hlist: drop the node parameter from iterators
[deliverable/linux.git] / net / sched / sch_qfq.c
1 /*
2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
3 *
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5 * Copyright (c) 2012 Paolo Valente.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21
22
23 /* Quick Fair Queueing Plus
24 ========================
25
26 Sources:
27
28 [1] Paolo Valente,
29 "Reducing the Execution Time of Fair-Queueing Schedulers."
30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31
32 Sources for QFQ:
33
34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36
37 See also:
38 http://retis.sssup.it/~fabio/linux/qfq/
39 */
40
41 /*
42
43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44 classes. Each aggregate is timestamped with a virtual start time S
45 and a virtual finish time F, and scheduled according to its
46 timestamps. S and F are computed as a function of a system virtual
47 time function V. The classes within each aggregate are instead
48 scheduled with DRR.
49
50 To speed up operations, QFQ+ divides also aggregates into a limited
51 number of groups. Which group a class belongs to depends on the
52 ratio between the maximum packet length for the class and the weight
53 of the class. Groups have their own S and F. In the end, QFQ+
54 schedules groups, then aggregates within groups, then classes within
55 aggregates. See [1] and [2] for a full description.
56
57 Virtual time computations.
58
59 S, F and V are all computed in fixed point arithmetic with
60 FRAC_BITS decimal bits.
61
62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 one bit per index.
64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65
66 The layout of the bits is as below:
67
68 [ MTU_SHIFT ][ FRAC_BITS ]
69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 ^.__grp->index = 0
71 *.__grp->slot_shift
72
73 where MIN_SLOT_SHIFT is derived by difference from the others.
74
75 The max group index corresponds to Lmax/w_min, where
76 Lmax=1<<MTU_SHIFT, w_min = 1 .
77 From this, and knowing how many groups (MAX_INDEX) we want,
78 we can derive the shift corresponding to each group.
79
80 Because we often need to compute
81 F = S + len/w_i and V = V + len/wsum
82 instead of storing w_i store the value
83 inv_w = (1<<FRAC_BITS)/w_i
84 so we can do F = S + len * inv_w * wsum.
85 We use W_TOT in the formulas so we can easily move between
86 static and adaptive weight sum.
87
88 The per-scheduler-instance data contain all the data structures
89 for the scheduler: bitmaps and bucket lists.
90
91 */
92
93 /*
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
96 */
97 #define QFQ_MAX_SLOTS 32
98
99 /*
100 * Shifts used for aggregate<->group mapping. We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102 * group with the smallest index that can support the L_i / r_i configured
103 * for the classes in the aggregate.
104 *
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
107 */
108 #define QFQ_MAX_INDEX 24
109 #define QFQ_MAX_WSHIFT 10
110
111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
113
114 #define FRAC_BITS 30 /* fixed point arithmetic */
115 #define ONE_FP (1UL << FRAC_BITS)
116 #define IWSUM (ONE_FP/QFQ_MAX_WSUM)
117
118 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
119 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
120
121 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
122
123 /*
124 * Possible group states. These values are used as indexes for the bitmaps
125 * array of struct qfq_queue.
126 */
127 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
128
129 struct qfq_group;
130
131 struct qfq_aggregate;
132
133 struct qfq_class {
134 struct Qdisc_class_common common;
135
136 unsigned int refcnt;
137 unsigned int filter_cnt;
138
139 struct gnet_stats_basic_packed bstats;
140 struct gnet_stats_queue qstats;
141 struct gnet_stats_rate_est rate_est;
142 struct Qdisc *qdisc;
143 struct list_head alist; /* Link for active-classes list. */
144 struct qfq_aggregate *agg; /* Parent aggregate. */
145 int deficit; /* DRR deficit counter. */
146 };
147
148 struct qfq_aggregate {
149 struct hlist_node next; /* Link for the slot list. */
150 u64 S, F; /* flow timestamps (exact) */
151
152 /* group we belong to. In principle we would need the index,
153 * which is log_2(lmax/weight), but we never reference it
154 * directly, only the group.
