2af76eaba8f784e4d7b4276c8c2ef46b1ef30925
[deliverable/linux.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105 extern struct kmem_cache *sctp_bucket_cachep;
106 extern long sysctl_sctp_mem[3];
107 extern int sysctl_sctp_rmem[3];
108 extern int sysctl_sctp_wmem[3];
109
110 static int sctp_memory_pressure;
111 static atomic_long_t sctp_memory_allocated;
112 struct percpu_counter sctp_sockets_allocated;
113
114 static void sctp_enter_memory_pressure(struct sock *sk)
115 {
116 sctp_memory_pressure = 1;
117 }
118
119
120 /* Get the sndbuf space available at the time on the association. */
121 static inline int sctp_wspace(struct sctp_association *asoc)
122 {
123 int amt;
124
125 if (asoc->ep->sndbuf_policy)
126 amt = asoc->sndbuf_used;
127 else
128 amt = sk_wmem_alloc_get(asoc->base.sk);
129
130 if (amt >= asoc->base.sk->sk_sndbuf) {
131 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
132 amt = 0;
133 else {
134 amt = sk_stream_wspace(asoc->base.sk);
135 if (amt < 0)
136 amt = 0;
137 }
138 } else {
139 amt = asoc->base.sk->sk_sndbuf - amt;
140 }
141 return amt;
142 }
143
144 /* Increment the used sndbuf space count of the corresponding association by
145 * the size of the outgoing data chunk.
146 * Also, set the skb destructor for sndbuf accounting later.
147 *
148 * Since it is always 1-1 between chunk and skb, and also a new skb is always
149 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
150 * destructor in the data chunk skb for the purpose of the sndbuf space
151 * tracking.
152 */
153 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
154 {
155 struct sctp_association *asoc = chunk->asoc;
156 struct sock *sk = asoc->base.sk;
157
158 /* The sndbuf space is tracked per association. */
159 sctp_association_hold(asoc);
160
161 skb_set_owner_w(chunk->skb, sk);
162
163 chunk->skb->destructor = sctp_wfree;
164 /* Save the chunk pointer in skb for sctp_wfree to use later. */
165 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
166
167 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
168 sizeof(struct sk_buff) +
169 sizeof(struct sctp_chunk);
170
171 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
172 sk->sk_wmem_queued += chunk->skb->truesize;
173 sk_mem_charge(sk, chunk->skb->truesize);
174 }
175
176 /* Verify that this is a valid address. */
177 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
178 int len)
179 {
180 struct sctp_af *af;
181
182 /* Verify basic sockaddr. */
183 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
184 if (!af)
185 return -EINVAL;
186
187 /* Is this a valid SCTP address? */
188 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
189 return -EINVAL;
190
191 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
192 return -EINVAL;
193
194 return 0;
195 }
196
197 /* Look up the association by its id. If this is not a UDP-style
198 * socket, the ID field is always ignored.
199 */
200 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
201 {
202 struct sctp_association *asoc = NULL;
203
204 /* If this is not a UDP-style socket, assoc id should be ignored. */
205 if (!sctp_style(sk, UDP)) {
206 /* Return NULL if the socket state is not ESTABLISHED. It
207 * could be a TCP-style listening socket or a socket which
208 * hasn't yet called connect() to establish an association.
209 */
210 if (!sctp_sstate(sk, ESTABLISHED))
211 return NULL;
212
213 /* Get the first and the only association from the list. */
214 if (!list_empty(&sctp_sk(sk)->ep->asocs))
215 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
216 struct sctp_association, asocs);
217 return asoc;
218 }
219
220 /* Otherwise this is a UDP-style socket. */
221 if (!id || (id == (sctp_assoc_t)-1))
222 return NULL;
223
224 spin_lock_bh(&sctp_assocs_id_lock);
225 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
226 spin_unlock_bh(&sctp_assocs_id_lock);
227
228 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
229 return NULL;
230
231 return asoc;
232 }
233
234 /* Look up the transport from an address and an assoc id. If both address and
235 * id are specified, the associations matching the address and the id should be
236 * the same.
237 */
238 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
239 struct sockaddr_storage *addr,
240 sctp_assoc_t id)
241 {
242 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
243 struct sctp_transport *transport;
244 union sctp_addr *laddr = (union sctp_addr *)addr;
245
246 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
247 laddr,
248 &transport);
249
250 if (!addr_asoc)
251 return NULL;
252
253 id_asoc = sctp_id2assoc(sk, id);
254 if (id_asoc && (id_asoc != addr_asoc))
255 return NULL;
256
257 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
258 (union sctp_addr *)addr);
259
260 return transport;
261 }
262
263 /* API 3.1.2 bind() - UDP Style Syntax
264 * The syntax of bind() is,
265 *
266 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
267 *
268 * sd - the socket descriptor returned by socket().
269 * addr - the address structure (struct sockaddr_in or struct
270 * sockaddr_in6 [RFC 2553]),
271 * addr_len - the size of the address structure.
272 */
273 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
274 {
275 int retval = 0;
276
277 lock_sock(sk);
278
279 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
280 addr, addr_len);
281
282 /* Disallow binding twice. */
283 if (!sctp_sk(sk)->ep->base.bind_addr.port)
284 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
285 addr_len);
286 else
287 retval = -EINVAL;
288
289 release_sock(sk);
290
291 return retval;
292 }
293
294 static long sctp_get_port_local(struct sock *, union sctp_addr *);
295
296 /* Verify this is a valid sockaddr. */
297 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
298 union sctp_addr *addr, int len)
299 {
300 struct sctp_af *af;
301
302 /* Check minimum size. */
303 if (len < sizeof (struct sockaddr))
304 return NULL;
305
306 /* V4 mapped address are really of AF_INET family */
307 if (addr->sa.sa_family == AF_INET6 &&
308 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
309 if (!opt->pf->af_supported(AF_INET, opt))
310 return NULL;
311 } else {
312 /* Does this PF support this AF? */
313 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
314 return NULL;
315 }
316
317 /* If we get this far, af is valid. */
318 af = sctp_get_af_specific(addr->sa.sa_family);
319
320 if (len < af->sockaddr_len)
321 return NULL;
322
323 return af;
324 }
325
326 /* Bind a local address either to an endpoint or to an association. */
327 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
328 {
329 struct net *net = sock_net(sk);
330 struct sctp_sock *sp = sctp_sk(sk);
331 struct sctp_endpoint *ep = sp->ep;
332 struct sctp_bind_addr *bp = &ep->base.bind_addr;
333 struct sctp_af *af;
334 unsigned short snum;
335 int ret = 0;
336
337 /* Common sockaddr verification. */
338 af = sctp_sockaddr_af(sp, addr, len);
339 if (!af) {
340 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
341 __func__, sk, addr, len);
342 return -EINVAL;
343 }
344
345 snum = ntohs(addr->v4.sin_port);
346
347 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
348 __func__, sk, &addr->sa, bp->port, snum, len);
349
350 /* PF specific bind() address verification. */
351 if (!sp->pf->bind_verify(sp, addr))
352 return -EADDRNOTAVAIL;
353
354 /* We must either be unbound, or bind to the same port.
355 * It's OK to allow 0 ports if we are already bound.
356 * We'll just inhert an already bound port in this case
357 */
358 if (bp->port) {
359 if (!snum)
360 snum = bp->port;
361 else if (snum != bp->port) {
362 pr_debug("%s: new port %d doesn't match existing port "
363 "%d\n", __func__, snum, bp->port);
364 return -EINVAL;
365 }
366 }
367
368 if (snum && snum < PROT_SOCK &&
369 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
370 return -EACCES;
371
372 /* See if the address matches any of the addresses we may have
373 * already bound before checking against other endpoints.
374 */
375 if (sctp_bind_addr_match(bp, addr, sp))
376 return -EINVAL;
377
378 /* Make sure we are allowed to bind here.
379 * The function sctp_get_port_local() does duplicate address
380 * detection.
381 */
382 addr->v4.sin_port = htons(snum);
383 if ((ret = sctp_get_port_local(sk, addr))) {
384 return -EADDRINUSE;
385 }
386
387 /* Refresh ephemeral port. */
388 if (!bp->port)
389 bp->port = inet_sk(sk)->inet_num;
390
391 /* Add the address to the bind address list.
392 * Use GFP_ATOMIC since BHs will be disabled.
393 */
394 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
395
396 /* Copy back into socket for getsockname() use. */
397 if (!ret) {
398 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
399 af->to_sk_saddr(addr, sk);
400 }
401
402 return ret;
403 }
404
405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
406 *
407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408 * at any one time. If a sender, after sending an ASCONF chunk, decides
409 * it needs to transfer another ASCONF Chunk, it MUST wait until the
410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411 * subsequent ASCONF. Note this restriction binds each side, so at any
412 * time two ASCONF may be in-transit on any given association (one sent
413 * from each endpoint).
414 */
415 static int sctp_send_asconf(struct sctp_association *asoc,
416 struct sctp_chunk *chunk)
417 {
418 struct net *net = sock_net(asoc->base.sk);
419 int retval = 0;
420
421 /* If there is an outstanding ASCONF chunk, queue it for later
422 * transmission.
423 */
424 if (asoc->addip_last_asconf) {
425 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
426 goto out;
427 }
428
429 /* Hold the chunk until an ASCONF_ACK is received. */
430 sctp_chunk_hold(chunk);
431 retval = sctp_primitive_ASCONF(net, asoc, chunk);
432 if (retval)
433 sctp_chunk_free(chunk);
434 else
435 asoc->addip_last_asconf = chunk;
436
437 out:
438 return retval;
439 }
440
441 /* Add a list of addresses as bind addresses to local endpoint or
442 * association.
443 *
444 * Basically run through each address specified in the addrs/addrcnt
445 * array/length pair, determine if it is IPv6 or IPv4 and call
446 * sctp_do_bind() on it.
447 *
448 * If any of them fails, then the operation will be reversed and the
449 * ones that were added will be removed.
450 *
451 * Only sctp_setsockopt_bindx() is supposed to call this function.
452 */
453 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
454 {
455 int cnt;
456 int retval = 0;
457 void *addr_buf;
458 struct sockaddr *sa_addr;
459 struct sctp_af *af;
460
461 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
462 addrs, addrcnt);
463
464 addr_buf = addrs;
465 for (cnt = 0; cnt < addrcnt; cnt++) {
466 /* The list may contain either IPv4 or IPv6 address;
467 * determine the address length for walking thru the list.
468 */
469 sa_addr = addr_buf;
470 af = sctp_get_af_specific(sa_addr->sa_family);
471 if (!af) {
472 retval = -EINVAL;
473 goto err_bindx_add;
474 }
475
476 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
477 af->sockaddr_len);
478
479 addr_buf += af->sockaddr_len;
480
481 err_bindx_add:
482 if (retval < 0) {
483 /* Failed. Cleanup the ones that have been added */
484 if (cnt > 0)
485 sctp_bindx_rem(sk, addrs, cnt);
486 return retval;
487 }
488 }
489
490 return retval;
491 }
492
493 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
494 * associations that are part of the endpoint indicating that a list of local
495 * addresses are added to the endpoint.
496 *
497 * If any of the addresses is already in the bind address list of the
498 * association, we do not send the chunk for that association. But it will not
499 * affect other associations.
500 *
501 * Only sctp_setsockopt_bindx() is supposed to call this function.
502 */
503 static int sctp_send_asconf_add_ip(struct sock *sk,
504 struct sockaddr *addrs,
505 int addrcnt)
506 {
507 struct net *net = sock_net(sk);
508 struct sctp_sock *sp;
509 struct sctp_endpoint *ep;
510 struct sctp_association *asoc;
511 struct sctp_bind_addr *bp;
512 struct sctp_chunk *chunk;
513 struct sctp_sockaddr_entry *laddr;
514 union sctp_addr *addr;
515 union sctp_addr saveaddr;
516 void *addr_buf;
517 struct sctp_af *af;
518 struct list_head *p;
519 int i;
520 int retval = 0;
521
522 if (!net->sctp.addip_enable)
523 return retval;
524
525 sp = sctp_sk(sk);
526 ep = sp->ep;
527
528 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
529 __func__, sk, addrs, addrcnt);
530
531 list_for_each_entry(asoc, &ep->asocs, asocs) {
532 if (!asoc->peer.asconf_capable)
533 continue;
534
535 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
536 continue;
537
538 if (!sctp_state(asoc, ESTABLISHED))
539 continue;
540
541 /* Check if any address in the packed array of addresses is
542 * in the bind address list of the association. If so,
543 * do not send the asconf chunk to its peer, but continue with
544 * other associations.
545 */
546 addr_buf = addrs;
547 for (i = 0; i < addrcnt; i++) {
548 addr = addr_buf;
549 af = sctp_get_af_specific(addr->v4.sin_family);
550 if (!af) {
551 retval = -EINVAL;
552 goto out;
553 }
554
555 if (sctp_assoc_lookup_laddr(asoc, addr))
556 break;
557
558 addr_buf += af->sockaddr_len;
559 }
560 if (i < addrcnt)
561 continue;
562
563 /* Use the first valid address in bind addr list of
564 * association as Address Parameter of ASCONF CHUNK.
565 */
566 bp = &asoc->base.bind_addr;
567 p = bp->address_list.next;
568 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
569 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
570 addrcnt, SCTP_PARAM_ADD_IP);
571 if (!chunk) {
572 retval = -ENOMEM;
573 goto out;
574 }
575
576 /* Add the new addresses to the bind address list with
577 * use_as_src set to 0.
578 */
579 addr_buf = addrs;
580 for (i = 0; i < addrcnt; i++) {
581 addr = addr_buf;
582 af = sctp_get_af_specific(addr->v4.sin_family);
583 memcpy(&saveaddr, addr, af->sockaddr_len);
584 retval = sctp_add_bind_addr(bp, &saveaddr,
585 SCTP_ADDR_NEW, GFP_ATOMIC);
586 addr_buf += af->sockaddr_len;
587 }
588 if (asoc->src_out_of_asoc_ok) {
589 struct sctp_transport *trans;
590
591 list_for_each_entry(trans,
592 &asoc->peer.transport_addr_list, transports) {
593 /* Clear the source and route cache */
594 dst_release(trans->dst);
595 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
596 2*asoc->pathmtu, 4380));
597 trans->ssthresh = asoc->peer.i.a_rwnd;
598 trans->rto = asoc->rto_initial;
599 sctp_max_rto(asoc, trans);
600 trans->rtt = trans->srtt = trans->rttvar = 0;
601 sctp_transport_route(trans, NULL,
602 sctp_sk(asoc->base.sk));
603 }
604 }
605 retval = sctp_send_asconf(asoc, chunk);
606 }
607
608 out:
609 return retval;
610 }
611
612 /* Remove a list of addresses from bind addresses list. Do not remove the
613 * last address.
614 *
615 * Basically run through each address specified in the addrs/addrcnt
616 * array/length pair, determine if it is IPv6 or IPv4 and call
617 * sctp_del_bind() on it.
618 *
619 * If any of them fails, then the operation will be reversed and the
620 * ones that were removed will be added back.
621 *
622 * At least one address has to be left; if only one address is
623 * available, the operation will return -EBUSY.
624 *
625 * Only sctp_setsockopt_bindx() is supposed to call this function.
626 */
627 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
628 {
629 struct sctp_sock *sp = sctp_sk(sk);
630 struct sctp_endpoint *ep = sp->ep;
631 int cnt;
632 struct sctp_bind_addr *bp = &ep->base.bind_addr;
633 int retval = 0;
634 void *addr_buf;
635 union sctp_addr *sa_addr;
636 struct sctp_af *af;
637
638 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
639 __func__, sk, addrs, addrcnt);
640
641 addr_buf = addrs;
642 for (cnt = 0; cnt < addrcnt; cnt++) {
643 /* If the bind address list is empty or if there is only one
644 * bind address, there is nothing more to be removed (we need
645 * at least one address here).
646 */
647 if (list_empty(&bp->address_list) ||
648 (sctp_list_single_entry(&bp->address_list))) {
649 retval = -EBUSY;
650 goto err_bindx_rem;
651 }
652
653 sa_addr = addr_buf;
654 af = sctp_get_af_specific(sa_addr->sa.sa_family);
655 if (!af) {
656 retval = -EINVAL;
657 goto err_bindx_rem;
658 }
659
660 if (!af->addr_valid(sa_addr, sp, NULL)) {
661 retval = -EADDRNOTAVAIL;
662 goto err_bindx_rem;
663 }
664
665 if (sa_addr->v4.sin_port &&
666 sa_addr->v4.sin_port != htons(bp->port)) {
667 retval = -EINVAL;
668 goto err_bindx_rem;
669 }
670
671 if (!sa_addr->v4.sin_port)
672 sa_addr->v4.sin_port = htons(bp->port);
673
674 /* FIXME - There is probably a need to check if sk->sk_saddr and
675 * sk->sk_rcv_addr are currently set to one of the addresses to
676 * be removed. This is something which needs to be looked into
677 * when we are fixing the outstanding issues with multi-homing
678 * socket routing and failover schemes. Refer to comments in
679 * sctp_do_bind(). -daisy
680 */
681 retval = sctp_del_bind_addr(bp, sa_addr);
682
683 addr_buf += af->sockaddr_len;
684 err_bindx_rem:
685 if (retval < 0) {
686 /* Failed. Add the ones that has been removed back */
687 if (cnt > 0)
688 sctp_bindx_add(sk, addrs, cnt);
689 return retval;
690 }
691 }
692
693 return retval;
694 }
695
696 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
697 * the associations that are part of the endpoint indicating that a list of
698 * local addresses are removed from the endpoint.
699 *
700 * If any of the addresses is already in the bind address list of the
701 * association, we do not send the chunk for that association. But it will not
702 * affect other associations.
703 *
704 * Only sctp_setsockopt_bindx() is supposed to call this function.
705 */
706 static int sctp_send_asconf_del_ip(struct sock *sk,
707 struct sockaddr *addrs,
708 int addrcnt)
709 {
710 struct net *net = sock_net(sk);
711 struct sctp_sock *sp;
712 struct sctp_endpoint *ep;
713 struct sctp_association *asoc;
714 struct sctp_transport *transport;
715 struct sctp_bind_addr *bp;
716 struct sctp_chunk *chunk;
717 union sctp_addr *laddr;
718 void *addr_buf;
719 struct sctp_af *af;
720 struct sctp_sockaddr_entry *saddr;
721 int i;
722 int retval = 0;
723 int stored = 0;
724
725 chunk = NULL;
726 if (!net->sctp.addip_enable)
727 return retval;
728
729 sp = sctp_sk(sk);
730 ep = sp->ep;
731
732 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
733 __func__, sk, addrs, addrcnt);
734
735 list_for_each_entry(asoc, &ep->asocs, asocs) {
736
737 if (!asoc->peer.asconf_capable)
738 continue;
739
740 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
741 continue;
742
743 if (!sctp_state(asoc, ESTABLISHED))
744 continue;
745
746 /* Check if any address in the packed array of addresses is
747 * not present in the bind address list of the association.
748 * If so, do not send the asconf chunk to its peer, but
749 * continue with other associations.
750 */
751 addr_buf = addrs;
752 for (i = 0; i < addrcnt; i++) {
753 laddr = addr_buf;
754 af = sctp_get_af_specific(laddr->v4.sin_family);
755 if (!af) {
756 retval = -EINVAL;
757 goto out;
758 }
759
760 if (!sctp_assoc_lookup_laddr(asoc, laddr))
761 break;
762
763 addr_buf += af->sockaddr_len;
764 }
765 if (i < addrcnt)
766 continue;
767
768 /* Find one address in the association's bind address list
769 * that is not in the packed array of addresses. This is to
770 * make sure that we do not delete all the addresses in the
771 * association.
772 */
773 bp = &asoc->base.bind_addr;
774 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
775 addrcnt, sp);
776 if ((laddr == NULL) && (addrcnt == 1)) {
777 if (asoc->asconf_addr_del_pending)
778 continue;
779 asoc->asconf_addr_del_pending =
780 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
781 if (asoc->asconf_addr_del_pending == NULL) {
782 retval = -ENOMEM;
783 goto out;
784 }
785 asoc->asconf_addr_del_pending->sa.sa_family =
786 addrs->sa_family;
787 asoc->asconf_addr_del_pending->v4.sin_port =
788 htons(bp->port);
789 if (addrs->sa_family == AF_INET) {
790 struct sockaddr_in *sin;
791
792 sin = (struct sockaddr_in *)addrs;
793 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
794 } else if (addrs->sa_family == AF_INET6) {
795 struct sockaddr_in6 *sin6;
796
797 sin6 = (struct sockaddr_in6 *)addrs;
798 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
799 }
800
801 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
802 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
803 asoc->asconf_addr_del_pending);
804
805 asoc->src_out_of_asoc_ok = 1;
806 stored = 1;
807 goto skip_mkasconf;
808 }
809
810 if (laddr == NULL)
811 return -EINVAL;
812
813 /* We do not need RCU protection throughout this loop
814 * because this is done under a socket lock from the
815 * setsockopt call.
816 */
817 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
818 SCTP_PARAM_DEL_IP);
819 if (!chunk) {
820 retval = -ENOMEM;
821 goto out;
822 }
823
824 skip_mkasconf:
825 /* Reset use_as_src flag for the addresses in the bind address
826 * list that are to be deleted.
827 */
828 addr_buf = addrs;
829 for (i = 0; i < addrcnt; i++) {
830 laddr = addr_buf;
831 af = sctp_get_af_specific(laddr->v4.sin_family);
832 list_for_each_entry(saddr, &bp->address_list, list) {
833 if (sctp_cmp_addr_exact(&saddr->a, laddr))
834 saddr->state = SCTP_ADDR_DEL;
835 }
836 addr_buf += af->sockaddr_len;
837 }
838
839 /* Update the route and saddr entries for all the transports
840 * as some of the addresses in the bind address list are
841 * about to be deleted and cannot be used as source addresses.
842 */
843 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
844 transports) {
845 dst_release(transport->dst);
846 sctp_transport_route(transport, NULL,
847 sctp_sk(asoc->base.sk));
848 }
849
850 if (stored)
851 /* We don't need to transmit ASCONF */
852 continue;
853 retval = sctp_send_asconf(asoc, chunk);
854 }
855 out:
856 return retval;
857 }
858
859 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
860 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
861 {
862 struct sock *sk = sctp_opt2sk(sp);
863 union sctp_addr *addr;
864 struct sctp_af *af;
865
866 /* It is safe to write port space in caller. */
867 addr = &addrw->a;
868 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
869 af = sctp_get_af_specific(addr->sa.sa_family);
870 if (!af)
871 return -EINVAL;
872 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
873 return -EINVAL;
874
875 if (addrw->state == SCTP_ADDR_NEW)
876 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
877 else
878 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
879 }
880
881 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
882 *
883 * API 8.1
884 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
885 * int flags);
886 *
887 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
888 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
889 * or IPv6 addresses.
890 *
891 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
892 * Section 3.1.2 for this usage.
893 *
894 * addrs is a pointer to an array of one or more socket addresses. Each
895 * address is contained in its appropriate structure (i.e. struct
896 * sockaddr_in or struct sockaddr_in6) the family of the address type
897 * must be used to distinguish the address length (note that this
898 * representation is termed a "packed array" of addresses). The caller
899 * specifies the number of addresses in the array with addrcnt.
900 *
901 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
902 * -1, and sets errno to the appropriate error code.
903 *
904 * For SCTP, the port given in each socket address must be the same, or
905 * sctp_bindx() will fail, setting errno to EINVAL.
906 *
907 * The flags parameter is formed from the bitwise OR of zero or more of
908 * the following currently defined flags:
909 *
910 * SCTP_BINDX_ADD_ADDR
911 *
912 * SCTP_BINDX_REM_ADDR
913 *
914 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
915 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
916 * addresses from the association. The two flags are mutually exclusive;
917 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
918 * not remove all addresses from an association; sctp_bindx() will
919 * reject such an attempt with EINVAL.
920 *
921 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
922 * additional addresses with an endpoint after calling bind(). Or use
923 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
924 * socket is associated with so that no new association accepted will be
925 * associated with those addresses. If the endpoint supports dynamic
926 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
927 * endpoint to send the appropriate message to the peer to change the
928 * peers address lists.
929 *
930 * Adding and removing addresses from a connected association is
931 * optional functionality. Implementations that do not support this
932 * functionality should return EOPNOTSUPP.
933 *
934 * Basically do nothing but copying the addresses from user to kernel
935 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
936 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
937 * from userspace.
938 *
939 * We don't use copy_from_user() for optimization: we first do the
940 * sanity checks (buffer size -fast- and access check-healthy
941 * pointer); if all of those succeed, then we can alloc the memory
942 * (expensive operation) needed to copy the data to kernel. Then we do
943 * the copying without checking the user space area
944 * (__copy_from_user()).
945 *
946 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
947 * it.
948 *
949 * sk The sk of the socket
950 * addrs The pointer to the addresses in user land
951 * addrssize Size of the addrs buffer
952 * op Operation to perform (add or remove, see the flags of
953 * sctp_bindx)
954 *
955 * Returns 0 if ok, <0 errno code on error.
956 */
957 static int sctp_setsockopt_bindx(struct sock *sk,
958 struct sockaddr __user *addrs,
959 int addrs_size, int op)
960 {
961 struct sockaddr *kaddrs;
962 int err;
963 int addrcnt = 0;
964 int walk_size = 0;
965 struct sockaddr *sa_addr;
966 void *addr_buf;
967 struct sctp_af *af;
968
969 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
970 __func__, sk, addrs, addrs_size, op);
971
972 if (unlikely(addrs_size <= 0))
973 return -EINVAL;
974
975 /* Check the user passed a healthy pointer. */
976 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
977 return -EFAULT;
978
979 /* Alloc space for the address array in kernel memory. */
980 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
981 if (unlikely(!kaddrs))
982 return -ENOMEM;
983
984 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
985 kfree(kaddrs);
986 return -EFAULT;
987 }
988
989 /* Walk through the addrs buffer and count the number of addresses. */
990 addr_buf = kaddrs;
991 while (walk_size < addrs_size) {
992 if (walk_size + sizeof(sa_family_t) > addrs_size) {
993 kfree(kaddrs);
994 return -EINVAL;
995 }
996
997 sa_addr = addr_buf;
998 af = sctp_get_af_specific(sa_addr->sa_family);
999
1000 /* If the address family is not supported or if this address
1001 * causes the address buffer to overflow return EINVAL.
