bridge: mcast snooping, fix length check of snooped MLDv1/2
[deliverable/linux.git] / net / sched / sch_netem.c
1 /*
2 * net/sched/sch_netem.c Network emulator
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License.
8 *
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
11 *
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14 */
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/skbuff.h>
22 #include <linux/vmalloc.h>
23 #include <linux/rtnetlink.h>
24
25 #include <net/netlink.h>
26 #include <net/pkt_sched.h>
27
28 #define VERSION "1.3"
29
30 /* Network Emulation Queuing algorithm.
31 ====================================
32
33 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
34 Network Emulation Tool
35 [2] Luigi Rizzo, DummyNet for FreeBSD
36
37 ----------------------------------------------------------------
38
39 This started out as a simple way to delay outgoing packets to
40 test TCP but has grown to include most of the functionality
41 of a full blown network emulator like NISTnet. It can delay
42 packets and add random jitter (and correlation). The random
43 distribution can be loaded from a table as well to provide
44 normal, Pareto, or experimental curves. Packet loss,
45 duplication, and reordering can also be emulated.
46
47 This qdisc does not do classification that can be handled in
48 layering other disciplines. It does not need to do bandwidth
49 control either since that can be handled by using token
50 bucket or other rate control.
51
52 Correlated Loss Generator models
53
54 Added generation of correlated loss according to the
55 "Gilbert-Elliot" model, a 4-state markov model.
56
57 References:
58 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
59 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
60 and intuitive loss model for packet networks and its implementation
61 in the Netem module in the Linux kernel", available in [1]
62
63 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
64 Fabio Ludovici <fabio.ludovici at yahoo.it>
65 */
66
67 struct netem_sched_data {
68 struct Qdisc *qdisc;
69 struct qdisc_watchdog watchdog;
70
71 psched_tdiff_t latency;
72 psched_tdiff_t jitter;
73
74 u32 loss;
75 u32 limit;
76 u32 counter;
77 u32 gap;
78 u32 duplicate;
79 u32 reorder;
80 u32 corrupt;
81
82 struct crndstate {
83 u32 last;
84 u32 rho;
85 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
86
87 struct disttable {
88 u32 size;
89 s16 table[0];
90 } *delay_dist;
91
92 enum {
93 CLG_RANDOM,
94 CLG_4_STATES,
95 CLG_GILB_ELL,
96 } loss_model;
97
98 /* Correlated Loss Generation models */
99 struct clgstate {
100 /* state of the Markov chain */
101 u8 state;
102
103 /* 4-states and Gilbert-Elliot models */
104 u32 a1; /* p13 for 4-states or p for GE */
105 u32 a2; /* p31 for 4-states or r for GE */
106 u32 a3; /* p32 for 4-states or h for GE */
107 u32 a4; /* p14 for 4-states or 1-k for GE */
108 u32 a5; /* p23 used only in 4-states */
109 } clg;
110
111 };
112
113 /* Time stamp put into socket buffer control block */
114 struct netem_skb_cb {
115 psched_time_t time_to_send;
116 };
117
118 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
119 {
120 BUILD_BUG_ON(sizeof(skb->cb) <
121 sizeof(struct qdisc_skb_cb) + sizeof(struct netem_skb_cb));
122 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
123 }
124
125 /* init_crandom - initialize correlated random number generator
126 * Use entropy source for initial seed.
127 */
128 static void init_crandom(struct crndstate *state, unsigned long rho)
129 {
130 state->rho = rho;
131 state->last = net_random();
132 }
133
134 /* get_crandom - correlated random number generator
135 * Next number depends on last value.
136 * rho is scaled to avoid floating point.
137 */
138 static u32 get_crandom(struct crndstate *state)
139 {
140 u64 value, rho;
141 unsigned long answer;
142
143 if (state->rho == 0) /* no correlation */
144 return net_random();
145
146 value = net_random();
147 rho = (u64)state->rho + 1;
148 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
149 state->last = answer;
150 return answer;
151 }
152
153 /* loss_4state - 4-state model loss generator
154 * Generates losses according to the 4-state Markov chain adopted in
155 * the GI (General and Intuitive) loss model.
