Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[deliverable/linux.git] / net / sctp / associola.c
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel reference Implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * The SCTP reference implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * The SCTP reference implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Ryan Layer <rmlayer@us.ibm.com>
45 * Kevin Gao <kevin.gao@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/poll.h>
54 #include <linux/init.h>
55 #include <linux/sched.h>
56
57 #include <linux/slab.h>
58 #include <linux/in.h>
59 #include <net/ipv6.h>
60 #include <net/sctp/sctp.h>
61 #include <net/sctp/sm.h>
62
63 /* Forward declarations for internal functions. */
64 static void sctp_assoc_bh_rcv(struct work_struct *work);
65
66
67 /* 1st Level Abstractions. */
68
69 /* Initialize a new association from provided memory. */
70 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
71 const struct sctp_endpoint *ep,
72 const struct sock *sk,
73 sctp_scope_t scope,
74 gfp_t gfp)
75 {
76 struct sctp_sock *sp;
77 int i;
78
79 /* Retrieve the SCTP per socket area. */
80 sp = sctp_sk((struct sock *)sk);
81
82 /* Init all variables to a known value. */
83 memset(asoc, 0, sizeof(struct sctp_association));
84
85 /* Discarding const is appropriate here. */
86 asoc->ep = (struct sctp_endpoint *)ep;
87 sctp_endpoint_hold(asoc->ep);
88
89 /* Hold the sock. */
90 asoc->base.sk = (struct sock *)sk;
91 sock_hold(asoc->base.sk);
92
93 /* Initialize the common base substructure. */
94 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
95
96 /* Initialize the object handling fields. */
97 atomic_set(&asoc->base.refcnt, 1);
98 asoc->base.dead = 0;
99 asoc->base.malloced = 0;
100
101 /* Initialize the bind addr area. */
102 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
103 rwlock_init(&asoc->base.addr_lock);
104
105 asoc->state = SCTP_STATE_CLOSED;
106
107 /* Set these values from the socket values, a conversion between
108 * millsecons to seconds/microseconds must also be done.
109 */
110 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
111 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
112 * 1000;
113 asoc->frag_point = 0;
114
115 /* Set the association max_retrans and RTO values from the
116 * socket values.
117 */
118 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
119 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
120 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
121 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
122
123 asoc->overall_error_count = 0;
124
125 /* Initialize the association's heartbeat interval based on the
126 * sock configured value.
127 */
128 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
129
130 /* Initialize path max retrans value. */
131 asoc->pathmaxrxt = sp->pathmaxrxt;
132
133 /* Initialize default path MTU. */
134 asoc->pathmtu = sp->pathmtu;
135
136 /* Set association default SACK delay */
137 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
138
139 /* Set the association default flags controlling
140 * Heartbeat, SACK delay, and Path MTU Discovery.
141 */
142 asoc->param_flags = sp->param_flags;
143
144 /* Initialize the maximum mumber of new data packets that can be sent
145 * in a burst.
146 */
147 asoc->max_burst = sctp_max_burst;
148
149 /* initialize association timers */
150 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
151 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
152 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
153 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
154 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
155 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
156
157 /* sctpimpguide Section 2.12.2
158 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
159 * recommended value of 5 times 'RTO.Max'.
160 */
161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
162 = 5 * asoc->rto_max;
163
164 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
165 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
166 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
167 sp->autoclose * HZ;
168
169 /* Initilizes the timers */
170 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
171 init_timer(&asoc->timers[i]);
172 asoc->timers[i].function = sctp_timer_events[i];
173 asoc->timers[i].data = (unsigned long) asoc;
174 }
175
176 /* Pull default initialization values from the sock options.
177 * Note: This assumes that the values have already been
178 * validated in the sock.
179 */
180 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
181 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
182 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
183
184 asoc->max_init_timeo =
185 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
186
187 /* Allocate storage for the ssnmap after the inbound and outbound
188 * streams have been negotiated during Init.
189 */
190 asoc->ssnmap = NULL;
191
192 /* Set the local window size for receive.
193 * This is also the rcvbuf space per association.
194 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
195 * 1500 bytes in one SCTP packet.
196 */
197 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
198 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
199 else
200 asoc->rwnd = sk->sk_rcvbuf/2;
201
202 asoc->a_rwnd = asoc->rwnd;
203
204 asoc->rwnd_over = 0;
205
206 /* Use my own max window until I learn something better. */
207 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
208
209 /* Set the sndbuf size for transmit. */
210 asoc->sndbuf_used = 0;
211
212 /* Initialize the receive memory counter */
213 atomic_set(&asoc->rmem_alloc, 0);
214
215 init_waitqueue_head(&asoc->wait);
216
217 asoc->c.my_vtag = sctp_generate_tag(ep);
218 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
219 asoc->c.peer_vtag = 0;
220 asoc->c.my_ttag = 0;
221 asoc->c.peer_ttag = 0;
222 asoc->c.my_port = ep->base.bind_addr.port;
223
224 asoc->c.initial_tsn = sctp_generate_tsn(ep);
225
226 asoc->next_tsn = asoc->c.initial_tsn;
227
228 asoc->ctsn_ack_point = asoc->next_tsn - 1;
229 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
230 asoc->highest_sacked = asoc->ctsn_ack_point;
231 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
232 asoc->unack_data = 0;
233
234 /* ADDIP Section 4.1 Asconf Chunk Procedures
235 *
236 * When an endpoint has an ASCONF signaled change to be sent to the
237 * remote endpoint it should do the following:
238 * ...
