[SCTP]: Switch ->primary_addr to net-endian.
[deliverable/linux.git] / net / sctp / associola.c
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel reference Implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * The SCTP reference implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * The SCTP reference implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Ryan Layer <rmlayer@us.ibm.com>
45 * Kevin Gao <kevin.gao@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/poll.h>
54 #include <linux/init.h>
55 #include <linux/sched.h>
56
57 #include <linux/slab.h>
58 #include <linux/in.h>
59 #include <net/ipv6.h>
60 #include <net/sctp/sctp.h>
61 #include <net/sctp/sm.h>
62
63 /* Forward declarations for internal functions. */
64 static void sctp_assoc_bh_rcv(struct sctp_association *asoc);
65
66
67 /* 1st Level Abstractions. */
68
69 /* Initialize a new association from provided memory. */
70 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
71 const struct sctp_endpoint *ep,
72 const struct sock *sk,
73 sctp_scope_t scope,
74 gfp_t gfp)
75 {
76 struct sctp_sock *sp;
77 int i;
78
79 /* Retrieve the SCTP per socket area. */
80 sp = sctp_sk((struct sock *)sk);
81
82 /* Init all variables to a known value. */
83 memset(asoc, 0, sizeof(struct sctp_association));
84
85 /* Discarding const is appropriate here. */
86 asoc->ep = (struct sctp_endpoint *)ep;
87 sctp_endpoint_hold(asoc->ep);
88
89 /* Hold the sock. */
90 asoc->base.sk = (struct sock *)sk;
91 sock_hold(asoc->base.sk);
92
93 /* Initialize the common base substructure. */
94 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
95
96 /* Initialize the object handling fields. */
97 atomic_set(&asoc->base.refcnt, 1);
98 asoc->base.dead = 0;
99 asoc->base.malloced = 0;
100
101 /* Initialize the bind addr area. */
102 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
103 rwlock_init(&asoc->base.addr_lock);
104
105 asoc->state = SCTP_STATE_CLOSED;
106
107 /* Set these values from the socket values, a conversion between
108 * millsecons to seconds/microseconds must also be done.
109 */
110 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
111 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
112 * 1000;
113 asoc->frag_point = 0;
114
115 /* Set the association max_retrans and RTO values from the
116 * socket values.
117 */
118 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
119 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
120 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
121 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
122
123 asoc->overall_error_count = 0;
124
125 /* Initialize the association's heartbeat interval based on the
126 * sock configured value.
127 */
128 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
129
130 /* Initialize path max retrans value. */
131 asoc->pathmaxrxt = sp->pathmaxrxt;
132
133 /* Initialize default path MTU. */
134 asoc->pathmtu = sp->pathmtu;
135
136 /* Set association default SACK delay */
137 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
138
139 /* Set the association default flags controlling
140 * Heartbeat, SACK delay, and Path MTU Discovery.
141 */
142 asoc->param_flags = sp->param_flags;
143
144 /* Initialize the maximum mumber of new data packets that can be sent
145 * in a burst.
146 */
147 asoc->max_burst = sctp_max_burst;
148
149 /* initialize association timers */
150 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
151 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
152 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
153 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
154 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
155 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
156
157 /* sctpimpguide Section 2.12.2
158 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
159 * recommended value of 5 times 'RTO.Max'.
160 */
161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
162 = 5 * asoc->rto_max;
163
164 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
165 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
166 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
167 sp->autoclose * HZ;
168
169 /* Initilizes the timers */
170 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
171 init_timer(&asoc->timers[i]);
172 asoc->timers[i].function = sctp_timer_events[i];
173 asoc->timers[i].data = (unsigned long) asoc;
174 }
175
176 /* Pull default initialization values from the sock options.
177 * Note: This assumes that the values have already been
178 * validated in the sock.
179 */
180 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
181 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
182 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
183
184 asoc->max_init_timeo =
185 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
186
187 /* Allocate storage for the ssnmap after the inbound and outbound
188 * streams have been negotiated during Init.
189 */
190 asoc->ssnmap = NULL;
191
192 /* Set the local window size for receive.
193 * This is also the rcvbuf space per association.
194 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
195 * 1500 bytes in one SCTP packet.
196 */
197 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
198 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
199 else
200 asoc->rwnd = sk->sk_rcvbuf/2;
201
202 asoc->a_rwnd = asoc->rwnd;
203
204 asoc->rwnd_over = 0;
205
206 /* Use my own max window until I learn something better. */
207 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
208
209 /* Set the sndbuf size for transmit. */
210 asoc->sndbuf_used = 0;
211
212 /* Initialize the receive memory counter */
213 atomic_set(&asoc->rmem_alloc, 0);
214
215 init_waitqueue_head(&asoc->wait);
216
217 asoc->c.my_vtag = sctp_generate_tag(ep);
218 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
219 asoc->c.peer_vtag = 0;
220 asoc->c.my_ttag = 0;
221 asoc->c.peer_ttag = 0;
222 asoc->c.my_port = ep->base.bind_addr.port;
223
224 asoc->c.initial_tsn = sctp_generate_tsn(ep);
225
226 asoc->next_tsn = asoc->c.initial_tsn;
227
228 asoc->ctsn_ack_point = asoc->next_tsn - 1;
229 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
230 asoc->highest_sacked = asoc->ctsn_ack_point;
231 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
232 asoc->unack_data = 0;
233
234 /* ADDIP Section 4.1 Asconf Chunk Procedures
235 *
236 * When an endpoint has an ASCONF signaled change to be sent to the
237 * remote endpoint it should do the following:
238 * ...