156 */
157 static bool loss_4state(struct netem_sched_data *q)
158 {
159 struct clgstate *clg = &q->clg;
160 u32 rnd = net_random();
161
162 /*
163 * Makes a comparision between rnd and the transition
164 * probabilities outgoing from the current state, then decides the
165 * next state and if the next packet has to be transmitted or lost.
166 * The four states correspond to:
167 * 1 => successfully transmitted packets within a gap period
168 * 4 => isolated losses within a gap period
169 * 3 => lost packets within a burst period
170 * 2 => successfully transmitted packets within a burst period
171 */
172 switch (clg->state) {
173 case 1:
174 if (rnd < clg->a4) {
175 clg->state = 4;
176 return true;
177 } else if (clg->a4 < rnd && rnd < clg->a1) {
178 clg->state = 3;
179 return true;
180 } else if (clg->a1 < rnd)
181 clg->state = 1;
182
183 break;
184 case 2:
185 if (rnd < clg->a5) {
186 clg->state = 3;
187 return true;
188 } else
189 clg->state = 2;
190
191 break;
192 case 3:
193 if (rnd < clg->a3)
194 clg->state = 2;
195 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
196 clg->state = 1;
197 return true;
198 } else if (clg->a2 + clg->a3 < rnd) {
199 clg->state = 3;
200 return true;
201 }
202 break;
203 case 4:
204 clg->state = 1;
205 break;
206 }
207
208 return false;
209 }
210
211 /* loss_gilb_ell - Gilbert-Elliot model loss generator
212 * Generates losses according to the Gilbert-Elliot loss model or
213 * its special cases (Gilbert or Simple Gilbert)
214 *
215 * Makes a comparision between random number and the transition
216 * probabilities outgoing from the current state, then decides the
217 * next state. A second random number is extracted and the comparision
218 * with the loss probability of the current state decides if the next
219 * packet will be transmitted or lost.
220 */
221 static bool loss_gilb_ell(struct netem_sched_data *q)
222 {
223 struct clgstate *clg = &q->clg;
224
225 switch (clg->state) {
226 case 1:
227 if (net_random() < clg->a1)
228 clg->state = 2;
229 if (net_random() < clg->a4)
230 return true;
231 case 2:
232 if (net_random() < clg->a2)
233 clg->state = 1;
234 if (clg->a3 > net_random())
235 return true;
236 }
237
238 return false;
239 }
240
241 static bool loss_event(struct netem_sched_data *q)
242 {
243 switch (q->loss_model) {
244 case CLG_RANDOM:
245 /* Random packet drop 0 => none, ~0 => all */
246 return q->loss && q->loss >= get_crandom(&q->loss_cor);
247
248 case CLG_4_STATES:
249 /* 4state loss model algorithm (used also for GI model)
250 * Extracts a value from the markov 4 state loss generator,
251 * if it is 1 drops a packet and if needed writes the event in
252 * the kernel logs
253 */
254 return loss_4state(q);
255
256 case CLG_GILB_ELL:
257 /* Gilbert-Elliot loss model algorithm
258 * Extracts a value from the Gilbert-Elliot loss generator,
259 * if it is 1 drops a packet and if needed writes the event in
260 * the kernel logs
261 */
262 return loss_gilb_ell(q);
263 }
264
265 return false; /* not reached */
266 }
267
268
269 /* tabledist - return a pseudo-randomly distributed value with mean mu and
270 * std deviation sigma. Uses table lookup to approximate the desired
271 * distribution, and a uniformly-distributed pseudo-random source.
272 */
273 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
274 struct crndstate *state,
275 const struct disttable *dist)
276 {
277 psched_tdiff_t x;
278 long t;
279 u32 rnd;
280
281 if (sigma == 0)
282 return mu;
283
284 rnd = get_crandom(state);
285
286 /* default uniform distribution */
287 if (dist == NULL)
288 return (rnd % (2*sigma)) - sigma + mu;
289
290 t = dist->table[rnd % dist->size];
291 x = (sigma % NETEM_DIST_SCALE) * t;
292 if (x >= 0)
293 x += NETEM_DIST_SCALE/2;
294 else
295 x -= NETEM_DIST_SCALE/2;
296
297 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
298 }
299
300 /*
301 * Insert one skb into qdisc.
