7738915011a0bba1bd49795642d63c159e5db309
[deliverable/linux.git] / net / sctp / socket.c
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel reference Implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * The SCTP reference implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * The SCTP reference implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
85 */
86
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 static atomic_t sctp_sockets_allocated;
118
119 static void sctp_enter_memory_pressure(void)
120 {
121 sctp_memory_pressure = 1;
122 }
123
124
125 /* Get the sndbuf space available at the time on the association. */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 int amt;
129
130 if (asoc->ep->sndbuf_policy)
131 amt = asoc->sndbuf_used;
132 else
133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
134
135 if (amt >= asoc->base.sk->sk_sndbuf) {
136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 amt = 0;
138 else {
139 amt = sk_stream_wspace(asoc->base.sk);
140 if (amt < 0)
141 amt = 0;
142 }
143 } else {
144 amt = asoc->base.sk->sk_sndbuf - amt;
145 }
146 return amt;
147 }
148
149 /* Increment the used sndbuf space count of the corresponding association by
150 * the size of the outgoing data chunk.
151 * Also, set the skb destructor for sndbuf accounting later.
152 *
153 * Since it is always 1-1 between chunk and skb, and also a new skb is always
154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155 * destructor in the data chunk skb for the purpose of the sndbuf space
156 * tracking.
157 */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 struct sctp_association *asoc = chunk->asoc;
161 struct sock *sk = asoc->base.sk;
162
163 /* The sndbuf space is tracked per association. */
164 sctp_association_hold(asoc);
165
166 skb_set_owner_w(chunk->skb, sk);
167
168 chunk->skb->destructor = sctp_wfree;
169 /* Save the chunk pointer in skb for sctp_wfree to use later. */
170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171
172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 sizeof(struct sk_buff) +
174 sizeof(struct sctp_chunk);
175
176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 sk_charge_skb(sk, chunk->skb);
178 }
179
180 /* Verify that this is a valid address. */
181 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
182 int len)
183 {
184 struct sctp_af *af;
185
186 /* Verify basic sockaddr. */
187 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
188 if (!af)
189 return -EINVAL;
190
191 /* Is this a valid SCTP address? */
192 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
193 return -EINVAL;
194
195 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
196 return -EINVAL;
197
198 return 0;
199 }
200
201 /* Look up the association by its id. If this is not a UDP-style
202 * socket, the ID field is always ignored.
203 */
204 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
205 {
206 struct sctp_association *asoc = NULL;
207
208 /* If this is not a UDP-style socket, assoc id should be ignored. */
209 if (!sctp_style(sk, UDP)) {
210 /* Return NULL if the socket state is not ESTABLISHED. It
211 * could be a TCP-style listening socket or a socket which
212 * hasn't yet called connect() to establish an association.
213 */
214 if (!sctp_sstate(sk, ESTABLISHED))
215 return NULL;
216
217 /* Get the first and the only association from the list. */
218 if (!list_empty(&sctp_sk(sk)->ep->asocs))
219 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
220 struct sctp_association, asocs);
221 return asoc;
222 }
223
224 /* Otherwise this is a UDP-style socket. */
225 if (!id || (id == (sctp_assoc_t)-1))
226 return NULL;
227
228 spin_lock_bh(&sctp_assocs_id_lock);
229 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
230 spin_unlock_bh(&sctp_assocs_id_lock);
231
232 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
233 return NULL;
234
235 return asoc;
236 }
237
238 /* Look up the transport from an address and an assoc id. If both address and
239 * id are specified, the associations matching the address and the id should be
240 * the same.
241 */
242 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
243 struct sockaddr_storage *addr,
244 sctp_assoc_t id)
245 {
246 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
247 struct sctp_transport *transport;
248 union sctp_addr *laddr = (union sctp_addr *)addr;
249
250 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
251 laddr,
252 &transport);
253
254 if (!addr_asoc)
255 return NULL;
256
257 id_asoc = sctp_id2assoc(sk, id);
258 if (id_asoc && (id_asoc != addr_asoc))
259 return NULL;
260
261 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
262 (union sctp_addr *)addr);
263
264 return transport;
265 }
266
267 /* API 3.1.2 bind() - UDP Style Syntax
268 * The syntax of bind() is,
269 *
270 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
271 *
272 * sd - the socket descriptor returned by socket().
273 * addr - the address structure (struct sockaddr_in or struct
274 * sockaddr_in6 [RFC 2553]),
275 * addr_len - the size of the address structure.
276 */
277 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
278 {
279 int retval = 0;
280
281 sctp_lock_sock(sk);
282
283 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
284 sk, addr, addr_len);
285
286 /* Disallow binding twice. */
287 if (!sctp_sk(sk)->ep->base.bind_addr.port)
288 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
289 addr_len);
290 else
291 retval = -EINVAL;
292
293 sctp_release_sock(sk);
294
295 return retval;
296 }
297
298 static long sctp_get_port_local(struct sock *, union sctp_addr *);
299
300 /* Verify this is a valid sockaddr. */
301 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
302 union sctp_addr *addr, int len)
303 {
304 struct sctp_af *af;
305
306 /* Check minimum size. */
307 if (len < sizeof (struct sockaddr))
308 return NULL;
309
310 /* Does this PF support this AF? */
311 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
312 return NULL;
313
314 /* If we get this far, af is valid. */
315 af = sctp_get_af_specific(addr->sa.sa_family);
316
317 if (len < af->sockaddr_len)
318 return NULL;
319
320 return af;
321 }
322
323 /* Bind a local address either to an endpoint or to an association. */
324 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
325 {
326 struct sctp_sock *sp = sctp_sk(sk);
327 struct sctp_endpoint *ep = sp->ep;
328 struct sctp_bind_addr *bp = &ep->base.bind_addr;
329 struct sctp_af *af;
330 unsigned short snum;
331 int ret = 0;
332
333 /* Common sockaddr verification. */
334 af = sctp_sockaddr_af(sp, addr, len);
335 if (!af) {
336 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
337 sk, addr, len);
338 return -EINVAL;
339 }
340
341 snum = ntohs(addr->v4.sin_port);
342
343 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
344 ", port: %d, new port: %d, len: %d)\n",
345 sk,
346 addr,
347 bp->port, snum,
348 len);
349
350 /* PF specific bind() address verification. */
351 if (!sp->pf->bind_verify(sp, addr))
352 return -EADDRNOTAVAIL;
353
354 /* We must either be unbound, or bind to the same port.
355 * It's OK to allow 0 ports if we are already bound.
356 * We'll just inhert an already bound port in this case
357 */
358 if (bp->port) {
359 if (!snum)
360 snum = bp->port;
361 else if (snum != bp->port) {
362 SCTP_DEBUG_PRINTK("sctp_do_bind:"
363 " New port %d does not match existing port "
364 "%d.\n", snum, bp->port);
365 return -EINVAL;
366 }
367 }
368
369 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
370 return -EACCES;
371
372 /* Make sure we are allowed to bind here.
373 * The function sctp_get_port_local() does duplicate address
374 * detection.
375 */
376 addr->v4.sin_port = htons(snum);
377 if ((ret = sctp_get_port_local(sk, addr))) {
378 if (ret == (long) sk) {
379 /* This endpoint has a conflicting address. */
380 return -EINVAL;
381 } else {
382 return -EADDRINUSE;
383 }
384 }
385
386 /* Refresh ephemeral port. */
387 if (!bp->port)
388 bp->port = inet_sk(sk)->num;
389
390 /* Add the address to the bind address list.
