sctp: Add RCU protection to assoc->transport_addr_list
[deliverable/linux.git] / net / sctp / associola.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Ryan Layer <rmlayer@us.ibm.com>
45 * Kevin Gao <kevin.gao@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
68
69 /* Keep track of the new idr low so that we don't re-use association id
70 * numbers too fast. It is protected by they idr spin lock is in the
71 * range of 1 - INT_MAX.
72 */
73 static u32 idr_low = 1;
74
75
76 /* 1st Level Abstractions. */
77
78 /* Initialize a new association from provided memory. */
79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
80 const struct sctp_endpoint *ep,
81 const struct sock *sk,
82 sctp_scope_t scope,
83 gfp_t gfp)
84 {
85 struct net *net = sock_net(sk);
86 struct sctp_sock *sp;
87 int i;
88 sctp_paramhdr_t *p;
89 int err;
90
91 /* Retrieve the SCTP per socket area. */
92 sp = sctp_sk((struct sock *)sk);
93
94 /* Discarding const is appropriate here. */
95 asoc->ep = (struct sctp_endpoint *)ep;
96 sctp_endpoint_hold(asoc->ep);
97
98 /* Hold the sock. */
99 asoc->base.sk = (struct sock *)sk;
100 sock_hold(asoc->base.sk);
101
102 /* Initialize the common base substructure. */
103 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
104
105 /* Initialize the object handling fields. */
106 atomic_set(&asoc->base.refcnt, 1);
107 asoc->base.dead = 0;
108 asoc->base.malloced = 0;
109
110 /* Initialize the bind addr area. */
111 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
112
113 asoc->state = SCTP_STATE_CLOSED;
114
115 /* Set these values from the socket values, a conversion between
116 * millsecons to seconds/microseconds must also be done.
117 */
118 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
119 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
120 * 1000;
121 asoc->frag_point = 0;
122 asoc->user_frag = sp->user_frag;
123
124 /* Set the association max_retrans and RTO values from the
125 * socket values.
126 */
127 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
128 asoc->pf_retrans = net->sctp.pf_retrans;
129
130 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
131 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
132 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
133
134 asoc->overall_error_count = 0;
135
136 /* Initialize the association's heartbeat interval based on the
137 * sock configured value.
138 */
139 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
140
141 /* Initialize path max retrans value. */
142 asoc->pathmaxrxt = sp->pathmaxrxt;
143
144 /* Initialize default path MTU. */
145 asoc->pathmtu = sp->pathmtu;
146
147 /* Set association default SACK delay */
148 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
149 asoc->sackfreq = sp->sackfreq;
150
151 /* Set the association default flags controlling
152 * Heartbeat, SACK delay, and Path MTU Discovery.
153 */
154 asoc->param_flags = sp->param_flags;
155
156 /* Initialize the maximum mumber of new data packets that can be sent
157 * in a burst.
158 */
159 asoc->max_burst = sp->max_burst;
160
161 /* initialize association timers */
162 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
164 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
165 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
166 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
167 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
168
169 /* sctpimpguide Section 2.12.2
170 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
171 * recommended value of 5 times 'RTO.Max'.
172 */
173 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
174 = 5 * asoc->rto_max;
175
176 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
177 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
178 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
179 min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ;
180
181 /* Initializes the timers */
182 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
183 setup_timer(&asoc->timers[i], sctp_timer_events[i],
184 (unsigned long)asoc);
185
186 /* Pull default initialization values from the sock options.
187 * Note: This assumes that the values have already been
188 * validated in the sock.
189 */
190 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
191 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
192 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
193
194 asoc->max_init_timeo =
195 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
196
197 /* Allocate storage for the ssnmap after the inbound and outbound
198 * streams have been negotiated during Init.
199 */
200 asoc->ssnmap = NULL;
201
202 /* Set the local window size for receive.
203 * This is also the rcvbuf space per association.
204 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
205 * 1500 bytes in one SCTP packet.
206 */
207 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
208 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
209 else
210 asoc->rwnd = sk->sk_rcvbuf/2;
211
212 asoc->a_rwnd = asoc->rwnd;
213
214 asoc->rwnd_over = 0;
215 asoc->rwnd_press = 0;
216
217 /* Use my own max window until I learn something better. */
218 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
219
220 /* Set the sndbuf size for transmit. */
221 asoc->sndbuf_used = 0;
222
223 /* Initialize the receive memory counter */
224 atomic_set(&asoc->rmem_alloc, 0);
225
226 init_waitqueue_head(&asoc->wait);
227
228 asoc->c.my_vtag = sctp_generate_tag(ep);
229 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
230 asoc->c.peer_vtag = 0;
231 asoc->c.my_ttag = 0;
232 asoc->c.peer_ttag = 0;
233 asoc->c.my_port = ep->base.bind_addr.port;
234
235 asoc->c.initial_tsn = sctp_generate_tsn(ep);
236
237 asoc->next_tsn = asoc->c.initial_tsn;
238
239 asoc->ctsn_ack_point = asoc->next_tsn - 1;
240 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
241 asoc->highest_sacked = asoc->ctsn_ack_point;
242 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
243 asoc->unack_data = 0;
244
245 /* ADDIP Section 4.1 Asconf Chunk Procedures
246 *
247 * When an endpoint has an ASCONF signaled change to be sent to the
248 * remote endpoint it should do the following:
249 * ...
250 * A2) a serial number should be assigned to the chunk. The serial
251 * number SHOULD be a monotonically increasing number. The serial
252 * numbers SHOULD be initialized at the start of the
253 * association to the same value as the initial TSN.
254 */
255 asoc->addip_serial = asoc->c.initial_tsn;
256
257 INIT_LIST_HEAD(&asoc->addip_chunk_list);
258 INIT_LIST_HEAD(&asoc->asconf_ack_list);
259
260 /* Make an empty list of remote transport addresses. */
261 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
262 asoc->peer.transport_count = 0;
263
264 /* RFC 2960 5.1 Normal Establishment of an Association
265 *
266 * After the reception of the first data chunk in an
267 * association the endpoint must immediately respond with a
268 * sack to acknowledge the data chunk. Subsequent
269 * acknowledgements should be done as described in Section
270 * 6.2.
271 *
272 * [We implement this by telling a new association that it
273 * already received one packet.]