302 * Note: parent depends on return value to account for queue length.
303 * NET_XMIT_DROP: queue length didn't change.
304 * NET_XMIT_SUCCESS: one skb was queued.
305 */
306 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
307 {
308 struct netem_sched_data *q = qdisc_priv(sch);
309 /* We don't fill cb now as skb_unshare() may invalidate it */
310 struct netem_skb_cb *cb;
311 struct sk_buff *skb2;
312 int ret;
313 int count = 1;
314
315 /* Random duplication */
316 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
317 ++count;
318
319 /* Drop packet? */
320 if (loss_event(q))
321 --count;
322
323 if (count == 0) {
324 sch->qstats.drops++;
325 kfree_skb(skb);
326 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
327 }
328
329 skb_orphan(skb);
330
331 /*
332 * If we need to duplicate packet, then re-insert at top of the
333 * qdisc tree, since parent queuer expects that only one
334 * skb will be queued.
335 */
336 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
337 struct Qdisc *rootq = qdisc_root(sch);
338 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
339 q->duplicate = 0;
340
341 qdisc_enqueue_root(skb2, rootq);
342 q->duplicate = dupsave;
343 }
344
345 /*
346 * Randomized packet corruption.
347 * Make copy if needed since we are modifying
348 * If packet is going to be hardware checksummed, then
349 * do it now in software before we mangle it.
350 */
351 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
352 if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
353 (skb->ip_summed == CHECKSUM_PARTIAL &&
354 skb_checksum_help(skb))) {
355 sch->qstats.drops++;
356 return NET_XMIT_DROP;
357 }
358
359 skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
360 }
361
362 cb = netem_skb_cb(skb);
363 if (q->gap == 0 || /* not doing reordering */
364 q->counter < q->gap || /* inside last reordering gap */
365 q->reorder < get_crandom(&q->reorder_cor)) {
366 psched_time_t now;
367 psched_tdiff_t delay;
368
369 delay = tabledist(q->latency, q->jitter,
370 &q->delay_cor, q->delay_dist);
371
372 now = psched_get_time();
373 cb->time_to_send = now + delay;
374 ++q->counter;
375 ret = qdisc_enqueue(skb, q->qdisc);
376 } else {
377 /*
378 * Do re-ordering by putting one out of N packets at the front
379 * of the queue.
380 */
381 cb->time_to_send = psched_get_time();
382 q->counter = 0;
383
384 __skb_queue_head(&q->qdisc->q, skb);
385 q->qdisc->qstats.backlog += qdisc_pkt_len(skb);
386 q->qdisc->qstats.requeues++;
387 ret = NET_XMIT_SUCCESS;
388 }
389
390 if (ret != NET_XMIT_SUCCESS) {
391 if (net_xmit_drop_count(ret)) {
392 sch->qstats.drops++;
393 return ret;
394 }
395 }
396
397 sch->q.qlen++;
398 return NET_XMIT_SUCCESS;
399 }
400
401 static unsigned int netem_drop(struct Qdisc *sch)
402 {
403 struct netem_sched_data *q = qdisc_priv(sch);
404 unsigned int len = 0;
405
406 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
407 sch->q.qlen--;
408 sch->qstats.drops++;
409 }
410 return len;
411 }
412
413 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
414 {
415 struct netem_sched_data *q = qdisc_priv(sch);
416 struct sk_buff *skb;
417
418 if (qdisc_is_throttled(sch))
419 return NULL;
420
421 skb = q->qdisc->ops->peek(q->qdisc);
422 if (skb) {
423 const struct netem_skb_cb *cb = netem_skb_cb(skb);
424 psched_time_t now = psched_get_time();
425
426 /* if more time remaining? */
427 if (cb->time_to_send <= now) {
428 skb = qdisc_dequeue_peeked(q->qdisc);
429 if (unlikely(!skb))
430 return NULL;
431
432 #ifdef CONFIG_NET_CLS_ACT
433 /*
434 * If it's at ingress let's pretend the delay is
435 * from the network (tstamp will be updated).
