Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / net / sctp / auth.c
1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3 *
4 * This file is part of the SCTP kernel implementation
5 *
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, write to
20 * the Free Software Foundation, 59 Temple Place - Suite 330,
21 * Boston, MA 02111-1307, USA.
22 *
23 * Please send any bug reports or fixes you make to the
24 * email address(es):
25 * lksctp developers <linux-sctp@vger.kernel.org>
26 *
27 * Written or modified by:
28 * Vlad Yasevich <vladislav.yasevich@hp.com>
29 */
30
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <net/sctp/sctp.h>
36 #include <net/sctp/auth.h>
37
38 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
39 {
40 /* id 0 is reserved. as all 0 */
41 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
42 },
43 {
44 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
45 .hmac_name="hmac(sha1)",
46 .hmac_len = SCTP_SHA1_SIG_SIZE,
47 },
48 {
49 /* id 2 is reserved as well */
50 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
51 },
52 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
53 {
54 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
55 .hmac_name="hmac(sha256)",
56 .hmac_len = SCTP_SHA256_SIG_SIZE,
57 }
58 #endif
59 };
60
61
62 void sctp_auth_key_put(struct sctp_auth_bytes *key)
63 {
64 if (!key)
65 return;
66
67 if (atomic_dec_and_test(&key->refcnt)) {
68 kzfree(key);
69 SCTP_DBG_OBJCNT_DEC(keys);
70 }
71 }
72
73 /* Create a new key structure of a given length */
74 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
75 {
76 struct sctp_auth_bytes *key;
77
78 /* Verify that we are not going to overflow INT_MAX */
79 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
80 return NULL;
81
82 /* Allocate the shared key */
83 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
84 if (!key)
85 return NULL;
86
87 key->len = key_len;
88 atomic_set(&key->refcnt, 1);
89 SCTP_DBG_OBJCNT_INC(keys);
90
91 return key;
92 }
93
94 /* Create a new shared key container with a give key id */
95 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
96 {
97 struct sctp_shared_key *new;
98
99 /* Allocate the shared key container */
100 new = kzalloc(sizeof(struct sctp_shared_key), gfp);
101 if (!new)
102 return NULL;
103
104 INIT_LIST_HEAD(&new->key_list);
105 new->key_id = key_id;
106
107 return new;
108 }
109
110 /* Free the shared key structure */
111 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
112 {
113 BUG_ON(!list_empty(&sh_key->key_list));
114 sctp_auth_key_put(sh_key->key);
115 sh_key->key = NULL;
116 kfree(sh_key);
117 }
118
119 /* Destroy the entire key list. This is done during the
120 * associon and endpoint free process.
121 */
122 void sctp_auth_destroy_keys(struct list_head *keys)
123 {
124 struct sctp_shared_key *ep_key;
125 struct sctp_shared_key *tmp;
126
127 if (list_empty(keys))
128 return;
129
130 key_for_each_safe(ep_key, tmp, keys) {
131 list_del_init(&ep_key->key_list);
132 sctp_auth_shkey_free(ep_key);
133 }
134 }
135
136 /* Compare two byte vectors as numbers. Return values
137 * are:
138 * 0 - vectors are equal
139 * < 0 - vector 1 is smaller than vector2
140 * > 0 - vector 1 is greater than vector2
141 *
142 * Algorithm is:
143 * This is performed by selecting the numerically smaller key vector...
144 * If the key vectors are equal as numbers but differ in length ...
145 * the shorter vector is considered smaller
146 *
147 * Examples (with small values):
148 * 000123456789 > 123456789 (first number is longer)
149 * 000123456789 < 234567891 (second number is larger numerically)
150 * 123456789 > 2345678 (first number is both larger & longer)
151 */
152 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
153 struct sctp_auth_bytes *vector2)
154 {
155 int diff;
156 int i;
157 const __u8 *longer;
158
159 diff = vector1->len - vector2->len;
160 if (diff) {
161 longer = (diff > 0) ? vector1->data : vector2->data;
162
163 /* Check to see if the longer number is
164 * lead-zero padded. If it is not, it
165 * is automatically larger numerically.
166 */
167 for (i = 0; i < abs(diff); i++ ) {
168 if (longer[i] != 0)
169 return diff;
170 }
171 }
172
173 /* lengths are the same, compare numbers */
174 return memcmp(vector1->data, vector2->data, vector1->len);
175 }
176
177 /*
178 * Create a key vector as described in SCTP-AUTH, Section 6.1
179 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
180 * parameter sent by each endpoint are concatenated as byte vectors.