155 */
156 struct qfq_group *grp;
157
158 /* these are copied from the flowset. */
159 u32 class_weight; /* Weight of each class in this aggregate. */
160 /* Max pkt size for the classes in this aggregate, DRR quantum. */
161 int lmax;
162
163 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
164 u32 budgetmax; /* Max budget for this aggregate. */
165 u32 initial_budget, budget; /* Initial and current budget. */
166
167 int num_classes; /* Number of classes in this aggr. */
168 struct list_head active; /* DRR queue of active classes. */
169
170 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
171 };
172
173 struct qfq_group {
174 u64 S, F; /* group timestamps (approx). */
175 unsigned int slot_shift; /* Slot shift. */
176 unsigned int index; /* Group index. */
177 unsigned int front; /* Index of the front slot. */
178 unsigned long full_slots; /* non-empty slots */
179
180 /* Array of RR lists of active aggregates. */
181 struct hlist_head slots[QFQ_MAX_SLOTS];
182 };
183
184 struct qfq_sched {
185 struct tcf_proto *filter_list;
186 struct Qdisc_class_hash clhash;
187
188 u64 oldV, V; /* Precise virtual times. */
189 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
190 u32 num_active_agg; /* Num. of active aggregates */
191 u32 wsum; /* weight sum */
192
193 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
194 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
195 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
196
197 u32 max_agg_classes; /* Max number of classes per aggr. */
198 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
199 };
200
201 /*
202 * Possible reasons why the timestamps of an aggregate are updated
203 * enqueue: the aggregate switches from idle to active and must scheduled
204 * for service
205 * requeue: the aggregate finishes its budget, so it stops being served and
206 * must be rescheduled for service
207 */
208 enum update_reason {enqueue, requeue};
209
210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 struct qfq_sched *q = qdisc_priv(sch);
213 struct Qdisc_class_common *clc;
214
215 clc = qdisc_class_find(&q->clhash, classid);
216 if (clc == NULL)
217 return NULL;
218 return container_of(clc, struct qfq_class, common);
219 }
220
221 static void qfq_purge_queue(struct qfq_class *cl)
222 {
223 unsigned int len = cl->qdisc->q.qlen;
224
225 qdisc_reset(cl->qdisc);
226 qdisc_tree_decrease_qlen(cl->qdisc, len);
227 }
228
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
232 };
233
234 /*
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
238 */
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240 {
241 u64 slot_size = (u64)maxlen * inv_w;
242 unsigned long size_map;
243 int index = 0;
244
245 size_map = slot_size >> min_slot_shift;
246 if (!size_map)
247 goto out;
248
249 index = __fls(size_map) + 1; /* basically a log_2 */
250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251
252 if (index < 0)
253 index = 0;
254 out:
255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 (unsigned long) ONE_FP/inv_w, maxlen, index);
257
258 return index;
259 }
260
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 enum update_reason);
264
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 u32 lmax, u32 weight)
267 {
268 INIT_LIST_HEAD(&agg->active);
269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270
271 agg->lmax = lmax;
272 agg->class_weight = weight;
273 }
274
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 u32 lmax, u32 weight)
277 {
278 struct qfq_aggregate *agg;
279
280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 if (agg->lmax == lmax && agg->class_weight == weight)
282 return agg;
283
284 return NULL;
285 }
286
287
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 int new_num_classes)
291 {
292 u32 new_agg_weight;
293
294 if (new_num_classes == q->max_agg_classes)
295 hlist_del_init(&agg->nonfull_next);
296
297 if (agg->num_classes > new_num_classes &&
298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300
301 agg->budgetmax = new_num_classes * agg->lmax;
302 new_agg_weight = agg->class_weight * new_num_classes;
303 agg->inv_w = ONE_FP/new_agg_weight;
304
305 if (agg->grp == NULL) {
306 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
307 q->min_slot_shift);
308 agg->grp = &q->groups[i];
309 }
310
311 q->wsum +=
312 (int) agg->class_weight * (new_num_classes - agg->num_classes);
313
314 agg->num_classes = new_num_classes;
315 }
316
317 /* Add class to aggregate. */
318 static void qfq_add_to_agg(struct qfq_sched *q,
319 struct qfq_aggregate *agg,
320 struct qfq_class *cl)
321 {
322 cl->agg = agg;
323
324 qfq_update_agg(q, agg, agg->num_classes+1);
325 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
326 list_add_tail(&cl->alist, &agg->active);
327 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
328 cl && q->in_serv_agg != agg) /* agg was inactive */
329 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
330 }
331 }
332
333 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
334
335 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
336 {
337 if (!hlist_unhashed(&agg->nonfull_next))
338 hlist_del_init(&agg->nonfull_next);
339 if (q->in_serv_agg == agg)
340 q->in_serv_agg = qfq_choose_next_agg(q);
341 kfree(agg);
342 }
343
344 /* Deschedule class from within its parent aggregate. */
345 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
346 {
347 struct qfq_aggregate *agg = cl->agg;
348
349
350 list_del(&cl->alist); /* remove from RR queue of the aggregate */
351 if (list_empty(&agg->active)) /* agg is now inactive */
352 qfq_deactivate_agg(q, agg);
353 }
354
355 /* Remove class from its parent aggregate. */
356 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
357 {
358 struct qfq_aggregate *agg = cl->agg;
359
360 cl->agg = NULL;
361 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
362 qfq_destroy_agg(q, agg);
363 return;
364 }
365 qfq_update_agg(q, agg, agg->num_classes-1);
366 }
367
368 /* Deschedule class and remove it from its parent aggregate. */
