Merge git://git.linux-xtensa.org/kernel/xtensa-feed
[deliverable/linux.git] / net / sctp / associola.c
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel reference Implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * The SCTP reference implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * The SCTP reference implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Ryan Layer <rmlayer@us.ibm.com>
45 * Kevin Gao <kevin.gao@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/poll.h>
54 #include <linux/init.h>
55
56 #include <linux/slab.h>
57 #include <linux/in.h>
58 #include <net/ipv6.h>
59 #include <net/sctp/sctp.h>
60 #include <net/sctp/sm.h>
61
62 /* Forward declarations for internal functions. */
63 static void sctp_assoc_bh_rcv(struct work_struct *work);
64
65
66 /* 1st Level Abstractions. */
67
68 /* Initialize a new association from provided memory. */
69 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
70 const struct sctp_endpoint *ep,
71 const struct sock *sk,
72 sctp_scope_t scope,
73 gfp_t gfp)
74 {
75 struct sctp_sock *sp;
76 int i;
77
78 /* Retrieve the SCTP per socket area. */
79 sp = sctp_sk((struct sock *)sk);
80
81 /* Init all variables to a known value. */
82 memset(asoc, 0, sizeof(struct sctp_association));
83
84 /* Discarding const is appropriate here. */
85 asoc->ep = (struct sctp_endpoint *)ep;
86 sctp_endpoint_hold(asoc->ep);
87
88 /* Hold the sock. */
89 asoc->base.sk = (struct sock *)sk;
90 sock_hold(asoc->base.sk);
91
92 /* Initialize the common base substructure. */
93 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
94
95 /* Initialize the object handling fields. */
96 atomic_set(&asoc->base.refcnt, 1);
97 asoc->base.dead = 0;
98 asoc->base.malloced = 0;
99
100 /* Initialize the bind addr area. */
101 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
102 rwlock_init(&asoc->base.addr_lock);
103
104 asoc->state = SCTP_STATE_CLOSED;
105
106 /* Set these values from the socket values, a conversion between
107 * millsecons to seconds/microseconds must also be done.
108 */
109 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
110 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
111 * 1000;
112 asoc->frag_point = 0;
113
114 /* Set the association max_retrans and RTO values from the
115 * socket values.
116 */
117 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
118 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
119 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
120 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
121
122 asoc->overall_error_count = 0;
123
124 /* Initialize the association's heartbeat interval based on the
125 * sock configured value.
126 */
127 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
128
129 /* Initialize path max retrans value. */
130 asoc->pathmaxrxt = sp->pathmaxrxt;
131
132 /* Initialize default path MTU. */
133 asoc->pathmtu = sp->pathmtu;
134
135 /* Set association default SACK delay */
136 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
137
138 /* Set the association default flags controlling
139 * Heartbeat, SACK delay, and Path MTU Discovery.
140 */
141 asoc->param_flags = sp->param_flags;
142
143 /* Initialize the maximum mumber of new data packets that can be sent
144 * in a burst.
145 */
146 asoc->max_burst = sp->max_burst;
147
148 /* initialize association timers */
149 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
150 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
151 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
152 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
153 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
154 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
155
156 /* sctpimpguide Section 2.12.2
157 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
158 * recommended value of 5 times 'RTO.Max'.
159 */
160 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
161 = 5 * asoc->rto_max;
162
163 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
164 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
165 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
166 sp->autoclose * HZ;
167
168 /* Initilizes the timers */
169 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
170 init_timer(&asoc->timers[i]);
171 asoc->timers[i].function = sctp_timer_events[i];
172 asoc->timers[i].data = (unsigned long) asoc;
173 }
174
175 /* Pull default initialization values from the sock options.
176 * Note: This assumes that the values have already been
177 * validated in the sock.
178 */
179 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
180 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
181 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
182
183 asoc->max_init_timeo =
184 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
185
186 /* Allocate storage for the ssnmap after the inbound and outbound
187 * streams have been negotiated during Init.
188 */
189 asoc->ssnmap = NULL;
190
191 /* Set the local window size for receive.
192 * This is also the rcvbuf space per association.
193 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
194 * 1500 bytes in one SCTP packet.
195 */
196 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
197 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
198 else
199 asoc->rwnd = sk->sk_rcvbuf/2;
200
201 asoc->a_rwnd = asoc->rwnd;
202
203 asoc->rwnd_over = 0;
204
205 /* Use my own max window until I learn something better. */
206 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
207
208 /* Set the sndbuf size for transmit. */
209 asoc->sndbuf_used = 0;
210
211 /* Initialize the receive memory counter */
212 atomic_set(&asoc->rmem_alloc, 0);
213
214 init_waitqueue_head(&asoc->wait);
215
216 asoc->c.my_vtag = sctp_generate_tag(ep);
217 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
218 asoc->c.peer_vtag = 0;
219 asoc->c.my_ttag = 0;
220 asoc->c.peer_ttag = 0;
221 asoc->c.my_port = ep->base.bind_addr.port;
222
223 asoc->c.initial_tsn = sctp_generate_tsn(ep);
224
225 asoc->next_tsn = asoc->c.initial_tsn;
226
227 asoc->ctsn_ack_point = asoc->next_tsn - 1;
228 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
229 asoc->highest_sacked = asoc->ctsn_ack_point;
230 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
231 asoc->unack_data = 0;
232
233 /* ADDIP Section 4.1 Asconf Chunk Procedures
234 *
235 * When an endpoint has an ASCONF signaled change to be sent to the
236 * remote endpoint it should do the following:
237 * ...
