Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / net / sctp / outqueue.c
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 *
7 * This file is part of the SCTP kernel reference Implementation
8 *
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
11 *
12 * The SCTP reference implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * The SCTP reference implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Perry Melange <pmelange@null.cc.uic.edu>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Jon Grimm <jgrimm@us.ibm.com>
44 *
45 * Any bugs reported given to us we will try to fix... any fixes shared will
46 * be incorporated into the next SCTP release.
47 */
48
49 #include <linux/types.h>
50 #include <linux/list.h> /* For struct list_head */
51 #include <linux/socket.h>
52 #include <linux/ip.h>
53 #include <net/sock.h> /* For skb_set_owner_w */
54
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57
58 /* Declare internal functions here. */
59 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
60 static void sctp_check_transmitted(struct sctp_outq *q,
61 struct list_head *transmitted_queue,
62 struct sctp_transport *transport,
63 struct sctp_sackhdr *sack,
64 __u32 highest_new_tsn);
65
66 static void sctp_mark_missing(struct sctp_outq *q,
67 struct list_head *transmitted_queue,
68 struct sctp_transport *transport,
69 __u32 highest_new_tsn,
70 int count_of_newacks);
71
72 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
73
74 /* Add data to the front of the queue. */
75 static inline void sctp_outq_head_data(struct sctp_outq *q,
76 struct sctp_chunk *ch)
77 {
78 list_add(&ch->list, &q->out_chunk_list);
79 q->out_qlen += ch->skb->len;
80 return;
81 }
82
83 /* Take data from the front of the queue. */
84 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
85 {
86 struct sctp_chunk *ch = NULL;
87
88 if (!list_empty(&q->out_chunk_list)) {
89 struct list_head *entry = q->out_chunk_list.next;
90
91 ch = list_entry(entry, struct sctp_chunk, list);
92 list_del_init(entry);
93 q->out_qlen -= ch->skb->len;
94 }
95 return ch;
96 }
97 /* Add data chunk to the end of the queue. */
98 static inline void sctp_outq_tail_data(struct sctp_outq *q,
99 struct sctp_chunk *ch)
100 {
101 list_add_tail(&ch->list, &q->out_chunk_list);
102 q->out_qlen += ch->skb->len;
103 return;
104 }
105
106 /*
107 * SFR-CACC algorithm:
108 * D) If count_of_newacks is greater than or equal to 2
109 * and t was not sent to the current primary then the
110 * sender MUST NOT increment missing report count for t.
111 */
112 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
113 struct sctp_transport *transport,
114 int count_of_newacks)
115 {
116 if (count_of_newacks >=2 && transport != primary)
117 return 1;
118 return 0;
119 }
120
121 /*
122 * SFR-CACC algorithm:
123 * F) If count_of_newacks is less than 2, let d be the
124 * destination to which t was sent. If cacc_saw_newack
125 * is 0 for destination d, then the sender MUST NOT
126 * increment missing report count for t.
127 */
128 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
129 int count_of_newacks)
130 {
131 if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack)
132 return 1;
133 return 0;
134 }
135
136 /*
137 * SFR-CACC algorithm:
138 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
139 * execute steps C, D, F.
140 *
141 * C has been implemented in sctp_outq_sack
142 */
143 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
144 struct sctp_transport *transport,
145 int count_of_newacks)
146 {
147 if (!primary->cacc.cycling_changeover) {
148 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
149 return 1;
150 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
151 return 1;
152 return 0;
153 }
154 return 0;
155 }
156
157 /*
158 * SFR-CACC algorithm:
159 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
160 * than next_tsn_at_change of the current primary, then
161 * the sender MUST NOT increment missing report count
162 * for t.
163 */
164 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
165 {
166 if (primary->cacc.cycling_changeover &&
167 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
168 return 1;
169 return 0;
170 }
171
172 /*
173 * SFR-CACC algorithm:
174 * 3) If the missing report count for TSN t is to be
175 * incremented according to [RFC2960] and
176 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
177 * then the sender MUST futher execute steps 3.1 and
178 * 3.2 to determine if the missing report count for
179 * TSN t SHOULD NOT be incremented.
180 *
181 * 3.3) If 3.1 and 3.2 do not dictate that the missing
182 * report count for t should not be incremented, then
183 * the sender SOULD increment missing report count for
184 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
185 */
186 static inline int sctp_cacc_skip(struct sctp_transport *primary,
187 struct sctp_transport *transport,
188 int count_of_newacks,
189 __u32 tsn)
190 {
191 if (primary->cacc.changeover_active &&
192 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks)
193 || sctp_cacc_skip_3_2(primary, tsn)))
194 return 1;
195 return 0;
196 }
197
198 /* Initialize an existing sctp_outq. This does the boring stuff.
199 * You still need to define handlers if you really want to DO
200 * something with this structure...
201 */
202 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
203 {
204 q->asoc = asoc;
205 INIT_LIST_HEAD(&q->out_chunk_list);
206 INIT_LIST_HEAD(&q->control_chunk_list);
207 INIT_LIST_HEAD(&q->retransmit);
208 INIT_LIST_HEAD(&q->sacked);
209 INIT_LIST_HEAD(&q->abandoned);
210
211 q->outstanding_bytes = 0;
212 q->empty = 1;
213 q->cork = 0;
214
215 q->malloced = 0;
216 q->out_qlen = 0;
217 }
218
219 /* Free the outqueue structure and any related pending chunks.
220 */
221 void sctp_outq_teardown(struct sctp_outq *q)
222 {
223 struct sctp_transport *transport;
224 struct list_head *lchunk, *pos, *temp;
225 struct sctp_chunk *chunk, *tmp;
226
227 /* Throw away unacknowledged chunks. */
228 list_for_each(pos, &q->asoc->peer.transport_addr_list) {
229 transport = list_entry(pos, struct sctp_transport, transports);
230 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
231 chunk = list_entry(lchunk, struct sctp_chunk,
232 transmitted_list);
233 /* Mark as part of a failed message. */
234 sctp_chunk_fail(chunk, q->error);
235 sctp_chunk_free(chunk);
236 }
237 }
238
239 /* Throw away chunks that have been gap ACKed. */
240 list_for_each_safe(lchunk, temp, &q->sacked) {
241 list_del_init(lchunk);
242 chunk = list_entry(lchunk, struct sctp_chunk,
243 transmitted_list);
244 sctp_chunk_fail(chunk, q->error);
245 sctp_chunk_free(chunk);
246 }
247
248 /* Throw away any chunks in the retransmit queue. */
249 list_for_each_safe(lchunk, temp, &q->retransmit) {
250 list_del_init(lchunk);
251 chunk = list_entry(lchunk, struct sctp_chunk,
252 transmitted_list);
253 sctp_chunk_fail(chunk, q->error);
254 sctp_chunk_free(chunk);
255 }
256
257 /* Throw away any chunks that are in the abandoned queue. */
258 list_for_each_safe(lchunk, temp, &q->abandoned) {
259 list_del_init(lchunk);
260 chunk = list_entry(lchunk, struct sctp_chunk,
261 transmitted_list);
262 sctp_chunk_fail(chunk, q->error);
263 sctp_chunk_free(chunk);
264 }
265
266 /* Throw away any leftover data chunks. */
267 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
268
269 /* Mark as send failure. */
270 sctp_chunk_fail(chunk, q->error);
271 sctp_chunk_free(chunk);
272 }
273
274 q->error = 0;
275
276 /* Throw away any leftover control chunks. */
277 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
278 list_del_init(&chunk->list);
279 sctp_chunk_free(chunk);
280 }
281 }
282
283 /* Free the outqueue structure and any related pending chunks. */
284 void sctp_outq_free(struct sctp_outq *q)
285 {
286 /* Throw away leftover chunks. */
287 sctp_outq_teardown(q);
288
289 /* If we were kmalloc()'d, free the memory. */
290 if (q->malloced)
291 kfree(q);
292 }
293
294 /* Put a new chunk in an sctp_outq. */
295 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
296 {
297 int error = 0;
298
299 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
300 q, chunk, chunk && chunk->chunk_hdr ?