369 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
370 {
371 if (cl->qdisc->q.qlen > 0) /* class is active */
372 qfq_deactivate_class(q, cl);
373
374 qfq_rm_from_agg(q, cl);
375 }
376
377 /* Move class to a new aggregate, matching the new class weight and/or lmax */
378 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
379 u32 lmax)
380 {
381 struct qfq_sched *q = qdisc_priv(sch);
382 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
383
384 if (new_agg == NULL) { /* create new aggregate */
385 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
386 if (new_agg == NULL)
387 return -ENOBUFS;
388 qfq_init_agg(q, new_agg, lmax, weight);
389 }
390 qfq_deact_rm_from_agg(q, cl);
391 qfq_add_to_agg(q, new_agg, cl);
392
393 return 0;
394 }
395
396 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
397 struct nlattr **tca, unsigned long *arg)
398 {
399 struct qfq_sched *q = qdisc_priv(sch);
400 struct qfq_class *cl = (struct qfq_class *)*arg;
401 bool existing = false;
402 struct nlattr *tb[TCA_QFQ_MAX + 1];
403 struct qfq_aggregate *new_agg = NULL;
404 u32 weight, lmax, inv_w;
405 int err;
406 int delta_w;
407
408 if (tca[TCA_OPTIONS] == NULL) {
409 pr_notice("qfq: no options\n");
410 return -EINVAL;
411 }
412
413 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
414 if (err < 0)
415 return err;
416
417 if (tb[TCA_QFQ_WEIGHT]) {
418 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
419 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
420 pr_notice("qfq: invalid weight %u\n", weight);
421 return -EINVAL;
422 }
423 } else
424 weight = 1;
425
426 if (tb[TCA_QFQ_LMAX]) {
427 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
428 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
429 pr_notice("qfq: invalid max length %u\n", lmax);
430 return -EINVAL;
431 }
432 } else
433 lmax = psched_mtu(qdisc_dev(sch));
434
435 inv_w = ONE_FP / weight;
436 weight = ONE_FP / inv_w;
437
438 if (cl != NULL &&
439 lmax == cl->agg->lmax &&
440 weight == cl->agg->class_weight)
441 return 0; /* nothing to change */
442
443 delta_w = weight - (cl ? cl->agg->class_weight : 0);
444
445 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
446 pr_notice("qfq: total weight out of range (%d + %u)\n",
447 delta_w, q->wsum);
448 return -EINVAL;
449 }
450
451 if (cl != NULL) { /* modify existing class */
452 if (tca[TCA_RATE]) {
453 err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
454 qdisc_root_sleeping_lock(sch),
455 tca[TCA_RATE]);
456 if (err)
457 return err;
458 }
459 existing = true;
460 goto set_change_agg;
461 }
462
463 /* create and init new class */
464 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
465 if (cl == NULL)
466 return -ENOBUFS;
467
468 cl->refcnt = 1;
469 cl->common.classid = classid;
470 cl->deficit = lmax;
471
472 cl->qdisc = qdisc_create_dflt(sch->dev_queue,
473 &pfifo_qdisc_ops, classid);
474 if (cl->qdisc == NULL)
475 cl->qdisc = &noop_qdisc;
476
477 if (tca[TCA_RATE]) {
478 err = gen_new_estimator(&cl->bstats, &cl->rate_est,
479 qdisc_root_sleeping_lock(sch),
480 tca[TCA_RATE]);
481 if (err)
482 goto destroy_class;
483 }
484
485 sch_tree_lock(sch);
486 qdisc_class_hash_insert(&q->clhash, &cl->common);
487 sch_tree_unlock(sch);
488
489 qdisc_class_hash_grow(sch, &q->clhash);
490
491 set_change_agg:
492 sch_tree_lock(sch);
493 new_agg = qfq_find_agg(q, lmax, weight);
494 if (new_agg == NULL) { /* create new aggregate */
495 sch_tree_unlock(sch);
496 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
497 if (new_agg == NULL) {
498 err = -ENOBUFS;
499 gen_kill_estimator(&cl->bstats, &cl->rate_est);
500 goto destroy_class;
501 }
502 sch_tree_lock(sch);
503 qfq_init_agg(q, new_agg, lmax, weight);
504 }
505 if (existing)
506 qfq_deact_rm_from_agg(q, cl);
507 qfq_add_to_agg(q, new_agg, cl);
508 sch_tree_unlock(sch);
509
510 *arg = (unsigned long)cl;
511 return 0;
512
513 destroy_class:
514 qdisc_destroy(cl->qdisc);
515 kfree(cl);
516 return err;
517 }
518
519 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
520 {
521 struct qfq_sched *q = qdisc_priv(sch);
522
523 qfq_rm_from_agg(q, cl);
524 gen_kill_estimator(&cl->bstats, &cl->rate_est);
525 qdisc_destroy(cl->qdisc);
526 kfree(cl);
527 }
528
529 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
530 {
531 struct qfq_sched *q = qdisc_priv(sch);
532 struct qfq_class *cl = (struct qfq_class *)arg;
533
534 if (cl->filter_cnt > 0)
535 return -EBUSY;
536
537 sch_tree_lock(sch);
538
539 qfq_purge_queue(cl);
540 qdisc_class_hash_remove(&q->clhash, &cl->common);
541
542 BUG_ON(--cl->refcnt == 0);
543 /*
544 * This shouldn't happen: we "hold" one cops->get() when called
545 * from tc_ctl_tclass; the destroy method is done from cops->put().
546 */
547
548 sch_tree_unlock(sch);
549 return 0;
550 }
551
552 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
553 {
554 struct qfq_class *cl = qfq_find_class(sch, classid);
555
556 if (cl != NULL)
557 cl->refcnt++;
558
559 return (unsigned long)cl;
560 }
561
562 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
563 {
564 struct qfq_class *cl = (struct qfq_class *)arg;
565
566 if (--cl->refcnt == 0)
567 qfq_destroy_class(sch, cl);
568 }
569
570 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
571 {
572 struct qfq_sched *q = qdisc_priv(sch);
573
574 if (cl)
575 return NULL;
576
577 return &q->filter_list;
578 }
579
580 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
581 u32 classid)
582 {
583 struct qfq_class *cl = qfq_find_class(sch, classid);
584
585 if (cl != NULL)
586 cl->filter_cnt++;
587
588 return (unsigned long)cl;
589 }
590
591 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
592 {
593 struct qfq_class *cl = (struct qfq_class *)arg;
594
595 cl->filter_cnt--;
596 }
597
598 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
599 struct Qdisc *new, struct Qdisc **old)
600 {
601 struct qfq_class *cl = (struct qfq_class *)arg;
602
603 if (new == NULL) {
604 new = qdisc_create_dflt(sch->dev_queue,