238 * A2) a serial number should be assigned to the chunk. The serial
239 * number SHOULD be a monotonically increasing number. The serial
240 * numbers SHOULD be initialized at the start of the
241 * association to the same value as the initial TSN.
242 */
243 asoc->addip_serial = asoc->c.initial_tsn;
244
245 INIT_LIST_HEAD(&asoc->addip_chunk_list);
246
247 /* Make an empty list of remote transport addresses. */
248 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
249 asoc->peer.transport_count = 0;
250
251 /* RFC 2960 5.1 Normal Establishment of an Association
252 *
253 * After the reception of the first data chunk in an
254 * association the endpoint must immediately respond with a
255 * sack to acknowledge the data chunk. Subsequent
256 * acknowledgements should be done as described in Section
257 * 6.2.
258 *
259 * [We implement this by telling a new association that it
260 * already received one packet.]
261 */
262 asoc->peer.sack_needed = 1;
263
264 /* Assume that the peer recongizes ASCONF until reported otherwise
265 * via an ERROR chunk.
266 */
267 asoc->peer.asconf_capable = 1;
268
269 /* Create an input queue. */
270 sctp_inq_init(&asoc->base.inqueue);
271 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
272
273 /* Create an output queue. */
274 sctp_outq_init(asoc, &asoc->outqueue);
275
276 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
277 goto fail_init;
278
279 /* Set up the tsn tracking. */
280 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0);
281
282 asoc->need_ecne = 0;
283
284 asoc->assoc_id = 0;
285
286 /* Assume that peer would support both address types unless we are
287 * told otherwise.
288 */
289 asoc->peer.ipv4_address = 1;
290 asoc->peer.ipv6_address = 1;
291 INIT_LIST_HEAD(&asoc->asocs);
292
293 asoc->autoclose = sp->autoclose;
294
295 asoc->default_stream = sp->default_stream;
296 asoc->default_ppid = sp->default_ppid;
297 asoc->default_flags = sp->default_flags;
298 asoc->default_context = sp->default_context;
299 asoc->default_timetolive = sp->default_timetolive;
300 asoc->default_rcv_context = sp->default_rcv_context;
301
302 return asoc;
303
304 fail_init:
305 sctp_endpoint_put(asoc->ep);
306 sock_put(asoc->base.sk);
307 return NULL;
308 }
309
310 /* Allocate and initialize a new association */
311 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
312 const struct sock *sk,
313 sctp_scope_t scope,
314 gfp_t gfp)
315 {
316 struct sctp_association *asoc;
317
318 asoc = t_new(struct sctp_association, gfp);
319 if (!asoc)
320 goto fail;
321
322 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
323 goto fail_init;
324
325 asoc->base.malloced = 1;
326 SCTP_DBG_OBJCNT_INC(assoc);
327 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
328
329 return asoc;
330
331 fail_init:
332 kfree(asoc);
333 fail:
334 return NULL;
335 }
336
337 /* Free this association if possible. There may still be users, so
338 * the actual deallocation may be delayed.
339 */
340 void sctp_association_free(struct sctp_association *asoc)
341 {
342 struct sock *sk = asoc->base.sk;
343 struct sctp_transport *transport;
344 struct list_head *pos, *temp;
345 int i;
346
347 /* Only real associations count against the endpoint, so
348 * don't bother for if this is a temporary association.
349 */
350 if (!asoc->temp) {
351 list_del(&asoc->asocs);
352
353 /* Decrement the backlog value for a TCP-style listening
354 * socket.
355 */
356 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
357 sk->sk_ack_backlog--;
358 }
359
360 /* Mark as dead, so other users can know this structure is
361 * going away.
362 */
363 asoc->base.dead = 1;
364
365 /* Dispose of any data lying around in the outqueue. */
366 sctp_outq_free(&asoc->outqueue);
367
368 /* Dispose of any pending messages for the upper layer. */
369 sctp_ulpq_free(&asoc->ulpq);
370
371 /* Dispose of any pending chunks on the inqueue. */
372 sctp_inq_free(&asoc->base.inqueue);
373
374 /* Free ssnmap storage. */
375 sctp_ssnmap_free(asoc->ssnmap);
376
377 /* Clean up the bound address list. */
378 sctp_bind_addr_free(&asoc->base.bind_addr);
379
380 /* Do we need to go through all of our timers and
381 * delete them? To be safe we will try to delete all, but we
382 * should be able to go through and make a guess based
383 * on our state.