239 * A2) a serial number should be assigned to the chunk. The serial
240 * number SHOULD be a monotonically increasing number. The serial
241 * numbers SHOULD be initialized at the start of the
242 * association to the same value as the initial TSN.
243 */
244 asoc->addip_serial = asoc->c.initial_tsn;
245
246 INIT_LIST_HEAD(&asoc->addip_chunk_list);
247
248 /* Make an empty list of remote transport addresses. */
249 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
250 asoc->peer.transport_count = 0;
251
252 /* RFC 2960 5.1 Normal Establishment of an Association
253 *
254 * After the reception of the first data chunk in an
255 * association the endpoint must immediately respond with a
256 * sack to acknowledge the data chunk. Subsequent
257 * acknowledgements should be done as described in Section
258 * 6.2.
259 *
260 * [We implement this by telling a new association that it
261 * already received one packet.]
262 */
263 asoc->peer.sack_needed = 1;
264
265 /* Assume that the peer recongizes ASCONF until reported otherwise
266 * via an ERROR chunk.
267 */
268 asoc->peer.asconf_capable = 1;
269
270 /* Create an input queue. */
271 sctp_inq_init(&asoc->base.inqueue);
272 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
273
274 /* Create an output queue. */
275 sctp_outq_init(asoc, &asoc->outqueue);
276
277 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
278 goto fail_init;
279
280 /* Set up the tsn tracking. */
281 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0);
282
283 asoc->need_ecne = 0;
284
285 asoc->assoc_id = 0;
286
287 /* Assume that peer would support both address types unless we are
288 * told otherwise.
289 */
290 asoc->peer.ipv4_address = 1;
291 asoc->peer.ipv6_address = 1;
292 INIT_LIST_HEAD(&asoc->asocs);
293
294 asoc->autoclose = sp->autoclose;
295
296 asoc->default_stream = sp->default_stream;
297 asoc->default_ppid = sp->default_ppid;
298 asoc->default_flags = sp->default_flags;
299 asoc->default_context = sp->default_context;
300 asoc->default_timetolive = sp->default_timetolive;
301
302 return asoc;
303
304 fail_init:
305 sctp_endpoint_put(asoc->ep);
306 sock_put(asoc->base.sk);
307 return NULL;
308 }
309
310 /* Allocate and initialize a new association */
311 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
312 const struct sock *sk,
313 sctp_scope_t scope,
314 gfp_t gfp)
315 {
316 struct sctp_association *asoc;
317
318 asoc = t_new(struct sctp_association, gfp);
319 if (!asoc)
320 goto fail;
321
322 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
323 goto fail_init;
324
325 asoc->base.malloced = 1;
326 SCTP_DBG_OBJCNT_INC(assoc);
327 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
328
329 return asoc;
330
331 fail_init:
332 kfree(asoc);
333 fail:
334 return NULL;
335 }
336
337 /* Free this association if possible. There may still be users, so
338 * the actual deallocation may be delayed.
339 */
340 void sctp_association_free(struct sctp_association *asoc)
341 {
342 struct sock *sk = asoc->base.sk;
343 struct sctp_transport *transport;
344 struct list_head *pos, *temp;
345 int i;
346
347 /* Only real associations count against the endpoint, so
348 * don't bother for if this is a temporary association.
349 */
350 if (!asoc->temp) {
351 list_del(&asoc->asocs);
352
353 /* Decrement the backlog value for a TCP-style listening
354 * socket.
355 */
356 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
357 sk->sk_ack_backlog--;
358 }
359
360 /* Mark as dead, so other users can know this structure is
361 * going away.
362 */
363 asoc->base.dead = 1;
364
365 /* Dispose of any data lying around in the outqueue. */
366 sctp_outq_free(&asoc->outqueue);
367
368 /* Dispose of any pending messages for the upper layer. */
369 sctp_ulpq_free(&asoc->ulpq);
370
371 /* Dispose of any pending chunks on the inqueue. */
372 sctp_inq_free(&asoc->base.inqueue);
373
374 /* Free ssnmap storage. */
375 sctp_ssnmap_free(asoc->ssnmap);
376
377 /* Clean up the bound address list. */
378 sctp_bind_addr_free(&asoc->base.bind_addr);
379
380 /* Do we need to go through all of our timers and
381 * delete them? To be safe we will try to delete all, but we
382 * should be able to go through and make a guess based
383 * on our state.