391 * Use GFP_ATOMIC since BHs will be disabled.
392 */
393 ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
394
395 /* Copy back into socket for getsockname() use. */
396 if (!ret) {
397 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
398 af->to_sk_saddr(addr, sk);
399 }
400
401 return ret;
402 }
403
404 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
405 *
406 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
407 * at any one time. If a sender, after sending an ASCONF chunk, decides
408 * it needs to transfer another ASCONF Chunk, it MUST wait until the
409 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
410 * subsequent ASCONF. Note this restriction binds each side, so at any
411 * time two ASCONF may be in-transit on any given association (one sent
412 * from each endpoint).
413 */
414 static int sctp_send_asconf(struct sctp_association *asoc,
415 struct sctp_chunk *chunk)
416 {
417 int retval = 0;
418
419 /* If there is an outstanding ASCONF chunk, queue it for later
420 * transmission.
421 */
422 if (asoc->addip_last_asconf) {
423 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
424 goto out;
425 }
426
427 /* Hold the chunk until an ASCONF_ACK is received. */
428 sctp_chunk_hold(chunk);
429 retval = sctp_primitive_ASCONF(asoc, chunk);
430 if (retval)
431 sctp_chunk_free(chunk);
432 else
433 asoc->addip_last_asconf = chunk;
434
435 out:
436 return retval;
437 }
438
439 /* Add a list of addresses as bind addresses to local endpoint or
440 * association.
441 *
442 * Basically run through each address specified in the addrs/addrcnt
443 * array/length pair, determine if it is IPv6 or IPv4 and call
444 * sctp_do_bind() on it.
445 *
446 * If any of them fails, then the operation will be reversed and the
447 * ones that were added will be removed.
448 *
449 * Only sctp_setsockopt_bindx() is supposed to call this function.
450 */
451 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
452 {
453 int cnt;
454 int retval = 0;
455 void *addr_buf;
456 struct sockaddr *sa_addr;
457 struct sctp_af *af;
458
459 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
460 sk, addrs, addrcnt);
461
462 addr_buf = addrs;
463 for (cnt = 0; cnt < addrcnt; cnt++) {
464 /* The list may contain either IPv4 or IPv6 address;
465 * determine the address length for walking thru the list.
466 */
467 sa_addr = (struct sockaddr *)addr_buf;
468 af = sctp_get_af_specific(sa_addr->sa_family);
469 if (!af) {
470 retval = -EINVAL;
471 goto err_bindx_add;
472 }
473
474 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
475 af->sockaddr_len);
476
477 addr_buf += af->sockaddr_len;
478
479 err_bindx_add:
480 if (retval < 0) {
481 /* Failed. Cleanup the ones that have been added */
482 if (cnt > 0)
483 sctp_bindx_rem(sk, addrs, cnt);
484 return retval;
485 }
486 }
487
488 return retval;
489 }
490
491 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
492 * associations that are part of the endpoint indicating that a list of local
493 * addresses are added to the endpoint.
494 *
495 * If any of the addresses is already in the bind address list of the
496 * association, we do not send the chunk for that association. But it will not
497 * affect other associations.
498 *
499 * Only sctp_setsockopt_bindx() is supposed to call this function.
500 */
501 static int sctp_send_asconf_add_ip(struct sock *sk,
502 struct sockaddr *addrs,
503 int addrcnt)
504 {
505 struct sctp_sock *sp;
506 struct sctp_endpoint *ep;
507 struct sctp_association *asoc;
508 struct sctp_bind_addr *bp;
509 struct sctp_chunk *chunk;
510 struct sctp_sockaddr_entry *laddr;
511 union sctp_addr *addr;
512 union sctp_addr saveaddr;
513 void *addr_buf;
514 struct sctp_af *af;
515 struct list_head *pos;
516 struct list_head *p;
517 int i;
518 int retval = 0;
519
520 if (!sctp_addip_enable)
521 return retval;
522
523 sp = sctp_sk(sk);
524 ep = sp->ep;
525
526 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
527 __FUNCTION__, sk, addrs, addrcnt);
528
529 list_for_each(pos, &ep->asocs) {
530 asoc = list_entry(pos, struct sctp_association, asocs);
531
532 if (!asoc->peer.asconf_capable)
533 continue;
534
535 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
536 continue;
537
538 if (!sctp_state(asoc, ESTABLISHED))
539 continue;
540
541 /* Check if any address in the packed array of addresses is
542 * in the bind address list of the association. If so,
543 * do not send the asconf chunk to its peer, but continue with
544 * other associations.
545 */
546 addr_buf = addrs;
547 for (i = 0; i < addrcnt; i++) {
548 addr = (union sctp_addr *)addr_buf;
549 af = sctp_get_af_specific(addr->v4.sin_family);
550 if (!af) {
551 retval = -EINVAL;
552 goto out;
553 }
554
555 if (sctp_assoc_lookup_laddr(asoc, addr))
556 break;
557
558 addr_buf += af->sockaddr_len;
559 }
560 if (i < addrcnt)
561 continue;
562
563 /* Use the first valid address in bind addr list of
564 * association as Address Parameter of ASCONF CHUNK.
565 */
566 bp = &asoc->base.bind_addr;
567 p = bp->address_list.next;
568 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
569 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
570 addrcnt, SCTP_PARAM_ADD_IP);
571 if (!chunk) {
572 retval = -ENOMEM;
573 goto out;
574 }
575
576 retval = sctp_send_asconf(asoc, chunk);
577 if (retval)
578 goto out;
579
580 /* Add the new addresses to the bind address list with
581 * use_as_src set to 0.
582 */
583 addr_buf = addrs;
584 for (i = 0; i < addrcnt; i++) {
585 addr = (union sctp_addr *)addr_buf;
586 af = sctp_get_af_specific(addr->v4.sin_family);
587 memcpy(&saveaddr, addr, af->sockaddr_len);
588 retval = sctp_add_bind_addr(bp, &saveaddr, 0,
589 GFP_ATOMIC);
590 addr_buf += af->sockaddr_len;
591 }
592 }
593
594 out:
595 return retval;
596 }
597
598 /* Remove a list of addresses from bind addresses list. Do not remove the
599 * last address.
600 *
601 * Basically run through each address specified in the addrs/addrcnt
602 * array/length pair, determine if it is IPv6 or IPv4 and call
603 * sctp_del_bind() on it.
604 *
605 * If any of them fails, then the operation will be reversed and the
606 * ones that were removed will be added back.
607 *
608 * At least one address has to be left; if only one address is
609 * available, the operation will return -EBUSY.
610 *
611 * Only sctp_setsockopt_bindx() is supposed to call this function.
612 */
613 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
614 {
615 struct sctp_sock *sp = sctp_sk(sk);
616 struct sctp_endpoint *ep = sp->ep;
617 int cnt;
618 struct sctp_bind_addr *bp = &ep->base.bind_addr;
619 int retval = 0;
620 void *addr_buf;
621 union sctp_addr *sa_addr;
622 struct sctp_af *af;
623
624 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
625 sk, addrs, addrcnt);
626
627 addr_buf = addrs;
628 for (cnt = 0; cnt < addrcnt; cnt++) {
629 /* If the bind address list is empty or if there is only one
630 * bind address, there is nothing more to be removed (we need
631 * at least one address here).