384 */
385 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
386 if (timer_pending(&asoc->timers[i]) &&
387 del_timer(&asoc->timers[i]))
388 sctp_association_put(asoc);
389 }
390
391 /* Free peer's cached cookie. */
392 kfree(asoc->peer.cookie);
393
394 /* Release the transport structures. */
395 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
396 transport = list_entry(pos, struct sctp_transport, transports);
397 list_del(pos);
398 sctp_transport_free(transport);
399 }
400
401 asoc->peer.transport_count = 0;
402
403 /* Free any cached ASCONF_ACK chunk. */
404 if (asoc->addip_last_asconf_ack)
405 sctp_chunk_free(asoc->addip_last_asconf_ack);
406
407 /* Free any cached ASCONF chunk. */
408 if (asoc->addip_last_asconf)
409 sctp_chunk_free(asoc->addip_last_asconf);
410
411 sctp_association_put(asoc);
412 }
413
414 /* Cleanup and free up an association. */
415 static void sctp_association_destroy(struct sctp_association *asoc)
416 {
417 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
418
419 sctp_endpoint_put(asoc->ep);
420 sock_put(asoc->base.sk);
421
422 if (asoc->assoc_id != 0) {
423 spin_lock_bh(&sctp_assocs_id_lock);
424 idr_remove(&sctp_assocs_id, asoc->assoc_id);
425 spin_unlock_bh(&sctp_assocs_id_lock);
426 }
427
428 BUG_TRAP(!atomic_read(&asoc->rmem_alloc));
429
430 if (asoc->base.malloced) {
431 kfree(asoc);
432 SCTP_DBG_OBJCNT_DEC(assoc);
433 }
434 }
435
436 /* Change the primary destination address for the peer. */
437 void sctp_assoc_set_primary(struct sctp_association *asoc,
438 struct sctp_transport *transport)
439 {
440 asoc->peer.primary_path = transport;
441
442 /* Set a default msg_name for events. */
443 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
444 sizeof(union sctp_addr));
445
446 /* If the primary path is changing, assume that the
447 * user wants to use this new path.
448 */
449 if ((transport->state == SCTP_ACTIVE) ||
450 (transport->state == SCTP_UNKNOWN))
451 asoc->peer.active_path = transport;
452
453 /*
454 * SFR-CACC algorithm:
455 * Upon the receipt of a request to change the primary
456 * destination address, on the data structure for the new
457 * primary destination, the sender MUST do the following:
458 *
459 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
460 * to this destination address earlier. The sender MUST set
461 * CYCLING_CHANGEOVER to indicate that this switch is a
462 * double switch to the same destination address.
463 */
464 if (transport->cacc.changeover_active)
465 transport->cacc.cycling_changeover = 1;
466
467 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
468 * a changeover has occurred.
469 */
470 transport->cacc.changeover_active = 1;
471
472 /* 3) The sender MUST store the next TSN to be sent in
473 * next_tsn_at_change.
474 */
475 transport->cacc.next_tsn_at_change = asoc->next_tsn;
476 }
477
478 /* Remove a transport from an association. */
479 void sctp_assoc_rm_peer(struct sctp_association *asoc,
480 struct sctp_transport *peer)
481 {
482 struct list_head *pos;
483 struct sctp_transport *transport;
484
485 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
486 " port: %d\n",
487 asoc,
488 (&peer->ipaddr),
489 ntohs(peer->ipaddr.v4.sin_port));
490
491 /* If we are to remove the current retran_path, update it
492 * to the next peer before removing this peer from the list.
493 */
494 if (asoc->peer.retran_path == peer)
495 sctp_assoc_update_retran_path(asoc);
496
497 /* Remove this peer from the list. */
498 list_del(&peer->transports);
499
500 /* Get the first transport of asoc. */
501 pos = asoc->peer.transport_addr_list.next;
502 transport = list_entry(pos, struct sctp_transport, transports);
503
504 /* Update any entries that match the peer to be deleted. */
505 if (asoc->peer.primary_path == peer)
506 sctp_assoc_set_primary(asoc, transport);
507 if (asoc->peer.active_path == peer)
508 asoc->peer.active_path = transport;
509 if (asoc->peer.last_data_from == peer)
510 asoc->peer.last_data_from = transport;
511
512 /* If we remove the transport an INIT was last sent to, set it to
513 * NULL. Combined with the update of the retran path above, this
514 * will cause the next INIT to be sent to the next available
515 * transport, maintaining the cycle.
516 */
517 if (asoc->init_last_sent_to == peer)
518 asoc->init_last_sent_to = NULL;
519
520 asoc->peer.transport_count--;
521
522 sctp_transport_free(peer);
523 }
524
525 /* Add a transport address to an association. */
526 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
527 const union sctp_addr *addr,
528 const gfp_t gfp,
529 const int peer_state)
530 {
531 struct sctp_transport *peer;
532 struct sctp_sock *sp;
533 unsigned short port;
534
535 sp = sctp_sk(asoc->base.sk);
536
537 /* AF_INET and AF_INET6 share common port field. */
538 port = ntohs(addr->v4.sin_port);
539
540 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
541 " port: %d state:%d\n",
542 asoc,
543 addr,
544 port,
545 peer_state);
546
547 /* Set the port if it has not been set yet. */
548 if (0 == asoc->peer.port)
549 asoc->peer.port = port;
550
551 /* Check to see if this is a duplicate. */
552 peer = sctp_assoc_lookup_paddr(asoc, addr);
553 if (peer) {
554 if (peer->state == SCTP_UNKNOWN) {
555 if (peer_state == SCTP_ACTIVE)
556 peer->state = SCTP_ACTIVE;
557 if (peer_state == SCTP_UNCONFIRMED)
558 peer->state = SCTP_UNCONFIRMED;
559 }
560 return peer;
561 }
562
563 peer = sctp_transport_new(addr, gfp);
564 if (!peer)
565 return NULL;
566
567 sctp_transport_set_owner(peer, asoc);
568
569 /* Initialize the peer's heartbeat interval based on the
570 * association configured value.
