Merge remote-tracking branch 'regmap/fix/cache' into regmap-linus
[deliverable/linux.git] / net / sched / sch_netem.c
1 /*
2 * net/sched/sch_netem.c Network emulator
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License.
8 *
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
11 *
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14 */
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31
32 #define VERSION "1.3"
33
34 /* Network Emulation Queuing algorithm.
35 ====================================
36
37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 Network Emulation Tool
39 [2] Luigi Rizzo, DummyNet for FreeBSD
40
41 ----------------------------------------------------------------
42
43 This started out as a simple way to delay outgoing packets to
44 test TCP but has grown to include most of the functionality
45 of a full blown network emulator like NISTnet. It can delay
46 packets and add random jitter (and correlation). The random
47 distribution can be loaded from a table as well to provide
48 normal, Pareto, or experimental curves. Packet loss,
49 duplication, and reordering can also be emulated.
50
51 This qdisc does not do classification that can be handled in
52 layering other disciplines. It does not need to do bandwidth
53 control either since that can be handled by using token
54 bucket or other rate control.
55
56 Correlated Loss Generator models
57
58 Added generation of correlated loss according to the
59 "Gilbert-Elliot" model, a 4-state markov model.
60
61 References:
62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 and intuitive loss model for packet networks and its implementation
65 in the Netem module in the Linux kernel", available in [1]
66
67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70
71 struct netem_sched_data {
72 /* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 struct rb_root t_root;
74
75 /* optional qdisc for classful handling (NULL at netem init) */
76 struct Qdisc *qdisc;
77
78 struct qdisc_watchdog watchdog;
79
80 psched_tdiff_t latency;
81 psched_tdiff_t jitter;
82
83 u32 loss;
84 u32 ecn;
85 u32 limit;
86 u32 counter;
87 u32 gap;
88 u32 duplicate;
89 u32 reorder;
90 u32 corrupt;
91 u64 rate;
92 s32 packet_overhead;
93 u32 cell_size;
94 struct reciprocal_value cell_size_reciprocal;
95 s32 cell_overhead;
96
97 struct crndstate {
98 u32 last;
99 u32 rho;
100 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
101
102 struct disttable {
103 u32 size;
104 s16 table[0];
105 } *delay_dist;
106
107 enum {
108 CLG_RANDOM,
109 CLG_4_STATES,
110 CLG_GILB_ELL,
111 } loss_model;
112
113 enum {
114 TX_IN_GAP_PERIOD = 1,
115 TX_IN_BURST_PERIOD,
116 LOST_IN_GAP_PERIOD,
117 LOST_IN_BURST_PERIOD,
118 } _4_state_model;
119
120 enum {
121 GOOD_STATE = 1,
122 BAD_STATE,
123 } GE_state_model;
124
125 /* Correlated Loss Generation models */
126 struct clgstate {
127 /* state of the Markov chain */
128 u8 state;
129
130 /* 4-states and Gilbert-Elliot models */
131 u32 a1; /* p13 for 4-states or p for GE */
132 u32 a2; /* p31 for 4-states or r for GE */
133 u32 a3; /* p32 for 4-states or h for GE */
134 u32 a4; /* p14 for 4-states or 1-k for GE */
135 u32 a5; /* p23 used only in 4-states */
136 } clg;
137
138 };
139
140 /* Time stamp put into socket buffer control block
141 * Only valid when skbs are in our internal t(ime)fifo queue.
142 */
143 struct netem_skb_cb {
144 psched_time_t time_to_send;
145 ktime_t tstamp_save;
146 };
147
148 /* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp
149 * to hold a rb_node structure.
150 *
151 * If struct sk_buff layout is changed, the following checks will complain.