239 * A2) a serial number should be assigned to the chunk. The serial
240 * number SHOULD be a monotonically increasing number. The serial
241 * numbers SHOULD be initialized at the start of the
242 * association to the same value as the initial TSN.
243 */
244 asoc->addip_serial = asoc->c.initial_tsn;
245
246 INIT_LIST_HEAD(&asoc->addip_chunk_list);
247
248 /* Make an empty list of remote transport addresses. */
249 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
250 asoc->peer.transport_count = 0;
251
252 /* RFC 2960 5.1 Normal Establishment of an Association
253 *
254 * After the reception of the first data chunk in an
255 * association the endpoint must immediately respond with a
256 * sack to acknowledge the data chunk. Subsequent
257 * acknowledgements should be done as described in Section
258 * 6.2.
259 *
260 * [We implement this by telling a new association that it
261 * already received one packet.]
262 */
263 asoc->peer.sack_needed = 1;
264
265 /* Assume that the peer recongizes ASCONF until reported otherwise
266 * via an ERROR chunk.
267 */
268 asoc->peer.asconf_capable = 1;
269
270 /* Create an input queue. */
271 sctp_inq_init(&asoc->base.inqueue);
272 sctp_inq_set_th_handler(&asoc->base.inqueue,
273 (void (*)(void *))sctp_assoc_bh_rcv,
274 asoc);
275
276 /* Create an output queue. */
277 sctp_outq_init(asoc, &asoc->outqueue);
278
279 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
280 goto fail_init;
281
282 /* Set up the tsn tracking. */
283 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0);
284
285 asoc->need_ecne = 0;
286
287 asoc->assoc_id = 0;
288
289 /* Assume that peer would support both address types unless we are
290 * told otherwise.
291 */
292 asoc->peer.ipv4_address = 1;
293 asoc->peer.ipv6_address = 1;
294 INIT_LIST_HEAD(&asoc->asocs);
295
296 asoc->autoclose = sp->autoclose;
297
298 asoc->default_stream = sp->default_stream;
299 asoc->default_ppid = sp->default_ppid;
300 asoc->default_flags = sp->default_flags;
301 asoc->default_context = sp->default_context;
302 asoc->default_timetolive = sp->default_timetolive;
303
304 return asoc;
305
306 fail_init:
307 sctp_endpoint_put(asoc->ep);
308 sock_put(asoc->base.sk);
309 return NULL;
310 }
311
312 /* Allocate and initialize a new association */
313 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
314 const struct sock *sk,
315 sctp_scope_t scope,
316 gfp_t gfp)
317 {
318 struct sctp_association *asoc;
319
320 asoc = t_new(struct sctp_association, gfp);
321 if (!asoc)
322 goto fail;
323
324 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
325 goto fail_init;
326
327 asoc->base.malloced = 1;
328 SCTP_DBG_OBJCNT_INC(assoc);
329 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
330
331 return asoc;
332
333 fail_init:
334 kfree(asoc);
335 fail:
336 return NULL;
337 }
338
339 /* Free this association if possible. There may still be users, so
340 * the actual deallocation may be delayed.
341 */
342 void sctp_association_free(struct sctp_association *asoc)
343 {
344 struct sock *sk = asoc->base.sk;
345 struct sctp_transport *transport;
346 struct list_head *pos, *temp;
347 int i;
348
349 /* Only real associations count against the endpoint, so
350 * don't bother for if this is a temporary association.
351 */
352 if (!asoc->temp) {
353 list_del(&asoc->asocs);
354
355 /* Decrement the backlog value for a TCP-style listening
356 * socket.
357 */
358 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
359 sk->sk_ack_backlog--;
360 }
361
362 /* Mark as dead, so other users can know this structure is
363 * going away.
364 */
365 asoc->base.dead = 1;
366
367 /* Dispose of any data lying around in the outqueue. */
368 sctp_outq_free(&asoc->outqueue);
369
370 /* Dispose of any pending messages for the upper layer. */
371 sctp_ulpq_free(&asoc->ulpq);
372
373 /* Dispose of any pending chunks on the inqueue. */
374 sctp_inq_free(&asoc->base.inqueue);
375
376 /* Free ssnmap storage. */
377 sctp_ssnmap_free(asoc->ssnmap);
378
379 /* Clean up the bound address list. */
380 sctp_bind_addr_free(&asoc->base.bind_addr);
381
382 /* Do we need to go through all of our timers and
383 * delete them? To be safe we will try to delete all, but we
384 * should be able to go through and make a guess based
385 * on our state.