274 */
275 asoc->peer.sack_needed = 1;
276 asoc->peer.sack_cnt = 0;
277 asoc->peer.sack_generation = 1;
278
279 /* Assume that the peer will tell us if he recognizes ASCONF
280 * as part of INIT exchange.
281 * The sctp_addip_noauth option is there for backward compatibilty
282 * and will revert old behavior.
283 */
284 asoc->peer.asconf_capable = 0;
285 if (net->sctp.addip_noauth)
286 asoc->peer.asconf_capable = 1;
287 asoc->asconf_addr_del_pending = NULL;
288 asoc->src_out_of_asoc_ok = 0;
289 asoc->new_transport = NULL;
290
291 /* Create an input queue. */
292 sctp_inq_init(&asoc->base.inqueue);
293 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
294
295 /* Create an output queue. */
296 sctp_outq_init(asoc, &asoc->outqueue);
297
298 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
299 goto fail_init;
300
301 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
302
303 asoc->need_ecne = 0;
304
305 asoc->assoc_id = 0;
306
307 /* Assume that peer would support both address types unless we are
308 * told otherwise.
309 */
310 asoc->peer.ipv4_address = 1;
311 if (asoc->base.sk->sk_family == PF_INET6)
312 asoc->peer.ipv6_address = 1;
313 INIT_LIST_HEAD(&asoc->asocs);
314
315 asoc->autoclose = sp->autoclose;
316
317 asoc->default_stream = sp->default_stream;
318 asoc->default_ppid = sp->default_ppid;
319 asoc->default_flags = sp->default_flags;
320 asoc->default_context = sp->default_context;
321 asoc->default_timetolive = sp->default_timetolive;
322 asoc->default_rcv_context = sp->default_rcv_context;
323
324 /* SCTP_GET_ASSOC_STATS COUNTERS */
325 memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats));
326
327 /* AUTH related initializations */
328 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
329 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
330 if (err)
331 goto fail_init;
332
333 asoc->active_key_id = ep->active_key_id;
334 asoc->asoc_shared_key = NULL;
335
336 asoc->default_hmac_id = 0;
337 /* Save the hmacs and chunks list into this association */
338 if (ep->auth_hmacs_list)
339 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
340 ntohs(ep->auth_hmacs_list->param_hdr.length));
341 if (ep->auth_chunk_list)
342 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
343 ntohs(ep->auth_chunk_list->param_hdr.length));
344
345 /* Get the AUTH random number for this association */
346 p = (sctp_paramhdr_t *)asoc->c.auth_random;
347 p->type = SCTP_PARAM_RANDOM;
348 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
349 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
350
351 return asoc;
352
353 fail_init:
354 sctp_endpoint_put(asoc->ep);
355 sock_put(asoc->base.sk);
356 return NULL;
357 }
358
359 /* Allocate and initialize a new association */
360 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
361 const struct sock *sk,
362 sctp_scope_t scope,
363 gfp_t gfp)
364 {
365 struct sctp_association *asoc;
366
367 asoc = t_new(struct sctp_association, gfp);
368 if (!asoc)
369 goto fail;
370
371 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
372 goto fail_init;
373
374 asoc->base.malloced = 1;
375 SCTP_DBG_OBJCNT_INC(assoc);
376 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
377
378 return asoc;
379
380 fail_init:
381 kfree(asoc);
382 fail:
383 return NULL;
384 }
385
386 /* Free this association if possible. There may still be users, so
387 * the actual deallocation may be delayed.
388 */
389 void sctp_association_free(struct sctp_association *asoc)
390 {
391 struct sock *sk = asoc->base.sk;
392 struct sctp_transport *transport;
393 struct list_head *pos, *temp;
394 int i;
395
396 /* Only real associations count against the endpoint, so
397 * don't bother for if this is a temporary association.
398 */
399 if (!asoc->temp) {
400 list_del(&asoc->asocs);
401
402 /* Decrement the backlog value for a TCP-style listening
403 * socket.
404 */
405 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
406 sk->sk_ack_backlog--;
407 }
408
409 /* Mark as dead, so other users can know this structure is
410 * going away.
411 */
412 asoc->base.dead = 1;
413
414 /* Dispose of any data lying around in the outqueue. */
415 sctp_outq_free(&asoc->outqueue);
416
417 /* Dispose of any pending messages for the upper layer. */
418 sctp_ulpq_free(&asoc->ulpq);
419
420 /* Dispose of any pending chunks on the inqueue. */
421 sctp_inq_free(&asoc->base.inqueue);
422
423 sctp_tsnmap_free(&asoc->peer.tsn_map);
424
425 /* Free ssnmap storage. */
426 sctp_ssnmap_free(asoc->ssnmap);
427
428 /* Clean up the bound address list. */
429 sctp_bind_addr_free(&asoc->base.bind_addr);
430
431 /* Do we need to go through all of our timers and
432 * delete them? To be safe we will try to delete all, but we
433 * should be able to go through and make a guess based
434 * on our state.