181 * These parameters include the parameter type, parameter length, and
182 * the parameter value, but padding is omitted; all padding MUST be
183 * removed from this concatenation before proceeding with further
184 * computation of keys. Parameters which were not sent are simply
185 * omitted from the concatenation process. The resulting two vectors
186 * are called the two key vectors.
187 */
188 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
189 sctp_random_param_t *random,
190 sctp_chunks_param_t *chunks,
191 sctp_hmac_algo_param_t *hmacs,
192 gfp_t gfp)
193 {
194 struct sctp_auth_bytes *new;
195 __u32 len;
196 __u32 offset = 0;
197 __u16 random_len, hmacs_len, chunks_len = 0;
198
199 random_len = ntohs(random->param_hdr.length);
200 hmacs_len = ntohs(hmacs->param_hdr.length);
201 if (chunks)
202 chunks_len = ntohs(chunks->param_hdr.length);
203
204 len = random_len + hmacs_len + chunks_len;
205
206 new = sctp_auth_create_key(len, gfp);
207 if (!new)
208 return NULL;
209
210 memcpy(new->data, random, random_len);
211 offset += random_len;
212
213 if (chunks) {
214 memcpy(new->data + offset, chunks, chunks_len);
215 offset += chunks_len;
216 }
217
218 memcpy(new->data + offset, hmacs, hmacs_len);
219
220 return new;
221 }
222
223
224 /* Make a key vector based on our local parameters */
225 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
226 const struct sctp_association *asoc,
227 gfp_t gfp)
228 {
229 return sctp_auth_make_key_vector(
230 (sctp_random_param_t*)asoc->c.auth_random,
231 (sctp_chunks_param_t*)asoc->c.auth_chunks,
232 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
233 gfp);
234 }
235
236 /* Make a key vector based on peer's parameters */
237 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
238 const struct sctp_association *asoc,
239 gfp_t gfp)
240 {
241 return sctp_auth_make_key_vector(asoc->peer.peer_random,
242 asoc->peer.peer_chunks,
243 asoc->peer.peer_hmacs,
244 gfp);
245 }
246
247
248 /* Set the value of the association shared key base on the parameters
249 * given. The algorithm is:
250 * From the endpoint pair shared keys and the key vectors the
251 * association shared keys are computed. This is performed by selecting
252 * the numerically smaller key vector and concatenating it to the
253 * endpoint pair shared key, and then concatenating the numerically
254 * larger key vector to that. The result of the concatenation is the
255 * association shared key.
256 */
257 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
258 struct sctp_shared_key *ep_key,
259 struct sctp_auth_bytes *first_vector,
260 struct sctp_auth_bytes *last_vector,
261 gfp_t gfp)
262 {
263 struct sctp_auth_bytes *secret;
264 __u32 offset = 0;
265 __u32 auth_len;
266
267 auth_len = first_vector->len + last_vector->len;
268 if (ep_key->key)
269 auth_len += ep_key->key->len;
270
271 secret = sctp_auth_create_key(auth_len, gfp);
272 if (!secret)
273 return NULL;
274
275 if (ep_key->key) {
276 memcpy(secret->data, ep_key->key->data, ep_key->key->len);
277 offset += ep_key->key->len;
278 }
279
280 memcpy(secret->data + offset, first_vector->data, first_vector->len);
281 offset += first_vector->len;
282
283 memcpy(secret->data + offset, last_vector->data, last_vector->len);
284
285 return secret;
286 }
287
288 /* Create an association shared key. Follow the algorithm
289 * described in SCTP-AUTH, Section 6.1
290 */
291 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
292 const struct sctp_association *asoc,
293 struct sctp_shared_key *ep_key,
294 gfp_t gfp)
295 {
296 struct sctp_auth_bytes *local_key_vector;
297 struct sctp_auth_bytes *peer_key_vector;
298 struct sctp_auth_bytes *first_vector,
299 *last_vector;
300 struct sctp_auth_bytes *secret = NULL;
301 int cmp;
302
303
304 /* Now we need to build the key vectors
305 * SCTP-AUTH , Section 6.1
306 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
307 * parameter sent by each endpoint are concatenated as byte vectors.