384 */
385 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
386 if (timer_pending(&asoc->timers[i]) &&
387 del_timer(&asoc->timers[i]))
388 sctp_association_put(asoc);
389 }
390
391 /* Free peer's cached cookie. */
392 kfree(asoc->peer.cookie);
393
394 /* Release the transport structures. */
395 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
396 transport = list_entry(pos, struct sctp_transport, transports);
397 list_del(pos);
398 sctp_transport_free(transport);
399 }
400
401 asoc->peer.transport_count = 0;
402
403 /* Free any cached ASCONF_ACK chunk. */
404 if (asoc->addip_last_asconf_ack)
405 sctp_chunk_free(asoc->addip_last_asconf_ack);
406
407 /* Free any cached ASCONF chunk. */
408 if (asoc->addip_last_asconf)
409 sctp_chunk_free(asoc->addip_last_asconf);
410
411 sctp_association_put(asoc);
412 }
413
414 /* Cleanup and free up an association. */
415 static void sctp_association_destroy(struct sctp_association *asoc)
416 {
417 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
418
419 sctp_endpoint_put(asoc->ep);
420 sock_put(asoc->base.sk);
421
422 if (asoc->assoc_id != 0) {
423 spin_lock_bh(&sctp_assocs_id_lock);
424 idr_remove(&sctp_assocs_id, asoc->assoc_id);
425 spin_unlock_bh(&sctp_assocs_id_lock);
426 }
427
428 BUG_TRAP(!atomic_read(&asoc->rmem_alloc));
429
430 if (asoc->base.malloced) {
431 kfree(asoc);
432 SCTP_DBG_OBJCNT_DEC(assoc);
433 }
434 }
435
436 /* Change the primary destination address for the peer. */
437 void sctp_assoc_set_primary(struct sctp_association *asoc,
438 struct sctp_transport *transport)
439 {
440 asoc->peer.primary_path = transport;
441
442 /* Set a default msg_name for events. */
443 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
444 sizeof(union sctp_addr));
445
446 /* If the primary path is changing, assume that the
447 * user wants to use this new path.
448 */
449 if ((transport->state == SCTP_ACTIVE) ||
450 (transport->state == SCTP_UNKNOWN))
451 asoc->peer.active_path = transport;
452
453 /*
454 * SFR-CACC algorithm:
455 * Upon the receipt of a request to change the primary
456 * destination address, on the data structure for the new
457 * primary destination, the sender MUST do the following:
458 *
459 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
460 * to this destination address earlier. The sender MUST set
461 * CYCLING_CHANGEOVER to indicate that this switch is a
462 * double switch to the same destination address.
463 */
464 if (transport->cacc.changeover_active)
465 transport->cacc.cycling_changeover = 1;
466
467 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
468 * a changeover has occurred.
469 */
470 transport->cacc.changeover_active = 1;
471
472 /* 3) The sender MUST store the next TSN to be sent in
473 * next_tsn_at_change.
474 */
475 transport->cacc.next_tsn_at_change = asoc->next_tsn;
476 }
477
478 /* Remove a transport from an association. */
479 void sctp_assoc_rm_peer(struct sctp_association *asoc,
480 struct sctp_transport *peer)
481 {
482 struct list_head *pos;
483 struct sctp_transport *transport;
484
485 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
486 " port: %d\n",
487 asoc,
488 (&peer->ipaddr),
489 ntohs(peer->ipaddr.v4.sin_port));
490
491 /* If we are to remove the current retran_path, update it
492 * to the next peer before removing this peer from the list.
493 */
494 if (asoc->peer.retran_path == peer)
495 sctp_assoc_update_retran_path(asoc);
496
497 /* Remove this peer from the list. */
498 list_del(&peer->transports);
499
500 /* Get the first transport of asoc. */
501 pos = asoc->peer.transport_addr_list.next;
502 transport = list_entry(pos, struct sctp_transport, transports);
503
504 /* Update any entries that match the peer to be deleted. */
505 if (asoc->peer.primary_path == peer)
506 sctp_assoc_set_primary(asoc, transport);
507 if (asoc->peer.active_path == peer)
508 asoc->peer.active_path = transport;
509 if (asoc->peer.last_data_from == peer)
510 asoc->peer.last_data_from = transport;
511
512 /* If we remove the transport an INIT was last sent to, set it to
513 * NULL. Combined with the update of the retran path above, this
514 * will cause the next INIT to be sent to the next available
515 * transport, maintaining the cycle.
