Merge branch 'for-linus' of git://git.infradead.org/ubi-2.6
[deliverable/linux.git] / net / sched / sch_sfq.c
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/ipv6.h>
21 #include <linux/skbuff.h>
22 #include <linux/jhash.h>
23 #include <linux/slab.h>
24 #include <net/ip.h>
25 #include <net/netlink.h>
26 #include <net/pkt_sched.h>
27
28
29 /* Stochastic Fairness Queuing algorithm.
30 =======================================
31
32 Source:
33 Paul E. McKenney "Stochastic Fairness Queuing",
34 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
35
36 Paul E. McKenney "Stochastic Fairness Queuing",
37 "Interworking: Research and Experience", v.2, 1991, p.113-131.
38
39
40 See also:
41 M. Shreedhar and George Varghese "Efficient Fair
42 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
43
44
45 This is not the thing that is usually called (W)FQ nowadays.
46 It does not use any timestamp mechanism, but instead
47 processes queues in round-robin order.
48
49 ADVANTAGE:
50
51 - It is very cheap. Both CPU and memory requirements are minimal.
52
53 DRAWBACKS:
54
55 - "Stochastic" -> It is not 100% fair.
56 When hash collisions occur, several flows are considered as one.
57
58 - "Round-robin" -> It introduces larger delays than virtual clock
59 based schemes, and should not be used for isolating interactive
60 traffic from non-interactive. It means, that this scheduler
61 should be used as leaf of CBQ or P3, which put interactive traffic
62 to higher priority band.
63
64 We still need true WFQ for top level CSZ, but using WFQ
65 for the best effort traffic is absolutely pointless:
66 SFQ is superior for this purpose.
67
68 IMPLEMENTATION:
69 This implementation limits maximal queue length to 128;
70 max mtu to 2^18-1; max 128 flows, number of hash buckets to 1024.
71 The only goal of this restrictions was that all data
72 fit into one 4K page on 32bit arches.
73
74 It is easy to increase these values, but not in flight. */
75
76 #define SFQ_DEPTH 128 /* max number of packets per flow */
77 #define SFQ_SLOTS 128 /* max number of flows */
78 #define SFQ_EMPTY_SLOT 255
79 #define SFQ_HASH_DIVISOR 1024
80 /* We use 16 bits to store allot, and want to handle packets up to 64K
81 * Scale allot by 8 (1<<3) so that no overflow occurs.
82 */
83 #define SFQ_ALLOT_SHIFT 3
84 #define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT)
85
86 /* This type should contain at least SFQ_DEPTH + SFQ_SLOTS values */
87 typedef unsigned char sfq_index;
88
89 /*
90 * We dont use pointers to save space.
91 * Small indexes [0 ... SFQ_SLOTS - 1] are 'pointers' to slots[] array
92 * while following values [SFQ_SLOTS ... SFQ_SLOTS + SFQ_DEPTH - 1]
93 * are 'pointers' to dep[] array
94 */
95 struct sfq_head
96 {
97 sfq_index next;
98 sfq_index prev;
99 };
100
101 struct sfq_slot {
102 struct sk_buff *skblist_next;
103 struct sk_buff *skblist_prev;
104 sfq_index qlen; /* number of skbs in skblist */
105 sfq_index next; /* next slot in sfq chain */
106 struct sfq_head dep; /* anchor in dep[] chains */
107 unsigned short hash; /* hash value (index in ht[]) */
108 short allot; /* credit for this slot */
109 };
110
111 struct sfq_sched_data
112 {
113 /* Parameters */
114 int perturb_period;
115 unsigned quantum; /* Allotment per round: MUST BE >= MTU */
116 int limit;
117
118 /* Variables */
119 struct tcf_proto *filter_list;
120 struct timer_list perturb_timer;
121 u32 perturbation;