605 &pfifo_qdisc_ops, cl->common.classid);
606 if (new == NULL)
607 new = &noop_qdisc;
608 }
609
610 sch_tree_lock(sch);
611 qfq_purge_queue(cl);
612 *old = cl->qdisc;
613 cl->qdisc = new;
614 sch_tree_unlock(sch);
615 return 0;
616 }
617
618 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
619 {
620 struct qfq_class *cl = (struct qfq_class *)arg;
621
622 return cl->qdisc;
623 }
624
625 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
626 struct sk_buff *skb, struct tcmsg *tcm)
627 {
628 struct qfq_class *cl = (struct qfq_class *)arg;
629 struct nlattr *nest;
630
631 tcm->tcm_parent = TC_H_ROOT;
632 tcm->tcm_handle = cl->common.classid;
633 tcm->tcm_info = cl->qdisc->handle;
634
635 nest = nla_nest_start(skb, TCA_OPTIONS);
636 if (nest == NULL)
637 goto nla_put_failure;
638 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
639 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
640 goto nla_put_failure;
641 return nla_nest_end(skb, nest);
642
643 nla_put_failure:
644 nla_nest_cancel(skb, nest);
645 return -EMSGSIZE;
646 }
647
648 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
649 struct gnet_dump *d)
650 {
651 struct qfq_class *cl = (struct qfq_class *)arg;
652 struct tc_qfq_stats xstats;
653
654 memset(&xstats, 0, sizeof(xstats));
655 cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
656
657 xstats.weight = cl->agg->class_weight;
658 xstats.lmax = cl->agg->lmax;
659
660 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
661 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
662 gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
663 return -1;
664
665 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
666 }
667
668 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
669 {
670 struct qfq_sched *q = qdisc_priv(sch);
671 struct qfq_class *cl;
672 unsigned int i;
673
674 if (arg->stop)
675 return;
676
677 for (i = 0; i < q->clhash.hashsize; i++) {
678 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
679 if (arg->count < arg->skip) {
680 arg->count++;
681 continue;
682 }
683 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
684 arg->stop = 1;
685 return;
686 }
687 arg->count++;
688 }
689 }
690 }
691
692 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
693 int *qerr)
694 {
695 struct qfq_sched *q = qdisc_priv(sch);
696 struct qfq_class *cl;
697 struct tcf_result res;
698 int result;
699
700 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
701 pr_debug("qfq_classify: found %d\n", skb->priority);
702 cl = qfq_find_class(sch, skb->priority);
703 if (cl != NULL)
704 return cl;
705 }
706
707 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
708 result = tc_classify(skb, q->filter_list, &res);
709 if (result >= 0) {
710 #ifdef CONFIG_NET_CLS_ACT
711 switch (result) {
712 case TC_ACT_QUEUED:
713 case TC_ACT_STOLEN:
714 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
715 case TC_ACT_SHOT:
716 return NULL;
717 }
718 #endif
719 cl = (struct qfq_class *)res.class;
720 if (cl == NULL)
721 cl = qfq_find_class(sch, res.classid);
722 return cl;
723 }
724
725 return NULL;
726 }
727
728 /* Generic comparison function, handling wraparound. */
729 static inline int qfq_gt(u64 a, u64 b)
730 {
731 return (s64)(a - b) > 0;
732 }
733
734 /* Round a precise timestamp to its slotted value. */
735 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
736 {
737 return ts & ~((1ULL << shift) - 1);
738 }
739
740 /* return the pointer to the group with lowest index in the bitmap */
741 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
742 unsigned long bitmap)
743 {
744 int index = __ffs(bitmap);
745 return &q->groups[index];
746 }
747 /* Calculate a mask to mimic what would be ffs_from(). */
748 static inline unsigned long mask_from(unsigned long bitmap, int from)
749 {
750 return bitmap & ~((1UL << from) - 1);
751 }
752
753 /*
754 * The state computation relies on ER=0, IR=1, EB=2, IB=3
755 * First compute eligibility comparing grp->S, q->V,
756 * then check if someone is blocking us and possibly add EB
757 */
758 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
759 {
760 /* if S > V we are not eligible */
761 unsigned int state = qfq_gt(grp->S, q->V);
762 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
763 struct qfq_group *next;
764
765 if (mask) {
766 next = qfq_ffs(q, mask);
767 if (qfq_gt(grp->F, next->F))
768 state |= EB;
769 }
770
771 return state;
772 }
773
774
775 /*
776 * In principle
777 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
778 * q->bitmaps[src] &= ~mask;
779 * but we should make sure that src != dst
780 */
781 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
782 int src, int dst)
783 {
784 q->bitmaps[dst] |= q->bitmaps[src] & mask;
785 q->bitmaps[src] &= ~mask;
786 }
787
788 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
789 {
790 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
791 struct qfq_group *next;
792
793 if (mask) {
794 next = qfq_ffs(q, mask);
795 if (!qfq_gt(next->F, old_F))
796 return;
797 }
798
799 mask = (1UL << index) - 1;
800 qfq_move_groups(q, mask, EB, ER);
801 qfq_move_groups(q, mask, IB, IR);
802 }
803
804 /*
805 * perhaps
806 *
807 old_V ^= q->V;
808 old_V >>= q->min_slot_shift;
809 if (old_V) {
810 ...
811 }
812 *
813 */
814 static void qfq_make_eligible(struct qfq_sched *q)
815 {
816 unsigned long vslot = q->V >> q->min_slot_shift;
817 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
818
819 if (vslot != old_vslot) {
820 unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1;
821 qfq_move_groups(q, mask, IR, ER);
822 qfq_move_groups(q, mask, IB, EB);
823 }
824 }
825
826
827 /*
828 * The index of the slot in which the aggregate is to be inserted must
829 * not be higher than QFQ_MAX_SLOTS-2. There is a '-2' and not a '-1'
830 * because the start time of the group may be moved backward by one
831 * slot after the aggregate has been inserted, and this would cause
832 * non-empty slots to be right-shifted by one position.
