Merge tag 'dm-3.16-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[deliverable/linux.git] / net / sctp / associola.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62
63 /* 1st Level Abstractions. */
64
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 const struct sctp_endpoint *ep,
68 const struct sock *sk,
69 sctp_scope_t scope,
70 gfp_t gfp)
71 {
72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp;
74 int i;
75 sctp_paramhdr_t *p;
76 int err;
77
78 /* Retrieve the SCTP per socket area. */
79 sp = sctp_sk((struct sock *)sk);
80
81 /* Discarding const is appropriate here. */
82 asoc->ep = (struct sctp_endpoint *)ep;
83 asoc->base.sk = (struct sock *)sk;
84
85 sctp_endpoint_hold(asoc->ep);
86 sock_hold(asoc->base.sk);
87
88 /* Initialize the common base substructure. */
89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90
91 /* Initialize the object handling fields. */
92 atomic_set(&asoc->base.refcnt, 1);
93
94 /* Initialize the bind addr area. */
95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96
97 asoc->state = SCTP_STATE_CLOSED;
98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99 asoc->user_frag = sp->user_frag;
100
101 /* Set the association max_retrans and RTO values from the
102 * socket values.
103 */
104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105 asoc->pf_retrans = net->sctp.pf_retrans;
106
107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110
111 /* Initialize the association's heartbeat interval based on the
112 * sock configured value.
113 */
114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115
116 /* Initialize path max retrans value. */
117 asoc->pathmaxrxt = sp->pathmaxrxt;
118
119 /* Initialize default path MTU. */
120 asoc->pathmtu = sp->pathmtu;
121
122 /* Set association default SACK delay */
123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124 asoc->sackfreq = sp->sackfreq;
125
126 /* Set the association default flags controlling
127 * Heartbeat, SACK delay, and Path MTU Discovery.
128 */
129 asoc->param_flags = sp->param_flags;
130
131 /* Initialize the maximum number of new data packets that can be sent
132 * in a burst.
133 */
134 asoc->max_burst = sp->max_burst;
135
136 /* initialize association timers */
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140
141 /* sctpimpguide Section 2.12.2
142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 * recommended value of 5 times 'RTO.Max'.
144 */
145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146 = 5 * asoc->rto_max;
147
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150
151 /* Initializes the timers */
152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153 setup_timer(&asoc->timers[i], sctp_timer_events[i],
154 (unsigned long)asoc);
155
156 /* Pull default initialization values from the sock options.
157 * Note: This assumes that the values have already been
158 * validated in the sock.
159 */
160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
163
164 asoc->max_init_timeo =
165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166
167 /* Set the local window size for receive.
168 * This is also the rcvbuf space per association.
169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 * 1500 bytes in one SCTP packet.
171 */
172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174 else
175 asoc->rwnd = sk->sk_rcvbuf/2;
176
177 asoc->a_rwnd = asoc->rwnd;
178
179 /* Use my own max window until I learn something better. */
180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181
182 /* Initialize the receive memory counter */
183 atomic_set(&asoc->rmem_alloc, 0);
184
185 init_waitqueue_head(&asoc->wait);
186
187 asoc->c.my_vtag = sctp_generate_tag(ep);
188 asoc->c.my_port = ep->base.bind_addr.port;
189
190 asoc->c.initial_tsn = sctp_generate_tsn(ep);
191
192 asoc->next_tsn = asoc->c.initial_tsn;
193
194 asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 asoc->highest_sacked = asoc->ctsn_ack_point;
197 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198
199 /* ADDIP Section 4.1 Asconf Chunk Procedures
200 *
201 * When an endpoint has an ASCONF signaled change to be sent to the
202 * remote endpoint it should do the following:
203 * ...
204 * A2) a serial number should be assigned to the chunk. The serial
205 * number SHOULD be a monotonically increasing number. The serial
206 * numbers SHOULD be initialized at the start of the
207 * association to the same value as the initial TSN.
208 */
209 asoc->addip_serial = asoc->c.initial_tsn;
210
211 INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 INIT_LIST_HEAD(&asoc->asconf_ack_list);
213
214 /* Make an empty list of remote transport addresses. */
215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216
217 /* RFC 2960 5.1 Normal Establishment of an Association
218 *
219 * After the reception of the first data chunk in an
220 * association the endpoint must immediately respond with a
221 * sack to acknowledge the data chunk. Subsequent
222 * acknowledgements should be done as described in Section
223 * 6.2.
224 *
225 * [We implement this by telling a new association that it
226 * already received one packet.]
227 */
228 asoc->peer.sack_needed = 1;
229 asoc->peer.sack_generation = 1;
230
231 /* Assume that the peer will tell us if he recognizes ASCONF
232 * as part of INIT exchange.
233 * The sctp_addip_noauth option is there for backward compatibility
234 * and will revert old behavior.
235 */
236 if (net->sctp.addip_noauth)
237 asoc->peer.asconf_capable = 1;
238
239 /* Create an input queue. */
240 sctp_inq_init(&asoc->base.inqueue);
241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242
243 /* Create an output queue. */
244 sctp_outq_init(asoc, &asoc->outqueue);
245
246 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 goto fail_init;
248
249 /* Assume that peer would support both address types unless we are
250 * told otherwise.