152 */
153 static struct rb_node *netem_rb_node(struct sk_buff *skb)
154 {
155 BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0);
156 BUILD_BUG_ON(offsetof(struct sk_buff, prev) !=
157 offsetof(struct sk_buff, next) + sizeof(skb->next));
158 BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) !=
159 offsetof(struct sk_buff, prev) + sizeof(skb->prev));
160 BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) +
161 sizeof(skb->prev) +
162 sizeof(skb->tstamp));
163 return (struct rb_node *)&skb->next;
164 }
165
166 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
167 {
168 return (struct sk_buff *)rb;
169 }
170
171 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
172 {
173 /* we assume we can use skb next/prev/tstamp as storage for rb_node */
174 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
175 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
176 }
177
178 /* init_crandom - initialize correlated random number generator
179 * Use entropy source for initial seed.
180 */
181 static void init_crandom(struct crndstate *state, unsigned long rho)
182 {
183 state->rho = rho;
184 state->last = prandom_u32();
185 }
186
187 /* get_crandom - correlated random number generator
188 * Next number depends on last value.
189 * rho is scaled to avoid floating point.
190 */
191 static u32 get_crandom(struct crndstate *state)
192 {
193 u64 value, rho;
194 unsigned long answer;
195
196 if (state->rho == 0) /* no correlation */
197 return prandom_u32();
198
199 value = prandom_u32();
200 rho = (u64)state->rho + 1;
201 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
202 state->last = answer;
203 return answer;
204 }
205
206 /* loss_4state - 4-state model loss generator
207 * Generates losses according to the 4-state Markov chain adopted in
208 * the GI (General and Intuitive) loss model.
209 */
210 static bool loss_4state(struct netem_sched_data *q)
211 {
212 struct clgstate *clg = &q->clg;
213 u32 rnd = prandom_u32();
214
215 /*
216 * Makes a comparison between rnd and the transition
217 * probabilities outgoing from the current state, then decides the
218 * next state and if the next packet has to be transmitted or lost.
219 * The four states correspond to:
220 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
221 * LOST_IN_BURST_PERIOD => isolated losses within a gap period
222 * LOST_IN_GAP_PERIOD => lost packets within a burst period
223 * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
224 */
225 switch (clg->state) {
226 case TX_IN_GAP_PERIOD:
227 if (rnd < clg->a4) {
228 clg->state = LOST_IN_BURST_PERIOD;
229 return true;
230 } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
231 clg->state = LOST_IN_GAP_PERIOD;
232 return true;
233 } else if (clg->a1 + clg->a4 < rnd) {
234 clg->state = TX_IN_GAP_PERIOD;
235 }
236
237 break;
238 case TX_IN_BURST_PERIOD:
239 if (rnd < clg->a5) {
240 clg->state = LOST_IN_GAP_PERIOD;
241 return true;
242 } else {
243 clg->state = TX_IN_BURST_PERIOD;
244 }
245
246 break;
247 case LOST_IN_GAP_PERIOD:
248 if (rnd < clg->a3)
249 clg->state = TX_IN_BURST_PERIOD;
250 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
251 clg->state = TX_IN_GAP_PERIOD;
252 } else if (clg->a2 + clg->a3 < rnd) {
253 clg->state = LOST_IN_GAP_PERIOD;
254 return true;
255 }
256 break;
257 case LOST_IN_BURST_PERIOD:
258 clg->state = TX_IN_GAP_PERIOD;
259 break;
260 }
261
262 return false;
263 }
264
265 /* loss_gilb_ell - Gilbert-Elliot model loss generator
266 * Generates losses according to the Gilbert-Elliot loss model or
267 * its special cases (Gilbert or Simple Gilbert)
268 *
269 * Makes a comparison between random number and the transition
270 * probabilities outgoing from the current state, then decides the
271 * next state. A second random number is extracted and the comparison
272 * with the loss probability of the current state decides if the next
273 * packet will be transmitted or lost.