632 */
633 if (list_empty(&bp->address_list) ||
634 (sctp_list_single_entry(&bp->address_list))) {
635 retval = -EBUSY;
636 goto err_bindx_rem;
637 }
638
639 sa_addr = (union sctp_addr *)addr_buf;
640 af = sctp_get_af_specific(sa_addr->sa.sa_family);
641 if (!af) {
642 retval = -EINVAL;
643 goto err_bindx_rem;
644 }
645
646 if (!af->addr_valid(sa_addr, sp, NULL)) {
647 retval = -EADDRNOTAVAIL;
648 goto err_bindx_rem;
649 }
650
651 if (sa_addr->v4.sin_port != htons(bp->port)) {
652 retval = -EINVAL;
653 goto err_bindx_rem;
654 }
655
656 /* FIXME - There is probably a need to check if sk->sk_saddr and
657 * sk->sk_rcv_addr are currently set to one of the addresses to
658 * be removed. This is something which needs to be looked into
659 * when we are fixing the outstanding issues with multi-homing
660 * socket routing and failover schemes. Refer to comments in
661 * sctp_do_bind(). -daisy
662 */
663 retval = sctp_del_bind_addr(bp, sa_addr, call_rcu);
664
665 addr_buf += af->sockaddr_len;
666 err_bindx_rem:
667 if (retval < 0) {
668 /* Failed. Add the ones that has been removed back */
669 if (cnt > 0)
670 sctp_bindx_add(sk, addrs, cnt);
671 return retval;
672 }
673 }
674
675 return retval;
676 }
677
678 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
679 * the associations that are part of the endpoint indicating that a list of
680 * local addresses are removed from the endpoint.
681 *
682 * If any of the addresses is already in the bind address list of the
683 * association, we do not send the chunk for that association. But it will not
684 * affect other associations.
685 *
686 * Only sctp_setsockopt_bindx() is supposed to call this function.
687 */
688 static int sctp_send_asconf_del_ip(struct sock *sk,
689 struct sockaddr *addrs,
690 int addrcnt)
691 {
692 struct sctp_sock *sp;
693 struct sctp_endpoint *ep;
694 struct sctp_association *asoc;
695 struct sctp_transport *transport;
696 struct sctp_bind_addr *bp;
697 struct sctp_chunk *chunk;
698 union sctp_addr *laddr;
699 void *addr_buf;
700 struct sctp_af *af;
701 struct list_head *pos, *pos1;
702 struct sctp_sockaddr_entry *saddr;
703 int i;
704 int retval = 0;
705
706 if (!sctp_addip_enable)
707 return retval;
708
709 sp = sctp_sk(sk);
710 ep = sp->ep;
711
712 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
713 __FUNCTION__, sk, addrs, addrcnt);
714
715 list_for_each(pos, &ep->asocs) {
716 asoc = list_entry(pos, struct sctp_association, asocs);
717
718 if (!asoc->peer.asconf_capable)
719 continue;
720
721 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
722 continue;
723
724 if (!sctp_state(asoc, ESTABLISHED))
725 continue;
726
727 /* Check if any address in the packed array of addresses is
728 * not present in the bind address list of the association.
729 * If so, do not send the asconf chunk to its peer, but
730 * continue with other associations.
731 */
732 addr_buf = addrs;
733 for (i = 0; i < addrcnt; i++) {
734 laddr = (union sctp_addr *)addr_buf;
735 af = sctp_get_af_specific(laddr->v4.sin_family);
736 if (!af) {
737 retval = -EINVAL;
738 goto out;
739 }
740
741 if (!sctp_assoc_lookup_laddr(asoc, laddr))
742 break;
743
744 addr_buf += af->sockaddr_len;
745 }
746 if (i < addrcnt)
747 continue;
748
749 /* Find one address in the association's bind address list
750 * that is not in the packed array of addresses. This is to
751 * make sure that we do not delete all the addresses in the
752 * association.
753 */
754 bp = &asoc->base.bind_addr;
755 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
756 addrcnt, sp);
757 if (!laddr)
758 continue;
759
760 /* We do not need RCU protection throughout this loop
761 * because this is done under a socket lock from the
762 * setsockopt call.
763 */
764 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
765 SCTP_PARAM_DEL_IP);
766 if (!chunk) {
767 retval = -ENOMEM;
768 goto out;
769 }
770
771 /* Reset use_as_src flag for the addresses in the bind address
772 * list that are to be deleted.
773 */
774 addr_buf = addrs;
775 for (i = 0; i < addrcnt; i++) {
776 laddr = (union sctp_addr *)addr_buf;
777 af = sctp_get_af_specific(laddr->v4.sin_family);
778 list_for_each_entry(saddr, &bp->address_list, list) {
779 if (sctp_cmp_addr_exact(&saddr->a, laddr))
780 saddr->use_as_src = 0;
781 }
782 addr_buf += af->sockaddr_len;
783 }
784
785 /* Update the route and saddr entries for all the transports
786 * as some of the addresses in the bind address list are
787 * about to be deleted and cannot be used as source addresses.
788 */
789 list_for_each(pos1, &asoc->peer.transport_addr_list) {
790 transport = list_entry(pos1, struct sctp_transport,
791 transports);
792 dst_release(transport->dst);
793 sctp_transport_route(transport, NULL,
794 sctp_sk(asoc->base.sk));
795 }
796
797 retval = sctp_send_asconf(asoc, chunk);
798 }
799 out:
800 return retval;
801 }
802
803 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
804 *
805 * API 8.1
806 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
807 * int flags);
808 *
809 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
810 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
811 * or IPv6 addresses.
812 *
813 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
814 * Section 3.1.2 for this usage.
815 *
816 * addrs is a pointer to an array of one or more socket addresses. Each
817 * address is contained in its appropriate structure (i.e. struct
818 * sockaddr_in or struct sockaddr_in6) the family of the address type
819 * must be used to distinguish the address length (note that this
820 * representation is termed a "packed array" of addresses). The caller
821 * specifies the number of addresses in the array with addrcnt.
822 *
823 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
824 * -1, and sets errno to the appropriate error code.
825 *
826 * For SCTP, the port given in each socket address must be the same, or
827 * sctp_bindx() will fail, setting errno to EINVAL.
828 *
829 * The flags parameter is formed from the bitwise OR of zero or more of
830 * the following currently defined flags:
831 *
832 * SCTP_BINDX_ADD_ADDR
833 *
834 * SCTP_BINDX_REM_ADDR
835 *
836 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
837 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
838 * addresses from the association. The two flags are mutually exclusive;
839 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
840 * not remove all addresses from an association; sctp_bindx() will
841 * reject such an attempt with EINVAL.
842 *
843 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
844 * additional addresses with an endpoint after calling bind(). Or use
845 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
846 * socket is associated with so that no new association accepted will be
847 * associated with those addresses. If the endpoint supports dynamic
848 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
849 * endpoint to send the appropriate message to the peer to change the
850 * peers address lists.
851 *
852 * Adding and removing addresses from a connected association is
853 * optional functionality. Implementations that do not support this
854 * functionality should return EOPNOTSUPP.
855 *
856 * Basically do nothing but copying the addresses from user to kernel
857 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
858 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
859 * from userspace.
860 *
861 * We don't use copy_from_user() for optimization: we first do the
862 * sanity checks (buffer size -fast- and access check-healthy
863 * pointer); if all of those succeed, then we can alloc the memory
864 * (expensive operation) needed to copy the data to kernel. Then we do
865 * the copying without checking the user space area
866 * (__copy_from_user()).