386 */
387 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
388 if (timer_pending(&asoc->timers[i]) &&
389 del_timer(&asoc->timers[i]))
390 sctp_association_put(asoc);
391 }
392
393 /* Free peer's cached cookie. */
394 kfree(asoc->peer.cookie);
395
396 /* Release the transport structures. */
397 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
398 transport = list_entry(pos, struct sctp_transport, transports);
399 list_del(pos);
400 sctp_transport_free(transport);
401 }
402
403 asoc->peer.transport_count = 0;
404
405 /* Free any cached ASCONF_ACK chunk. */
406 if (asoc->addip_last_asconf_ack)
407 sctp_chunk_free(asoc->addip_last_asconf_ack);
408
409 /* Free any cached ASCONF chunk. */
410 if (asoc->addip_last_asconf)
411 sctp_chunk_free(asoc->addip_last_asconf);
412
413 sctp_association_put(asoc);
414 }
415
416 /* Cleanup and free up an association. */
417 static void sctp_association_destroy(struct sctp_association *asoc)
418 {
419 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
420
421 sctp_endpoint_put(asoc->ep);
422 sock_put(asoc->base.sk);
423
424 if (asoc->assoc_id != 0) {
425 spin_lock_bh(&sctp_assocs_id_lock);
426 idr_remove(&sctp_assocs_id, asoc->assoc_id);
427 spin_unlock_bh(&sctp_assocs_id_lock);
428 }
429
430 BUG_TRAP(!atomic_read(&asoc->rmem_alloc));
431
432 if (asoc->base.malloced) {
433 kfree(asoc);
434 SCTP_DBG_OBJCNT_DEC(assoc);
435 }
436 }
437
438 /* Change the primary destination address for the peer. */
439 void sctp_assoc_set_primary(struct sctp_association *asoc,
440 struct sctp_transport *transport)
441 {
442 asoc->peer.primary_path = transport;
443
444 /* Set a default msg_name for events. */
445 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
446 sizeof(union sctp_addr));
447
448 /* If the primary path is changing, assume that the
449 * user wants to use this new path.
450 */
451 if ((transport->state == SCTP_ACTIVE) ||
452 (transport->state == SCTP_UNKNOWN))
453 asoc->peer.active_path = transport;
454
455 /*
456 * SFR-CACC algorithm:
457 * Upon the receipt of a request to change the primary
458 * destination address, on the data structure for the new
459 * primary destination, the sender MUST do the following:
460 *
461 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
462 * to this destination address earlier. The sender MUST set
463 * CYCLING_CHANGEOVER to indicate that this switch is a
464 * double switch to the same destination address.
465 */
466 if (transport->cacc.changeover_active)
467 transport->cacc.cycling_changeover = 1;
468
469 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
470 * a changeover has occurred.
471 */
472 transport->cacc.changeover_active = 1;
473
474 /* 3) The sender MUST store the next TSN to be sent in
475 * next_tsn_at_change.
476 */
477 transport->cacc.next_tsn_at_change = asoc->next_tsn;
478 }
479
480 /* Remove a transport from an association. */
481 void sctp_assoc_rm_peer(struct sctp_association *asoc,
482 struct sctp_transport *peer)
483 {
484 struct list_head *pos;
485 struct sctp_transport *transport;
486
487 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
488 " port: %d\n",
489 asoc,
490 (&peer->ipaddr_h),
491 peer->ipaddr_h.v4.sin_port);
492
493 /* If we are to remove the current retran_path, update it
494 * to the next peer before removing this peer from the list.
495 */
496 if (asoc->peer.retran_path == peer)
497 sctp_assoc_update_retran_path(asoc);
498
499 /* Remove this peer from the list. */
500 list_del(&peer->transports);
501
502 /* Get the first transport of asoc. */
503 pos = asoc->peer.transport_addr_list.next;
504 transport = list_entry(pos, struct sctp_transport, transports);
505
506 /* Update any entries that match the peer to be deleted. */
507 if (asoc->peer.primary_path == peer)
508 sctp_assoc_set_primary(asoc, transport);
509 if (asoc->peer.active_path == peer)
510 asoc->peer.active_path = transport;
511 if (asoc->peer.last_data_from == peer)
512 asoc->peer.last_data_from = transport;
513
514 /* If we remove the transport an INIT was last sent to, set it to
515 * NULL. Combined with the update of the retran path above, this
516 * will cause the next INIT to be sent to the next available
517 * transport, maintaining the cycle.
