[NET_SCHED]: Convert packet schedulers from rtnetlink to new netlink API
[deliverable/linux.git] / net / sched / sch_sfq.c
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/ipv6.h>
21 #include <linux/skbuff.h>
22 #include <linux/jhash.h>
23 #include <net/ip.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26
27
28 /* Stochastic Fairness Queuing algorithm.
29 =======================================
30
31 Source:
32 Paul E. McKenney "Stochastic Fairness Queuing",
33 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
34
35 Paul E. McKenney "Stochastic Fairness Queuing",
36 "Interworking: Research and Experience", v.2, 1991, p.113-131.
37
38
39 See also:
40 M. Shreedhar and George Varghese "Efficient Fair
41 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
42
43
44 This is not the thing that is usually called (W)FQ nowadays.
45 It does not use any timestamp mechanism, but instead
46 processes queues in round-robin order.
47
48 ADVANTAGE:
49
50 - It is very cheap. Both CPU and memory requirements are minimal.
51
52 DRAWBACKS:
53
54 - "Stochastic" -> It is not 100% fair.
55 When hash collisions occur, several flows are considered as one.
56
57 - "Round-robin" -> It introduces larger delays than virtual clock
58 based schemes, and should not be used for isolating interactive
59 traffic from non-interactive. It means, that this scheduler
60 should be used as leaf of CBQ or P3, which put interactive traffic
61 to higher priority band.
62
63 We still need true WFQ for top level CSZ, but using WFQ
64 for the best effort traffic is absolutely pointless:
65 SFQ is superior for this purpose.
66
67 IMPLEMENTATION:
68 This implementation limits maximal queue length to 128;
69 maximal mtu to 2^15-1; number of hash buckets to 1024.
70 The only goal of this restrictions was that all data
71 fit into one 4K page :-). Struct sfq_sched_data is
72 organized in anti-cache manner: all the data for a bucket
73 are scattered over different locations. This is not good,
74 but it allowed me to put it into 4K.
75
76 It is easy to increase these values, but not in flight. */
77
78 #define SFQ_DEPTH 128
79 #define SFQ_HASH_DIVISOR 1024
80
81 /* This type should contain at least SFQ_DEPTH*2 values */
82 typedef unsigned char sfq_index;
83
84 struct sfq_head
85 {
86 sfq_index next;
87 sfq_index prev;
88 };
89
90 struct sfq_sched_data
91 {
92 /* Parameters */
93 int perturb_period;
94 unsigned quantum; /* Allotment per round: MUST BE >= MTU */
95 int limit;
96
97 /* Variables */
98 struct timer_list perturb_timer;
99 u32 perturbation;
100 sfq_index tail; /* Index of current slot in round */
101 sfq_index max_depth; /* Maximal depth */
102
103 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
104 sfq_index next[SFQ_DEPTH]; /* Active slots link */
105 short allot[SFQ_DEPTH]; /* Current allotment per slot */
106 unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */
107 struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */
108 struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */
109 };
110
111 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
112 {
113 return jhash_2words(h, h1, q->perturbation) & (SFQ_HASH_DIVISOR - 1);
114 }
115
116 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
117 {
118 u32 h, h2;
119
120 switch (skb->protocol) {
121 case __constant_htons(ETH_P_IP):
122 {