301 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
302 : "Illegal Chunk");
303
304 /* If it is data, queue it up, otherwise, send it
305 * immediately.
306 */
307 if (SCTP_CID_DATA == chunk->chunk_hdr->type) {
308 /* Is it OK to queue data chunks? */
309 /* From 9. Termination of Association
310 *
311 * When either endpoint performs a shutdown, the
312 * association on each peer will stop accepting new
313 * data from its user and only deliver data in queue
314 * at the time of sending or receiving the SHUTDOWN
315 * chunk.
316 */
317 switch (q->asoc->state) {
318 case SCTP_STATE_EMPTY:
319 case SCTP_STATE_CLOSED:
320 case SCTP_STATE_SHUTDOWN_PENDING:
321 case SCTP_STATE_SHUTDOWN_SENT:
322 case SCTP_STATE_SHUTDOWN_RECEIVED:
323 case SCTP_STATE_SHUTDOWN_ACK_SENT:
324 /* Cannot send after transport endpoint shutdown */
325 error = -ESHUTDOWN;
326 break;
327
328 default:
329 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
330 q, chunk, chunk && chunk->chunk_hdr ?
331 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
332 : "Illegal Chunk");
333
334 sctp_outq_tail_data(q, chunk);
335 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
336 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS);
337 else
338 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS);
339 q->empty = 0;
340 break;
341 }
342 } else {
343 list_add_tail(&chunk->list, &q->control_chunk_list);
344 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
345 }
346
347 if (error < 0)
348 return error;
349
350 if (!q->cork)
351 error = sctp_outq_flush(q, 0);
352
353 return error;
354 }
355
356 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
357 * and the abandoned list are in ascending order.
358 */
359 static void sctp_insert_list(struct list_head *head, struct list_head *new)
360 {
361 struct list_head *pos;
362 struct sctp_chunk *nchunk, *lchunk;
363 __u32 ntsn, ltsn;
364 int done = 0;
365
366 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
367 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
368
369 list_for_each(pos, head) {
370 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
371 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
372 if (TSN_lt(ntsn, ltsn)) {
373 list_add(new, pos->prev);
374 done = 1;
375 break;
376 }
377 }
378 if (!done)
379 list_add_tail(new, head);
380 }
381
382 /* Mark all the eligible packets on a transport for retransmission. */
383 void sctp_retransmit_mark(struct sctp_outq *q,
384 struct sctp_transport *transport,
385 __u8 reason)
386 {
387 struct list_head *lchunk, *ltemp;
388 struct sctp_chunk *chunk;
389
390 /* Walk through the specified transmitted queue. */
391 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
392 chunk = list_entry(lchunk, struct sctp_chunk,
393 transmitted_list);
394
395 /* If the chunk is abandoned, move it to abandoned list. */
396 if (sctp_chunk_abandoned(chunk)) {
397 list_del_init(lchunk);
398 sctp_insert_list(&q->abandoned, lchunk);
399
400 /* If this chunk has not been previousely acked,
401 * stop considering it 'outstanding'. Our peer
402 * will most likely never see it since it will
403 * not be retransmitted
404 */
405 if (!chunk->tsn_gap_acked) {
406 chunk->transport->flight_size -=
407 sctp_data_size(chunk);
408 q->outstanding_bytes -= sctp_data_size(chunk);
409 q->asoc->peer.rwnd += (sctp_data_size(chunk) +
410 sizeof(struct sk_buff));
411 }
412 continue;
413 }
414
415 /* If we are doing retransmission due to a timeout or pmtu
416 * discovery, only the chunks that are not yet acked should
417 * be added to the retransmit queue.
418 */
419 if ((reason == SCTP_RTXR_FAST_RTX &&
420 (chunk->fast_retransmit > 0)) ||
421 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
422 /* If this chunk was sent less then 1 rto ago, do not
423 * retransmit this chunk, but give the peer time
424 * to acknowlege it. Do this only when
425 * retransmitting due to T3 timeout.
426 */
427 if (reason == SCTP_RTXR_T3_RTX &&
428 (jiffies - chunk->sent_at) < transport->last_rto)
429 continue;
430
431 /* RFC 2960 6.2.1 Processing a Received SACK
432 *
433 * C) Any time a DATA chunk is marked for
434 * retransmission (via either T3-rtx timer expiration
435 * (Section 6.3.3) or via fast retransmit
436 * (Section 7.2.4)), add the data size of those
437 * chunks to the rwnd.
438 */
439 q->asoc->peer.rwnd += (sctp_data_size(chunk) +
440 sizeof(struct sk_buff));
441 q->outstanding_bytes -= sctp_data_size(chunk);
442 transport->flight_size -= sctp_data_size(chunk);
443
444 /* sctpimpguide-05 Section 2.8.2
445 * M5) If a T3-rtx timer expires, the
446 * 'TSN.Missing.Report' of all affected TSNs is set
447 * to 0.
448 */
449 chunk->tsn_missing_report = 0;
450
451 /* If a chunk that is being used for RTT measurement
452 * has to be retransmitted, we cannot use this chunk
453 * anymore for RTT measurements. Reset rto_pending so
454 * that a new RTT measurement is started when a new
455 * data chunk is sent.
456 */
457 if (chunk->rtt_in_progress) {
458 chunk->rtt_in_progress = 0;
459 transport->rto_pending = 0;
460 }
461
462 /* Move the chunk to the retransmit queue. The chunks
463 * on the retransmit queue are always kept in order.
464 */
465 list_del_init(lchunk);
466 sctp_insert_list(&q->retransmit, lchunk);
467 }
468 }
469
470 SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, "
471 "cwnd: %d, ssthresh: %d, flight_size: %d, "
472 "pba: %d\n", __FUNCTION__,
473 transport, reason,
474 transport->cwnd, transport->ssthresh,
475 transport->flight_size,
476 transport->partial_bytes_acked);
477
478 }
479
480 /* Mark all the eligible packets on a transport for retransmission and force
481 * one packet out.
482 */
483 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
484 sctp_retransmit_reason_t reason)
485 {
486 int error = 0;
487
488 switch(reason) {
489 case SCTP_RTXR_T3_RTX:
490 SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS);
491 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
492 /* Update the retran path if the T3-rtx timer has expired for
493 * the current retran path.