833 *
834 * If the weight and lmax (max_pkt_size) of the classes do not change,
835 * then QFQ+ does meet the above contraint according to the current
836 * values of its parameters. In fact, if the weight and lmax of the
837 * classes do not change, then, from the theory, QFQ+ guarantees that
838 * the slot index is never higher than
839 * 2 + QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
840 * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM) = 2 + 8 * 128 * (1 / 64) = 18
841 *
842 * When the weight of a class is increased or the lmax of the class is
843 * decreased, a new aggregate with smaller slot size than the original
844 * parent aggregate of the class may happen to be activated. The
845 * activation of this aggregate should be properly delayed to when the
846 * service of the class has finished in the ideal system tracked by
847 * QFQ+. If the activation of the aggregate is not delayed to this
848 * reference time instant, then this aggregate may be unjustly served
849 * before other aggregates waiting for service. This may cause the
850 * above bound to the slot index to be violated for some of these
851 * unlucky aggregates.
852 *
853 * Instead of delaying the activation of the new aggregate, which is
854 * quite complex, the following inaccurate but simple solution is used:
855 * if the slot index is higher than QFQ_MAX_SLOTS-2, then the
856 * timestamps of the aggregate are shifted backward so as to let the
857 * slot index become equal to QFQ_MAX_SLOTS-2.
858 */
859 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
860 u64 roundedS)
861 {
862 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
863 unsigned int i; /* slot index in the bucket list */
864
865 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
866 u64 deltaS = roundedS - grp->S -
867 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
868 agg->S -= deltaS;
869 agg->F -= deltaS;
870 slot = QFQ_MAX_SLOTS - 2;
871 }
872
873 i = (grp->front + slot) % QFQ_MAX_SLOTS;
874
875 hlist_add_head(&agg->next, &grp->slots[i]);
876 __set_bit(slot, &grp->full_slots);
877 }
878
879 /* Maybe introduce hlist_first_entry?? */
880 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
881 {
882 return hlist_entry(grp->slots[grp->front].first,
883 struct qfq_aggregate, next);
884 }
885
886 /*
887 * remove the entry from the slot
888 */
889 static void qfq_front_slot_remove(struct qfq_group *grp)
890 {
891 struct qfq_aggregate *agg = qfq_slot_head(grp);
892
893 BUG_ON(!agg);
894 hlist_del(&agg->next);
895 if (hlist_empty(&grp->slots[grp->front]))
896 __clear_bit(0, &grp->full_slots);
897 }
898
899 /*
900 * Returns the first aggregate in the first non-empty bucket of the
901 * group. As a side effect, adjusts the bucket list so the first
902 * non-empty bucket is at position 0 in full_slots.
903 */
904 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
905 {
906 unsigned int i;
907
908 pr_debug("qfq slot_scan: grp %u full %#lx\n",
909 grp->index, grp->full_slots);
910
911 if (grp->full_slots == 0)
912 return NULL;
913
914 i = __ffs(grp->full_slots); /* zero based */
915 if (i > 0) {
916 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
917 grp->full_slots >>= i;
918 }
919
920 return qfq_slot_head(grp);
921 }
922
923 /*
924 * adjust the bucket list. When the start time of a group decreases,
925 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
926 * move the objects. The mask of occupied slots must be shifted
927 * because we use ffs() to find the first non-empty slot.
928 * This covers decreases in the group's start time, but what about
929 * increases of the start time ?
930 * Here too we should make sure that i is less than 32
931 */
932 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
933 {
934 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
935
936 grp->full_slots <<= i;
937 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
938 }
939
940 static void qfq_update_eligible(struct qfq_sched *q)
941 {
942 struct qfq_group *grp;
943 unsigned long ineligible;
944
945 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
946 if (ineligible) {
947 if (!q->bitmaps[ER]) {
948 grp = qfq_ffs(q, ineligible);
949 if (qfq_gt(grp->S, q->V))
950 q->V = grp->S;
951 }
952 qfq_make_eligible(q);
953 }
954 }
955
956 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
957 static void agg_dequeue(struct qfq_aggregate *agg,
958 struct qfq_class *cl, unsigned int len)
959 {
960 qdisc_dequeue_peeked(cl->qdisc);
961
962 cl->deficit -= (int) len;
963
964 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
965 list_del(&cl->alist);
966 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
967 cl->deficit += agg->lmax;
968 list_move_tail(&cl->alist, &agg->active);
969 }
970 }
971
972 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
973 struct qfq_class **cl,
974 unsigned int *len)
975 {
976 struct sk_buff *skb;
977
978 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
979 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
980 if (skb == NULL)
981 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
982 else
983 *len = qdisc_pkt_len(skb);
984
985 return skb;
986 }
987
988 /* Update F according to the actual service received by the aggregate. */
989 static inline void charge_actual_service(struct qfq_aggregate *agg)
990 {
991 /* compute the service received by the aggregate */
992 u32 service_received = agg->initial_budget - agg->budget;
993
994 agg->F = agg->S + (u64)service_received * agg->inv_w;
995 }
996
997 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
998 {
999 struct qfq_sched *q = qdisc_priv(sch);
1000 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1001 struct qfq_class *cl;
1002 struct sk_buff *skb = NULL;
1003 /* next-packet len, 0 means no more active classes in in-service agg */
1004 unsigned int len = 0;
1005
1006 if (in_serv_agg == NULL)
1007 return NULL;
1008
1009 if (!list_empty(&in_serv_agg->active))
1010 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1011
1012 /*
1013 * If there are no active classes in the in-service aggregate,
1014 * or if the aggregate has not enough budget to serve its next
1015 * class, then choose the next aggregate to serve.