1002 */
1003 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1004 kfree(kaddrs);
1005 return -EINVAL;
1006 }
1007 addrcnt++;
1008 addr_buf += af->sockaddr_len;
1009 walk_size += af->sockaddr_len;
1010 }
1011
1012 /* Do the work. */
1013 switch (op) {
1014 case SCTP_BINDX_ADD_ADDR:
1015 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1016 if (err)
1017 goto out;
1018 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1019 break;
1020
1021 case SCTP_BINDX_REM_ADDR:
1022 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1023 if (err)
1024 goto out;
1025 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1026 break;
1027
1028 default:
1029 err = -EINVAL;
1030 break;
1031 }
1032
1033 out:
1034 kfree(kaddrs);
1035
1036 return err;
1037 }
1038
1039 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1040 *
1041 * Common routine for handling connect() and sctp_connectx().
1042 * Connect will come in with just a single address.
1043 */
1044 static int __sctp_connect(struct sock *sk,
1045 struct sockaddr *kaddrs,
1046 int addrs_size,
1047 sctp_assoc_t *assoc_id)
1048 {
1049 struct net *net = sock_net(sk);
1050 struct sctp_sock *sp;
1051 struct sctp_endpoint *ep;
1052 struct sctp_association *asoc = NULL;
1053 struct sctp_association *asoc2;
1054 struct sctp_transport *transport;
1055 union sctp_addr to;
1056 struct sctp_af *af;
1057 sctp_scope_t scope;
1058 long timeo;
1059 int err = 0;
1060 int addrcnt = 0;
1061 int walk_size = 0;
1062 union sctp_addr *sa_addr = NULL;
1063 void *addr_buf;
1064 unsigned short port;
1065 unsigned int f_flags = 0;
1066
1067 sp = sctp_sk(sk);
1068 ep = sp->ep;
1069
1070 /* connect() cannot be done on a socket that is already in ESTABLISHED
1071 * state - UDP-style peeled off socket or a TCP-style socket that
1072 * is already connected.
1073 * It cannot be done even on a TCP-style listening socket.
1074 */
1075 if (sctp_sstate(sk, ESTABLISHED) ||
1076 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1077 err = -EISCONN;
1078 goto out_free;
1079 }
1080
1081 /* Walk through the addrs buffer and count the number of addresses. */
1082 addr_buf = kaddrs;
1083 while (walk_size < addrs_size) {
1084 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1085 err = -EINVAL;
1086 goto out_free;
1087 }
1088
1089 sa_addr = addr_buf;
1090 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1091
1092 /* If the address family is not supported or if this address
1093 * causes the address buffer to overflow return EINVAL.
1094 */
1095 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1096 err = -EINVAL;
1097 goto out_free;
1098 }
1099
1100 port = ntohs(sa_addr->v4.sin_port);
1101
1102 /* Save current address so we can work with it */
1103 memcpy(&to, sa_addr, af->sockaddr_len);
1104
1105 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1106 if (err)
1107 goto out_free;
1108
1109 /* Make sure the destination port is correctly set
1110 * in all addresses.
1111 */
1112 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1113 err = -EINVAL;
1114 goto out_free;
1115 }
1116
1117 /* Check if there already is a matching association on the
1118 * endpoint (other than the one created here).
1119 */
1120 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1121 if (asoc2 && asoc2 != asoc) {
1122 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1123 err = -EISCONN;
1124 else
1125 err = -EALREADY;
1126 goto out_free;
1127 }
1128
1129 /* If we could not find a matching association on the endpoint,
1130 * make sure that there is no peeled-off association matching
1131 * the peer address even on another socket.
1132 */
1133 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1134 err = -EADDRNOTAVAIL;
1135 goto out_free;
1136 }
1137
1138 if (!asoc) {
1139 /* If a bind() or sctp_bindx() is not called prior to
1140 * an sctp_connectx() call, the system picks an
1141 * ephemeral port and will choose an address set
1142 * equivalent to binding with a wildcard address.
1143 */
1144 if (!ep->base.bind_addr.port) {
1145 if (sctp_autobind(sk)) {
1146 err = -EAGAIN;
1147 goto out_free;
1148 }
1149 } else {
1150 /*
1151 * If an unprivileged user inherits a 1-many
1152 * style socket with open associations on a
1153 * privileged port, it MAY be permitted to
1154 * accept new associations, but it SHOULD NOT
1155 * be permitted to open new associations.
1156 */
1157 if (ep->base.bind_addr.port < PROT_SOCK &&
1158 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1159 err = -EACCES;
1160 goto out_free;
1161 }
1162 }
1163
1164 scope = sctp_scope(&to);
1165 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1166 if (!asoc) {
1167 err = -ENOMEM;
1168 goto out_free;
1169 }
1170
1171 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1172 GFP_KERNEL);
1173 if (err < 0) {
1174 goto out_free;
1175 }
1176
1177 }
1178
1179 /* Prime the peer's transport structures. */
1180 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1181 SCTP_UNKNOWN);
1182 if (!transport) {
1183 err = -ENOMEM;
1184 goto out_free;
1185 }
1186
1187 addrcnt++;
1188 addr_buf += af->sockaddr_len;
1189 walk_size += af->sockaddr_len;
1190 }
1191
1192 /* In case the user of sctp_connectx() wants an association
1193 * id back, assign one now.
1194 */
1195 if (assoc_id) {
1196 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1197 if (err < 0)
1198 goto out_free;
1199 }
1200
1201 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1202 if (err < 0) {
1203 goto out_free;
1204 }
1205
1206 /* Initialize sk's dport and daddr for getpeername() */
1207 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1208 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1209 af->to_sk_daddr(sa_addr, sk);
1210 sk->sk_err = 0;
1211
1212 /* in-kernel sockets don't generally have a file allocated to them
1213 * if all they do is call sock_create_kern().
1214 */
1215 if (sk->sk_socket->file)
1216 f_flags = sk->sk_socket->file->f_flags;
1217
1218 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1219
1220 err = sctp_wait_for_connect(asoc, &timeo);
1221 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1222 *assoc_id = asoc->assoc_id;
1223
1224 /* Don't free association on exit. */
1225 asoc = NULL;
1226
1227 out_free:
1228 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1229 __func__, asoc, kaddrs, err);
1230
1231 if (asoc) {
1232 /* sctp_primitive_ASSOCIATE may have added this association
1233 * To the hash table, try to unhash it, just in case, its a noop
1234 * if it wasn't hashed so we're safe
1235 */
1236 sctp_unhash_established(asoc);
1237 sctp_association_free(asoc);
1238 }
1239 return err;
1240 }
1241
1242 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1243 *
1244 * API 8.9
1245 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1246 * sctp_assoc_t *asoc);
1247 *
1248 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1249 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1250 * or IPv6 addresses.
1251 *
1252 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1253 * Section 3.1.2 for this usage.
1254 *
1255 * addrs is a pointer to an array of one or more socket addresses. Each
1256 * address is contained in its appropriate structure (i.e. struct
1257 * sockaddr_in or struct sockaddr_in6) the family of the address type
1258 * must be used to distengish the address length (note that this
1259 * representation is termed a "packed array" of addresses). The caller
1260 * specifies the number of addresses in the array with addrcnt.
1261 *
1262 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1263 * the association id of the new association. On failure, sctp_connectx()
1264 * returns -1, and sets errno to the appropriate error code. The assoc_id
1265 * is not touched by the kernel.
1266 *
1267 * For SCTP, the port given in each socket address must be the same, or
1268 * sctp_connectx() will fail, setting errno to EINVAL.
1269 *
1270 * An application can use sctp_connectx to initiate an association with
1271 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1272 * allows a caller to specify multiple addresses at which a peer can be
1273 * reached. The way the SCTP stack uses the list of addresses to set up
1274 * the association is implementation dependent. This function only
1275 * specifies that the stack will try to make use of all the addresses in
1276 * the list when needed.
1277 *
1278 * Note that the list of addresses passed in is only used for setting up
1279 * the association. It does not necessarily equal the set of addresses
1280 * the peer uses for the resulting association. If the caller wants to
1281 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1282 * retrieve them after the association has been set up.
1283 *
1284 * Basically do nothing but copying the addresses from user to kernel
1285 * land and invoking either sctp_connectx(). This is used for tunneling
1286 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1287 *
1288 * We don't use copy_from_user() for optimization: we first do the
1289 * sanity checks (buffer size -fast- and access check-healthy
1290 * pointer); if all of those succeed, then we can alloc the memory
1291 * (expensive operation) needed to copy the data to kernel. Then we do
1292 * the copying without checking the user space area
1293 * (__copy_from_user()).
1294 *
1295 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1296 * it.
1297 *
1298 * sk The sk of the socket
1299 * addrs The pointer to the addresses in user land
1300 * addrssize Size of the addrs buffer
1301 *
1302 * Returns >=0 if ok, <0 errno code on error.
1303 */
1304 static int __sctp_setsockopt_connectx(struct sock *sk,
1305 struct sockaddr __user *addrs,
1306 int addrs_size,
1307 sctp_assoc_t *assoc_id)
1308 {
1309 int err = 0;
1310 struct sockaddr *kaddrs;
1311
1312 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1313 __func__, sk, addrs, addrs_size);
1314
1315 if (unlikely(addrs_size <= 0))
1316 return -EINVAL;
1317
1318 /* Check the user passed a healthy pointer. */
1319 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1320 return -EFAULT;
1321
1322 /* Alloc space for the address array in kernel memory. */
1323 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1324 if (unlikely(!kaddrs))
1325 return -ENOMEM;
1326
1327 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1328 err = -EFAULT;
1329 } else {
1330 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1331 }
1332
1333 kfree(kaddrs);
1334
1335 return err;
1336 }
1337
1338 /*
1339 * This is an older interface. It's kept for backward compatibility
1340 * to the option that doesn't provide association id.
1341 */
1342 static int sctp_setsockopt_connectx_old(struct sock *sk,
1343 struct sockaddr __user *addrs,
1344 int addrs_size)
1345 {
1346 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1347 }
1348
1349 /*
1350 * New interface for the API. The since the API is done with a socket
1351 * option, to make it simple we feed back the association id is as a return
1352 * indication to the call. Error is always negative and association id is
1353 * always positive.
1354 */
1355 static int sctp_setsockopt_connectx(struct sock *sk,
1356 struct sockaddr __user *addrs,
1357 int addrs_size)
1358 {
1359 sctp_assoc_t assoc_id = 0;
1360 int err = 0;
1361
1362 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1363
1364 if (err)
1365 return err;
1366 else
1367 return assoc_id;
1368 }
1369
1370 /*
1371 * New (hopefully final) interface for the API.
1372 * We use the sctp_getaddrs_old structure so that use-space library
1373 * can avoid any unnecessary allocations. The only different part
1374 * is that we store the actual length of the address buffer into the
1375 * addrs_num structure member. That way we can re-use the existing
1376 * code.
1377 */
1378 #ifdef CONFIG_COMPAT
1379 struct compat_sctp_getaddrs_old {
1380 sctp_assoc_t assoc_id;
1381 s32 addr_num;
1382 compat_uptr_t addrs; /* struct sockaddr * */
1383 };
1384 #endif
1385
1386 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1387 char __user *optval,
1388 int __user *optlen)
1389 {
1390 struct sctp_getaddrs_old param;
1391 sctp_assoc_t assoc_id = 0;
1392 int err = 0;
1393
1394 #ifdef CONFIG_COMPAT
1395 if (is_compat_task()) {
1396 struct compat_sctp_getaddrs_old param32;
1397
1398 if (len < sizeof(param32))
1399 return -EINVAL;
1400 if (copy_from_user(&param32, optval, sizeof(param32)))
1401 return -EFAULT;
1402
1403 param.assoc_id = param32.assoc_id;
1404 param.addr_num = param32.addr_num;
1405 param.addrs = compat_ptr(param32.addrs);
1406 } else
1407 #endif
1408 {
1409 if (len < sizeof(param))
1410 return -EINVAL;
1411 if (copy_from_user(&param, optval, sizeof(param)))
1412 return -EFAULT;
1413 }
1414
1415 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1416 param.addrs, param.addr_num,
1417 &assoc_id);
1418 if (err == 0 || err == -EINPROGRESS) {
1419 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1420 return -EFAULT;
1421 if (put_user(sizeof(assoc_id), optlen))
1422 return -EFAULT;
1423 }
1424
1425 return err;
1426 }
1427
1428 /* API 3.1.4 close() - UDP Style Syntax
1429 * Applications use close() to perform graceful shutdown (as described in
1430 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1431 * by a UDP-style socket.
1432 *
1433 * The syntax is
1434 *
1435 * ret = close(int sd);
1436 *
1437 * sd - the socket descriptor of the associations to be closed.
1438 *
1439 * To gracefully shutdown a specific association represented by the
1440 * UDP-style socket, an application should use the sendmsg() call,
1441 * passing no user data, but including the appropriate flag in the
1442 * ancillary data (see Section xxxx).
1443 *
1444 * If sd in the close() call is a branched-off socket representing only
1445 * one association, the shutdown is performed on that association only.
1446 *
1447 * 4.1.6 close() - TCP Style Syntax
1448 *
1449 * Applications use close() to gracefully close down an association.
1450 *
1451 * The syntax is:
1452 *
1453 * int close(int sd);
1454 *
1455 * sd - the socket descriptor of the association to be closed.
1456 *
1457 * After an application calls close() on a socket descriptor, no further
1458 * socket operations will succeed on that descriptor.
1459 *
1460 * API 7.1.4 SO_LINGER
1461 *
1462 * An application using the TCP-style socket can use this option to
1463 * perform the SCTP ABORT primitive. The linger option structure is:
1464 *
1465 * struct linger {
1466 * int l_onoff; // option on/off
1467 * int l_linger; // linger time
1468 * };
1469 *
1470 * To enable the option, set l_onoff to 1. If the l_linger value is set
1471 * to 0, calling close() is the same as the ABORT primitive. If the
1472 * value is set to a negative value, the setsockopt() call will return
1473 * an error. If the value is set to a positive value linger_time, the
1474 * close() can be blocked for at most linger_time ms. If the graceful
1475 * shutdown phase does not finish during this period, close() will
1476 * return but the graceful shutdown phase continues in the system.
1477 */
1478 static void sctp_close(struct sock *sk, long timeout)
1479 {
1480 struct net *net = sock_net(sk);
1481 struct sctp_endpoint *ep;
1482 struct sctp_association *asoc;
1483 struct list_head *pos, *temp;
1484 unsigned int data_was_unread;
1485
1486 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1487
1488 lock_sock(sk);
1489 sk->sk_shutdown = SHUTDOWN_MASK;
1490 sk->sk_state = SCTP_SS_CLOSING;
1491
1492 ep = sctp_sk(sk)->ep;
1493
1494 /* Clean up any skbs sitting on the receive queue. */
1495 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1496 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1497
1498 /* Walk all associations on an endpoint. */
1499 list_for_each_safe(pos, temp, &ep->asocs) {
1500 asoc = list_entry(pos, struct sctp_association, asocs);
1501
1502 if (sctp_style(sk, TCP)) {
1503 /* A closed association can still be in the list if
1504 * it belongs to a TCP-style listening socket that is
1505 * not yet accepted. If so, free it. If not, send an
1506 * ABORT or SHUTDOWN based on the linger options.
1507 */
1508 if (sctp_state(asoc, CLOSED)) {
1509 sctp_unhash_established(asoc);
1510 sctp_association_free(asoc);
1511 continue;
1512 }
1513 }
1514
1515 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1516 !skb_queue_empty(&asoc->ulpq.reasm) ||
1517 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1518 struct sctp_chunk *chunk;
1519
1520 chunk = sctp_make_abort_user(asoc, NULL, 0);
1521 if (chunk)
1522 sctp_primitive_ABORT(net, asoc, chunk);
1523 } else
1524 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1525 }
1526
1527 /* On a TCP-style socket, block for at most linger_time if set. */
1528 if (sctp_style(sk, TCP) && timeout)
1529 sctp_wait_for_close(sk, timeout);
1530
1531 /* This will run the backlog queue. */
1532 release_sock(sk);
1533
1534 /* Supposedly, no process has access to the socket, but
1535 * the net layers still may.
1536 */
1537 local_bh_disable();
1538 bh_lock_sock(sk);
1539
1540 /* Hold the sock, since sk_common_release() will put sock_put()
1541 * and we have just a little more cleanup.
1542 */
1543 sock_hold(sk);
1544 sk_common_release(sk);
1545
1546 bh_unlock_sock(sk);
1547 local_bh_enable();
1548
1549 sock_put(sk);
1550
1551 SCTP_DBG_OBJCNT_DEC(sock);
1552 }
1553
1554 /* Handle EPIPE error. */
1555 static int sctp_error(struct sock *sk, int flags, int err)
1556 {
1557 if (err == -EPIPE)
1558 err = sock_error(sk) ? : -EPIPE;
1559 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1560 send_sig(SIGPIPE, current, 0);
1561 return err;
1562 }
1563
1564 /* API 3.1.3 sendmsg() - UDP Style Syntax
1565 *
1566 * An application uses sendmsg() and recvmsg() calls to transmit data to
1567 * and receive data from its peer.
1568 *
1569 * ssize_t sendmsg(int socket, const struct msghdr *message,
1570 * int flags);
1571 *
1572 * socket - the socket descriptor of the endpoint.
1573 * message - pointer to the msghdr structure which contains a single
1574 * user message and possibly some ancillary data.
1575 *
1576 * See Section 5 for complete description of the data
1577 * structures.
1578 *
1579 * flags - flags sent or received with the user message, see Section
1580 * 5 for complete description of the flags.
1581 *
1582 * Note: This function could use a rewrite especially when explicit
1583 * connect support comes in.
1584 */
1585 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1586
1587 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1588
1589 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1590 struct msghdr *msg, size_t msg_len)
1591 {
1592 struct net *net = sock_net(sk);
1593 struct sctp_sock *sp;
1594 struct sctp_endpoint *ep;
1595 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1596 struct sctp_transport *transport, *chunk_tp;
1597 struct sctp_chunk *chunk;
1598 union sctp_addr to;
1599 struct sockaddr *msg_name = NULL;
1600 struct sctp_sndrcvinfo default_sinfo;
1601 struct sctp_sndrcvinfo *sinfo;
1602 struct sctp_initmsg *sinit;
1603 sctp_assoc_t associd = 0;
1604 sctp_cmsgs_t cmsgs = { NULL };
1605 int err;
1606 sctp_scope_t scope;
1607 long timeo;
1608 __u16 sinfo_flags = 0;
1609 struct sctp_datamsg *datamsg;
1610 int msg_flags = msg->msg_flags;
1611
1612 err = 0;
1613 sp = sctp_sk(sk);
1614 ep = sp->ep;
1615
1616 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1617 msg, msg_len, ep);
1618
1619 /* We cannot send a message over a TCP-style listening socket. */
1620 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1621 err = -EPIPE;
1622 goto out_nounlock;
1623 }
1624
1625 /* Parse out the SCTP CMSGs. */
1626 err = sctp_msghdr_parse(msg, &cmsgs);
1627 if (err) {
1628 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1629 goto out_nounlock;
1630 }
1631
1632 /* Fetch the destination address for this packet. This
1633 * address only selects the association--it is not necessarily
1634 * the address we will send to.
1635 * For a peeled-off socket, msg_name is ignored.
1636 */
1637 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1638 int msg_namelen = msg->msg_namelen;
1639
1640 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1641 msg_namelen);
1642 if (err)
1643 return err;
1644
1645 if (msg_namelen > sizeof(to))
1646 msg_namelen = sizeof(to);
1647 memcpy(&to, msg->msg_name, msg_namelen);
1648 msg_name = msg->msg_name;
1649 }
1650
1651 sinfo = cmsgs.info;
1652 sinit = cmsgs.init;
1653
1654 /* Did the user specify SNDRCVINFO? */
1655 if (sinfo) {
1656 sinfo_flags = sinfo->sinfo_flags;
1657 associd = sinfo->sinfo_assoc_id;
1658 }
1659
1660 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1661 msg_len, sinfo_flags);
1662
1663 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1664 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1665 err = -EINVAL;
1666 goto out_nounlock;
1667 }
1668
1669 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1670 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1671 * If SCTP_ABORT is set, the message length could be non zero with
1672 * the msg_iov set to the user abort reason.
1673 */
1674 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1675 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1676 err = -EINVAL;
1677 goto out_nounlock;
1678 }
1679
1680 /* If SCTP_ADDR_OVER is set, there must be an address
1681 * specified in msg_name.
1682 */
1683 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1684 err = -EINVAL;
1685 goto out_nounlock;
1686 }
1687
1688 transport = NULL;
1689
1690 pr_debug("%s: about to look up association\n", __func__);
1691
1692 lock_sock(sk);
1693
1694 /* If a msg_name has been specified, assume this is to be used. */
1695 if (msg_name) {
1696 /* Look for a matching association on the endpoint. */
1697 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1698 if (!asoc) {
1699 /* If we could not find a matching association on the
1700 * endpoint, make sure that it is not a TCP-style
1701 * socket that already has an association or there is
1702 * no peeled-off association on another socket.
1703 */
1704 if ((sctp_style(sk, TCP) &&
1705 sctp_sstate(sk, ESTABLISHED)) ||
1706 sctp_endpoint_is_peeled_off(ep, &to)) {
1707 err = -EADDRNOTAVAIL;
1708 goto out_unlock;
1709 }
1710 }
1711 } else {
1712 asoc = sctp_id2assoc(sk, associd);
1713 if (!asoc) {
1714 err = -EPIPE;
1715 goto out_unlock;
1716 }
1717 }
1718
1719 if (asoc) {
1720 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1721
1722 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1723 * socket that has an association in CLOSED state. This can
1724 * happen when an accepted socket has an association that is
1725 * already CLOSED.
1726 */
1727 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1728 err = -EPIPE;
1729 goto out_unlock;
1730 }
1731
1732 if (sinfo_flags & SCTP_EOF) {
1733 pr_debug("%s: shutting down association:%p\n",
1734 __func__, asoc);
1735
1736 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1737 err = 0;
1738 goto out_unlock;
1739 }
1740 if (sinfo_flags & SCTP_ABORT) {
1741
1742 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1743 if (!chunk) {
1744 err = -ENOMEM;
1745 goto out_unlock;
1746 }
1747
1748 pr_debug("%s: aborting association:%p\n",
1749 __func__, asoc);
1750
1751 sctp_primitive_ABORT(net, asoc, chunk);
1752 err = 0;
1753 goto out_unlock;
1754 }
1755 }
1756
1757 /* Do we need to create the association? */
1758 if (!asoc) {
1759 pr_debug("%s: there is no association yet\n", __func__);
1760
1761 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1762 err = -EINVAL;
1763 goto out_unlock;
1764 }
1765
1766 /* Check for invalid stream against the stream counts,
1767 * either the default or the user specified stream counts.
1768 */
1769 if (sinfo) {
1770 if (!sinit || !sinit->sinit_num_ostreams) {
1771 /* Check against the defaults. */
1772 if (sinfo->sinfo_stream >=
1773 sp->initmsg.sinit_num_ostreams) {
1774 err = -EINVAL;
1775 goto out_unlock;
1776 }
1777 } else {
1778 /* Check against the requested. */
1779 if (sinfo->sinfo_stream >=
1780 sinit->sinit_num_ostreams) {
1781 err = -EINVAL;
1782 goto out_unlock;
1783 }
1784 }
1785 }
1786
1787 /*
1788 * API 3.1.2 bind() - UDP Style Syntax
1789 * If a bind() or sctp_bindx() is not called prior to a
1790 * sendmsg() call that initiates a new association, the
1791 * system picks an ephemeral port and will choose an address
1792 * set equivalent to binding with a wildcard address.
1793 */
1794 if (!ep->base.bind_addr.port) {
1795 if (sctp_autobind(sk)) {
1796 err = -EAGAIN;
1797 goto out_unlock;
1798 }
1799 } else {
1800 /*
1801 * If an unprivileged user inherits a one-to-many
1802 * style socket with open associations on a privileged
1803 * port, it MAY be permitted to accept new associations,
1804 * but it SHOULD NOT be permitted to open new
1805 * associations.
1806 */
1807 if (ep->base.bind_addr.port < PROT_SOCK &&
1808 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1809 err = -EACCES;
1810 goto out_unlock;
1811 }
1812 }
1813
1814 scope = sctp_scope(&to);
1815 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1816 if (!new_asoc) {
1817 err = -ENOMEM;
1818 goto out_unlock;
1819 }
1820 asoc = new_asoc;
1821 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1822 if (err < 0) {
1823 err = -ENOMEM;
1824 goto out_free;
1825 }
1826
1827 /* If the SCTP_INIT ancillary data is specified, set all
1828 * the association init values accordingly.
1829 */
1830 if (sinit) {
1831 if (sinit->sinit_num_ostreams) {
1832 asoc->c.sinit_num_ostreams =
1833 sinit->sinit_num_ostreams;
1834 }
1835 if (sinit->sinit_max_instreams) {
1836 asoc->c.sinit_max_instreams =
1837 sinit->sinit_max_instreams;
1838 }
1839 if (sinit->sinit_max_attempts) {
1840 asoc->max_init_attempts
1841 = sinit->sinit_max_attempts;
1842 }
1843 if (sinit->sinit_max_init_timeo) {
1844 asoc->max_init_timeo =
1845 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1846 }
1847 }
1848
1849 /* Prime the peer's transport structures. */
1850 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1851 if (!transport) {
1852 err = -ENOMEM;
1853 goto out_free;
1854 }
1855 }
1856
1857 /* ASSERT: we have a valid association at this point. */
1858 pr_debug("%s: we have a valid association\n", __func__);
1859
1860 if (!sinfo) {
1861 /* If the user didn't specify SNDRCVINFO, make up one with
1862 * some defaults.
1863 */
1864 memset(&default_sinfo, 0, sizeof(default_sinfo));
1865 default_sinfo.sinfo_stream = asoc->default_stream;
1866 default_sinfo.sinfo_flags = asoc->default_flags;
1867 default_sinfo.sinfo_ppid = asoc->default_ppid;
1868 default_sinfo.sinfo_context = asoc->default_context;
1869 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1870 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1871 sinfo = &default_sinfo;
1872 }
1873
1874 /* API 7.1.7, the sndbuf size per association bounds the
1875 * maximum size of data that can be sent in a single send call.
1876 */
1877 if (msg_len > sk->sk_sndbuf) {
1878 err = -EMSGSIZE;
1879 goto out_free;
1880 }
1881
1882 if (asoc->pmtu_pending)
1883 sctp_assoc_pending_pmtu(sk, asoc);
1884
1885 /* If fragmentation is disabled and the message length exceeds the
1886 * association fragmentation point, return EMSGSIZE. The I-D
1887 * does not specify what this error is, but this looks like
1888 * a great fit.
1889 */
1890 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1891 err = -EMSGSIZE;
1892 goto out_free;
1893 }
1894
1895 /* Check for invalid stream. */
1896 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1897 err = -EINVAL;
1898 goto out_free;
1899 }
1900
1901 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1902 if (!sctp_wspace(asoc)) {
1903 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1904 if (err)
1905 goto out_free;
1906 }
1907
1908 /* If an address is passed with the sendto/sendmsg call, it is used
1909 * to override the primary destination address in the TCP model, or
1910 * when SCTP_ADDR_OVER flag is set in the UDP model.