571 */
572 peer->hbinterval = asoc->hbinterval;
573
574 /* Set the path max_retrans. */
575 peer->pathmaxrxt = asoc->pathmaxrxt;
576
577 /* Initialize the peer's SACK delay timeout based on the
578 * association configured value.
579 */
580 peer->sackdelay = asoc->sackdelay;
581
582 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
583 * based on association setting.
584 */
585 peer->param_flags = asoc->param_flags;
586
587 /* Initialize the pmtu of the transport. */
588 if (peer->param_flags & SPP_PMTUD_ENABLE)
589 sctp_transport_pmtu(peer);
590 else if (asoc->pathmtu)
591 peer->pathmtu = asoc->pathmtu;
592 else
593 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
594
595 /* If this is the first transport addr on this association,
596 * initialize the association PMTU to the peer's PMTU.
597 * If not and the current association PMTU is higher than the new
598 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
599 */
600 if (asoc->pathmtu)
601 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
602 else
603 asoc->pathmtu = peer->pathmtu;
604
605 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
606 "%d\n", asoc, asoc->pathmtu);
607
608 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
609
610 /* The asoc->peer.port might not be meaningful yet, but
611 * initialize the packet structure anyway.
612 */
613 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
614 asoc->peer.port);
615
616 /* 7.2.1 Slow-Start
617 *
618 * o The initial cwnd before DATA transmission or after a sufficiently
619 * long idle period MUST be set to
620 * min(4*MTU, max(2*MTU, 4380 bytes))
621 *
622 * o The initial value of ssthresh MAY be arbitrarily high
623 * (for example, implementations MAY use the size of the
624 * receiver advertised window).
625 */
626 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
627
628 /* At this point, we may not have the receiver's advertised window,
629 * so initialize ssthresh to the default value and it will be set
630 * later when we process the INIT.
631 */
632 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
633
634 peer->partial_bytes_acked = 0;
635 peer->flight_size = 0;
636
637 /* Set the transport's RTO.initial value */
638 peer->rto = asoc->rto_initial;
639
640 /* Set the peer's active state. */
641 peer->state = peer_state;
642
643 /* Attach the remote transport to our asoc. */
644 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
645 asoc->peer.transport_count++;
646
647 /* If we do not yet have a primary path, set one. */
648 if (!asoc->peer.primary_path) {
649 sctp_assoc_set_primary(asoc, peer);
650 asoc->peer.retran_path = peer;
651 }
652
653 if (asoc->peer.active_path == asoc->peer.retran_path) {
654 asoc->peer.retran_path = peer;
655 }
656
657 return peer;
658 }
659
660 /* Delete a transport address from an association. */
661 void sctp_assoc_del_peer(struct sctp_association *asoc,
662 const union sctp_addr *addr)
663 {
664 struct list_head *pos;
665 struct list_head *temp;
666 struct sctp_transport *transport;
667
668 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
669 transport = list_entry(pos, struct sctp_transport, transports);
670 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
671 /* Do book keeping for removing the peer and free it. */
672 sctp_assoc_rm_peer(asoc, transport);
673 break;
674 }
675 }
676 }
677
678 /* Lookup a transport by address. */
679 struct sctp_transport *sctp_assoc_lookup_paddr(
680 const struct sctp_association *asoc,
681 const union sctp_addr *address)
682 {
683 struct sctp_transport *t;
684 struct list_head *pos;
685
686 /* Cycle through all transports searching for a peer address. */
687
688 list_for_each(pos, &asoc->peer.transport_addr_list) {
689 t = list_entry(pos, struct sctp_transport, transports);
690 if (sctp_cmp_addr_exact(address, &t->ipaddr))
691 return t;
692 }
693
694 return NULL;
695 }
696
697 /* Engage in transport control operations.
698 * Mark the transport up or down and send a notification to the user.
699 * Select and update the new active and retran paths.
700 */
701 void sctp_assoc_control_transport(struct sctp_association *asoc,
702 struct sctp_transport *transport,
703 sctp_transport_cmd_t command,
704 sctp_sn_error_t error)
705 {
706 struct sctp_transport *t = NULL;
707 struct sctp_transport *first;
708 struct sctp_transport *second;
709 struct sctp_ulpevent *event;
710 struct sockaddr_storage addr;
711 struct list_head *pos;
712 int spc_state = 0;
713
714 /* Record the transition on the transport. */
715 switch (command) {
716 case SCTP_TRANSPORT_UP:
717 /* If we are moving from UNCONFIRMED state due
718 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
719 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
720 */
721 if (SCTP_UNCONFIRMED == transport->state &&
722 SCTP_HEARTBEAT_SUCCESS == error)
723 spc_state = SCTP_ADDR_CONFIRMED;
724 else
725 spc_state = SCTP_ADDR_AVAILABLE;
726 transport->state = SCTP_ACTIVE;
727 break;
728
729 case SCTP_TRANSPORT_DOWN:
730 /* if the transort was never confirmed, do not transition it
731 * to inactive state.