1016 */
1017 if (len == 0 || in_serv_agg->budget < len) {
1018 charge_actual_service(in_serv_agg);
1019
1020 /* recharge the budget of the aggregate */
1021 in_serv_agg->initial_budget = in_serv_agg->budget =
1022 in_serv_agg->budgetmax;
1023
1024 if (!list_empty(&in_serv_agg->active))
1025 /*
1026 * Still active: reschedule for
1027 * service. Possible optimization: if no other
1028 * aggregate is active, then there is no point
1029 * in rescheduling this aggregate, and we can
1030 * just keep it as the in-service one. This
1031 * should be however a corner case, and to
1032 * handle it, we would need to maintain an
1033 * extra num_active_aggs field.
1034 */
1035 qfq_activate_agg(q, in_serv_agg, requeue);
1036 else if (sch->q.qlen == 0) { /* no aggregate to serve */
1037 q->in_serv_agg = NULL;
1038 return NULL;
1039 }
1040
1041 /*
1042 * If we get here, there are other aggregates queued:
1043 * choose the new aggregate to serve.
1044 */
1045 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1046 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1047 }
1048 if (!skb)
1049 return NULL;
1050
1051 sch->q.qlen--;
1052 qdisc_bstats_update(sch, skb);
1053
1054 agg_dequeue(in_serv_agg, cl, len);
1055 in_serv_agg->budget -= len;
1056 q->V += (u64)len * IWSUM;
1057 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1058 len, (unsigned long long) in_serv_agg->F,
1059 (unsigned long long) q->V);
1060
1061 return skb;
1062 }
1063
1064 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1065 {
1066 struct qfq_group *grp;
1067 struct qfq_aggregate *agg, *new_front_agg;
1068 u64 old_F;
1069
1070 qfq_update_eligible(q);
1071 q->oldV = q->V;
1072
1073 if (!q->bitmaps[ER])
1074 return NULL;
1075
1076 grp = qfq_ffs(q, q->bitmaps[ER]);
1077 old_F = grp->F;
1078
1079 agg = qfq_slot_head(grp);
1080
1081 /* agg starts to be served, remove it from schedule */
1082 qfq_front_slot_remove(grp);
1083
1084 new_front_agg = qfq_slot_scan(grp);
1085
1086 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1087 __clear_bit(grp->index, &q->bitmaps[ER]);
1088 else {
1089 u64 roundedS = qfq_round_down(new_front_agg->S,
1090 grp->slot_shift);
1091 unsigned int s;
1092
1093 if (grp->S == roundedS)
1094 return agg;
1095 grp->S = roundedS;
1096 grp->F = roundedS + (2ULL << grp->slot_shift);
1097 __clear_bit(grp->index, &q->bitmaps[ER]);
1098 s = qfq_calc_state(q, grp);
1099 __set_bit(grp->index, &q->bitmaps[s]);
1100 }
1101
1102 qfq_unblock_groups(q, grp->index, old_F);
1103
1104 return agg;
1105 }
1106
1107 /*
1108 * Assign a reasonable start time for a new aggregate in group i.
1109 * Admissible values for \hat(F) are multiples of \sigma_i
1110 * no greater than V+\sigma_i . Larger values mean that
1111 * we had a wraparound so we consider the timestamp to be stale.
1112 *
1113 * If F is not stale and F >= V then we set S = F.
1114 * Otherwise we should assign S = V, but this may violate
1115 * the ordering in EB (see [2]). So, if we have groups in ER,
1116 * set S to the F_j of the first group j which would be blocking us.
1117 * We are guaranteed not to move S backward because
1118 * otherwise our group i would still be blocked.
1119 */
1120 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1121 {
1122 unsigned long mask;
1123 u64 limit, roundedF;
1124 int slot_shift = agg->grp->slot_shift;
1125
1126 roundedF = qfq_round_down(agg->F, slot_shift);
1127 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1128
1129 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1130 /* timestamp was stale */
1131 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1132 if (mask) {
1133 struct qfq_group *next = qfq_ffs(q, mask);
1134 if (qfq_gt(roundedF, next->F)) {
1135 if (qfq_gt(limit, next->F))
1136 agg->S = next->F;
1137 else /* preserve timestamp correctness */
1138 agg->S = limit;
1139 return;
1140 }
1141 }
1142 agg->S = q->V;
1143 } else /* timestamp is not stale */
1144 agg->S = agg->F;
1145 }
1146
1147 /*
1148 * Update the timestamps of agg before scheduling/rescheduling it for
1149 * service. In particular, assign to agg->F its maximum possible
1150 * value, i.e., the virtual finish time with which the aggregate
1151 * should be labeled if it used all its budget once in service.