123 const struct iphdr *iph = ip_hdr(skb);
124 h = iph->daddr;
125 h2 = iph->saddr ^ iph->protocol;
126 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
127 (iph->protocol == IPPROTO_TCP ||
128 iph->protocol == IPPROTO_UDP ||
129 iph->protocol == IPPROTO_UDPLITE ||
130 iph->protocol == IPPROTO_SCTP ||
131 iph->protocol == IPPROTO_DCCP ||
132 iph->protocol == IPPROTO_ESP))
133 h2 ^= *(((u32*)iph) + iph->ihl);
134 break;
135 }
136 case __constant_htons(ETH_P_IPV6):
137 {
138 struct ipv6hdr *iph = ipv6_hdr(skb);
139 h = iph->daddr.s6_addr32[3];
140 h2 = iph->saddr.s6_addr32[3] ^ iph->nexthdr;
141 if (iph->nexthdr == IPPROTO_TCP ||
142 iph->nexthdr == IPPROTO_UDP ||
143 iph->nexthdr == IPPROTO_UDPLITE ||
144 iph->nexthdr == IPPROTO_SCTP ||
145 iph->nexthdr == IPPROTO_DCCP ||
146 iph->nexthdr == IPPROTO_ESP)
147 h2 ^= *(u32*)&iph[1];
148 break;
149 }
150 default:
151 h = (unsigned long)skb->dst ^ skb->protocol;
152 h2 = (unsigned long)skb->sk;
153 }
154
155 return sfq_fold_hash(q, h, h2);
156 }
157
158 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
159 {
160 sfq_index p, n;
161 int d = q->qs[x].qlen + SFQ_DEPTH;
162
163 p = d;
164 n = q->dep[d].next;
165 q->dep[x].next = n;
166 q->dep[x].prev = p;
167 q->dep[p].next = q->dep[n].prev = x;
168 }
169
170 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
171 {
172 sfq_index p, n;
173
174 n = q->dep[x].next;
175 p = q->dep[x].prev;
176 q->dep[p].next = n;
177 q->dep[n].prev = p;
178
179 if (n == p && q->max_depth == q->qs[x].qlen + 1)
180 q->max_depth--;
181
182 sfq_link(q, x);
183 }
184
185 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
186 {
187 sfq_index p, n;
188 int d;
189
190 n = q->dep[x].next;
191 p = q->dep[x].prev;
192 q->dep[p].next = n;
193 q->dep[n].prev = p;
194 d = q->qs[x].qlen;
195 if (q->max_depth < d)
196 q->max_depth = d;
197
198 sfq_link(q, x);
199 }
200
201 static unsigned int sfq_drop(struct Qdisc *sch)
202 {
203 struct sfq_sched_data *q = qdisc_priv(sch);
204 sfq_index d = q->max_depth;
205 struct sk_buff *skb;
206 unsigned int len;
207
208 /* Queue is full! Find the longest slot and
209 drop a packet from it */
210
211 if (d > 1) {
212 sfq_index x = q->dep[d + SFQ_DEPTH].next;
213 skb = q->qs[x].prev;
214 len = skb->len;
215 __skb_unlink(skb, &q->qs[x]);
216 kfree_skb(skb);
217 sfq_dec(q, x);
218 sch->q.qlen--;
219 sch->qstats.drops++;
220 sch->qstats.backlog -= len;
221 return len;
222 }
223
224 if (d == 1) {
225 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
226 d = q->next[q->tail];
227 q->next[q->tail] = q->next[d];
228 q->allot[q->next[d]] += q->quantum;
229 skb = q->qs[d].prev;
230 len = skb->len;
231 __skb_unlink(skb, &q->qs[d]);
232 kfree_skb(skb);
233 sfq_dec(q, d);
234 sch->q.qlen--;
235 q->ht[q->hash[d]] = SFQ_DEPTH;
236 sch->qstats.drops++;
237 sch->qstats.backlog -= len;
238 return len;
239 }
240
241 return 0;
242 }
243
244 static int
245 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
246 {
247 struct sfq_sched_data *q = qdisc_priv(sch);
248 unsigned hash = sfq_hash(q, skb);
249 sfq_index x;
250
251 x = q->ht[hash];
252 if (x == SFQ_DEPTH) {
253 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
254 q->hash[x] = hash;
255 }
256
257 /* If selected queue has length q->limit, this means that
258 * all another queues are empty and that we do simple tail drop,
259 * i.e. drop _this_ packet.