435 */
436 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
437 if (timer_pending(&asoc->timers[i]) &&
438 del_timer(&asoc->timers[i]))
439 sctp_association_put(asoc);
440 }
441
442 /* Free peer's cached cookie. */
443 kfree(asoc->peer.cookie);
444 kfree(asoc->peer.peer_random);
445 kfree(asoc->peer.peer_chunks);
446 kfree(asoc->peer.peer_hmacs);
447
448 /* Release the transport structures. */
449 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
450 transport = list_entry(pos, struct sctp_transport, transports);
451 list_del_rcu(pos);
452 sctp_transport_free(transport);
453 }
454
455 asoc->peer.transport_count = 0;
456
457 sctp_asconf_queue_teardown(asoc);
458
459 /* Free pending address space being deleted */
460 if (asoc->asconf_addr_del_pending != NULL)
461 kfree(asoc->asconf_addr_del_pending);
462
463 /* AUTH - Free the endpoint shared keys */
464 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
465
466 /* AUTH - Free the association shared key */
467 sctp_auth_key_put(asoc->asoc_shared_key);
468
469 sctp_association_put(asoc);
470 }
471
472 /* Cleanup and free up an association. */
473 static void sctp_association_destroy(struct sctp_association *asoc)
474 {
475 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
476
477 sctp_endpoint_put(asoc->ep);
478 sock_put(asoc->base.sk);
479
480 if (asoc->assoc_id != 0) {
481 spin_lock_bh(&sctp_assocs_id_lock);
482 idr_remove(&sctp_assocs_id, asoc->assoc_id);
483 spin_unlock_bh(&sctp_assocs_id_lock);
484 }
485
486 WARN_ON(atomic_read(&asoc->rmem_alloc));
487
488 if (asoc->base.malloced) {
489 kfree(asoc);
490 SCTP_DBG_OBJCNT_DEC(assoc);
491 }
492 }
493
494 /* Change the primary destination address for the peer. */
495 void sctp_assoc_set_primary(struct sctp_association *asoc,
496 struct sctp_transport *transport)
497 {
498 int changeover = 0;
499
500 /* it's a changeover only if we already have a primary path
501 * that we are changing
502 */
503 if (asoc->peer.primary_path != NULL &&
504 asoc->peer.primary_path != transport)
505 changeover = 1 ;
506
507 asoc->peer.primary_path = transport;
508
509 /* Set a default msg_name for events. */
510 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
511 sizeof(union sctp_addr));
512
513 /* If the primary path is changing, assume that the
514 * user wants to use this new path.
515 */
516 if ((transport->state == SCTP_ACTIVE) ||
517 (transport->state == SCTP_UNKNOWN))
518 asoc->peer.active_path = transport;
519
520 /*
521 * SFR-CACC algorithm:
522 * Upon the receipt of a request to change the primary
523 * destination address, on the data structure for the new
524 * primary destination, the sender MUST do the following:
525 *
526 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
527 * to this destination address earlier. The sender MUST set
528 * CYCLING_CHANGEOVER to indicate that this switch is a
529 * double switch to the same destination address.
530 *
531 * Really, only bother is we have data queued or outstanding on
532 * the association.
533 */
534 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
535 return;
536
537 if (transport->cacc.changeover_active)
538 transport->cacc.cycling_changeover = changeover;
539
540 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
541 * a changeover has occurred.
542 */
543 transport->cacc.changeover_active = changeover;
544
545 /* 3) The sender MUST store the next TSN to be sent in
546 * next_tsn_at_change.
547 */
548 transport->cacc.next_tsn_at_change = asoc->next_tsn;
549 }
550
551 /* Remove a transport from an association. */
552 void sctp_assoc_rm_peer(struct sctp_association *asoc,
553 struct sctp_transport *peer)
554 {
555 struct list_head *pos;
556 struct sctp_transport *transport;
557
558 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
559 " port: %d\n",
560 asoc,
561 (&peer->ipaddr),
562 ntohs(peer->ipaddr.v4.sin_port));
563
564 /* If we are to remove the current retran_path, update it
565 * to the next peer before removing this peer from the list.
566 */
567 if (asoc->peer.retran_path == peer)
568 sctp_assoc_update_retran_path(asoc);
569
570 /* Remove this peer from the list. */
571 list_del_rcu(&peer->transports);
572
573 /* Get the first transport of asoc. */
574 pos = asoc->peer.transport_addr_list.next;
575 transport = list_entry(pos, struct sctp_transport, transports);
576
577 /* Update any entries that match the peer to be deleted. */
578 if (asoc->peer.primary_path == peer)
579 sctp_assoc_set_primary(asoc, transport);
580 if (asoc->peer.active_path == peer)
581 asoc->peer.active_path = transport;
582 if (asoc->peer.retran_path == peer)
583 asoc->peer.retran_path = transport;
584 if (asoc->peer.last_data_from == peer)
585 asoc->peer.last_data_from = transport;
586
587 /* If we remove the transport an INIT was last sent to, set it to
588 * NULL. Combined with the update of the retran path above, this
589 * will cause the next INIT to be sent to the next available
590 * transport, maintaining the cycle.
591 */
592 if (asoc->init_last_sent_to == peer)
593 asoc->init_last_sent_to = NULL;
594
595 /* If we remove the transport an SHUTDOWN was last sent to, set it
596 * to NULL. Combined with the update of the retran path above, this
597 * will cause the next SHUTDOWN to be sent to the next available
598 * transport, maintaining the cycle.
599 */
600 if (asoc->shutdown_last_sent_to == peer)
601 asoc->shutdown_last_sent_to = NULL;
602
603 /* If we remove the transport an ASCONF was last sent to, set it to
604 * NULL.
605 */
606 if (asoc->addip_last_asconf &&
607 asoc->addip_last_asconf->transport == peer)
608 asoc->addip_last_asconf->transport = NULL;
609
610 /* If we have something on the transmitted list, we have to
611 * save it off. The best place is the active path.
612 */
613 if (!list_empty(&peer->transmitted)) {
614 struct sctp_transport *active = asoc->peer.active_path;
615 struct sctp_chunk *ch;
616
617 /* Reset the transport of each chunk on this list */
618 list_for_each_entry(ch, &peer->transmitted,
619 transmitted_list) {
620 ch->transport = NULL;
621 ch->rtt_in_progress = 0;
622 }
623
624 list_splice_tail_init(&peer->transmitted,
625 &active->transmitted);
626
627 /* Start a T3 timer here in case it wasn't running so
628 * that these migrated packets have a chance to get
629 * retrnasmitted.
630 */
631 if (!timer_pending(&active->T3_rtx_timer))
632 if (!mod_timer(&active->T3_rtx_timer,
633 jiffies + active->rto))
634 sctp_transport_hold(active);
635 }
636
637 asoc->peer.transport_count--;
638
639 sctp_transport_free(peer);
640 }
641
642 /* Add a transport address to an association. */
643 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
644 const union sctp_addr *addr,
645 const gfp_t gfp,
646 const int peer_state)
647 {
648 struct net *net = sock_net(asoc->base.sk);
649 struct sctp_transport *peer;
650 struct sctp_sock *sp;
651 unsigned short port;
652
653 sp = sctp_sk(asoc->base.sk);
654
655 /* AF_INET and AF_INET6 share common port field. */
656 port = ntohs(addr->v4.sin_port);
657
658 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
659 " port: %d state:%d\n",
660 asoc,
661 addr,
662 port,
663 peer_state);
664
665 /* Set the port if it has not been set yet. */
666 if (0 == asoc->peer.port)
667 asoc->peer.port = port;
668
669 /* Check to see if this is a duplicate. */
670 peer = sctp_assoc_lookup_paddr(asoc, addr);
671 if (peer) {
672 /* An UNKNOWN state is only set on transports added by
673 * user in sctp_connectx() call. Such transports should be
674 * considered CONFIRMED per RFC 4960, Section 5.4.
