_priv(sch);
629 const struct tc_netem_corrupt *r = nla_data(attr);
630
631 q->corrupt = r->probability;
632 init_crandom(&q->corrupt_cor, r->correlation);
633 }
634
635 static void get_rate(struct Qdisc *sch, const struct nlattr *attr)
636 {
637 struct netem_sched_data *q = qdisc_priv(sch);
638 const struct tc_netem_rate *r = nla_data(attr);
639
640 q->rate = r->rate;
641 q->packet_overhead = r->packet_overhead;
642 q->cell_size = r->cell_size;
643 if (q->cell_size)
644 q->cell_size_reciprocal = reciprocal_value(q->cell_size);
645 q->cell_overhead = r->cell_overhead;
646 }
647
648 static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
649 {
650 struct netem_sched_data *q = qdisc_priv(sch);
651 const struct nlattr *la;
652 int rem;
653
654 nla_for_each_nested(la, attr, rem) {
655 u16 type = nla_type(la);
656
657 switch(type) {
658 case NETEM_LOSS_GI: {
659 const struct tc_netem_gimodel *gi = nla_data(la);
660
661 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
662 pr_info("netem: incorrect gi model size\n");
663 return -EINVAL;
664 }
665
666 q->loss_model = CLG_4_STATES;
667
668 q->clg.state = 1;
669 q->clg.a1 = gi->p13;
670 q->clg.a2 = gi->p31;
671 q->clg.a3 = gi->p32;
672 q->clg.a4 = gi->p14;
673 q->clg.a5 = gi->p23;
674 break;
675 }
676
677 case NETEM_LOSS_GE: {
678 const struct tc_netem_gemodel *ge = nla_data(la);
679
680 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
681 pr_info("netem: incorrect ge model size\n");
682 return -EINVAL;
683 }
684
685 q->loss_model = CLG_GILB_ELL;
686 q->clg.state = 1;
687 q->clg.a1 = ge->p;
688 q->clg.a2 = ge->r;
689 q->clg.a3 = ge->h;
690 q->clg.a4 = ge->k1;
691 break;
692 }
693
694 default:
695 pr_info("netem: unknown loss type %u\n", type);
696 return -EINVAL;
697 }
698 }
699
700 return 0;
701 }
702
703 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
704 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
705 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
706 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
707 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) },
708 [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
709 };
710
711 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
712 const struct nla_policy *policy, int len)
713 {
714 int nested_len = nla_len(nla) - NLA_ALIGN(len);
715
716 if (nested_len < 0) {
717 pr_info("netem: invalid attributes len %d\n", nested_len);
718 return -EINVAL;
719 }
720
721 if (nested_len >= nla_attr_size(0))
722 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
723 nested_len, policy);
724
725 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
726 return 0;
727 }
728
729 /* Parse netlink message to set options */
730 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
731 {
732 struct netem_sched_data *q = qdisc_priv(sch);
733 struct nlattr *tb[TCA_NETEM_MAX + 1];
734 struct tc_netem_qopt *qopt;
735 int ret;
736
737 if (opt == NULL)
738 return -EINVAL;
739
740 qopt = nla_data(opt);
741 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
742 if (ret < 0)
743 return ret;
744
745 sch->limit = qopt->limit;
746
747 q->latency = qopt->latency;
748 q->jitter = qopt->jitter;
749 q->limit = qopt->limit;
750 q->gap = qopt->gap;
751 q->counter = 0;
752 q->loss = qopt->loss;
753 q->duplicate = qopt->duplicate;
754
755 /* for compatibility with earlier versions.
756 * if gap is set, need to assume 100% probability
757 */
758 if (q->gap)
759 q->reorder = ~0;
760
761 if (tb[TCA_NETEM_CORR])
762 get_correlation(sch, tb[TCA_NETEM_CORR]);
763
764 if (tb[TCA_NETEM_DELAY_DIST]) {
765 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
766 if (ret)
767 return ret;
768 }
769
770 if (tb[TCA_NETEM_REORDER])
771 get_reorder(sch, tb[TCA_NETEM_REORDER]);
772
773 if (tb[TCA_NETEM_CORRUPT])
774 get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
775
776 if (tb[TCA_NETEM_RATE])
777 get_rate(sch, tb[TCA_NETEM_RATE]);
778
779 q->loss_model = CLG_RANDOM;
780 if (tb[TCA_NETEM_LOSS])
781 ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
782
783 return ret;
784 }
785
786 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
787 {
788 struct netem_sched_data *q = qdisc_priv(sch);
789 int ret;
790
791 if (!opt)
792 return -EINVAL;
793
794 qdisc_watchdog_init(&q->watchdog, sch);
795
796 q->loss_model = CLG_RANDOM;
797 ret = netem_change(sch, opt);
798 if (ret)
799 pr_info("netem: change failed\n");
800 return ret;
801 }
802
803 static void netem_destroy(struct Qdisc *sch)
804 {
805 struct netem_sched_data *q = qdisc_priv(sch);
806
807 qdisc_watchdog_cancel(&q->watchdog);
808 if (q->qdisc)
809 qdisc_destroy(q->qdisc);
810 dist_free(q->delay_dist);
811 }
812
813 static int dump_loss_model(const struct netem_sched_data *q,