518 */
519 if (asoc->init_last_sent_to == peer)
520 asoc->init_last_sent_to = NULL;
521
522 asoc->peer.transport_count--;
523
524 sctp_transport_free(peer);
525 }
526
527 /* Add a transport address to an association. */
528 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
529 const union sctp_addr *addr,
530 const gfp_t gfp,
531 const int peer_state)
532 {
533 struct sctp_transport *peer;
534 struct sctp_sock *sp;
535 unsigned short port;
536
537 sp = sctp_sk(asoc->base.sk);
538
539 /* AF_INET and AF_INET6 share common port field. */
540 port = addr->v4.sin_port;
541
542 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
543 " port: %d state:%d\n",
544 asoc,
545 addr,
546 addr->v4.sin_port,
547 peer_state);
548
549 /* Set the port if it has not been set yet. */
550 if (0 == asoc->peer.port)
551 asoc->peer.port = port;
552
553 /* Check to see if this is a duplicate. */
554 peer = sctp_assoc_lookup_paddr(asoc, addr);
555 if (peer) {
556 if (peer->state == SCTP_UNKNOWN) {
557 if (peer_state == SCTP_ACTIVE)
558 peer->state = SCTP_ACTIVE;
559 if (peer_state == SCTP_UNCONFIRMED)
560 peer->state = SCTP_UNCONFIRMED;
561 }
562 return peer;
563 }
564
565 peer = sctp_transport_new(addr, gfp);
566 if (!peer)
567 return NULL;
568
569 sctp_transport_set_owner(peer, asoc);
570
571 /* Initialize the peer's heartbeat interval based on the
572 * association configured value.
573 */
574 peer->hbinterval = asoc->hbinterval;
575
576 /* Set the path max_retrans. */
577 peer->pathmaxrxt = asoc->pathmaxrxt;
578
579 /* Initialize the peer's SACK delay timeout based on the
580 * association configured value.
581 */
582 peer->sackdelay = asoc->sackdelay;
583
584 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
585 * based on association setting.
586 */
587 peer->param_flags = asoc->param_flags;
588
589 /* Initialize the pmtu of the transport. */
590 if (peer->param_flags & SPP_PMTUD_ENABLE)
591 sctp_transport_pmtu(peer);
592 else if (asoc->pathmtu)
593 peer->pathmtu = asoc->pathmtu;
594 else
595 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
596
597 /* If this is the first transport addr on this association,
598 * initialize the association PMTU to the peer's PMTU.
599 * If not and the current association PMTU is higher than the new
600 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
601 */
602 if (asoc->pathmtu)
603 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
604 else
605 asoc->pathmtu = peer->pathmtu;
606
607 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
608 "%d\n", asoc, asoc->pathmtu);
609
610 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
611
612 /* The asoc->peer.port might not be meaningful yet, but
613 * initialize the packet structure anyway.
614 */
615 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
616 asoc->peer.port);
617
618 /* 7.2.1 Slow-Start
619 *
620 * o The initial cwnd before DATA transmission or after a sufficiently
621 * long idle period MUST be set to
622 * min(4*MTU, max(2*MTU, 4380 bytes))
623 *
624 * o The initial value of ssthresh MAY be arbitrarily high
625 * (for example, implementations MAY use the size of the
626 * receiver advertised window).
627 */
628 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
629
630 /* At this point, we may not have the receiver's advertised window,
631 * so initialize ssthresh to the default value and it will be set
632 * later when we process the INIT.
633 */
634 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
635
636 peer->partial_bytes_acked = 0;
637 peer->flight_size = 0;
638
639 /* Set the transport's RTO.initial value */
640 peer->rto = asoc->rto_initial;
641
642 /* Set the peer's active state. */
643 peer->state = peer_state;
644
645 /* Attach the remote transport to our asoc. */
646 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
647 asoc->peer.transport_count++;
648
649 /* If we do not yet have a primary path, set one. */
650 if (!asoc->peer.primary_path) {
651 sctp_assoc_set_primary(asoc, peer);
652 asoc->peer.retran_path = peer;
653 }
654
655 if (asoc->peer.active_path == asoc->peer.retran_path) {
656 asoc->peer.retran_path = peer;
657 }
658
659 return peer;
660 }
661
662 /* Delete a transport address from an association. */
663 void sctp_assoc_del_peer(struct sctp_association *asoc,
664 const union sctp_addr *addr)
665 {
666 struct list_head *pos;
667 struct list_head *temp;
668 struct sctp_transport *transport;
669 union sctp_addr tmp;
670
671 flip_to_n(&tmp, addr);
672
673 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
674 transport = list_entry(pos, struct sctp_transport, transports);
675 if (sctp_cmp_addr_exact(&tmp, &transport->ipaddr)) {
676 /* Do book keeping for removing the peer and free it. */
677 sctp_assoc_rm_peer(asoc, transport);
678 break;
679 }
680 }
681 }
682
683 /* Lookup a transport by address. */
684 struct sctp_transport *sctp_assoc_lookup_paddr(
685 const struct sctp_association *asoc,
686 const union sctp_addr *address)
687 {
688 struct sctp_transport *t;
689 struct list_head *pos;
690 union sctp_addr tmp;
691
692 flip_to_n(&tmp, address);
693 /* Cycle through all transports searching for a peer address. */
694
695 list_for_each(pos, &asoc->peer.transport_addr_list) {
696 t = list_entry(pos, struct sctp_transport, transports);
697 if (sctp_cmp_addr_exact(&tmp, &t->ipaddr))
698 return t;
699 }
700
701 return NULL;
702 }
703
704 /* Engage in transport control operations.
705 * Mark the transport up or down and send a notification to the user.
706 * Select and update the new active and retran paths.