1152 */
1153 static inline void
1154 qfq_update_agg_ts(struct qfq_sched *q,
1155 struct qfq_aggregate *agg, enum update_reason reason)
1156 {
1157 if (reason != requeue)
1158 qfq_update_start(q, agg);
1159 else /* just charge agg for the service received */
1160 agg->S = agg->F;
1161
1162 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1163 }
1164
1165 static void qfq_schedule_agg(struct qfq_sched *, struct qfq_aggregate *);
1166
1167 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1168 {
1169 struct qfq_sched *q = qdisc_priv(sch);
1170 struct qfq_class *cl;
1171 struct qfq_aggregate *agg;
1172 int err = 0;
1173
1174 cl = qfq_classify(skb, sch, &err);
1175 if (cl == NULL) {
1176 if (err & __NET_XMIT_BYPASS)
1177 sch->qstats.drops++;
1178 kfree_skb(skb);
1179 return err;
1180 }
1181 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1182
1183 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1184 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1185 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1186 err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1187 qdisc_pkt_len(skb));
1188 if (err)
1189 return err;
1190 }
1191
1192 err = qdisc_enqueue(skb, cl->qdisc);
1193 if (unlikely(err != NET_XMIT_SUCCESS)) {
1194 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1195 if (net_xmit_drop_count(err)) {
1196 cl->qstats.drops++;
1197 sch->qstats.drops++;
1198 }
1199 return err;
1200 }
1201
1202 bstats_update(&cl->bstats, skb);
1203 ++sch->q.qlen;
1204
1205 agg = cl->agg;
1206 /* if the queue was not empty, then done here */
1207 if (cl->qdisc->q.qlen != 1) {
1208 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1209 list_first_entry(&agg->active, struct qfq_class, alist)
1210 == cl && cl->deficit < qdisc_pkt_len(skb))
1211 list_move_tail(&cl->alist, &agg->active);
1212
1213 return err;
1214 }
1215
1216 /* schedule class for service within the aggregate */
1217 cl->deficit = agg->lmax;
1218 list_add_tail(&cl->alist, &agg->active);
1219
1220 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl)
1221 return err; /* aggregate was not empty, nothing else to do */
1222
1223 /* recharge budget */
1224 agg->initial_budget = agg->budget = agg->budgetmax;
1225
1226 qfq_update_agg_ts(q, agg, enqueue);
1227 if (q->in_serv_agg == NULL)
1228 q->in_serv_agg = agg;
1229 else if (agg != q->in_serv_agg)
1230 qfq_schedule_agg(q, agg);
1231
1232 return err;
1233 }
1234
1235 /*
1236 * Schedule aggregate according to its timestamps.
1237 */
1238 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1239 {
1240 struct qfq_group *grp = agg->grp;
1241 u64 roundedS;
1242 int s;
1243
1244 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1245
1246 /*
1247 * Insert agg in the correct bucket.
1248 * If agg->S >= grp->S we don't need to adjust the
1249 * bucket list and simply go to the insertion phase.
1250 * Otherwise grp->S is decreasing, we must make room
1251 * in the bucket list, and also recompute the group state.
1252 * Finally, if there were no flows in this group and nobody
1253 * was in ER make sure to adjust V.
1254 */
1255 if (grp->full_slots) {
1256 if (!qfq_gt(grp->S, agg->S))
1257 goto skip_update;
1258
1259 /* create a slot for this agg->S */
1260 qfq_slot_rotate(grp, roundedS);
1261 /* group was surely ineligible, remove */
1262 __clear_bit(grp->index, &q->bitmaps[IR]);
1263 __clear_bit(grp->index, &q->bitmaps[IB]);
1264 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
1265 q->V = roundedS;
1266
1267 grp->S = roundedS;
1268 grp->F = roundedS + (2ULL << grp->slot_shift);
1269 s = qfq_calc_state(q, grp);
1270 __set_bit(grp->index, &q->bitmaps[s]);
1271
1272 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1273 s, q->bitmaps[s],
1274 (unsigned long long) agg->S,
1275 (unsigned long long) agg->F,
1276 (unsigned long long) q->V);
1277
1278 skip_update:
1279 qfq_slot_insert(grp, agg, roundedS);
1280 }
1281
1282
1283 /* Update agg ts and schedule agg for service */
1284 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1285 enum update_reason reason)
1286 {
1287 qfq_update_agg_ts(q, agg, reason);
1288 qfq_schedule_agg(q, agg);
1289 }
1290
1291 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1292 struct qfq_aggregate *agg)
1293 {
1294 unsigned int i, offset;
1295 u64 roundedS;
1296
1297 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1298 offset = (roundedS - grp->S) >> grp->slot_shift;
1299
1300 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1301
1302 hlist_del(&agg->next);
1303 if (hlist_empty(&grp->slots[i]))
1304 __clear_bit(offset, &grp->full_slots);
1305 }
1306
1307 /*
1308 * Called to forcibly deschedule an aggregate. If the aggregate is
1309 * not in the front bucket, or if the latter has other aggregates in
1310 * the front bucket, we can simply remove the aggregate with no other
1311 * side effects.
1312 * Otherwise we must propagate the event up.