1911 */
1912 if ((sctp_style(sk, TCP) && msg_name) ||
1913 (sinfo_flags & SCTP_ADDR_OVER)) {
1914 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1915 if (!chunk_tp) {
1916 err = -EINVAL;
1917 goto out_free;
1918 }
1919 } else
1920 chunk_tp = NULL;
1921
1922 /* Auto-connect, if we aren't connected already. */
1923 if (sctp_state(asoc, CLOSED)) {
1924 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1925 if (err < 0)
1926 goto out_free;
1927
1928 pr_debug("%s: we associated primitively\n", __func__);
1929 }
1930
1931 /* Break the message into multiple chunks of maximum size. */
1932 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1933 if (IS_ERR(datamsg)) {
1934 err = PTR_ERR(datamsg);
1935 goto out_free;
1936 }
1937
1938 /* Now send the (possibly) fragmented message. */
1939 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1940 sctp_chunk_hold(chunk);
1941
1942 /* Do accounting for the write space. */
1943 sctp_set_owner_w(chunk);
1944
1945 chunk->transport = chunk_tp;
1946 }
1947
1948 /* Send it to the lower layers. Note: all chunks
1949 * must either fail or succeed. The lower layer
1950 * works that way today. Keep it that way or this
1951 * breaks.
1952 */
1953 err = sctp_primitive_SEND(net, asoc, datamsg);
1954 /* Did the lower layer accept the chunk? */
1955 if (err) {
1956 sctp_datamsg_free(datamsg);
1957 goto out_free;
1958 }
1959
1960 pr_debug("%s: we sent primitively\n", __func__);
1961
1962 sctp_datamsg_put(datamsg);
1963 err = msg_len;
1964
1965 /* If we are already past ASSOCIATE, the lower
1966 * layers are responsible for association cleanup.
1967 */
1968 goto out_unlock;
1969
1970 out_free:
1971 if (new_asoc) {
1972 sctp_unhash_established(asoc);
1973 sctp_association_free(asoc);
1974 }
1975 out_unlock:
1976 release_sock(sk);
1977
1978 out_nounlock:
1979 return sctp_error(sk, msg_flags, err);
1980
1981 #if 0
1982 do_sock_err:
1983 if (msg_len)
1984 err = msg_len;
1985 else
1986 err = sock_error(sk);
1987 goto out;
1988
1989 do_interrupted:
1990 if (msg_len)
1991 err = msg_len;
1992 goto out;
1993 #endif /* 0 */
1994 }
1995
1996 /* This is an extended version of skb_pull() that removes the data from the
1997 * start of a skb even when data is spread across the list of skb's in the
1998 * frag_list. len specifies the total amount of data that needs to be removed.
1999 * when 'len' bytes could be removed from the skb, it returns 0.
2000 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2001 * could not be removed.
2002 */
2003 static int sctp_skb_pull(struct sk_buff *skb, int len)
2004 {
2005 struct sk_buff *list;
2006 int skb_len = skb_headlen(skb);
2007 int rlen;
2008
2009 if (len <= skb_len) {
2010 __skb_pull(skb, len);
2011 return 0;
2012 }
2013 len -= skb_len;
2014 __skb_pull(skb, skb_len);
2015
2016 skb_walk_frags(skb, list) {
2017 rlen = sctp_skb_pull(list, len);
2018 skb->len -= (len-rlen);
2019 skb->data_len -= (len-rlen);
2020
2021 if (!rlen)
2022 return 0;
2023
2024 len = rlen;
2025 }
2026
2027 return len;
2028 }
2029
2030 /* API 3.1.3 recvmsg() - UDP Style Syntax
2031 *
2032 * ssize_t recvmsg(int socket, struct msghdr *message,
2033 * int flags);
2034 *
2035 * socket - the socket descriptor of the endpoint.
2036 * message - pointer to the msghdr structure which contains a single
2037 * user message and possibly some ancillary data.
2038 *
2039 * See Section 5 for complete description of the data
2040 * structures.
2041 *
2042 * flags - flags sent or received with the user message, see Section
2043 * 5 for complete description of the flags.
2044 */
2045 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2046
2047 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2048 struct msghdr *msg, size_t len, int noblock,
2049 int flags, int *addr_len)
2050 {
2051 struct sctp_ulpevent *event = NULL;
2052 struct sctp_sock *sp = sctp_sk(sk);
2053 struct sk_buff *skb;
2054 int copied;
2055 int err = 0;
2056 int skb_len;
2057
2058 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2059 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2060 addr_len);
2061
2062 lock_sock(sk);
2063
2064 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2065 err = -ENOTCONN;
2066 goto out;
2067 }
2068
2069 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2070 if (!skb)
2071 goto out;
2072
2073 /* Get the total length of the skb including any skb's in the
2074 * frag_list.
2075 */
2076 skb_len = skb->len;
2077
2078 copied = skb_len;
2079 if (copied > len)
2080 copied = len;
2081
2082 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2083
2084 event = sctp_skb2event(skb);
2085
2086 if (err)
2087 goto out_free;
2088
2089 sock_recv_ts_and_drops(msg, sk, skb);
2090 if (sctp_ulpevent_is_notification(event)) {
2091 msg->msg_flags |= MSG_NOTIFICATION;
2092 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2093 } else {
2094 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2095 }
2096
2097 /* Check if we allow SCTP_SNDRCVINFO. */
2098 if (sp->subscribe.sctp_data_io_event)
2099 sctp_ulpevent_read_sndrcvinfo(event, msg);
2100 #if 0
2101 /* FIXME: we should be calling IP/IPv6 layers. */
2102 if (sk->sk_protinfo.af_inet.cmsg_flags)
2103 ip_cmsg_recv(msg, skb);
2104 #endif
2105
2106 err = copied;
2107
2108 /* If skb's length exceeds the user's buffer, update the skb and
2109 * push it back to the receive_queue so that the next call to
2110 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2111 */
2112 if (skb_len > copied) {
2113 msg->msg_flags &= ~MSG_EOR;
2114 if (flags & MSG_PEEK)
2115 goto out_free;
2116 sctp_skb_pull(skb, copied);
2117 skb_queue_head(&sk->sk_receive_queue, skb);
2118
2119 /* When only partial message is copied to the user, increase
2120 * rwnd by that amount. If all the data in the skb is read,
2121 * rwnd is updated when the event is freed.
2122 */
2123 if (!sctp_ulpevent_is_notification(event))
2124 sctp_assoc_rwnd_increase(event->asoc, copied);
2125 goto out;
2126 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2127 (event->msg_flags & MSG_EOR))
2128 msg->msg_flags |= MSG_EOR;
2129 else
2130 msg->msg_flags &= ~MSG_EOR;
2131
2132 out_free:
2133 if (flags & MSG_PEEK) {
2134 /* Release the skb reference acquired after peeking the skb in
2135 * sctp_skb_recv_datagram().
2136 */
2137 kfree_skb(skb);
2138 } else {
2139 /* Free the event which includes releasing the reference to
2140 * the owner of the skb, freeing the skb and updating the
2141 * rwnd.
2142 */
2143 sctp_ulpevent_free(event);
2144 }
2145 out:
2146 release_sock(sk);
2147 return err;
2148 }
2149
2150 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2151 *
2152 * This option is a on/off flag. If enabled no SCTP message
2153 * fragmentation will be performed. Instead if a message being sent
2154 * exceeds the current PMTU size, the message will NOT be sent and
2155 * instead a error will be indicated to the user.
2156 */
2157 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2158 char __user *optval,
2159 unsigned int optlen)
2160 {
2161 int val;
2162
2163 if (optlen < sizeof(int))
2164 return -EINVAL;
2165
2166 if (get_user(val, (int __user *)optval))
2167 return -EFAULT;
2168
2169 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2170
2171 return 0;
2172 }
2173
2174 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2175 unsigned int optlen)
2176 {
2177 struct sctp_association *asoc;
2178 struct sctp_ulpevent *event;
2179
2180 if (optlen > sizeof(struct sctp_event_subscribe))
2181 return -EINVAL;
2182 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2183 return -EFAULT;
2184
2185 /*
2186 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2187 * if there is no data to be sent or retransmit, the stack will
2188 * immediately send up this notification.
2189 */
2190 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2191 &sctp_sk(sk)->subscribe)) {
2192 asoc = sctp_id2assoc(sk, 0);
2193
2194 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2195 event = sctp_ulpevent_make_sender_dry_event(asoc,
2196 GFP_ATOMIC);
2197 if (!event)
2198 return -ENOMEM;
2199
2200 sctp_ulpq_tail_event(&asoc->ulpq, event);
2201 }
2202 }
2203
2204 return 0;
2205 }
2206
2207 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2208 *
2209 * This socket option is applicable to the UDP-style socket only. When
2210 * set it will cause associations that are idle for more than the
2211 * specified number of seconds to automatically close. An association
2212 * being idle is defined an association that has NOT sent or received
2213 * user data. The special value of '0' indicates that no automatic
2214 * close of any associations should be performed. The option expects an
2215 * integer defining the number of seconds of idle time before an
2216 * association is closed.
2217 */
2218 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2219 unsigned int optlen)
2220 {
2221 struct sctp_sock *sp = sctp_sk(sk);
2222 struct net *net = sock_net(sk);
2223
2224 /* Applicable to UDP-style socket only */
2225 if (sctp_style(sk, TCP))
2226 return -EOPNOTSUPP;
2227 if (optlen != sizeof(int))
2228 return -EINVAL;
2229 if (copy_from_user(&sp->autoclose, optval, optlen))
2230 return -EFAULT;
2231
2232 if (sp->autoclose > net->sctp.max_autoclose)
2233 sp->autoclose = net->sctp.max_autoclose;
2234
2235 return 0;
2236 }
2237
2238 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2239 *
2240 * Applications can enable or disable heartbeats for any peer address of
2241 * an association, modify an address's heartbeat interval, force a
2242 * heartbeat to be sent immediately, and adjust the address's maximum
2243 * number of retransmissions sent before an address is considered
2244 * unreachable. The following structure is used to access and modify an
2245 * address's parameters:
2246 *
2247 * struct sctp_paddrparams {
2248 * sctp_assoc_t spp_assoc_id;
2249 * struct sockaddr_storage spp_address;
2250 * uint32_t spp_hbinterval;
2251 * uint16_t spp_pathmaxrxt;
2252 * uint32_t spp_pathmtu;
2253 * uint32_t spp_sackdelay;
2254 * uint32_t spp_flags;
2255 * };
2256 *
2257 * spp_assoc_id - (one-to-many style socket) This is filled in the
2258 * application, and identifies the association for
2259 * this query.
2260 * spp_address - This specifies which address is of interest.
2261 * spp_hbinterval - This contains the value of the heartbeat interval,
2262 * in milliseconds. If a value of zero
2263 * is present in this field then no changes are to
2264 * be made to this parameter.
2265 * spp_pathmaxrxt - This contains the maximum number of
2266 * retransmissions before this address shall be
2267 * considered unreachable. If a value of zero
2268 * is present in this field then no changes are to
2269 * be made to this parameter.
2270 * spp_pathmtu - When Path MTU discovery is disabled the value
2271 * specified here will be the "fixed" path mtu.
2272 * Note that if the spp_address field is empty
2273 * then all associations on this address will
2274 * have this fixed path mtu set upon them.
2275 *
2276 * spp_sackdelay - When delayed sack is enabled, this value specifies
2277 * the number of milliseconds that sacks will be delayed
2278 * for. This value will apply to all addresses of an
2279 * association if the spp_address field is empty. Note
2280 * also, that if delayed sack is enabled and this
2281 * value is set to 0, no change is made to the last
2282 * recorded delayed sack timer value.
2283 *
2284 * spp_flags - These flags are used to control various features
2285 * on an association. The flag field may contain
2286 * zero or more of the following options.
2287 *
2288 * SPP_HB_ENABLE - Enable heartbeats on the
2289 * specified address. Note that if the address
2290 * field is empty all addresses for the association
2291 * have heartbeats enabled upon them.
2292 *
2293 * SPP_HB_DISABLE - Disable heartbeats on the
2294 * speicifed address. Note that if the address
2295 * field is empty all addresses for the association
2296 * will have their heartbeats disabled. Note also
2297 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2298 * mutually exclusive, only one of these two should
2299 * be specified. Enabling both fields will have
2300 * undetermined results.
2301 *
2302 * SPP_HB_DEMAND - Request a user initiated heartbeat
2303 * to be made immediately.
2304 *
2305 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2306 * heartbeat delayis to be set to the value of 0
2307 * milliseconds.
2308 *
2309 * SPP_PMTUD_ENABLE - This field will enable PMTU
2310 * discovery upon the specified address. Note that
2311 * if the address feild is empty then all addresses
2312 * on the association are effected.
2313 *
2314 * SPP_PMTUD_DISABLE - This field will disable PMTU
2315 * discovery upon the specified address. Note that
2316 * if the address feild is empty then all addresses
2317 * on the association are effected. Not also that
2318 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2319 * exclusive. Enabling both will have undetermined
2320 * results.
2321 *
2322 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2323 * on delayed sack. The time specified in spp_sackdelay
2324 * is used to specify the sack delay for this address. Note
2325 * that if spp_address is empty then all addresses will
2326 * enable delayed sack and take on the sack delay
2327 * value specified in spp_sackdelay.
2328 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2329 * off delayed sack. If the spp_address field is blank then
2330 * delayed sack is disabled for the entire association. Note
2331 * also that this field is mutually exclusive to
2332 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2333 * results.
2334 */
2335 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2336 struct sctp_transport *trans,
2337 struct sctp_association *asoc,
2338 struct sctp_sock *sp,
2339 int hb_change,
2340 int pmtud_change,
2341 int sackdelay_change)
2342 {
2343 int error;
2344
2345 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2346 struct net *net = sock_net(trans->asoc->base.sk);
2347
2348 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2349 if (error)
2350 return error;
2351 }
2352
2353 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2354 * this field is ignored. Note also that a value of zero indicates
2355 * the current setting should be left unchanged.
2356 */
2357 if (params->spp_flags & SPP_HB_ENABLE) {
2358
2359 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2360 * set. This lets us use 0 value when this flag
2361 * is set.
2362 */
2363 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2364 params->spp_hbinterval = 0;
2365
2366 if (params->spp_hbinterval ||
2367 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2368 if (trans) {
2369 trans->hbinterval =
2370 msecs_to_jiffies(params->spp_hbinterval);
2371 } else if (asoc) {
2372 asoc->hbinterval =
2373 msecs_to_jiffies(params->spp_hbinterval);
2374 } else {
2375 sp->hbinterval = params->spp_hbinterval;
2376 }
2377 }
2378 }
2379
2380 if (hb_change) {
2381 if (trans) {
2382 trans->param_flags =
2383 (trans->param_flags & ~SPP_HB) | hb_change;
2384 } else if (asoc) {
2385 asoc->param_flags =
2386 (asoc->param_flags & ~SPP_HB) | hb_change;
2387 } else {
2388 sp->param_flags =
2389 (sp->param_flags & ~SPP_HB) | hb_change;
2390 }
2391 }
2392
2393 /* When Path MTU discovery is disabled the value specified here will
2394 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2395 * include the flag SPP_PMTUD_DISABLE for this field to have any
2396 * effect).
2397 */
2398 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2399 if (trans) {
2400 trans->pathmtu = params->spp_pathmtu;
2401 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2402 } else if (asoc) {
2403 asoc->pathmtu = params->spp_pathmtu;
2404 sctp_frag_point(asoc, params->spp_pathmtu);
2405 } else {
2406 sp->pathmtu = params->spp_pathmtu;
2407 }
2408 }
2409
2410 if (pmtud_change) {
2411 if (trans) {
2412 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2413 (params->spp_flags & SPP_PMTUD_ENABLE);
2414 trans->param_flags =
2415 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2416 if (update) {
2417 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2418 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2419 }
2420 } else if (asoc) {
2421 asoc->param_flags =
2422 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2423 } else {
2424 sp->param_flags =
2425 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2426 }
2427 }
2428
2429 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2430 * value of this field is ignored. Note also that a value of zero
2431 * indicates the current setting should be left unchanged.
2432 */
2433 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2434 if (trans) {
2435 trans->sackdelay =
2436 msecs_to_jiffies(params->spp_sackdelay);
2437 } else if (asoc) {
2438 asoc->sackdelay =
2439 msecs_to_jiffies(params->spp_sackdelay);
2440 } else {
2441 sp->sackdelay = params->spp_sackdelay;
2442 }
2443 }
2444
2445 if (sackdelay_change) {
2446 if (trans) {
2447 trans->param_flags =
2448 (trans->param_flags & ~SPP_SACKDELAY) |
2449 sackdelay_change;
2450 } else if (asoc) {
2451 asoc->param_flags =
2452 (asoc->param_flags & ~SPP_SACKDELAY) |
2453 sackdelay_change;
2454 } else {
2455 sp->param_flags =
2456 (sp->param_flags & ~SPP_SACKDELAY) |
2457 sackdelay_change;
2458 }
2459 }
2460
2461 /* Note that a value of zero indicates the current setting should be
2462 left unchanged.
2463 */
2464 if (params->spp_pathmaxrxt) {
2465 if (trans) {
2466 trans->pathmaxrxt = params->spp_pathmaxrxt;
2467 } else if (asoc) {
2468 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2469 } else {
2470 sp->pathmaxrxt = params->spp_pathmaxrxt;
2471 }
2472 }
2473
2474 return 0;
2475 }
2476
2477 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2478 char __user *optval,
2479 unsigned int optlen)
2480 {
2481 struct sctp_paddrparams params;
2482 struct sctp_transport *trans = NULL;
2483 struct sctp_association *asoc = NULL;
2484 struct sctp_sock *sp = sctp_sk(sk);
2485 int error;
2486 int hb_change, pmtud_change, sackdelay_change;
2487
2488 if (optlen != sizeof(struct sctp_paddrparams))
2489 return -EINVAL;
2490
2491 if (copy_from_user(&params, optval, optlen))
2492 return -EFAULT;
2493
2494 /* Validate flags and value parameters. */
2495 hb_change = params.spp_flags & SPP_HB;
2496 pmtud_change = params.spp_flags & SPP_PMTUD;
2497 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2498
2499 if (hb_change == SPP_HB ||
2500 pmtud_change == SPP_PMTUD ||
2501 sackdelay_change == SPP_SACKDELAY ||
2502 params.spp_sackdelay > 500 ||
2503 (params.spp_pathmtu &&
2504 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2505 return -EINVAL;
2506
2507 /* If an address other than INADDR_ANY is specified, and
2508 * no transport is found, then the request is invalid.
2509 */
2510 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2511 trans = sctp_addr_id2transport(sk, &params.spp_address,
2512 params.spp_assoc_id);
2513 if (!trans)
2514 return -EINVAL;
2515 }
2516
2517 /* Get association, if assoc_id != 0 and the socket is a one
2518 * to many style socket, and an association was not found, then
2519 * the id was invalid.
2520 */
2521 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2522 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2523 return -EINVAL;
2524
2525 /* Heartbeat demand can only be sent on a transport or
2526 * association, but not a socket.
2527 */
2528 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2529 return -EINVAL;
2530
2531 /* Process parameters. */
2532 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2533 hb_change, pmtud_change,
2534 sackdelay_change);
2535
2536 if (error)
2537 return error;
2538
2539 /* If changes are for association, also apply parameters to each
2540 * transport.
2541 */
2542 if (!trans && asoc) {
2543 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2544 transports) {
2545 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2546 hb_change, pmtud_change,
2547 sackdelay_change);
2548 }
2549 }
2550
2551 return 0;
2552 }
2553
2554 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2555 {
2556 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2557 }
2558
2559 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2560 {
2561 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2562 }
2563
2564 /*
2565 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2566 *
2567 * This option will effect the way delayed acks are performed. This
2568 * option allows you to get or set the delayed ack time, in
2569 * milliseconds. It also allows changing the delayed ack frequency.
2570 * Changing the frequency to 1 disables the delayed sack algorithm. If
2571 * the assoc_id is 0, then this sets or gets the endpoints default
2572 * values. If the assoc_id field is non-zero, then the set or get
2573 * effects the specified association for the one to many model (the
2574 * assoc_id field is ignored by the one to one model). Note that if
2575 * sack_delay or sack_freq are 0 when setting this option, then the
2576 * current values will remain unchanged.
2577 *
2578 * struct sctp_sack_info {
2579 * sctp_assoc_t sack_assoc_id;
2580 * uint32_t sack_delay;
2581 * uint32_t sack_freq;
2582 * };
2583 *
2584 * sack_assoc_id - This parameter, indicates which association the user
2585 * is performing an action upon. Note that if this field's value is
2586 * zero then the endpoints default value is changed (effecting future
2587 * associations only).
2588 *
2589 * sack_delay - This parameter contains the number of milliseconds that
2590 * the user is requesting the delayed ACK timer be set to. Note that
2591 * this value is defined in the standard to be between 200 and 500
2592 * milliseconds.
2593 *
2594 * sack_freq - This parameter contains the number of packets that must
2595 * be received before a sack is sent without waiting for the delay
2596 * timer to expire. The default value for this is 2, setting this
2597 * value to 1 will disable the delayed sack algorithm.
2598 */
2599
2600 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2601 char __user *optval, unsigned int optlen)
2602 {
2603 struct sctp_sack_info params;
2604 struct sctp_transport *trans = NULL;
2605 struct sctp_association *asoc = NULL;
2606 struct sctp_sock *sp = sctp_sk(sk);
2607
2608 if (optlen == sizeof(struct sctp_sack_info)) {
2609 if (copy_from_user(&params, optval, optlen))
2610 return -EFAULT;
2611
2612 if (params.sack_delay == 0 && params.sack_freq == 0)
2613 return 0;
2614 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2615 pr_warn_ratelimited(DEPRECATED
2616 "%s (pid %d) "
2617 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2618 "Use struct sctp_sack_info instead\n",
2619 current->comm, task_pid_nr(current));
2620 if (copy_from_user(&params, optval, optlen))
2621 return -EFAULT;
2622
2623 if (params.sack_delay == 0)
2624 params.sack_freq = 1;
2625 else
2626 params.sack_freq = 0;
2627 } else
2628 return -EINVAL;
2629
2630 /* Validate value parameter. */
2631 if (params.sack_delay > 500)
2632 return -EINVAL;
2633
2634 /* Get association, if sack_assoc_id != 0 and the socket is a one
2635 * to many style socket, and an association was not found, then
2636 * the id was invalid.
2637 */
2638 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2639 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2640 return -EINVAL;
2641
2642 if (params.sack_delay) {
2643 if (asoc) {
2644 asoc->sackdelay =
2645 msecs_to_jiffies(params.sack_delay);
2646 asoc->param_flags =
2647 sctp_spp_sackdelay_enable(asoc->param_flags);
2648 } else {
2649 sp->sackdelay = params.sack_delay;
2650 sp->param_flags =
2651 sctp_spp_sackdelay_enable(sp->param_flags);
2652 }
2653 }
2654
2655 if (params.sack_freq == 1) {
2656 if (asoc) {
2657 asoc->param_flags =
2658 sctp_spp_sackdelay_disable(asoc->param_flags);
2659 } else {
2660 sp->param_flags =
2661 sctp_spp_sackdelay_disable(sp->param_flags);
2662 }
2663 } else if (params.sack_freq > 1) {
2664 if (asoc) {
2665 asoc->sackfreq = params.sack_freq;
2666 asoc->param_flags =
2667 sctp_spp_sackdelay_enable(asoc->param_flags);
2668 } else {
2669 sp->sackfreq = params.sack_freq;
2670 sp->param_flags =
2671 sctp_spp_sackdelay_enable(sp->param_flags);
2672 }
2673 }
2674
2675 /* If change is for association, also apply to each transport. */
2676 if (asoc) {
2677 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2678 transports) {
2679 if (params.sack_delay) {
2680 trans->sackdelay =
2681 msecs_to_jiffies(params.sack_delay);
2682 trans->param_flags =
2683 sctp_spp_sackdelay_enable(trans->param_flags);
2684 }
2685 if (params.sack_freq == 1) {
2686 trans->param_flags =
2687 sctp_spp_sackdelay_disable(trans->param_flags);
2688 } else if (params.sack_freq > 1) {
2689 trans->sackfreq = params.sack_freq;
2690 trans->param_flags =
2691 sctp_spp_sackdelay_enable(trans->param_flags);
2692 }
2693 }
2694 }
2695
2696 return 0;
2697 }
2698
2699 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2700 *
2701 * Applications can specify protocol parameters for the default association
2702 * initialization. The option name argument to setsockopt() and getsockopt()
2703 * is SCTP_INITMSG.
2704 *
2705 * Setting initialization parameters is effective only on an unconnected
2706 * socket (for UDP-style sockets only future associations are effected
2707 * by the change). With TCP-style sockets, this option is inherited by
2708 * sockets derived from a listener socket.
2709 */
2710 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2711 {
2712 struct sctp_initmsg sinit;
2713 struct sctp_sock *sp = sctp_sk(sk);
2714
2715 if (optlen != sizeof(struct sctp_initmsg))
2716 return -EINVAL;
2717 if (copy_from_user(&sinit, optval, optlen))
2718 return -EFAULT;
2719
2720 if (sinit.sinit_num_ostreams)
2721 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2722 if (sinit.sinit_max_instreams)
2723 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2724 if (sinit.sinit_max_attempts)
2725 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2726 if (sinit.sinit_max_init_timeo)
2727 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2728
2729 return 0;
2730 }
2731
2732 /*
2733 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2734 *
2735 * Applications that wish to use the sendto() system call may wish to
2736 * specify a default set of parameters that would normally be supplied
2737 * through the inclusion of ancillary data. This socket option allows
2738 * such an application to set the default sctp_sndrcvinfo structure.
2739 * The application that wishes to use this socket option simply passes
2740 * in to this call the sctp_sndrcvinfo structure defined in Section
2741 * 5.2.2) The input parameters accepted by this call include
2742 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2743 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2744 * to this call if the caller is using the UDP model.