251 */
252 asoc->peer.ipv4_address = 1;
253 if (asoc->base.sk->sk_family == PF_INET6)
254 asoc->peer.ipv6_address = 1;
255 INIT_LIST_HEAD(&asoc->asocs);
256
257 asoc->default_stream = sp->default_stream;
258 asoc->default_ppid = sp->default_ppid;
259 asoc->default_flags = sp->default_flags;
260 asoc->default_context = sp->default_context;
261 asoc->default_timetolive = sp->default_timetolive;
262 asoc->default_rcv_context = sp->default_rcv_context;
263
264 /* AUTH related initializations */
265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267 if (err)
268 goto fail_init;
269
270 asoc->active_key_id = ep->active_key_id;
271
272 /* Save the hmacs and chunks list into this association */
273 if (ep->auth_hmacs_list)
274 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
275 ntohs(ep->auth_hmacs_list->param_hdr.length));
276 if (ep->auth_chunk_list)
277 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
278 ntohs(ep->auth_chunk_list->param_hdr.length));
279
280 /* Get the AUTH random number for this association */
281 p = (sctp_paramhdr_t *)asoc->c.auth_random;
282 p->type = SCTP_PARAM_RANDOM;
283 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
284 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
285
286 return asoc;
287
288 fail_init:
289 sock_put(asoc->base.sk);
290 sctp_endpoint_put(asoc->ep);
291 return NULL;
292 }
293
294 /* Allocate and initialize a new association */
295 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
296 const struct sock *sk,
297 sctp_scope_t scope,
298 gfp_t gfp)
299 {
300 struct sctp_association *asoc;
301
302 asoc = kzalloc(sizeof(*asoc), gfp);
303 if (!asoc)
304 goto fail;
305
306 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
307 goto fail_init;
308
309 SCTP_DBG_OBJCNT_INC(assoc);
310
311 pr_debug("Created asoc %p\n", asoc);
312
313 return asoc;
314
315 fail_init:
316 kfree(asoc);
317 fail:
318 return NULL;
319 }
320
321 /* Free this association if possible. There may still be users, so
322 * the actual deallocation may be delayed.
323 */
324 void sctp_association_free(struct sctp_association *asoc)
325 {
326 struct sock *sk = asoc->base.sk;
327 struct sctp_transport *transport;
328 struct list_head *pos, *temp;
329 int i;
330
331 /* Only real associations count against the endpoint, so
332 * don't bother for if this is a temporary association.
333 */
334 if (!list_empty(&asoc->asocs)) {
335 list_del(&asoc->asocs);
336
337 /* Decrement the backlog value for a TCP-style listening
338 * socket.
339 */
340 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
341 sk->sk_ack_backlog--;
342 }
343
344 /* Mark as dead, so other users can know this structure is
345 * going away.
346 */
347 asoc->base.dead = true;
348
349 /* Dispose of any data lying around in the outqueue. */
350 sctp_outq_free(&asoc->outqueue);
351
352 /* Dispose of any pending messages for the upper layer. */
353 sctp_ulpq_free(&asoc->ulpq);
354
355 /* Dispose of any pending chunks on the inqueue. */
356 sctp_inq_free(&asoc->base.inqueue);
357
358 sctp_tsnmap_free(&asoc->peer.tsn_map);
359
360 /* Free ssnmap storage. */
361 sctp_ssnmap_free(asoc->ssnmap);
362
363 /* Clean up the bound address list. */
364 sctp_bind_addr_free(&asoc->base.bind_addr);
365
366 /* Do we need to go through all of our timers and
367 * delete them? To be safe we will try to delete all, but we
368 * should be able to go through and make a guess based
369 * on our state.
370 */
371 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
372 if (del_timer(&asoc->timers[i]))
373 sctp_association_put(asoc);
374 }
375
376 /* Free peer's cached cookie. */
377 kfree(asoc->peer.cookie);
378 kfree(asoc->peer.peer_random);
379 kfree(asoc->peer.peer_chunks);
380 kfree(asoc->peer.peer_hmacs);
381
382 /* Release the transport structures. */
383 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
384 transport = list_entry(pos, struct sctp_transport, transports);
385 list_del_rcu(pos);
386 sctp_transport_free(transport);
387 }
388
389 asoc->peer.transport_count = 0;
390
391 sctp_asconf_queue_teardown(asoc);
392
393 /* Free pending address space being deleted */
394 if (asoc->asconf_addr_del_pending != NULL)
395 kfree(asoc->asconf_addr_del_pending);
396
397 /* AUTH - Free the endpoint shared keys */
398 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
399
400 /* AUTH - Free the association shared key */
401 sctp_auth_key_put(asoc->asoc_shared_key);
402
403 sctp_association_put(asoc);
404 }
405
406 /* Cleanup and free up an association. */
407 static void sctp_association_destroy(struct sctp_association *asoc)
408 {
409 if (unlikely(!asoc->base.dead)) {
410 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
411 return;
412 }
413
414 sctp_endpoint_put(asoc->ep);
415 sock_put(asoc->base.sk);
416
417 if (asoc->assoc_id != 0) {
418 spin_lock_bh(&sctp_assocs_id_lock);
419 idr_remove(&sctp_assocs_id, asoc->assoc_id);
420 spin_unlock_bh(&sctp_assocs_id_lock);
421 }
422
423 WARN_ON(atomic_read(&asoc->rmem_alloc));
424
425 kfree(asoc);
426 SCTP_DBG_OBJCNT_DEC(assoc);
427 }
428
429 /* Change the primary destination address for the peer. */
430 void sctp_assoc_set_primary(struct sctp_association *asoc,
431 struct sctp_transport *transport)
432 {
433 int changeover = 0;
434
435 /* it's a changeover only if we already have a primary path
436 * that we are changing
437 */
438 if (asoc->peer.primary_path != NULL &&
439 asoc->peer.primary_path != transport)
440 changeover = 1 ;
441
442 asoc->peer.primary_path = transport;
443
444 /* Set a default msg_name for events. */
445 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
446 sizeof(union sctp_addr));
447
448 /* If the primary path is changing, assume that the
449 * user wants to use this new path.
450 */
451 if ((transport->state == SCTP_ACTIVE) ||
452 (transport->state == SCTP_UNKNOWN))
453 asoc->peer.active_path = transport;
454
455 /*
456 * SFR-CACC algorithm:
457 * Upon the receipt of a request to change the primary
458 * destination address, on the data structure for the new
459 * primary destination, the sender MUST do the following:
460 *
461 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
462 * to this destination address earlier. The sender MUST set
463 * CYCLING_CHANGEOVER to indicate that this switch is a
464 * double switch to the same destination address.
465 *
466 * Really, only bother is we have data queued or outstanding on
467 * the association.
468 */
469 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
470 return;
471
472 if (transport->cacc.changeover_active)
473 transport->cacc.cycling_changeover = changeover;
474
475 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
476 * a changeover has occurred.
477 */
478 transport->cacc.changeover_active = changeover;
479
480 /* 3) The sender MUST store the next TSN to be sent in
481 * next_tsn_at_change.