516 */
517 if (asoc->init_last_sent_to == peer)
518 asoc->init_last_sent_to = NULL;
519
520 asoc->peer.transport_count--;
521
522 sctp_transport_free(peer);
523 }
524
525 /* Add a transport address to an association. */
526 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
527 const union sctp_addr *addr,
528 const gfp_t gfp,
529 const int peer_state)
530 {
531 struct sctp_transport *peer;
532 struct sctp_sock *sp;
533 unsigned short port;
534
535 sp = sctp_sk(asoc->base.sk);
536
537 /* AF_INET and AF_INET6 share common port field. */
538 port = ntohs(addr->v4.sin_port);
539
540 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
541 " port: %d state:%d\n",
542 asoc,
543 addr,
544 port,
545 peer_state);
546
547 /* Set the port if it has not been set yet. */
548 if (0 == asoc->peer.port)
549 asoc->peer.port = port;
550
551 /* Check to see if this is a duplicate. */
552 peer = sctp_assoc_lookup_paddr(asoc, addr);
553 if (peer) {
554 if (peer->state == SCTP_UNKNOWN) {
555 if (peer_state == SCTP_ACTIVE)
556 peer->state = SCTP_ACTIVE;
557 if (peer_state == SCTP_UNCONFIRMED)
558 peer->state = SCTP_UNCONFIRMED;
559 }
560 return peer;
561 }
562
563 peer = sctp_transport_new(addr, gfp);
564 if (!peer)
565 return NULL;
566
567 sctp_transport_set_owner(peer, asoc);
568
569 /* Initialize the peer's heartbeat interval based on the
570 * association configured value.
571 */
572 peer->hbinterval = asoc->hbinterval;
573
574 /* Set the path max_retrans. */
575 peer->pathmaxrxt = asoc->pathmaxrxt;
576
577 /* Initialize the peer's SACK delay timeout based on the
578 * association configured value.
579 */
580 peer->sackdelay = asoc->sackdelay;
581
582 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
583 * based on association setting.
584 */
585 peer->param_flags = asoc->param_flags;
586
587 /* Initialize the pmtu of the transport. */
588 if (peer->param_flags & SPP_PMTUD_ENABLE)
589 sctp_transport_pmtu(peer);
590 else if (asoc->pathmtu)
591 peer->pathmtu = asoc->pathmtu;
592 else
593 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
594
595 /* If this is the first transport addr on this association,
596 * initialize the association PMTU to the peer's PMTU.
597 * If not and the current association PMTU is higher than the new
598 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
599 */
600 if (asoc->pathmtu)
601 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
602 else
603 asoc->pathmtu = peer->pathmtu;
604
605 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
606 "%d\n", asoc, asoc->pathmtu);
607
608 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
609
610 /* The asoc->peer.port might not be meaningful yet, but
611 * initialize the packet structure anyway.
612 */
613 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
614 asoc->peer.port);
615
616 /* 7.2.1 Slow-Start
617 *
618 * o The initial cwnd before DATA transmission or after a sufficiently
619 * long idle period MUST be set to
620 * min(4*MTU, max(2*MTU, 4380 bytes))
621 *
622 * o The initial value of ssthresh MAY be arbitrarily high
623 * (for example, implementations MAY use the size of the
624 * receiver advertised window).
625 */
626 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
627
628 /* At this point, we may not have the receiver's advertised window,
629 * so initialize ssthresh to the default value and it will be set
630 * later when we process the INIT.
631 */
632 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
633
634 peer->partial_bytes_acked = 0;
635 peer->flight_size = 0;
636
637 /* Set the transport's RTO.initial value */
638 peer->rto = asoc->rto_initial;
639
640 /* Set the peer's active state. */
641 peer->state = peer_state;
642
643 /* Attach the remote transport to our asoc. */
644 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
645 asoc->peer.transport_count++;
646
647 /* If we do not yet have a primary path, set one. */
648 if (!asoc->peer.primary_path) {
649 sctp_assoc_set_primary(asoc, peer);
650 asoc->peer.retran_path = peer;
651 }
652
653 if (asoc->peer.active_path == asoc->peer.retran_path) {
654 asoc->peer.retran_path = peer;
655 }
656
657 return peer;
658 }
659
660 /* Delete a transport address from an association. */
661 void sctp_assoc_del_peer(struct sctp_association *asoc,
662 const union sctp_addr *addr)
663 {
664 struct list_head *pos;
665 struct list_head *temp;
666 struct sctp_transport *transport;
667
668 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
669 transport = list_entry(pos, struct sctp_transport, transports);
670 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
671 /* Do book keeping for removing the peer and free it. */
672 sctp_assoc_rm_peer(asoc, transport);
673 break;
674 }
675 }
676 }
677
678 /* Lookup a transport by address. */
679 struct sctp_transport *sctp_assoc_lookup_paddr(
680 const struct sctp_association *asoc,
681 const union sctp_addr *address)
682 {
683 struct sctp_transport *t;
684 struct list_head *pos;
685
686 /* Cycle through all transports searching for a peer address. */
687
688 list_for_each(pos, &asoc->peer.transport_addr_list) {
689 t = list_entry(pos, struct sctp_transport, transports);
690 if (sctp_cmp_addr_exact(address, &t->ipaddr))
691 return t;
692 }
693
694 return NULL;
695 }
696
697 /* Engage in transport control operations.
698 * Mark the transport up or down and send a notification to the user.
699 * Select and update the new active and retran paths.