122 sfq_index cur_depth; /* depth of longest slot */
123 unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */
124 struct sfq_slot *tail; /* current slot in round */
125 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
126 struct sfq_slot slots[SFQ_SLOTS];
127 struct sfq_head dep[SFQ_DEPTH]; /* Linked list of slots, indexed by depth */
128 };
129
130 /*
131 * sfq_head are either in a sfq_slot or in dep[] array
132 */
133 static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val)
134 {
135 if (val < SFQ_SLOTS)
136 return &q->slots[val].dep;
137 return &q->dep[val - SFQ_SLOTS];
138 }
139
140 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
141 {
142 return jhash_2words(h, h1, q->perturbation) & (SFQ_HASH_DIVISOR - 1);
143 }
144
145 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
146 {
147 u32 h, h2;
148
149 switch (skb->protocol) {
150 case htons(ETH_P_IP):
151 {
152 const struct iphdr *iph;
153 int poff;
154
155 if (!pskb_network_may_pull(skb, sizeof(*iph)))
156 goto err;
157 iph = ip_hdr(skb);
158 h = (__force u32)iph->daddr;
159 h2 = (__force u32)iph->saddr ^ iph->protocol;
160 if (iph->frag_off & htons(IP_MF|IP_OFFSET))
161 break;
162 poff = proto_ports_offset(iph->protocol);
163 if (poff >= 0 &&
164 pskb_network_may_pull(skb, iph->ihl * 4 + 4 + poff)) {
165 iph = ip_hdr(skb);
166 h2 ^= *(u32*)((void *)iph + iph->ihl * 4 + poff);
167 }
168 break;
169 }
170 case htons(ETH_P_IPV6):
171 {
172 struct ipv6hdr *iph;
173 int poff;
174
175 if (!pskb_network_may_pull(skb, sizeof(*iph)))
176 goto err;
177 iph = ipv6_hdr(skb);
178 h = (__force u32)iph->daddr.s6_addr32[3];
179 h2 = (__force u32)iph->saddr.s6_addr32[3] ^ iph->nexthdr;
180 poff = proto_ports_offset(iph->nexthdr);
181 if (poff >= 0 &&
182 pskb_network_may_pull(skb, sizeof(*iph) + 4 + poff)) {
183 iph = ipv6_hdr(skb);
184 h2 ^= *(u32*)((void *)iph + sizeof(*iph) + poff);
185 }
186 break;
187 }
188 default:
189 err:
190 h = (unsigned long)skb_dst(skb) ^ (__force u32)skb->protocol;
191 h2 = (unsigned long)skb->sk;
192 }
193
194 return sfq_fold_hash(q, h, h2);
195 }
196
197 static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
198 int *qerr)
199 {
200 struct sfq_sched_data *q = qdisc_priv(sch);
201 struct tcf_result res;
202 int result;
203
204 if (TC_H_MAJ(skb->priority) == sch->handle &&
205 TC_H_MIN(skb->priority) > 0 &&
206 TC_H_MIN(skb->priority) <= SFQ_HASH_DIVISOR)
207 return TC_H_MIN(skb->priority);
208
209 if (!q->filter_list)
210 return sfq_hash(q, skb) + 1;
211
212 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
213 result = tc_classify(skb, q->filter_list, &res);
214 if (result >= 0) {
215 #ifdef CONFIG_NET_CLS_ACT
216 switch (result) {
217 case TC_ACT_STOLEN:
218 case TC_ACT_QUEUED:
219 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
220 case TC_ACT_SHOT:
221 return 0;
222 }
223 #endif
224 if (TC_H_MIN(res.classid) <= SFQ_HASH_DIVISOR)
225 return TC_H_MIN(res.classid);
226 }
227 return 0;
228 }
229
230 /*
231 * x : slot number [0 .. SFQ_SLOTS - 1]
232 */
233 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
234 {
235 sfq_index p, n;
236 int qlen = q->slots[x].qlen;
237
238 p = qlen + SFQ_SLOTS;
239 n = q->dep[qlen].next;
240
241 q->slots[x].dep.next = n;
242 q->slots[x].dep.prev = p;
243
244 q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */
245 sfq_dep_head(q, n)->prev = x;
246 }
247
248 #define sfq_unlink(q, x, n, p) \
249 n = q->slots[x].dep.next; \