494 */
495 if (transport == transport->asoc->peer.retran_path)
496 sctp_assoc_update_retran_path(transport->asoc);
497 break;
498 case SCTP_RTXR_FAST_RTX:
499 SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS);
500 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
501 break;
502 case SCTP_RTXR_PMTUD:
503 SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS);
504 break;
505 case SCTP_RTXR_T1_RTX:
506 SCTP_INC_STATS(SCTP_MIB_T1_RETRANSMITS);
507 break;
508 default:
509 BUG();
510 }
511
512 sctp_retransmit_mark(q, transport, reason);
513
514 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
515 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
516 * following the procedures outlined in C1 - C5.
517 */
518 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
519
520 error = sctp_outq_flush(q, /* rtx_timeout */ 1);
521
522 if (error)
523 q->asoc->base.sk->sk_err = -error;
524 }
525
526 /*
527 * Transmit DATA chunks on the retransmit queue. Upon return from
528 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
529 * need to be transmitted by the caller.
530 * We assume that pkt->transport has already been set.
531 *
532 * The return value is a normal kernel error return value.
533 */
534 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
535 int rtx_timeout, int *start_timer)
536 {
537 struct list_head *lqueue;
538 struct list_head *lchunk, *lchunk1;
539 struct sctp_transport *transport = pkt->transport;
540 sctp_xmit_t status;
541 struct sctp_chunk *chunk, *chunk1;
542 struct sctp_association *asoc;
543 int error = 0;
544
545 asoc = q->asoc;
546 lqueue = &q->retransmit;
547
548 /* RFC 2960 6.3.3 Handle T3-rtx Expiration
549 *
550 * E3) Determine how many of the earliest (i.e., lowest TSN)
551 * outstanding DATA chunks for the address for which the
552 * T3-rtx has expired will fit into a single packet, subject
553 * to the MTU constraint for the path corresponding to the
554 * destination transport address to which the retransmission
555 * is being sent (this may be different from the address for
556 * which the timer expires [see Section 6.4]). Call this value
557 * K. Bundle and retransmit those K DATA chunks in a single
558 * packet to the destination endpoint.
559 *
560 * [Just to be painfully clear, if we are retransmitting
561 * because a timeout just happened, we should send only ONE
562 * packet of retransmitted data.]
563 */
564 lchunk = sctp_list_dequeue(lqueue);
565
566 while (lchunk) {
567 chunk = list_entry(lchunk, struct sctp_chunk,
568 transmitted_list);
569
570 /* Make sure that Gap Acked TSNs are not retransmitted. A
571 * simple approach is just to move such TSNs out of the
572 * way and into a 'transmitted' queue and skip to the
573 * next chunk.
574 */
575 if (chunk->tsn_gap_acked) {
576 list_add_tail(lchunk, &transport->transmitted);
577 lchunk = sctp_list_dequeue(lqueue);
578 continue;
579 }
580
581 /* Attempt to append this chunk to the packet. */
582 status = sctp_packet_append_chunk(pkt, chunk);
583
584 switch (status) {
585 case SCTP_XMIT_PMTU_FULL:
586 /* Send this packet. */
587 if ((error = sctp_packet_transmit(pkt)) == 0)
588 *start_timer = 1;
589
590 /* If we are retransmitting, we should only
591 * send a single packet.
592 */
593 if (rtx_timeout) {
594 list_add(lchunk, lqueue);
595 lchunk = NULL;
596 }
597
598 /* Bundle lchunk in the next round. */
599 break;
600
601 case SCTP_XMIT_RWND_FULL:
602 /* Send this packet. */
603 if ((error = sctp_packet_transmit(pkt)) == 0)
604 *start_timer = 1;
605
606 /* Stop sending DATA as there is no more room
607 * at the receiver.
608 */
609 list_add(lchunk, lqueue);
610 lchunk = NULL;
611 break;
612
613 case SCTP_XMIT_NAGLE_DELAY:
614 /* Send this packet. */
615 if ((error = sctp_packet_transmit(pkt)) == 0)
616 *start_timer = 1;
617
618 /* Stop sending DATA because of nagle delay. */
619 list_add(lchunk, lqueue);
620 lchunk = NULL;
621 break;
622
623 default:
624 /* The append was successful, so add this chunk to
625 * the transmitted list.
626 */
627 list_add_tail(lchunk, &transport->transmitted);
628
629 /* Mark the chunk as ineligible for fast retransmit
630 * after it is retransmitted.
631 */
632 if (chunk->fast_retransmit > 0)
633 chunk->fast_retransmit = -1;
634
635 *start_timer = 1;
636 q->empty = 0;
637
638 /* Retrieve a new chunk to bundle. */
639 lchunk = sctp_list_dequeue(lqueue);
640 break;
641 }
642
643 /* If we are here due to a retransmit timeout or a fast
644 * retransmit and if there are any chunks left in the retransmit
645 * queue that could not fit in the PMTU sized packet, they need
646 * to be marked as ineligible for a subsequent fast retransmit.
647 */
648 if (rtx_timeout && !lchunk) {
649 list_for_each(lchunk1, lqueue) {
650 chunk1 = list_entry(lchunk1, struct sctp_chunk,
651 transmitted_list);
652 if (chunk1->fast_retransmit > 0)
653 chunk1->fast_retransmit = -1;
654 }
655 }
656 }
657
658 return error;
659 }
660
661 /* Cork the outqueue so queued chunks are really queued. */
662 int sctp_outq_uncork(struct sctp_outq *q)
663 {
664 int error = 0;
665 if (q->cork)
666 q->cork = 0;
667 error = sctp_outq_flush(q, 0);
668 return error;
669 }
670
671 /*
672 * Try to flush an outqueue.
673 *
674 * Description: Send everything in q which we legally can, subject to
675 * congestion limitations.
676 * * Note: This function can be called from multiple contexts so appropriate
677 * locking concerns must be made. Today we use the sock lock to protect
678 * this function.
679 */
680 int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
681 {
682 struct sctp_packet *packet;
683 struct sctp_packet singleton;
684 struct sctp_association *asoc = q->asoc;
685 __u16 sport = asoc->base.bind_addr.port;
686 __u16 dport = asoc->peer.port;
687 __u32 vtag = asoc->peer.i.init_tag;
688 struct sctp_transport *transport = NULL;
689 struct sctp_transport *new_transport;
690 struct sctp_chunk *chunk, *tmp;
691 sctp_xmit_t status;
692 int error = 0;
693 int start_timer = 0;
694
695 /* These transports have chunks to send. */
696 struct list_head transport_list;
697 struct list_head *ltransport;
698
699 INIT_LIST_HEAD(&transport_list);
700 packet = NULL;
701
702 /*
703 * 6.10 Bundling
704 * ...
705 * When bundling control chunks with DATA chunks, an
706 * endpoint MUST place control chunks first in the outbound
707 * SCTP packet. The transmitter MUST transmit DATA chunks
708 * within a SCTP packet in increasing order of TSN.
709 * ...
710 */
711
712 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
713 list_del_init(&chunk->list);
714
715 /* Pick the right transport to use. */
716 new_transport = chunk->transport;
717
718 if (!new_transport) {
719 new_transport = asoc->peer.active_path;
720 } else if ((new_transport->state == SCTP_INACTIVE) ||
721 (new_transport->state == SCTP_UNCONFIRMED)) {
722 /* If the chunk is Heartbeat or Heartbeat Ack,
723 * send it to chunk->transport, even if it's
724 * inactive.