308 * These parameters include the parameter type, parameter length, and
309 * the parameter value, but padding is omitted; all padding MUST be
310 * removed from this concatenation before proceeding with further
311 * computation of keys. Parameters which were not sent are simply
312 * omitted from the concatenation process. The resulting two vectors
313 * are called the two key vectors.
314 */
315
316 local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
317 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
318
319 if (!peer_key_vector || !local_key_vector)
320 goto out;
321
322 /* Figure out the order in which the key_vectors will be
323 * added to the endpoint shared key.
324 * SCTP-AUTH, Section 6.1:
325 * This is performed by selecting the numerically smaller key
326 * vector and concatenating it to the endpoint pair shared
327 * key, and then concatenating the numerically larger key
328 * vector to that. If the key vectors are equal as numbers
329 * but differ in length, then the concatenation order is the
330 * endpoint shared key, followed by the shorter key vector,
331 * followed by the longer key vector. Otherwise, the key
332 * vectors are identical, and may be concatenated to the
333 * endpoint pair key in any order.
334 */
335 cmp = sctp_auth_compare_vectors(local_key_vector,
336 peer_key_vector);
337 if (cmp < 0) {
338 first_vector = local_key_vector;
339 last_vector = peer_key_vector;
340 } else {
341 first_vector = peer_key_vector;
342 last_vector = local_key_vector;
343 }
344
345 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
346 gfp);
347 out:
348 sctp_auth_key_put(local_key_vector);
349 sctp_auth_key_put(peer_key_vector);
350
351 return secret;
352 }
353
354 /*
355 * Populate the association overlay list with the list
356 * from the endpoint.
357 */
358 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
359 struct sctp_association *asoc,
360 gfp_t gfp)
361 {
362 struct sctp_shared_key *sh_key;
363 struct sctp_shared_key *new;
364
365 BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
366
367 key_for_each(sh_key, &ep->endpoint_shared_keys) {
368 new = sctp_auth_shkey_create(sh_key->key_id, gfp);
369 if (!new)
370 goto nomem;
371
372 new->key = sh_key->key;
373 sctp_auth_key_hold(new->key);
374 list_add(&new->key_list, &asoc->endpoint_shared_keys);
375 }
376
377 return 0;
378
379 nomem:
380 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
381 return -ENOMEM;
382 }
383
384
385 /* Public interface to creat the association shared key.
386 * See code above for the algorithm.
387 */
388 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
389 {
390 struct net *net = sock_net(asoc->base.sk);
391 struct sctp_auth_bytes *secret;
392 struct sctp_shared_key *ep_key;
393
394 /* If we don't support AUTH, or peer is not capable
395 * we don't need to do anything.
396 */
397 if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
398 return 0;
399
400 /* If the key_id is non-zero and we couldn't find an
401 * endpoint pair shared key, we can't compute the
402 * secret.
403 * For key_id 0, endpoint pair shared key is a NULL key.
404 */
405 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
406 BUG_ON(!ep_key);
407
408 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
409 if (!secret)
410 return -ENOMEM;
411
412 sctp_auth_key_put(asoc->asoc_shared_key);
413 asoc->asoc_shared_key = secret;
414
415 return 0;
416 }
417
418
419 /* Find the endpoint pair shared key based on the key_id */
420 struct sctp_shared_key *sctp_auth_get_shkey(
421 const struct sctp_association *asoc,
422 __u16 key_id)
423 {
424 struct sctp_shared_key *key;
425
426 /* First search associations set of endpoint pair shared keys */
427 key_for_each(key, &asoc->endpoint_shared_keys) {
428 if (key->key_id == key_id)
429 return key;
430 }
431
432 return NULL;
433 }
434
435 /*
436 * Initialize all the possible digest transforms that we can use. Right now
437 * now, the supported digests are SHA1 and SHA256. We do this here once
438 * because of the restrictiong that transforms may only be allocated in
439 * user context. This forces us to pre-allocated all possible transforms
440 * at the endpoint init time.
441 */
442 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
443 {
444 struct net *net = sock_net(ep->base.sk);
445 struct crypto_hash *tfm = NULL;
446 __u16 id;
447
448 /* if the transforms are already allocted, we are done */
449 if (!net->sctp.auth_enable) {
450 ep->auth_hmacs = NULL;
451 return 0;
452 }
453
454 if (ep->auth_hmacs)
455 return 0;
456
457 /* Allocated the array of pointers to transorms */
458 ep->auth_hmacs = kzalloc(
459 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
460 gfp);
461 if (!ep->auth_hmacs)
462 return -ENOMEM;
463
464 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
465
466 /* See is we support the id. Supported IDs have name and
467 * length fields set, so that we can allocated and use
468 * them. We can safely just check for name, for without the
469 * name, we can't allocate the TFM.