250 p = q->slots[x].dep.prev; \
251 sfq_dep_head(q, p)->next = n; \
252 sfq_dep_head(q, n)->prev = p
253
254
255 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
256 {
257 sfq_index p, n;
258 int d;
259
260 sfq_unlink(q, x, n, p);
261
262 d = q->slots[x].qlen--;
263 if (n == p && q->cur_depth == d)
264 q->cur_depth--;
265 sfq_link(q, x);
266 }
267
268 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
269 {
270 sfq_index p, n;
271 int d;
272
273 sfq_unlink(q, x, n, p);
274
275 d = ++q->slots[x].qlen;
276 if (q->cur_depth < d)
277 q->cur_depth = d;
278 sfq_link(q, x);
279 }
280
281 /* helper functions : might be changed when/if skb use a standard list_head */
282
283 /* remove one skb from tail of slot queue */
284 static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot)
285 {
286 struct sk_buff *skb = slot->skblist_prev;
287
288 slot->skblist_prev = skb->prev;
289 skb->prev->next = (struct sk_buff *)slot;
290 skb->next = skb->prev = NULL;
291 return skb;
292 }
293
294 /* remove one skb from head of slot queue */
295 static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot)
296 {
297 struct sk_buff *skb = slot->skblist_next;
298
299 slot->skblist_next = skb->next;
300 skb->next->prev = (struct sk_buff *)slot;
301 skb->next = skb->prev = NULL;
302 return skb;
303 }
304
305 static inline void slot_queue_init(struct sfq_slot *slot)
306 {
307 slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot;
308 }
309
310 /* add skb to slot queue (tail add) */
311 static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb)
312 {
313 skb->prev = slot->skblist_prev;
314 skb->next = (struct sk_buff *)slot;
315 slot->skblist_prev->next = skb;
316 slot->skblist_prev = skb;
317 }
318
319 #define slot_queue_walk(slot, skb) \
320 for (skb = slot->skblist_next; \
321 skb != (struct sk_buff *)slot; \
322 skb = skb->next)
323
324 static unsigned int sfq_drop(struct Qdisc *sch)
325 {
326 struct sfq_sched_data *q = qdisc_priv(sch);
327 sfq_index x, d = q->cur_depth;
328 struct sk_buff *skb;
329 unsigned int len;
330 struct sfq_slot *slot;
331
332 /* Queue is full! Find the longest slot and drop tail packet from it */
333 if (d > 1) {
334 x = q->dep[d].next;
335 slot = &q->slots[x];
336 drop:
337 skb = slot_dequeue_tail(slot);
338 len = qdisc_pkt_len(skb);
339 sfq_dec(q, x);
340 kfree_skb(skb);
341 sch->q.qlen--;
342 sch->qstats.drops++;
343 sch->qstats.backlog -= len;
344 return len;
345 }
346
347 if (d == 1) {
348 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
349 x = q->tail->next;
350 slot = &q->slots[x];
351 q->tail->next = slot->next;
352 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
353 goto drop;
354 }
355
356 return 0;
357 }
358
359 static int
360 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
361 {
362 struct sfq_sched_data *q = qdisc_priv(sch);
363 unsigned int hash;
364 sfq_index x;
365 struct sfq_slot *slot;
366 int uninitialized_var(ret);
367
368 hash = sfq_classify(skb, sch, &ret);
369 if (hash == 0) {
370 if (ret & __NET_XMIT_BYPASS)
371 sch->qstats.drops++;
372 kfree_skb(skb);
373 return ret;
374 }
375 hash--;
376
377 x = q->ht[hash];
378 slot = &q->slots[x];
379 if (x == SFQ_EMPTY_SLOT) {
380 x = q->dep[0].next; /* get a free slot */
381 q->ht[hash] = x;
382 slot = &q->slots[x];
383 slot->hash = hash;
384 }
385
386 /* If selected queue has length q->limit, do simple tail drop,
387 * i.e. drop _this_ packet.