732 */
733 if (transport->state != SCTP_UNCONFIRMED)
734 transport->state = SCTP_INACTIVE;
735
736 spc_state = SCTP_ADDR_UNREACHABLE;
737 break;
738
739 default:
740 return;
741 }
742
743 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
744 * user.
745 */
746 memset(&addr, 0, sizeof(struct sockaddr_storage));
747 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
748 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
749 0, spc_state, error, GFP_ATOMIC);
750 if (event)
751 sctp_ulpq_tail_event(&asoc->ulpq, event);
752
753 /* Select new active and retran paths. */
754
755 /* Look for the two most recently used active transports.
756 *
757 * This code produces the wrong ordering whenever jiffies
758 * rolls over, but we still get usable transports, so we don't
759 * worry about it.
760 */
761 first = NULL; second = NULL;
762
763 list_for_each(pos, &asoc->peer.transport_addr_list) {
764 t = list_entry(pos, struct sctp_transport, transports);
765
766 if ((t->state == SCTP_INACTIVE) ||
767 (t->state == SCTP_UNCONFIRMED))
768 continue;
769 if (!first || t->last_time_heard > first->last_time_heard) {
770 second = first;
771 first = t;
772 }
773 if (!second || t->last_time_heard > second->last_time_heard)
774 second = t;
775 }
776
777 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
778 *
779 * By default, an endpoint should always transmit to the
780 * primary path, unless the SCTP user explicitly specifies the
781 * destination transport address (and possibly source
782 * transport address) to use.
783 *
784 * [If the primary is active but not most recent, bump the most
785 * recently used transport.]
786 */
787 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
788 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
789 first != asoc->peer.primary_path) {
790 second = first;
791 first = asoc->peer.primary_path;
792 }
793
794 /* If we failed to find a usable transport, just camp on the
795 * primary, even if it is inactive.
796 */
797 if (!first) {
798 first = asoc->peer.primary_path;
799 second = asoc->peer.primary_path;
800 }
801
802 /* Set the active and retran transports. */
803 asoc->peer.active_path = first;
804 asoc->peer.retran_path = second;
805 }
806
807 /* Hold a reference to an association. */
808 void sctp_association_hold(struct sctp_association *asoc)
809 {
810 atomic_inc(&asoc->base.refcnt);
811 }
812
813 /* Release a reference to an association and cleanup
814 * if there are no more references.
815 */
816 void sctp_association_put(struct sctp_association *asoc)
817 {
818 if (atomic_dec_and_test(&asoc->base.refcnt))
819 sctp_association_destroy(asoc);
820 }
821
822 /* Allocate the next TSN, Transmission Sequence Number, for the given
823 * association.
824 */
825 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
826 {
827 /* From Section 1.6 Serial Number Arithmetic:
828 * Transmission Sequence Numbers wrap around when they reach
829 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
830 * after transmitting TSN = 2*32 - 1 is TSN = 0.
831 */
832 __u32 retval = asoc->next_tsn;
833 asoc->next_tsn++;
834 asoc->unack_data++;
835
836 return retval;
837 }
838
839 /* Compare two addresses to see if they match. Wildcard addresses
840 * only match themselves.
841 */
842 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
843 const union sctp_addr *ss2)
844 {
845 struct sctp_af *af;
846
847 af = sctp_get_af_specific(ss1->sa.sa_family);
848 if (unlikely(!af))
849 return 0;
850
851 return af->cmp_addr(ss1, ss2);
852 }
853
854 /* Return an ecne chunk to get prepended to a packet.
855 * Note: We are sly and return a shared, prealloced chunk. FIXME:
856 * No we don't, but we could/should.
857 */
858 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
859 {
860 struct sctp_chunk *chunk;
861
862 /* Send ECNE if needed.
863 * Not being able to allocate a chunk here is not deadly.
864 */
865 if (asoc->need_ecne)
866 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
867 else
868 chunk = NULL;
869
870 return chunk;
871 }
872
873 /*
874 * Find which transport this TSN was sent on.
875 */
876 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
877 __u32 tsn)
878 {
879 struct sctp_transport *active;
880 struct sctp_transport *match;
881 struct list_head *entry, *pos;
882 struct sctp_transport *transport;
883 struct sctp_chunk *chunk;
884 __be32 key = htonl(tsn);
885
886 match = NULL;
887
888 /*
889 * FIXME: In general, find a more efficient data structure for
890 * searching.
891 */
892
893 /*
894 * The general strategy is to search each transport's transmitted
895 * list. Return which transport this TSN lives on.
896 *
897 * Let's be hopeful and check the active_path first.
898 * Another optimization would be to know if there is only one
899 * outbound path and not have to look for the TSN at all.