1313 */
1314 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1315 {
1316 struct qfq_group *grp = agg->grp;
1317 unsigned long mask;
1318 u64 roundedS;
1319 int s;
1320
1321 if (agg == q->in_serv_agg) {
1322 charge_actual_service(agg);
1323 q->in_serv_agg = qfq_choose_next_agg(q);
1324 return;
1325 }
1326
1327 agg->F = agg->S;
1328 qfq_slot_remove(q, grp, agg);
1329
1330 if (!grp->full_slots) {
1331 __clear_bit(grp->index, &q->bitmaps[IR]);
1332 __clear_bit(grp->index, &q->bitmaps[EB]);
1333 __clear_bit(grp->index, &q->bitmaps[IB]);
1334
1335 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1336 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1337 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1338 if (mask)
1339 mask = ~((1UL << __fls(mask)) - 1);
1340 else
1341 mask = ~0UL;
1342 qfq_move_groups(q, mask, EB, ER);
1343 qfq_move_groups(q, mask, IB, IR);
1344 }
1345 __clear_bit(grp->index, &q->bitmaps[ER]);
1346 } else if (hlist_empty(&grp->slots[grp->front])) {
1347 agg = qfq_slot_scan(grp);
1348 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1349 if (grp->S != roundedS) {
1350 __clear_bit(grp->index, &q->bitmaps[ER]);
1351 __clear_bit(grp->index, &q->bitmaps[IR]);
1352 __clear_bit(grp->index, &q->bitmaps[EB]);
1353 __clear_bit(grp->index, &q->bitmaps[IB]);
1354 grp->S = roundedS;
1355 grp->F = roundedS + (2ULL << grp->slot_shift);
1356 s = qfq_calc_state(q, grp);
1357 __set_bit(grp->index, &q->bitmaps[s]);
1358 }
1359 }
1360
1361 qfq_update_eligible(q);
1362 }
1363
1364 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1365 {
1366 struct qfq_sched *q = qdisc_priv(sch);
1367 struct qfq_class *cl = (struct qfq_class *)arg;
1368
1369 if (cl->qdisc->q.qlen == 0)
1370 qfq_deactivate_class(q, cl);
1371 }
1372
1373 static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1374 struct hlist_head *slot)
1375 {
1376 struct qfq_aggregate *agg;
1377 struct qfq_class *cl;
1378 unsigned int len;
1379
1380 hlist_for_each_entry(agg, slot, next) {
1381 list_for_each_entry(cl, &agg->active, alist) {
1382
1383 if (!cl->qdisc->ops->drop)
1384 continue;
1385
1386 len = cl->qdisc->ops->drop(cl->qdisc);
1387 if (len > 0) {
1388 if (cl->qdisc->q.qlen == 0)
1389 qfq_deactivate_class(q, cl);
1390
1391 return len;
1392 }
1393 }
1394 }
1395 return 0;
1396 }
1397
1398 static unsigned int qfq_drop(struct Qdisc *sch)
1399 {
1400 struct qfq_sched *q = qdisc_priv(sch);
1401 struct qfq_group *grp;
1402 unsigned int i, j, len;
1403
1404 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1405 grp = &q->groups[i];
1406 for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1407 len = qfq_drop_from_slot(q, &grp->slots[j]);
1408 if (len > 0) {
1409 sch->q.qlen--;
1410 return len;
1411 }
1412 }
1413
1414 }
1415
1416 return 0;
1417 }
1418
1419 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1420 {
1421 struct qfq_sched *q = qdisc_priv(sch);
1422 struct qfq_group *grp;
1423 int i, j, err;
1424 u32 max_cl_shift, maxbudg_shift, max_classes;
1425
1426 err = qdisc_class_hash_init(&q->clhash);
1427 if (err < 0)
1428 return err;
1429
1430 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1431 max_classes = QFQ_MAX_AGG_CLASSES;
1432 else
1433 max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1434 /* max_cl_shift = floor(log_2(max_classes)) */
1435 max_cl_shift = __fls(max_classes);
1436 q->max_agg_classes = 1<<max_cl_shift;
1437
1438 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1439 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1440 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1441
1442 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1443 grp = &q->groups[i];
1444 grp->index = i;
1445 grp->slot_shift = q->min_slot_shift + i;
1446 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1447 INIT_HLIST_HEAD(&grp->slots[j]);
1448 }
1449
1450 INIT_HLIST_HEAD(&q->nonfull_aggs);
1451
1452 return 0;
1453 }
1454
1455 static void qfq_reset_qdisc(struct Qdisc *sch)
1456 {
1457 struct qfq_sched *q = qdisc_priv(sch);
1458 struct qfq_class *cl;
1459 unsigned int i;
1460
1461 for (i = 0; i < q->clhash.hashsize; i++) {
1462 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1463 if (cl->qdisc->q.qlen > 0)
1464 qfq_deactivate_class(q, cl);
1465
1466 qdisc_reset(cl->qdisc);
1467 }
1468 }
1469 sch->q.qlen = 0;
1470 }
1471
1472 static void qfq_destroy_qdisc(struct Qdisc *sch)
1473 {
1474 struct qfq_sched *q = qdisc_priv(sch);
1475 struct qfq_class *cl;
1476 struct hlist_node *next;
1477 unsigned int i;
1478
1479 tcf_destroy_chain(&q->filter_list);
1480
1481 for (i = 0; i < q->clhash.hashsize; i++) {
1482 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1483 common.hnode) {
1484 qfq_destroy_class(sch, cl);
1485 }
1486 }
1487 qdisc_class_hash_destroy(&q->clhash);
1488 }
1489
1490 static const struct Qdisc_class_ops qfq_class_ops = {
1491 .change = qfq_change_class,
1492 .delete = qfq_delete_class,
1493 .get = qfq_get_class,
1494 .put = qfq_put_class,
1495 .tcf_chain = qfq_tcf_chain,
1496 .bind_tcf = qfq_bind_tcf,
1497 .unbind_tcf = qfq_unbind_tcf,
1498 .graft = qfq_graft_class,
1499 .leaf = qfq_class_leaf,
1500 .qlen_notify = qfq_qlen_notify,
1501 .dump = qfq_dump_class,
1502 .dump_stats = qfq_dump_class_stats,
1503 .walk = qfq_walk,
1504 };
1505
1506 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1507 .cl_ops = &qfq_class_ops,
1508 .id = "qfq",
1509 .priv_size = sizeof(struct qfq_sched),
1510 .enqueue = qfq_enqueue,
1511 .dequeue = qfq_dequeue,
1512 .peek = qdisc_peek_dequeued,
1513 .drop = qfq_drop,
1514 .init = qfq_init_qdisc,
1515 .reset = qfq_reset_qdisc,
1516 .destroy = qfq_destroy_qdisc,
1517 .owner = THIS_MODULE,
1518 };
1519
1520 static int __init qfq_init(void)
1521 {
1522 return register_qdisc(&qfq_qdisc_ops);
1523 }
1524
1525 static void __exit qfq_exit(void)
1526 {
1527 unregister_qdisc(&qfq_qdisc_ops);
1528 }
1529
1530 module_init(qfq_init);
1531 module_exit(qfq_exit);
1532 MODULE_LICENSE("GPL");
This page took 0.156877 seconds and 5 git commands to generate.