707 */
708 void sctp_assoc_control_transport(struct sctp_association *asoc,
709 struct sctp_transport *transport,
710 sctp_transport_cmd_t command,
711 sctp_sn_error_t error)
712 {
713 struct sctp_transport *t = NULL;
714 struct sctp_transport *first;
715 struct sctp_transport *second;
716 struct sctp_ulpevent *event;
717 struct sockaddr_storage addr;
718 struct list_head *pos;
719 int spc_state = 0;
720
721 /* Record the transition on the transport. */
722 switch (command) {
723 case SCTP_TRANSPORT_UP:
724 transport->state = SCTP_ACTIVE;
725 spc_state = SCTP_ADDR_AVAILABLE;
726 break;
727
728 case SCTP_TRANSPORT_DOWN:
729 transport->state = SCTP_INACTIVE;
730 spc_state = SCTP_ADDR_UNREACHABLE;
731 break;
732
733 default:
734 return;
735 };
736
737 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
738 * user.
739 */
740 memset(&addr, 0, sizeof(struct sockaddr_storage));
741 flip_to_n((union sctp_addr *)&addr, &transport->ipaddr_h);
742 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
743 0, spc_state, error, GFP_ATOMIC);
744 if (event)
745 sctp_ulpq_tail_event(&asoc->ulpq, event);
746
747 /* Select new active and retran paths. */
748
749 /* Look for the two most recently used active transports.
750 *
751 * This code produces the wrong ordering whenever jiffies
752 * rolls over, but we still get usable transports, so we don't
753 * worry about it.
754 */
755 first = NULL; second = NULL;
756
757 list_for_each(pos, &asoc->peer.transport_addr_list) {
758 t = list_entry(pos, struct sctp_transport, transports);
759
760 if ((t->state == SCTP_INACTIVE) ||
761 (t->state == SCTP_UNCONFIRMED))
762 continue;
763 if (!first || t->last_time_heard > first->last_time_heard) {
764 second = first;
765 first = t;
766 }
767 if (!second || t->last_time_heard > second->last_time_heard)
768 second = t;
769 }
770
771 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
772 *
773 * By default, an endpoint should always transmit to the
774 * primary path, unless the SCTP user explicitly specifies the
775 * destination transport address (and possibly source
776 * transport address) to use.
777 *
778 * [If the primary is active but not most recent, bump the most
779 * recently used transport.]
780 */
781 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
782 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
783 first != asoc->peer.primary_path) {
784 second = first;
785 first = asoc->peer.primary_path;
786 }
787
788 /* If we failed to find a usable transport, just camp on the
789 * primary, even if it is inactive.
790 */
791 if (!first) {
792 first = asoc->peer.primary_path;
793 second = asoc->peer.primary_path;
794 }
795
796 /* Set the active and retran transports. */
797 asoc->peer.active_path = first;
798 asoc->peer.retran_path = second;
799 }
800
801 /* Hold a reference to an association. */
802 void sctp_association_hold(struct sctp_association *asoc)
803 {
804 atomic_inc(&asoc->base.refcnt);
805 }
806
807 /* Release a reference to an association and cleanup
808 * if there are no more references.
809 */
810 void sctp_association_put(struct sctp_association *asoc)
811 {
812 if (atomic_dec_and_test(&asoc->base.refcnt))
813 sctp_association_destroy(asoc);
814 }
815
816 /* Allocate the next TSN, Transmission Sequence Number, for the given
817 * association.
818 */
819 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
820 {
821 /* From Section 1.6 Serial Number Arithmetic:
822 * Transmission Sequence Numbers wrap around when they reach
823 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
824 * after transmitting TSN = 2*32 - 1 is TSN = 0.
825 */
826 __u32 retval = asoc->next_tsn;
827 asoc->next_tsn++;
828 asoc->unack_data++;
829
830 return retval;
831 }
832
833 /* Compare two addresses to see if they match. Wildcard addresses
834 * only match themselves.
835 */
836 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
837 const union sctp_addr *ss2)
838 {
839 struct sctp_af *af;
840
841 af = sctp_get_af_specific(ss1->sa.sa_family);
842 if (unlikely(!af))
843 return 0;
844
845 return af->cmp_addr(ss1, ss2);
846 }
847
848 /* Return an ecne chunk to get prepended to a packet.
849 * Note: We are sly and return a shared, prealloced chunk. FIXME:
850 * No we don't, but we could/should.
851 */
852 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
853 {
854 struct sctp_chunk *chunk;
855
856 /* Send ECNE if needed.
857 * Not being able to allocate a chunk here is not deadly.
858 */
859 if (asoc->need_ecne)
860 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
861 else
862 chunk = NULL;
863
864 return chunk;
865 }
866
867 /*
868 * Find which transport this TSN was sent on.
869 */
870 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
871 __u32 tsn)
872 {
873 struct sctp_transport *active;
874 struct sctp_transport *match;
875 struct list_head *entry, *pos;
876 struct sctp_transport *transport;
877 struct sctp_chunk *chunk;
878 __be32 key = htonl(tsn);
879
880 match = NULL;
881
882 /*
883 * FIXME: In general, find a more efficient data structure for
884 * searching.