675 */
676 if (peer->state == SCTP_UNKNOWN) {
677 peer->state = SCTP_ACTIVE;
678 }
679 return peer;
680 }
681
682 peer = sctp_transport_new(net, addr, gfp);
683 if (!peer)
684 return NULL;
685
686 sctp_transport_set_owner(peer, asoc);
687
688 /* Initialize the peer's heartbeat interval based on the
689 * association configured value.
690 */
691 peer->hbinterval = asoc->hbinterval;
692
693 /* Set the path max_retrans. */
694 peer->pathmaxrxt = asoc->pathmaxrxt;
695
696 /* And the partial failure retrnas threshold */
697 peer->pf_retrans = asoc->pf_retrans;
698
699 /* Initialize the peer's SACK delay timeout based on the
700 * association configured value.
701 */
702 peer->sackdelay = asoc->sackdelay;
703 peer->sackfreq = asoc->sackfreq;
704
705 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
706 * based on association setting.
707 */
708 peer->param_flags = asoc->param_flags;
709
710 sctp_transport_route(peer, NULL, sp);
711
712 /* Initialize the pmtu of the transport. */
713 if (peer->param_flags & SPP_PMTUD_DISABLE) {
714 if (asoc->pathmtu)
715 peer->pathmtu = asoc->pathmtu;
716 else
717 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
718 }
719
720 /* If this is the first transport addr on this association,
721 * initialize the association PMTU to the peer's PMTU.
722 * If not and the current association PMTU is higher than the new
723 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
724 */
725 if (asoc->pathmtu)
726 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
727 else
728 asoc->pathmtu = peer->pathmtu;
729
730 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
731 "%d\n", asoc, asoc->pathmtu);
732 peer->pmtu_pending = 0;
733
734 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
735
736 /* The asoc->peer.port might not be meaningful yet, but
737 * initialize the packet structure anyway.
738 */
739 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
740 asoc->peer.port);
741
742 /* 7.2.1 Slow-Start
743 *
744 * o The initial cwnd before DATA transmission or after a sufficiently
745 * long idle period MUST be set to
746 * min(4*MTU, max(2*MTU, 4380 bytes))
747 *
748 * o The initial value of ssthresh MAY be arbitrarily high
749 * (for example, implementations MAY use the size of the
750 * receiver advertised window).
751 */
752 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
753
754 /* At this point, we may not have the receiver's advertised window,
755 * so initialize ssthresh to the default value and it will be set
756 * later when we process the INIT.
757 */
758 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
759
760 peer->partial_bytes_acked = 0;
761 peer->flight_size = 0;
762 peer->burst_limited = 0;
763
764 /* Set the transport's RTO.initial value */
765 peer->rto = asoc->rto_initial;
766 sctp_max_rto(asoc, peer);
767
768 /* Set the peer's active state. */
769 peer->state = peer_state;
770
771 /* Attach the remote transport to our asoc. */
772 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
773 asoc->peer.transport_count++;
774
775 /* If we do not yet have a primary path, set one. */
776 if (!asoc->peer.primary_path) {
777 sctp_assoc_set_primary(asoc, peer);
778 asoc->peer.retran_path = peer;
779 }
780
781 if (asoc->peer.active_path == asoc->peer.retran_path &&
782 peer->state != SCTP_UNCONFIRMED) {
783 asoc->peer.retran_path = peer;
784 }
785
786 return peer;
787 }
788
789 /* Delete a transport address from an association. */
790 void sctp_assoc_del_peer(struct sctp_association *asoc,
791 const union sctp_addr *addr)
792 {
793 struct list_head *pos;
794 struct list_head *temp;
795 struct sctp_transport *transport;
796
797 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
798 transport = list_entry(pos, struct sctp_transport, transports);
799 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
800 /* Do book keeping for removing the peer and free it. */
801 sctp_assoc_rm_peer(asoc, transport);
802 break;
803 }
804 }
805 }
806
807 /* Lookup a transport by address. */
808 struct sctp_transport *sctp_assoc_lookup_paddr(
809 const struct sctp_association *asoc,
810 const union sctp_addr *address)
811 {
812 struct sctp_transport *t;
813
814 /* Cycle through all transports searching for a peer address. */
815
816 list_for_each_entry(t, &asoc->peer.transport_addr_list,
817 transports) {
818 if (sctp_cmp_addr_exact(address, &t->ipaddr))
819 return t;
820 }
821
822 return NULL;
823 }
824
825 /* Remove all transports except a give one */
826 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
827 struct sctp_transport *primary)
828 {
829 struct sctp_transport *temp;
830 struct sctp_transport *t;
831
832 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
833 transports) {
834 /* if the current transport is not the primary one, delete it */
835 if (t != primary)
836 sctp_assoc_rm_peer(asoc, t);
837 }
838 }
839
840 /* Engage in transport control operations.
841 * Mark the transport up or down and send a notification to the user.
842 * Select and update the new active and retran paths.
843 */
844 void sctp_assoc_control_transport(struct sctp_association *asoc,
845 struct sctp_transport *transport,
846 sctp_transport_cmd_t command,
847 sctp_sn_error_t error)
848 {
849 struct sctp_transport *t = NULL;
850 struct sctp_transport *first;
851 struct sctp_transport *second;
852 struct sctp_ulpevent *event;
853 struct sockaddr_storage addr;
854 int spc_state = 0;
855 bool ulp_notify = true;
856
857 /* Record the transition on the transport. */
858 switch (command) {
859 case SCTP_TRANSPORT_UP:
860 /* If we are moving from UNCONFIRMED state due
861 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
862 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
863 */
864 if (SCTP_UNCONFIRMED == transport->state &&
865 SCTP_HEARTBEAT_SUCCESS == error)
866 spc_state = SCTP_ADDR_CONFIRMED;
867 else
868 spc_state = SCTP_ADDR_AVAILABLE;
869 /* Don't inform ULP about transition from PF to
870 * active state and set cwnd to 1, see SCTP
871 * Quick failover draft section 5.1, point 5
872 */
873 if (transport->state == SCTP_PF) {
874 ulp_notify = false;
875 transport->cwnd = 1;
876 }
877 transport->state = SCTP_ACTIVE;
878 break;
879
880 case SCTP_TRANSPORT_DOWN:
881 /* If the transport was never confirmed, do not transition it
882 * to inactive state. Also, release the cached route since
883 * there may be a better route next time.