274 */
275 static bool loss_gilb_ell(struct netem_sched_data *q)
276 {
277 struct clgstate *clg = &q->clg;
278
279 switch (clg->state) {
280 case GOOD_STATE:
281 if (prandom_u32() < clg->a1)
282 clg->state = BAD_STATE;
283 if (prandom_u32() < clg->a4)
284 return true;
285 break;
286 case BAD_STATE:
287 if (prandom_u32() < clg->a2)
288 clg->state = GOOD_STATE;
289 if (prandom_u32() > clg->a3)
290 return true;
291 }
292
293 return false;
294 }
295
296 static bool loss_event(struct netem_sched_data *q)
297 {
298 switch (q->loss_model) {
299 case CLG_RANDOM:
300 /* Random packet drop 0 => none, ~0 => all */
301 return q->loss && q->loss >= get_crandom(&q->loss_cor);
302
303 case CLG_4_STATES:
304 /* 4state loss model algorithm (used also for GI model)
305 * Extracts a value from the markov 4 state loss generator,
306 * if it is 1 drops a packet and if needed writes the event in
307 * the kernel logs
308 */
309 return loss_4state(q);
310
311 case CLG_GILB_ELL:
312 /* Gilbert-Elliot loss model algorithm
313 * Extracts a value from the Gilbert-Elliot loss generator,
314 * if it is 1 drops a packet and if needed writes the event in
315 * the kernel logs
316 */
317 return loss_gilb_ell(q);
318 }
319
320 return false; /* not reached */
321 }
322
323
324 /* tabledist - return a pseudo-randomly distributed value with mean mu and
325 * std deviation sigma. Uses table lookup to approximate the desired
326 * distribution, and a uniformly-distributed pseudo-random source.
327 */
328 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
329 struct crndstate *state,
330 const struct disttable *dist)
331 {
332 psched_tdiff_t x;
333 long t;
334 u32 rnd;
335
336 if (sigma == 0)
337 return mu;
338
339 rnd = get_crandom(state);
340
341 /* default uniform distribution */
342 if (dist == NULL)
343 return (rnd % (2*sigma)) - sigma + mu;
344
345 t = dist->table[rnd % dist->size];
346 x = (sigma % NETEM_DIST_SCALE) * t;
347 if (x >= 0)
348 x += NETEM_DIST_SCALE/2;
349 else
350 x -= NETEM_DIST_SCALE/2;
351
352 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
353 }
354
355 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
356 {
357 u64 ticks;
358
359 len += q->packet_overhead;
360
361 if (q->cell_size) {
362 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
363
364 if (len > cells * q->cell_size) /* extra cell needed for remainder */
365 cells++;
366 len = cells * (q->cell_size + q->cell_overhead);
367 }
368
369 ticks = (u64)len * NSEC_PER_SEC;
370
371 do_div(ticks, q->rate);
372 return PSCHED_NS2TICKS(ticks);
373 }
374
375 static void tfifo_reset(struct Qdisc *sch)
376 {
377 struct netem_sched_data *q = qdisc_priv(sch);
378 struct rb_node *p;
379
380 while ((p = rb_first(&q->t_root))) {
381 struct sk_buff *skb = netem_rb_to_skb(p);
382
383 rb_erase(p, &q->t_root);
384 skb->next = NULL;
385 skb->prev = NULL;
386 kfree_skb(skb);
387 }
388 }
389
390 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
391 {
392 struct netem_sched_data *q = qdisc_priv(sch);
393 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
394 struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
395
396 while (*p) {
397 struct sk_buff *skb;
398
399 parent = *p;
400 skb = netem_rb_to_skb(parent);
401 if (tnext >= netem_skb_cb(skb)->time_to_send)
402 p = &parent->rb_right;
403 else
404 p = &parent->rb_left;
405 }
406 rb_link_node(netem_rb_node(nskb), parent, p);
407 rb_insert_color(netem_rb_node(nskb), &q->t_root);
408 sch->q.qlen++;
409 }
410
411 /*
412 * Insert one skb into qdisc.
413 * Note: parent depends on return value to account for queue length.
414 * NET_XMIT_DROP: queue length didn't change.
415 * NET_XMIT_SUCCESS: one skb was queued.