482 */
483 transport->cacc.next_tsn_at_change = asoc->next_tsn;
484 }
485
486 /* Remove a transport from an association. */
487 void sctp_assoc_rm_peer(struct sctp_association *asoc,
488 struct sctp_transport *peer)
489 {
490 struct list_head *pos;
491 struct sctp_transport *transport;
492
493 pr_debug("%s: association:%p addr:%pISpc\n",
494 __func__, asoc, &peer->ipaddr.sa);
495
496 /* If we are to remove the current retran_path, update it
497 * to the next peer before removing this peer from the list.
498 */
499 if (asoc->peer.retran_path == peer)
500 sctp_assoc_update_retran_path(asoc);
501
502 /* Remove this peer from the list. */
503 list_del_rcu(&peer->transports);
504
505 /* Get the first transport of asoc. */
506 pos = asoc->peer.transport_addr_list.next;
507 transport = list_entry(pos, struct sctp_transport, transports);
508
509 /* Update any entries that match the peer to be deleted. */
510 if (asoc->peer.primary_path == peer)
511 sctp_assoc_set_primary(asoc, transport);
512 if (asoc->peer.active_path == peer)
513 asoc->peer.active_path = transport;
514 if (asoc->peer.retran_path == peer)
515 asoc->peer.retran_path = transport;
516 if (asoc->peer.last_data_from == peer)
517 asoc->peer.last_data_from = transport;
518
519 /* If we remove the transport an INIT was last sent to, set it to
520 * NULL. Combined with the update of the retran path above, this
521 * will cause the next INIT to be sent to the next available
522 * transport, maintaining the cycle.
523 */
524 if (asoc->init_last_sent_to == peer)
525 asoc->init_last_sent_to = NULL;
526
527 /* If we remove the transport an SHUTDOWN was last sent to, set it
528 * to NULL. Combined with the update of the retran path above, this
529 * will cause the next SHUTDOWN to be sent to the next available
530 * transport, maintaining the cycle.
531 */
532 if (asoc->shutdown_last_sent_to == peer)
533 asoc->shutdown_last_sent_to = NULL;
534
535 /* If we remove the transport an ASCONF was last sent to, set it to
536 * NULL.
537 */
538 if (asoc->addip_last_asconf &&
539 asoc->addip_last_asconf->transport == peer)
540 asoc->addip_last_asconf->transport = NULL;
541
542 /* If we have something on the transmitted list, we have to
543 * save it off. The best place is the active path.
544 */
545 if (!list_empty(&peer->transmitted)) {
546 struct sctp_transport *active = asoc->peer.active_path;
547 struct sctp_chunk *ch;
548
549 /* Reset the transport of each chunk on this list */
550 list_for_each_entry(ch, &peer->transmitted,
551 transmitted_list) {
552 ch->transport = NULL;
553 ch->rtt_in_progress = 0;
554 }
555
556 list_splice_tail_init(&peer->transmitted,
557 &active->transmitted);
558
559 /* Start a T3 timer here in case it wasn't running so
560 * that these migrated packets have a chance to get
561 * retransmitted.
562 */
563 if (!timer_pending(&active->T3_rtx_timer))
564 if (!mod_timer(&active->T3_rtx_timer,
565 jiffies + active->rto))
566 sctp_transport_hold(active);
567 }
568
569 asoc->peer.transport_count--;
570
571 sctp_transport_free(peer);
572 }
573
574 /* Add a transport address to an association. */
575 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
576 const union sctp_addr *addr,
577 const gfp_t gfp,
578 const int peer_state)
579 {
580 struct net *net = sock_net(asoc->base.sk);
581 struct sctp_transport *peer;
582 struct sctp_sock *sp;
583 unsigned short port;
584
585 sp = sctp_sk(asoc->base.sk);
586
587 /* AF_INET and AF_INET6 share common port field. */
588 port = ntohs(addr->v4.sin_port);
589
590 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
591 asoc, &addr->sa, peer_state);
592
593 /* Set the port if it has not been set yet. */
594 if (0 == asoc->peer.port)
595 asoc->peer.port = port;
596
597 /* Check to see if this is a duplicate. */
598 peer = sctp_assoc_lookup_paddr(asoc, addr);
599 if (peer) {
600 /* An UNKNOWN state is only set on transports added by
601 * user in sctp_connectx() call. Such transports should be
602 * considered CONFIRMED per RFC 4960, Section 5.4.
603 */
604 if (peer->state == SCTP_UNKNOWN) {
605 peer->state = SCTP_ACTIVE;
606 }
607 return peer;
608 }
609
610 peer = sctp_transport_new(net, addr, gfp);
611 if (!peer)
612 return NULL;
613
614 sctp_transport_set_owner(peer, asoc);
615
616 /* Initialize the peer's heartbeat interval based on the
617 * association configured value.
618 */
619 peer->hbinterval = asoc->hbinterval;
620
621 /* Set the path max_retrans. */
622 peer->pathmaxrxt = asoc->pathmaxrxt;
623
624 /* And the partial failure retrans threshold */
625 peer->pf_retrans = asoc->pf_retrans;
626
627 /* Initialize the peer's SACK delay timeout based on the
628 * association configured value.
629 */
630 peer->sackdelay = asoc->sackdelay;
631 peer->sackfreq = asoc->sackfreq;
632
633 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
634 * based on association setting.
635 */
636 peer->param_flags = asoc->param_flags;
637
638 sctp_transport_route(peer, NULL, sp);
639
640 /* Initialize the pmtu of the transport. */
641 if (peer->param_flags & SPP_PMTUD_DISABLE) {
642 if (asoc->pathmtu)
643 peer->pathmtu = asoc->pathmtu;
644 else
645 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
646 }
647
648 /* If this is the first transport addr on this association,
649 * initialize the association PMTU to the peer's PMTU.
650 * If not and the current association PMTU is higher than the new
651 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
652 */
653 if (asoc->pathmtu)
654 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
655 else
656 asoc->pathmtu = peer->pathmtu;
657
658 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
659 asoc->pathmtu);
660
661 peer->pmtu_pending = 0;
662
663 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
664
665 /* The asoc->peer.port might not be meaningful yet, but
666 * initialize the packet structure anyway.