700 */
701 void sctp_assoc_control_transport(struct sctp_association *asoc,
702 struct sctp_transport *transport,
703 sctp_transport_cmd_t command,
704 sctp_sn_error_t error)
705 {
706 struct sctp_transport *t = NULL;
707 struct sctp_transport *first;
708 struct sctp_transport *second;
709 struct sctp_ulpevent *event;
710 struct sockaddr_storage addr;
711 struct list_head *pos;
712 int spc_state = 0;
713
714 /* Record the transition on the transport. */
715 switch (command) {
716 case SCTP_TRANSPORT_UP:
717 transport->state = SCTP_ACTIVE;
718 spc_state = SCTP_ADDR_AVAILABLE;
719 break;
720
721 case SCTP_TRANSPORT_DOWN:
722 transport->state = SCTP_INACTIVE;
723 spc_state = SCTP_ADDR_UNREACHABLE;
724 break;
725
726 default:
727 return;
728 };
729
730 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
731 * user.
732 */
733 memset(&addr, 0, sizeof(struct sockaddr_storage));
734 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
735 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
736 0, spc_state, error, GFP_ATOMIC);
737 if (event)
738 sctp_ulpq_tail_event(&asoc->ulpq, event);
739
740 /* Select new active and retran paths. */
741
742 /* Look for the two most recently used active transports.
743 *
744 * This code produces the wrong ordering whenever jiffies
745 * rolls over, but we still get usable transports, so we don't
746 * worry about it.
747 */
748 first = NULL; second = NULL;
749
750 list_for_each(pos, &asoc->peer.transport_addr_list) {
751 t = list_entry(pos, struct sctp_transport, transports);
752
753 if ((t->state == SCTP_INACTIVE) ||
754 (t->state == SCTP_UNCONFIRMED))
755 continue;
756 if (!first || t->last_time_heard > first->last_time_heard) {
757 second = first;
758 first = t;
759 }
760 if (!second || t->last_time_heard > second->last_time_heard)
761 second = t;
762 }
763
764 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
765 *
766 * By default, an endpoint should always transmit to the
767 * primary path, unless the SCTP user explicitly specifies the
768 * destination transport address (and possibly source
769 * transport address) to use.
770 *
771 * [If the primary is active but not most recent, bump the most
772 * recently used transport.]
773 */
774 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
775 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
776 first != asoc->peer.primary_path) {
777 second = first;
778 first = asoc->peer.primary_path;
779 }
780
781 /* If we failed to find a usable transport, just camp on the
782 * primary, even if it is inactive.
783 */
784 if (!first) {
785 first = asoc->peer.primary_path;
786 second = asoc->peer.primary_path;
787 }
788
789 /* Set the active and retran transports. */
790 asoc->peer.active_path = first;
791 asoc->peer.retran_path = second;
792 }
793
794 /* Hold a reference to an association. */
795 void sctp_association_hold(struct sctp_association *asoc)
796 {
797 atomic_inc(&asoc->base.refcnt);
798 }
799
800 /* Release a reference to an association and cleanup
801 * if there are no more references.
802 */
803 void sctp_association_put(struct sctp_association *asoc)
804 {
805 if (atomic_dec_and_test(&asoc->base.refcnt))
806 sctp_association_destroy(asoc);
807 }
808
809 /* Allocate the next TSN, Transmission Sequence Number, for the given
810 * association.
811 */
812 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
813 {
814 /* From Section 1.6 Serial Number Arithmetic:
815 * Transmission Sequence Numbers wrap around when they reach
816 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
817 * after transmitting TSN = 2*32 - 1 is TSN = 0.
818 */
819 __u32 retval = asoc->next_tsn;
820 asoc->next_tsn++;
821 asoc->unack_data++;
822
823 return retval;
824 }
825
826 /* Compare two addresses to see if they match. Wildcard addresses
827 * only match themselves.
828 */
829 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
830 const union sctp_addr *ss2)
831 {
832 struct sctp_af *af;
833
834 af = sctp_get_af_specific(ss1->sa.sa_family);
835 if (unlikely(!af))
836 return 0;
837
838 return af->cmp_addr(ss1, ss2);
839 }
840
841 /* Return an ecne chunk to get prepended to a packet.
842 * Note: We are sly and return a shared, prealloced chunk. FIXME:
843 * No we don't, but we could/should.
844 */
845 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
846 {
847 struct sctp_chunk *chunk;
848
849 /* Send ECNE if needed.
850 * Not being able to allocate a chunk here is not deadly.
851 */
852 if (asoc->need_ecne)
853 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
854 else
855 chunk = NULL;
856
857 return chunk;
858 }
859
860 /*
861 * Find which transport this TSN was sent on.
862 */
863 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
864 __u32 tsn)
865 {
866 struct sctp_transport *active;
867 struct sctp_transport *match;
868 struct list_head *entry, *pos;
869 struct sctp_transport *transport;
870 struct sctp_chunk *chunk;
871 __be32 key = htonl(tsn);
872
873 match = NULL;
874
875 /*
876 * FIXME: In general, find a more efficient data structure for
877 * searching.
878 */
879
880 /*
881 * The general strategy is to search each transport's transmitted
882 * list. Return which transport this TSN lives on.