867 *
868 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
869 * it.
870 *
871 * sk The sk of the socket
872 * addrs The pointer to the addresses in user land
873 * addrssize Size of the addrs buffer
874 * op Operation to perform (add or remove, see the flags of
875 * sctp_bindx)
876 *
877 * Returns 0 if ok, <0 errno code on error.
878 */
879 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
880 struct sockaddr __user *addrs,
881 int addrs_size, int op)
882 {
883 struct sockaddr *kaddrs;
884 int err;
885 int addrcnt = 0;
886 int walk_size = 0;
887 struct sockaddr *sa_addr;
888 void *addr_buf;
889 struct sctp_af *af;
890
891 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
892 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
893
894 if (unlikely(addrs_size <= 0))
895 return -EINVAL;
896
897 /* Check the user passed a healthy pointer. */
898 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
899 return -EFAULT;
900
901 /* Alloc space for the address array in kernel memory. */
902 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
903 if (unlikely(!kaddrs))
904 return -ENOMEM;
905
906 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
907 kfree(kaddrs);
908 return -EFAULT;
909 }
910
911 /* Walk through the addrs buffer and count the number of addresses. */
912 addr_buf = kaddrs;
913 while (walk_size < addrs_size) {
914 sa_addr = (struct sockaddr *)addr_buf;
915 af = sctp_get_af_specific(sa_addr->sa_family);
916
917 /* If the address family is not supported or if this address
918 * causes the address buffer to overflow return EINVAL.
919 */
920 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
921 kfree(kaddrs);
922 return -EINVAL;
923 }
924 addrcnt++;
925 addr_buf += af->sockaddr_len;
926 walk_size += af->sockaddr_len;
927 }
928
929 /* Do the work. */
930 switch (op) {
931 case SCTP_BINDX_ADD_ADDR:
932 err = sctp_bindx_add(sk, kaddrs, addrcnt);
933 if (err)
934 goto out;
935 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
936 break;
937
938 case SCTP_BINDX_REM_ADDR:
939 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
940 if (err)
941 goto out;
942 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
943 break;
944
945 default:
946 err = -EINVAL;
947 break;
948 }
949
950 out:
951 kfree(kaddrs);
952
953 return err;
954 }
955
956 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
957 *
958 * Common routine for handling connect() and sctp_connectx().
959 * Connect will come in with just a single address.
960 */
961 static int __sctp_connect(struct sock* sk,
962 struct sockaddr *kaddrs,
963 int addrs_size)
964 {
965 struct sctp_sock *sp;
966 struct sctp_endpoint *ep;
967 struct sctp_association *asoc = NULL;
968 struct sctp_association *asoc2;
969 struct sctp_transport *transport;
970 union sctp_addr to;
971 struct sctp_af *af;
972 sctp_scope_t scope;
973 long timeo;
974 int err = 0;
975 int addrcnt = 0;
976 int walk_size = 0;
977 union sctp_addr *sa_addr = NULL;
978 void *addr_buf;
979 unsigned short port;
980 unsigned int f_flags = 0;
981
982 sp = sctp_sk(sk);
983 ep = sp->ep;
984
985 /* connect() cannot be done on a socket that is already in ESTABLISHED
986 * state - UDP-style peeled off socket or a TCP-style socket that
987 * is already connected.
988 * It cannot be done even on a TCP-style listening socket.
989 */
990 if (sctp_sstate(sk, ESTABLISHED) ||
991 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
992 err = -EISCONN;
993 goto out_free;
994 }
995
996 /* Walk through the addrs buffer and count the number of addresses. */
997 addr_buf = kaddrs;
998 while (walk_size < addrs_size) {
999 sa_addr = (union sctp_addr *)addr_buf;
1000 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1001 port = ntohs(sa_addr->v4.sin_port);
1002
1003 /* If the address family is not supported or if this address
1004 * causes the address buffer to overflow return EINVAL.
1005 */
1006 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1007 err = -EINVAL;
1008 goto out_free;
1009 }
1010
1011 /* Save current address so we can work with it */
1012 memcpy(&to, sa_addr, af->sockaddr_len);
1013
1014 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1015 if (err)
1016 goto out_free;
1017
1018 /* Make sure the destination port is correctly set
1019 * in all addresses.
1020 */
1021 if (asoc && asoc->peer.port && asoc->peer.port != port)
1022 goto out_free;
1023
1024
1025 /* Check if there already is a matching association on the
1026 * endpoint (other than the one created here).
1027 */
1028 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1029 if (asoc2 && asoc2 != asoc) {
1030 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1031 err = -EISCONN;
1032 else
1033 err = -EALREADY;
1034 goto out_free;
1035 }
1036
1037 /* If we could not find a matching association on the endpoint,
1038 * make sure that there is no peeled-off association matching
1039 * the peer address even on another socket.
1040 */
1041 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1042 err = -EADDRNOTAVAIL;
1043 goto out_free;
1044 }
1045
1046 if (!asoc) {
1047 /* If a bind() or sctp_bindx() is not called prior to
1048 * an sctp_connectx() call, the system picks an
1049 * ephemeral port and will choose an address set
1050 * equivalent to binding with a wildcard address.
1051 */
1052 if (!ep->base.bind_addr.port) {
1053 if (sctp_autobind(sk)) {
1054 err = -EAGAIN;
1055 goto out_free;
1056 }
1057 } else {
1058 /*
1059 * If an unprivileged user inherits a 1-many
1060 * style socket with open associations on a
1061 * privileged port, it MAY be permitted to
1062 * accept new associations, but it SHOULD NOT
1063 * be permitted to open new associations.
1064 */
1065 if (ep->base.bind_addr.port < PROT_SOCK &&
1066 !capable(CAP_NET_BIND_SERVICE)) {
1067 err = -EACCES;
1068 goto out_free;
1069 }
1070 }
1071
1072 scope = sctp_scope(&to);
1073 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1074 if (!asoc) {
1075 err = -ENOMEM;
1076 goto out_free;
1077 }
1078 }
1079
1080 /* Prime the peer's transport structures. */
1081 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1082 SCTP_UNKNOWN);
1083 if (!transport) {
1084 err = -ENOMEM;
1085 goto out_free;
1086 }
1087
1088 addrcnt++;
1089 addr_buf += af->sockaddr_len;
1090 walk_size += af->sockaddr_len;
1091 }
1092
1093 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1094 if (err < 0) {
1095 goto out_free;
1096 }
1097
1098 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1099 if (err < 0) {
1100 goto out_free;
1101 }
1102
1103 /* Initialize sk's dport and daddr for getpeername() */
1104 inet_sk(sk)->dport = htons(asoc->peer.port);
1105 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1106 af->to_sk_daddr(sa_addr, sk);
1107 sk->sk_err = 0;
1108
1109 /* in-kernel sockets don't generally have a file allocated to them
1110 * if all they do is call sock_create_kern().
1111 */
1112 if (sk->sk_socket->file)
1113 f_flags = sk->sk_socket->file->f_flags;
1114
1115 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1116
1117 err = sctp_wait_for_connect(asoc, &timeo);
1118
1119 /* Don't free association on exit. */
1120 asoc = NULL;
1121
1122 out_free:
1123
1124 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1125 " kaddrs: %p err: %d\n",
1126 asoc, kaddrs, err);
1127 if (asoc)
1128 sctp_association_free(asoc);
1129 return err;
1130 }
1131
1132 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1133 *
1134 * API 8.9
1135 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1136 *
1137 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1138 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1139 * or IPv6 addresses.