416 */
417 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
418 {
419 struct netem_sched_data *q = qdisc_priv(sch);
420 /* We don't fill cb now as skb_unshare() may invalidate it */
421 struct netem_skb_cb *cb;
422 struct sk_buff *skb2;
423 int count = 1;
424
425 /* Random duplication */
426 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
427 ++count;
428
429 /* Drop packet? */
430 if (loss_event(q)) {
431 if (q->ecn && INET_ECN_set_ce(skb))
432 qdisc_qstats_drop(sch); /* mark packet */
433 else
434 --count;
435 }
436 if (count == 0) {
437 qdisc_qstats_drop(sch);
438 kfree_skb(skb);
439 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
440 }
441
442 /* If a delay is expected, orphan the skb. (orphaning usually takes
443 * place at TX completion time, so _before_ the link transit delay)
444 */
445 if (q->latency || q->jitter)
446 skb_orphan_partial(skb);
447
448 /*
449 * If we need to duplicate packet, then re-insert at top of the
450 * qdisc tree, since parent queuer expects that only one
451 * skb will be queued.
452 */
453 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
454 struct Qdisc *rootq = qdisc_root(sch);
455 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
456 q->duplicate = 0;
457
458 qdisc_enqueue_root(skb2, rootq);
459 q->duplicate = dupsave;
460 }
461
462 /*
463 * Randomized packet corruption.
464 * Make copy if needed since we are modifying
465 * If packet is going to be hardware checksummed, then
466 * do it now in software before we mangle it.
467 */
468 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
469 if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
470 (skb->ip_summed == CHECKSUM_PARTIAL &&
471 skb_checksum_help(skb)))
472 return qdisc_drop(skb, sch);
473
474 skb->data[prandom_u32() % skb_headlen(skb)] ^=
475 1<<(prandom_u32() % 8);
476 }
477
478 if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
479 return qdisc_reshape_fail(skb, sch);
480
481 qdisc_qstats_backlog_inc(sch, skb);
482
483 cb = netem_skb_cb(skb);
484 if (q->gap == 0 || /* not doing reordering */
485 q->counter < q->gap - 1 || /* inside last reordering gap */
486 q->reorder < get_crandom(&q->reorder_cor)) {
487 psched_time_t now;
488 psched_tdiff_t delay;
489
490 delay = tabledist(q->latency, q->jitter,
491 &q->delay_cor, q->delay_dist);
492
493 now = psched_get_time();
494
495 if (q->rate) {
496 struct sk_buff *last;
497
498 if (!skb_queue_empty(&sch->q))
499 last = skb_peek_tail(&sch->q);
500 else
501 last = netem_rb_to_skb(rb_last(&q->t_root));
502 if (last) {
503 /*
504 * Last packet in queue is reference point (now),
505 * calculate this time bonus and subtract
506 * from delay.
507 */
508 delay -= netem_skb_cb(last)->time_to_send - now;
509 delay = max_t(psched_tdiff_t, 0, delay);
510 now = netem_skb_cb(last)->time_to_send;
511 }
512
513 delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
514 }
515
516 cb->time_to_send = now + delay;
517 cb->tstamp_save = skb->tstamp;
518 ++q->counter;
519 tfifo_enqueue(skb, sch);
520 } else {
521 /*
522 * Do re-ordering by putting one out of N packets at the front
523 * of the queue.