470 */
471 if (!sctp_hmac_list[id].hmac_name)
472 continue;
473
474 /* If this TFM has been allocated, we are all set */
475 if (ep->auth_hmacs[id])
476 continue;
477
478 /* Allocate the ID */
479 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
480 CRYPTO_ALG_ASYNC);
481 if (IS_ERR(tfm))
482 goto out_err;
483
484 ep->auth_hmacs[id] = tfm;
485 }
486
487 return 0;
488
489 out_err:
490 /* Clean up any successful allocations */
491 sctp_auth_destroy_hmacs(ep->auth_hmacs);
492 return -ENOMEM;
493 }
494
495 /* Destroy the hmac tfm array */
496 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
497 {
498 int i;
499
500 if (!auth_hmacs)
501 return;
502
503 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
504 {
505 if (auth_hmacs[i])
506 crypto_free_hash(auth_hmacs[i]);
507 }
508 kfree(auth_hmacs);
509 }
510
511
512 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
513 {
514 return &sctp_hmac_list[hmac_id];
515 }
516
517 /* Get an hmac description information that we can use to build
518 * the AUTH chunk
519 */
520 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
521 {
522 struct sctp_hmac_algo_param *hmacs;
523 __u16 n_elt;
524 __u16 id = 0;
525 int i;
526
527 /* If we have a default entry, use it */
528 if (asoc->default_hmac_id)
529 return &sctp_hmac_list[asoc->default_hmac_id];
530
531 /* Since we do not have a default entry, find the first entry
532 * we support and return that. Do not cache that id.
533 */
534 hmacs = asoc->peer.peer_hmacs;
535 if (!hmacs)
536 return NULL;
537
538 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
539 for (i = 0; i < n_elt; i++) {
540 id = ntohs(hmacs->hmac_ids[i]);
541
542 /* Check the id is in the supported range. And
543 * see if we support the id. Supported IDs have name and
544 * length fields set, so that we can allocate and use
545 * them. We can safely just check for name, for without the
546 * name, we can't allocate the TFM.
547 */
548 if (id > SCTP_AUTH_HMAC_ID_MAX ||
549 !sctp_hmac_list[id].hmac_name) {
550 id = 0;
551 continue;
552 }
553
554 break;
555 }
556
557 if (id == 0)
558 return NULL;
559
560 return &sctp_hmac_list[id];
561 }
562
563 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
564 {
565 int found = 0;
566 int i;
567
568 for (i = 0; i < n_elts; i++) {
569 if (hmac_id == hmacs[i]) {
570 found = 1;
571 break;
572 }
573 }
574
575 return found;
576 }
577
578 /* See if the HMAC_ID is one that we claim as supported */
579 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
580 __be16 hmac_id)
581 {
582 struct sctp_hmac_algo_param *hmacs;
583 __u16 n_elt;
584
585 if (!asoc)
586 return 0;
587
588 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
589 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
590
591 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
592 }
593
594
595 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
596 * Section 6.1:
597 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
598 * algorithm it supports.