900 *
901 */
902
903 active = asoc->peer.active_path;
904
905 list_for_each(entry, &active->transmitted) {
906 chunk = list_entry(entry, struct sctp_chunk, transmitted_list);
907
908 if (key == chunk->subh.data_hdr->tsn) {
909 match = active;
910 goto out;
911 }
912 }
913
914 /* If not found, go search all the other transports. */
915 list_for_each(pos, &asoc->peer.transport_addr_list) {
916 transport = list_entry(pos, struct sctp_transport, transports);
917
918 if (transport == active)
919 break;
920 list_for_each(entry, &transport->transmitted) {
921 chunk = list_entry(entry, struct sctp_chunk,
922 transmitted_list);
923 if (key == chunk->subh.data_hdr->tsn) {
924 match = transport;
925 goto out;
926 }
927 }
928 }
929 out:
930 return match;
931 }
932
933 /* Is this the association we are looking for? */
934 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
935 const union sctp_addr *laddr,
936 const union sctp_addr *paddr)
937 {
938 struct sctp_transport *transport;
939
940 sctp_read_lock(&asoc->base.addr_lock);
941
942 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
943 (htons(asoc->peer.port) == paddr->v4.sin_port)) {
944 transport = sctp_assoc_lookup_paddr(asoc, paddr);
945 if (!transport)
946 goto out;
947
948 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
949 sctp_sk(asoc->base.sk)))
950 goto out;
951 }
952 transport = NULL;
953
954 out:
955 sctp_read_unlock(&asoc->base.addr_lock);
956 return transport;
957 }
958
959 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
960 static void sctp_assoc_bh_rcv(struct work_struct *work)
961 {
962 struct sctp_association *asoc =
963 container_of(work, struct sctp_association,
964 base.inqueue.immediate);
965 struct sctp_endpoint *ep;
966 struct sctp_chunk *chunk;
967 struct sock *sk;
968 struct sctp_inq *inqueue;
969 int state;
970 sctp_subtype_t subtype;
971 int error = 0;
972
973 /* The association should be held so we should be safe. */
974 ep = asoc->ep;
975 sk = asoc->base.sk;
976
977 inqueue = &asoc->base.inqueue;
978 sctp_association_hold(asoc);
979 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
980 state = asoc->state;
981 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
982
983 /* Remember where the last DATA chunk came from so we
984 * know where to send the SACK.
985 */
986 if (sctp_chunk_is_data(chunk))
987 asoc->peer.last_data_from = chunk->transport;
988 else
989 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
990
991 if (chunk->transport)
992 chunk->transport->last_time_heard = jiffies;
993
994 /* Run through the state machine. */
995 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
996 state, ep, asoc, chunk, GFP_ATOMIC);
997
998 /* Check to see if the association is freed in response to
999 * the incoming chunk. If so, get out of the while loop.
1000 */
1001 if (asoc->base.dead)
1002 break;
1003
1004 /* If there is an error on chunk, discard this packet. */
1005 if (error && chunk)
1006 chunk->pdiscard = 1;
1007 }
1008 sctp_association_put(asoc);
1009 }
1010
1011 /* This routine moves an association from its old sk to a new sk. */
1012 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1013 {
1014 struct sctp_sock *newsp = sctp_sk(newsk);
1015 struct sock *oldsk = assoc->base.sk;
1016
1017 /* Delete the association from the old endpoint's list of
1018 * associations.
1019 */
1020 list_del_init(&assoc->asocs);
1021
1022 /* Decrement the backlog value for a TCP-style socket. */
1023 if (sctp_style(oldsk, TCP))
1024 oldsk->sk_ack_backlog--;
1025
1026 /* Release references to the old endpoint and the sock. */
1027 sctp_endpoint_put(assoc->ep);
1028 sock_put(assoc->base.sk);
1029
1030 /* Get a reference to the new endpoint. */
1031 assoc->ep = newsp->ep;
1032 sctp_endpoint_hold(assoc->ep);
1033
1034 /* Get a reference to the new sock. */
1035 assoc->base.sk = newsk;
1036 sock_hold(assoc->base.sk);
1037
1038 /* Add the association to the new endpoint's list of associations. */
1039 sctp_endpoint_add_asoc(newsp->ep, assoc);
1040 }
1041
1042 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1043 void sctp_assoc_update(struct sctp_association *asoc,
1044 struct sctp_association *new)
1045 {
1046 struct sctp_transport *trans;
1047 struct list_head *pos, *temp;
1048
1049 /* Copy in new parameters of peer. */
1050 asoc->c = new->c;
1051 asoc->peer.rwnd = new->peer.rwnd;
1052 asoc->peer.sack_needed = new->peer.sack_needed;
1053 asoc->peer.i = new->peer.i;
1054 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE,
1055 asoc->peer.i.initial_tsn);
1056
1057 /* Remove any peer addresses not present in the new association. */
1058 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1059 trans = list_entry(pos, struct sctp_transport, transports);
1060 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr))
1061 sctp_assoc_del_peer(asoc, &trans->ipaddr);
1062
1063 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1064 sctp_transport_reset(trans);
1065 }
1066
1067 /* If the case is A (association restart), use
1068 * initial_tsn as next_tsn. If the case is B, use
1069 * current next_tsn in case data sent to peer
1070 * has been discarded and needs retransmission.
1071 */
1072 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1073 asoc->next_tsn = new->next_tsn;
1074 asoc->ctsn_ack_point = new->ctsn_ack_point;
1075 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1076
1077 /* Reinitialize SSN for both local streams
1078 * and peer's streams.
1079 */
1080 sctp_ssnmap_clear(asoc->ssnmap);
1081
1082 /* Flush the ULP reassembly and ordered queue.