667 */
668 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
669 asoc->peer.port);
670
671 /* 7.2.1 Slow-Start
672 *
673 * o The initial cwnd before DATA transmission or after a sufficiently
674 * long idle period MUST be set to
675 * min(4*MTU, max(2*MTU, 4380 bytes))
676 *
677 * o The initial value of ssthresh MAY be arbitrarily high
678 * (for example, implementations MAY use the size of the
679 * receiver advertised window).
680 */
681 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
682
683 /* At this point, we may not have the receiver's advertised window,
684 * so initialize ssthresh to the default value and it will be set
685 * later when we process the INIT.
686 */
687 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
688
689 peer->partial_bytes_acked = 0;
690 peer->flight_size = 0;
691 peer->burst_limited = 0;
692
693 /* Set the transport's RTO.initial value */
694 peer->rto = asoc->rto_initial;
695 sctp_max_rto(asoc, peer);
696
697 /* Set the peer's active state. */
698 peer->state = peer_state;
699
700 /* Attach the remote transport to our asoc. */
701 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
702 asoc->peer.transport_count++;
703
704 /* If we do not yet have a primary path, set one. */
705 if (!asoc->peer.primary_path) {
706 sctp_assoc_set_primary(asoc, peer);
707 asoc->peer.retran_path = peer;
708 }
709
710 if (asoc->peer.active_path == asoc->peer.retran_path &&
711 peer->state != SCTP_UNCONFIRMED) {
712 asoc->peer.retran_path = peer;
713 }
714
715 return peer;
716 }
717
718 /* Delete a transport address from an association. */
719 void sctp_assoc_del_peer(struct sctp_association *asoc,
720 const union sctp_addr *addr)
721 {
722 struct list_head *pos;
723 struct list_head *temp;
724 struct sctp_transport *transport;
725
726 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
727 transport = list_entry(pos, struct sctp_transport, transports);
728 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
729 /* Do book keeping for removing the peer and free it. */
730 sctp_assoc_rm_peer(asoc, transport);
731 break;
732 }
733 }
734 }
735
736 /* Lookup a transport by address. */
737 struct sctp_transport *sctp_assoc_lookup_paddr(
738 const struct sctp_association *asoc,
739 const union sctp_addr *address)
740 {
741 struct sctp_transport *t;
742
743 /* Cycle through all transports searching for a peer address. */
744
745 list_for_each_entry(t, &asoc->peer.transport_addr_list,
746 transports) {
747 if (sctp_cmp_addr_exact(address, &t->ipaddr))
748 return t;
749 }
750
751 return NULL;
752 }
753
754 /* Remove all transports except a give one */
755 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
756 struct sctp_transport *primary)
757 {
758 struct sctp_transport *temp;
759 struct sctp_transport *t;
760
761 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
762 transports) {
763 /* if the current transport is not the primary one, delete it */
764 if (t != primary)
765 sctp_assoc_rm_peer(asoc, t);
766 }
767 }
768
769 /* Engage in transport control operations.
770 * Mark the transport up or down and send a notification to the user.
771 * Select and update the new active and retran paths.
772 */
773 void sctp_assoc_control_transport(struct sctp_association *asoc,
774 struct sctp_transport *transport,
775 sctp_transport_cmd_t command,
776 sctp_sn_error_t error)
777 {
778 struct sctp_ulpevent *event;
779 struct sockaddr_storage addr;
780 int spc_state = 0;
781 bool ulp_notify = true;
782
783 /* Record the transition on the transport. */
784 switch (command) {
785 case SCTP_TRANSPORT_UP:
786 /* If we are moving from UNCONFIRMED state due
787 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
788 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
789 */
790 if (SCTP_UNCONFIRMED == transport->state &&
791 SCTP_HEARTBEAT_SUCCESS == error)
792 spc_state = SCTP_ADDR_CONFIRMED;
793 else
794 spc_state = SCTP_ADDR_AVAILABLE;
795 /* Don't inform ULP about transition from PF to
796 * active state and set cwnd to 1 MTU, see SCTP
797 * Quick failover draft section 5.1, point 5
798 */
799 if (transport->state == SCTP_PF) {
800 ulp_notify = false;
801 transport->cwnd = asoc->pathmtu;
802 }
803 transport->state = SCTP_ACTIVE;
804 break;
805
806 case SCTP_TRANSPORT_DOWN:
807 /* If the transport was never confirmed, do not transition it
808 * to inactive state. Also, release the cached route since
809 * there may be a better route next time.
810 */
811 if (transport->state != SCTP_UNCONFIRMED)
812 transport->state = SCTP_INACTIVE;
813 else {
814 dst_release(transport->dst);
815 transport->dst = NULL;
816 }
817
818 spc_state = SCTP_ADDR_UNREACHABLE;
819 break;
820
821 case SCTP_TRANSPORT_PF:
822 transport->state = SCTP_PF;
823 ulp_notify = false;
824 break;
825
826 default:
827 return;
828 }
829
830 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
831 * to the user.
832 */
833 if (ulp_notify) {
834 memset(&addr, 0, sizeof(struct sockaddr_storage));
835 memcpy(&addr, &transport->ipaddr,
836 transport->af_specific->sockaddr_len);
837
838 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
839 0, spc_state, error, GFP_ATOMIC);
840 if (event)
841 sctp_ulpq_tail_event(&asoc->ulpq, event);
842 }
843
844 /* Select new active and retran paths. */
845 sctp_select_active_and_retran_path(asoc);
846 }
847
848 /* Hold a reference to an association. */
849 void sctp_association_hold(struct sctp_association *asoc)
850 {
851 atomic_inc(&asoc->base.refcnt);
852 }
853
854 /* Release a reference to an association and cleanup
855 * if there are no more references.
856 */
857 void sctp_association_put(struct sctp_association *asoc)
858 {
859 if (atomic_dec_and_test(&asoc->base.refcnt))
860 sctp_association_destroy(asoc);
861 }
862
863 /* Allocate the next TSN, Transmission Sequence Number, for the given
864 * association.
865 */
866 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
867 {
868 /* From Section 1.6 Serial Number Arithmetic:
869 * Transmission Sequence Numbers wrap around when they reach
870 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
871 * after transmitting TSN = 2*32 - 1 is TSN = 0.
872 */
873 __u32 retval = asoc->next_tsn;
874 asoc->next_tsn++;
875 asoc->unack_data++;
876
877 return retval;
878 }
879
880 /* Compare two addresses to see if they match. Wildcard addresses
881 * only match themselves.