599 */
600 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
601 struct sctp_hmac_algo_param *hmacs)
602 {
603 struct sctp_endpoint *ep;
604 __u16 id;
605 int i;
606 int n_params;
607
608 /* if the default id is already set, use it */
609 if (asoc->default_hmac_id)
610 return;
611
612 n_params = (ntohs(hmacs->param_hdr.length)
613 - sizeof(sctp_paramhdr_t)) >> 1;
614 ep = asoc->ep;
615 for (i = 0; i < n_params; i++) {
616 id = ntohs(hmacs->hmac_ids[i]);
617
618 /* Check the id is in the supported range */
619 if (id > SCTP_AUTH_HMAC_ID_MAX)
620 continue;
621
622 /* If this TFM has been allocated, use this id */
623 if (ep->auth_hmacs[id]) {
624 asoc->default_hmac_id = id;
625 break;
626 }
627 }
628 }
629
630
631 /* Check to see if the given chunk is supposed to be authenticated */
632 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
633 {
634 unsigned short len;
635 int found = 0;
636 int i;
637
638 if (!param || param->param_hdr.length == 0)
639 return 0;
640
641 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
642
643 /* SCTP-AUTH, Section 3.2
644 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
645 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
646 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
647 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
648 */
649 for (i = 0; !found && i < len; i++) {
650 switch (param->chunks[i]) {
651 case SCTP_CID_INIT:
652 case SCTP_CID_INIT_ACK:
653 case SCTP_CID_SHUTDOWN_COMPLETE:
654 case SCTP_CID_AUTH:
655 break;
656
657 default:
658 if (param->chunks[i] == chunk)
659 found = 1;
660 break;
661 }
662 }
663
664 return found;
665 }
666
667 /* Check if peer requested that this chunk is authenticated */
668 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
669 {
670 struct net *net;
671 if (!asoc)
672 return 0;
673
674 net = sock_net(asoc->base.sk);
675 if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
676 return 0;
677
678 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
679 }
680
681 /* Check if we requested that peer authenticate this chunk. */
682 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
683 {
684 struct net *net;
685 if (!asoc)
686 return 0;
687
688 net = sock_net(asoc->base.sk);
689 if (!net->sctp.auth_enable)
690 return 0;
691
692 return __sctp_auth_cid(chunk,
693 (struct sctp_chunks_param *)asoc->c.auth_chunks);
694 }
695
696 /* SCTP-AUTH: Section 6.2:
697 * The sender MUST calculate the MAC as described in RFC2104 [2] using
698 * the hash function H as described by the MAC Identifier and the shared
699 * association key K based on the endpoint pair shared key described by
700 * the shared key identifier. The 'data' used for the computation of
701 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
702 * zero (as shown in Figure 6) followed by all chunks that are placed
703 * after the AUTH chunk in the SCTP packet.
704 */
705 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
706 struct sk_buff *skb,
707 struct sctp_auth_chunk *auth,
708 gfp_t gfp)
709 {
710 struct scatterlist sg;
711 struct hash_desc desc;
712 struct sctp_auth_bytes *asoc_key;
713 __u16 key_id, hmac_id;
714 __u8 *digest;
715 unsigned char *end;
716 int free_key = 0;
717
718 /* Extract the info we need:
719 * - hmac id
720 * - key id
721 */
722 key_id = ntohs(auth->auth_hdr.shkey_id);
723 hmac_id = ntohs(auth->auth_hdr.hmac_id);
724
725 if (key_id == asoc->active_key_id)
726 asoc_key = asoc->asoc_shared_key;
727 else {
728 struct sctp_shared_key *ep_key;
729
730 ep_key = sctp_auth_get_shkey(asoc, key_id);
731 if (!ep_key)
732 return;
733
734 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
735 if (!asoc_key)
736 return;
737
738 free_key = 1;
739 }
740
741 /* set up scatter list */
742 end = skb_tail_pointer(skb);
743 sg_init_one(&sg, auth, end - (unsigned char *)auth);
744
745 desc.tfm = asoc->ep->auth_hmacs[hmac_id];
746 desc.flags = 0;
747
748 digest = auth->auth_hdr.hmac;
749 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
750 goto free;
751
752 crypto_hash_digest(&desc, &sg, sg.length, digest);
753
754 free:
755 if (free_key)
756 sctp_auth_key_put(asoc_key);
757 }
758
759 /* API Helpers */
760
761 /* Add a chunk to the endpoint authenticated chunk list */
762 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
763 {
764 struct sctp_chunks_param *p = ep->auth_chunk_list;
765 __u16 nchunks;
766 __u16 param_len;
767
768 /* If this chunk is already specified, we are done */
769 if (__sctp_auth_cid(chunk_id, p))
770 return 0;
771
772 /* Check if we can add this chunk to the array */
773 param_len = ntohs(p->param_hdr.length);
774 nchunks = param_len - sizeof(sctp_paramhdr_t);
775 if (nchunks == SCTP_NUM_CHUNK_TYPES)
776 return -EINVAL;
777
778 p->chunks[nchunks] = chunk_id;
779 p->param_hdr.length = htons(param_len + 1);
780 return 0;
781 }
782
783 /* Add hmac identifires to the endpoint list of supported hmac ids */
784 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
785 struct sctp_hmacalgo *hmacs)
786 {
787 int has_sha1 = 0;
788 __u16 id;
789 int i;
790
791 /* Scan the list looking for unsupported id. Also make sure that
792 * SHA1 is specified.