388 */
389 if (slot->qlen >= q->limit)
390 return qdisc_drop(skb, sch);
391
392 sch->qstats.backlog += qdisc_pkt_len(skb);
393 slot_queue_add(slot, skb);
394 sfq_inc(q, x);
395 if (slot->qlen == 1) { /* The flow is new */
396 if (q->tail == NULL) { /* It is the first flow */
397 slot->next = x;
398 } else {
399 slot->next = q->tail->next;
400 q->tail->next = x;
401 }
402 q->tail = slot;
403 slot->allot = q->scaled_quantum;
404 }
405 if (++sch->q.qlen <= q->limit)
406 return NET_XMIT_SUCCESS;
407
408 sfq_drop(sch);
409 return NET_XMIT_CN;
410 }
411
412 static struct sk_buff *
413 sfq_peek(struct Qdisc *sch)
414 {
415 struct sfq_sched_data *q = qdisc_priv(sch);
416
417 /* No active slots */
418 if (q->tail == NULL)
419 return NULL;
420
421 return q->slots[q->tail->next].skblist_next;
422 }
423
424 static struct sk_buff *
425 sfq_dequeue(struct Qdisc *sch)
426 {
427 struct sfq_sched_data *q = qdisc_priv(sch);
428 struct sk_buff *skb;
429 sfq_index a, next_a;
430 struct sfq_slot *slot;
431
432 /* No active slots */
433 if (q->tail == NULL)
434 return NULL;
435
436 next_slot:
437 a = q->tail->next;
438 slot = &q->slots[a];
439 if (slot->allot <= 0) {
440 q->tail = slot;
441 slot->allot += q->scaled_quantum;
442 goto next_slot;
443 }
444 skb = slot_dequeue_head(slot);
445 sfq_dec(q, a);
446 qdisc_bstats_update(sch, skb);
447 sch->q.qlen--;
448 sch->qstats.backlog -= qdisc_pkt_len(skb);
449
450 /* Is the slot empty? */
451 if (slot->qlen == 0) {
452 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
453 next_a = slot->next;
454 if (a == next_a) {
455 q->tail = NULL; /* no more active slots */
456 return skb;
457 }
458 q->tail->next = next_a;
459 } else {
460 slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb));
461 }
462 return skb;
463 }
464
465 static void
466 sfq_reset(struct Qdisc *sch)
467 {
468 struct sk_buff *skb;
469
470 while ((skb = sfq_dequeue(sch)) != NULL)
471 kfree_skb(skb);
472 }
473
474 static void sfq_perturbation(unsigned long arg)
475 {
476 struct Qdisc *sch = (struct Qdisc *)arg;
477 struct sfq_sched_data *q = qdisc_priv(sch);
478
479 q->perturbation = net_random();
480
481 if (q->perturb_period)
482 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
483 }
484
485 static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
486 {
487 struct sfq_sched_data *q = qdisc_priv(sch);
488 struct tc_sfq_qopt *ctl = nla_data(opt);
489 unsigned int qlen;
490
491 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
492 return -EINVAL;
493
494 sch_tree_lock(sch);
495 q->quantum = ctl->quantum ? : psched_mtu(qdisc_dev(sch));
496 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
497 q->perturb_period = ctl->perturb_period * HZ;
498 if (ctl->limit)
499 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH - 1);
500
501 qlen = sch->q.qlen;
502 while (sch->q.qlen > q->limit)
503 sfq_drop(sch);
504 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
505
506 del_timer(&q->perturb_timer);
507 if (q->perturb_period) {
508 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
509 q->perturbation = net_random();
510 }
511 sch_tree_unlock(sch);
512 return 0;
513 }
514
515 static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
516 {
517 struct sfq_sched_data *q = qdisc_priv(sch);
518 int i;
519
520 q->perturb_timer.function = sfq_perturbation;
521 q->perturb_timer.data = (unsigned long)sch;
522 init_timer_deferrable(&q->perturb_timer);
523
524 for (i = 0; i < SFQ_HASH_DIVISOR; i++)
525 q->ht[i] = SFQ_EMPTY_SLOT;
526
527 for (i = 0; i < SFQ_DEPTH; i++) {
528 q->dep[i].next = i + SFQ_SLOTS;
529 q->dep[i].prev = i + SFQ_SLOTS;
530 }
531
532 q->limit = SFQ_DEPTH - 1;
533 q->cur_depth = 0;
534 q->tail = NULL;
535 if (opt == NULL) {
536 q->quantum = psched_mtu(qdisc_dev(sch));
537 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
538 q->perturb_period = 0;
539 q->perturbation = net_random();