260 */
261 if (q->qs[x].qlen >= q->limit)
262 return qdisc_drop(skb, sch);
263
264 sch->qstats.backlog += skb->len;
265 __skb_queue_tail(&q->qs[x], skb);
266 sfq_inc(q, x);
267 if (q->qs[x].qlen == 1) { /* The flow is new */
268 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
269 q->tail = x;
270 q->next[x] = x;
271 q->allot[x] = q->quantum;
272 } else {
273 q->next[x] = q->next[q->tail];
274 q->next[q->tail] = x;
275 q->tail = x;
276 }
277 }
278 if (++sch->q.qlen <= q->limit) {
279 sch->bstats.bytes += skb->len;
280 sch->bstats.packets++;
281 return 0;
282 }
283
284 sfq_drop(sch);
285 return NET_XMIT_CN;
286 }
287
288 static int
289 sfq_requeue(struct sk_buff *skb, struct Qdisc *sch)
290 {
291 struct sfq_sched_data *q = qdisc_priv(sch);
292 unsigned hash = sfq_hash(q, skb);
293 sfq_index x;
294
295 x = q->ht[hash];
296 if (x == SFQ_DEPTH) {
297 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
298 q->hash[x] = hash;
299 }
300
301 sch->qstats.backlog += skb->len;
302 __skb_queue_head(&q->qs[x], skb);
303 /* If selected queue has length q->limit+1, this means that
304 * all another queues are empty and we do simple tail drop.
305 * This packet is still requeued at head of queue, tail packet
306 * is dropped.
307 */
308 if (q->qs[x].qlen > q->limit) {
309 skb = q->qs[x].prev;
310 __skb_unlink(skb, &q->qs[x]);
311 sch->qstats.drops++;
312 sch->qstats.backlog -= skb->len;
313 kfree_skb(skb);
314 return NET_XMIT_CN;
315 }
316
317 sfq_inc(q, x);
318 if (q->qs[x].qlen == 1) { /* The flow is new */
319 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
320 q->tail = x;
321 q->next[x] = x;
322 q->allot[x] = q->quantum;
323 } else {
324 q->next[x] = q->next[q->tail];
325 q->next[q->tail] = x;
326 q->tail = x;
327 }
328 }
329
330 if (++sch->q.qlen <= q->limit) {
331 sch->qstats.requeues++;
332 return 0;
333 }
334
335 sch->qstats.drops++;
336 sfq_drop(sch);
337 return NET_XMIT_CN;
338 }
339
340
341
342
343 static struct sk_buff *
344 sfq_dequeue(struct Qdisc *sch)
345 {
346 struct sfq_sched_data *q = qdisc_priv(sch);
347 struct sk_buff *skb;
348 sfq_index a, old_a;
349
350 /* No active slots */
351 if (q->tail == SFQ_DEPTH)
352 return NULL;
353
354 a = old_a = q->next[q->tail];
355
356 /* Grab packet */
357 skb = __skb_dequeue(&q->qs[a]);
358 sfq_dec(q, a);
359 sch->q.qlen--;
360 sch->qstats.backlog -= skb->len;
361
362 /* Is the slot empty? */
363 if (q->qs[a].qlen == 0) {
364 q->ht[q->hash[a]] = SFQ_DEPTH;
365 a = q->next[a];
366 if (a == old_a) {
367 q->tail = SFQ_DEPTH;
368 return skb;
369 }
370 q->next[q->tail] = a;
371 q->allot[a] += q->quantum;
372 } else if ((q->allot[a] -= skb->len) <= 0) {
373 q->tail = a;
374 a = q->next[a];
375 q->allot[a] += q->quantum;
376 }
377 return skb;
378 }
379
380 static void
381 sfq_reset(struct Qdisc *sch)
382 {
383 struct sk_buff *skb;
384
385 while ((skb = sfq_dequeue(sch)) != NULL)
386 kfree_skb(skb);
387 }
388
389 static void sfq_perturbation(unsigned long arg)
390 {
391 struct Qdisc *sch = (struct Qdisc *)arg;
392 struct sfq_sched_data *q = qdisc_priv(sch);
393
394 q->perturbation = net_random();
395
396 if (q->perturb_period)
397 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
398 }