2745 */
2746 static int sctp_setsockopt_default_send_param(struct sock *sk,
2747 char __user *optval,
2748 unsigned int optlen)
2749 {
2750 struct sctp_sndrcvinfo info;
2751 struct sctp_association *asoc;
2752 struct sctp_sock *sp = sctp_sk(sk);
2753
2754 if (optlen != sizeof(struct sctp_sndrcvinfo))
2755 return -EINVAL;
2756 if (copy_from_user(&info, optval, optlen))
2757 return -EFAULT;
2758
2759 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2760 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2761 return -EINVAL;
2762
2763 if (asoc) {
2764 asoc->default_stream = info.sinfo_stream;
2765 asoc->default_flags = info.sinfo_flags;
2766 asoc->default_ppid = info.sinfo_ppid;
2767 asoc->default_context = info.sinfo_context;
2768 asoc->default_timetolive = info.sinfo_timetolive;
2769 } else {
2770 sp->default_stream = info.sinfo_stream;
2771 sp->default_flags = info.sinfo_flags;
2772 sp->default_ppid = info.sinfo_ppid;
2773 sp->default_context = info.sinfo_context;
2774 sp->default_timetolive = info.sinfo_timetolive;
2775 }
2776
2777 return 0;
2778 }
2779
2780 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2781 *
2782 * Requests that the local SCTP stack use the enclosed peer address as
2783 * the association primary. The enclosed address must be one of the
2784 * association peer's addresses.
2785 */
2786 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2787 unsigned int optlen)
2788 {
2789 struct sctp_prim prim;
2790 struct sctp_transport *trans;
2791
2792 if (optlen != sizeof(struct sctp_prim))
2793 return -EINVAL;
2794
2795 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2796 return -EFAULT;
2797
2798 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2799 if (!trans)
2800 return -EINVAL;
2801
2802 sctp_assoc_set_primary(trans->asoc, trans);
2803
2804 return 0;
2805 }
2806
2807 /*
2808 * 7.1.5 SCTP_NODELAY
2809 *
2810 * Turn on/off any Nagle-like algorithm. This means that packets are
2811 * generally sent as soon as possible and no unnecessary delays are
2812 * introduced, at the cost of more packets in the network. Expects an
2813 * integer boolean flag.
2814 */
2815 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2816 unsigned int optlen)
2817 {
2818 int val;
2819
2820 if (optlen < sizeof(int))
2821 return -EINVAL;
2822 if (get_user(val, (int __user *)optval))
2823 return -EFAULT;
2824
2825 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2826 return 0;
2827 }
2828
2829 /*
2830 *
2831 * 7.1.1 SCTP_RTOINFO
2832 *
2833 * The protocol parameters used to initialize and bound retransmission
2834 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2835 * and modify these parameters.
2836 * All parameters are time values, in milliseconds. A value of 0, when
2837 * modifying the parameters, indicates that the current value should not
2838 * be changed.
2839 *
2840 */
2841 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2842 {
2843 struct sctp_rtoinfo rtoinfo;
2844 struct sctp_association *asoc;
2845 unsigned long rto_min, rto_max;
2846 struct sctp_sock *sp = sctp_sk(sk);
2847
2848 if (optlen != sizeof (struct sctp_rtoinfo))
2849 return -EINVAL;
2850
2851 if (copy_from_user(&rtoinfo, optval, optlen))
2852 return -EFAULT;
2853
2854 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2855
2856 /* Set the values to the specific association */
2857 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2858 return -EINVAL;
2859
2860 rto_max = rtoinfo.srto_max;
2861 rto_min = rtoinfo.srto_min;
2862
2863 if (rto_max)
2864 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2865 else
2866 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2867
2868 if (rto_min)
2869 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2870 else
2871 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2872
2873 if (rto_min > rto_max)
2874 return -EINVAL;
2875
2876 if (asoc) {
2877 if (rtoinfo.srto_initial != 0)
2878 asoc->rto_initial =
2879 msecs_to_jiffies(rtoinfo.srto_initial);
2880 asoc->rto_max = rto_max;
2881 asoc->rto_min = rto_min;
2882 } else {
2883 /* If there is no association or the association-id = 0
2884 * set the values to the endpoint.
2885 */
2886 if (rtoinfo.srto_initial != 0)
2887 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2888 sp->rtoinfo.srto_max = rto_max;
2889 sp->rtoinfo.srto_min = rto_min;
2890 }
2891
2892 return 0;
2893 }
2894
2895 /*
2896 *
2897 * 7.1.2 SCTP_ASSOCINFO
2898 *
2899 * This option is used to tune the maximum retransmission attempts
2900 * of the association.
2901 * Returns an error if the new association retransmission value is
2902 * greater than the sum of the retransmission value of the peer.
2903 * See [SCTP] for more information.
2904 *
2905 */
2906 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2907 {
2908
2909 struct sctp_assocparams assocparams;
2910 struct sctp_association *asoc;
2911
2912 if (optlen != sizeof(struct sctp_assocparams))
2913 return -EINVAL;
2914 if (copy_from_user(&assocparams, optval, optlen))
2915 return -EFAULT;
2916
2917 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2918
2919 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2920 return -EINVAL;
2921
2922 /* Set the values to the specific association */
2923 if (asoc) {
2924 if (assocparams.sasoc_asocmaxrxt != 0) {
2925 __u32 path_sum = 0;
2926 int paths = 0;
2927 struct sctp_transport *peer_addr;
2928
2929 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2930 transports) {
2931 path_sum += peer_addr->pathmaxrxt;
2932 paths++;
2933 }
2934
2935 /* Only validate asocmaxrxt if we have more than
2936 * one path/transport. We do this because path
2937 * retransmissions are only counted when we have more
2938 * then one path.
2939 */
2940 if (paths > 1 &&
2941 assocparams.sasoc_asocmaxrxt > path_sum)
2942 return -EINVAL;
2943
2944 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2945 }
2946
2947 if (assocparams.sasoc_cookie_life != 0)
2948 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
2949 } else {
2950 /* Set the values to the endpoint */
2951 struct sctp_sock *sp = sctp_sk(sk);
2952
2953 if (assocparams.sasoc_asocmaxrxt != 0)
2954 sp->assocparams.sasoc_asocmaxrxt =
2955 assocparams.sasoc_asocmaxrxt;
2956 if (assocparams.sasoc_cookie_life != 0)
2957 sp->assocparams.sasoc_cookie_life =
2958 assocparams.sasoc_cookie_life;
2959 }
2960 return 0;
2961 }
2962
2963 /*
2964 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2965 *
2966 * This socket option is a boolean flag which turns on or off mapped V4
2967 * addresses. If this option is turned on and the socket is type
2968 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2969 * If this option is turned off, then no mapping will be done of V4
2970 * addresses and a user will receive both PF_INET6 and PF_INET type
2971 * addresses on the socket.
2972 */
2973 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2974 {
2975 int val;
2976 struct sctp_sock *sp = sctp_sk(sk);
2977
2978 if (optlen < sizeof(int))
2979 return -EINVAL;
2980 if (get_user(val, (int __user *)optval))
2981 return -EFAULT;
2982 if (val)
2983 sp->v4mapped = 1;
2984 else
2985 sp->v4mapped = 0;
2986
2987 return 0;
2988 }
2989
2990 /*
2991 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2992 * This option will get or set the maximum size to put in any outgoing
2993 * SCTP DATA chunk. If a message is larger than this size it will be
2994 * fragmented by SCTP into the specified size. Note that the underlying
2995 * SCTP implementation may fragment into smaller sized chunks when the
2996 * PMTU of the underlying association is smaller than the value set by
2997 * the user. The default value for this option is '0' which indicates
2998 * the user is NOT limiting fragmentation and only the PMTU will effect
2999 * SCTP's choice of DATA chunk size. Note also that values set larger
3000 * than the maximum size of an IP datagram will effectively let SCTP
3001 * control fragmentation (i.e. the same as setting this option to 0).
3002 *
3003 * The following structure is used to access and modify this parameter:
3004 *
3005 * struct sctp_assoc_value {
3006 * sctp_assoc_t assoc_id;
3007 * uint32_t assoc_value;
3008 * };
3009 *
3010 * assoc_id: This parameter is ignored for one-to-one style sockets.
3011 * For one-to-many style sockets this parameter indicates which
3012 * association the user is performing an action upon. Note that if
3013 * this field's value is zero then the endpoints default value is
3014 * changed (effecting future associations only).
3015 * assoc_value: This parameter specifies the maximum size in bytes.
3016 */
3017 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3018 {
3019 struct sctp_assoc_value params;
3020 struct sctp_association *asoc;
3021 struct sctp_sock *sp = sctp_sk(sk);
3022 int val;
3023
3024 if (optlen == sizeof(int)) {
3025 pr_warn_ratelimited(DEPRECATED
3026 "%s (pid %d) "
3027 "Use of int in maxseg socket option.\n"
3028 "Use struct sctp_assoc_value instead\n",
3029 current->comm, task_pid_nr(current));
3030 if (copy_from_user(&val, optval, optlen))
3031 return -EFAULT;
3032 params.assoc_id = 0;
3033 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3034 if (copy_from_user(&params, optval, optlen))
3035 return -EFAULT;
3036 val = params.assoc_value;
3037 } else
3038 return -EINVAL;
3039
3040 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3041 return -EINVAL;
3042
3043 asoc = sctp_id2assoc(sk, params.assoc_id);
3044 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3045 return -EINVAL;
3046
3047 if (asoc) {
3048 if (val == 0) {
3049 val = asoc->pathmtu;
3050 val -= sp->pf->af->net_header_len;
3051 val -= sizeof(struct sctphdr) +
3052 sizeof(struct sctp_data_chunk);
3053 }
3054 asoc->user_frag = val;
3055 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3056 } else {
3057 sp->user_frag = val;
3058 }
3059
3060 return 0;
3061 }
3062
3063
3064 /*
3065 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3066 *
3067 * Requests that the peer mark the enclosed address as the association
3068 * primary. The enclosed address must be one of the association's
3069 * locally bound addresses. The following structure is used to make a
3070 * set primary request:
3071 */
3072 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3073 unsigned int optlen)
3074 {
3075 struct net *net = sock_net(sk);
3076 struct sctp_sock *sp;
3077 struct sctp_association *asoc = NULL;
3078 struct sctp_setpeerprim prim;
3079 struct sctp_chunk *chunk;
3080 struct sctp_af *af;
3081 int err;
3082
3083 sp = sctp_sk(sk);
3084
3085 if (!net->sctp.addip_enable)
3086 return -EPERM;
3087
3088 if (optlen != sizeof(struct sctp_setpeerprim))
3089 return -EINVAL;
3090
3091 if (copy_from_user(&prim, optval, optlen))
3092 return -EFAULT;
3093
3094 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3095 if (!asoc)
3096 return -EINVAL;
3097
3098 if (!asoc->peer.asconf_capable)
3099 return -EPERM;
3100
3101 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3102 return -EPERM;
3103
3104 if (!sctp_state(asoc, ESTABLISHED))
3105 return -ENOTCONN;
3106
3107 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3108 if (!af)
3109 return -EINVAL;
3110
3111 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3112 return -EADDRNOTAVAIL;
3113
3114 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3115 return -EADDRNOTAVAIL;
3116
3117 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3118 chunk = sctp_make_asconf_set_prim(asoc,
3119 (union sctp_addr *)&prim.sspp_addr);
3120 if (!chunk)
3121 return -ENOMEM;
3122
3123 err = sctp_send_asconf(asoc, chunk);
3124
3125 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3126
3127 return err;
3128 }
3129
3130 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3131 unsigned int optlen)
3132 {
3133 struct sctp_setadaptation adaptation;
3134
3135 if (optlen != sizeof(struct sctp_setadaptation))
3136 return -EINVAL;
3137 if (copy_from_user(&adaptation, optval, optlen))
3138 return -EFAULT;
3139
3140 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3141
3142 return 0;
3143 }
3144
3145 /*
3146 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3147 *
3148 * The context field in the sctp_sndrcvinfo structure is normally only
3149 * used when a failed message is retrieved holding the value that was
3150 * sent down on the actual send call. This option allows the setting of
3151 * a default context on an association basis that will be received on
3152 * reading messages from the peer. This is especially helpful in the
3153 * one-2-many model for an application to keep some reference to an
3154 * internal state machine that is processing messages on the
3155 * association. Note that the setting of this value only effects
3156 * received messages from the peer and does not effect the value that is
3157 * saved with outbound messages.
3158 */
3159 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3160 unsigned int optlen)
3161 {
3162 struct sctp_assoc_value params;
3163 struct sctp_sock *sp;
3164 struct sctp_association *asoc;
3165
3166 if (optlen != sizeof(struct sctp_assoc_value))
3167 return -EINVAL;
3168 if (copy_from_user(&params, optval, optlen))
3169 return -EFAULT;
3170
3171 sp = sctp_sk(sk);
3172
3173 if (params.assoc_id != 0) {
3174 asoc = sctp_id2assoc(sk, params.assoc_id);
3175 if (!asoc)
3176 return -EINVAL;
3177 asoc->default_rcv_context = params.assoc_value;
3178 } else {
3179 sp->default_rcv_context = params.assoc_value;
3180 }
3181
3182 return 0;
3183 }
3184
3185 /*
3186 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3187 *
3188 * This options will at a minimum specify if the implementation is doing
3189 * fragmented interleave. Fragmented interleave, for a one to many
3190 * socket, is when subsequent calls to receive a message may return
3191 * parts of messages from different associations. Some implementations
3192 * may allow you to turn this value on or off. If so, when turned off,
3193 * no fragment interleave will occur (which will cause a head of line
3194 * blocking amongst multiple associations sharing the same one to many
3195 * socket). When this option is turned on, then each receive call may
3196 * come from a different association (thus the user must receive data
3197 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3198 * association each receive belongs to.
3199 *
3200 * This option takes a boolean value. A non-zero value indicates that
3201 * fragmented interleave is on. A value of zero indicates that
3202 * fragmented interleave is off.
3203 *
3204 * Note that it is important that an implementation that allows this
3205 * option to be turned on, have it off by default. Otherwise an unaware
3206 * application using the one to many model may become confused and act
3207 * incorrectly.
3208 */
3209 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3210 char __user *optval,
3211 unsigned int optlen)
3212 {
3213 int val;
3214
3215 if (optlen != sizeof(int))
3216 return -EINVAL;
3217 if (get_user(val, (int __user *)optval))
3218 return -EFAULT;
3219
3220 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3221
3222 return 0;
3223 }
3224
3225 /*
3226 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3227 * (SCTP_PARTIAL_DELIVERY_POINT)
3228 *
3229 * This option will set or get the SCTP partial delivery point. This
3230 * point is the size of a message where the partial delivery API will be
3231 * invoked to help free up rwnd space for the peer. Setting this to a
3232 * lower value will cause partial deliveries to happen more often. The
3233 * calls argument is an integer that sets or gets the partial delivery
3234 * point. Note also that the call will fail if the user attempts to set
3235 * this value larger than the socket receive buffer size.
3236 *
3237 * Note that any single message having a length smaller than or equal to
3238 * the SCTP partial delivery point will be delivered in one single read
3239 * call as long as the user provided buffer is large enough to hold the
3240 * message.
3241 */
3242 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3243 char __user *optval,
3244 unsigned int optlen)
3245 {
3246 u32 val;
3247
3248 if (optlen != sizeof(u32))
3249 return -EINVAL;
3250 if (get_user(val, (int __user *)optval))
3251 return -EFAULT;
3252
3253 /* Note: We double the receive buffer from what the user sets
3254 * it to be, also initial rwnd is based on rcvbuf/2.
3255 */
3256 if (val > (sk->sk_rcvbuf >> 1))
3257 return -EINVAL;
3258
3259 sctp_sk(sk)->pd_point = val;
3260
3261 return 0; /* is this the right error code? */
3262 }
3263
3264 /*
3265 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3266 *
3267 * This option will allow a user to change the maximum burst of packets
3268 * that can be emitted by this association. Note that the default value
3269 * is 4, and some implementations may restrict this setting so that it
3270 * can only be lowered.
3271 *
3272 * NOTE: This text doesn't seem right. Do this on a socket basis with
3273 * future associations inheriting the socket value.
3274 */
3275 static int sctp_setsockopt_maxburst(struct sock *sk,
3276 char __user *optval,
3277 unsigned int optlen)
3278 {
3279 struct sctp_assoc_value params;
3280 struct sctp_sock *sp;
3281 struct sctp_association *asoc;
3282 int val;
3283 int assoc_id = 0;
3284
3285 if (optlen == sizeof(int)) {
3286 pr_warn_ratelimited(DEPRECATED
3287 "%s (pid %d) "
3288 "Use of int in max_burst socket option deprecated.\n"
3289 "Use struct sctp_assoc_value instead\n",
3290 current->comm, task_pid_nr(current));
3291 if (copy_from_user(&val, optval, optlen))
3292 return -EFAULT;
3293 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3294 if (copy_from_user(&params, optval, optlen))
3295 return -EFAULT;
3296 val = params.assoc_value;
3297 assoc_id = params.assoc_id;
3298 } else
3299 return -EINVAL;
3300
3301 sp = sctp_sk(sk);
3302
3303 if (assoc_id != 0) {
3304 asoc = sctp_id2assoc(sk, assoc_id);
3305 if (!asoc)
3306 return -EINVAL;
3307 asoc->max_burst = val;
3308 } else
3309 sp->max_burst = val;
3310
3311 return 0;
3312 }
3313
3314 /*
3315 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3316 *
3317 * This set option adds a chunk type that the user is requesting to be
3318 * received only in an authenticated way. Changes to the list of chunks
3319 * will only effect future associations on the socket.
3320 */
3321 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3322 char __user *optval,
3323 unsigned int optlen)
3324 {
3325 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3326 struct sctp_authchunk val;
3327
3328 if (!ep->auth_enable)
3329 return -EACCES;
3330
3331 if (optlen != sizeof(struct sctp_authchunk))
3332 return -EINVAL;
3333 if (copy_from_user(&val, optval, optlen))
3334 return -EFAULT;
3335
3336 switch (val.sauth_chunk) {
3337 case SCTP_CID_INIT:
3338 case SCTP_CID_INIT_ACK:
3339 case SCTP_CID_SHUTDOWN_COMPLETE:
3340 case SCTP_CID_AUTH:
3341 return -EINVAL;
3342 }
3343
3344 /* add this chunk id to the endpoint */
3345 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3346 }
3347
3348 /*
3349 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3350 *
3351 * This option gets or sets the list of HMAC algorithms that the local
3352 * endpoint requires the peer to use.
3353 */
3354 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3355 char __user *optval,
3356 unsigned int optlen)
3357 {
3358 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3359 struct sctp_hmacalgo *hmacs;
3360 u32 idents;
3361 int err;
3362
3363 if (!ep->auth_enable)
3364 return -EACCES;
3365
3366 if (optlen < sizeof(struct sctp_hmacalgo))
3367 return -EINVAL;
3368
3369 hmacs = memdup_user(optval, optlen);
3370 if (IS_ERR(hmacs))
3371 return PTR_ERR(hmacs);
3372
3373 idents = hmacs->shmac_num_idents;
3374 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3375 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3376 err = -EINVAL;
3377 goto out;
3378 }
3379
3380 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3381 out:
3382 kfree(hmacs);
3383 return err;
3384 }
3385
3386 /*
3387 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3388 *
3389 * This option will set a shared secret key which is used to build an
3390 * association shared key.
3391 */
3392 static int sctp_setsockopt_auth_key(struct sock *sk,
3393 char __user *optval,
3394 unsigned int optlen)
3395 {
3396 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3397 struct sctp_authkey *authkey;
3398 struct sctp_association *asoc;
3399 int ret;
3400
3401 if (!ep->auth_enable)
3402 return -EACCES;
3403
3404 if (optlen <= sizeof(struct sctp_authkey))
3405 return -EINVAL;
3406
3407 authkey = memdup_user(optval, optlen);
3408 if (IS_ERR(authkey))
3409 return PTR_ERR(authkey);
3410
3411 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3412 ret = -EINVAL;
3413 goto out;
3414 }
3415
3416 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3417 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3418 ret = -EINVAL;
3419 goto out;
3420 }
3421
3422 ret = sctp_auth_set_key(ep, asoc, authkey);
3423 out:
3424 kzfree(authkey);
3425 return ret;
3426 }
3427
3428 /*
3429 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3430 *
3431 * This option will get or set the active shared key to be used to build
3432 * the association shared key.
3433 */
3434 static int sctp_setsockopt_active_key(struct sock *sk,
3435 char __user *optval,
3436 unsigned int optlen)
3437 {
3438 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3439 struct sctp_authkeyid val;
3440 struct sctp_association *asoc;
3441
3442 if (!ep->auth_enable)
3443 return -EACCES;
3444
3445 if (optlen != sizeof(struct sctp_authkeyid))
3446 return -EINVAL;
3447 if (copy_from_user(&val, optval, optlen))
3448 return -EFAULT;
3449
3450 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3451 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3452 return -EINVAL;
3453
3454 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3455 }
3456
3457 /*
3458 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3459 *
3460 * This set option will delete a shared secret key from use.
3461 */
3462 static int sctp_setsockopt_del_key(struct sock *sk,
3463 char __user *optval,
3464 unsigned int optlen)
3465 {
3466 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3467 struct sctp_authkeyid val;
3468 struct sctp_association *asoc;
3469
3470 if (!ep->auth_enable)
3471 return -EACCES;
3472
3473 if (optlen != sizeof(struct sctp_authkeyid))
3474 return -EINVAL;
3475 if (copy_from_user(&val, optval, optlen))
3476 return -EFAULT;
3477
3478 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3479 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3480 return -EINVAL;
3481
3482 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3483
3484 }
3485
3486 /*
3487 * 8.1.23 SCTP_AUTO_ASCONF
3488 *
3489 * This option will enable or disable the use of the automatic generation of
3490 * ASCONF chunks to add and delete addresses to an existing association. Note
3491 * that this option has two caveats namely: a) it only affects sockets that
3492 * are bound to all addresses available to the SCTP stack, and b) the system
3493 * administrator may have an overriding control that turns the ASCONF feature
3494 * off no matter what setting the socket option may have.
3495 * This option expects an integer boolean flag, where a non-zero value turns on
3496 * the option, and a zero value turns off the option.
3497 * Note. In this implementation, socket operation overrides default parameter
3498 * being set by sysctl as well as FreeBSD implementation
3499 */
3500 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3501 unsigned int optlen)
3502 {
3503 int val;
3504 struct sctp_sock *sp = sctp_sk(sk);
3505
3506 if (optlen < sizeof(int))
3507 return -EINVAL;
3508 if (get_user(val, (int __user *)optval))
3509 return -EFAULT;
3510 if (!sctp_is_ep_boundall(sk) && val)
3511 return -EINVAL;
3512 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3513 return 0;
3514
3515 if (val == 0 && sp->do_auto_asconf) {
3516 list_del(&sp->auto_asconf_list);
3517 sp->do_auto_asconf = 0;
3518 } else if (val && !sp->do_auto_asconf) {
3519 list_add_tail(&sp->auto_asconf_list,
3520 &sock_net(sk)->sctp.auto_asconf_splist);
3521 sp->do_auto_asconf = 1;
3522 }
3523 return 0;
3524 }
3525
3526
3527 /*
3528 * SCTP_PEER_ADDR_THLDS
3529 *
3530 * This option allows us to alter the partially failed threshold for one or all
3531 * transports in an association. See Section 6.1 of:
3532 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3533 */
3534 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3535 char __user *optval,
3536 unsigned int optlen)
3537 {
3538 struct sctp_paddrthlds val;
3539 struct sctp_transport *trans;
3540 struct sctp_association *asoc;
3541
3542 if (optlen < sizeof(struct sctp_paddrthlds))
3543 return -EINVAL;
3544 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3545 sizeof(struct sctp_paddrthlds)))
3546 return -EFAULT;
3547
3548
3549 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3550 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3551 if (!asoc)
3552 return -ENOENT;
3553 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3554 transports) {
3555 if (val.spt_pathmaxrxt)
3556 trans->pathmaxrxt = val.spt_pathmaxrxt;
3557 trans->pf_retrans = val.spt_pathpfthld;
3558 }
3559
3560 if (val.spt_pathmaxrxt)
3561 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3562 asoc->pf_retrans = val.spt_pathpfthld;
3563 } else {
3564 trans = sctp_addr_id2transport(sk, &val.spt_address,
3565 val.spt_assoc_id);
3566 if (!trans)
3567 return -ENOENT;
3568
3569 if (val.spt_pathmaxrxt)
3570 trans->pathmaxrxt = val.spt_pathmaxrxt;
3571 trans->pf_retrans = val.spt_pathpfthld;
3572 }
3573
3574 return 0;
3575 }
3576
3577 /* API 6.2 setsockopt(), getsockopt()
3578 *
3579 * Applications use setsockopt() and getsockopt() to set or retrieve
3580 * socket options. Socket options are used to change the default
3581 * behavior of sockets calls. They are described in Section 7.
3582 *
3583 * The syntax is:
3584 *
3585 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3586 * int __user *optlen);
3587 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3588 * int optlen);
3589 *
3590 * sd - the socket descript.
3591 * level - set to IPPROTO_SCTP for all SCTP options.
3592 * optname - the option name.
3593 * optval - the buffer to store the value of the option.
3594 * optlen - the size of the buffer.
3595 */
3596 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3597 char __user *optval, unsigned int optlen)
3598 {
3599 int retval = 0;
3600
3601 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3602
3603 /* I can hardly begin to describe how wrong this is. This is
3604 * so broken as to be worse than useless. The API draft
3605 * REALLY is NOT helpful here... I am not convinced that the
3606 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3607 * are at all well-founded.