885 */
886
887 /*
888 * The general strategy is to search each transport's transmitted
889 * list. Return which transport this TSN lives on.
890 *
891 * Let's be hopeful and check the active_path first.
892 * Another optimization would be to know if there is only one
893 * outbound path and not have to look for the TSN at all.
894 *
895 */
896
897 active = asoc->peer.active_path;
898
899 list_for_each(entry, &active->transmitted) {
900 chunk = list_entry(entry, struct sctp_chunk, transmitted_list);
901
902 if (key == chunk->subh.data_hdr->tsn) {
903 match = active;
904 goto out;
905 }
906 }
907
908 /* If not found, go search all the other transports. */
909 list_for_each(pos, &asoc->peer.transport_addr_list) {
910 transport = list_entry(pos, struct sctp_transport, transports);
911
912 if (transport == active)
913 break;
914 list_for_each(entry, &transport->transmitted) {
915 chunk = list_entry(entry, struct sctp_chunk,
916 transmitted_list);
917 if (key == chunk->subh.data_hdr->tsn) {
918 match = transport;
919 goto out;
920 }
921 }
922 }
923 out:
924 return match;
925 }
926
927 /* Is this the association we are looking for? */
928 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
929 const union sctp_addr *laddr,
930 const union sctp_addr *paddr)
931 {
932 struct sctp_transport *transport;
933 union sctp_addr tmp;
934 flip_to_n(&tmp, laddr);
935
936 sctp_read_lock(&asoc->base.addr_lock);
937
938 if ((asoc->base.bind_addr.port == laddr->v4.sin_port) &&
939 (asoc->peer.port == paddr->v4.sin_port)) {
940 transport = sctp_assoc_lookup_paddr(asoc, paddr);
941 if (!transport)
942 goto out;
943
944 if (sctp_bind_addr_match(&asoc->base.bind_addr, &tmp,
945 sctp_sk(asoc->base.sk)))
946 goto out;
947 }
948 transport = NULL;
949
950 out:
951 sctp_read_unlock(&asoc->base.addr_lock);
952 return transport;
953 }
954
955 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
956 static void sctp_assoc_bh_rcv(struct sctp_association *asoc)
957 {
958 struct sctp_endpoint *ep;
959 struct sctp_chunk *chunk;
960 struct sock *sk;
961 struct sctp_inq *inqueue;
962 int state;
963 sctp_subtype_t subtype;
964 int error = 0;
965
966 /* The association should be held so we should be safe. */
967 ep = asoc->ep;
968 sk = asoc->base.sk;
969
970 inqueue = &asoc->base.inqueue;
971 sctp_association_hold(asoc);
972 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
973 state = asoc->state;
974 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
975
976 /* Remember where the last DATA chunk came from so we
977 * know where to send the SACK.
978 */
979 if (sctp_chunk_is_data(chunk))
980 asoc->peer.last_data_from = chunk->transport;
981 else
982 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
983
984 if (chunk->transport)
985 chunk->transport->last_time_heard = jiffies;
986
987 /* Run through the state machine. */
988 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
989 state, ep, asoc, chunk, GFP_ATOMIC);
990
991 /* Check to see if the association is freed in response to
992 * the incoming chunk. If so, get out of the while loop.
993 */
994 if (asoc->base.dead)
995 break;
996
997 /* If there is an error on chunk, discard this packet. */
998 if (error && chunk)
999 chunk->pdiscard = 1;
1000 }
1001 sctp_association_put(asoc);
1002 }
1003
1004 /* This routine moves an association from its old sk to a new sk. */
1005 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1006 {
1007 struct sctp_sock *newsp = sctp_sk(newsk);
1008 struct sock *oldsk = assoc->base.sk;
1009
1010 /* Delete the association from the old endpoint's list of
1011 * associations.
1012 */
1013 list_del_init(&assoc->asocs);
1014
1015 /* Decrement the backlog value for a TCP-style socket. */
1016 if (sctp_style(oldsk, TCP))
1017 oldsk->sk_ack_backlog--;
1018
1019 /* Release references to the old endpoint and the sock. */
1020 sctp_endpoint_put(assoc->ep);
1021 sock_put(assoc->base.sk);
1022
1023 /* Get a reference to the new endpoint. */
1024 assoc->ep = newsp->ep;
1025 sctp_endpoint_hold(assoc->ep);
1026
1027 /* Get a reference to the new sock. */
1028 assoc->base.sk = newsk;
1029 sock_hold(assoc->base.sk);
1030
1031 /* Add the association to the new endpoint's list of associations. */
1032 sctp_endpoint_add_asoc(newsp->ep, assoc);
1033 }
1034
1035 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1036 void sctp_assoc_update(struct sctp_association *asoc,
1037 struct sctp_association *new)
1038 {
1039 struct sctp_transport *trans;
1040 struct list_head *pos, *temp;
1041
1042 /* Copy in new parameters of peer. */
1043 asoc->c = new->c;
1044 asoc->peer.rwnd = new->peer.rwnd;
1045 asoc->peer.sack_needed = new->peer.sack_needed;
1046 asoc->peer.i = new->peer.i;
1047 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE,
1048 asoc->peer.i.initial_tsn);
1049
1050 /* Remove any peer addresses not present in the new association. */
1051 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1052 trans = list_entry(pos, struct sctp_transport, transports);
1053 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr_h))
1054 sctp_assoc_del_peer(asoc, &trans->ipaddr_h);
1055 }
1056
1057 /* If the case is A (association restart), use
1058 * initial_tsn as next_tsn. If the case is B, use
1059 * current next_tsn in case data sent to peer
1060 * has been discarded and needs retransmission.