524 */
525 cb->time_to_send = psched_get_time();
526 q->counter = 0;
527
528 __skb_queue_head(&sch->q, skb);
529 sch->qstats.requeues++;
530 }
531
532 return NET_XMIT_SUCCESS;
533 }
534
535 static unsigned int netem_drop(struct Qdisc *sch)
536 {
537 struct netem_sched_data *q = qdisc_priv(sch);
538 unsigned int len;
539
540 len = qdisc_queue_drop(sch);
541
542 if (!len) {
543 struct rb_node *p = rb_first(&q->t_root);
544
545 if (p) {
546 struct sk_buff *skb = netem_rb_to_skb(p);
547
548 rb_erase(p, &q->t_root);
549 sch->q.qlen--;
550 skb->next = NULL;
551 skb->prev = NULL;
552 qdisc_qstats_backlog_dec(sch, skb);
553 kfree_skb(skb);
554 }
555 }
556 if (!len && q->qdisc && q->qdisc->ops->drop)
557 len = q->qdisc->ops->drop(q->qdisc);
558 if (len)
559 qdisc_qstats_drop(sch);
560
561 return len;
562 }
563
564 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
565 {
566 struct netem_sched_data *q = qdisc_priv(sch);
567 struct sk_buff *skb;
568 struct rb_node *p;
569
570 if (qdisc_is_throttled(sch))
571 return NULL;
572
573 tfifo_dequeue:
574 skb = __skb_dequeue(&sch->q);
575 if (skb) {
576 deliver:
577 qdisc_qstats_backlog_dec(sch, skb);
578 qdisc_unthrottled(sch);
579 qdisc_bstats_update(sch, skb);
580 return skb;
581 }
582 p = rb_first(&q->t_root);
583 if (p) {
584 psched_time_t time_to_send;
585
586 skb = netem_rb_to_skb(p);
587
588 /* if more time remaining? */
589 time_to_send = netem_skb_cb(skb)->time_to_send;
590 if (time_to_send <= psched_get_time()) {
591 rb_erase(p, &q->t_root);
592
593 sch->q.qlen--;
594 skb->next = NULL;
595 skb->prev = NULL;
596 skb->tstamp = netem_skb_cb(skb)->tstamp_save;
597
598 #ifdef CONFIG_NET_CLS_ACT
599 /*
600 * If it's at ingress let's pretend the delay is
601 * from the network (tstamp will be updated).
602 */
603 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
604 skb->tstamp.tv64 = 0;
605 #endif
606
607 if (q->qdisc) {
608 int err = qdisc_enqueue(skb, q->qdisc);
609
610 if (unlikely(err != NET_XMIT_SUCCESS)) {
611 if (net_xmit_drop_count(err)) {
612 qdisc_qstats_drop(sch);
613 qdisc_tree_decrease_qlen(sch, 1);
614 }
615 }
616 goto tfifo_dequeue;
617 }
618 goto deliver;
619 }
620
621 if (q->qdisc) {
622 skb = q->qdisc->ops->dequeue(q->qdisc);
623 if (skb)
624 goto deliver;
625 }
626 qdisc_watchdog_schedule(&q->watchdog, time_to_send);
627 }
628
629 if (q->qdisc) {
630 skb = q->qdisc->ops->dequeue(q->qdisc);
631 if (skb)
632 goto deliver;
633 }
634 return NULL;
635 }
636
637 static void netem_reset(struct Qdisc *sch)
638 {
639 struct netem_sched_data *q = qdisc_priv(sch);
640
641 qdisc_reset_queue(sch);
642 tfifo_reset(sch);
643 if (q->qdisc)
644 qdisc_reset(q->qdisc);
645 qdisc_watchdog_cancel(&q->watchdog);
646 }
647
648 static void dist_free(struct disttable *d)
649 {
650 kvfree(d);
651 }
652
653 /*
654 * Distribution data is a variable size payload containing
655 * signed 16 bit values.
656 */
657 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
658 {
659 struct netem_sched_data *q = qdisc_priv(sch);
660 size_t n = nla_len(attr)/sizeof(__s16);
661 const __s16 *data = nla_data(attr);
662 spinlock_t *root_lock;
663 struct disttable *d;
664 int i;
665 size_t s;
666
667 if (n > NETEM_DIST_MAX)
668 return -EINVAL;
669
670 s = sizeof(struct disttable) + n * sizeof(s16);
671 d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
672 if (!d)
673 d = vmalloc(s);
674 if (!d)
675 return -ENOMEM;
676
677 d->size = n;
678 for (i = 0; i < n; i++)
679 d->table[i] = data[i];
680
681 root_lock = qdisc_root_sleeping_lock(sch);
682
683 spin_lock_bh(root_lock);
684 swap(q->delay_dist, d);
685 spin_unlock_bh(root_lock);
686
687 dist_free(d);
688 return 0;
689 }
690
691 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
692 {
693 const struct tc_netem_corr *c = nla_data(attr);
694
695 init_crandom(&q->delay_cor, c->delay_corr);
696 init_crandom(&q->loss_cor, c->loss_corr);
697 init_crandom(&q->dup_cor, c->dup_corr);
698 }
699
700 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
701 {
702 const struct tc_netem_reorder *r = nla_data(attr);
703
704 q->reorder = r->probability;
705 init_crandom(&q->reorder_cor, r->correlation);
706 }
707