884 */
885 if (transport->state != SCTP_UNCONFIRMED)
886 transport->state = SCTP_INACTIVE;
887 else {
888 dst_release(transport->dst);
889 transport->dst = NULL;
890 }
891
892 spc_state = SCTP_ADDR_UNREACHABLE;
893 break;
894
895 case SCTP_TRANSPORT_PF:
896 transport->state = SCTP_PF;
897 ulp_notify = false;
898 break;
899
900 default:
901 return;
902 }
903
904 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
905 * user.
906 */
907 if (ulp_notify) {
908 memset(&addr, 0, sizeof(struct sockaddr_storage));
909 memcpy(&addr, &transport->ipaddr,
910 transport->af_specific->sockaddr_len);
911 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
912 0, spc_state, error, GFP_ATOMIC);
913 if (event)
914 sctp_ulpq_tail_event(&asoc->ulpq, event);
915 }
916
917 /* Select new active and retran paths. */
918
919 /* Look for the two most recently used active transports.
920 *
921 * This code produces the wrong ordering whenever jiffies
922 * rolls over, but we still get usable transports, so we don't
923 * worry about it.
924 */
925 first = NULL; second = NULL;
926
927 list_for_each_entry(t, &asoc->peer.transport_addr_list,
928 transports) {
929
930 if ((t->state == SCTP_INACTIVE) ||
931 (t->state == SCTP_UNCONFIRMED) ||
932 (t->state == SCTP_PF))
933 continue;
934 if (!first || t->last_time_heard > first->last_time_heard) {
935 second = first;
936 first = t;
937 }
938 if (!second || t->last_time_heard > second->last_time_heard)
939 second = t;
940 }
941
942 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
943 *
944 * By default, an endpoint should always transmit to the
945 * primary path, unless the SCTP user explicitly specifies the
946 * destination transport address (and possibly source
947 * transport address) to use.
948 *
949 * [If the primary is active but not most recent, bump the most
950 * recently used transport.]
951 */
952 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
953 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
954 first != asoc->peer.primary_path) {
955 second = first;
956 first = asoc->peer.primary_path;
957 }
958
959 /* If we failed to find a usable transport, just camp on the
960 * primary, even if it is inactive.
961 */
962 if (!first) {
963 first = asoc->peer.primary_path;
964 second = asoc->peer.primary_path;
965 }
966
967 /* Set the active and retran transports. */
968 asoc->peer.active_path = first;
969 asoc->peer.retran_path = second;
970 }
971
972 /* Hold a reference to an association. */
973 void sctp_association_hold(struct sctp_association *asoc)
974 {
975 atomic_inc(&asoc->base.refcnt);
976 }
977
978 /* Release a reference to an association and cleanup
979 * if there are no more references.
980 */
981 void sctp_association_put(struct sctp_association *asoc)
982 {
983 if (atomic_dec_and_test(&asoc->base.refcnt))
984 sctp_association_destroy(asoc);
985 }
986
987 /* Allocate the next TSN, Transmission Sequence Number, for the given
988 * association.
989 */
990 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
991 {
992 /* From Section 1.6 Serial Number Arithmetic:
993 * Transmission Sequence Numbers wrap around when they reach
994 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
995 * after transmitting TSN = 2*32 - 1 is TSN = 0.
996 */
997 __u32 retval = asoc->next_tsn;
998 asoc->next_tsn++;
999 asoc->unack_data++;
1000
1001 return retval;
1002 }
1003
1004 /* Compare two addresses to see if they match. Wildcard addresses
1005 * only match themselves.
1006 */
1007 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
1008 const union sctp_addr *ss2)
1009 {
1010 struct sctp_af *af;
1011
1012 af = sctp_get_af_specific(ss1->sa.sa_family);
1013 if (unlikely(!af))
1014 return 0;
1015
1016 return af->cmp_addr(ss1, ss2);
1017 }
1018
1019 /* Return an ecne chunk to get prepended to a packet.
1020 * Note: We are sly and return a shared, prealloced chunk. FIXME:
1021 * No we don't, but we could/should.
1022 */
1023 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
1024 {
1025 struct sctp_chunk *chunk;
1026
1027 /* Send ECNE if needed.
1028 * Not being able to allocate a chunk here is not deadly.
1029 */
1030 if (asoc->need_ecne)
1031 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1032 else
1033 chunk = NULL;
1034
1035 return chunk;
1036 }
1037
1038 /*
1039 * Find which transport this TSN was sent on.
1040 */
1041 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1042 __u32 tsn)
1043 {
1044 struct sctp_transport *active;
1045 struct sctp_transport *match;
1046 struct sctp_transport *transport;
1047 struct sctp_chunk *chunk;
1048 __be32 key = htonl(tsn);
1049
1050 match = NULL;
1051
1052 /*
1053 * FIXME: In general, find a more efficient data structure for
1054 * searching.
1055 */
1056
1057 /*
1058 * The general strategy is to search each transport's transmitted
1059 * list. Return which transport this TSN lives on.
1060 *
1061 * Let's be hopeful and check the active_path first.
1062 * Another optimization would be to know if there is only one
1063 * outbound path and not have to look for the TSN at all.