1083 * Any data there will now be stale and will
1084 * cause problems.
1085 */
1086 sctp_ulpq_flush(&asoc->ulpq);
1087
1088 /* reset the overall association error count so
1089 * that the restarted association doesn't get torn
1090 * down on the next retransmission timer.
1091 */
1092 asoc->overall_error_count = 0;
1093
1094 } else {
1095 /* Add any peer addresses from the new association. */
1096 list_for_each(pos, &new->peer.transport_addr_list) {
1097 trans = list_entry(pos, struct sctp_transport,
1098 transports);
1099 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1100 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1101 GFP_ATOMIC, trans->state);
1102 }
1103
1104 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1105 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1106 if (!asoc->ssnmap) {
1107 /* Move the ssnmap. */
1108 asoc->ssnmap = new->ssnmap;
1109 new->ssnmap = NULL;
1110 }
1111
1112 if (!asoc->assoc_id) {
1113 /* get a new association id since we don't have one
1114 * yet.
1115 */
1116 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1117 }
1118 }
1119 }
1120
1121 /* Update the retran path for sending a retransmitted packet.
1122 * Round-robin through the active transports, else round-robin
1123 * through the inactive transports as this is the next best thing
1124 * we can try.
1125 */
1126 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1127 {
1128 struct sctp_transport *t, *next;
1129 struct list_head *head = &asoc->peer.transport_addr_list;
1130 struct list_head *pos;
1131
1132 /* Find the next transport in a round-robin fashion. */
1133 t = asoc->peer.retran_path;
1134 pos = &t->transports;
1135 next = NULL;
1136
1137 while (1) {
1138 /* Skip the head. */
1139 if (pos->next == head)
1140 pos = head->next;
1141 else
1142 pos = pos->next;
1143
1144 t = list_entry(pos, struct sctp_transport, transports);
1145
1146 /* Try to find an active transport. */
1147
1148 if ((t->state == SCTP_ACTIVE) ||
1149 (t->state == SCTP_UNKNOWN)) {
1150 break;
1151 } else {
1152 /* Keep track of the next transport in case
1153 * we don't find any active transport.
1154 */
1155 if (!next)
1156 next = t;
1157 }
1158
1159 /* We have exhausted the list, but didn't find any
1160 * other active transports. If so, use the next
1161 * transport.
1162 */
1163 if (t == asoc->peer.retran_path) {
1164 t = next;
1165 break;
1166 }
1167 }
1168
1169 asoc->peer.retran_path = t;
1170
1171 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1172 " %p addr: ",
1173 " port: %d\n",
1174 asoc,
1175 (&t->ipaddr),
1176 ntohs(t->ipaddr.v4.sin_port));
1177 }
1178
1179 /* Choose the transport for sending a INIT packet. */
1180 struct sctp_transport *sctp_assoc_choose_init_transport(
1181 struct sctp_association *asoc)
1182 {
1183 struct sctp_transport *t;
1184
1185 /* Use the retran path. If the last INIT was sent over the
1186 * retran path, update the retran path and use it.
1187 */
1188 if (!asoc->init_last_sent_to) {
1189 t = asoc->peer.active_path;
1190 } else {
1191 if (asoc->init_last_sent_to == asoc->peer.retran_path)
1192 sctp_assoc_update_retran_path(asoc);
1193 t = asoc->peer.retran_path;
1194 }
1195
1196 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1197 " %p addr: ",
1198 " port: %d\n",
1199 asoc,
1200 (&t->ipaddr),
1201 ntohs(t->ipaddr.v4.sin_port));
1202
1203 return t;
1204 }
1205
1206 /* Choose the transport for sending a SHUTDOWN packet. */
1207 struct sctp_transport *sctp_assoc_choose_shutdown_transport(
1208 struct sctp_association *asoc)
1209 {
1210 /* If this is the first time SHUTDOWN is sent, use the active path,
1211 * else use the retran path. If the last SHUTDOWN was sent over the
1212 * retran path, update the retran path and use it.
1213 */
1214 if (!asoc->shutdown_last_sent_to)
1215 return asoc->peer.active_path;
1216 else {
1217 if (asoc->shutdown_last_sent_to == asoc->peer.retran_path)
1218 sctp_assoc_update_retran_path(asoc);
1219 return asoc->peer.retran_path;
1220 }
1221
1222 }
1223
1224 /* Update the association's pmtu and frag_point by going through all the
1225 * transports. This routine is called when a transport's PMTU has changed.