1140 *
1141 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1142 * Section 3.1.2 for this usage.
1143 *
1144 * addrs is a pointer to an array of one or more socket addresses. Each
1145 * address is contained in its appropriate structure (i.e. struct
1146 * sockaddr_in or struct sockaddr_in6) the family of the address type
1147 * must be used to distengish the address length (note that this
1148 * representation is termed a "packed array" of addresses). The caller
1149 * specifies the number of addresses in the array with addrcnt.
1150 *
1151 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1152 * -1, and sets errno to the appropriate error code.
1153 *
1154 * For SCTP, the port given in each socket address must be the same, or
1155 * sctp_connectx() will fail, setting errno to EINVAL.
1156 *
1157 * An application can use sctp_connectx to initiate an association with
1158 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1159 * allows a caller to specify multiple addresses at which a peer can be
1160 * reached. The way the SCTP stack uses the list of addresses to set up
1161 * the association is implementation dependant. This function only
1162 * specifies that the stack will try to make use of all the addresses in
1163 * the list when needed.
1164 *
1165 * Note that the list of addresses passed in is only used for setting up
1166 * the association. It does not necessarily equal the set of addresses
1167 * the peer uses for the resulting association. If the caller wants to
1168 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1169 * retrieve them after the association has been set up.
1170 *
1171 * Basically do nothing but copying the addresses from user to kernel
1172 * land and invoking either sctp_connectx(). This is used for tunneling
1173 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1174 *
1175 * We don't use copy_from_user() for optimization: we first do the
1176 * sanity checks (buffer size -fast- and access check-healthy
1177 * pointer); if all of those succeed, then we can alloc the memory
1178 * (expensive operation) needed to copy the data to kernel. Then we do
1179 * the copying without checking the user space area
1180 * (__copy_from_user()).
1181 *
1182 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1183 * it.
1184 *
1185 * sk The sk of the socket
1186 * addrs The pointer to the addresses in user land
1187 * addrssize Size of the addrs buffer
1188 *
1189 * Returns 0 if ok, <0 errno code on error.
1190 */
1191 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1192 struct sockaddr __user *addrs,
1193 int addrs_size)
1194 {
1195 int err = 0;
1196 struct sockaddr *kaddrs;
1197
1198 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1199 __FUNCTION__, sk, addrs, addrs_size);
1200
1201 if (unlikely(addrs_size <= 0))
1202 return -EINVAL;
1203
1204 /* Check the user passed a healthy pointer. */
1205 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1206 return -EFAULT;
1207
1208 /* Alloc space for the address array in kernel memory. */
1209 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1210 if (unlikely(!kaddrs))
1211 return -ENOMEM;
1212
1213 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1214 err = -EFAULT;
1215 } else {
1216 err = __sctp_connect(sk, kaddrs, addrs_size);
1217 }
1218
1219 kfree(kaddrs);
1220 return err;
1221 }
1222
1223 /* API 3.1.4 close() - UDP Style Syntax
1224 * Applications use close() to perform graceful shutdown (as described in
1225 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1226 * by a UDP-style socket.
1227 *
1228 * The syntax is
1229 *
1230 * ret = close(int sd);
1231 *
1232 * sd - the socket descriptor of the associations to be closed.
1233 *
1234 * To gracefully shutdown a specific association represented by the
1235 * UDP-style socket, an application should use the sendmsg() call,
1236 * passing no user data, but including the appropriate flag in the
1237 * ancillary data (see Section xxxx).
1238 *
1239 * If sd in the close() call is a branched-off socket representing only
1240 * one association, the shutdown is performed on that association only.
1241 *
1242 * 4.1.6 close() - TCP Style Syntax
1243 *
1244 * Applications use close() to gracefully close down an association.
1245 *
1246 * The syntax is:
1247 *
1248 * int close(int sd);
1249 *
1250 * sd - the socket descriptor of the association to be closed.
1251 *
1252 * After an application calls close() on a socket descriptor, no further
1253 * socket operations will succeed on that descriptor.
1254 *
1255 * API 7.1.4 SO_LINGER
1256 *
1257 * An application using the TCP-style socket can use this option to
1258 * perform the SCTP ABORT primitive. The linger option structure is:
1259 *
1260 * struct linger {
1261 * int l_onoff; // option on/off
1262 * int l_linger; // linger time
1263 * };
1264 *
1265 * To enable the option, set l_onoff to 1. If the l_linger value is set
1266 * to 0, calling close() is the same as the ABORT primitive. If the
1267 * value is set to a negative value, the setsockopt() call will return
1268 * an error. If the value is set to a positive value linger_time, the
1269 * close() can be blocked for at most linger_time ms. If the graceful
1270 * shutdown phase does not finish during this period, close() will
1271 * return but the graceful shutdown phase continues in the system.
1272 */
1273 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1274 {
1275 struct sctp_endpoint *ep;
1276 struct sctp_association *asoc;
1277 struct list_head *pos, *temp;
1278
1279 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1280
1281 sctp_lock_sock(sk);
1282 sk->sk_shutdown = SHUTDOWN_MASK;
1283
1284 ep = sctp_sk(sk)->ep;
1285
1286 /* Walk all associations on an endpoint. */
1287 list_for_each_safe(pos, temp, &ep->asocs) {
1288 asoc = list_entry(pos, struct sctp_association, asocs);
1289
1290 if (sctp_style(sk, TCP)) {
1291 /* A closed association can still be in the list if
1292 * it belongs to a TCP-style listening socket that is
1293 * not yet accepted. If so, free it. If not, send an
1294 * ABORT or SHUTDOWN based on the linger options.
1295 */
1296 if (sctp_state(asoc, CLOSED)) {
1297 sctp_unhash_established(asoc);
1298 sctp_association_free(asoc);
1299 continue;
1300 }
1301 }
1302
1303 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1304 struct sctp_chunk *chunk;
1305
1306 chunk = sctp_make_abort_user(asoc, NULL, 0);
1307 if (chunk)
1308 sctp_primitive_ABORT(asoc, chunk);
1309 } else
1310 sctp_primitive_SHUTDOWN(asoc, NULL);
1311 }
1312
1313 /* Clean up any skbs sitting on the receive queue. */
1314 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1315 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1316
1317 /* On a TCP-style socket, block for at most linger_time if set. */
1318 if (sctp_style(sk, TCP) && timeout)
1319 sctp_wait_for_close(sk, timeout);
1320
1321 /* This will run the backlog queue. */
1322 sctp_release_sock(sk);
1323
1324 /* Supposedly, no process has access to the socket, but
1325 * the net layers still may.
1326 */
1327 sctp_local_bh_disable();
1328 sctp_bh_lock_sock(sk);
1329
1330 /* Hold the sock, since sk_common_release() will put sock_put()
1331 * and we have just a little more cleanup.
1332 */
1333 sock_hold(sk);
1334 sk_common_release(sk);
1335
1336 sctp_bh_unlock_sock(sk);
1337 sctp_local_bh_enable();
1338
1339 sock_put(sk);
1340
1341 SCTP_DBG_OBJCNT_DEC(sock);
1342 }
1343
1344 /* Handle EPIPE error. */
1345 static int sctp_error(struct sock *sk, int flags, int err)
1346 {
1347 if (err == -EPIPE)
1348 err = sock_error(sk) ? : -EPIPE;
1349 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1350 send_sig(SIGPIPE, current, 0);
1351 return err;
1352 }
1353
1354 /* API 3.1.3 sendmsg() - UDP Style Syntax
1355 *
1356 * An application uses sendmsg() and recvmsg() calls to transmit data to
1357 * and receive data from its peer.