436 */
437 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
438 skb->tstamp.tv64 = 0;
439 #endif
440
441 sch->q.qlen--;
442 qdisc_unthrottled(sch);
443 qdisc_bstats_update(sch, skb);
444 return skb;
445 }
446
447 qdisc_watchdog_schedule(&q->watchdog, cb->time_to_send);
448 }
449
450 return NULL;
451 }
452
453 static void netem_reset(struct Qdisc *sch)
454 {
455 struct netem_sched_data *q = qdisc_priv(sch);
456
457 qdisc_reset(q->qdisc);
458 sch->q.qlen = 0;
459 qdisc_watchdog_cancel(&q->watchdog);
460 }
461
462 static void dist_free(struct disttable *d)
463 {
464 if (d) {
465 if (is_vmalloc_addr(d))
466 vfree(d);
467 else
468 kfree(d);
469 }
470 }
471
472 /*
473 * Distribution data is a variable size payload containing
474 * signed 16 bit values.
475 */
476 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
477 {
478 struct netem_sched_data *q = qdisc_priv(sch);
479 size_t n = nla_len(attr)/sizeof(__s16);
480 const __s16 *data = nla_data(attr);
481 spinlock_t *root_lock;
482 struct disttable *d;
483 int i;
484 size_t s;
485
486 if (n > NETEM_DIST_MAX)
487 return -EINVAL;
488
489 s = sizeof(struct disttable) + n * sizeof(s16);
490 d = kmalloc(s, GFP_KERNEL);
491 if (!d)
492 d = vmalloc(s);
493 if (!d)
494 return -ENOMEM;
495
496 d->size = n;
497 for (i = 0; i < n; i++)
498 d->table[i] = data[i];
499
500 root_lock = qdisc_root_sleeping_lock(sch);
501
502 spin_lock_bh(root_lock);
503 dist_free(q->delay_dist);
504 q->delay_dist = d;
505 spin_unlock_bh(root_lock);
506 return 0;
507 }
508
509 static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
510 {
511 struct netem_sched_data *q = qdisc_priv(sch);
512 const struct tc_netem_corr *c = nla_data(attr);
513
514 init_crandom(&q->delay_cor, c->delay_corr);
515 init_crandom(&q->loss_cor, c->loss_corr);
516 init_crandom(&q->dup_cor, c->dup_corr);
517 }
518
519 static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
520 {
521 struct netem_sched_data *q = qdisc_priv(sch);
522 const struct tc_netem_reorder *r = nla_data(attr);
523
524 q->reorder = r->probability;
525 init_crandom(&q->reorder_cor, r->correlation);
526 }
527
528 static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
529 {
530 struct netem_sched_data *q = qdisc_priv(sch);
531 const struct tc_netem_corrupt *r = nla_data(attr);
532
533 q->corrupt = r->probability;
534 init_crandom(&q->corrupt_cor, r->correlation);
535 }
536
537 static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
538 {
539 struct netem_sched_data *q = qdisc_priv(sch);
540 const struct nlattr *la;
541 int rem;
542
543 nla_for_each_nested(la, attr, rem) {
544 u16 type = nla_type(la);
545
546 switch(type) {
547 case NETEM_LOSS_GI: {
548 const struct tc_netem_gimodel *gi = nla_data(la);
549
550 if (nla_len(la) != sizeof(struct tc_netem_gimodel)) {
551 pr_info("netem: incorrect gi model size\n");
552 return -EINVAL;
553 }
554
555 q->loss_model = CLG_4_STATES;
556
557 q->clg.state = 1;
558 q->clg.a1 = gi->p13;