1064 *
1065 */
1066
1067 active = asoc->peer.active_path;
1068
1069 list_for_each_entry(chunk, &active->transmitted,
1070 transmitted_list) {
1071
1072 if (key == chunk->subh.data_hdr->tsn) {
1073 match = active;
1074 goto out;
1075 }
1076 }
1077
1078 /* If not found, go search all the other transports. */
1079 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1080 transports) {
1081
1082 if (transport == active)
1083 break;
1084 list_for_each_entry(chunk, &transport->transmitted,
1085 transmitted_list) {
1086 if (key == chunk->subh.data_hdr->tsn) {
1087 match = transport;
1088 goto out;
1089 }
1090 }
1091 }
1092 out:
1093 return match;
1094 }
1095
1096 /* Is this the association we are looking for? */
1097 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1098 struct net *net,
1099 const union sctp_addr *laddr,
1100 const union sctp_addr *paddr)
1101 {
1102 struct sctp_transport *transport;
1103
1104 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1105 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1106 net_eq(sock_net(asoc->base.sk), net)) {
1107 transport = sctp_assoc_lookup_paddr(asoc, paddr);
1108 if (!transport)
1109 goto out;
1110
1111 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1112 sctp_sk(asoc->base.sk)))
1113 goto out;
1114 }
1115 transport = NULL;
1116
1117 out:
1118 return transport;
1119 }
1120
1121 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1122 static void sctp_assoc_bh_rcv(struct work_struct *work)
1123 {
1124 struct sctp_association *asoc =
1125 container_of(work, struct sctp_association,
1126 base.inqueue.immediate);
1127 struct net *net = sock_net(asoc->base.sk);
1128 struct sctp_endpoint *ep;
1129 struct sctp_chunk *chunk;
1130 struct sctp_inq *inqueue;
1131 int state;
1132 sctp_subtype_t subtype;
1133 int error = 0;
1134
1135 /* The association should be held so we should be safe. */
1136 ep = asoc->ep;
1137
1138 inqueue = &asoc->base.inqueue;
1139 sctp_association_hold(asoc);
1140 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1141 state = asoc->state;
1142 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1143
1144 /* SCTP-AUTH, Section 6.3:
1145 * The receiver has a list of chunk types which it expects
1146 * to be received only after an AUTH-chunk. This list has
1147 * been sent to the peer during the association setup. It
1148 * MUST silently discard these chunks if they are not placed
1149 * after an AUTH chunk in the packet.
1150 */
1151 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1152 continue;
1153
1154 /* Remember where the last DATA chunk came from so we
1155 * know where to send the SACK.
1156 */
1157 if (sctp_chunk_is_data(chunk))
1158 asoc->peer.last_data_from = chunk->transport;
1159 else {
1160 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1161 asoc->stats.ictrlchunks++;
1162 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1163 asoc->stats.isacks++;
1164 }
1165
1166 if (chunk->transport)
1167 chunk->transport->last_time_heard = jiffies;
1168
1169 /* Run through the state machine. */
1170 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1171 state, ep, asoc, chunk, GFP_ATOMIC);
1172
1173 /* Check to see if the association is freed in response to
1174 * the incoming chunk. If so, get out of the while loop.
1175 */
1176 if (asoc->base.dead)
1177 break;
1178
1179 /* If there is an error on chunk, discard this packet. */
1180 if (error && chunk)
1181 chunk->pdiscard = 1;
1182 }
1183 sctp_association_put(asoc);
1184 }
1185
1186 /* This routine moves an association from its old sk to a new sk. */
1187 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1188 {
1189 struct sctp_sock *newsp = sctp_sk(newsk);
1190 struct sock *oldsk = assoc->base.sk;
1191
1192 /* Delete the association from the old endpoint's list of
1193 * associations.
1194 */
1195 list_del_init(&assoc->asocs);
1196
1197 /* Decrement the backlog value for a TCP-style socket. */
1198 if (sctp_style(oldsk, TCP))
1199 oldsk->sk_ack_backlog--;
1200
1201 /* Release references to the old endpoint and the sock. */
1202 sctp_endpoint_put(assoc->ep);
1203 sock_put(assoc->base.sk);
1204
1205 /* Get a reference to the new endpoint. */
1206 assoc->ep = newsp->ep;
1207 sctp_endpoint_hold(assoc->ep);
1208
1209 /* Get a reference to the new sock. */
1210 assoc->base.sk = newsk;
1211 sock_hold(assoc->base.sk);
1212
1213 /* Add the association to the new endpoint's list of associations. */
1214 sctp_endpoint_add_asoc(newsp->ep, assoc);
1215 }
1216
1217 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1218 void sctp_assoc_update(struct sctp_association *asoc,
1219 struct sctp_association *new)
1220 {
1221 struct sctp_transport *trans;
1222 struct list_head *pos, *temp;
1223
1224 /* Copy in new parameters of peer. */
1225 asoc->c = new->c;
1226 asoc->peer.rwnd = new->peer.rwnd;
1227 asoc->peer.sack_needed = new->peer.sack_needed;
1228 asoc->peer.i = new->peer.i;
1229 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1230 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1231
1232 /* Remove any peer addresses not present in the new association. */
1233 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1234 trans = list_entry(pos, struct sctp_transport, transports);
1235 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1236 sctp_assoc_rm_peer(asoc, trans);
1237 continue;
1238 }
1239
1240 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1241 sctp_transport_reset(trans);
1242 }
1243
1244 /* If the case is A (association restart), use
1245 * initial_tsn as next_tsn. If the case is B, use
1246 * current next_tsn in case data sent to peer
1247 * has been discarded and needs retransmission.
1248 */
1249 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1250 asoc->next_tsn = new->next_tsn;
1251 asoc->ctsn_ack_point = new->ctsn_ack_point;
1252 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1253
1254 /* Reinitialize SSN for both local streams
1255 * and peer's streams.
1256 */
1257 sctp_ssnmap_clear(asoc->ssnmap);
1258
1259 /* Flush the ULP reassembly and ordered queue.
1260 * Any data there will now be stale and will
1261 * cause problems.
1262 */
1263 sctp_ulpq_flush(&asoc->ulpq);
1264
1265 /* reset the overall association error count so
1266 * that the restarted association doesn't get torn
1267 * down on the next retransmission timer.
1268 */
1269 asoc->overall_error_count = 0;
1270
1271 } else {
1272 /* Add any peer addresses from the new association. */
1273 list_for_each_entry(trans, &new->peer.transport_addr_list,
1274 transports) {
1275 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1276 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1277 GFP_ATOMIC, trans->state);
1278 }
1279
1280 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1281 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1282 if (!asoc->ssnmap) {
1283 /* Move the ssnmap. */
1284 asoc->ssnmap = new->ssnmap;
1285 new->ssnmap = NULL;
1286 }
1287
1288 if (!asoc->assoc_id) {
1289 /* get a new association id since we don't have one
1290 * yet.