882 */
883 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
884 const union sctp_addr *ss2)
885 {
886 struct sctp_af *af;
887
888 af = sctp_get_af_specific(ss1->sa.sa_family);
889 if (unlikely(!af))
890 return 0;
891
892 return af->cmp_addr(ss1, ss2);
893 }
894
895 /* Return an ecne chunk to get prepended to a packet.
896 * Note: We are sly and return a shared, prealloced chunk. FIXME:
897 * No we don't, but we could/should.
898 */
899 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
900 {
901 if (!asoc->need_ecne)
902 return NULL;
903
904 /* Send ECNE if needed.
905 * Not being able to allocate a chunk here is not deadly.
906 */
907 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
908 }
909
910 /*
911 * Find which transport this TSN was sent on.
912 */
913 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
914 __u32 tsn)
915 {
916 struct sctp_transport *active;
917 struct sctp_transport *match;
918 struct sctp_transport *transport;
919 struct sctp_chunk *chunk;
920 __be32 key = htonl(tsn);
921
922 match = NULL;
923
924 /*
925 * FIXME: In general, find a more efficient data structure for
926 * searching.
927 */
928
929 /*
930 * The general strategy is to search each transport's transmitted
931 * list. Return which transport this TSN lives on.
932 *
933 * Let's be hopeful and check the active_path first.
934 * Another optimization would be to know if there is only one
935 * outbound path and not have to look for the TSN at all.
936 *
937 */
938
939 active = asoc->peer.active_path;
940
941 list_for_each_entry(chunk, &active->transmitted,
942 transmitted_list) {
943
944 if (key == chunk->subh.data_hdr->tsn) {
945 match = active;
946 goto out;
947 }
948 }
949
950 /* If not found, go search all the other transports. */
951 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
952 transports) {
953
954 if (transport == active)
955 continue;
956 list_for_each_entry(chunk, &transport->transmitted,
957 transmitted_list) {
958 if (key == chunk->subh.data_hdr->tsn) {
959 match = transport;
960 goto out;
961 }
962 }
963 }
964 out:
965 return match;
966 }
967
968 /* Is this the association we are looking for? */
969 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
970 struct net *net,
971 const union sctp_addr *laddr,
972 const union sctp_addr *paddr)
973 {
974 struct sctp_transport *transport;
975
976 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
977 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
978 net_eq(sock_net(asoc->base.sk), net)) {
979 transport = sctp_assoc_lookup_paddr(asoc, paddr);
980 if (!transport)
981 goto out;
982
983 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
984 sctp_sk(asoc->base.sk)))
985 goto out;
986 }
987 transport = NULL;
988
989 out:
990 return transport;
991 }
992
993 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
994 static void sctp_assoc_bh_rcv(struct work_struct *work)
995 {
996 struct sctp_association *asoc =
997 container_of(work, struct sctp_association,
998 base.inqueue.immediate);
999 struct net *net = sock_net(asoc->base.sk);
1000 struct sctp_endpoint *ep;
1001 struct sctp_chunk *chunk;
1002 struct sctp_inq *inqueue;
1003 int state;
1004 sctp_subtype_t subtype;
1005 int error = 0;
1006
1007 /* The association should be held so we should be safe. */
1008 ep = asoc->ep;
1009
1010 inqueue = &asoc->base.inqueue;
1011 sctp_association_hold(asoc);
1012 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1013 state = asoc->state;
1014 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1015
1016 /* SCTP-AUTH, Section 6.3:
1017 * The receiver has a list of chunk types which it expects
1018 * to be received only after an AUTH-chunk. This list has
1019 * been sent to the peer during the association setup. It
1020 * MUST silently discard these chunks if they are not placed
1021 * after an AUTH chunk in the packet.
1022 */
1023 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1024 continue;
1025
1026 /* Remember where the last DATA chunk came from so we
1027 * know where to send the SACK.
1028 */
1029 if (sctp_chunk_is_data(chunk))
1030 asoc->peer.last_data_from = chunk->transport;
1031 else {
1032 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1033 asoc->stats.ictrlchunks++;
1034 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1035 asoc->stats.isacks++;
1036 }
1037
1038 if (chunk->transport)
1039 chunk->transport->last_time_heard = ktime_get();
1040
1041 /* Run through the state machine. */
1042 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1043 state, ep, asoc, chunk, GFP_ATOMIC);
1044
1045 /* Check to see if the association is freed in response to
1046 * the incoming chunk. If so, get out of the while loop.
1047 */
1048 if (asoc->base.dead)
1049 break;
1050
1051 /* If there is an error on chunk, discard this packet. */
1052 if (error && chunk)
1053 chunk->pdiscard = 1;
1054 }
1055 sctp_association_put(asoc);
1056 }
1057
1058 /* This routine moves an association from its old sk to a new sk. */
1059 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1060 {
1061 struct sctp_sock *newsp = sctp_sk(newsk);
1062 struct sock *oldsk = assoc->base.sk;
1063
1064 /* Delete the association from the old endpoint's list of
1065 * associations.
1066 */
1067 list_del_init(&assoc->asocs);
1068
1069 /* Decrement the backlog value for a TCP-style socket. */
1070 if (sctp_style(oldsk, TCP))
1071 oldsk->sk_ack_backlog--;
1072
1073 /* Release references to the old endpoint and the sock. */
1074 sctp_endpoint_put(assoc->ep);
1075 sock_put(assoc->base.sk);
1076
1077 /* Get a reference to the new endpoint. */
1078 assoc->ep = newsp->ep;
1079 sctp_endpoint_hold(assoc->ep);
1080
1081 /* Get a reference to the new sock. */
1082 assoc->base.sk = newsk;
1083 sock_hold(assoc->base.sk);
1084
1085 /* Add the association to the new endpoint's list of associations. */
1086 sctp_endpoint_add_asoc(newsp->ep, assoc);
1087 }
1088
1089 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1090 void sctp_assoc_update(struct sctp_association *asoc,
1091 struct sctp_association *new)
1092 {
1093 struct sctp_transport *trans;
1094 struct list_head *pos, *temp;
1095
1096 /* Copy in new parameters of peer. */
1097 asoc->c = new->c;
1098 asoc->peer.rwnd = new->peer.rwnd;
1099 asoc->peer.sack_needed = new->peer.sack_needed;
1100 asoc->peer.auth_capable = new->peer.auth_capable;
1101 asoc->peer.i = new->peer.i;
1102 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1103 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1104
1105 /* Remove any peer addresses not present in the new association. */
1106 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1107 trans = list_entry(pos, struct sctp_transport, transports);
1108 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1109 sctp_assoc_rm_peer(asoc, trans);
1110 continue;
1111 }
1112
1113 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1114 sctp_transport_reset(trans);
1115 }
1116
1117 /* If the case is A (association restart), use
1118 * initial_tsn as next_tsn. If the case is B, use
1119 * current next_tsn in case data sent to peer
1120 * has been discarded and needs retransmission.