3608 */
3609 if (level != SOL_SCTP) {
3610 struct sctp_af *af = sctp_sk(sk)->pf->af;
3611 retval = af->setsockopt(sk, level, optname, optval, optlen);
3612 goto out_nounlock;
3613 }
3614
3615 lock_sock(sk);
3616
3617 switch (optname) {
3618 case SCTP_SOCKOPT_BINDX_ADD:
3619 /* 'optlen' is the size of the addresses buffer. */
3620 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3621 optlen, SCTP_BINDX_ADD_ADDR);
3622 break;
3623
3624 case SCTP_SOCKOPT_BINDX_REM:
3625 /* 'optlen' is the size of the addresses buffer. */
3626 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3627 optlen, SCTP_BINDX_REM_ADDR);
3628 break;
3629
3630 case SCTP_SOCKOPT_CONNECTX_OLD:
3631 /* 'optlen' is the size of the addresses buffer. */
3632 retval = sctp_setsockopt_connectx_old(sk,
3633 (struct sockaddr __user *)optval,
3634 optlen);
3635 break;
3636
3637 case SCTP_SOCKOPT_CONNECTX:
3638 /* 'optlen' is the size of the addresses buffer. */
3639 retval = sctp_setsockopt_connectx(sk,
3640 (struct sockaddr __user *)optval,
3641 optlen);
3642 break;
3643
3644 case SCTP_DISABLE_FRAGMENTS:
3645 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3646 break;
3647
3648 case SCTP_EVENTS:
3649 retval = sctp_setsockopt_events(sk, optval, optlen);
3650 break;
3651
3652 case SCTP_AUTOCLOSE:
3653 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3654 break;
3655
3656 case SCTP_PEER_ADDR_PARAMS:
3657 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3658 break;
3659
3660 case SCTP_DELAYED_SACK:
3661 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3662 break;
3663 case SCTP_PARTIAL_DELIVERY_POINT:
3664 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3665 break;
3666
3667 case SCTP_INITMSG:
3668 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3669 break;
3670 case SCTP_DEFAULT_SEND_PARAM:
3671 retval = sctp_setsockopt_default_send_param(sk, optval,
3672 optlen);
3673 break;
3674 case SCTP_PRIMARY_ADDR:
3675 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3676 break;
3677 case SCTP_SET_PEER_PRIMARY_ADDR:
3678 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3679 break;
3680 case SCTP_NODELAY:
3681 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3682 break;
3683 case SCTP_RTOINFO:
3684 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3685 break;
3686 case SCTP_ASSOCINFO:
3687 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3688 break;
3689 case SCTP_I_WANT_MAPPED_V4_ADDR:
3690 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3691 break;
3692 case SCTP_MAXSEG:
3693 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3694 break;
3695 case SCTP_ADAPTATION_LAYER:
3696 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3697 break;
3698 case SCTP_CONTEXT:
3699 retval = sctp_setsockopt_context(sk, optval, optlen);
3700 break;
3701 case SCTP_FRAGMENT_INTERLEAVE:
3702 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3703 break;
3704 case SCTP_MAX_BURST:
3705 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3706 break;
3707 case SCTP_AUTH_CHUNK:
3708 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3709 break;
3710 case SCTP_HMAC_IDENT:
3711 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3712 break;
3713 case SCTP_AUTH_KEY:
3714 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3715 break;
3716 case SCTP_AUTH_ACTIVE_KEY:
3717 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3718 break;
3719 case SCTP_AUTH_DELETE_KEY:
3720 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3721 break;
3722 case SCTP_AUTO_ASCONF:
3723 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3724 break;
3725 case SCTP_PEER_ADDR_THLDS:
3726 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3727 break;
3728 default:
3729 retval = -ENOPROTOOPT;
3730 break;
3731 }
3732
3733 release_sock(sk);
3734
3735 out_nounlock:
3736 return retval;
3737 }
3738
3739 /* API 3.1.6 connect() - UDP Style Syntax
3740 *
3741 * An application may use the connect() call in the UDP model to initiate an
3742 * association without sending data.
3743 *
3744 * The syntax is:
3745 *
3746 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3747 *
3748 * sd: the socket descriptor to have a new association added to.
3749 *
3750 * nam: the address structure (either struct sockaddr_in or struct
3751 * sockaddr_in6 defined in RFC2553 [7]).
3752 *
3753 * len: the size of the address.
3754 */
3755 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3756 int addr_len)
3757 {
3758 int err = 0;
3759 struct sctp_af *af;
3760
3761 lock_sock(sk);
3762
3763 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3764 addr, addr_len);
3765
3766 /* Validate addr_len before calling common connect/connectx routine. */
3767 af = sctp_get_af_specific(addr->sa_family);
3768 if (!af || addr_len < af->sockaddr_len) {
3769 err = -EINVAL;
3770 } else {
3771 /* Pass correct addr len to common routine (so it knows there
3772 * is only one address being passed.
3773 */
3774 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3775 }
3776
3777 release_sock(sk);
3778 return err;
3779 }
3780
3781 /* FIXME: Write comments. */
3782 static int sctp_disconnect(struct sock *sk, int flags)
3783 {
3784 return -EOPNOTSUPP; /* STUB */
3785 }
3786
3787 /* 4.1.4 accept() - TCP Style Syntax
3788 *
3789 * Applications use accept() call to remove an established SCTP
3790 * association from the accept queue of the endpoint. A new socket
3791 * descriptor will be returned from accept() to represent the newly
3792 * formed association.
3793 */
3794 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3795 {
3796 struct sctp_sock *sp;
3797 struct sctp_endpoint *ep;
3798 struct sock *newsk = NULL;
3799 struct sctp_association *asoc;
3800 long timeo;
3801 int error = 0;
3802
3803 lock_sock(sk);
3804
3805 sp = sctp_sk(sk);
3806 ep = sp->ep;
3807
3808 if (!sctp_style(sk, TCP)) {
3809 error = -EOPNOTSUPP;
3810 goto out;
3811 }
3812
3813 if (!sctp_sstate(sk, LISTENING)) {
3814 error = -EINVAL;
3815 goto out;
3816 }
3817
3818 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3819
3820 error = sctp_wait_for_accept(sk, timeo);
3821 if (error)
3822 goto out;
3823
3824 /* We treat the list of associations on the endpoint as the accept
3825 * queue and pick the first association on the list.
3826 */
3827 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3828
3829 newsk = sp->pf->create_accept_sk(sk, asoc);
3830 if (!newsk) {
3831 error = -ENOMEM;
3832 goto out;
3833 }
3834
3835 /* Populate the fields of the newsk from the oldsk and migrate the
3836 * asoc to the newsk.
3837 */
3838 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3839
3840 out:
3841 release_sock(sk);
3842 *err = error;
3843 return newsk;
3844 }
3845
3846 /* The SCTP ioctl handler. */
3847 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3848 {
3849 int rc = -ENOTCONN;
3850
3851 lock_sock(sk);
3852
3853 /*
3854 * SEQPACKET-style sockets in LISTENING state are valid, for
3855 * SCTP, so only discard TCP-style sockets in LISTENING state.
3856 */
3857 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3858 goto out;
3859
3860 switch (cmd) {
3861 case SIOCINQ: {
3862 struct sk_buff *skb;
3863 unsigned int amount = 0;
3864
3865 skb = skb_peek(&sk->sk_receive_queue);
3866 if (skb != NULL) {
3867 /*
3868 * We will only return the amount of this packet since
3869 * that is all that will be read.
3870 */
3871 amount = skb->len;
3872 }
3873 rc = put_user(amount, (int __user *)arg);
3874 break;
3875 }
3876 default:
3877 rc = -ENOIOCTLCMD;
3878 break;
3879 }
3880 out:
3881 release_sock(sk);
3882 return rc;
3883 }
3884
3885 /* This is the function which gets called during socket creation to
3886 * initialized the SCTP-specific portion of the sock.
3887 * The sock structure should already be zero-filled memory.
3888 */
3889 static int sctp_init_sock(struct sock *sk)
3890 {
3891 struct net *net = sock_net(sk);
3892 struct sctp_sock *sp;
3893
3894 pr_debug("%s: sk:%p\n", __func__, sk);
3895
3896 sp = sctp_sk(sk);
3897
3898 /* Initialize the SCTP per socket area. */
3899 switch (sk->sk_type) {
3900 case SOCK_SEQPACKET:
3901 sp->type = SCTP_SOCKET_UDP;
3902 break;
3903 case SOCK_STREAM:
3904 sp->type = SCTP_SOCKET_TCP;
3905 break;
3906 default:
3907 return -ESOCKTNOSUPPORT;
3908 }
3909
3910 /* Initialize default send parameters. These parameters can be
3911 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3912 */
3913 sp->default_stream = 0;
3914 sp->default_ppid = 0;
3915 sp->default_flags = 0;
3916 sp->default_context = 0;
3917 sp->default_timetolive = 0;
3918
3919 sp->default_rcv_context = 0;
3920 sp->max_burst = net->sctp.max_burst;
3921
3922 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3923
3924 /* Initialize default setup parameters. These parameters
3925 * can be modified with the SCTP_INITMSG socket option or
3926 * overridden by the SCTP_INIT CMSG.
3927 */
3928 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3929 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3930 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
3931 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3932
3933 /* Initialize default RTO related parameters. These parameters can
3934 * be modified for with the SCTP_RTOINFO socket option.
3935 */
3936 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3937 sp->rtoinfo.srto_max = net->sctp.rto_max;
3938 sp->rtoinfo.srto_min = net->sctp.rto_min;
3939
3940 /* Initialize default association related parameters. These parameters
3941 * can be modified with the SCTP_ASSOCINFO socket option.
3942 */
3943 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3944 sp->assocparams.sasoc_number_peer_destinations = 0;
3945 sp->assocparams.sasoc_peer_rwnd = 0;
3946 sp->assocparams.sasoc_local_rwnd = 0;
3947 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3948
3949 /* Initialize default event subscriptions. By default, all the
3950 * options are off.
3951 */
3952 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3953
3954 /* Default Peer Address Parameters. These defaults can
3955 * be modified via SCTP_PEER_ADDR_PARAMS
3956 */
3957 sp->hbinterval = net->sctp.hb_interval;
3958 sp->pathmaxrxt = net->sctp.max_retrans_path;
3959 sp->pathmtu = 0; /* allow default discovery */
3960 sp->sackdelay = net->sctp.sack_timeout;
3961 sp->sackfreq = 2;
3962 sp->param_flags = SPP_HB_ENABLE |
3963 SPP_PMTUD_ENABLE |
3964 SPP_SACKDELAY_ENABLE;
3965
3966 /* If enabled no SCTP message fragmentation will be performed.
3967 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3968 */
3969 sp->disable_fragments = 0;
3970
3971 /* Enable Nagle algorithm by default. */
3972 sp->nodelay = 0;
3973
3974 /* Enable by default. */
3975 sp->v4mapped = 1;
3976
3977 /* Auto-close idle associations after the configured
3978 * number of seconds. A value of 0 disables this
3979 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3980 * for UDP-style sockets only.
3981 */
3982 sp->autoclose = 0;
3983
3984 /* User specified fragmentation limit. */
3985 sp->user_frag = 0;
3986
3987 sp->adaptation_ind = 0;
3988
3989 sp->pf = sctp_get_pf_specific(sk->sk_family);
3990
3991 /* Control variables for partial data delivery. */
3992 atomic_set(&sp->pd_mode, 0);
3993 skb_queue_head_init(&sp->pd_lobby);
3994 sp->frag_interleave = 0;
3995
3996 /* Create a per socket endpoint structure. Even if we
3997 * change the data structure relationships, this may still
3998 * be useful for storing pre-connect address information.
3999 */
4000 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4001 if (!sp->ep)
4002 return -ENOMEM;
4003
4004 sp->hmac = NULL;
4005
4006 sk->sk_destruct = sctp_destruct_sock;
4007
4008 SCTP_DBG_OBJCNT_INC(sock);
4009
4010 local_bh_disable();
4011 percpu_counter_inc(&sctp_sockets_allocated);
4012 sock_prot_inuse_add(net, sk->sk_prot, 1);
4013 if (net->sctp.default_auto_asconf) {
4014 list_add_tail(&sp->auto_asconf_list,
4015 &net->sctp.auto_asconf_splist);
4016 sp->do_auto_asconf = 1;
4017 } else
4018 sp->do_auto_asconf = 0;
4019 local_bh_enable();
4020
4021 return 0;
4022 }
4023
4024 /* Cleanup any SCTP per socket resources. */
4025 static void sctp_destroy_sock(struct sock *sk)
4026 {
4027 struct sctp_sock *sp;
4028
4029 pr_debug("%s: sk:%p\n", __func__, sk);
4030
4031 /* Release our hold on the endpoint. */
4032 sp = sctp_sk(sk);
4033 /* This could happen during socket init, thus we bail out
4034 * early, since the rest of the below is not setup either.
4035 */
4036 if (sp->ep == NULL)
4037 return;
4038
4039 if (sp->do_auto_asconf) {
4040 sp->do_auto_asconf = 0;
4041 list_del(&sp->auto_asconf_list);
4042 }
4043 sctp_endpoint_free(sp->ep);
4044 local_bh_disable();
4045 percpu_counter_dec(&sctp_sockets_allocated);
4046 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4047 local_bh_enable();
4048 }
4049
4050 /* Triggered when there are no references on the socket anymore */
4051 static void sctp_destruct_sock(struct sock *sk)
4052 {
4053 struct sctp_sock *sp = sctp_sk(sk);
4054
4055 /* Free up the HMAC transform. */
4056 crypto_free_hash(sp->hmac);
4057
4058 inet_sock_destruct(sk);
4059 }
4060
4061 /* API 4.1.7 shutdown() - TCP Style Syntax
4062 * int shutdown(int socket, int how);
4063 *
4064 * sd - the socket descriptor of the association to be closed.
4065 * how - Specifies the type of shutdown. The values are
4066 * as follows:
4067 * SHUT_RD
4068 * Disables further receive operations. No SCTP
4069 * protocol action is taken.
4070 * SHUT_WR
4071 * Disables further send operations, and initiates
4072 * the SCTP shutdown sequence.
4073 * SHUT_RDWR
4074 * Disables further send and receive operations
4075 * and initiates the SCTP shutdown sequence.
4076 */
4077 static void sctp_shutdown(struct sock *sk, int how)
4078 {
4079 struct net *net = sock_net(sk);
4080 struct sctp_endpoint *ep;
4081 struct sctp_association *asoc;
4082
4083 if (!sctp_style(sk, TCP))
4084 return;
4085
4086 if (how & SEND_SHUTDOWN) {
4087 ep = sctp_sk(sk)->ep;
4088 if (!list_empty(&ep->asocs)) {
4089 asoc = list_entry(ep->asocs.next,
4090 struct sctp_association, asocs);
4091 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4092 }
4093 }
4094 }
4095
4096 /* 7.2.1 Association Status (SCTP_STATUS)
4097
4098 * Applications can retrieve current status information about an
4099 * association, including association state, peer receiver window size,
4100 * number of unacked data chunks, and number of data chunks pending
4101 * receipt. This information is read-only.
4102 */
4103 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4104 char __user *optval,
4105 int __user *optlen)
4106 {
4107 struct sctp_status status;
4108 struct sctp_association *asoc = NULL;
4109 struct sctp_transport *transport;
4110 sctp_assoc_t associd;
4111 int retval = 0;
4112
4113 if (len < sizeof(status)) {
4114 retval = -EINVAL;
4115 goto out;
4116 }
4117
4118 len = sizeof(status);
4119 if (copy_from_user(&status, optval, len)) {
4120 retval = -EFAULT;
4121 goto out;
4122 }
4123
4124 associd = status.sstat_assoc_id;
4125 asoc = sctp_id2assoc(sk, associd);
4126 if (!asoc) {
4127 retval = -EINVAL;
4128 goto out;
4129 }
4130
4131 transport = asoc->peer.primary_path;
4132
4133 status.sstat_assoc_id = sctp_assoc2id(asoc);
4134 status.sstat_state = asoc->state;
4135 status.sstat_rwnd = asoc->peer.rwnd;
4136 status.sstat_unackdata = asoc->unack_data;
4137
4138 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4139 status.sstat_instrms = asoc->c.sinit_max_instreams;
4140 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4141 status.sstat_fragmentation_point = asoc->frag_point;
4142 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4143 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4144 transport->af_specific->sockaddr_len);
4145 /* Map ipv4 address into v4-mapped-on-v6 address. */
4146 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4147 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4148 status.sstat_primary.spinfo_state = transport->state;
4149 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4150 status.sstat_primary.spinfo_srtt = transport->srtt;
4151 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4152 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4153
4154 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4155 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4156
4157 if (put_user(len, optlen)) {
4158 retval = -EFAULT;
4159 goto out;
4160 }
4161
4162 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4163 __func__, len, status.sstat_state, status.sstat_rwnd,
4164 status.sstat_assoc_id);
4165
4166 if (copy_to_user(optval, &status, len)) {
4167 retval = -EFAULT;
4168 goto out;
4169 }
4170
4171 out:
4172 return retval;
4173 }
4174
4175
4176 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4177 *
4178 * Applications can retrieve information about a specific peer address
4179 * of an association, including its reachability state, congestion
4180 * window, and retransmission timer values. This information is
4181 * read-only.
4182 */
4183 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4184 char __user *optval,
4185 int __user *optlen)
4186 {
4187 struct sctp_paddrinfo pinfo;
4188 struct sctp_transport *transport;
4189 int retval = 0;
4190
4191 if (len < sizeof(pinfo)) {
4192 retval = -EINVAL;
4193 goto out;
4194 }
4195
4196 len = sizeof(pinfo);
4197 if (copy_from_user(&pinfo, optval, len)) {
4198 retval = -EFAULT;
4199 goto out;
4200 }
4201
4202 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4203 pinfo.spinfo_assoc_id);
4204 if (!transport)
4205 return -EINVAL;
4206
4207 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4208 pinfo.spinfo_state = transport->state;
4209 pinfo.spinfo_cwnd = transport->cwnd;
4210 pinfo.spinfo_srtt = transport->srtt;
4211 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4212 pinfo.spinfo_mtu = transport->pathmtu;
4213
4214 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4215 pinfo.spinfo_state = SCTP_ACTIVE;
4216
4217 if (put_user(len, optlen)) {
4218 retval = -EFAULT;
4219 goto out;
4220 }
4221
4222 if (copy_to_user(optval, &pinfo, len)) {
4223 retval = -EFAULT;
4224 goto out;
4225 }
4226
4227 out:
4228 return retval;
4229 }
4230
4231 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4232 *
4233 * This option is a on/off flag. If enabled no SCTP message
4234 * fragmentation will be performed. Instead if a message being sent
4235 * exceeds the current PMTU size, the message will NOT be sent and
4236 * instead a error will be indicated to the user.
4237 */
4238 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4239 char __user *optval, int __user *optlen)
4240 {
4241 int val;
4242
4243 if (len < sizeof(int))
4244 return -EINVAL;
4245
4246 len = sizeof(int);
4247 val = (sctp_sk(sk)->disable_fragments == 1);
4248 if (put_user(len, optlen))
4249 return -EFAULT;
4250 if (copy_to_user(optval, &val, len))
4251 return -EFAULT;
4252 return 0;
4253 }
4254
4255 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4256 *
4257 * This socket option is used to specify various notifications and
4258 * ancillary data the user wishes to receive.
4259 */
4260 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4261 int __user *optlen)
4262 {
4263 if (len <= 0)
4264 return -EINVAL;
4265 if (len > sizeof(struct sctp_event_subscribe))
4266 len = sizeof(struct sctp_event_subscribe);
4267 if (put_user(len, optlen))
4268 return -EFAULT;
4269 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4270 return -EFAULT;
4271 return 0;
4272 }
4273
4274 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4275 *
4276 * This socket option is applicable to the UDP-style socket only. When
4277 * set it will cause associations that are idle for more than the
4278 * specified number of seconds to automatically close. An association
4279 * being idle is defined an association that has NOT sent or received
4280 * user data. The special value of '0' indicates that no automatic
4281 * close of any associations should be performed. The option expects an
4282 * integer defining the number of seconds of idle time before an
4283 * association is closed.
4284 */
4285 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4286 {
4287 /* Applicable to UDP-style socket only */
4288 if (sctp_style(sk, TCP))
4289 return -EOPNOTSUPP;
4290 if (len < sizeof(int))
4291 return -EINVAL;
4292 len = sizeof(int);
4293 if (put_user(len, optlen))
4294 return -EFAULT;
4295 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4296 return -EFAULT;
4297 return 0;
4298 }
4299
4300 /* Helper routine to branch off an association to a new socket. */
4301 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4302 {
4303 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4304 struct socket *sock;
4305 struct sctp_af *af;
4306 int err = 0;
4307
4308 if (!asoc)
4309 return -EINVAL;
4310
4311 /* An association cannot be branched off from an already peeled-off
4312 * socket, nor is this supported for tcp style sockets.
4313 */
4314 if (!sctp_style(sk, UDP))
4315 return -EINVAL;
4316
4317 /* Create a new socket. */
4318 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4319 if (err < 0)
4320 return err;
4321
4322 sctp_copy_sock(sock->sk, sk, asoc);
4323
4324 /* Make peeled-off sockets more like 1-1 accepted sockets.
4325 * Set the daddr and initialize id to something more random
4326 */
4327 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4328 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4329
4330 /* Populate the fields of the newsk from the oldsk and migrate the
4331 * asoc to the newsk.
4332 */
4333 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4334
4335 *sockp = sock;
4336
4337 return err;
4338 }
4339 EXPORT_SYMBOL(sctp_do_peeloff);
4340
4341 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4342 {
4343 sctp_peeloff_arg_t peeloff;
4344 struct socket *newsock;
4345 struct file *newfile;
4346 int retval = 0;
4347
4348 if (len < sizeof(sctp_peeloff_arg_t))
4349 return -EINVAL;
4350 len = sizeof(sctp_peeloff_arg_t);
4351 if (copy_from_user(&peeloff, optval, len))
4352 return -EFAULT;
4353
4354 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4355 if (retval < 0)
4356 goto out;
4357
4358 /* Map the socket to an unused fd that can be returned to the user. */
4359 retval = get_unused_fd_flags(0);
4360 if (retval < 0) {
4361 sock_release(newsock);
4362 goto out;
4363 }
4364
4365 newfile = sock_alloc_file(newsock, 0, NULL);
4366 if (unlikely(IS_ERR(newfile))) {
4367 put_unused_fd(retval);
4368 sock_release(newsock);
4369 return PTR_ERR(newfile);
4370 }
4371
4372 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4373 retval);
4374
4375 /* Return the fd mapped to the new socket. */
4376 if (put_user(len, optlen)) {
4377 fput(newfile);
4378 put_unused_fd(retval);
4379 return -EFAULT;
4380 }
4381 peeloff.sd = retval;
4382 if (copy_to_user(optval, &peeloff, len)) {
4383 fput(newfile);
4384 put_unused_fd(retval);
4385 return -EFAULT;
4386 }
4387 fd_install(retval, newfile);
4388 out:
4389 return retval;
4390 }
4391
4392 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4393 *
4394 * Applications can enable or disable heartbeats for any peer address of
4395 * an association, modify an address's heartbeat interval, force a
4396 * heartbeat to be sent immediately, and adjust the address's maximum
4397 * number of retransmissions sent before an address is considered
4398 * unreachable. The following structure is used to access and modify an
4399 * address's parameters:
4400 *
4401 * struct sctp_paddrparams {
4402 * sctp_assoc_t spp_assoc_id;
4403 * struct sockaddr_storage spp_address;
4404 * uint32_t spp_hbinterval;
4405 * uint16_t spp_pathmaxrxt;
4406 * uint32_t spp_pathmtu;
4407 * uint32_t spp_sackdelay;
4408 * uint32_t spp_flags;
4409 * };
4410 *
4411 * spp_assoc_id - (one-to-many style socket) This is filled in the
4412 * application, and identifies the association for
4413 * this query.
4414 * spp_address - This specifies which address is of interest.
4415 * spp_hbinterval - This contains the value of the heartbeat interval,
4416 * in milliseconds. If a value of zero
4417 * is present in this field then no changes are to
4418 * be made to this parameter.
4419 * spp_pathmaxrxt - This contains the maximum number of
4420 * retransmissions before this address shall be
4421 * considered unreachable. If a value of zero
4422 * is present in this field then no changes are to
4423 * be made to this parameter.
4424 * spp_pathmtu - When Path MTU discovery is disabled the value
4425 * specified here will be the "fixed" path mtu.
4426 * Note that if the spp_address field is empty
4427 * then all associations on this address will
4428 * have this fixed path mtu set upon them.
4429 *
4430 * spp_sackdelay - When delayed sack is enabled, this value specifies
4431 * the number of milliseconds that sacks will be delayed
4432 * for. This value will apply to all addresses of an
4433 * association if the spp_address field is empty. Note
4434 * also, that if delayed sack is enabled and this
4435 * value is set to 0, no change is made to the last
4436 * recorded delayed sack timer value.
4437 *
4438 * spp_flags - These flags are used to control various features
4439 * on an association. The flag field may contain
4440 * zero or more of the following options.
4441 *
4442 * SPP_HB_ENABLE - Enable heartbeats on the
4443 * specified address. Note that if the address
4444 * field is empty all addresses for the association
4445 * have heartbeats enabled upon them.
4446 *
4447 * SPP_HB_DISABLE - Disable heartbeats on the
4448 * speicifed address. Note that if the address
4449 * field is empty all addresses for the association
4450 * will have their heartbeats disabled. Note also
4451 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4452 * mutually exclusive, only one of these two should
4453 * be specified. Enabling both fields will have
4454 * undetermined results.
4455 *
4456 * SPP_HB_DEMAND - Request a user initiated heartbeat
4457 * to be made immediately.
4458 *
4459 * SPP_PMTUD_ENABLE - This field will enable PMTU
4460 * discovery upon the specified address. Note that
4461 * if the address feild is empty then all addresses
4462 * on the association are effected.
4463 *
4464 * SPP_PMTUD_DISABLE - This field will disable PMTU
4465 * discovery upon the specified address. Note that
4466 * if the address feild is empty then all addresses
4467 * on the association are effected. Not also that
4468 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4469 * exclusive. Enabling both will have undetermined
4470 * results.
4471 *
4472 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4473 * on delayed sack. The time specified in spp_sackdelay
4474 * is used to specify the sack delay for this address. Note
4475 * that if spp_address is empty then all addresses will
4476 * enable delayed sack and take on the sack delay
4477 * value specified in spp_sackdelay.
4478 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4479 * off delayed sack. If the spp_address field is blank then
4480 * delayed sack is disabled for the entire association. Note
4481 * also that this field is mutually exclusive to
4482 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4483 * results.
4484 */
4485 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4486 char __user *optval, int __user *optlen)
4487 {
4488 struct sctp_paddrparams params;
4489 struct sctp_transport *trans = NULL;
4490 struct sctp_association *asoc = NULL;
4491 struct sctp_sock *sp = sctp_sk(sk);
4492
4493 if (len < sizeof(struct sctp_paddrparams))
4494 return -EINVAL;
4495 len = sizeof(struct sctp_paddrparams);
4496 if (copy_from_user(&params, optval, len))
4497 return -EFAULT;
4498
4499 /* If an address other than INADDR_ANY is specified, and
4500 * no transport is found, then the request is invalid.
4501 */
4502 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4503 trans = sctp_addr_id2transport(sk, &params.spp_address,
4504 params.spp_assoc_id);
4505 if (!trans) {
4506 pr_debug("%s: failed no transport\n", __func__);
4507 return -EINVAL;
4508 }
4509 }
4510
4511 /* Get association, if assoc_id != 0 and the socket is a one
4512 * to many style socket, and an association was not found, then
4513 * the id was invalid.