1358 *
1359 * ssize_t sendmsg(int socket, const struct msghdr *message,
1360 * int flags);
1361 *
1362 * socket - the socket descriptor of the endpoint.
1363 * message - pointer to the msghdr structure which contains a single
1364 * user message and possibly some ancillary data.
1365 *
1366 * See Section 5 for complete description of the data
1367 * structures.
1368 *
1369 * flags - flags sent or received with the user message, see Section
1370 * 5 for complete description of the flags.
1371 *
1372 * Note: This function could use a rewrite especially when explicit
1373 * connect support comes in.
1374 */
1375 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1376
1377 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1378
1379 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1380 struct msghdr *msg, size_t msg_len)
1381 {
1382 struct sctp_sock *sp;
1383 struct sctp_endpoint *ep;
1384 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1385 struct sctp_transport *transport, *chunk_tp;
1386 struct sctp_chunk *chunk;
1387 union sctp_addr to;
1388 struct sockaddr *msg_name = NULL;
1389 struct sctp_sndrcvinfo default_sinfo = { 0 };
1390 struct sctp_sndrcvinfo *sinfo;
1391 struct sctp_initmsg *sinit;
1392 sctp_assoc_t associd = 0;
1393 sctp_cmsgs_t cmsgs = { NULL };
1394 int err;
1395 sctp_scope_t scope;
1396 long timeo;
1397 __u16 sinfo_flags = 0;
1398 struct sctp_datamsg *datamsg;
1399 struct list_head *pos;
1400 int msg_flags = msg->msg_flags;
1401
1402 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1403 sk, msg, msg_len);
1404
1405 err = 0;
1406 sp = sctp_sk(sk);
1407 ep = sp->ep;
1408
1409 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1410
1411 /* We cannot send a message over a TCP-style listening socket. */
1412 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1413 err = -EPIPE;
1414 goto out_nounlock;
1415 }
1416
1417 /* Parse out the SCTP CMSGs. */
1418 err = sctp_msghdr_parse(msg, &cmsgs);
1419
1420 if (err) {
1421 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1422 goto out_nounlock;
1423 }
1424
1425 /* Fetch the destination address for this packet. This
1426 * address only selects the association--it is not necessarily
1427 * the address we will send to.
1428 * For a peeled-off socket, msg_name is ignored.
1429 */
1430 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1431 int msg_namelen = msg->msg_namelen;
1432
1433 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1434 msg_namelen);
1435 if (err)
1436 return err;
1437
1438 if (msg_namelen > sizeof(to))
1439 msg_namelen = sizeof(to);
1440 memcpy(&to, msg->msg_name, msg_namelen);
1441 msg_name = msg->msg_name;
1442 }
1443
1444 sinfo = cmsgs.info;
1445 sinit = cmsgs.init;
1446
1447 /* Did the user specify SNDRCVINFO? */
1448 if (sinfo) {
1449 sinfo_flags = sinfo->sinfo_flags;
1450 associd = sinfo->sinfo_assoc_id;
1451 }
1452
1453 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1454 msg_len, sinfo_flags);
1455
1456 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1457 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1458 err = -EINVAL;
1459 goto out_nounlock;
1460 }
1461
1462 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1463 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1464 * If SCTP_ABORT is set, the message length could be non zero with
1465 * the msg_iov set to the user abort reason.
1466 */
1467 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1468 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1469 err = -EINVAL;
1470 goto out_nounlock;
1471 }
1472
1473 /* If SCTP_ADDR_OVER is set, there must be an address
1474 * specified in msg_name.
1475 */
1476 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1477 err = -EINVAL;
1478 goto out_nounlock;
1479 }
1480
1481 transport = NULL;
1482
1483 SCTP_DEBUG_PRINTK("About to look up association.\n");
1484
1485 sctp_lock_sock(sk);
1486
1487 /* If a msg_name has been specified, assume this is to be used. */
1488 if (msg_name) {
1489 /* Look for a matching association on the endpoint. */
1490 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1491 if (!asoc) {
1492 /* If we could not find a matching association on the
1493 * endpoint, make sure that it is not a TCP-style
1494 * socket that already has an association or there is
1495 * no peeled-off association on another socket.
1496 */
1497 if ((sctp_style(sk, TCP) &&
1498 sctp_sstate(sk, ESTABLISHED)) ||
1499 sctp_endpoint_is_peeled_off(ep, &to)) {
1500 err = -EADDRNOTAVAIL;
1501 goto out_unlock;
1502 }
1503 }
1504 } else {
1505 asoc = sctp_id2assoc(sk, associd);
1506 if (!asoc) {
1507 err = -EPIPE;
1508 goto out_unlock;
1509 }
1510 }
1511
1512 if (asoc) {
1513 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1514
1515 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1516 * socket that has an association in CLOSED state. This can
1517 * happen when an accepted socket has an association that is
1518 * already CLOSED.
1519 */
1520 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1521 err = -EPIPE;
1522 goto out_unlock;
1523 }
1524
1525 if (sinfo_flags & SCTP_EOF) {
1526 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1527 asoc);
1528 sctp_primitive_SHUTDOWN(asoc, NULL);
1529 err = 0;
1530 goto out_unlock;
1531 }
1532 if (sinfo_flags & SCTP_ABORT) {
1533
1534 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1535 if (!chunk) {
1536 err = -ENOMEM;
1537 goto out_unlock;
1538 }
1539
1540 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1541 sctp_primitive_ABORT(asoc, chunk);
1542 err = 0;
1543 goto out_unlock;
1544 }
1545 }
1546
1547 /* Do we need to create the association? */
1548 if (!asoc) {
1549 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1550
1551 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1552 err = -EINVAL;
1553 goto out_unlock;
1554 }
1555
1556 /* Check for invalid stream against the stream counts,
1557 * either the default or the user specified stream counts.
1558 */
1559 if (sinfo) {
1560 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1561 /* Check against the defaults. */
1562 if (sinfo->sinfo_stream >=
1563 sp->initmsg.sinit_num_ostreams) {
1564 err = -EINVAL;
1565 goto out_unlock;
1566 }
1567 } else {
1568 /* Check against the requested. */
1569 if (sinfo->sinfo_stream >=
1570 sinit->sinit_num_ostreams) {
1571 err = -EINVAL;
1572 goto out_unlock;
1573 }
1574 }
1575 }
1576
1577 /*
1578 * API 3.1.2 bind() - UDP Style Syntax
1579 * If a bind() or sctp_bindx() is not called prior to a
1580 * sendmsg() call that initiates a new association, the
1581 * system picks an ephemeral port and will choose an address
1582 * set equivalent to binding with a wildcard address.
1583 */
1584 if (!ep->base.bind_addr.port) {
1585 if (sctp_autobind(sk)) {
1586 err = -EAGAIN;
1587 goto out_unlock;
1588 }
1589 } else {
1590 /*
1591 * If an unprivileged user inherits a one-to-many
1592 * style socket with open associations on a privileged
1593 * port, it MAY be permitted to accept new associations,
1594 * but it SHOULD NOT be permitted to open new
1595 * associations.