708 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
709 {
710 const struct tc_netem_corrupt *r = nla_data(attr);
711
712 q->corrupt = r->probability;
713 init_crandom(&q->corrupt_cor, r->correlation);
714 }
715
716 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
717 {
718 const struct tc_netem_rate *r = nla_data(attr);
719
720 q->rate = r->rate;
721 q->packet_overhead = r->packet_overhead;
722 q->cell_size = r->cell_size;
723 q->cell_overhead = r->cell_overhead;
724 if (q->cell_size)
725 q->cell_size_reciprocal = reciprocal_value(q->cell_size);
726 else
727 q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
728 }
729
730 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
731 {
732 const struct nlattr *la;
733 int rem;
734
735 nla_for_each_nested(la, attr, rem) {
736 u16 type = nla_type(la);
737
738 switch (type) {
739 case NETEM_LOSS_GI: {
740 const struct tc_netem_gimodel *gi = nla_data(la);
741
742 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
743 pr_info("netem: incorrect gi model size\n");
744 return -EINVAL;
745 }
746
747 q->loss_model = CLG_4_STATES;
748
749 q->clg.state = TX_IN_GAP_PERIOD;
750 q->clg.a1 = gi->p13;
751 q->clg.a2 = gi->p31;
752 q->clg.a3 = gi->p32;
753 q->clg.a4 = gi->p14;
754 q->clg.a5 = gi->p23;
755 break;
756 }
757
758 case NETEM_LOSS_GE: {
759 const struct tc_netem_gemodel *ge = nla_data(la);
760
761 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
762 pr_info("netem: incorrect ge model size\n");
763 return -EINVAL;
764 }
765
766 q->loss_model = CLG_GILB_ELL;
767 q->clg.state = GOOD_STATE;
768 q->clg.a1 = ge->p;
769 q->clg.a2 = ge->r;
770 q->clg.a3 = ge->h;
771 q->clg.a4 = ge->k1;
772 break;
773 }
774
775 default:
776 pr_info("netem: unknown loss type %u\n", type);
777 return -EINVAL;
778 }
779 }
780
781 return 0;
782 }
783
784 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
785 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
786 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
787 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
788 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) },
789 [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
790 [TCA_NETEM_ECN] = { .type = NLA_U32 },
791 [TCA_NETEM_RATE64] = { .type = NLA_U64 },
792 };
793
794 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
795 const struct nla_policy *policy, int len)
796 {
797 int nested_len = nla_len(nla) - NLA_ALIGN(len);
798
799 if (nested_len < 0) {
800 pr_info("netem: invalid attributes len %d\n", nested_len);
801 return -EINVAL;
802 }
803
804 if (nested_len >= nla_attr_size(0))
805 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
806 nested_len, policy);
807
808 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
809 return 0;
810 }
811
812 /* Parse netlink message to set options */
813 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
814 {
815 struct netem_sched_data *q = qdisc_priv(sch);
816 struct nlattr *tb[TCA_NETEM_MAX + 1];
817 struct tc_netem_qopt *qopt;
818 struct clgstate old_clg;
819 int old_loss_model = CLG_RANDOM;
820 int ret;
821
822 if (opt == NULL)
823 return -EINVAL;
824
825 qopt = nla_data(opt);
826 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
827 if (ret < 0)
828 return ret;
829
830 /* backup q->clg and q->loss_model */
831 old_clg = q->clg;
832 old_loss_model = q->loss_model;
833
834 if (tb[TCA_NETEM_LOSS]) {
835 ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
836 if (ret) {
837 q->loss_model = old_loss_model;
838 return ret;
839 }
840 } else {
841 q->loss_model = CLG_RANDOM;
842 }
843
844 if (tb[TCA_NETEM_DELAY_DIST]) {
845 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
846 if (ret) {
847 /* recover clg and loss_model, in case of
848 * q->clg and q->loss_model were modified
849 * in get_loss_clg()
850 */
851 q->clg = old_clg;
852 q->loss_model = old_loss_model;
853 return ret;
854 }
855 }
856
857 sch->limit = qopt->limit;
858
859 q->latency = qopt->latency;
860 q->jitter = qopt->jitter;
861 q->limit = qopt->limit;
862 q->gap = qopt->gap;
863 q->counter = 0;
864 q->loss = qopt->loss;
865 q->duplicate = qopt->duplicate;
866
867 /* for compatibility with earlier versions.