1121 */
1122 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1123 asoc->next_tsn = new->next_tsn;
1124 asoc->ctsn_ack_point = new->ctsn_ack_point;
1125 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1126
1127 /* Reinitialize SSN for both local streams
1128 * and peer's streams.
1129 */
1130 sctp_ssnmap_clear(asoc->ssnmap);
1131
1132 /* Flush the ULP reassembly and ordered queue.
1133 * Any data there will now be stale and will
1134 * cause problems.
1135 */
1136 sctp_ulpq_flush(&asoc->ulpq);
1137
1138 /* reset the overall association error count so
1139 * that the restarted association doesn't get torn
1140 * down on the next retransmission timer.
1141 */
1142 asoc->overall_error_count = 0;
1143
1144 } else {
1145 /* Add any peer addresses from the new association. */
1146 list_for_each_entry(trans, &new->peer.transport_addr_list,
1147 transports) {
1148 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1149 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1150 GFP_ATOMIC, trans->state);
1151 }
1152
1153 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1154 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1155 if (!asoc->ssnmap) {
1156 /* Move the ssnmap. */
1157 asoc->ssnmap = new->ssnmap;
1158 new->ssnmap = NULL;
1159 }
1160
1161 if (!asoc->assoc_id) {
1162 /* get a new association id since we don't have one
1163 * yet.
1164 */
1165 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1166 }
1167 }
1168
1169 /* SCTP-AUTH: Save the peer parameters from the new associations
1170 * and also move the association shared keys over
1171 */
1172 kfree(asoc->peer.peer_random);
1173 asoc->peer.peer_random = new->peer.peer_random;
1174 new->peer.peer_random = NULL;
1175
1176 kfree(asoc->peer.peer_chunks);
1177 asoc->peer.peer_chunks = new->peer.peer_chunks;
1178 new->peer.peer_chunks = NULL;
1179
1180 kfree(asoc->peer.peer_hmacs);
1181 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1182 new->peer.peer_hmacs = NULL;
1183
1184 sctp_auth_key_put(asoc->asoc_shared_key);
1185 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1186 }
1187
1188 /* Update the retran path for sending a retransmitted packet.
1189 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1190 *
1191 * When there is outbound data to send and the primary path
1192 * becomes inactive (e.g., due to failures), or where the
1193 * SCTP user explicitly requests to send data to an
1194 * inactive destination transport address, before reporting
1195 * an error to its ULP, the SCTP endpoint should try to send
1196 * the data to an alternate active destination transport
1197 * address if one exists.
1198 *
1199 * When retransmitting data that timed out, if the endpoint
1200 * is multihomed, it should consider each source-destination
1201 * address pair in its retransmission selection policy.
1202 * When retransmitting timed-out data, the endpoint should
1203 * attempt to pick the most divergent source-destination
1204 * pair from the original source-destination pair to which
1205 * the packet was transmitted.
1206 *
1207 * Note: Rules for picking the most divergent source-destination
1208 * pair are an implementation decision and are not specified
1209 * within this document.
1210 *
1211 * Our basic strategy is to round-robin transports in priorities
1212 * according to sctp_state_prio_map[] e.g., if no such
1213 * transport with state SCTP_ACTIVE exists, round-robin through
1214 * SCTP_UNKNOWN, etc. You get the picture.
1215 */
1216 static const u8 sctp_trans_state_to_prio_map[] = {
1217 [SCTP_ACTIVE] = 3, /* best case */
1218 [SCTP_UNKNOWN] = 2,
1219 [SCTP_PF] = 1,
1220 [SCTP_INACTIVE] = 0, /* worst case */
1221 };
1222
1223 static u8 sctp_trans_score(const struct sctp_transport *trans)
1224 {
1225 return sctp_trans_state_to_prio_map[trans->state];
1226 }
1227
1228 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1229 struct sctp_transport *trans2)
1230 {
1231 if (trans1->error_count > trans2->error_count) {
1232 return trans2;
1233 } else if (trans1->error_count == trans2->error_count &&
1234 ktime_after(trans2->last_time_heard,
1235 trans1->last_time_heard)) {
1236 return trans2;
1237 } else {
1238 return trans1;
1239 }
1240 }
1241
1242 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1243 struct sctp_transport *best)
1244 {
1245 u8 score_curr, score_best;
1246
1247 if (best == NULL)
1248 return curr;
1249
1250 score_curr = sctp_trans_score(curr);
1251 score_best = sctp_trans_score(best);
1252
1253 /* First, try a score-based selection if both transport states
1254 * differ. If we're in a tie, lets try to make a more clever
1255 * decision here based on error counts and last time heard.
1256 */
1257 if (score_curr > score_best)
1258 return curr;
1259 else if (score_curr == score_best)
1260 return sctp_trans_elect_tie(curr, best);
1261 else
1262 return best;
1263 }
1264
1265 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1266 {
1267 struct sctp_transport *trans = asoc->peer.retran_path;
1268 struct sctp_transport *trans_next = NULL;
1269
1270 /* We're done as we only have the one and only path. */
1271 if (asoc->peer.transport_count == 1)
1272 return;
1273 /* If active_path and retran_path are the same and active,
1274 * then this is the only active path. Use it.