1226 */
1227 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1228 {
1229 struct sctp_transport *t;
1230 struct list_head *pos;
1231 __u32 pmtu = 0;
1232
1233 if (!asoc)
1234 return;
1235
1236 /* Get the lowest pmtu of all the transports. */
1237 list_for_each(pos, &asoc->peer.transport_addr_list) {
1238 t = list_entry(pos, struct sctp_transport, transports);
1239 if (t->pmtu_pending && t->dst) {
1240 sctp_transport_update_pmtu(t, dst_mtu(t->dst));
1241 t->pmtu_pending = 0;
1242 }
1243 if (!pmtu || (t->pathmtu < pmtu))
1244 pmtu = t->pathmtu;
1245 }
1246
1247 if (pmtu) {
1248 struct sctp_sock *sp = sctp_sk(asoc->base.sk);
1249 asoc->pathmtu = pmtu;
1250 asoc->frag_point = sctp_frag_point(sp, pmtu);
1251 }
1252
1253 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1254 __FUNCTION__, asoc, asoc->pathmtu, asoc->frag_point);
1255 }
1256
1257 /* Should we send a SACK to update our peer? */
1258 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1259 {
1260 switch (asoc->state) {
1261 case SCTP_STATE_ESTABLISHED:
1262 case SCTP_STATE_SHUTDOWN_PENDING:
1263 case SCTP_STATE_SHUTDOWN_RECEIVED:
1264 case SCTP_STATE_SHUTDOWN_SENT:
1265 if ((asoc->rwnd > asoc->a_rwnd) &&
1266 ((asoc->rwnd - asoc->a_rwnd) >=
1267 min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu)))
1268 return 1;
1269 break;
1270 default:
1271 break;
1272 }
1273 return 0;
1274 }
1275
1276 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1277 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1278 {
1279 struct sctp_chunk *sack;
1280 struct timer_list *timer;
1281
1282 if (asoc->rwnd_over) {
1283 if (asoc->rwnd_over >= len) {
1284 asoc->rwnd_over -= len;
1285 } else {
1286 asoc->rwnd += (len - asoc->rwnd_over);
1287 asoc->rwnd_over = 0;
1288 }
1289 } else {
1290 asoc->rwnd += len;
1291 }
1292
1293 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1294 "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd,
1295 asoc->rwnd_over, asoc->a_rwnd);
1296
1297 /* Send a window update SACK if the rwnd has increased by at least the
1298 * minimum of the association's PMTU and half of the receive buffer.
1299 * The algorithm used is similar to the one described in
1300 * Section 4.2.3.3 of RFC 1122.
1301 */
1302 if (sctp_peer_needs_update(asoc)) {
1303 asoc->a_rwnd = asoc->rwnd;
1304 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1305 "rwnd: %u a_rwnd: %u\n", __FUNCTION__,
1306 asoc, asoc->rwnd, asoc->a_rwnd);
1307 sack = sctp_make_sack(asoc);
1308 if (!sack)
1309 return;
1310
1311 asoc->peer.sack_needed = 0;
1312
1313 sctp_outq_tail(&asoc->outqueue, sack);
1314
1315 /* Stop the SACK timer. */
1316 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1317 if (timer_pending(timer) && del_timer(timer))
1318 sctp_association_put(asoc);
1319 }
1320 }
1321
1322 /* Decrease asoc's rwnd by len. */
1323 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1324 {
1325 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1326 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1327 if (asoc->rwnd >= len) {
1328 asoc->rwnd -= len;
1329 } else {
1330 asoc->rwnd_over = len - asoc->rwnd;
1331 asoc->rwnd = 0;
1332 }
1333 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
1334 __FUNCTION__, asoc, len, asoc->rwnd,
1335 asoc->rwnd_over);
1336 }
1337
1338 /* Build the bind address list for the association based on info from the
1339 * local endpoint and the remote peer.
1340 */
1341 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1342 gfp_t gfp)
1343 {
1344 sctp_scope_t scope;
1345 int flags;
1346
1347 /* Use scoping rules to determine the subset of addresses from
1348 * the endpoint.
1349 */
1350 scope = sctp_scope(&asoc->peer.active_path->ipaddr);
1351 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1352 if (asoc->peer.ipv4_address)
1353 flags |= SCTP_ADDR4_PEERSUPP;
1354 if (asoc->peer.ipv6_address)
1355 flags |= SCTP_ADDR6_PEERSUPP;
1356
1357 return sctp_bind_addr_copy(&asoc->base.bind_addr,
1358 &asoc->ep->base.bind_addr,
1359 scope, gfp, flags);
1360 }
1361
1362 /* Build the association's bind address list from the cookie. */
1363 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1364 struct sctp_cookie *cookie,
1365 gfp_t gfp)
1366 {
1367 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1368 int var_size3 = cookie->raw_addr_list_len;
1369 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1370
1371 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1372 asoc->ep->base.bind_addr.port, gfp);
1373 }
1374
1375 /* Lookup laddr in the bind address list of an association. */
1376 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1377 const union sctp_addr *laddr)
1378 {
1379 int found;
1380
1381 sctp_read_lock(&asoc->base.addr_lock);
1382 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1383 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1384 sctp_sk(asoc->base.sk))) {
1385 found = 1;
1386 goto out;
1387 }
1388
1389 found = 0;
1390 out:
1391 sctp_read_unlock(&asoc->base.addr_lock);
1392 return found;
1393 }
1394
1395 /* Set an association id for a given association */
1396 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1397 {
1398 int assoc_id;
1399 int error = 0;
1400 retry:
1401 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1402 return -ENOMEM;
1403
1404 spin_lock_bh(&sctp_assocs_id_lock);
1405 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1406 1, &assoc_id);
1407 spin_unlock_bh(&sctp_assocs_id_lock);
1408 if (error == -EAGAIN)
1409 goto retry;
1410 else if (error)
1411 return error;
1412
1413 asoc->assoc_id = (sctp_assoc_t) assoc_id;
1414 return error;
1415 }
This page took 0.062813 seconds and 6 git commands to generate.