868 * if gap is set, need to assume 100% probability
869 */
870 if (q->gap)
871 q->reorder = ~0;
872
873 if (tb[TCA_NETEM_CORR])
874 get_correlation(q, tb[TCA_NETEM_CORR]);
875
876 if (tb[TCA_NETEM_REORDER])
877 get_reorder(q, tb[TCA_NETEM_REORDER]);
878
879 if (tb[TCA_NETEM_CORRUPT])
880 get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
881
882 if (tb[TCA_NETEM_RATE])
883 get_rate(q, tb[TCA_NETEM_RATE]);
884
885 if (tb[TCA_NETEM_RATE64])
886 q->rate = max_t(u64, q->rate,
887 nla_get_u64(tb[TCA_NETEM_RATE64]));
888
889 if (tb[TCA_NETEM_ECN])
890 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
891
892 return ret;
893 }
894
895 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
896 {
897 struct netem_sched_data *q = qdisc_priv(sch);
898 int ret;
899
900 if (!opt)
901 return -EINVAL;
902
903 qdisc_watchdog_init(&q->watchdog, sch);
904
905 q->loss_model = CLG_RANDOM;
906 ret = netem_change(sch, opt);
907 if (ret)
908 pr_info("netem: change failed\n");
909 return ret;
910 }
911
912 static void netem_destroy(struct Qdisc *sch)
913 {
914 struct netem_sched_data *q = qdisc_priv(sch);
915
916 qdisc_watchdog_cancel(&q->watchdog);
917 if (q->qdisc)
918 qdisc_destroy(q->qdisc);
919 dist_free(q->delay_dist);
920 }
921
922 static int dump_loss_model(const struct netem_sched_data *q,
923 struct sk_buff *skb)
924 {
925 struct nlattr *nest;
926
927 nest = nla_nest_start(skb, TCA_NETEM_LOSS);
928 if (nest == NULL)
929 goto nla_put_failure;
930
931 switch (q->loss_model) {
932 case CLG_RANDOM:
933 /* legacy loss model */
934 nla_nest_cancel(skb, nest);
935 return 0; /* no data */
936
937 case CLG_4_STATES: {
938 struct tc_netem_gimodel gi = {
939 .p13 = q->clg.a1,
940 .p31 = q->clg.a2,
941 .p32 = q->clg.a3,
942 .p14 = q->clg.a4,
943 .p23 = q->clg.a5,
944 };
945
946 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
947 goto nla_put_failure;
948 break;
949 }
950 case CLG_GILB_ELL: {
951 struct tc_netem_gemodel ge = {
952 .p = q->clg.a1,
953 .r = q->clg.a2,
954 .h = q->clg.a3,
955 .k1 = q->clg.a4,
956 };
957
958 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
959 goto nla_put_failure;
960 break;
961 }
962 }
963
964 nla_nest_end(skb, nest);
965 return 0;
966
967 nla_put_failure:
968 nla_nest_cancel(skb, nest);
969 return -1;
970 }
971
972 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
973 {
974 const struct netem_sched_data *q = qdisc_priv(sch);
975 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
976 struct tc_netem_qopt qopt;
977 struct tc_netem_corr cor;
978 struct tc_netem_reorder reorder;
979 struct tc_netem_corrupt corrupt;
980 struct tc_netem_rate rate;
981
982 qopt.latency = q->latency;
983 qopt.jitter = q->jitter;
984 qopt.limit = q->limit;
985 qopt.loss = q->loss;
986 qopt.gap = q->gap;
987 qopt.duplicate = q->duplicate;
988 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
989 goto nla_put_failure;
990
991 cor.delay_corr = q->delay_cor.rho;
992 cor.loss_corr = q->loss_cor.rho;
993 cor.dup_corr = q->dup_cor.rho;
994 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
995 goto nla_put_failure;
996
997 reorder.probability = q->reorder;
998 reorder.correlation = q->reorder_cor.rho;
999 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1000 goto nla_put_failure;
1001
1002 corrupt.probability = q->corrupt;