559 q->clg.a2 = gi->p31;
560 q->clg.a3 = gi->p32;
561 q->clg.a4 = gi->p14;
562 q->clg.a5 = gi->p23;
563 break;
564 }
565
566 case NETEM_LOSS_GE: {
567 const struct tc_netem_gemodel *ge = nla_data(la);
568
569 if (nla_len(la) != sizeof(struct tc_netem_gemodel)) {
570 pr_info("netem: incorrect gi model size\n");
571 return -EINVAL;
572 }
573
574 q->loss_model = CLG_GILB_ELL;
575 q->clg.state = 1;
576 q->clg.a1 = ge->p;
577 q->clg.a2 = ge->r;
578 q->clg.a3 = ge->h;
579 q->clg.a4 = ge->k1;
580 break;
581 }
582
583 default:
584 pr_info("netem: unknown loss type %u\n", type);
585 return -EINVAL;
586 }
587 }
588
589 return 0;
590 }
591
592 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
593 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
594 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
595 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
596 [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
597 };
598
599 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
600 const struct nla_policy *policy, int len)
601 {
602 int nested_len = nla_len(nla) - NLA_ALIGN(len);
603
604 if (nested_len < 0) {
605 pr_info("netem: invalid attributes len %d\n", nested_len);
606 return -EINVAL;
607 }
608
609 if (nested_len >= nla_attr_size(0))
610 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
611 nested_len, policy);
612
613 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
614 return 0;
615 }
616
617 /* Parse netlink message to set options */
618 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
619 {
620 struct netem_sched_data *q = qdisc_priv(sch);
621 struct nlattr *tb[TCA_NETEM_MAX + 1];
622 struct tc_netem_qopt *qopt;
623 int ret;
624
625 if (opt == NULL)
626 return -EINVAL;
627
628 qopt = nla_data(opt);
629 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
630 if (ret < 0)
631 return ret;
632
633 ret = fifo_set_limit(q->qdisc, qopt->limit);
634 if (ret) {
635 pr_info("netem: can't set fifo limit\n");
636 return ret;
637 }
638
639 q->latency = qopt->latency;
640 q->jitter = qopt->jitter;
641 q->limit = qopt->limit;
642 q->gap = qopt->gap;
643 q->counter = 0;
644 q->loss = qopt->loss;
645 q->duplicate = qopt->duplicate;
646
647 /* for compatibility with earlier versions.
648 * if gap is set, need to assume 100% probability
649 */
650 if (q->gap)
651 q->reorder = ~0;
652
653 if (tb[TCA_NETEM_CORR])
654 get_correlation(sch, tb[TCA_NETEM_CORR]);
655
656 if (tb[TCA_NETEM_DELAY_DIST]) {
657 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
658 if (ret)
659 return ret;
660 }
661
662 if (tb[TCA_NETEM_REORDER])
663 get_reorder(sch, tb[TCA_NETEM_REORDER]);
664
665 if (tb[TCA_NETEM_CORRUPT])
666 get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
667
668 q->loss_model = CLG_RANDOM;
669 if (tb[TCA_NETEM_LOSS])
670 ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
671
672 return ret;
673 }
674
675 /*
676 * Special case version of FIFO queue for use by netem.