725 *
726 * 3.3.6 Heartbeat Acknowledgement:
727 * ...
728 * A HEARTBEAT ACK is always sent to the source IP
729 * address of the IP datagram containing the
730 * HEARTBEAT chunk to which this ack is responding.
731 * ...
732 */
733 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
734 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK)
735 new_transport = asoc->peer.active_path;
736 }
737
738 /* Are we switching transports?
739 * Take care of transport locks.
740 */
741 if (new_transport != transport) {
742 transport = new_transport;
743 if (list_empty(&transport->send_ready)) {
744 list_add_tail(&transport->send_ready,
745 &transport_list);
746 }
747 packet = &transport->packet;
748 sctp_packet_config(packet, vtag,
749 asoc->peer.ecn_capable);
750 }
751
752 switch (chunk->chunk_hdr->type) {
753 /*
754 * 6.10 Bundling
755 * ...
756 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
757 * COMPLETE with any other chunks. [Send them immediately.]
758 */
759 case SCTP_CID_INIT:
760 case SCTP_CID_INIT_ACK:
761 case SCTP_CID_SHUTDOWN_COMPLETE:
762 sctp_packet_init(&singleton, transport, sport, dport);
763 sctp_packet_config(&singleton, vtag, 0);
764 sctp_packet_append_chunk(&singleton, chunk);
765 error = sctp_packet_transmit(&singleton);
766 if (error < 0)
767 return error;
768 break;
769
770 case SCTP_CID_ABORT:
771 case SCTP_CID_SACK:
772 case SCTP_CID_HEARTBEAT:
773 case SCTP_CID_HEARTBEAT_ACK:
774 case SCTP_CID_SHUTDOWN:
775 case SCTP_CID_SHUTDOWN_ACK:
776 case SCTP_CID_ERROR:
777 case SCTP_CID_COOKIE_ECHO:
778 case SCTP_CID_COOKIE_ACK:
779 case SCTP_CID_ECN_ECNE:
780 case SCTP_CID_ECN_CWR:
781 case SCTP_CID_ASCONF:
782 case SCTP_CID_ASCONF_ACK:
783 case SCTP_CID_FWD_TSN:
784 sctp_packet_transmit_chunk(packet, chunk);
785 break;
786
787 default:
788 /* We built a chunk with an illegal type! */
789 BUG();
790 }
791 }
792
793 /* Is it OK to send data chunks? */
794 switch (asoc->state) {
795 case SCTP_STATE_COOKIE_ECHOED:
796 /* Only allow bundling when this packet has a COOKIE-ECHO
797 * chunk.
798 */
799 if (!packet || !packet->has_cookie_echo)
800 break;
801
802 /* fallthru */
803 case SCTP_STATE_ESTABLISHED:
804 case SCTP_STATE_SHUTDOWN_PENDING:
805 case SCTP_STATE_SHUTDOWN_RECEIVED:
806 /*
807 * RFC 2960 6.1 Transmission of DATA Chunks
808 *
809 * C) When the time comes for the sender to transmit,
810 * before sending new DATA chunks, the sender MUST
811 * first transmit any outstanding DATA chunks which
812 * are marked for retransmission (limited by the
813 * current cwnd).
814 */
815 if (!list_empty(&q->retransmit)) {
816 if (transport == asoc->peer.retran_path)
817 goto retran;
818
819 /* Switch transports & prepare the packet. */
820
821 transport = asoc->peer.retran_path;
822
823 if (list_empty(&transport->send_ready)) {
824 list_add_tail(&transport->send_ready,
825 &transport_list);
826 }
827
828 packet = &transport->packet;
829 sctp_packet_config(packet, vtag,
830 asoc->peer.ecn_capable);
831 retran:
832 error = sctp_outq_flush_rtx(q, packet,
833 rtx_timeout, &start_timer);
834
835 if (start_timer)
836 sctp_transport_reset_timers(transport);
837
838 /* This can happen on COOKIE-ECHO resend. Only
839 * one chunk can get bundled with a COOKIE-ECHO.
840 */
841 if (packet->has_cookie_echo)
842 goto sctp_flush_out;
843
844 /* Don't send new data if there is still data
845 * waiting to retransmit.
846 */
847 if (!list_empty(&q->retransmit))
848 goto sctp_flush_out;
849 }
850
851 /* Finally, transmit new packets. */
852 start_timer = 0;
853 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
854 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
855 * stream identifier.
856 */
857 if (chunk->sinfo.sinfo_stream >=
858 asoc->c.sinit_num_ostreams) {
859
860 /* Mark as failed send. */
861 sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
862 sctp_chunk_free(chunk);
863 continue;
864 }
865
866 /* Has this chunk expired? */
867 if (sctp_chunk_abandoned(chunk)) {
868 sctp_chunk_fail(chunk, 0);
869 sctp_chunk_free(chunk);
870 continue;
871 }
872
873 /* If there is a specified transport, use it.
874 * Otherwise, we want to use the active path.
875 */
876 new_transport = chunk->transport;
877 if (!new_transport ||
878 ((new_transport->state == SCTP_INACTIVE) ||
879 (new_transport->state == SCTP_UNCONFIRMED)))
880 new_transport = asoc->peer.active_path;
881
882 /* Change packets if necessary. */
883 if (new_transport != transport) {
884 transport = new_transport;
885
886 /* Schedule to have this transport's
887 * packet flushed.
888 */
889 if (list_empty(&transport->send_ready)) {
890 list_add_tail(&transport->send_ready,
891 &transport_list);
892 }
893
894 packet = &transport->packet;
895 sctp_packet_config(packet, vtag,
896 asoc->peer.ecn_capable);
897 }
898
899 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
900 q, chunk,
901 chunk && chunk->chunk_hdr ?
902 sctp_cname(SCTP_ST_CHUNK(
903 chunk->chunk_hdr->type))
904 : "Illegal Chunk");
905
906 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
907 "%p skb->users %d.\n",
908 ntohl(chunk->subh.data_hdr->tsn),
909 chunk->skb ?chunk->skb->head : NULL,
910 chunk->skb ?
911 atomic_read(&chunk->skb->users) : -1);
912
913 /* Add the chunk to the packet. */
914 status = sctp_packet_transmit_chunk(packet, chunk);
915
916 switch (status) {
917 case SCTP_XMIT_PMTU_FULL:
918 case SCTP_XMIT_RWND_FULL:
919 case SCTP_XMIT_NAGLE_DELAY:
920 /* We could not append this chunk, so put
921 * the chunk back on the output queue.
922 */
923 SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
924 "not transmit TSN: 0x%x, status: %d\n",
925 ntohl(chunk->subh.data_hdr->tsn),
926 status);
927 sctp_outq_head_data(q, chunk);
928 goto sctp_flush_out;
929 break;
930
931 case SCTP_XMIT_OK:
932 break;
933
934 default:
935 BUG();
936 }
937
938 /* BUG: We assume that the sctp_packet_transmit()
939 * call below will succeed all the time and add the
940 * chunk to the transmitted list and restart the
941 * timers.