1003 corrupt.correlation = q->corrupt_cor.rho;
1004 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1005 goto nla_put_failure;
1006
1007 if (q->rate >= (1ULL << 32)) {
1008 if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate))
1009 goto nla_put_failure;
1010 rate.rate = ~0U;
1011 } else {
1012 rate.rate = q->rate;
1013 }
1014 rate.packet_overhead = q->packet_overhead;
1015 rate.cell_size = q->cell_size;
1016 rate.cell_overhead = q->cell_overhead;
1017 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1018 goto nla_put_failure;
1019
1020 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1021 goto nla_put_failure;
1022
1023 if (dump_loss_model(q, skb) != 0)
1024 goto nla_put_failure;
1025
1026 return nla_nest_end(skb, nla);
1027
1028 nla_put_failure:
1029 nlmsg_trim(skb, nla);
1030 return -1;
1031 }
1032
1033 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1034 struct sk_buff *skb, struct tcmsg *tcm)
1035 {
1036 struct netem_sched_data *q = qdisc_priv(sch);
1037
1038 if (cl != 1 || !q->qdisc) /* only one class */
1039 return -ENOENT;
1040
1041 tcm->tcm_handle |= TC_H_MIN(1);
1042 tcm->tcm_info = q->qdisc->handle;
1043
1044 return 0;
1045 }
1046
1047 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1048 struct Qdisc **old)
1049 {
1050 struct netem_sched_data *q = qdisc_priv(sch);
1051
1052 sch_tree_lock(sch);
1053 *old = q->qdisc;
1054 q->qdisc = new;
1055 if (*old) {
1056 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1057 qdisc_reset(*old);
1058 }
1059 sch_tree_unlock(sch);
1060
1061 return 0;
1062 }
1063
1064 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1065 {
1066 struct netem_sched_data *q = qdisc_priv(sch);
1067 return q->qdisc;
1068 }
1069
1070 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1071 {
1072 return 1;
1073 }
1074
1075 static void netem_put(struct Qdisc *sch, unsigned long arg)
1076 {
1077 }
1078
1079 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1080 {
1081 if (!walker->stop) {
1082 if (walker->count >= walker->skip)
1083 if (walker->fn(sch, 1, walker) < 0) {
1084 walker->stop = 1;
1085 return;
1086 }
1087 walker->count++;
1088 }
1089 }
1090
1091 static const struct Qdisc_class_ops netem_class_ops = {
1092 .graft = netem_graft,
1093 .leaf = netem_leaf,
1094 .get = netem_get,
1095 .put = netem_put,
1096 .walk = netem_walk,
1097 .dump = netem_dump_class,
1098 };
1099
1100 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1101 .id = "netem",
1102 .cl_ops = &netem_class_ops,
1103 .priv_size = sizeof(struct netem_sched_data),
1104 .enqueue = netem_enqueue,
1105 .dequeue = netem_dequeue,
1106 .peek = qdisc_peek_dequeued,
1107 .drop = netem_drop,
1108 .init = netem_init,
1109 .reset = netem_reset,
1110 .destroy = netem_destroy,
1111 .change = netem_change,
1112 .dump = netem_dump,
1113 .owner = THIS_MODULE,
1114 };
1115
1116
1117 static int __init netem_module_init(void)
1118 {
1119 pr_info("netem: version " VERSION "\n");
1120 return register_qdisc(&netem_qdisc_ops);
1121 }
1122 static void __exit netem_module_exit(void)
1123 {
1124 unregister_qdisc(&netem_qdisc_ops);
1125 }
1126 module_init(netem_module_init)
1127 module_exit(netem_module_exit)
1128 MODULE_LICENSE("GPL");
This page took 0.054588 seconds and 6 git commands to generate.