1291 */
1292 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1293 }
1294 }
1295
1296 /* SCTP-AUTH: Save the peer parameters from the new assocaitions
1297 * and also move the association shared keys over
1298 */
1299 kfree(asoc->peer.peer_random);
1300 asoc->peer.peer_random = new->peer.peer_random;
1301 new->peer.peer_random = NULL;
1302
1303 kfree(asoc->peer.peer_chunks);
1304 asoc->peer.peer_chunks = new->peer.peer_chunks;
1305 new->peer.peer_chunks = NULL;
1306
1307 kfree(asoc->peer.peer_hmacs);
1308 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1309 new->peer.peer_hmacs = NULL;
1310
1311 sctp_auth_key_put(asoc->asoc_shared_key);
1312 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1313 }
1314
1315 /* Update the retran path for sending a retransmitted packet.
1316 * Round-robin through the active transports, else round-robin
1317 * through the inactive transports as this is the next best thing
1318 * we can try.
1319 */
1320 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1321 {
1322 struct sctp_transport *t, *next;
1323 struct list_head *head = &asoc->peer.transport_addr_list;
1324 struct list_head *pos;
1325
1326 if (asoc->peer.transport_count == 1)
1327 return;
1328
1329 /* Find the next transport in a round-robin fashion. */
1330 t = asoc->peer.retran_path;
1331 pos = &t->transports;
1332 next = NULL;
1333
1334 while (1) {
1335 /* Skip the head. */
1336 if (pos->next == head)
1337 pos = head->next;
1338 else
1339 pos = pos->next;
1340
1341 t = list_entry(pos, struct sctp_transport, transports);
1342
1343 /* We have exhausted the list, but didn't find any
1344 * other active transports. If so, use the next
1345 * transport.
1346 */
1347 if (t == asoc->peer.retran_path) {
1348 t = next;
1349 break;
1350 }
1351
1352 /* Try to find an active transport. */
1353
1354 if ((t->state == SCTP_ACTIVE) ||
1355 (t->state == SCTP_UNKNOWN)) {
1356 break;
1357 } else {
1358 /* Keep track of the next transport in case
1359 * we don't find any active transport.
1360 */
1361 if (t->state != SCTP_UNCONFIRMED && !next)
1362 next = t;
1363 }
1364 }
1365
1366 if (t)
1367 asoc->peer.retran_path = t;
1368 else
1369 t = asoc->peer.retran_path;
1370
1371 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1372 " %p addr: ",
1373 " port: %d\n",
1374 asoc,
1375 (&t->ipaddr),
1376 ntohs(t->ipaddr.v4.sin_port));
1377 }
1378
1379 /* Choose the transport for sending retransmit packet. */
1380 struct sctp_transport *sctp_assoc_choose_alter_transport(
1381 struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1382 {
1383 /* If this is the first time packet is sent, use the active path,
1384 * else use the retran path. If the last packet was sent over the
1385 * retran path, update the retran path and use it.
1386 */
1387 if (!last_sent_to)
1388 return asoc->peer.active_path;
1389 else {
1390 if (last_sent_to == asoc->peer.retran_path)
1391 sctp_assoc_update_retran_path(asoc);
1392 return asoc->peer.retran_path;
1393 }
1394 }
1395
1396 /* Update the association's pmtu and frag_point by going through all the
1397 * transports. This routine is called when a transport's PMTU has changed.
1398 */
1399 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1400 {
1401 struct sctp_transport *t;
1402 __u32 pmtu = 0;
1403
1404 if (!asoc)
1405 return;
1406
1407 /* Get the lowest pmtu of all the transports. */
1408 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1409 transports) {
1410 if (t->pmtu_pending && t->dst) {
1411 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1412 t->pmtu_pending = 0;
1413 }
1414 if (!pmtu || (t->pathmtu < pmtu))
1415 pmtu = t->pathmtu;
1416 }
1417
1418 if (pmtu) {
1419 asoc->pathmtu = pmtu;
1420 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1421 }
1422
1423 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1424 __func__, asoc, asoc->pathmtu, asoc->frag_point);
1425 }
1426
1427 /* Should we send a SACK to update our peer? */
1428 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1429 {
1430 struct net *net = sock_net(asoc->base.sk);
1431 switch (asoc->state) {
1432 case SCTP_STATE_ESTABLISHED:
1433 case SCTP_STATE_SHUTDOWN_PENDING:
1434 case SCTP_STATE_SHUTDOWN_RECEIVED:
1435 case SCTP_STATE_SHUTDOWN_SENT:
1436 if ((asoc->rwnd > asoc->a_rwnd) &&
1437 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1438 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1439 asoc->pathmtu)))
1440 return 1;
1441 break;
1442 default:
1443 break;
1444 }
1445 return 0;
1446 }
1447
1448 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1449 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1450 {
1451 struct sctp_chunk *sack;
1452 struct timer_list *timer;
1453
1454 if (asoc->rwnd_over) {
1455 if (asoc->rwnd_over >= len) {
1456 asoc->rwnd_over -= len;
1457 } else {
1458 asoc->rwnd += (len - asoc->rwnd_over);
1459 asoc->rwnd_over = 0;
1460 }
1461 } else {
1462 asoc->rwnd += len;
1463 }
1464
1465 /* If we had window pressure, start recovering it
1466 * once our rwnd had reached the accumulated pressure
1467 * threshold. The idea is to recover slowly, but up
1468 * to the initial advertised window.
1469 */
1470 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1471 int change = min(asoc->pathmtu, asoc->rwnd_press);
1472 asoc->rwnd += change;
1473 asoc->rwnd_press -= change;
1474 }
1475
1476 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1477 "- %u\n", __func__, asoc, len, asoc->rwnd,
1478 asoc->rwnd_over, asoc->a_rwnd);
1479
1480 /* Send a window update SACK if the rwnd has increased by at least the
1481 * minimum of the association's PMTU and half of the receive buffer.
1482 * The algorithm used is similar to the one described in
1483 * Section 4.2.3.3 of RFC 1122.