942 * It is possible that the call can fail under OOM
943 * conditions.
944 *
945 * Is this really a problem? Won't this behave
946 * like a lost TSN?
947 */
948 list_add_tail(&chunk->transmitted_list,
949 &transport->transmitted);
950
951 sctp_transport_reset_timers(transport);
952
953 q->empty = 0;
954
955 /* Only let one DATA chunk get bundled with a
956 * COOKIE-ECHO chunk.
957 */
958 if (packet->has_cookie_echo)
959 goto sctp_flush_out;
960 }
961 break;
962
963 default:
964 /* Do nothing. */
965 break;
966 }
967
968 sctp_flush_out:
969
970 /* Before returning, examine all the transports touched in
971 * this call. Right now, we bluntly force clear all the
972 * transports. Things might change after we implement Nagle.
973 * But such an examination is still required.
974 *
975 * --xguo
976 */
977 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
978 struct sctp_transport *t = list_entry(ltransport,
979 struct sctp_transport,
980 send_ready);
981 packet = &t->packet;
982 if (!sctp_packet_empty(packet))
983 error = sctp_packet_transmit(packet);
984 }
985
986 return error;
987 }
988
989 /* Update unack_data based on the incoming SACK chunk */
990 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
991 struct sctp_sackhdr *sack)
992 {
993 sctp_sack_variable_t *frags;
994 __u16 unack_data;
995 int i;
996
997 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
998
999 frags = sack->variable;
1000 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1001 unack_data -= ((ntohs(frags[i].gab.end) -
1002 ntohs(frags[i].gab.start) + 1));
1003 }
1004
1005 assoc->unack_data = unack_data;
1006 }
1007
1008 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */
1009 static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack,
1010 struct sctp_association *asoc)
1011 {
1012 struct list_head *ltransport, *lchunk;
1013 struct sctp_transport *transport;
1014 struct sctp_chunk *chunk;
1015 __u32 highest_new_tsn, tsn;
1016 struct list_head *transport_list = &asoc->peer.transport_addr_list;
1017
1018 highest_new_tsn = ntohl(sack->cum_tsn_ack);
1019
1020 list_for_each(ltransport, transport_list) {
1021 transport = list_entry(ltransport, struct sctp_transport,
1022 transports);
1023 list_for_each(lchunk, &transport->transmitted) {
1024 chunk = list_entry(lchunk, struct sctp_chunk,
1025 transmitted_list);
1026 tsn = ntohl(chunk->subh.data_hdr->tsn);
1027
1028 if (!chunk->tsn_gap_acked &&
1029 TSN_lt(highest_new_tsn, tsn) &&
1030 sctp_acked(sack, tsn))
1031 highest_new_tsn = tsn;
1032 }
1033 }
1034
1035 return highest_new_tsn;
1036 }
1037
1038 /* This is where we REALLY process a SACK.
1039 *
1040 * Process the SACK against the outqueue. Mostly, this just frees
1041 * things off the transmitted queue.
1042 */
1043 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack)
1044 {
1045 struct sctp_association *asoc = q->asoc;
1046 struct sctp_transport *transport;
1047 struct sctp_chunk *tchunk = NULL;
1048 struct list_head *lchunk, *transport_list, *pos, *temp;
1049 sctp_sack_variable_t *frags = sack->variable;
1050 __u32 sack_ctsn, ctsn, tsn;
1051 __u32 highest_tsn, highest_new_tsn;
1052 __u32 sack_a_rwnd;
1053 unsigned outstanding;
1054 struct sctp_transport *primary = asoc->peer.primary_path;
1055 int count_of_newacks = 0;
1056
1057 /* Grab the association's destination address list. */
1058 transport_list = &asoc->peer.transport_addr_list;
1059
1060 sack_ctsn = ntohl(sack->cum_tsn_ack);
1061
1062 /*
1063 * SFR-CACC algorithm:
1064 * On receipt of a SACK the sender SHOULD execute the
1065 * following statements.
1066 *
1067 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1068 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1069 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1070 * all destinations.
1071 */
1072 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1073 primary->cacc.changeover_active = 0;
1074 list_for_each(pos, transport_list) {
1075 transport = list_entry(pos, struct sctp_transport,
1076 transports);
1077 transport->cacc.cycling_changeover = 0;
1078 }
1079 }
1080
1081 /*
1082 * SFR-CACC algorithm:
1083 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1084 * is set the receiver of the SACK MUST take the following actions:
1085 *
1086 * A) Initialize the cacc_saw_newack to 0 for all destination
1087 * addresses.
1088 */
1089 if (sack->num_gap_ack_blocks &&
1090 primary->cacc.changeover_active) {
1091 list_for_each(pos, transport_list) {
1092 transport = list_entry(pos, struct sctp_transport,
1093 transports);
1094 transport->cacc.cacc_saw_newack = 0;
1095 }
1096 }
1097
1098 /* Get the highest TSN in the sack. */
1099 highest_tsn = sack_ctsn;
1100 if (sack->num_gap_ack_blocks)
1101 highest_tsn +=
1102 ntohs(frags[ntohs(sack->num_gap_ack_blocks) - 1].gab.end);
1103
1104 if (TSN_lt(asoc->highest_sacked, highest_tsn)) {
1105 highest_new_tsn = highest_tsn;
1106 asoc->highest_sacked = highest_tsn;
1107 } else {
1108 highest_new_tsn = sctp_highest_new_tsn(sack, asoc);
1109 }
1110
1111 /* Run through the retransmit queue. Credit bytes received
1112 * and free those chunks that we can.
1113 */
1114 sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn);
1115 sctp_mark_missing(q, &q->retransmit, NULL, highest_new_tsn, 0);
1116
1117 /* Run through the transmitted queue.
1118 * Credit bytes received and free those chunks which we can.
1119 *
1120 * This is a MASSIVE candidate for optimization.
1121 */
1122 list_for_each(pos, transport_list) {
1123 transport = list_entry(pos, struct sctp_transport,
1124 transports);
1125 sctp_check_transmitted(q, &transport->transmitted,
1126 transport, sack, highest_new_tsn);
1127 /*
1128 * SFR-CACC algorithm:
1129 * C) Let count_of_newacks be the number of
1130 * destinations for which cacc_saw_newack is set.
1131 */
1132 if (transport->cacc.cacc_saw_newack)
1133 count_of_newacks ++;
1134 }
1135
1136 list_for_each(pos, transport_list) {
1137 transport = list_entry(pos, struct sctp_transport,
1138 transports);
1139 sctp_mark_missing(q, &transport->transmitted, transport,
1140 highest_new_tsn, count_of_newacks);
1141 }
1142
1143 /* Move the Cumulative TSN Ack Point if appropriate. */
1144 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn))
1145 asoc->ctsn_ack_point = sack_ctsn;
1146
1147 /* Update unack_data field in the assoc. */
1148 sctp_sack_update_unack_data(asoc, sack);
1149
1150 ctsn = asoc->ctsn_ack_point;
1151
1152 /* Throw away stuff rotting on the sack queue. */
1153 list_for_each_safe(lchunk, temp, &q->sacked) {
1154 tchunk = list_entry(lchunk, struct sctp_chunk,
1155 transmitted_list);
1156 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1157 if (TSN_lte(tsn, ctsn))
1158 sctp_chunk_free(tchunk);
1159 }
1160
1161 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1162 * number of bytes still outstanding after processing the
1163 * Cumulative TSN Ack and the Gap Ack Blocks.