4514 */
4515 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4516 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4517 pr_debug("%s: failed no association\n", __func__);
4518 return -EINVAL;
4519 }
4520
4521 if (trans) {
4522 /* Fetch transport values. */
4523 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4524 params.spp_pathmtu = trans->pathmtu;
4525 params.spp_pathmaxrxt = trans->pathmaxrxt;
4526 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4527
4528 /*draft-11 doesn't say what to return in spp_flags*/
4529 params.spp_flags = trans->param_flags;
4530 } else if (asoc) {
4531 /* Fetch association values. */
4532 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4533 params.spp_pathmtu = asoc->pathmtu;
4534 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4535 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4536
4537 /*draft-11 doesn't say what to return in spp_flags*/
4538 params.spp_flags = asoc->param_flags;
4539 } else {
4540 /* Fetch socket values. */
4541 params.spp_hbinterval = sp->hbinterval;
4542 params.spp_pathmtu = sp->pathmtu;
4543 params.spp_sackdelay = sp->sackdelay;
4544 params.spp_pathmaxrxt = sp->pathmaxrxt;
4545
4546 /*draft-11 doesn't say what to return in spp_flags*/
4547 params.spp_flags = sp->param_flags;
4548 }
4549
4550 if (copy_to_user(optval, &params, len))
4551 return -EFAULT;
4552
4553 if (put_user(len, optlen))
4554 return -EFAULT;
4555
4556 return 0;
4557 }
4558
4559 /*
4560 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4561 *
4562 * This option will effect the way delayed acks are performed. This
4563 * option allows you to get or set the delayed ack time, in
4564 * milliseconds. It also allows changing the delayed ack frequency.
4565 * Changing the frequency to 1 disables the delayed sack algorithm. If
4566 * the assoc_id is 0, then this sets or gets the endpoints default
4567 * values. If the assoc_id field is non-zero, then the set or get
4568 * effects the specified association for the one to many model (the
4569 * assoc_id field is ignored by the one to one model). Note that if
4570 * sack_delay or sack_freq are 0 when setting this option, then the
4571 * current values will remain unchanged.
4572 *
4573 * struct sctp_sack_info {
4574 * sctp_assoc_t sack_assoc_id;
4575 * uint32_t sack_delay;
4576 * uint32_t sack_freq;
4577 * };
4578 *
4579 * sack_assoc_id - This parameter, indicates which association the user
4580 * is performing an action upon. Note that if this field's value is
4581 * zero then the endpoints default value is changed (effecting future
4582 * associations only).
4583 *
4584 * sack_delay - This parameter contains the number of milliseconds that
4585 * the user is requesting the delayed ACK timer be set to. Note that
4586 * this value is defined in the standard to be between 200 and 500
4587 * milliseconds.
4588 *
4589 * sack_freq - This parameter contains the number of packets that must
4590 * be received before a sack is sent without waiting for the delay
4591 * timer to expire. The default value for this is 2, setting this
4592 * value to 1 will disable the delayed sack algorithm.
4593 */
4594 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4595 char __user *optval,
4596 int __user *optlen)
4597 {
4598 struct sctp_sack_info params;
4599 struct sctp_association *asoc = NULL;
4600 struct sctp_sock *sp = sctp_sk(sk);
4601
4602 if (len >= sizeof(struct sctp_sack_info)) {
4603 len = sizeof(struct sctp_sack_info);
4604
4605 if (copy_from_user(&params, optval, len))
4606 return -EFAULT;
4607 } else if (len == sizeof(struct sctp_assoc_value)) {
4608 pr_warn_ratelimited(DEPRECATED
4609 "%s (pid %d) "
4610 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4611 "Use struct sctp_sack_info instead\n",
4612 current->comm, task_pid_nr(current));
4613 if (copy_from_user(&params, optval, len))
4614 return -EFAULT;
4615 } else
4616 return -EINVAL;
4617
4618 /* Get association, if sack_assoc_id != 0 and the socket is a one
4619 * to many style socket, and an association was not found, then
4620 * the id was invalid.
4621 */
4622 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4623 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4624 return -EINVAL;
4625
4626 if (asoc) {
4627 /* Fetch association values. */
4628 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4629 params.sack_delay = jiffies_to_msecs(
4630 asoc->sackdelay);
4631 params.sack_freq = asoc->sackfreq;
4632
4633 } else {
4634 params.sack_delay = 0;
4635 params.sack_freq = 1;
4636 }
4637 } else {
4638 /* Fetch socket values. */
4639 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4640 params.sack_delay = sp->sackdelay;
4641 params.sack_freq = sp->sackfreq;
4642 } else {
4643 params.sack_delay = 0;
4644 params.sack_freq = 1;
4645 }
4646 }
4647
4648 if (copy_to_user(optval, &params, len))
4649 return -EFAULT;
4650
4651 if (put_user(len, optlen))
4652 return -EFAULT;
4653
4654 return 0;
4655 }
4656
4657 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4658 *
4659 * Applications can specify protocol parameters for the default association
4660 * initialization. The option name argument to setsockopt() and getsockopt()
4661 * is SCTP_INITMSG.
4662 *
4663 * Setting initialization parameters is effective only on an unconnected
4664 * socket (for UDP-style sockets only future associations are effected
4665 * by the change). With TCP-style sockets, this option is inherited by
4666 * sockets derived from a listener socket.
4667 */
4668 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4669 {
4670 if (len < sizeof(struct sctp_initmsg))
4671 return -EINVAL;
4672 len = sizeof(struct sctp_initmsg);
4673 if (put_user(len, optlen))
4674 return -EFAULT;
4675 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4676 return -EFAULT;
4677 return 0;
4678 }
4679
4680
4681 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4682 char __user *optval, int __user *optlen)
4683 {
4684 struct sctp_association *asoc;
4685 int cnt = 0;
4686 struct sctp_getaddrs getaddrs;
4687 struct sctp_transport *from;
4688 void __user *to;
4689 union sctp_addr temp;
4690 struct sctp_sock *sp = sctp_sk(sk);
4691 int addrlen;
4692 size_t space_left;
4693 int bytes_copied;
4694
4695 if (len < sizeof(struct sctp_getaddrs))
4696 return -EINVAL;
4697
4698 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4699 return -EFAULT;
4700
4701 /* For UDP-style sockets, id specifies the association to query. */
4702 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4703 if (!asoc)
4704 return -EINVAL;
4705
4706 to = optval + offsetof(struct sctp_getaddrs, addrs);
4707 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4708
4709 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4710 transports) {
4711 memcpy(&temp, &from->ipaddr, sizeof(temp));
4712 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4713 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4714 if (space_left < addrlen)
4715 return -ENOMEM;
4716 if (copy_to_user(to, &temp, addrlen))
4717 return -EFAULT;
4718 to += addrlen;
4719 cnt++;
4720 space_left -= addrlen;
4721 }
4722
4723 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4724 return -EFAULT;
4725 bytes_copied = ((char __user *)to) - optval;
4726 if (put_user(bytes_copied, optlen))
4727 return -EFAULT;
4728
4729 return 0;
4730 }
4731
4732 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4733 size_t space_left, int *bytes_copied)
4734 {
4735 struct sctp_sockaddr_entry *addr;
4736 union sctp_addr temp;
4737 int cnt = 0;
4738 int addrlen;
4739 struct net *net = sock_net(sk);
4740
4741 rcu_read_lock();
4742 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4743 if (!addr->valid)
4744 continue;
4745
4746 if ((PF_INET == sk->sk_family) &&
4747 (AF_INET6 == addr->a.sa.sa_family))
4748 continue;
4749 if ((PF_INET6 == sk->sk_family) &&
4750 inet_v6_ipv6only(sk) &&
4751 (AF_INET == addr->a.sa.sa_family))
4752 continue;
4753 memcpy(&temp, &addr->a, sizeof(temp));
4754 if (!temp.v4.sin_port)
4755 temp.v4.sin_port = htons(port);
4756
4757 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4758 &temp);
4759 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4760 if (space_left < addrlen) {
4761 cnt = -ENOMEM;
4762 break;
4763 }
4764 memcpy(to, &temp, addrlen);
4765
4766 to += addrlen;
4767 cnt++;
4768 space_left -= addrlen;
4769 *bytes_copied += addrlen;
4770 }
4771 rcu_read_unlock();
4772
4773 return cnt;
4774 }
4775
4776
4777 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4778 char __user *optval, int __user *optlen)
4779 {
4780 struct sctp_bind_addr *bp;
4781 struct sctp_association *asoc;
4782 int cnt = 0;
4783 struct sctp_getaddrs getaddrs;
4784 struct sctp_sockaddr_entry *addr;
4785 void __user *to;
4786 union sctp_addr temp;
4787 struct sctp_sock *sp = sctp_sk(sk);
4788 int addrlen;
4789 int err = 0;
4790 size_t space_left;
4791 int bytes_copied = 0;
4792 void *addrs;
4793 void *buf;
4794
4795 if (len < sizeof(struct sctp_getaddrs))
4796 return -EINVAL;
4797
4798 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4799 return -EFAULT;
4800
4801 /*
4802 * For UDP-style sockets, id specifies the association to query.
4803 * If the id field is set to the value '0' then the locally bound
4804 * addresses are returned without regard to any particular
4805 * association.
4806 */
4807 if (0 == getaddrs.assoc_id) {
4808 bp = &sctp_sk(sk)->ep->base.bind_addr;
4809 } else {
4810 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4811 if (!asoc)
4812 return -EINVAL;
4813 bp = &asoc->base.bind_addr;
4814 }
4815
4816 to = optval + offsetof(struct sctp_getaddrs, addrs);
4817 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4818
4819 addrs = kmalloc(space_left, GFP_KERNEL);
4820 if (!addrs)
4821 return -ENOMEM;
4822
4823 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4824 * addresses from the global local address list.
4825 */
4826 if (sctp_list_single_entry(&bp->address_list)) {
4827 addr = list_entry(bp->address_list.next,
4828 struct sctp_sockaddr_entry, list);
4829 if (sctp_is_any(sk, &addr->a)) {
4830 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4831 space_left, &bytes_copied);
4832 if (cnt < 0) {
4833 err = cnt;
4834 goto out;
4835 }
4836 goto copy_getaddrs;
4837 }
4838 }
4839
4840 buf = addrs;
4841 /* Protection on the bound address list is not needed since
4842 * in the socket option context we hold a socket lock and
4843 * thus the bound address list can't change.
4844 */
4845 list_for_each_entry(addr, &bp->address_list, list) {
4846 memcpy(&temp, &addr->a, sizeof(temp));
4847 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4848 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4849 if (space_left < addrlen) {
4850 err = -ENOMEM; /*fixme: right error?*/
4851 goto out;
4852 }
4853 memcpy(buf, &temp, addrlen);
4854 buf += addrlen;
4855 bytes_copied += addrlen;
4856 cnt++;
4857 space_left -= addrlen;
4858 }
4859
4860 copy_getaddrs:
4861 if (copy_to_user(to, addrs, bytes_copied)) {
4862 err = -EFAULT;
4863 goto out;
4864 }
4865 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4866 err = -EFAULT;
4867 goto out;
4868 }
4869 if (put_user(bytes_copied, optlen))
4870 err = -EFAULT;
4871 out:
4872 kfree(addrs);
4873 return err;
4874 }
4875
4876 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4877 *
4878 * Requests that the local SCTP stack use the enclosed peer address as
4879 * the association primary. The enclosed address must be one of the
4880 * association peer's addresses.
4881 */
4882 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4883 char __user *optval, int __user *optlen)
4884 {
4885 struct sctp_prim prim;
4886 struct sctp_association *asoc;
4887 struct sctp_sock *sp = sctp_sk(sk);
4888
4889 if (len < sizeof(struct sctp_prim))
4890 return -EINVAL;
4891
4892 len = sizeof(struct sctp_prim);
4893
4894 if (copy_from_user(&prim, optval, len))
4895 return -EFAULT;
4896
4897 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4898 if (!asoc)
4899 return -EINVAL;
4900
4901 if (!asoc->peer.primary_path)
4902 return -ENOTCONN;
4903
4904 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4905 asoc->peer.primary_path->af_specific->sockaddr_len);
4906
4907 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4908 (union sctp_addr *)&prim.ssp_addr);
4909
4910 if (put_user(len, optlen))
4911 return -EFAULT;
4912 if (copy_to_user(optval, &prim, len))
4913 return -EFAULT;
4914
4915 return 0;
4916 }
4917
4918 /*
4919 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4920 *
4921 * Requests that the local endpoint set the specified Adaptation Layer
4922 * Indication parameter for all future INIT and INIT-ACK exchanges.
4923 */
4924 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4925 char __user *optval, int __user *optlen)
4926 {
4927 struct sctp_setadaptation adaptation;
4928
4929 if (len < sizeof(struct sctp_setadaptation))
4930 return -EINVAL;
4931
4932 len = sizeof(struct sctp_setadaptation);
4933
4934 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4935
4936 if (put_user(len, optlen))
4937 return -EFAULT;
4938 if (copy_to_user(optval, &adaptation, len))
4939 return -EFAULT;
4940
4941 return 0;
4942 }
4943
4944 /*
4945 *
4946 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4947 *
4948 * Applications that wish to use the sendto() system call may wish to
4949 * specify a default set of parameters that would normally be supplied
4950 * through the inclusion of ancillary data. This socket option allows
4951 * such an application to set the default sctp_sndrcvinfo structure.
4952
4953
4954 * The application that wishes to use this socket option simply passes
4955 * in to this call the sctp_sndrcvinfo structure defined in Section
4956 * 5.2.2) The input parameters accepted by this call include
4957 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4958 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4959 * to this call if the caller is using the UDP model.
4960 *
4961 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4962 */
4963 static int sctp_getsockopt_default_send_param(struct sock *sk,
4964 int len, char __user *optval,
4965 int __user *optlen)
4966 {
4967 struct sctp_sndrcvinfo info;
4968 struct sctp_association *asoc;
4969 struct sctp_sock *sp = sctp_sk(sk);
4970
4971 if (len < sizeof(struct sctp_sndrcvinfo))
4972 return -EINVAL;
4973
4974 len = sizeof(struct sctp_sndrcvinfo);
4975
4976 if (copy_from_user(&info, optval, len))
4977 return -EFAULT;
4978
4979 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4980 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4981 return -EINVAL;
4982
4983 if (asoc) {
4984 info.sinfo_stream = asoc->default_stream;
4985 info.sinfo_flags = asoc->default_flags;
4986 info.sinfo_ppid = asoc->default_ppid;
4987 info.sinfo_context = asoc->default_context;
4988 info.sinfo_timetolive = asoc->default_timetolive;
4989 } else {
4990 info.sinfo_stream = sp->default_stream;
4991 info.sinfo_flags = sp->default_flags;
4992 info.sinfo_ppid = sp->default_ppid;
4993 info.sinfo_context = sp->default_context;
4994 info.sinfo_timetolive = sp->default_timetolive;
4995 }
4996
4997 if (put_user(len, optlen))
4998 return -EFAULT;
4999 if (copy_to_user(optval, &info, len))
5000 return -EFAULT;
5001
5002 return 0;
5003 }
5004
5005 /*
5006 *
5007 * 7.1.5 SCTP_NODELAY
5008 *
5009 * Turn on/off any Nagle-like algorithm. This means that packets are
5010 * generally sent as soon as possible and no unnecessary delays are
5011 * introduced, at the cost of more packets in the network. Expects an
5012 * integer boolean flag.
5013 */
5014
5015 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5016 char __user *optval, int __user *optlen)
5017 {
5018 int val;
5019
5020 if (len < sizeof(int))
5021 return -EINVAL;
5022
5023 len = sizeof(int);
5024 val = (sctp_sk(sk)->nodelay == 1);
5025 if (put_user(len, optlen))
5026 return -EFAULT;
5027 if (copy_to_user(optval, &val, len))
5028 return -EFAULT;
5029 return 0;
5030 }
5031
5032 /*
5033 *
5034 * 7.1.1 SCTP_RTOINFO
5035 *
5036 * The protocol parameters used to initialize and bound retransmission
5037 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5038 * and modify these parameters.
5039 * All parameters are time values, in milliseconds. A value of 0, when
5040 * modifying the parameters, indicates that the current value should not
5041 * be changed.
5042 *
5043 */
5044 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5045 char __user *optval,
5046 int __user *optlen) {
5047 struct sctp_rtoinfo rtoinfo;
5048 struct sctp_association *asoc;
5049
5050 if (len < sizeof (struct sctp_rtoinfo))
5051 return -EINVAL;
5052
5053 len = sizeof(struct sctp_rtoinfo);
5054
5055 if (copy_from_user(&rtoinfo, optval, len))
5056 return -EFAULT;
5057
5058 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5059
5060 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5061 return -EINVAL;
5062
5063 /* Values corresponding to the specific association. */
5064 if (asoc) {
5065 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5066 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5067 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5068 } else {
5069 /* Values corresponding to the endpoint. */
5070 struct sctp_sock *sp = sctp_sk(sk);
5071
5072 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5073 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5074 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5075 }
5076
5077 if (put_user(len, optlen))
5078 return -EFAULT;
5079
5080 if (copy_to_user(optval, &rtoinfo, len))
5081 return -EFAULT;
5082
5083 return 0;
5084 }
5085
5086 /*
5087 *
5088 * 7.1.2 SCTP_ASSOCINFO
5089 *
5090 * This option is used to tune the maximum retransmission attempts
5091 * of the association.
5092 * Returns an error if the new association retransmission value is
5093 * greater than the sum of the retransmission value of the peer.
5094 * See [SCTP] for more information.
5095 *
5096 */
5097 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5098 char __user *optval,
5099 int __user *optlen)
5100 {
5101
5102 struct sctp_assocparams assocparams;
5103 struct sctp_association *asoc;
5104 struct list_head *pos;
5105 int cnt = 0;
5106
5107 if (len < sizeof (struct sctp_assocparams))
5108 return -EINVAL;
5109
5110 len = sizeof(struct sctp_assocparams);
5111
5112 if (copy_from_user(&assocparams, optval, len))
5113 return -EFAULT;
5114
5115 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5116
5117 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5118 return -EINVAL;
5119
5120 /* Values correspoinding to the specific association */
5121 if (asoc) {
5122 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5123 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5124 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5125 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5126
5127 list_for_each(pos, &asoc->peer.transport_addr_list) {
5128 cnt++;
5129 }
5130
5131 assocparams.sasoc_number_peer_destinations = cnt;
5132 } else {
5133 /* Values corresponding to the endpoint */
5134 struct sctp_sock *sp = sctp_sk(sk);
5135
5136 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5137 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5138 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5139 assocparams.sasoc_cookie_life =
5140 sp->assocparams.sasoc_cookie_life;
5141 assocparams.sasoc_number_peer_destinations =
5142 sp->assocparams.
5143 sasoc_number_peer_destinations;
5144 }
5145
5146 if (put_user(len, optlen))
5147 return -EFAULT;
5148
5149 if (copy_to_user(optval, &assocparams, len))
5150 return -EFAULT;
5151
5152 return 0;
5153 }
5154
5155 /*
5156 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5157 *
5158 * This socket option is a boolean flag which turns on or off mapped V4
5159 * addresses. If this option is turned on and the socket is type
5160 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5161 * If this option is turned off, then no mapping will be done of V4
5162 * addresses and a user will receive both PF_INET6 and PF_INET type
5163 * addresses on the socket.
5164 */
5165 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5166 char __user *optval, int __user *optlen)
5167 {
5168 int val;
5169 struct sctp_sock *sp = sctp_sk(sk);
5170
5171 if (len < sizeof(int))
5172 return -EINVAL;
5173
5174 len = sizeof(int);
5175 val = sp->v4mapped;
5176 if (put_user(len, optlen))
5177 return -EFAULT;
5178 if (copy_to_user(optval, &val, len))
5179 return -EFAULT;
5180
5181 return 0;
5182 }
5183
5184 /*
5185 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5186 * (chapter and verse is quoted at sctp_setsockopt_context())
5187 */
5188 static int sctp_getsockopt_context(struct sock *sk, int len,
5189 char __user *optval, int __user *optlen)
5190 {
5191 struct sctp_assoc_value params;
5192 struct sctp_sock *sp;
5193 struct sctp_association *asoc;
5194
5195 if (len < sizeof(struct sctp_assoc_value))
5196 return -EINVAL;
5197
5198 len = sizeof(struct sctp_assoc_value);
5199
5200 if (copy_from_user(&params, optval, len))
5201 return -EFAULT;
5202
5203 sp = sctp_sk(sk);
5204
5205 if (params.assoc_id != 0) {
5206 asoc = sctp_id2assoc(sk, params.assoc_id);
5207 if (!asoc)
5208 return -EINVAL;
5209 params.assoc_value = asoc->default_rcv_context;
5210 } else {
5211 params.assoc_value = sp->default_rcv_context;
5212 }
5213
5214 if (put_user(len, optlen))
5215 return -EFAULT;
5216 if (copy_to_user(optval, &params, len))
5217 return -EFAULT;
5218
5219 return 0;
5220 }
5221
5222 /*
5223 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5224 * This option will get or set the maximum size to put in any outgoing
5225 * SCTP DATA chunk. If a message is larger than this size it will be
5226 * fragmented by SCTP into the specified size. Note that the underlying
5227 * SCTP implementation may fragment into smaller sized chunks when the
5228 * PMTU of the underlying association is smaller than the value set by
5229 * the user. The default value for this option is '0' which indicates
5230 * the user is NOT limiting fragmentation and only the PMTU will effect
5231 * SCTP's choice of DATA chunk size. Note also that values set larger
5232 * than the maximum size of an IP datagram will effectively let SCTP
5233 * control fragmentation (i.e. the same as setting this option to 0).
5234 *
5235 * The following structure is used to access and modify this parameter:
5236 *
5237 * struct sctp_assoc_value {
5238 * sctp_assoc_t assoc_id;
5239 * uint32_t assoc_value;
5240 * };
5241 *
5242 * assoc_id: This parameter is ignored for one-to-one style sockets.
5243 * For one-to-many style sockets this parameter indicates which
5244 * association the user is performing an action upon. Note that if
5245 * this field's value is zero then the endpoints default value is
5246 * changed (effecting future associations only).
5247 * assoc_value: This parameter specifies the maximum size in bytes.
5248 */
5249 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5250 char __user *optval, int __user *optlen)
5251 {
5252 struct sctp_assoc_value params;
5253 struct sctp_association *asoc;
5254
5255 if (len == sizeof(int)) {
5256 pr_warn_ratelimited(DEPRECATED
5257 "%s (pid %d) "
5258 "Use of int in maxseg socket option.\n"
5259 "Use struct sctp_assoc_value instead\n",
5260 current->comm, task_pid_nr(current));
5261 params.assoc_id = 0;
5262 } else if (len >= sizeof(struct sctp_assoc_value)) {
5263 len = sizeof(struct sctp_assoc_value);
5264 if (copy_from_user(&params, optval, sizeof(params)))
5265 return -EFAULT;
5266 } else
5267 return -EINVAL;
5268
5269 asoc = sctp_id2assoc(sk, params.assoc_id);
5270 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5271 return -EINVAL;
5272
5273 if (asoc)
5274 params.assoc_value = asoc->frag_point;
5275 else
5276 params.assoc_value = sctp_sk(sk)->user_frag;
5277
5278 if (put_user(len, optlen))
5279 return -EFAULT;
5280 if (len == sizeof(int)) {
5281 if (copy_to_user(optval, &params.assoc_value, len))
5282 return -EFAULT;
5283 } else {
5284 if (copy_to_user(optval, &params, len))
5285 return -EFAULT;
5286 }
5287
5288 return 0;
5289 }
5290
5291 /*
5292 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5293 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5294 */
5295 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5296 char __user *optval, int __user *optlen)
5297 {
5298 int val;
5299
5300 if (len < sizeof(int))
5301 return -EINVAL;
5302
5303 len = sizeof(int);
5304
5305 val = sctp_sk(sk)->frag_interleave;
5306 if (put_user(len, optlen))
5307 return -EFAULT;
5308 if (copy_to_user(optval, &val, len))
5309 return -EFAULT;
5310
5311 return 0;
5312 }
5313
5314 /*
5315 * 7.1.25. Set or Get the sctp partial delivery point
5316 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5317 */
5318 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5319 char __user *optval,
5320 int __user *optlen)
5321 {
5322 u32 val;
5323
5324 if (len < sizeof(u32))
5325 return -EINVAL;
5326
5327 len = sizeof(u32);
5328
5329 val = sctp_sk(sk)->pd_point;
5330 if (put_user(len, optlen))
5331 return -EFAULT;
5332 if (copy_to_user(optval, &val, len))
5333 return -EFAULT;
5334
5335 return 0;
5336 }
5337
5338 /*
5339 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5340 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5341 */
5342 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5343 char __user *optval,
5344 int __user *optlen)
5345 {
5346 struct sctp_assoc_value params;
5347 struct sctp_sock *sp;
5348 struct sctp_association *asoc;
5349
5350 if (len == sizeof(int)) {
5351 pr_warn_ratelimited(DEPRECATED
5352 "%s (pid %d) "
5353 "Use of int in max_burst socket option.\n"
5354 "Use struct sctp_assoc_value instead\n",
5355 current->comm, task_pid_nr(current));
5356 params.assoc_id = 0;
5357 } else if (len >= sizeof(struct sctp_assoc_value)) {
5358 len = sizeof(struct sctp_assoc_value);
5359 if (copy_from_user(&params, optval, len))
5360 return -EFAULT;
5361 } else
5362 return -EINVAL;
5363
5364 sp = sctp_sk(sk);
5365
5366 if (params.assoc_id != 0) {
5367 asoc = sctp_id2assoc(sk, params.assoc_id);
5368 if (!asoc)
5369 return -EINVAL;
5370 params.assoc_value = asoc->max_burst;
5371 } else
5372 params.assoc_value = sp->max_burst;
5373
5374 if (len == sizeof(int)) {
5375 if (copy_to_user(optval, &params.assoc_value, len))
5376 return -EFAULT;
5377 } else {
5378 if (copy_to_user(optval, &params, len))
5379 return -EFAULT;
5380 }
5381
5382 return 0;
5383
5384 }
5385
5386 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5387 char __user *optval, int __user *optlen)
5388 {
5389 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5390 struct sctp_hmacalgo __user *p = (void __user *)optval;
5391 struct sctp_hmac_algo_param *hmacs;
5392 __u16 data_len = 0;
5393 u32 num_idents;
5394
5395 if (!ep->auth_enable)
5396 return -EACCES;
5397
5398 hmacs = ep->auth_hmacs_list;
5399 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5400
5401 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5402 return -EINVAL;
5403
5404 len = sizeof(struct sctp_hmacalgo) + data_len;
5405 num_idents = data_len / sizeof(u16);
5406
5407 if (put_user(len, optlen))
5408 return -EFAULT;
5409 if (put_user(num_idents, &p->shmac_num_idents))
5410 return -EFAULT;
5411 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5412 return -EFAULT;
5413 return 0;
5414 }
5415
5416 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5417 char __user *optval, int __user *optlen)
5418 {
5419 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5420 struct sctp_authkeyid val;
5421 struct sctp_association *asoc;
5422
5423 if (!ep->auth_enable)
5424 return -EACCES;
5425
5426 if (len < sizeof(struct sctp_authkeyid))
5427 return -EINVAL;
5428 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5429 return -EFAULT;
5430
5431 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5432 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5433 return -EINVAL;
5434
5435 if (asoc)
5436 val.scact_keynumber = asoc->active_key_id;
5437 else
5438 val.scact_keynumber = ep->active_key_id;
5439
5440 len = sizeof(struct sctp_authkeyid);
5441 if (put_user(len, optlen))
5442 return -EFAULT;
5443 if (copy_to_user(optval, &val, len))
5444 return -EFAULT;
5445
5446 return 0;
5447 }
5448
5449 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5450 char __user *optval, int __user *optlen)
5451 {
5452 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5453 struct sctp_authchunks __user *p = (void __user *)optval;
5454 struct sctp_authchunks val;
5455 struct sctp_association *asoc;
5456 struct sctp_chunks_param *ch;
5457 u32 num_chunks = 0;
5458 char __user *to;
5459
5460 if (!ep->auth_enable)
5461 return -EACCES;
5462
5463 if (len < sizeof(struct sctp_authchunks))
5464 return -EINVAL;
5465
5466 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5467 return -EFAULT;
5468
5469 to = p->gauth_chunks;
5470 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5471 if (!asoc)
5472 return -EINVAL;
5473
5474 ch = asoc->peer.peer_chunks;
5475 if (!ch)
5476 goto num;
5477
5478 /* See if the user provided enough room for all the data */
5479 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5480 if (len < num_chunks)
5481 return -EINVAL;
5482
5483 if (copy_to_user(to, ch->chunks, num_chunks))
5484 return -EFAULT;
5485 num:
5486 len = sizeof(struct sctp_authchunks) + num_chunks;
5487 if (put_user(len, optlen))
5488 return -EFAULT;
5489 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5490 return -EFAULT;
5491 return 0;
5492 }
5493
5494 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5495 char __user *optval, int __user *optlen)
5496 {
5497 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5498 struct sctp_authchunks __user *p = (void __user *)optval;
5499 struct sctp_authchunks val;
5500 struct sctp_association *asoc;
5501 struct sctp_chunks_param *ch;
5502 u32 num_chunks = 0;
5503 char __user *to;
5504
5505 if (!ep->auth_enable)
5506 return -EACCES;
5507
5508 if (len < sizeof(struct sctp_authchunks))
5509 return -EINVAL;
5510
5511 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5512 return -EFAULT;
5513
5514 to = p->gauth_chunks;
5515 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5516 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5517 return -EINVAL;
5518
5519 if (asoc)
5520 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5521 else
5522 ch = ep->auth_chunk_list;
5523
5524 if (!ch)
5525 goto num;
5526
5527 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5528 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5529 return -EINVAL;
5530
5531 if (copy_to_user(to, ch->chunks, num_chunks))
5532 return -EFAULT;
5533 num:
5534 len = sizeof(struct sctp_authchunks) + num_chunks;
5535 if (put_user(len, optlen))
5536 return -EFAULT;
5537 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5538 return -EFAULT;
5539
5540 return 0;
5541 }
5542
5543 /*
5544 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5545 * This option gets the current number of associations that are attached
5546 * to a one-to-many style socket. The option value is an uint32_t.