399
400 static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
401 {
402 struct sfq_sched_data *q = qdisc_priv(sch);
403 struct tc_sfq_qopt *ctl = nla_data(opt);
404 unsigned int qlen;
405
406 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
407 return -EINVAL;
408
409 sch_tree_lock(sch);
410 q->quantum = ctl->quantum ? : psched_mtu(sch->dev);
411 q->perturb_period = ctl->perturb_period * HZ;
412 if (ctl->limit)
413 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH - 1);
414
415 qlen = sch->q.qlen;
416 while (sch->q.qlen > q->limit)
417 sfq_drop(sch);
418 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
419
420 del_timer(&q->perturb_timer);
421 if (q->perturb_period) {
422 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
423 q->perturbation = net_random();
424 }
425 sch_tree_unlock(sch);
426 return 0;
427 }
428
429 static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
430 {
431 struct sfq_sched_data *q = qdisc_priv(sch);
432 int i;
433
434 q->perturb_timer.function = sfq_perturbation;
435 q->perturb_timer.data = (unsigned long)sch;;
436 init_timer_deferrable(&q->perturb_timer);
437
438 for (i = 0; i < SFQ_HASH_DIVISOR; i++)
439 q->ht[i] = SFQ_DEPTH;
440
441 for (i = 0; i < SFQ_DEPTH; i++) {
442 skb_queue_head_init(&q->qs[i]);
443 q->dep[i + SFQ_DEPTH].next = i + SFQ_DEPTH;
444 q->dep[i + SFQ_DEPTH].prev = i + SFQ_DEPTH;
445 }
446
447 q->limit = SFQ_DEPTH - 1;
448 q->max_depth = 0;
449 q->tail = SFQ_DEPTH;
450 if (opt == NULL) {
451 q->quantum = psched_mtu(sch->dev);
452 q->perturb_period = 0;
453 q->perturbation = net_random();
454 } else {
455 int err = sfq_change(sch, opt);
456 if (err)
457 return err;
458 }
459
460 for (i = 0; i < SFQ_DEPTH; i++)
461 sfq_link(q, i);
462 return 0;
463 }
464
465 static void sfq_destroy(struct Qdisc *sch)
466 {
467 struct sfq_sched_data *q = qdisc_priv(sch);
468 del_timer(&q->perturb_timer);
469 }
470
471 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
472 {
473 struct sfq_sched_data *q = qdisc_priv(sch);
474 unsigned char *b = skb_tail_pointer(skb);
475 struct tc_sfq_qopt opt;
476
477 opt.quantum = q->quantum;
478 opt.perturb_period = q->perturb_period / HZ;
479
480 opt.limit = q->limit;
481 opt.divisor = SFQ_HASH_DIVISOR;
482 opt.flows = q->limit;
483
484 NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
485
486 return skb->len;
487
488 nla_put_failure:
489 nlmsg_trim(skb, b);
490 return -1;
491 }
492
493 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
494 .next = NULL,
495 .cl_ops = NULL,
496 .id = "sfq",
497 .priv_size = sizeof(struct sfq_sched_data),
498 .enqueue = sfq_enqueue,
499 .dequeue = sfq_dequeue,
500 .requeue = sfq_requeue,
501 .drop = sfq_drop,
502 .init = sfq_init,
503 .reset = sfq_reset,
504 .destroy = sfq_destroy,
505 .change = NULL,
506 .dump = sfq_dump,
507 .owner = THIS_MODULE,
508 };
509
510 static int __init sfq_module_init(void)
511 {
512 return register_qdisc(&sfq_qdisc_ops);
513 }
514 static void __exit sfq_module_exit(void)
515 {
516 unregister_qdisc(&sfq_qdisc_ops);
517 }
518 module_init(sfq_module_init)
519 module_exit(sfq_module_exit)
520 MODULE_LICENSE("GPL");
This page took 0.06556 seconds and 5 git commands to generate.