1164 */
1165
1166 sack_a_rwnd = ntohl(sack->a_rwnd);
1167 outstanding = q->outstanding_bytes;
1168
1169 if (outstanding < sack_a_rwnd)
1170 sack_a_rwnd -= outstanding;
1171 else
1172 sack_a_rwnd = 0;
1173
1174 asoc->peer.rwnd = sack_a_rwnd;
1175
1176 sctp_generate_fwdtsn(q, sack_ctsn);
1177
1178 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1179 __FUNCTION__, sack_ctsn);
1180 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1181 "%p is 0x%x. Adv peer ack point: 0x%x\n",
1182 __FUNCTION__, asoc, ctsn, asoc->adv_peer_ack_point);
1183
1184 /* See if all chunks are acked.
1185 * Make sure the empty queue handler will get run later.
1186 */
1187 q->empty = (list_empty(&q->out_chunk_list) &&
1188 list_empty(&q->control_chunk_list) &&
1189 list_empty(&q->retransmit));
1190 if (!q->empty)
1191 goto finish;
1192
1193 list_for_each(pos, transport_list) {
1194 transport = list_entry(pos, struct sctp_transport,
1195 transports);
1196 q->empty = q->empty && list_empty(&transport->transmitted);
1197 if (!q->empty)
1198 goto finish;
1199 }
1200
1201 SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1202 finish:
1203 return q->empty;
1204 }
1205
1206 /* Is the outqueue empty? */
1207 int sctp_outq_is_empty(const struct sctp_outq *q)
1208 {
1209 return q->empty;
1210 }
1211
1212 /********************************************************************
1213 * 2nd Level Abstractions
1214 ********************************************************************/
1215
1216 /* Go through a transport's transmitted list or the association's retransmit
1217 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1218 * The retransmit list will not have an associated transport.
1219 *
1220 * I added coherent debug information output. --xguo
1221 *
1222 * Instead of printing 'sacked' or 'kept' for each TSN on the
1223 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1224 * KEPT TSN6-TSN7, etc.
1225 */
1226 static void sctp_check_transmitted(struct sctp_outq *q,
1227 struct list_head *transmitted_queue,
1228 struct sctp_transport *transport,
1229 struct sctp_sackhdr *sack,
1230 __u32 highest_new_tsn_in_sack)
1231 {
1232 struct list_head *lchunk;
1233 struct sctp_chunk *tchunk;
1234 struct list_head tlist;
1235 __u32 tsn;
1236 __u32 sack_ctsn;
1237 __u32 rtt;
1238 __u8 restart_timer = 0;
1239 int bytes_acked = 0;
1240
1241 /* These state variables are for coherent debug output. --xguo */
1242
1243 #if SCTP_DEBUG
1244 __u32 dbg_ack_tsn = 0; /* An ACKed TSN range starts here... */
1245 __u32 dbg_last_ack_tsn = 0; /* ...and finishes here. */
1246 __u32 dbg_kept_tsn = 0; /* An un-ACKed range starts here... */
1247 __u32 dbg_last_kept_tsn = 0; /* ...and finishes here. */
1248
1249 /* 0 : The last TSN was ACKed.
1250 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1251 * -1: We need to initialize.
1252 */
1253 int dbg_prt_state = -1;
1254 #endif /* SCTP_DEBUG */
1255
1256 sack_ctsn = ntohl(sack->cum_tsn_ack);
1257
1258 INIT_LIST_HEAD(&tlist);
1259
1260 /* The while loop will skip empty transmitted queues. */
1261 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1262 tchunk = list_entry(lchunk, struct sctp_chunk,
1263 transmitted_list);
1264
1265 if (sctp_chunk_abandoned(tchunk)) {
1266 /* Move the chunk to abandoned list. */
1267 sctp_insert_list(&q->abandoned, lchunk);
1268
1269 /* If this chunk has not been acked, stop
1270 * considering it as 'outstanding'.
1271 */
1272 if (!tchunk->tsn_gap_acked) {
1273 tchunk->transport->flight_size -=
1274 sctp_data_size(tchunk);
1275 q->outstanding_bytes -= sctp_data_size(tchunk);
1276 }
1277 continue;
1278 }
1279
1280 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1281 if (sctp_acked(sack, tsn)) {
1282 /* If this queue is the retransmit queue, the
1283 * retransmit timer has already reclaimed
1284 * the outstanding bytes for this chunk, so only
1285 * count bytes associated with a transport.
1286 */
1287 if (transport) {
1288 /* If this chunk is being used for RTT
1289 * measurement, calculate the RTT and update
1290 * the RTO using this value.
1291 *
1292 * 6.3.1 C5) Karn's algorithm: RTT measurements
1293 * MUST NOT be made using packets that were
1294 * retransmitted (and thus for which it is
1295 * ambiguous whether the reply was for the
1296 * first instance of the packet or a later
1297 * instance).
1298 */
1299 if (!tchunk->tsn_gap_acked &&
1300 !tchunk->resent &&
1301 tchunk->rtt_in_progress) {
1302 tchunk->rtt_in_progress = 0;
1303 rtt = jiffies - tchunk->sent_at;
1304 sctp_transport_update_rto(transport,
1305 rtt);
1306 }
1307 }
1308 if (TSN_lte(tsn, sack_ctsn)) {
1309 /* RFC 2960 6.3.2 Retransmission Timer Rules
1310 *
1311 * R3) Whenever a SACK is received
1312 * that acknowledges the DATA chunk
1313 * with the earliest outstanding TSN
1314 * for that address, restart T3-rtx
1315 * timer for that address with its
1316 * current RTO.
1317 */
1318 restart_timer = 1;
1319
1320 if (!tchunk->tsn_gap_acked) {
1321 tchunk->tsn_gap_acked = 1;
1322 bytes_acked += sctp_data_size(tchunk);
1323 /*
1324 * SFR-CACC algorithm:
1325 * 2) If the SACK contains gap acks
1326 * and the flag CHANGEOVER_ACTIVE is
1327 * set the receiver of the SACK MUST
1328 * take the following action:
1329 *
1330 * B) For each TSN t being acked that
1331 * has not been acked in any SACK so
1332 * far, set cacc_saw_newack to 1 for
1333 * the destination that the TSN was
1334 * sent to.
1335 */
1336 if (transport &&
1337 sack->num_gap_ack_blocks &&
1338 q->asoc->peer.primary_path->cacc.
1339 changeover_active)
1340 transport->cacc.cacc_saw_newack
1341 = 1;
1342 }
1343
1344 list_add_tail(&tchunk->transmitted_list,
1345 &q->sacked);
1346 } else {
1347 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1348 * M2) Each time a SACK arrives reporting
1349 * 'Stray DATA chunk(s)' record the highest TSN
1350 * reported as newly acknowledged, call this
1351 * value 'HighestTSNinSack'. A newly
1352 * acknowledged DATA chunk is one not
1353 * previously acknowledged in a SACK.