677 * It queues in order based on timestamps in skb's
678 */
679 struct fifo_sched_data {
680 u32 limit;
681 psched_time_t oldest;
682 };
683
684 static int tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
685 {
686 struct fifo_sched_data *q = qdisc_priv(sch);
687 struct sk_buff_head *list = &sch->q;
688 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
689 struct sk_buff *skb;
690
691 if (likely(skb_queue_len(list) < q->limit)) {
692 /* Optimize for add at tail */
693 if (likely(skb_queue_empty(list) || tnext >= q->oldest)) {
694 q->oldest = tnext;
695 return qdisc_enqueue_tail(nskb, sch);
696 }
697
698 skb_queue_reverse_walk(list, skb) {
699 const struct netem_skb_cb *cb = netem_skb_cb(skb);
700
701 if (tnext >= cb->time_to_send)
702 break;
703 }
704
705 __skb_queue_after(list, skb, nskb);
706
707 sch->qstats.backlog += qdisc_pkt_len(nskb);
708
709 return NET_XMIT_SUCCESS;
710 }
711
712 return qdisc_reshape_fail(nskb, sch);
713 }
714
715 static int tfifo_init(struct Qdisc *sch, struct nlattr *opt)
716 {
717 struct fifo_sched_data *q = qdisc_priv(sch);
718
719 if (opt) {
720 struct tc_fifo_qopt *ctl = nla_data(opt);
721 if (nla_len(opt) < sizeof(*ctl))
722 return -EINVAL;
723
724 q->limit = ctl->limit;
725 } else
726 q->limit = max_t(u32, qdisc_dev(sch)->tx_queue_len, 1);
727
728 q->oldest = PSCHED_PASTPERFECT;
729 return 0;
730 }
731
732 static int tfifo_dump(struct Qdisc *sch, struct sk_buff *skb)
733 {
734 struct fifo_sched_data *q = qdisc_priv(sch);
735 struct tc_fifo_qopt opt = { .limit = q->limit };
736
737 NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
738 return skb->len;
739
740 nla_put_failure:
741 return -1;
742 }
743
744 static struct Qdisc_ops tfifo_qdisc_ops __read_mostly = {
745 .id = "tfifo",
746 .priv_size = sizeof(struct fifo_sched_data),
747 .enqueue = tfifo_enqueue,
748 .dequeue = qdisc_dequeue_head,
749 .peek = qdisc_peek_head,
750 .drop = qdisc_queue_drop,
751 .init = tfifo_init,
752 .reset = qdisc_reset_queue,
753 .change = tfifo_init,
754 .dump = tfifo_dump,
755 };
756
757 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
758 {
759 struct netem_sched_data *q = qdisc_priv(sch);
760 int ret;
761
762 if (!opt)
763 return -EINVAL;
764
765 qdisc_watchdog_init(&q->watchdog, sch);
766
767 q->loss_model = CLG_RANDOM;
768 q->qdisc = qdisc_create_dflt(sch->dev_queue, &tfifo_qdisc_ops,
769 TC_H_MAKE(sch->handle, 1));
770 if (!q->qdisc) {
771 pr_notice("netem: qdisc create tfifo qdisc failed\n");
772 return -ENOMEM;
773 }
774
775 ret = netem_change(sch, opt);
776 if (ret) {
777 pr_info("netem: change failed\n");
778 qdisc_destroy(q->qdisc);
779 }
780 return ret;
781 }
782
783 static void netem_destroy(struct Qdisc *sch)
784 {
785 struct netem_sched_data *q = qdisc_priv(sch);
786
787 qdisc_watchdog_cancel(&q->watchdog);
788 qdisc_destroy(q->qdisc);
789 dist_free(q->delay_dist);
790 }
791
792 static int dump_loss_model(const struct netem_sched_data *q,
793 struct sk_buff *skb)
794 {
795 struct nlattr *nest;
796
797 nest = nla_nest_start(skb, TCA_NETEM_LOSS);
798 if (nest == NULL)
799 goto nla_put_failure;
800
801 switch (q->loss_model) {
802 case CLG_RANDOM:
803 /* legacy loss model */
804 nla_nest_cancel(skb, nest);
805 return 0; /* no data */
806
807 case CLG_4_STATES: {
808 struct tc_netem_gimodel gi = {
809 .p13 = q->clg.a1,
810 .p31 = q->clg.a2,
811 .p32 = q->clg.a3,
812 .p14 = q->clg.a4,
813 .p23 = q->clg.a5,
814 };
815
816 NLA_PUT(skb, NETEM_LOSS_GI, sizeof(gi), &gi);
817 break;
818 }
819 case CLG_GILB_ELL: {
820 struct tc_netem_gemodel ge = {
821 .p = q->clg.a1,
822 .r = q->clg.a2,
823 .h = q->clg.a3,
824 .k1 = q->clg.a4,
825 };
826
827 NLA_PUT(skb, NETEM_LOSS_GE, sizeof(ge), &ge);
828 break;