814 struct sk_buff *skb)
815 {
816 struct nlattr *nest;
817
818 nest = nla_nest_start(skb, TCA_NETEM_LOSS);
819 if (nest == NULL)
820 goto nla_put_failure;
821
822 switch (q->loss_model) {
823 case CLG_RANDOM:
824 /* legacy loss model */
825 nla_nest_cancel(skb, nest);
826 return 0; /* no data */
827
828 case CLG_4_STATES: {
829 struct tc_netem_gimodel gi = {
830 .p13 = q->clg.a1,
831 .p31 = q->clg.a2,
832 .p32 = q->clg.a3,
833 .p14 = q->clg.a4,
834 .p23 = q->clg.a5,
835 };
836
837 NLA_PUT(skb, NETEM_LOSS_GI, sizeof(gi), &gi);
838 break;
839 }
840 case CLG_GILB_ELL: {
841 struct tc_netem_gemodel ge = {
842 .p = q->clg.a1,
843 .r = q->clg.a2,
844 .h = q->clg.a3,
845 .k1 = q->clg.a4,
846 };
847
848 NLA_PUT(skb, NETEM_LOSS_GE, sizeof(ge), &ge);
849 break;
850 }
851 }
852
853 nla_nest_end(skb, nest);
854 return 0;
855
856 nla_put_failure:
857 nla_nest_cancel(skb, nest);
858 return -1;
859 }
860
861 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
862 {
863 const struct netem_sched_data *q = qdisc_priv(sch);
864 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
865 struct tc_netem_qopt qopt;
866 struct tc_netem_corr cor;
867 struct tc_netem_reorder reorder;
868 struct tc_netem_corrupt corrupt;
869 struct tc_netem_rate rate;
870
871 qopt.latency = q->latency;
872 qopt.jitter = q->jitter;
873 qopt.limit = q->limit;
874 qopt.loss = q->loss;
875 qopt.gap = q->gap;
876 qopt.duplicate = q->duplicate;
877 NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
878
879 cor.delay_corr = q->delay_cor.rho;
880 cor.loss_corr = q->loss_cor.rho;
881 cor.dup_corr = q->dup_cor.rho;
882 NLA_PUT(skb, TCA_NETEM_CORR, sizeof(cor), &cor);
883
884 reorder.probability = q->reorder;
885 reorder.correlation = q->reorder_cor.rho;
886 NLA_PUT(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder);
887
888 corrupt.probability = q->corrupt;
889 corrupt.correlation = q->corrupt_cor.rho;
890 NLA_PUT(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt);
891
892 rate.rate = q->rate;
893 rate.packet_overhead = q->packet_overhead;
894 rate.cell_size = q->cell_size;
895 rate.cell_overhead = q->cell_overhead;
896 NLA_PUT(skb, TCA_NETEM_RATE, sizeof(rate), &rate);
897
898 if (dump_loss_model(q, skb) != 0)
899 goto nla_put_failure;
900
901 return nla_nest_end(skb, nla);
902
903 nla_put_failure:
904 nlmsg_trim(skb, nla);
905 return -1;
906 }
907
908 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
909 struct sk_buff *skb, struct tcmsg *tcm)
910 {
911 struct netem_sched_data *q = qdisc_priv(sch);
912
913 if (cl != 1 || !q->qdisc) /* only one class */
914 return -ENOENT;
915
916 tcm->tcm_handle |= TC_H_MIN(1);
917 tcm->tcm_info = q->qdisc->handle;
918
919 return 0;
920 }
921
922 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
923 struct Qdisc **old)
924 {
925 struct netem_sched_data *q = qdisc_priv(sch);
926
927 sch_tree_lock(sch);
928 *old = q->qdisc;
929 q->qdisc = new;
930 if (*old) {
931 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
932 qdisc_reset(*old);
933 }
934 sch_tree_unlock(sch);
935
936 return 0;
937 }
938
939 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
940 {
941 struct netem_sched_data *q = qdisc_priv(sch);
942 return q->qdisc;
943 }
944
945 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
946 {
947 return 1;
948 }
949
950 static void netem_put(struct Qdisc *sch, unsigned long arg)
951 {
952 }
953
954 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
955 {
956 if (!walker->stop) {
957 if (walker->count >= walker->skip)
958 if (walker->fn(sch, 1, walker) < 0) {
959 walker->stop = 1;
960 return;
961 }
962 walker->count++;
963 }
964 }
965
966 static const struct Qdisc_class_ops netem_class_ops = {
967 .graft = netem_graft,
968 .leaf = netem_leaf,
969 .get = netem_get,
970 .put = netem_put,
971 .walk = netem_walk,
972 .dump = netem_dump_class,
973 };
974
975 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
976 .id = "netem",
977 .cl_ops = &netem_class_ops,
978 .priv_size = sizeof(struct netem_sched_data),
979 .enqueue = netem_enqueue,
980 .dequeue = netem_dequeue,
981 .peek = qdisc_peek_dequeued,
982 .drop = netem_drop,
983 .init = netem_init,
984 .reset = netem_reset,
985 .destroy = netem_destroy,
986 .change = netem_change,
987 .dump = netem_dump,
988 .owner = THIS_MODULE,
989 };
990
991
992 static int __init netem_module_init(void)
993 {
994 pr_info("netem: version " VERSION "\n");
995 return register_qdisc(&netem_qdisc_ops);
996 }
997 static void __exit netem_module_exit(void)
998 {
999 unregister_qdisc(&netem_qdisc_ops);
1000 }
1001 module_init(netem_module_init)
1002 module_exit(netem_module_exit)
1003 MODULE_LICENSE("GPL");
This page took 0.06768 seconds and 5 git commands to generate.