1596 */
1597 if (ep->base.bind_addr.port < PROT_SOCK &&
1598 !capable(CAP_NET_BIND_SERVICE)) {
1599 err = -EACCES;
1600 goto out_unlock;
1601 }
1602 }
1603
1604 scope = sctp_scope(&to);
1605 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1606 if (!new_asoc) {
1607 err = -ENOMEM;
1608 goto out_unlock;
1609 }
1610 asoc = new_asoc;
1611
1612 /* If the SCTP_INIT ancillary data is specified, set all
1613 * the association init values accordingly.
1614 */
1615 if (sinit) {
1616 if (sinit->sinit_num_ostreams) {
1617 asoc->c.sinit_num_ostreams =
1618 sinit->sinit_num_ostreams;
1619 }
1620 if (sinit->sinit_max_instreams) {
1621 asoc->c.sinit_max_instreams =
1622 sinit->sinit_max_instreams;
1623 }
1624 if (sinit->sinit_max_attempts) {
1625 asoc->max_init_attempts
1626 = sinit->sinit_max_attempts;
1627 }
1628 if (sinit->sinit_max_init_timeo) {
1629 asoc->max_init_timeo =
1630 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1631 }
1632 }
1633
1634 /* Prime the peer's transport structures. */
1635 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1636 if (!transport) {
1637 err = -ENOMEM;
1638 goto out_free;
1639 }
1640 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1641 if (err < 0) {
1642 err = -ENOMEM;
1643 goto out_free;
1644 }
1645 }
1646
1647 /* ASSERT: we have a valid association at this point. */
1648 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1649
1650 if (!sinfo) {
1651 /* If the user didn't specify SNDRCVINFO, make up one with
1652 * some defaults.
1653 */
1654 default_sinfo.sinfo_stream = asoc->default_stream;
1655 default_sinfo.sinfo_flags = asoc->default_flags;
1656 default_sinfo.sinfo_ppid = asoc->default_ppid;
1657 default_sinfo.sinfo_context = asoc->default_context;
1658 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1659 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1660 sinfo = &default_sinfo;
1661 }
1662
1663 /* API 7.1.7, the sndbuf size per association bounds the
1664 * maximum size of data that can be sent in a single send call.
1665 */
1666 if (msg_len > sk->sk_sndbuf) {
1667 err = -EMSGSIZE;
1668 goto out_free;
1669 }
1670
1671 if (asoc->pmtu_pending)
1672 sctp_assoc_pending_pmtu(asoc);
1673
1674 /* If fragmentation is disabled and the message length exceeds the
1675 * association fragmentation point, return EMSGSIZE. The I-D
1676 * does not specify what this error is, but this looks like
1677 * a great fit.
1678 */
1679 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1680 err = -EMSGSIZE;
1681 goto out_free;
1682 }
1683
1684 if (sinfo) {
1685 /* Check for invalid stream. */
1686 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1687 err = -EINVAL;
1688 goto out_free;
1689 }
1690 }
1691
1692 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1693 if (!sctp_wspace(asoc)) {
1694 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1695 if (err)
1696 goto out_free;
1697 }
1698
1699 /* If an address is passed with the sendto/sendmsg call, it is used
1700 * to override the primary destination address in the TCP model, or
1701 * when SCTP_ADDR_OVER flag is set in the UDP model.
1702 */
1703 if ((sctp_style(sk, TCP) && msg_name) ||
1704 (sinfo_flags & SCTP_ADDR_OVER)) {
1705 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1706 if (!chunk_tp) {
1707 err = -EINVAL;
1708 goto out_free;
1709 }
1710 } else
1711 chunk_tp = NULL;
1712
1713 /* Auto-connect, if we aren't connected already. */
1714 if (sctp_state(asoc, CLOSED)) {
1715 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1716 if (err < 0)
1717 goto out_free;
1718 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1719 }
1720
1721 /* Break the message into multiple chunks of maximum size. */
1722 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1723 if (!datamsg) {
1724 err = -ENOMEM;
1725 goto out_free;
1726 }
1727
1728 /* Now send the (possibly) fragmented message. */
1729 list_for_each(pos, &datamsg->chunks) {
1730 chunk = list_entry(pos, struct sctp_chunk, frag_list);
1731 sctp_datamsg_track(chunk);
1732
1733 /* Do accounting for the write space. */
1734 sctp_set_owner_w(chunk);
1735
1736 chunk->transport = chunk_tp;
1737
1738 /* Send it to the lower layers. Note: all chunks
1739 * must either fail or succeed. The lower layer
1740 * works that way today. Keep it that way or this
1741 * breaks.
1742 */
1743 err = sctp_primitive_SEND(asoc, chunk);
1744 /* Did the lower layer accept the chunk? */
1745 if (err)
1746 sctp_chunk_free(chunk);
1747 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1748 }
1749
1750 sctp_datamsg_free(datamsg);
1751 if (err)
1752 goto out_free;
1753 else
1754 err = msg_len;
1755
1756 /* If we are already past ASSOCIATE, the lower
1757 * layers are responsible for association cleanup.
1758 */
1759 goto out_unlock;
1760
1761 out_free:
1762 if (new_asoc)
1763 sctp_association_free(asoc);
1764 out_unlock:
1765 sctp_release_sock(sk);
1766
1767 out_nounlock:
1768 return sctp_error(sk, msg_flags, err);
1769
1770 #if 0
1771 do_sock_err:
1772 if (msg_len)
1773 err = msg_len;
1774 else
1775 err = sock_error(sk);
1776 goto out;
1777
1778 do_interrupted:
1779 if (msg_len)
1780 err = msg_len;
1781 goto out;
1782 #endif /* 0 */
1783 }
1784
1785 /* This is an extended version of skb_pull() that removes the data from the
1786 * start of a skb even when data is spread across the list of skb's in the
1787 * frag_list. len specifies the total amount of data that needs to be removed.
1788 * when 'len' bytes could be removed from the skb, it returns 0.
1789 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1790 * could not be removed.
1791 */
1792 static int sctp_skb_pull(struct sk_buff *skb, int len)
1793 {
1794 struct sk_buff *list;
1795 int skb_len = skb_headlen(skb);
1796 int rlen;
1797
1798 if (len <= skb_len) {
1799 __skb_pull(skb, len);
1800 return 0;
1801 }
1802 len -= skb_len;
1803 __skb_pull(skb, skb_len);
1804
1805 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1806 rlen = sctp_skb_pull(list, len);
1807 skb->len -= (len-rlen);
1808 skb->data_len -= (len-rlen);
1809
1810 if (!rlen)
1811 return 0;
1812
1813 len = rlen;
1814 }
1815
1816 return len;
1817 }
1818
1819 /* API 3.1.3 recvmsg() - UDP Style Syntax
1820 *
1821 * ssize_t recvmsg(int socket, struct msghdr *message,
1822 * int flags);
1823 *
1824 * socket - the socket descriptor of the endpoint.
1825 * message - pointer to the msghdr structure which contains a single
1826 * user message and possibly some ancillary data.
1827 *
1828 * See Section 5 for complete description of the data
1829 * structures.
1830 *
1831 * flags - flags sent or received with the user message, see Section
1832 * 5 for complete description of the flags.