540 } else {
541 int err = sfq_change(sch, opt);
542 if (err)
543 return err;
544 }
545
546 for (i = 0; i < SFQ_SLOTS; i++) {
547 slot_queue_init(&q->slots[i]);
548 sfq_link(q, i);
549 }
550 return 0;
551 }
552
553 static void sfq_destroy(struct Qdisc *sch)
554 {
555 struct sfq_sched_data *q = qdisc_priv(sch);
556
557 tcf_destroy_chain(&q->filter_list);
558 q->perturb_period = 0;
559 del_timer_sync(&q->perturb_timer);
560 }
561
562 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
563 {
564 struct sfq_sched_data *q = qdisc_priv(sch);
565 unsigned char *b = skb_tail_pointer(skb);
566 struct tc_sfq_qopt opt;
567
568 opt.quantum = q->quantum;
569 opt.perturb_period = q->perturb_period / HZ;
570
571 opt.limit = q->limit;
572 opt.divisor = SFQ_HASH_DIVISOR;
573 opt.flows = q->limit;
574
575 NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
576
577 return skb->len;
578
579 nla_put_failure:
580 nlmsg_trim(skb, b);
581 return -1;
582 }
583
584 static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
585 {
586 return NULL;
587 }
588
589 static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
590 {
591 return 0;
592 }
593
594 static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
595 u32 classid)
596 {
597 return 0;
598 }
599
600 static void sfq_put(struct Qdisc *q, unsigned long cl)
601 {
602 }
603
604 static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl)
605 {
606 struct sfq_sched_data *q = qdisc_priv(sch);
607
608 if (cl)
609 return NULL;
610 return &q->filter_list;
611 }
612
613 static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
614 struct sk_buff *skb, struct tcmsg *tcm)
615 {
616 tcm->tcm_handle |= TC_H_MIN(cl);
617 return 0;
618 }
619
620 static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
621 struct gnet_dump *d)
622 {
623 struct sfq_sched_data *q = qdisc_priv(sch);
624 sfq_index idx = q->ht[cl - 1];
625 struct gnet_stats_queue qs = { 0 };
626 struct tc_sfq_xstats xstats = { 0 };
627 struct sk_buff *skb;
628
629 if (idx != SFQ_EMPTY_SLOT) {
630 const struct sfq_slot *slot = &q->slots[idx];
631
632 xstats.allot = slot->allot << SFQ_ALLOT_SHIFT;
633 qs.qlen = slot->qlen;
634 slot_queue_walk(slot, skb)
635 qs.backlog += qdisc_pkt_len(skb);
636 }
637 if (gnet_stats_copy_queue(d, &qs) < 0)
638 return -1;
639 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
640 }
641
642 static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
643 {
644 struct sfq_sched_data *q = qdisc_priv(sch);
645 unsigned int i;
646
647 if (arg->stop)
648 return;
649
650 for (i = 0; i < SFQ_HASH_DIVISOR; i++) {
651 if (q->ht[i] == SFQ_EMPTY_SLOT ||
652 arg->count < arg->skip) {
653 arg->count++;
654 continue;
655 }
656 if (arg->fn(sch, i + 1, arg) < 0) {
657 arg->stop = 1;
658 break;
659 }
660 arg->count++;
661 }
662 }
663
664 static const struct Qdisc_class_ops sfq_class_ops = {
665 .leaf = sfq_leaf,
666 .get = sfq_get,
667 .put = sfq_put,
668 .tcf_chain = sfq_find_tcf,
669 .bind_tcf = sfq_bind,
670 .unbind_tcf = sfq_put,
671 .dump = sfq_dump_class,
672 .dump_stats = sfq_dump_class_stats,
673 .walk = sfq_walk,
674 };
675
676 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
677 .cl_ops = &sfq_class_ops,
678 .id = "sfq",
679 .priv_size = sizeof(struct sfq_sched_data),
680 .enqueue = sfq_enqueue,
681 .dequeue = sfq_dequeue,
682 .peek = sfq_peek,
683 .drop = sfq_drop,
684 .init = sfq_init,
685 .reset = sfq_reset,
686 .destroy = sfq_destroy,
687 .change = NULL,
688 .dump = sfq_dump,
689 .owner = THIS_MODULE,
690 };
691
692 static int __init sfq_module_init(void)
693 {
694 return register_qdisc(&sfq_qdisc_ops);
695 }
696 static void __exit sfq_module_exit(void)
697 {
698 unregister_qdisc(&sfq_qdisc_ops);
699 }
700 module_init(sfq_module_init)
701 module_exit(sfq_module_exit)
702 MODULE_LICENSE("GPL");
This page took 0.045963 seconds and 5 git commands to generate.