1354 *
1355 * When the SCTP sender of data receives a SACK
1356 * chunk that acknowledges, for the first time,
1357 * the receipt of a DATA chunk, all the still
1358 * unacknowledged DATA chunks whose TSN is
1359 * older than that newly acknowledged DATA
1360 * chunk, are qualified as 'Stray DATA chunks'.
1361 */
1362 if (!tchunk->tsn_gap_acked) {
1363 tchunk->tsn_gap_acked = 1;
1364 bytes_acked += sctp_data_size(tchunk);
1365 }
1366 list_add_tail(lchunk, &tlist);
1367 }
1368
1369 #if SCTP_DEBUG
1370 switch (dbg_prt_state) {
1371 case 0: /* last TSN was ACKed */
1372 if (dbg_last_ack_tsn + 1 == tsn) {
1373 /* This TSN belongs to the
1374 * current ACK range.
1375 */
1376 break;
1377 }
1378
1379 if (dbg_last_ack_tsn != dbg_ack_tsn) {
1380 /* Display the end of the
1381 * current range.
1382 */
1383 SCTP_DEBUG_PRINTK("-%08x",
1384 dbg_last_ack_tsn);
1385 }
1386
1387 /* Start a new range. */
1388 SCTP_DEBUG_PRINTK(",%08x", tsn);
1389 dbg_ack_tsn = tsn;
1390 break;
1391
1392 case 1: /* The last TSN was NOT ACKed. */
1393 if (dbg_last_kept_tsn != dbg_kept_tsn) {
1394 /* Display the end of current range. */
1395 SCTP_DEBUG_PRINTK("-%08x",
1396 dbg_last_kept_tsn);
1397 }
1398
1399 SCTP_DEBUG_PRINTK("\n");
1400
1401 /* FALL THROUGH... */
1402 default:
1403 /* This is the first-ever TSN we examined. */
1404 /* Start a new range of ACK-ed TSNs. */
1405 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn);
1406 dbg_prt_state = 0;
1407 dbg_ack_tsn = tsn;
1408 }
1409
1410 dbg_last_ack_tsn = tsn;
1411 #endif /* SCTP_DEBUG */
1412
1413 } else {
1414 if (tchunk->tsn_gap_acked) {
1415 SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1416 "data TSN: 0x%x\n",
1417 __FUNCTION__,
1418 tsn);
1419 tchunk->tsn_gap_acked = 0;
1420
1421 bytes_acked -= sctp_data_size(tchunk);
1422
1423 /* RFC 2960 6.3.2 Retransmission Timer Rules
1424 *
1425 * R4) Whenever a SACK is received missing a
1426 * TSN that was previously acknowledged via a
1427 * Gap Ack Block, start T3-rtx for the
1428 * destination address to which the DATA
1429 * chunk was originally
1430 * transmitted if it is not already running.
1431 */
1432 restart_timer = 1;
1433 }
1434
1435 list_add_tail(lchunk, &tlist);
1436
1437 #if SCTP_DEBUG
1438 /* See the above comments on ACK-ed TSNs. */
1439 switch (dbg_prt_state) {
1440 case 1:
1441 if (dbg_last_kept_tsn + 1 == tsn)
1442 break;
1443
1444 if (dbg_last_kept_tsn != dbg_kept_tsn)
1445 SCTP_DEBUG_PRINTK("-%08x",
1446 dbg_last_kept_tsn);
1447
1448 SCTP_DEBUG_PRINTK(",%08x", tsn);
1449 dbg_kept_tsn = tsn;
1450 break;
1451
1452 case 0:
1453 if (dbg_last_ack_tsn != dbg_ack_tsn)
1454 SCTP_DEBUG_PRINTK("-%08x",
1455 dbg_last_ack_tsn);
1456 SCTP_DEBUG_PRINTK("\n");
1457
1458 /* FALL THROUGH... */
1459 default:
1460 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn);
1461 dbg_prt_state = 1;
1462 dbg_kept_tsn = tsn;
1463 }
1464
1465 dbg_last_kept_tsn = tsn;
1466 #endif /* SCTP_DEBUG */
1467 }
1468 }
1469
1470 #if SCTP_DEBUG
1471 /* Finish off the last range, displaying its ending TSN. */
1472 switch (dbg_prt_state) {
1473 case 0:
1474 if (dbg_last_ack_tsn != dbg_ack_tsn) {
1475 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn);
1476 } else {
1477 SCTP_DEBUG_PRINTK("\n");
1478 }
1479 break;
1480
1481 case 1:
1482 if (dbg_last_kept_tsn != dbg_kept_tsn) {
1483 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn);
1484 } else {
1485 SCTP_DEBUG_PRINTK("\n");
1486 }
1487 }
1488 #endif /* SCTP_DEBUG */
1489 if (transport) {
1490 if (bytes_acked) {
1491 /* 8.2. When an outstanding TSN is acknowledged,
1492 * the endpoint shall clear the error counter of
1493 * the destination transport address to which the
1494 * DATA chunk was last sent.
1495 * The association's overall error counter is
1496 * also cleared.
1497 */
1498 transport->error_count = 0;
1499 transport->asoc->overall_error_count = 0;
1500
1501 /* Mark the destination transport address as
1502 * active if it is not so marked.
1503 */
1504 if ((transport->state == SCTP_INACTIVE) ||
1505 (transport->state == SCTP_UNCONFIRMED)) {
1506 sctp_assoc_control_transport(
1507 transport->asoc,
1508 transport,
1509 SCTP_TRANSPORT_UP,
1510 SCTP_RECEIVED_SACK);
1511 }
1512
1513 sctp_transport_raise_cwnd(transport, sack_ctsn,
1514 bytes_acked);
1515
1516 transport->flight_size -= bytes_acked;
1517 q->outstanding_bytes -= bytes_acked;
1518 } else {
1519 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1520 * When a sender is doing zero window probing, it
1521 * should not timeout the association if it continues
1522 * to receive new packets from the receiver. The
1523 * reason is that the receiver MAY keep its window
1524 * closed for an indefinite time.
1525 * A sender is doing zero window probing when the
1526 * receiver's advertised window is zero, and there is
1527 * only one data chunk in flight to the receiver.
1528 */
1529 if (!q->asoc->peer.rwnd &&
1530 !list_empty(&tlist) &&
1531 (sack_ctsn+2 == q->asoc->next_tsn)) {
1532 SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1533 "window probe: %u\n",
1534 __FUNCTION__, sack_ctsn);
1535 q->asoc->overall_error_count = 0;
1536 transport->error_count = 0;
1537 }
1538 }
1539
1540 /* RFC 2960 6.3.2 Retransmission Timer Rules
1541 *
1542 * R2) Whenever all outstanding data sent to an address have
1543 * been acknowledged, turn off the T3-rtx timer of that
1544 * address.