5547 */
5548 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5549 char __user *optval, int __user *optlen)
5550 {
5551 struct sctp_sock *sp = sctp_sk(sk);
5552 struct sctp_association *asoc;
5553 u32 val = 0;
5554
5555 if (sctp_style(sk, TCP))
5556 return -EOPNOTSUPP;
5557
5558 if (len < sizeof(u32))
5559 return -EINVAL;
5560
5561 len = sizeof(u32);
5562
5563 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5564 val++;
5565 }
5566
5567 if (put_user(len, optlen))
5568 return -EFAULT;
5569 if (copy_to_user(optval, &val, len))
5570 return -EFAULT;
5571
5572 return 0;
5573 }
5574
5575 /*
5576 * 8.1.23 SCTP_AUTO_ASCONF
5577 * See the corresponding setsockopt entry as description
5578 */
5579 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5580 char __user *optval, int __user *optlen)
5581 {
5582 int val = 0;
5583
5584 if (len < sizeof(int))
5585 return -EINVAL;
5586
5587 len = sizeof(int);
5588 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5589 val = 1;
5590 if (put_user(len, optlen))
5591 return -EFAULT;
5592 if (copy_to_user(optval, &val, len))
5593 return -EFAULT;
5594 return 0;
5595 }
5596
5597 /*
5598 * 8.2.6. Get the Current Identifiers of Associations
5599 * (SCTP_GET_ASSOC_ID_LIST)
5600 *
5601 * This option gets the current list of SCTP association identifiers of
5602 * the SCTP associations handled by a one-to-many style socket.
5603 */
5604 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5605 char __user *optval, int __user *optlen)
5606 {
5607 struct sctp_sock *sp = sctp_sk(sk);
5608 struct sctp_association *asoc;
5609 struct sctp_assoc_ids *ids;
5610 u32 num = 0;
5611
5612 if (sctp_style(sk, TCP))
5613 return -EOPNOTSUPP;
5614
5615 if (len < sizeof(struct sctp_assoc_ids))
5616 return -EINVAL;
5617
5618 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5619 num++;
5620 }
5621
5622 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5623 return -EINVAL;
5624
5625 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5626
5627 ids = kmalloc(len, GFP_KERNEL);
5628 if (unlikely(!ids))
5629 return -ENOMEM;
5630
5631 ids->gaids_number_of_ids = num;
5632 num = 0;
5633 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5634 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5635 }
5636
5637 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5638 kfree(ids);
5639 return -EFAULT;
5640 }
5641
5642 kfree(ids);
5643 return 0;
5644 }
5645
5646 /*
5647 * SCTP_PEER_ADDR_THLDS
5648 *
5649 * This option allows us to fetch the partially failed threshold for one or all
5650 * transports in an association. See Section 6.1 of:
5651 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5652 */
5653 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5654 char __user *optval,
5655 int len,
5656 int __user *optlen)
5657 {
5658 struct sctp_paddrthlds val;
5659 struct sctp_transport *trans;
5660 struct sctp_association *asoc;
5661
5662 if (len < sizeof(struct sctp_paddrthlds))
5663 return -EINVAL;
5664 len = sizeof(struct sctp_paddrthlds);
5665 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5666 return -EFAULT;
5667
5668 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5669 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5670 if (!asoc)
5671 return -ENOENT;
5672
5673 val.spt_pathpfthld = asoc->pf_retrans;
5674 val.spt_pathmaxrxt = asoc->pathmaxrxt;
5675 } else {
5676 trans = sctp_addr_id2transport(sk, &val.spt_address,
5677 val.spt_assoc_id);
5678 if (!trans)
5679 return -ENOENT;
5680
5681 val.spt_pathmaxrxt = trans->pathmaxrxt;
5682 val.spt_pathpfthld = trans->pf_retrans;
5683 }
5684
5685 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5686 return -EFAULT;
5687
5688 return 0;
5689 }
5690
5691 /*
5692 * SCTP_GET_ASSOC_STATS
5693 *
5694 * This option retrieves local per endpoint statistics. It is modeled
5695 * after OpenSolaris' implementation
5696 */
5697 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5698 char __user *optval,
5699 int __user *optlen)
5700 {
5701 struct sctp_assoc_stats sas;
5702 struct sctp_association *asoc = NULL;
5703
5704 /* User must provide at least the assoc id */
5705 if (len < sizeof(sctp_assoc_t))
5706 return -EINVAL;
5707
5708 /* Allow the struct to grow and fill in as much as possible */
5709 len = min_t(size_t, len, sizeof(sas));
5710
5711 if (copy_from_user(&sas, optval, len))
5712 return -EFAULT;
5713
5714 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5715 if (!asoc)
5716 return -EINVAL;
5717
5718 sas.sas_rtxchunks = asoc->stats.rtxchunks;
5719 sas.sas_gapcnt = asoc->stats.gapcnt;
5720 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5721 sas.sas_osacks = asoc->stats.osacks;
5722 sas.sas_isacks = asoc->stats.isacks;
5723 sas.sas_octrlchunks = asoc->stats.octrlchunks;
5724 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5725 sas.sas_oodchunks = asoc->stats.oodchunks;
5726 sas.sas_iodchunks = asoc->stats.iodchunks;
5727 sas.sas_ouodchunks = asoc->stats.ouodchunks;
5728 sas.sas_iuodchunks = asoc->stats.iuodchunks;
5729 sas.sas_idupchunks = asoc->stats.idupchunks;
5730 sas.sas_opackets = asoc->stats.opackets;
5731 sas.sas_ipackets = asoc->stats.ipackets;
5732
5733 /* New high max rto observed, will return 0 if not a single
5734 * RTO update took place. obs_rto_ipaddr will be bogus
5735 * in such a case
5736 */
5737 sas.sas_maxrto = asoc->stats.max_obs_rto;
5738 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5739 sizeof(struct sockaddr_storage));
5740
5741 /* Mark beginning of a new observation period */
5742 asoc->stats.max_obs_rto = asoc->rto_min;
5743
5744 if (put_user(len, optlen))
5745 return -EFAULT;
5746
5747 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5748
5749 if (copy_to_user(optval, &sas, len))
5750 return -EFAULT;
5751
5752 return 0;
5753 }
5754
5755 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5756 char __user *optval, int __user *optlen)
5757 {
5758 int retval = 0;
5759 int len;
5760
5761 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5762
5763 /* I can hardly begin to describe how wrong this is. This is
5764 * so broken as to be worse than useless. The API draft
5765 * REALLY is NOT helpful here... I am not convinced that the
5766 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5767 * are at all well-founded.
5768 */
5769 if (level != SOL_SCTP) {
5770 struct sctp_af *af = sctp_sk(sk)->pf->af;
5771
5772 retval = af->getsockopt(sk, level, optname, optval, optlen);
5773 return retval;
5774 }
5775
5776 if (get_user(len, optlen))
5777 return -EFAULT;
5778
5779 lock_sock(sk);
5780
5781 switch (optname) {
5782 case SCTP_STATUS:
5783 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5784 break;
5785 case SCTP_DISABLE_FRAGMENTS:
5786 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5787 optlen);
5788 break;
5789 case SCTP_EVENTS:
5790 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5791 break;
5792 case SCTP_AUTOCLOSE:
5793 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5794 break;
5795 case SCTP_SOCKOPT_PEELOFF:
5796 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5797 break;
5798 case SCTP_PEER_ADDR_PARAMS:
5799 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5800 optlen);
5801 break;
5802 case SCTP_DELAYED_SACK:
5803 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5804 optlen);
5805 break;
5806 case SCTP_INITMSG:
5807 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5808 break;
5809 case SCTP_GET_PEER_ADDRS:
5810 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5811 optlen);
5812 break;
5813 case SCTP_GET_LOCAL_ADDRS:
5814 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5815 optlen);
5816 break;
5817 case SCTP_SOCKOPT_CONNECTX3:
5818 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5819 break;
5820 case SCTP_DEFAULT_SEND_PARAM:
5821 retval = sctp_getsockopt_default_send_param(sk, len,
5822 optval, optlen);
5823 break;
5824 case SCTP_PRIMARY_ADDR:
5825 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5826 break;
5827 case SCTP_NODELAY:
5828 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5829 break;
5830 case SCTP_RTOINFO:
5831 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5832 break;
5833 case SCTP_ASSOCINFO:
5834 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5835 break;
5836 case SCTP_I_WANT_MAPPED_V4_ADDR:
5837 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5838 break;
5839 case SCTP_MAXSEG:
5840 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5841 break;
5842 case SCTP_GET_PEER_ADDR_INFO:
5843 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5844 optlen);
5845 break;
5846 case SCTP_ADAPTATION_LAYER:
5847 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5848 optlen);
5849 break;
5850 case SCTP_CONTEXT:
5851 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5852 break;
5853 case SCTP_FRAGMENT_INTERLEAVE:
5854 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5855 optlen);
5856 break;
5857 case SCTP_PARTIAL_DELIVERY_POINT:
5858 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5859 optlen);
5860 break;
5861 case SCTP_MAX_BURST:
5862 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5863 break;
5864 case SCTP_AUTH_KEY:
5865 case SCTP_AUTH_CHUNK:
5866 case SCTP_AUTH_DELETE_KEY:
5867 retval = -EOPNOTSUPP;
5868 break;
5869 case SCTP_HMAC_IDENT:
5870 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5871 break;
5872 case SCTP_AUTH_ACTIVE_KEY:
5873 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5874 break;
5875 case SCTP_PEER_AUTH_CHUNKS:
5876 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5877 optlen);
5878 break;
5879 case SCTP_LOCAL_AUTH_CHUNKS:
5880 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5881 optlen);
5882 break;
5883 case SCTP_GET_ASSOC_NUMBER:
5884 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5885 break;
5886 case SCTP_GET_ASSOC_ID_LIST:
5887 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5888 break;
5889 case SCTP_AUTO_ASCONF:
5890 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5891 break;
5892 case SCTP_PEER_ADDR_THLDS:
5893 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5894 break;
5895 case SCTP_GET_ASSOC_STATS:
5896 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5897 break;
5898 default:
5899 retval = -ENOPROTOOPT;
5900 break;
5901 }
5902
5903 release_sock(sk);
5904 return retval;
5905 }
5906
5907 static void sctp_hash(struct sock *sk)
5908 {
5909 /* STUB */
5910 }
5911
5912 static void sctp_unhash(struct sock *sk)
5913 {
5914 /* STUB */
5915 }
5916
5917 /* Check if port is acceptable. Possibly find first available port.
5918 *
5919 * The port hash table (contained in the 'global' SCTP protocol storage
5920 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5921 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5922 * list (the list number is the port number hashed out, so as you
5923 * would expect from a hash function, all the ports in a given list have
5924 * such a number that hashes out to the same list number; you were
5925 * expecting that, right?); so each list has a set of ports, with a
5926 * link to the socket (struct sock) that uses it, the port number and
5927 * a fastreuse flag (FIXME: NPI ipg).
5928 */
5929 static struct sctp_bind_bucket *sctp_bucket_create(
5930 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5931
5932 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5933 {
5934 struct sctp_bind_hashbucket *head; /* hash list */
5935 struct sctp_bind_bucket *pp;
5936 unsigned short snum;
5937 int ret;
5938
5939 snum = ntohs(addr->v4.sin_port);
5940
5941 pr_debug("%s: begins, snum:%d\n", __func__, snum);
5942
5943 local_bh_disable();
5944
5945 if (snum == 0) {
5946 /* Search for an available port. */
5947 int low, high, remaining, index;
5948 unsigned int rover;
5949 struct net *net = sock_net(sk);
5950
5951 inet_get_local_port_range(net, &low, &high);
5952 remaining = (high - low) + 1;
5953 rover = prandom_u32() % remaining + low;
5954
5955 do {
5956 rover++;
5957 if ((rover < low) || (rover > high))
5958 rover = low;
5959 if (inet_is_local_reserved_port(net, rover))
5960 continue;
5961 index = sctp_phashfn(sock_net(sk), rover);
5962 head = &sctp_port_hashtable[index];
5963 spin_lock(&head->lock);
5964 sctp_for_each_hentry(pp, &head->chain)
5965 if ((pp->port == rover) &&
5966 net_eq(sock_net(sk), pp->net))
5967 goto next;
5968 break;
5969 next:
5970 spin_unlock(&head->lock);
5971 } while (--remaining > 0);
5972
5973 /* Exhausted local port range during search? */
5974 ret = 1;
5975 if (remaining <= 0)
5976 goto fail;
5977
5978 /* OK, here is the one we will use. HEAD (the port
5979 * hash table list entry) is non-NULL and we hold it's
5980 * mutex.
5981 */
5982 snum = rover;
5983 } else {
5984 /* We are given an specific port number; we verify
5985 * that it is not being used. If it is used, we will
5986 * exahust the search in the hash list corresponding
5987 * to the port number (snum) - we detect that with the
5988 * port iterator, pp being NULL.
5989 */
5990 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5991 spin_lock(&head->lock);
5992 sctp_for_each_hentry(pp, &head->chain) {
5993 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5994 goto pp_found;
5995 }
5996 }
5997 pp = NULL;
5998 goto pp_not_found;
5999 pp_found:
6000 if (!hlist_empty(&pp->owner)) {
6001 /* We had a port hash table hit - there is an
6002 * available port (pp != NULL) and it is being
6003 * used by other socket (pp->owner not empty); that other
6004 * socket is going to be sk2.
6005 */
6006 int reuse = sk->sk_reuse;
6007 struct sock *sk2;
6008
6009 pr_debug("%s: found a possible match\n", __func__);
6010
6011 if (pp->fastreuse && sk->sk_reuse &&
6012 sk->sk_state != SCTP_SS_LISTENING)
6013 goto success;
6014
6015 /* Run through the list of sockets bound to the port
6016 * (pp->port) [via the pointers bind_next and
6017 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6018 * we get the endpoint they describe and run through
6019 * the endpoint's list of IP (v4 or v6) addresses,
6020 * comparing each of the addresses with the address of
6021 * the socket sk. If we find a match, then that means
6022 * that this port/socket (sk) combination are already
6023 * in an endpoint.
6024 */
6025 sk_for_each_bound(sk2, &pp->owner) {
6026 struct sctp_endpoint *ep2;
6027 ep2 = sctp_sk(sk2)->ep;
6028
6029 if (sk == sk2 ||
6030 (reuse && sk2->sk_reuse &&
6031 sk2->sk_state != SCTP_SS_LISTENING))
6032 continue;
6033
6034 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6035 sctp_sk(sk2), sctp_sk(sk))) {
6036 ret = (long)sk2;
6037 goto fail_unlock;
6038 }
6039 }
6040
6041 pr_debug("%s: found a match\n", __func__);
6042 }
6043 pp_not_found:
6044 /* If there was a hash table miss, create a new port. */
6045 ret = 1;
6046 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6047 goto fail_unlock;
6048
6049 /* In either case (hit or miss), make sure fastreuse is 1 only
6050 * if sk->sk_reuse is too (that is, if the caller requested
6051 * SO_REUSEADDR on this socket -sk-).
6052 */
6053 if (hlist_empty(&pp->owner)) {
6054 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6055 pp->fastreuse = 1;
6056 else
6057 pp->fastreuse = 0;
6058 } else if (pp->fastreuse &&
6059 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6060 pp->fastreuse = 0;
6061
6062 /* We are set, so fill up all the data in the hash table
6063 * entry, tie the socket list information with the rest of the
6064 * sockets FIXME: Blurry, NPI (ipg).
6065 */
6066 success:
6067 if (!sctp_sk(sk)->bind_hash) {
6068 inet_sk(sk)->inet_num = snum;
6069 sk_add_bind_node(sk, &pp->owner);
6070 sctp_sk(sk)->bind_hash = pp;
6071 }
6072 ret = 0;
6073
6074 fail_unlock:
6075 spin_unlock(&head->lock);
6076
6077 fail:
6078 local_bh_enable();
6079 return ret;
6080 }
6081
6082 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6083 * port is requested.
6084 */
6085 static int sctp_get_port(struct sock *sk, unsigned short snum)
6086 {
6087 union sctp_addr addr;
6088 struct sctp_af *af = sctp_sk(sk)->pf->af;
6089
6090 /* Set up a dummy address struct from the sk. */
6091 af->from_sk(&addr, sk);
6092 addr.v4.sin_port = htons(snum);
6093
6094 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6095 return !!sctp_get_port_local(sk, &addr);
6096 }
6097
6098 /*
6099 * Move a socket to LISTENING state.
6100 */
6101 static int sctp_listen_start(struct sock *sk, int backlog)
6102 {
6103 struct sctp_sock *sp = sctp_sk(sk);
6104 struct sctp_endpoint *ep = sp->ep;
6105 struct crypto_hash *tfm = NULL;
6106 char alg[32];
6107
6108 /* Allocate HMAC for generating cookie. */
6109 if (!sp->hmac && sp->sctp_hmac_alg) {
6110 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6111 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6112 if (IS_ERR(tfm)) {
6113 net_info_ratelimited("failed to load transform for %s: %ld\n",
6114 sp->sctp_hmac_alg, PTR_ERR(tfm));
6115 return -ENOSYS;
6116 }
6117 sctp_sk(sk)->hmac = tfm;
6118 }
6119
6120 /*
6121 * If a bind() or sctp_bindx() is not called prior to a listen()
6122 * call that allows new associations to be accepted, the system
6123 * picks an ephemeral port and will choose an address set equivalent
6124 * to binding with a wildcard address.
6125 *
6126 * This is not currently spelled out in the SCTP sockets
6127 * extensions draft, but follows the practice as seen in TCP
6128 * sockets.
6129 *
6130 */
6131 sk->sk_state = SCTP_SS_LISTENING;
6132 if (!ep->base.bind_addr.port) {
6133 if (sctp_autobind(sk))
6134 return -EAGAIN;
6135 } else {
6136 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6137 sk->sk_state = SCTP_SS_CLOSED;
6138 return -EADDRINUSE;
6139 }
6140 }
6141
6142 sk->sk_max_ack_backlog = backlog;
6143 sctp_hash_endpoint(ep);
6144 return 0;
6145 }
6146
6147 /*
6148 * 4.1.3 / 5.1.3 listen()
6149 *
6150 * By default, new associations are not accepted for UDP style sockets.
6151 * An application uses listen() to mark a socket as being able to
6152 * accept new associations.
6153 *
6154 * On TCP style sockets, applications use listen() to ready the SCTP
6155 * endpoint for accepting inbound associations.
6156 *
6157 * On both types of endpoints a backlog of '0' disables listening.
6158 *
6159 * Move a socket to LISTENING state.
6160 */
6161 int sctp_inet_listen(struct socket *sock, int backlog)
6162 {
6163 struct sock *sk = sock->sk;
6164 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6165 int err = -EINVAL;
6166
6167 if (unlikely(backlog < 0))
6168 return err;
6169
6170 lock_sock(sk);
6171
6172 /* Peeled-off sockets are not allowed to listen(). */
6173 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6174 goto out;
6175
6176 if (sock->state != SS_UNCONNECTED)
6177 goto out;
6178
6179 /* If backlog is zero, disable listening. */
6180 if (!backlog) {
6181 if (sctp_sstate(sk, CLOSED))
6182 goto out;
6183
6184 err = 0;
6185 sctp_unhash_endpoint(ep);
6186 sk->sk_state = SCTP_SS_CLOSED;
6187 if (sk->sk_reuse)
6188 sctp_sk(sk)->bind_hash->fastreuse = 1;
6189 goto out;
6190 }
6191
6192 /* If we are already listening, just update the backlog */
6193 if (sctp_sstate(sk, LISTENING))
6194 sk->sk_max_ack_backlog = backlog;
6195 else {
6196 err = sctp_listen_start(sk, backlog);
6197 if (err)
6198 goto out;
6199 }
6200
6201 err = 0;
6202 out:
6203 release_sock(sk);
6204 return err;
6205 }
6206
6207 /*
6208 * This function is done by modeling the current datagram_poll() and the
6209 * tcp_poll(). Note that, based on these implementations, we don't
6210 * lock the socket in this function, even though it seems that,
6211 * ideally, locking or some other mechanisms can be used to ensure
6212 * the integrity of the counters (sndbuf and wmem_alloc) used
6213 * in this place. We assume that we don't need locks either until proven
6214 * otherwise.
6215 *
6216 * Another thing to note is that we include the Async I/O support
6217 * here, again, by modeling the current TCP/UDP code. We don't have
6218 * a good way to test with it yet.
6219 */
6220 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6221 {
6222 struct sock *sk = sock->sk;
6223 struct sctp_sock *sp = sctp_sk(sk);
6224 unsigned int mask;
6225
6226 poll_wait(file, sk_sleep(sk), wait);
6227
6228 /* A TCP-style listening socket becomes readable when the accept queue
6229 * is not empty.
6230 */
6231 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6232 return (!list_empty(&sp->ep->asocs)) ?
6233 (POLLIN | POLLRDNORM) : 0;
6234
6235 mask = 0;
6236
6237 /* Is there any exceptional events? */
6238 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6239 mask |= POLLERR |
6240 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6241 if (sk->sk_shutdown & RCV_SHUTDOWN)
6242 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6243 if (sk->sk_shutdown == SHUTDOWN_MASK)
6244 mask |= POLLHUP;
6245
6246 /* Is it readable? Reconsider this code with TCP-style support. */
6247 if (!skb_queue_empty(&sk->sk_receive_queue))
6248 mask |= POLLIN | POLLRDNORM;
6249
6250 /* The association is either gone or not ready. */
6251 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6252 return mask;
6253
6254 /* Is it writable? */
6255 if (sctp_writeable(sk)) {
6256 mask |= POLLOUT | POLLWRNORM;
6257 } else {
6258 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6259 /*
6260 * Since the socket is not locked, the buffer
6261 * might be made available after the writeable check and
6262 * before the bit is set. This could cause a lost I/O
6263 * signal. tcp_poll() has a race breaker for this race
6264 * condition. Based on their implementation, we put
6265 * in the following code to cover it as well.
6266 */
6267 if (sctp_writeable(sk))
6268 mask |= POLLOUT | POLLWRNORM;
6269 }
6270 return mask;
6271 }
6272
6273 /********************************************************************
6274 * 2nd Level Abstractions
6275 ********************************************************************/
6276
6277 static struct sctp_bind_bucket *sctp_bucket_create(
6278 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6279 {
6280 struct sctp_bind_bucket *pp;
6281
6282 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6283 if (pp) {
6284 SCTP_DBG_OBJCNT_INC(bind_bucket);
6285 pp->port = snum;
6286 pp->fastreuse = 0;
6287 INIT_HLIST_HEAD(&pp->owner);
6288 pp->net = net;
6289 hlist_add_head(&pp->node, &head->chain);
6290 }
6291 return pp;
6292 }
6293
6294 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6295 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6296 {
6297 if (pp && hlist_empty(&pp->owner)) {
6298 __hlist_del(&pp->node);
6299 kmem_cache_free(sctp_bucket_cachep, pp);
6300 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6301 }
6302 }
6303
6304 /* Release this socket's reference to a local port. */
6305 static inline void __sctp_put_port(struct sock *sk)
6306 {
6307 struct sctp_bind_hashbucket *head =
6308 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6309 inet_sk(sk)->inet_num)];
6310 struct sctp_bind_bucket *pp;
6311
6312 spin_lock(&head->lock);
6313 pp = sctp_sk(sk)->bind_hash;
6314 __sk_del_bind_node(sk);
6315 sctp_sk(sk)->bind_hash = NULL;
6316 inet_sk(sk)->inet_num = 0;
6317 sctp_bucket_destroy(pp);
6318 spin_unlock(&head->lock);
6319 }
6320
6321 void sctp_put_port(struct sock *sk)
6322 {
6323 local_bh_disable();
6324 __sctp_put_port(sk);
6325 local_bh_enable();
6326 }
6327
6328 /*
6329 * The system picks an ephemeral port and choose an address set equivalent
6330 * to binding with a wildcard address.