1275 */
1276 if (asoc->peer.active_path == asoc->peer.retran_path &&
1277 asoc->peer.active_path->state == SCTP_ACTIVE)
1278 return;
1279
1280 /* Iterate from retran_path's successor back to retran_path. */
1281 for (trans = list_next_entry(trans, transports); 1;
1282 trans = list_next_entry(trans, transports)) {
1283 /* Manually skip the head element. */
1284 if (&trans->transports == &asoc->peer.transport_addr_list)
1285 continue;
1286 if (trans->state == SCTP_UNCONFIRMED)
1287 continue;
1288 trans_next = sctp_trans_elect_best(trans, trans_next);
1289 /* Active is good enough for immediate return. */
1290 if (trans_next->state == SCTP_ACTIVE)
1291 break;
1292 /* We've reached the end, time to update path. */
1293 if (trans == asoc->peer.retran_path)
1294 break;
1295 }
1296
1297 asoc->peer.retran_path = trans_next;
1298
1299 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1300 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1301 }
1302
1303 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1304 {
1305 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1306 struct sctp_transport *trans_pf = NULL;
1307
1308 /* Look for the two most recently used active transports. */
1309 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1310 transports) {
1311 /* Skip uninteresting transports. */
1312 if (trans->state == SCTP_INACTIVE ||
1313 trans->state == SCTP_UNCONFIRMED)
1314 continue;
1315 /* Keep track of the best PF transport from our
1316 * list in case we don't find an active one.
1317 */
1318 if (trans->state == SCTP_PF) {
1319 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1320 continue;
1321 }
1322 /* For active transports, pick the most recent ones. */
1323 if (trans_pri == NULL ||
1324 ktime_after(trans->last_time_heard,
1325 trans_pri->last_time_heard)) {
1326 trans_sec = trans_pri;
1327 trans_pri = trans;
1328 } else if (trans_sec == NULL ||
1329 ktime_after(trans->last_time_heard,
1330 trans_sec->last_time_heard)) {
1331 trans_sec = trans;
1332 }
1333 }
1334
1335 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1336 *
1337 * By default, an endpoint should always transmit to the primary
1338 * path, unless the SCTP user explicitly specifies the
1339 * destination transport address (and possibly source transport
1340 * address) to use. [If the primary is active but not most recent,
1341 * bump the most recently used transport.]
1342 */
1343 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1344 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1345 asoc->peer.primary_path != trans_pri) {
1346 trans_sec = trans_pri;
1347 trans_pri = asoc->peer.primary_path;
1348 }
1349
1350 /* We did not find anything useful for a possible retransmission
1351 * path; either primary path that we found is the the same as
1352 * the current one, or we didn't generally find an active one.
1353 */
1354 if (trans_sec == NULL)
1355 trans_sec = trans_pri;
1356
1357 /* If we failed to find a usable transport, just camp on the
1358 * primary or retran, even if they are inactive, if possible
1359 * pick a PF iff it's the better choice.
1360 */
1361 if (trans_pri == NULL) {
1362 trans_pri = sctp_trans_elect_best(asoc->peer.primary_path,
1363 asoc->peer.retran_path);
1364 trans_pri = sctp_trans_elect_best(trans_pri, trans_pf);
1365 trans_sec = asoc->peer.primary_path;
1366 }
1367
1368 /* Set the active and retran transports. */
1369 asoc->peer.active_path = trans_pri;
1370 asoc->peer.retran_path = trans_sec;
1371 }
1372
1373 struct sctp_transport *
1374 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1375 struct sctp_transport *last_sent_to)
1376 {
1377 /* If this is the first time packet is sent, use the active path,
1378 * else use the retran path. If the last packet was sent over the
1379 * retran path, update the retran path and use it.
1380 */
1381 if (last_sent_to == NULL) {
1382 return asoc->peer.active_path;
1383 } else {
1384 if (last_sent_to == asoc->peer.retran_path)
1385 sctp_assoc_update_retran_path(asoc);
1386
1387 return asoc->peer.retran_path;
1388 }
1389 }
1390
1391 /* Update the association's pmtu and frag_point by going through all the
1392 * transports. This routine is called when a transport's PMTU has changed.
1393 */
1394 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1395 {
1396 struct sctp_transport *t;
1397 __u32 pmtu = 0;
1398
1399 if (!asoc)
1400 return;
1401
1402 /* Get the lowest pmtu of all the transports. */
1403 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1404 transports) {
1405 if (t->pmtu_pending && t->dst) {
1406 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1407 t->pmtu_pending = 0;
1408 }
1409 if (!pmtu || (t->pathmtu < pmtu))
1410 pmtu = t->pathmtu;
1411 }
1412
1413 if (pmtu) {
1414 asoc->pathmtu = pmtu;
1415 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1416 }
1417
1418 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1419 asoc->pathmtu, asoc->frag_point);
1420 }
1421
1422 /* Should we send a SACK to update our peer? */
1423 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1424 {
1425 struct net *net = sock_net(asoc->base.sk);
1426 switch (asoc->state) {
1427 case SCTP_STATE_ESTABLISHED:
1428 case SCTP_STATE_SHUTDOWN_PENDING:
1429 case SCTP_STATE_SHUTDOWN_RECEIVED:
1430 case SCTP_STATE_SHUTDOWN_SENT:
1431 if ((asoc->rwnd > asoc->a_rwnd) &&
1432 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1433 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1434 asoc->pathmtu)))
1435 return true;
1436 break;
1437 default:
1438 break;
1439 }
1440 return false;
1441 }
1442
1443 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1444 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1445 {
1446 struct sctp_chunk *sack;
1447 struct timer_list *timer;
1448
1449 if (asoc->rwnd_over) {
1450 if (asoc->rwnd_over >= len) {
1451 asoc->rwnd_over -= len;
1452 } else {
1453 asoc->rwnd += (len - asoc->rwnd_over);
1454 asoc->rwnd_over = 0;
1455 }
1456 } else {
1457 asoc->rwnd += len;
1458 }
1459
1460 /* If we had window pressure, start recovering it
1461 * once our rwnd had reached the accumulated pressure
1462 * threshold. The idea is to recover slowly, but up
1463 * to the initial advertised window.
1464 */
1465 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1466 int change = min(asoc->pathmtu, asoc->rwnd_press);
1467 asoc->rwnd += change;
1468 asoc->rwnd_press -= change;
1469 }
1470
1471 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1472 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1473 asoc->a_rwnd);
1474
1475 /* Send a window update SACK if the rwnd has increased by at least the
1476 * minimum of the association's PMTU and half of the receive buffer.