1061 */
1062 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1063 asoc->next_tsn = new->next_tsn;
1064 asoc->ctsn_ack_point = new->ctsn_ack_point;
1065 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1066
1067 /* Reinitialize SSN for both local streams
1068 * and peer's streams.
1069 */
1070 sctp_ssnmap_clear(asoc->ssnmap);
1071
1072 } else {
1073 /* Add any peer addresses from the new association. */
1074 list_for_each(pos, &new->peer.transport_addr_list) {
1075 trans = list_entry(pos, struct sctp_transport,
1076 transports);
1077 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr_h))
1078 sctp_assoc_add_peer(asoc, &trans->ipaddr_h,
1079 GFP_ATOMIC, trans->state);
1080 }
1081
1082 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1083 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1084 if (!asoc->ssnmap) {
1085 /* Move the ssnmap. */
1086 asoc->ssnmap = new->ssnmap;
1087 new->ssnmap = NULL;
1088 }
1089 }
1090 }
1091
1092 /* Update the retran path for sending a retransmitted packet.
1093 * Round-robin through the active transports, else round-robin
1094 * through the inactive transports as this is the next best thing
1095 * we can try.
1096 */
1097 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1098 {
1099 struct sctp_transport *t, *next;
1100 struct list_head *head = &asoc->peer.transport_addr_list;
1101 struct list_head *pos;
1102
1103 /* Find the next transport in a round-robin fashion. */
1104 t = asoc->peer.retran_path;
1105 pos = &t->transports;
1106 next = NULL;
1107
1108 while (1) {
1109 /* Skip the head. */
1110 if (pos->next == head)
1111 pos = head->next;
1112 else
1113 pos = pos->next;
1114
1115 t = list_entry(pos, struct sctp_transport, transports);
1116
1117 /* Try to find an active transport. */
1118
1119 if ((t->state == SCTP_ACTIVE) ||
1120 (t->state == SCTP_UNKNOWN)) {
1121 break;
1122 } else {
1123 /* Keep track of the next transport in case
1124 * we don't find any active transport.
1125 */
1126 if (!next)
1127 next = t;
1128 }
1129
1130 /* We have exhausted the list, but didn't find any
1131 * other active transports. If so, use the next
1132 * transport.
1133 */
1134 if (t == asoc->peer.retran_path) {
1135 t = next;
1136 break;
1137 }
1138 }
1139
1140 asoc->peer.retran_path = t;
1141
1142 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1143 " %p addr: ",
1144 " port: %d\n",
1145 asoc,
1146 (&t->ipaddr_h),
1147 t->ipaddr_h.v4.sin_port);
1148 }
1149
1150 /* Choose the transport for sending a INIT packet. */
1151 struct sctp_transport *sctp_assoc_choose_init_transport(
1152 struct sctp_association *asoc)
1153 {
1154 struct sctp_transport *t;
1155
1156 /* Use the retran path. If the last INIT was sent over the
1157 * retran path, update the retran path and use it.
1158 */
1159 if (!asoc->init_last_sent_to) {
1160 t = asoc->peer.active_path;
1161 } else {
1162 if (asoc->init_last_sent_to == asoc->peer.retran_path)
1163 sctp_assoc_update_retran_path(asoc);
1164 t = asoc->peer.retran_path;
1165 }
1166
1167 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1168 " %p addr: ",
1169 " port: %d\n",
1170 asoc,
1171 (&t->ipaddr_h),
1172 t->ipaddr_h.v4.sin_port);
1173
1174 return t;
1175 }
1176
1177 /* Choose the transport for sending a SHUTDOWN packet. */
1178 struct sctp_transport *sctp_assoc_choose_shutdown_transport(
1179 struct sctp_association *asoc)
1180 {
1181 /* If this is the first time SHUTDOWN is sent, use the active path,
1182 * else use the retran path. If the last SHUTDOWN was sent over the
1183 * retran path, update the retran path and use it.
1184 */
1185 if (!asoc->shutdown_last_sent_to)
1186 return asoc->peer.active_path;
1187 else {
1188 if (asoc->shutdown_last_sent_to == asoc->peer.retran_path)
1189 sctp_assoc_update_retran_path(asoc);
1190 return asoc->peer.retran_path;
1191 }
1192
1193 }
1194
1195 /* Update the association's pmtu and frag_point by going through all the
1196 * transports. This routine is called when a transport's PMTU has changed.