1484 */
1485 if (sctp_peer_needs_update(asoc)) {
1486 asoc->a_rwnd = asoc->rwnd;
1487 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1488 "rwnd: %u a_rwnd: %u\n", __func__,
1489 asoc, asoc->rwnd, asoc->a_rwnd);
1490 sack = sctp_make_sack(asoc);
1491 if (!sack)
1492 return;
1493
1494 asoc->peer.sack_needed = 0;
1495
1496 sctp_outq_tail(&asoc->outqueue, sack);
1497
1498 /* Stop the SACK timer. */
1499 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1500 if (timer_pending(timer) && del_timer(timer))
1501 sctp_association_put(asoc);
1502 }
1503 }
1504
1505 /* Decrease asoc's rwnd by len. */
1506 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1507 {
1508 int rx_count;
1509 int over = 0;
1510
1511 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1512 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1513
1514 if (asoc->ep->rcvbuf_policy)
1515 rx_count = atomic_read(&asoc->rmem_alloc);
1516 else
1517 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1518
1519 /* If we've reached or overflowed our receive buffer, announce
1520 * a 0 rwnd if rwnd would still be positive. Store the
1521 * the pottential pressure overflow so that the window can be restored
1522 * back to original value.
1523 */
1524 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1525 over = 1;
1526
1527 if (asoc->rwnd >= len) {
1528 asoc->rwnd -= len;
1529 if (over) {
1530 asoc->rwnd_press += asoc->rwnd;
1531 asoc->rwnd = 0;
1532 }
1533 } else {
1534 asoc->rwnd_over = len - asoc->rwnd;
1535 asoc->rwnd = 0;
1536 }
1537 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1538 __func__, asoc, len, asoc->rwnd,
1539 asoc->rwnd_over, asoc->rwnd_press);
1540 }
1541
1542 /* Build the bind address list for the association based on info from the
1543 * local endpoint and the remote peer.
1544 */
1545 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1546 sctp_scope_t scope, gfp_t gfp)
1547 {
1548 int flags;
1549
1550 /* Use scoping rules to determine the subset of addresses from
1551 * the endpoint.
1552 */
1553 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1554 if (asoc->peer.ipv4_address)
1555 flags |= SCTP_ADDR4_PEERSUPP;
1556 if (asoc->peer.ipv6_address)
1557 flags |= SCTP_ADDR6_PEERSUPP;
1558
1559 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1560 &asoc->base.bind_addr,
1561 &asoc->ep->base.bind_addr,
1562 scope, gfp, flags);
1563 }
1564
1565 /* Build the association's bind address list from the cookie. */
1566 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1567 struct sctp_cookie *cookie,
1568 gfp_t gfp)
1569 {
1570 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1571 int var_size3 = cookie->raw_addr_list_len;
1572 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1573
1574 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1575 asoc->ep->base.bind_addr.port, gfp);
1576 }
1577
1578 /* Lookup laddr in the bind address list of an association. */
1579 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1580 const union sctp_addr *laddr)
1581 {
1582 int found = 0;
1583
1584 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1585 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1586 sctp_sk(asoc->base.sk)))
1587 found = 1;
1588
1589 return found;
1590 }
1591
1592 /* Set an association id for a given association */
1593 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1594 {
1595 int assoc_id;
1596 int error = 0;
1597
1598 /* If the id is already assigned, keep it. */
1599 if (asoc->assoc_id)
1600 return error;
1601 retry:
1602 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1603 return -ENOMEM;
1604
1605 spin_lock_bh(&sctp_assocs_id_lock);
1606 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1607 idr_low, &assoc_id);
1608 if (!error) {
1609 idr_low = assoc_id + 1;
1610 if (idr_low == INT_MAX)
1611 idr_low = 1;
1612 }
1613 spin_unlock_bh(&sctp_assocs_id_lock);
1614 if (error == -EAGAIN)
1615 goto retry;
1616 else if (error)
1617 return error;
1618
1619 asoc->assoc_id = (sctp_assoc_t) assoc_id;
1620 return error;
1621 }
1622
1623 /* Free the ASCONF queue */
1624 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1625 {
1626 struct sctp_chunk *asconf;
1627 struct sctp_chunk *tmp;
1628
1629 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1630 list_del_init(&asconf->list);
1631 sctp_chunk_free(asconf);
1632 }
1633 }
1634
1635 /* Free asconf_ack cache */
1636 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1637 {
1638 struct sctp_chunk *ack;
1639 struct sctp_chunk *tmp;
1640
1641 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1642 transmitted_list) {
1643 list_del_init(&ack->transmitted_list);
1644 sctp_chunk_free(ack);
1645 }
1646 }
1647
1648 /* Clean up the ASCONF_ACK queue */
1649 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1650 {
1651 struct sctp_chunk *ack;
1652 struct sctp_chunk *tmp;
1653
1654 /* We can remove all the entries from the queue up to
1655 * the "Peer-Sequence-Number".
1656 */
1657 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1658 transmitted_list) {
1659 if (ack->subh.addip_hdr->serial ==
1660 htonl(asoc->peer.addip_serial))
1661 break;
1662
1663 list_del_init(&ack->transmitted_list);
1664 sctp_chunk_free(ack);
1665 }
1666 }
1667
1668 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1669 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1670 const struct sctp_association *asoc,
1671 __be32 serial)
1672 {
1673 struct sctp_chunk *ack;
1674
1675 /* Walk through the list of cached ASCONF-ACKs and find the
1676 * ack chunk whose serial number matches that of the request.
1677 */
1678 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1679 if (ack->subh.addip_hdr->serial == serial) {
1680 sctp_chunk_hold(ack);
1681 return ack;
1682 }
1683 }
1684
1685 return NULL;
1686 }
1687
1688 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1689 {
1690 /* Free any cached ASCONF_ACK chunk. */
1691 sctp_assoc_free_asconf_acks(asoc);
1692
1693 /* Free the ASCONF queue. */
1694 sctp_assoc_free_asconf_queue(asoc);
1695
1696 /* Free any cached ASCONF chunk. */
1697 if (asoc->addip_last_asconf)
1698 sctp_chunk_free(asoc->addip_last_asconf);
1699 }
This page took 0.067469 seconds and 5 git commands to generate.