883 *
884 * Let's be hopeful and check the active_path first.
885 * Another optimization would be to know if there is only one
886 * outbound path and not have to look for the TSN at all.
887 *
888 */
889
890 active = asoc->peer.active_path;
891
892 list_for_each(entry, &active->transmitted) {
893 chunk = list_entry(entry, struct sctp_chunk, transmitted_list);
894
895 if (key == chunk->subh.data_hdr->tsn) {
896 match = active;
897 goto out;
898 }
899 }
900
901 /* If not found, go search all the other transports. */
902 list_for_each(pos, &asoc->peer.transport_addr_list) {
903 transport = list_entry(pos, struct sctp_transport, transports);
904
905 if (transport == active)
906 break;
907 list_for_each(entry, &transport->transmitted) {
908 chunk = list_entry(entry, struct sctp_chunk,
909 transmitted_list);
910 if (key == chunk->subh.data_hdr->tsn) {
911 match = transport;
912 goto out;
913 }
914 }
915 }
916 out:
917 return match;
918 }
919
920 /* Is this the association we are looking for? */
921 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
922 const union sctp_addr *laddr,
923 const union sctp_addr *paddr)
924 {
925 struct sctp_transport *transport;
926
927 sctp_read_lock(&asoc->base.addr_lock);
928
929 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
930 (htons(asoc->peer.port) == paddr->v4.sin_port)) {
931 transport = sctp_assoc_lookup_paddr(asoc, paddr);
932 if (!transport)
933 goto out;
934
935 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
936 sctp_sk(asoc->base.sk)))
937 goto out;
938 }
939 transport = NULL;
940
941 out:
942 sctp_read_unlock(&asoc->base.addr_lock);
943 return transport;
944 }
945
946 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
947 static void sctp_assoc_bh_rcv(struct work_struct *work)
948 {
949 struct sctp_association *asoc =
950 container_of(work, struct sctp_association,
951 base.inqueue.immediate);
952 struct sctp_endpoint *ep;
953 struct sctp_chunk *chunk;
954 struct sock *sk;
955 struct sctp_inq *inqueue;
956 int state;
957 sctp_subtype_t subtype;
958 int error = 0;
959
960 /* The association should be held so we should be safe. */
961 ep = asoc->ep;
962 sk = asoc->base.sk;
963
964 inqueue = &asoc->base.inqueue;
965 sctp_association_hold(asoc);
966 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
967 state = asoc->state;
968 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
969
970 /* Remember where the last DATA chunk came from so we
971 * know where to send the SACK.
972 */
973 if (sctp_chunk_is_data(chunk))
974 asoc->peer.last_data_from = chunk->transport;
975 else
976 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
977
978 if (chunk->transport)
979 chunk->transport->last_time_heard = jiffies;
980
981 /* Run through the state machine. */
982 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
983 state, ep, asoc, chunk, GFP_ATOMIC);
984
985 /* Check to see if the association is freed in response to
986 * the incoming chunk. If so, get out of the while loop.
987 */
988 if (asoc->base.dead)
989 break;
990
991 /* If there is an error on chunk, discard this packet. */
992 if (error && chunk)
993 chunk->pdiscard = 1;
994 }
995 sctp_association_put(asoc);
996 }
997
998 /* This routine moves an association from its old sk to a new sk. */
999 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1000 {
1001 struct sctp_sock *newsp = sctp_sk(newsk);
1002 struct sock *oldsk = assoc->base.sk;
1003
1004 /* Delete the association from the old endpoint's list of
1005 * associations.
1006 */
1007 list_del_init(&assoc->asocs);
1008
1009 /* Decrement the backlog value for a TCP-style socket. */
1010 if (sctp_style(oldsk, TCP))
1011 oldsk->sk_ack_backlog--;
1012
1013 /* Release references to the old endpoint and the sock. */
1014 sctp_endpoint_put(assoc->ep);
1015 sock_put(assoc->base.sk);
1016
1017 /* Get a reference to the new endpoint. */
1018 assoc->ep = newsp->ep;
1019 sctp_endpoint_hold(assoc->ep);
1020
1021 /* Get a reference to the new sock. */
1022 assoc->base.sk = newsk;
1023 sock_hold(assoc->base.sk);
1024
1025 /* Add the association to the new endpoint's list of associations. */
1026 sctp_endpoint_add_asoc(newsp->ep, assoc);
1027 }
1028
1029 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1030 void sctp_assoc_update(struct sctp_association *asoc,
1031 struct sctp_association *new)
1032 {
1033 struct sctp_transport *trans;
1034 struct list_head *pos, *temp;
1035
1036 /* Copy in new parameters of peer. */
1037 asoc->c = new->c;
1038 asoc->peer.rwnd = new->peer.rwnd;
1039 asoc->peer.sack_needed = new->peer.sack_needed;
1040 asoc->peer.i = new->peer.i;
1041 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE,
1042 asoc->peer.i.initial_tsn);
1043
1044 /* Remove any peer addresses not present in the new association. */
1045 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1046 trans = list_entry(pos, struct sctp_transport, transports);
1047 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr))
1048 sctp_assoc_del_peer(asoc, &trans->ipaddr);
1049 }
1050
1051 /* If the case is A (association restart), use
1052 * initial_tsn as next_tsn. If the case is B, use
1053 * current next_tsn in case data sent to peer
1054 * has been discarded and needs retransmission.