1477 * The algorithm used is similar to the one described in
1478 * Section 4.2.3.3 of RFC 1122.
1479 */
1480 if (sctp_peer_needs_update(asoc)) {
1481 asoc->a_rwnd = asoc->rwnd;
1482
1483 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1484 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1485 asoc->a_rwnd);
1486
1487 sack = sctp_make_sack(asoc);
1488 if (!sack)
1489 return;
1490
1491 asoc->peer.sack_needed = 0;
1492
1493 sctp_outq_tail(&asoc->outqueue, sack);
1494
1495 /* Stop the SACK timer. */
1496 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1497 if (del_timer(timer))
1498 sctp_association_put(asoc);
1499 }
1500 }
1501
1502 /* Decrease asoc's rwnd by len. */
1503 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1504 {
1505 int rx_count;
1506 int over = 0;
1507
1508 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1509 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1510 "asoc->rwnd_over:%u!\n", __func__, asoc,
1511 asoc->rwnd, asoc->rwnd_over);
1512
1513 if (asoc->ep->rcvbuf_policy)
1514 rx_count = atomic_read(&asoc->rmem_alloc);
1515 else
1516 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1517
1518 /* If we've reached or overflowed our receive buffer, announce
1519 * a 0 rwnd if rwnd would still be positive. Store the
1520 * the potential pressure overflow so that the window can be restored
1521 * back to original value.
1522 */
1523 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1524 over = 1;
1525
1526 if (asoc->rwnd >= len) {
1527 asoc->rwnd -= len;
1528 if (over) {
1529 asoc->rwnd_press += asoc->rwnd;
1530 asoc->rwnd = 0;
1531 }
1532 } else {
1533 asoc->rwnd_over = len - asoc->rwnd;
1534 asoc->rwnd = 0;
1535 }
1536
1537 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1538 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1539 asoc->rwnd_press);
1540 }
1541
1542 /* Build the bind address list for the association based on info from the
1543 * local endpoint and the remote peer.
1544 */
1545 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1546 sctp_scope_t scope, gfp_t gfp)
1547 {
1548 int flags;
1549
1550 /* Use scoping rules to determine the subset of addresses from
1551 * the endpoint.
1552 */
1553 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1554 if (asoc->peer.ipv4_address)
1555 flags |= SCTP_ADDR4_PEERSUPP;
1556 if (asoc->peer.ipv6_address)
1557 flags |= SCTP_ADDR6_PEERSUPP;
1558
1559 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1560 &asoc->base.bind_addr,
1561 &asoc->ep->base.bind_addr,
1562 scope, gfp, flags);
1563 }
1564
1565 /* Build the association's bind address list from the cookie. */
1566 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1567 struct sctp_cookie *cookie,
1568 gfp_t gfp)
1569 {
1570 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1571 int var_size3 = cookie->raw_addr_list_len;
1572 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1573
1574 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1575 asoc->ep->base.bind_addr.port, gfp);
1576 }
1577
1578 /* Lookup laddr in the bind address list of an association. */
1579 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1580 const union sctp_addr *laddr)
1581 {
1582 int found = 0;
1583
1584 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1585 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1586 sctp_sk(asoc->base.sk)))
1587 found = 1;
1588
1589 return found;
1590 }
1591
1592 /* Set an association id for a given association */
1593 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1594 {
1595 bool preload = !!(gfp & __GFP_WAIT);
1596 int ret;
1597
1598 /* If the id is already assigned, keep it. */
1599 if (asoc->assoc_id)
1600 return 0;
1601
1602 if (preload)
1603 idr_preload(gfp);
1604 spin_lock_bh(&sctp_assocs_id_lock);
1605 /* 0 is not a valid assoc_id, must be >= 1 */
1606 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1607 spin_unlock_bh(&sctp_assocs_id_lock);
1608 if (preload)
1609 idr_preload_end();
1610 if (ret < 0)
1611 return ret;
1612
1613 asoc->assoc_id = (sctp_assoc_t)ret;
1614 return 0;
1615 }
1616
1617 /* Free the ASCONF queue */
1618 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1619 {
1620 struct sctp_chunk *asconf;
1621 struct sctp_chunk *tmp;
1622
1623 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1624 list_del_init(&asconf->list);
1625 sctp_chunk_free(asconf);
1626 }
1627 }
1628
1629 /* Free asconf_ack cache */
1630 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1631 {
1632 struct sctp_chunk *ack;
1633 struct sctp_chunk *tmp;
1634
1635 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1636 transmitted_list) {
1637 list_del_init(&ack->transmitted_list);
1638 sctp_chunk_free(ack);
1639 }
1640 }
1641
1642 /* Clean up the ASCONF_ACK queue */
1643 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1644 {
1645 struct sctp_chunk *ack;
1646 struct sctp_chunk *tmp;
1647
1648 /* We can remove all the entries from the queue up to
1649 * the "Peer-Sequence-Number".
1650 */
1651 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1652 transmitted_list) {
1653 if (ack->subh.addip_hdr->serial ==
1654 htonl(asoc->peer.addip_serial))
1655 break;
1656
1657 list_del_init(&ack->transmitted_list);
1658 sctp_chunk_free(ack);
1659 }
1660 }
1661
1662 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1663 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1664 const struct sctp_association *asoc,
1665 __be32 serial)
1666 {
1667 struct sctp_chunk *ack;
1668
1669 /* Walk through the list of cached ASCONF-ACKs and find the
1670 * ack chunk whose serial number matches that of the request.
1671 */
1672 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1673 if (ack->subh.addip_hdr->serial == serial) {
1674 sctp_chunk_hold(ack);
1675 return ack;
1676 }
1677 }
1678
1679 return NULL;
1680 }
1681
1682 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1683 {
1684 /* Free any cached ASCONF_ACK chunk. */
1685 sctp_assoc_free_asconf_acks(asoc);
1686
1687 /* Free the ASCONF queue. */
1688 sctp_assoc_free_asconf_queue(asoc);
1689
1690 /* Free any cached ASCONF chunk. */
1691 if (asoc->addip_last_asconf)
1692 sctp_chunk_free(asoc->addip_last_asconf);
1693 }
This page took 0.119869 seconds and 5 git commands to generate.