793 */
794 for (i = 0; i < hmacs->shmac_num_idents; i++) {
795 id = hmacs->shmac_idents[i];
796
797 if (id > SCTP_AUTH_HMAC_ID_MAX)
798 return -EOPNOTSUPP;
799
800 if (SCTP_AUTH_HMAC_ID_SHA1 == id)
801 has_sha1 = 1;
802
803 if (!sctp_hmac_list[id].hmac_name)
804 return -EOPNOTSUPP;
805 }
806
807 if (!has_sha1)
808 return -EINVAL;
809
810 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
811 hmacs->shmac_num_idents * sizeof(__u16));
812 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
813 hmacs->shmac_num_idents * sizeof(__u16));
814 return 0;
815 }
816
817 /* Set a new shared key on either endpoint or association. If the
818 * the key with a same ID already exists, replace the key (remove the
819 * old key and add a new one).
820 */
821 int sctp_auth_set_key(struct sctp_endpoint *ep,
822 struct sctp_association *asoc,
823 struct sctp_authkey *auth_key)
824 {
825 struct sctp_shared_key *cur_key = NULL;
826 struct sctp_auth_bytes *key;
827 struct list_head *sh_keys;
828 int replace = 0;
829
830 /* Try to find the given key id to see if
831 * we are doing a replace, or adding a new key
832 */
833 if (asoc)
834 sh_keys = &asoc->endpoint_shared_keys;
835 else
836 sh_keys = &ep->endpoint_shared_keys;
837
838 key_for_each(cur_key, sh_keys) {
839 if (cur_key->key_id == auth_key->sca_keynumber) {
840 replace = 1;
841 break;
842 }
843 }
844
845 /* If we are not replacing a key id, we need to allocate
846 * a shared key.
847 */
848 if (!replace) {
849 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
850 GFP_KERNEL);
851 if (!cur_key)
852 return -ENOMEM;
853 }
854
855 /* Create a new key data based on the info passed in */
856 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
857 if (!key)
858 goto nomem;
859
860 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
861
862 /* If we are replacing, remove the old keys data from the
863 * key id. If we are adding new key id, add it to the
864 * list.
865 */
866 if (replace)
867 sctp_auth_key_put(cur_key->key);
868 else
869 list_add(&cur_key->key_list, sh_keys);
870
871 cur_key->key = key;
872 sctp_auth_key_hold(key);
873
874 return 0;
875 nomem:
876 if (!replace)
877 sctp_auth_shkey_free(cur_key);
878
879 return -ENOMEM;
880 }
881
882 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
883 struct sctp_association *asoc,
884 __u16 key_id)
885 {
886 struct sctp_shared_key *key;
887 struct list_head *sh_keys;
888 int found = 0;
889
890 /* The key identifier MUST correst to an existing key */
891 if (asoc)
892 sh_keys = &asoc->endpoint_shared_keys;
893 else
894 sh_keys = &ep->endpoint_shared_keys;
895
896 key_for_each(key, sh_keys) {
897 if (key->key_id == key_id) {
898 found = 1;
899 break;
900 }
901 }
902
903 if (!found)
904 return -EINVAL;
905
906 if (asoc) {
907 asoc->active_key_id = key_id;
908 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
909 } else
910 ep->active_key_id = key_id;
911
912 return 0;
913 }
914
915 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
916 struct sctp_association *asoc,
917 __u16 key_id)
918 {
919 struct sctp_shared_key *key;
920 struct list_head *sh_keys;
921 int found = 0;
922
923 /* The key identifier MUST NOT be the current active key
924 * The key identifier MUST correst to an existing key
925 */
926 if (asoc) {
927 if (asoc->active_key_id == key_id)
928 return -EINVAL;
929
930 sh_keys = &asoc->endpoint_shared_keys;
931 } else {
932 if (ep->active_key_id == key_id)
933 return -EINVAL;
934
935 sh_keys = &ep->endpoint_shared_keys;
936 }
937
938 key_for_each(key, sh_keys) {
939 if (key->key_id == key_id) {
940 found = 1;
941 break;
942 }
943 }
944
945 if (!found)
946 return -EINVAL;
947
948 /* Delete the shared key */
949 list_del_init(&key->key_list);
950 sctp_auth_shkey_free(key);
951
952 return 0;
953 }
This page took 0.05053 seconds and 6 git commands to generate.