6331 * One of those addresses will be the primary address for the association.
6332 * This automatically enables the multihoming capability of SCTP.
6333 */
6334 static int sctp_autobind(struct sock *sk)
6335 {
6336 union sctp_addr autoaddr;
6337 struct sctp_af *af;
6338 __be16 port;
6339
6340 /* Initialize a local sockaddr structure to INADDR_ANY. */
6341 af = sctp_sk(sk)->pf->af;
6342
6343 port = htons(inet_sk(sk)->inet_num);
6344 af->inaddr_any(&autoaddr, port);
6345
6346 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6347 }
6348
6349 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6350 *
6351 * From RFC 2292
6352 * 4.2 The cmsghdr Structure *
6353 *
6354 * When ancillary data is sent or received, any number of ancillary data
6355 * objects can be specified by the msg_control and msg_controllen members of
6356 * the msghdr structure, because each object is preceded by
6357 * a cmsghdr structure defining the object's length (the cmsg_len member).
6358 * Historically Berkeley-derived implementations have passed only one object
6359 * at a time, but this API allows multiple objects to be
6360 * passed in a single call to sendmsg() or recvmsg(). The following example
6361 * shows two ancillary data objects in a control buffer.
6362 *
6363 * |<--------------------------- msg_controllen -------------------------->|
6364 * | |
6365 *
6366 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6367 *
6368 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6369 * | | |
6370 *
6371 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6372 *
6373 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6374 * | | | | |
6375 *
6376 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6377 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6378 *
6379 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6380 *
6381 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6382 * ^
6383 * |
6384 *
6385 * msg_control
6386 * points here
6387 */
6388 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6389 {
6390 struct cmsghdr *cmsg;
6391 struct msghdr *my_msg = (struct msghdr *)msg;
6392
6393 for (cmsg = CMSG_FIRSTHDR(msg);
6394 cmsg != NULL;
6395 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6396 if (!CMSG_OK(my_msg, cmsg))
6397 return -EINVAL;
6398
6399 /* Should we parse this header or ignore? */
6400 if (cmsg->cmsg_level != IPPROTO_SCTP)
6401 continue;
6402
6403 /* Strictly check lengths following example in SCM code. */
6404 switch (cmsg->cmsg_type) {
6405 case SCTP_INIT:
6406 /* SCTP Socket API Extension
6407 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6408 *
6409 * This cmsghdr structure provides information for
6410 * initializing new SCTP associations with sendmsg().
6411 * The SCTP_INITMSG socket option uses this same data
6412 * structure. This structure is not used for
6413 * recvmsg().
6414 *
6415 * cmsg_level cmsg_type cmsg_data[]
6416 * ------------ ------------ ----------------------
6417 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6418 */
6419 if (cmsg->cmsg_len !=
6420 CMSG_LEN(sizeof(struct sctp_initmsg)))
6421 return -EINVAL;
6422 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6423 break;
6424
6425 case SCTP_SNDRCV:
6426 /* SCTP Socket API Extension
6427 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6428 *
6429 * This cmsghdr structure specifies SCTP options for
6430 * sendmsg() and describes SCTP header information
6431 * about a received message through recvmsg().
6432 *
6433 * cmsg_level cmsg_type cmsg_data[]
6434 * ------------ ------------ ----------------------
6435 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6436 */
6437 if (cmsg->cmsg_len !=
6438 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6439 return -EINVAL;
6440
6441 cmsgs->info =
6442 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6443
6444 /* Minimally, validate the sinfo_flags. */
6445 if (cmsgs->info->sinfo_flags &
6446 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6447 SCTP_ABORT | SCTP_EOF))
6448 return -EINVAL;
6449 break;
6450
6451 default:
6452 return -EINVAL;
6453 }
6454 }
6455 return 0;
6456 }
6457
6458 /*
6459 * Wait for a packet..
6460 * Note: This function is the same function as in core/datagram.c
6461 * with a few modifications to make lksctp work.
6462 */
6463 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6464 {
6465 int error;
6466 DEFINE_WAIT(wait);
6467
6468 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6469
6470 /* Socket errors? */
6471 error = sock_error(sk);
6472 if (error)
6473 goto out;
6474
6475 if (!skb_queue_empty(&sk->sk_receive_queue))
6476 goto ready;
6477
6478 /* Socket shut down? */
6479 if (sk->sk_shutdown & RCV_SHUTDOWN)
6480 goto out;
6481
6482 /* Sequenced packets can come disconnected. If so we report the
6483 * problem.
6484 */
6485 error = -ENOTCONN;
6486
6487 /* Is there a good reason to think that we may receive some data? */
6488 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6489 goto out;
6490
6491 /* Handle signals. */
6492 if (signal_pending(current))
6493 goto interrupted;
6494
6495 /* Let another process have a go. Since we are going to sleep
6496 * anyway. Note: This may cause odd behaviors if the message
6497 * does not fit in the user's buffer, but this seems to be the
6498 * only way to honor MSG_DONTWAIT realistically.
6499 */
6500 release_sock(sk);
6501 *timeo_p = schedule_timeout(*timeo_p);
6502 lock_sock(sk);
6503
6504 ready:
6505 finish_wait(sk_sleep(sk), &wait);
6506 return 0;
6507
6508 interrupted:
6509 error = sock_intr_errno(*timeo_p);
6510
6511 out:
6512 finish_wait(sk_sleep(sk), &wait);
6513 *err = error;
6514 return error;
6515 }
6516
6517 /* Receive a datagram.
6518 * Note: This is pretty much the same routine as in core/datagram.c
6519 * with a few changes to make lksctp work.
6520 */
6521 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6522 int noblock, int *err)
6523 {
6524 int error;
6525 struct sk_buff *skb;
6526 long timeo;
6527
6528 timeo = sock_rcvtimeo(sk, noblock);
6529
6530 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6531 MAX_SCHEDULE_TIMEOUT);
6532
6533 do {
6534 /* Again only user level code calls this function,
6535 * so nothing interrupt level
6536 * will suddenly eat the receive_queue.
6537 *
6538 * Look at current nfs client by the way...
6539 * However, this function was correct in any case. 8)
6540 */
6541 if (flags & MSG_PEEK) {
6542 spin_lock_bh(&sk->sk_receive_queue.lock);
6543 skb = skb_peek(&sk->sk_receive_queue);
6544 if (skb)
6545 atomic_inc(&skb->users);
6546 spin_unlock_bh(&sk->sk_receive_queue.lock);
6547 } else {
6548 skb = skb_dequeue(&sk->sk_receive_queue);
6549 }
6550
6551 if (skb)
6552 return skb;
6553
6554 /* Caller is allowed not to check sk->sk_err before calling. */
6555 error = sock_error(sk);
6556 if (error)
6557 goto no_packet;
6558
6559 if (sk->sk_shutdown & RCV_SHUTDOWN)
6560 break;
6561
6562 if (sk_can_busy_loop(sk) &&
6563 sk_busy_loop(sk, noblock))
6564 continue;
6565
6566 /* User doesn't want to wait. */
6567 error = -EAGAIN;
6568 if (!timeo)
6569 goto no_packet;
6570 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6571
6572 return NULL;
6573
6574 no_packet:
6575 *err = error;
6576 return NULL;
6577 }
6578
6579 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6580 static void __sctp_write_space(struct sctp_association *asoc)
6581 {
6582 struct sock *sk = asoc->base.sk;
6583 struct socket *sock = sk->sk_socket;
6584
6585 if ((sctp_wspace(asoc) > 0) && sock) {
6586 if (waitqueue_active(&asoc->wait))
6587 wake_up_interruptible(&asoc->wait);
6588
6589 if (sctp_writeable(sk)) {
6590 wait_queue_head_t *wq = sk_sleep(sk);
6591
6592 if (wq && waitqueue_active(wq))
6593 wake_up_interruptible(wq);
6594
6595 /* Note that we try to include the Async I/O support
6596 * here by modeling from the current TCP/UDP code.
6597 * We have not tested with it yet.
6598 */
6599 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6600 sock_wake_async(sock,
6601 SOCK_WAKE_SPACE, POLL_OUT);
6602 }
6603 }
6604 }
6605
6606 static void sctp_wake_up_waiters(struct sock *sk,
6607 struct sctp_association *asoc)
6608 {
6609 struct sctp_association *tmp = asoc;
6610
6611 /* We do accounting for the sndbuf space per association,
6612 * so we only need to wake our own association.
6613 */
6614 if (asoc->ep->sndbuf_policy)
6615 return __sctp_write_space(asoc);
6616
6617 /* If association goes down and is just flushing its
6618 * outq, then just normally notify others.
6619 */
6620 if (asoc->base.dead)
6621 return sctp_write_space(sk);
6622
6623 /* Accounting for the sndbuf space is per socket, so we
6624 * need to wake up others, try to be fair and in case of
6625 * other associations, let them have a go first instead
6626 * of just doing a sctp_write_space() call.
6627 *
6628 * Note that we reach sctp_wake_up_waiters() only when
6629 * associations free up queued chunks, thus we are under
6630 * lock and the list of associations on a socket is
6631 * guaranteed not to change.
6632 */
6633 for (tmp = list_next_entry(tmp, asocs); 1;
6634 tmp = list_next_entry(tmp, asocs)) {
6635 /* Manually skip the head element. */
6636 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6637 continue;
6638 /* Wake up association. */
6639 __sctp_write_space(tmp);
6640 /* We've reached the end. */
6641 if (tmp == asoc)
6642 break;
6643 }
6644 }
6645
6646 /* Do accounting for the sndbuf space.
6647 * Decrement the used sndbuf space of the corresponding association by the
6648 * data size which was just transmitted(freed).
6649 */
6650 static void sctp_wfree(struct sk_buff *skb)
6651 {
6652 struct sctp_association *asoc;
6653 struct sctp_chunk *chunk;
6654 struct sock *sk;
6655
6656 /* Get the saved chunk pointer. */
6657 chunk = *((struct sctp_chunk **)(skb->cb));
6658 asoc = chunk->asoc;
6659 sk = asoc->base.sk;
6660 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6661 sizeof(struct sk_buff) +
6662 sizeof(struct sctp_chunk);
6663
6664 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6665
6666 /*
6667 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6668 */
6669 sk->sk_wmem_queued -= skb->truesize;
6670 sk_mem_uncharge(sk, skb->truesize);
6671
6672 sock_wfree(skb);
6673 sctp_wake_up_waiters(sk, asoc);
6674
6675 sctp_association_put(asoc);
6676 }
6677
6678 /* Do accounting for the receive space on the socket.
6679 * Accounting for the association is done in ulpevent.c
6680 * We set this as a destructor for the cloned data skbs so that
6681 * accounting is done at the correct time.
6682 */
6683 void sctp_sock_rfree(struct sk_buff *skb)
6684 {
6685 struct sock *sk = skb->sk;
6686 struct sctp_ulpevent *event = sctp_skb2event(skb);
6687
6688 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6689
6690 /*
6691 * Mimic the behavior of sock_rfree
6692 */
6693 sk_mem_uncharge(sk, event->rmem_len);
6694 }
6695
6696
6697 /* Helper function to wait for space in the sndbuf. */
6698 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6699 size_t msg_len)
6700 {
6701 struct sock *sk = asoc->base.sk;
6702 int err = 0;
6703 long current_timeo = *timeo_p;
6704 DEFINE_WAIT(wait);
6705
6706 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6707 *timeo_p, msg_len);
6708
6709 /* Increment the association's refcnt. */
6710 sctp_association_hold(asoc);
6711
6712 /* Wait on the association specific sndbuf space. */
6713 for (;;) {
6714 prepare_to_wait_exclusive(&asoc->wait, &wait,
6715 TASK_INTERRUPTIBLE);
6716 if (!*timeo_p)
6717 goto do_nonblock;
6718 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6719 asoc->base.dead)
6720 goto do_error;
6721 if (signal_pending(current))
6722 goto do_interrupted;
6723 if (msg_len <= sctp_wspace(asoc))
6724 break;
6725
6726 /* Let another process have a go. Since we are going
6727 * to sleep anyway.
6728 */
6729 release_sock(sk);
6730 current_timeo = schedule_timeout(current_timeo);
6731 BUG_ON(sk != asoc->base.sk);
6732 lock_sock(sk);
6733
6734 *timeo_p = current_timeo;
6735 }
6736
6737 out:
6738 finish_wait(&asoc->wait, &wait);
6739
6740 /* Release the association's refcnt. */
6741 sctp_association_put(asoc);
6742
6743 return err;
6744
6745 do_error:
6746 err = -EPIPE;
6747 goto out;
6748
6749 do_interrupted:
6750 err = sock_intr_errno(*timeo_p);
6751 goto out;
6752
6753 do_nonblock:
6754 err = -EAGAIN;
6755 goto out;
6756 }
6757
6758 void sctp_data_ready(struct sock *sk)
6759 {
6760 struct socket_wq *wq;
6761
6762 rcu_read_lock();
6763 wq = rcu_dereference(sk->sk_wq);
6764 if (wq_has_sleeper(wq))
6765 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6766 POLLRDNORM | POLLRDBAND);
6767 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6768 rcu_read_unlock();
6769 }
6770
6771 /* If socket sndbuf has changed, wake up all per association waiters. */
6772 void sctp_write_space(struct sock *sk)
6773 {
6774 struct sctp_association *asoc;
6775
6776 /* Wake up the tasks in each wait queue. */
6777 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6778 __sctp_write_space(asoc);
6779 }
6780 }
6781
6782 /* Is there any sndbuf space available on the socket?
6783 *
6784 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6785 * associations on the same socket. For a UDP-style socket with
6786 * multiple associations, it is possible for it to be "unwriteable"
6787 * prematurely. I assume that this is acceptable because
6788 * a premature "unwriteable" is better than an accidental "writeable" which
6789 * would cause an unwanted block under certain circumstances. For the 1-1
6790 * UDP-style sockets or TCP-style sockets, this code should work.
6791 * - Daisy
6792 */
6793 static int sctp_writeable(struct sock *sk)
6794 {
6795 int amt = 0;
6796
6797 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6798 if (amt < 0)
6799 amt = 0;
6800 return amt;
6801 }
6802
6803 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6804 * returns immediately with EINPROGRESS.
6805 */
6806 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6807 {
6808 struct sock *sk = asoc->base.sk;
6809 int err = 0;
6810 long current_timeo = *timeo_p;
6811 DEFINE_WAIT(wait);
6812
6813 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
6814
6815 /* Increment the association's refcnt. */
6816 sctp_association_hold(asoc);
6817
6818 for (;;) {
6819 prepare_to_wait_exclusive(&asoc->wait, &wait,
6820 TASK_INTERRUPTIBLE);
6821 if (!*timeo_p)
6822 goto do_nonblock;
6823 if (sk->sk_shutdown & RCV_SHUTDOWN)
6824 break;
6825 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6826 asoc->base.dead)
6827 goto do_error;
6828 if (signal_pending(current))
6829 goto do_interrupted;
6830
6831 if (sctp_state(asoc, ESTABLISHED))
6832 break;
6833
6834 /* Let another process have a go. Since we are going
6835 * to sleep anyway.
6836 */
6837 release_sock(sk);
6838 current_timeo = schedule_timeout(current_timeo);
6839 lock_sock(sk);
6840
6841 *timeo_p = current_timeo;
6842 }
6843
6844 out:
6845 finish_wait(&asoc->wait, &wait);
6846
6847 /* Release the association's refcnt. */
6848 sctp_association_put(asoc);
6849
6850 return err;
6851
6852 do_error:
6853 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6854 err = -ETIMEDOUT;
6855 else
6856 err = -ECONNREFUSED;
6857 goto out;
6858
6859 do_interrupted:
6860 err = sock_intr_errno(*timeo_p);
6861 goto out;
6862
6863 do_nonblock:
6864 err = -EINPROGRESS;
6865 goto out;
6866 }
6867
6868 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6869 {
6870 struct sctp_endpoint *ep;
6871 int err = 0;
6872 DEFINE_WAIT(wait);
6873
6874 ep = sctp_sk(sk)->ep;
6875
6876
6877 for (;;) {
6878 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6879 TASK_INTERRUPTIBLE);
6880
6881 if (list_empty(&ep->asocs)) {
6882 release_sock(sk);
6883 timeo = schedule_timeout(timeo);
6884 lock_sock(sk);
6885 }
6886
6887 err = -EINVAL;
6888 if (!sctp_sstate(sk, LISTENING))
6889 break;
6890
6891 err = 0;
6892 if (!list_empty(&ep->asocs))
6893 break;
6894
6895 err = sock_intr_errno(timeo);
6896 if (signal_pending(current))
6897 break;
6898
6899 err = -EAGAIN;
6900 if (!timeo)
6901 break;
6902 }
6903
6904 finish_wait(sk_sleep(sk), &wait);
6905
6906 return err;
6907 }
6908
6909 static void sctp_wait_for_close(struct sock *sk, long timeout)
6910 {
6911 DEFINE_WAIT(wait);
6912
6913 do {
6914 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6915 if (list_empty(&sctp_sk(sk)->ep->asocs))
6916 break;
6917 release_sock(sk);
6918 timeout = schedule_timeout(timeout);
6919 lock_sock(sk);
6920 } while (!signal_pending(current) && timeout);
6921
6922 finish_wait(sk_sleep(sk), &wait);
6923 }
6924
6925 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6926 {
6927 struct sk_buff *frag;
6928
6929 if (!skb->data_len)
6930 goto done;
6931
6932 /* Don't forget the fragments. */
6933 skb_walk_frags(skb, frag)
6934 sctp_skb_set_owner_r_frag(frag, sk);
6935
6936 done:
6937 sctp_skb_set_owner_r(skb, sk);
6938 }
6939
6940 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6941 struct sctp_association *asoc)
6942 {
6943 struct inet_sock *inet = inet_sk(sk);
6944 struct inet_sock *newinet;
6945
6946 newsk->sk_type = sk->sk_type;
6947 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6948 newsk->sk_flags = sk->sk_flags;
6949 newsk->sk_no_check = sk->sk_no_check;
6950 newsk->sk_reuse = sk->sk_reuse;
6951
6952 newsk->sk_shutdown = sk->sk_shutdown;
6953 newsk->sk_destruct = sctp_destruct_sock;
6954 newsk->sk_family = sk->sk_family;
6955 newsk->sk_protocol = IPPROTO_SCTP;
6956 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6957 newsk->sk_sndbuf = sk->sk_sndbuf;
6958 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6959 newsk->sk_lingertime = sk->sk_lingertime;
6960 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6961 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6962
6963 newinet = inet_sk(newsk);
6964
6965 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6966 * getsockname() and getpeername()
6967 */
6968 newinet->inet_sport = inet->inet_sport;
6969 newinet->inet_saddr = inet->inet_saddr;
6970 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6971 newinet->inet_dport = htons(asoc->peer.port);
6972 newinet->pmtudisc = inet->pmtudisc;
6973 newinet->inet_id = asoc->next_tsn ^ jiffies;
6974
6975 newinet->uc_ttl = inet->uc_ttl;
6976 newinet->mc_loop = 1;
6977 newinet->mc_ttl = 1;
6978 newinet->mc_index = 0;
6979 newinet->mc_list = NULL;
6980 }
6981
6982 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6983 * and its messages to the newsk.
6984 */
6985 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6986 struct sctp_association *assoc,
6987 sctp_socket_type_t type)
6988 {
6989 struct sctp_sock *oldsp = sctp_sk(oldsk);
6990 struct sctp_sock *newsp = sctp_sk(newsk);
6991 struct sctp_bind_bucket *pp; /* hash list port iterator */
6992 struct sctp_endpoint *newep = newsp->ep;
6993 struct sk_buff *skb, *tmp;
6994 struct sctp_ulpevent *event;
6995 struct sctp_bind_hashbucket *head;
6996 struct list_head tmplist;
6997
6998 /* Migrate socket buffer sizes and all the socket level options to the
6999 * new socket.
7000 */
7001 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7002 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7003 /* Brute force copy old sctp opt. */
7004 if (oldsp->do_auto_asconf) {
7005 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
7006 inet_sk_copy_descendant(newsk, oldsk);
7007 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
7008 } else
7009 inet_sk_copy_descendant(newsk, oldsk);
7010
7011 /* Restore the ep value that was overwritten with the above structure
7012 * copy.
7013 */
7014 newsp->ep = newep;
7015 newsp->hmac = NULL;
7016
7017 /* Hook this new socket in to the bind_hash list. */
7018 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7019 inet_sk(oldsk)->inet_num)];
7020 local_bh_disable();
7021 spin_lock(&head->lock);
7022 pp = sctp_sk(oldsk)->bind_hash;
7023 sk_add_bind_node(newsk, &pp->owner);
7024 sctp_sk(newsk)->bind_hash = pp;
7025 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7026 spin_unlock(&head->lock);
7027 local_bh_enable();
7028
7029 /* Copy the bind_addr list from the original endpoint to the new
7030 * endpoint so that we can handle restarts properly
7031 */
7032 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7033 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7034
7035 /* Move any messages in the old socket's receive queue that are for the
7036 * peeled off association to the new socket's receive queue.
7037 */
7038 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7039 event = sctp_skb2event(skb);
7040 if (event->asoc == assoc) {
7041 __skb_unlink(skb, &oldsk->sk_receive_queue);
7042 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7043 sctp_skb_set_owner_r_frag(skb, newsk);
7044 }
7045 }
7046
7047 /* Clean up any messages pending delivery due to partial
7048 * delivery. Three cases:
7049 * 1) No partial deliver; no work.
7050 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7051 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7052 */
7053 skb_queue_head_init(&newsp->pd_lobby);
7054 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7055
7056 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7057 struct sk_buff_head *queue;
7058
7059 /* Decide which queue to move pd_lobby skbs to. */
7060 if (assoc->ulpq.pd_mode) {
7061 queue = &newsp->pd_lobby;
7062 } else
7063 queue = &newsk->sk_receive_queue;
7064
7065 /* Walk through the pd_lobby, looking for skbs that
7066 * need moved to the new socket.
7067 */
7068 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7069 event = sctp_skb2event(skb);
7070 if (event->asoc == assoc) {
7071 __skb_unlink(skb, &oldsp->pd_lobby);
7072 __skb_queue_tail(queue, skb);
7073 sctp_skb_set_owner_r_frag(skb, newsk);
7074 }
7075 }
7076
7077 /* Clear up any skbs waiting for the partial
7078 * delivery to finish.
7079 */
7080 if (assoc->ulpq.pd_mode)
7081 sctp_clear_pd(oldsk, NULL);
7082
7083 }
7084
7085 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7086 sctp_skb_set_owner_r_frag(skb, newsk);
7087
7088 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7089 sctp_skb_set_owner_r_frag(skb, newsk);
7090
7091 /* Set the type of socket to indicate that it is peeled off from the
7092 * original UDP-style socket or created with the accept() call on a
7093 * TCP-style socket..
7094 */
7095 newsp->type = type;
7096
7097 /* Mark the new socket "in-use" by the user so that any packets
7098 * that may arrive on the association after we've moved it are
7099 * queued to the backlog. This prevents a potential race between
7100 * backlog processing on the old socket and new-packet processing
7101 * on the new socket.
7102 *
7103 * The caller has just allocated newsk so we can guarantee that other
7104 * paths won't try to lock it and then oldsk.
7105 */
7106 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7107 sctp_assoc_migrate(assoc, newsk);
7108
7109 /* If the association on the newsk is already closed before accept()
7110 * is called, set RCV_SHUTDOWN flag.
7111 */
7112 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7113 newsk->sk_shutdown |= RCV_SHUTDOWN;
7114
7115 newsk->sk_state = SCTP_SS_ESTABLISHED;
7116 release_sock(newsk);
7117 }
7118
7119
7120 /* This proto struct describes the ULP interface for SCTP. */
7121 struct proto sctp_prot = {
7122 .name = "SCTP",
7123 .owner = THIS_MODULE,
7124 .close = sctp_close,
7125 .connect = sctp_connect,
7126 .disconnect = sctp_disconnect,
7127 .accept = sctp_accept,
7128 .ioctl = sctp_ioctl,
7129 .init = sctp_init_sock,
7130 .destroy = sctp_destroy_sock,
7131 .shutdown = sctp_shutdown,
7132 .setsockopt = sctp_setsockopt,
7133 .getsockopt = sctp_getsockopt,
7134 .sendmsg = sctp_sendmsg,
7135 .recvmsg = sctp_recvmsg,
7136 .bind = sctp_bind,
7137 .backlog_rcv = sctp_backlog_rcv,
7138 .hash = sctp_hash,
7139 .unhash = sctp_unhash,
7140 .get_port = sctp_get_port,
7141 .obj_size = sizeof(struct sctp_sock),
7142 .sysctl_mem = sysctl_sctp_mem,
7143 .sysctl_rmem = sysctl_sctp_rmem,
7144 .sysctl_wmem = sysctl_sctp_wmem,
7145 .memory_pressure = &sctp_memory_pressure,
7146 .enter_memory_pressure = sctp_enter_memory_pressure,
7147 .memory_allocated = &sctp_memory_allocated,
7148 .sockets_allocated = &sctp_sockets_allocated,
7149 };
7150
7151 #if IS_ENABLED(CONFIG_IPV6)
7152
7153 struct proto sctpv6_prot = {
7154 .name = "SCTPv6",
7155 .owner = THIS_MODULE,
7156 .close = sctp_close,
7157 .connect = sctp_connect,
7158 .disconnect = sctp_disconnect,
7159 .accept = sctp_accept,
7160 .ioctl = sctp_ioctl,
7161 .init = sctp_init_sock,
7162 .destroy = sctp_destroy_sock,
7163 .shutdown = sctp_shutdown,
7164 .setsockopt = sctp_setsockopt,
7165 .getsockopt = sctp_getsockopt,
7166 .sendmsg = sctp_sendmsg,
7167 .recvmsg = sctp_recvmsg,
7168 .bind = sctp_bind,
7169 .backlog_rcv = sctp_backlog_rcv,
7170 .hash = sctp_hash,
7171 .unhash = sctp_unhash,
7172 .get_port = sctp_get_port,
7173 .obj_size = sizeof(struct sctp6_sock),
7174 .sysctl_mem = sysctl_sctp_mem,
7175 .sysctl_rmem = sysctl_sctp_rmem,
7176 .sysctl_wmem = sysctl_sctp_wmem,
7177 .memory_pressure = &sctp_memory_pressure,
7178 .enter_memory_pressure = sctp_enter_memory_pressure,
7179 .memory_allocated = &sctp_memory_allocated,
7180 .sockets_allocated = &sctp_sockets_allocated,
7181 };
7182 #endif /* IS_ENABLED(CONFIG_IPV6) */
This page took 0.270878 seconds and 4 git commands to generate.