1197 */
1198 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1199 {
1200 struct sctp_transport *t;
1201 struct list_head *pos;
1202 __u32 pmtu = 0;
1203
1204 if (!asoc)
1205 return;
1206
1207 /* Get the lowest pmtu of all the transports. */
1208 list_for_each(pos, &asoc->peer.transport_addr_list) {
1209 t = list_entry(pos, struct sctp_transport, transports);
1210 if (!pmtu || (t->pathmtu < pmtu))
1211 pmtu = t->pathmtu;
1212 }
1213
1214 if (pmtu) {
1215 struct sctp_sock *sp = sctp_sk(asoc->base.sk);
1216 asoc->pathmtu = pmtu;
1217 asoc->frag_point = sctp_frag_point(sp, pmtu);
1218 }
1219
1220 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1221 __FUNCTION__, asoc, asoc->pathmtu, asoc->frag_point);
1222 }
1223
1224 /* Should we send a SACK to update our peer? */
1225 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1226 {
1227 switch (asoc->state) {
1228 case SCTP_STATE_ESTABLISHED:
1229 case SCTP_STATE_SHUTDOWN_PENDING:
1230 case SCTP_STATE_SHUTDOWN_RECEIVED:
1231 case SCTP_STATE_SHUTDOWN_SENT:
1232 if ((asoc->rwnd > asoc->a_rwnd) &&
1233 ((asoc->rwnd - asoc->a_rwnd) >=
1234 min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu)))
1235 return 1;
1236 break;
1237 default:
1238 break;
1239 }
1240 return 0;
1241 }
1242
1243 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1244 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1245 {
1246 struct sctp_chunk *sack;
1247 struct timer_list *timer;
1248
1249 if (asoc->rwnd_over) {
1250 if (asoc->rwnd_over >= len) {
1251 asoc->rwnd_over -= len;
1252 } else {
1253 asoc->rwnd += (len - asoc->rwnd_over);
1254 asoc->rwnd_over = 0;
1255 }
1256 } else {
1257 asoc->rwnd += len;
1258 }
1259
1260 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1261 "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd,
1262 asoc->rwnd_over, asoc->a_rwnd);
1263
1264 /* Send a window update SACK if the rwnd has increased by at least the
1265 * minimum of the association's PMTU and half of the receive buffer.
1266 * The algorithm used is similar to the one described in
1267 * Section 4.2.3.3 of RFC 1122.
1268 */
1269 if (sctp_peer_needs_update(asoc)) {
1270 asoc->a_rwnd = asoc->rwnd;
1271 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1272 "rwnd: %u a_rwnd: %u\n", __FUNCTION__,
1273 asoc, asoc->rwnd, asoc->a_rwnd);
1274 sack = sctp_make_sack(asoc);
1275 if (!sack)
1276 return;
1277
1278 asoc->peer.sack_needed = 0;
1279
1280 sctp_outq_tail(&asoc->outqueue, sack);
1281
1282 /* Stop the SACK timer. */
1283 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1284 if (timer_pending(timer) && del_timer(timer))
1285 sctp_association_put(asoc);
1286 }
1287 }
1288
1289 /* Decrease asoc's rwnd by len. */
1290 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1291 {
1292 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1293 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1294 if (asoc->rwnd >= len) {
1295 asoc->rwnd -= len;
1296 } else {
1297 asoc->rwnd_over = len - asoc->rwnd;
1298 asoc->rwnd = 0;
1299 }
1300 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
1301 __FUNCTION__, asoc, len, asoc->rwnd,
1302 asoc->rwnd_over);
1303 }
1304
1305 /* Build the bind address list for the association based on info from the
1306 * local endpoint and the remote peer.
1307 */
1308 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1309 gfp_t gfp)
1310 {
1311 sctp_scope_t scope;
1312 int flags;
1313
1314 /* Use scoping rules to determine the subset of addresses from
1315 * the endpoint.
1316 */
1317 scope = sctp_scope(&asoc->peer.active_path->ipaddr_h);
1318 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1319 if (asoc->peer.ipv4_address)
1320 flags |= SCTP_ADDR4_PEERSUPP;
1321 if (asoc->peer.ipv6_address)
1322 flags |= SCTP_ADDR6_PEERSUPP;
1323
1324 return sctp_bind_addr_copy(&asoc->base.bind_addr,
1325 &asoc->ep->base.bind_addr,
1326 scope, gfp, flags);
1327 }
1328
1329 /* Build the association's bind address list from the cookie. */
1330 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1331 struct sctp_cookie *cookie,
1332 gfp_t gfp)
1333 {
1334 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1335 int var_size3 = cookie->raw_addr_list_len;
1336 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1337
1338 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1339 asoc->ep->base.bind_addr.port, gfp);
1340 }
1341
1342 /* Lookup laddr in the bind address list of an association. */
1343 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1344 const union sctp_addr *laddr)
1345 {
1346 int found;
1347
1348 sctp_read_lock(&asoc->base.addr_lock);
1349 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1350 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1351 sctp_sk(asoc->base.sk))) {
1352 found = 1;
1353 goto out;
1354 }
1355
1356 found = 0;
1357 out:
1358 sctp_read_unlock(&asoc->base.addr_lock);
1359 return found;
1360 }
This page took 0.061525 seconds and 5 git commands to generate.