829 }
830 }
831
832 nla_nest_end(skb, nest);
833 return 0;
834
835 nla_put_failure:
836 nla_nest_cancel(skb, nest);
837 return -1;
838 }
839
840 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
841 {
842 const struct netem_sched_data *q = qdisc_priv(sch);
843 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
844 struct tc_netem_qopt qopt;
845 struct tc_netem_corr cor;
846 struct tc_netem_reorder reorder;
847 struct tc_netem_corrupt corrupt;
848
849 qopt.latency = q->latency;
850 qopt.jitter = q->jitter;
851 qopt.limit = q->limit;
852 qopt.loss = q->loss;
853 qopt.gap = q->gap;
854 qopt.duplicate = q->duplicate;
855 NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
856
857 cor.delay_corr = q->delay_cor.rho;
858 cor.loss_corr = q->loss_cor.rho;
859 cor.dup_corr = q->dup_cor.rho;
860 NLA_PUT(skb, TCA_NETEM_CORR, sizeof(cor), &cor);
861
862 reorder.probability = q->reorder;
863 reorder.correlation = q->reorder_cor.rho;
864 NLA_PUT(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder);
865
866 corrupt.probability = q->corrupt;
867 corrupt.correlation = q->corrupt_cor.rho;
868 NLA_PUT(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt);
869
870 if (dump_loss_model(q, skb) != 0)
871 goto nla_put_failure;
872
873 return nla_nest_end(skb, nla);
874
875 nla_put_failure:
876 nlmsg_trim(skb, nla);
877 return -1;
878 }
879
880 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
881 struct sk_buff *skb, struct tcmsg *tcm)
882 {
883 struct netem_sched_data *q = qdisc_priv(sch);
884
885 if (cl != 1) /* only one class */
886 return -ENOENT;
887
888 tcm->tcm_handle |= TC_H_MIN(1);
889 tcm->tcm_info = q->qdisc->handle;
890
891 return 0;
892 }
893
894 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
895 struct Qdisc **old)
896 {
897 struct netem_sched_data *q = qdisc_priv(sch);
898
899 if (new == NULL)
900 new = &noop_qdisc;
901
902 sch_tree_lock(sch);
903 *old = q->qdisc;
904 q->qdisc = new;
905 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
906 qdisc_reset(*old);
907 sch_tree_unlock(sch);
908
909 return 0;
910 }
911
912 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
913 {
914 struct netem_sched_data *q = qdisc_priv(sch);
915 return q->qdisc;
916 }
917
918 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
919 {
920 return 1;
921 }
922
923 static void netem_put(struct Qdisc *sch, unsigned long arg)
924 {
925 }
926
927 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
928 {
929 if (!walker->stop) {
930 if (walker->count >= walker->skip)
931 if (walker->fn(sch, 1, walker) < 0) {
932 walker->stop = 1;
933 return;
934 }
935 walker->count++;
936 }
937 }
938
939 static const struct Qdisc_class_ops netem_class_ops = {
940 .graft = netem_graft,
941 .leaf = netem_leaf,
942 .get = netem_get,
943 .put = netem_put,
944 .walk = netem_walk,
945 .dump = netem_dump_class,
946 };
947
948 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
949 .id = "netem",
950 .cl_ops = &netem_class_ops,
951 .priv_size = sizeof(struct netem_sched_data),
952 .enqueue = netem_enqueue,
953 .dequeue = netem_dequeue,
954 .peek = qdisc_peek_dequeued,
955 .drop = netem_drop,
956 .init = netem_init,
957 .reset = netem_reset,
958 .destroy = netem_destroy,
959 .change = netem_change,
960 .dump = netem_dump,
961 .owner = THIS_MODULE,
962 };
963
964
965 static int __init netem_module_init(void)
966 {
967 pr_info("netem: version " VERSION "\n");
968 return register_qdisc(&netem_qdisc_ops);
969 }
970 static void __exit netem_module_exit(void)
971 {
972 unregister_qdisc(&netem_qdisc_ops);
973 }
974 module_init(netem_module_init)
975 module_exit(netem_module_exit)
976 MODULE_LICENSE("GPL");
This page took 0.067976 seconds and 5 git commands to generate.