1055 */
1056 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1057 asoc->next_tsn = new->next_tsn;
1058 asoc->ctsn_ack_point = new->ctsn_ack_point;
1059 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1060
1061 /* Reinitialize SSN for both local streams
1062 * and peer's streams.
1063 */
1064 sctp_ssnmap_clear(asoc->ssnmap);
1065
1066 } else {
1067 /* Add any peer addresses from the new association. */
1068 list_for_each(pos, &new->peer.transport_addr_list) {
1069 trans = list_entry(pos, struct sctp_transport,
1070 transports);
1071 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1072 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1073 GFP_ATOMIC, trans->state);
1074 }
1075
1076 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1077 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1078 if (!asoc->ssnmap) {
1079 /* Move the ssnmap. */
1080 asoc->ssnmap = new->ssnmap;
1081 new->ssnmap = NULL;
1082 }
1083 }
1084 }
1085
1086 /* Update the retran path for sending a retransmitted packet.
1087 * Round-robin through the active transports, else round-robin
1088 * through the inactive transports as this is the next best thing
1089 * we can try.
1090 */
1091 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1092 {
1093 struct sctp_transport *t, *next;
1094 struct list_head *head = &asoc->peer.transport_addr_list;
1095 struct list_head *pos;
1096
1097 /* Find the next transport in a round-robin fashion. */
1098 t = asoc->peer.retran_path;
1099 pos = &t->transports;
1100 next = NULL;
1101
1102 while (1) {
1103 /* Skip the head. */
1104 if (pos->next == head)
1105 pos = head->next;
1106 else
1107 pos = pos->next;
1108
1109 t = list_entry(pos, struct sctp_transport, transports);
1110
1111 /* Try to find an active transport. */
1112
1113 if ((t->state == SCTP_ACTIVE) ||
1114 (t->state == SCTP_UNKNOWN)) {
1115 break;
1116 } else {
1117 /* Keep track of the next transport in case
1118 * we don't find any active transport.
1119 */
1120 if (!next)
1121 next = t;
1122 }
1123
1124 /* We have exhausted the list, but didn't find any
1125 * other active transports. If so, use the next
1126 * transport.
1127 */
1128 if (t == asoc->peer.retran_path) {
1129 t = next;
1130 break;
1131 }
1132 }
1133
1134 asoc->peer.retran_path = t;
1135
1136 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1137 " %p addr: ",
1138 " port: %d\n",
1139 asoc,
1140 (&t->ipaddr),
1141 ntohs(t->ipaddr.v4.sin_port));
1142 }
1143
1144 /* Choose the transport for sending a INIT packet. */
1145 struct sctp_transport *sctp_assoc_choose_init_transport(
1146 struct sctp_association *asoc)
1147 {
1148 struct sctp_transport *t;
1149
1150 /* Use the retran path. If the last INIT was sent over the
1151 * retran path, update the retran path and use it.
1152 */
1153 if (!asoc->init_last_sent_to) {
1154 t = asoc->peer.active_path;
1155 } else {
1156 if (asoc->init_last_sent_to == asoc->peer.retran_path)
1157 sctp_assoc_update_retran_path(asoc);
1158 t = asoc->peer.retran_path;
1159 }
1160
1161 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1162 " %p addr: ",
1163 " port: %d\n",
1164 asoc,
1165 (&t->ipaddr),
1166 ntohs(t->ipaddr.v4.sin_port));
1167
1168 return t;
1169 }
1170
1171 /* Choose the transport for sending a SHUTDOWN packet. */
1172 struct sctp_transport *sctp_assoc_choose_shutdown_transport(
1173 struct sctp_association *asoc)
1174 {
1175 /* If this is the first time SHUTDOWN is sent, use the active path,
1176 * else use the retran path. If the last SHUTDOWN was sent over the
1177 * retran path, update the retran path and use it.
1178 */
1179 if (!asoc->shutdown_last_sent_to)
1180 return asoc->peer.active_path;
1181 else {
1182 if (asoc->shutdown_last_sent_to == asoc->peer.retran_path)
1183 sctp_assoc_update_retran_path(asoc);
1184 return asoc->peer.retran_path;
1185 }
1186
1187 }
1188
1189 /* Update the association's pmtu and frag_point by going through all the
1190 * transports. This routine is called when a transport's PMTU has changed.