1545 */
1546 if (!transport->flight_size) {
1547 if (timer_pending(&transport->T3_rtx_timer) &&
1548 del_timer(&transport->T3_rtx_timer)) {
1549 sctp_transport_put(transport);
1550 }
1551 } else if (restart_timer) {
1552 if (!mod_timer(&transport->T3_rtx_timer,
1553 jiffies + transport->rto))
1554 sctp_transport_hold(transport);
1555 }
1556 }
1557
1558 list_splice(&tlist, transmitted_queue);
1559 }
1560
1561 /* Mark chunks as missing and consequently may get retransmitted. */
1562 static void sctp_mark_missing(struct sctp_outq *q,
1563 struct list_head *transmitted_queue,
1564 struct sctp_transport *transport,
1565 __u32 highest_new_tsn_in_sack,
1566 int count_of_newacks)
1567 {
1568 struct sctp_chunk *chunk;
1569 struct list_head *pos;
1570 __u32 tsn;
1571 char do_fast_retransmit = 0;
1572 struct sctp_transport *primary = q->asoc->peer.primary_path;
1573
1574 list_for_each(pos, transmitted_queue) {
1575
1576 chunk = list_entry(pos, struct sctp_chunk, transmitted_list);
1577 tsn = ntohl(chunk->subh.data_hdr->tsn);
1578
1579 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1580 * 'Unacknowledged TSN's', if the TSN number of an
1581 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1582 * value, increment the 'TSN.Missing.Report' count on that
1583 * chunk if it has NOT been fast retransmitted or marked for
1584 * fast retransmit already.
1585 */
1586 if (!chunk->fast_retransmit &&
1587 !chunk->tsn_gap_acked &&
1588 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1589
1590 /* SFR-CACC may require us to skip marking
1591 * this chunk as missing.
1592 */
1593 if (!transport || !sctp_cacc_skip(primary, transport,
1594 count_of_newacks, tsn)) {
1595 chunk->tsn_missing_report++;
1596
1597 SCTP_DEBUG_PRINTK(
1598 "%s: TSN 0x%x missing counter: %d\n",
1599 __FUNCTION__, tsn,
1600 chunk->tsn_missing_report);
1601 }
1602 }
1603 /*
1604 * M4) If any DATA chunk is found to have a
1605 * 'TSN.Missing.Report'
1606 * value larger than or equal to 3, mark that chunk for
1607 * retransmission and start the fast retransmit procedure.
1608 */
1609
1610 if (chunk->tsn_missing_report >= 3) {
1611 chunk->fast_retransmit = 1;
1612 do_fast_retransmit = 1;
1613 }
1614 }
1615
1616 if (transport) {
1617 if (do_fast_retransmit)
1618 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1619
1620 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1621 "ssthresh: %d, flight_size: %d, pba: %d\n",
1622 __FUNCTION__, transport, transport->cwnd,
1623 transport->ssthresh, transport->flight_size,
1624 transport->partial_bytes_acked);
1625 }
1626 }
1627
1628 /* Is the given TSN acked by this packet? */
1629 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1630 {
1631 int i;
1632 sctp_sack_variable_t *frags;
1633 __u16 gap;
1634 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1635
1636 if (TSN_lte(tsn, ctsn))
1637 goto pass;
1638
1639 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1640 *
1641 * Gap Ack Blocks:
1642 * These fields contain the Gap Ack Blocks. They are repeated
1643 * for each Gap Ack Block up to the number of Gap Ack Blocks
1644 * defined in the Number of Gap Ack Blocks field. All DATA
1645 * chunks with TSNs greater than or equal to (Cumulative TSN
1646 * Ack + Gap Ack Block Start) and less than or equal to
1647 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1648 * Block are assumed to have been received correctly.
1649 */
1650
1651 frags = sack->variable;
1652 gap = tsn - ctsn;
1653 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1654 if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1655 TSN_lte(gap, ntohs(frags[i].gab.end)))
1656 goto pass;
1657 }
1658
1659 return 0;
1660 pass:
1661 return 1;
1662 }
1663
1664 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1665 int nskips, __be16 stream)
1666 {
1667 int i;
1668
1669 for (i = 0; i < nskips; i++) {
1670 if (skiplist[i].stream == stream)
1671 return i;
1672 }
1673 return i;
1674 }
1675
1676 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1677 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1678 {
1679 struct sctp_association *asoc = q->asoc;
1680 struct sctp_chunk *ftsn_chunk = NULL;
1681 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1682 int nskips = 0;
1683 int skip_pos = 0;
1684 __u32 tsn;
1685 struct sctp_chunk *chunk;
1686 struct list_head *lchunk, *temp;
1687
1688 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1689 * received SACK.
1690 *
1691 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1692 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1693 */
1694 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1695 asoc->adv_peer_ack_point = ctsn;
1696
1697 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1698 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1699 * the chunk next in the out-queue space is marked as "abandoned" as
1700 * shown in the following example:
1701 *
1702 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1703 * and the Advanced.Peer.Ack.Point is updated to this value:
1704 *
1705 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1706 * normal SACK processing local advancement
1707 * ... ...
1708 * Adv.Ack.Pt-> 102 acked 102 acked
1709 * 103 abandoned 103 abandoned
1710 * 104 abandoned Adv.Ack.P-> 104 abandoned
1711 * 105 105
1712 * 106 acked 106 acked
1713 * ... ...
1714 *
1715 * In this example, the data sender successfully advanced the
1716 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1717 */
1718 list_for_each_safe(lchunk, temp, &q->abandoned) {
1719 chunk = list_entry(lchunk, struct sctp_chunk,
1720 transmitted_list);
1721 tsn = ntohl(chunk->subh.data_hdr->tsn);
1722
1723 /* Remove any chunks in the abandoned queue that are acked by
1724 * the ctsn.
1725 */
1726 if (TSN_lte(tsn, ctsn)) {
1727 list_del_init(lchunk);
1728 sctp_chunk_free(chunk);
1729 } else {
1730 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1731 asoc->adv_peer_ack_point = tsn;
1732 if (chunk->chunk_hdr->flags &
1733 SCTP_DATA_UNORDERED)
1734 continue;
1735 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1736 nskips,
1737 chunk->subh.data_hdr->stream);
1738 ftsn_skip_arr[skip_pos].stream =
1739 chunk->subh.data_hdr->stream;
1740 ftsn_skip_arr[skip_pos].ssn =
1741 chunk->subh.data_hdr->ssn;
1742 if (skip_pos == nskips)
1743 nskips++;
1744 if (nskips == 10)
1745 break;
1746 } else
1747 break;
1748 }
1749 }
1750
1751 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1752 * is greater than the Cumulative TSN ACK carried in the received
1753 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1754 * chunk containing the latest value of the
1755 * "Advanced.Peer.Ack.Point".
1756 *
1757 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1758 * list each stream and sequence number in the forwarded TSN. This
1759 * information will enable the receiver to easily find any
1760 * stranded TSN's waiting on stream reorder queues. Each stream
1761 * SHOULD only be reported once; this means that if multiple
1762 * abandoned messages occur in the same stream then only the
1763 * highest abandoned stream sequence number is reported. If the
1764 * total size of the FORWARD TSN does NOT fit in a single MTU then
1765 * the sender of the FORWARD TSN SHOULD lower the
1766 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1767 * single MTU.
1768 */
1769 if (asoc->adv_peer_ack_point > ctsn)
1770 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1771 nskips, &ftsn_skip_arr[0]);
1772
1773 if (ftsn_chunk) {
1774 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1775 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
1776 }
1777 }
This page took 0.069098 seconds and 6 git commands to generate.