1191 */
1192 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1193 {
1194 struct sctp_transport *t;
1195 struct list_head *pos;
1196 __u32 pmtu = 0;
1197
1198 if (!asoc)
1199 return;
1200
1201 /* Get the lowest pmtu of all the transports. */
1202 list_for_each(pos, &asoc->peer.transport_addr_list) {
1203 t = list_entry(pos, struct sctp_transport, transports);
1204 if (!pmtu || (t->pathmtu < pmtu))
1205 pmtu = t->pathmtu;
1206 }
1207
1208 if (pmtu) {
1209 struct sctp_sock *sp = sctp_sk(asoc->base.sk);
1210 asoc->pathmtu = pmtu;
1211 asoc->frag_point = sctp_frag_point(sp, pmtu);
1212 }
1213
1214 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1215 __FUNCTION__, asoc, asoc->pathmtu, asoc->frag_point);
1216 }
1217
1218 /* Should we send a SACK to update our peer? */
1219 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1220 {
1221 switch (asoc->state) {
1222 case SCTP_STATE_ESTABLISHED:
1223 case SCTP_STATE_SHUTDOWN_PENDING:
1224 case SCTP_STATE_SHUTDOWN_RECEIVED:
1225 case SCTP_STATE_SHUTDOWN_SENT:
1226 if ((asoc->rwnd > asoc->a_rwnd) &&
1227 ((asoc->rwnd - asoc->a_rwnd) >=
1228 min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu)))
1229 return 1;
1230 break;
1231 default:
1232 break;
1233 }
1234 return 0;
1235 }
1236
1237 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1238 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1239 {
1240 struct sctp_chunk *sack;
1241 struct timer_list *timer;
1242
1243 if (asoc->rwnd_over) {
1244 if (asoc->rwnd_over >= len) {
1245 asoc->rwnd_over -= len;
1246 } else {
1247 asoc->rwnd += (len - asoc->rwnd_over);
1248 asoc->rwnd_over = 0;
1249 }
1250 } else {
1251 asoc->rwnd += len;
1252 }
1253
1254 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1255 "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd,
1256 asoc->rwnd_over, asoc->a_rwnd);
1257
1258 /* Send a window update SACK if the rwnd has increased by at least the
1259 * minimum of the association's PMTU and half of the receive buffer.
1260 * The algorithm used is similar to the one described in
1261 * Section 4.2.3.3 of RFC 1122.
1262 */
1263 if (sctp_peer_needs_update(asoc)) {
1264 asoc->a_rwnd = asoc->rwnd;
1265 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1266 "rwnd: %u a_rwnd: %u\n", __FUNCTION__,
1267 asoc, asoc->rwnd, asoc->a_rwnd);
1268 sack = sctp_make_sack(asoc);
1269 if (!sack)
1270 return;
1271
1272 asoc->peer.sack_needed = 0;
1273
1274 sctp_outq_tail(&asoc->outqueue, sack);
1275
1276 /* Stop the SACK timer. */
1277 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1278 if (timer_pending(timer) && del_timer(timer))
1279 sctp_association_put(asoc);
1280 }
1281 }
1282
1283 /* Decrease asoc's rwnd by len. */
1284 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1285 {
1286 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1287 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1288 if (asoc->rwnd >= len) {
1289 asoc->rwnd -= len;
1290 } else {
1291 asoc->rwnd_over = len - asoc->rwnd;
1292 asoc->rwnd = 0;
1293 }
1294 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
1295 __FUNCTION__, asoc, len, asoc->rwnd,
1296 asoc->rwnd_over);
1297 }
1298
1299 /* Build the bind address list for the association based on info from the
1300 * local endpoint and the remote peer.
1301 */
1302 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1303 gfp_t gfp)
1304 {
1305 sctp_scope_t scope;
1306 int flags;
1307
1308 /* Use scoping rules to determine the subset of addresses from
1309 * the endpoint.
1310 */
1311 scope = sctp_scope(&asoc->peer.active_path->ipaddr);
1312 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1313 if (asoc->peer.ipv4_address)
1314 flags |= SCTP_ADDR4_PEERSUPP;
1315 if (asoc->peer.ipv6_address)
1316 flags |= SCTP_ADDR6_PEERSUPP;
1317
1318 return sctp_bind_addr_copy(&asoc->base.bind_addr,
1319 &asoc->ep->base.bind_addr,
1320 scope, gfp, flags);
1321 }
1322
1323 /* Build the association's bind address list from the cookie. */
1324 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1325 struct sctp_cookie *cookie,
1326 gfp_t gfp)
1327 {
1328 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1329 int var_size3 = cookie->raw_addr_list_len;
1330 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1331
1332 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1333 asoc->ep->base.bind_addr.port, gfp);
1334 }
1335
1336 /* Lookup laddr in the bind address list of an association. */
1337 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1338 const union sctp_addr *laddr)
1339 {
1340 int found;
1341
1342 sctp_read_lock(&asoc->base.addr_lock);
1343 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1344 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1345 sctp_sk(asoc->base.sk))) {
1346 found = 1;
1347 goto out;
1348 }
1349
1350 found = 0;
1351 out:
1352 sctp_read_unlock(&asoc->base.addr_lock);
1353 return found;
1354 }
This page took 0.058833 seconds and 5 git commands to generate.