1833 */
1834 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1835
1836 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1837 struct msghdr *msg, size_t len, int noblock,
1838 int flags, int *addr_len)
1839 {
1840 struct sctp_ulpevent *event = NULL;
1841 struct sctp_sock *sp = sctp_sk(sk);
1842 struct sk_buff *skb;
1843 int copied;
1844 int err = 0;
1845 int skb_len;
1846
1847 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1848 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1849 "len", len, "knoblauch", noblock,
1850 "flags", flags, "addr_len", addr_len);
1851
1852 sctp_lock_sock(sk);
1853
1854 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1855 err = -ENOTCONN;
1856 goto out;
1857 }
1858
1859 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1860 if (!skb)
1861 goto out;
1862
1863 /* Get the total length of the skb including any skb's in the
1864 * frag_list.
1865 */
1866 skb_len = skb->len;
1867
1868 copied = skb_len;
1869 if (copied > len)
1870 copied = len;
1871
1872 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1873
1874 event = sctp_skb2event(skb);
1875
1876 if (err)
1877 goto out_free;
1878
1879 sock_recv_timestamp(msg, sk, skb);
1880 if (sctp_ulpevent_is_notification(event)) {
1881 msg->msg_flags |= MSG_NOTIFICATION;
1882 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1883 } else {
1884 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1885 }
1886
1887 /* Check if we allow SCTP_SNDRCVINFO. */
1888 if (sp->subscribe.sctp_data_io_event)
1889 sctp_ulpevent_read_sndrcvinfo(event, msg);
1890 #if 0
1891 /* FIXME: we should be calling IP/IPv6 layers. */
1892 if (sk->sk_protinfo.af_inet.cmsg_flags)
1893 ip_cmsg_recv(msg, skb);
1894 #endif
1895
1896 err = copied;
1897
1898 /* If skb's length exceeds the user's buffer, update the skb and
1899 * push it back to the receive_queue so that the next call to
1900 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1901 */
1902 if (skb_len > copied) {
1903 msg->msg_flags &= ~MSG_EOR;
1904 if (flags & MSG_PEEK)
1905 goto out_free;
1906 sctp_skb_pull(skb, copied);
1907 skb_queue_head(&sk->sk_receive_queue, skb);
1908
1909 /* When only partial message is copied to the user, increase
1910 * rwnd by that amount. If all the data in the skb is read,
1911 * rwnd is updated when the event is freed.
1912 */
1913 sctp_assoc_rwnd_increase(event->asoc, copied);
1914 goto out;
1915 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1916 (event->msg_flags & MSG_EOR))
1917 msg->msg_flags |= MSG_EOR;
1918 else
1919 msg->msg_flags &= ~MSG_EOR;
1920
1921 out_free:
1922 if (flags & MSG_PEEK) {
1923 /* Release the skb reference acquired after peeking the skb in
1924 * sctp_skb_recv_datagram().
1925 */
1926 kfree_skb(skb);
1927 } else {
1928 /* Free the event which includes releasing the reference to
1929 * the owner of the skb, freeing the skb and updating the
1930 * rwnd.
1931 */
1932 sctp_ulpevent_free(event);
1933 }
1934 out:
1935 sctp_release_sock(sk);
1936 return err;
1937 }
1938
1939 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1940 *
1941 * This option is a on/off flag. If enabled no SCTP message
1942 * fragmentation will be performed. Instead if a message being sent
1943 * exceeds the current PMTU size, the message will NOT be sent and
1944 * instead a error will be indicated to the user.
1945 */
1946 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1947 char __user *optval, int optlen)
1948 {
1949 int val;
1950
1951 if (optlen < sizeof(int))
1952 return -EINVAL;
1953
1954 if (get_user(val, (int __user *)optval))
1955 return -EFAULT;
1956
1957 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1958
1959 return 0;
1960 }
1961
1962 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1963 int optlen)
1964 {
1965 if (optlen != sizeof(struct sctp_event_subscribe))
1966 return -EINVAL;
1967 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1968 return -EFAULT;
1969 return 0;
1970 }
1971
1972 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1973 *
1974 * This socket option is applicable to the UDP-style socket only. When
1975 * set it will cause associations that are idle for more than the
1976 * specified number of seconds to automatically close. An association
1977 * being idle is defined an association that has NOT sent or received
1978 * user data. The special value of '0' indicates that no automatic
1979 * close of any associations should be performed. The option expects an
1980 * integer defining the number of seconds of idle time before an
1981 * association is closed.
1982 */
1983 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1984 int optlen)
1985 {
1986 struct sctp_sock *sp = sctp_sk(sk);
1987
1988 /* Applicable to UDP-style socket only */
1989 if (sctp_style(sk, TCP))
1990 return -EOPNOTSUPP;
1991 if (optlen != sizeof(int))
1992 return -EINVAL;
1993 if (copy_from_user(&sp->autoclose, optval, optlen))
1994 return -EFAULT;
1995
1996 return 0;
1997 }
1998
1999 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2000 *
2001 * Applications can enable or disable heartbeats for any peer address of
2002 * an association, modify an address's heartbeat interval, force a
2003 * heartbeat to be sent immediately, and adjust the address's maximum
2004 * number of retransmissions sent before an address is considered
2005 * unreachable. The following structure is used to access and modify an
2006 * address's parameters:
2007 *
2008 * struct sctp_paddrparams {
2009 * sctp_assoc_t spp_assoc_id;
2010 * struct sockaddr_storage spp_address;
2011 * uint32_t spp_hbinterval;
2012 * uint16_t spp_pathmaxrxt;
2013 * uint32_t spp_pathmtu;
2014 * uint32_t spp_sackdelay;
2015 * uint32_t spp_flags;
2016 * };
2017 *
2018 * spp_assoc_id - (one-to-many style socket) This is filled in the
2019 * application, and identifies the association for
2020 * this query.
2021 * spp_address - This specifies which address is of interest.
2022 * spp_hbinterval - This contains the value of the heartbeat interval,
2023 * in milliseconds. If a value of zero
2024 * is present in this field then no changes are to
2025 * be made to this parameter.
2026 * spp_pathmaxrxt - This contains the maximum number of
2027 * retransmissions before this address shall be
2028 * considered unreachable. If a value of zero
2029 * is present in this field then no changes are to
2030 * be made to this parameter.
2031 * spp_pathmtu - When Path MTU discovery is disabled the value
2032 * specified here will be the "fixed" path mtu.
2033 * Note that if the spp_address field is empty
2034 * then all associations on this address will
2035 * have this fixed path mtu set upon them.
2036 *
2037 * spp_sackdelay - When delayed sack is enabled, this value specifies
2038 * the number of milliseconds that sacks will be delayed
2039 * for. This value will apply to all addresses of an
2040 * association if the spp_address field is empty. Note
2041 * also, that if delayed sack is enabled and this
2042 * value is set to 0, no change is made to the last
2043 * recorded delayed sack timer value.
2044 *
2045 * spp_flags - These flags are used to control various features
2046 * on an association. The flag field may contain
2047 * zero or more of the following options.
2048 *
2049 * SPP_HB_ENABLE - Enable heartbeats on the
2050 * specified address. Note that if the address
2051 * field is empty all addresses for the association
2052 * have heartbeats enabled upon them.
2053 *
2054 * SPP_HB_DISABLE - Disable heartbeats on the
2055 * speicifed address. Note that if the address
2056 * field is empty all addresses for the association
2057 * will have their heartbeats disabled. Note also
2058 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2059 * mutually exclusive, only one of these two should
2060 * be specified. Enabling both fields will have
2061 * undetermined results.
2062 *
2063 * SPP_HB_DEMAND - Request a user initiated heartbeat
2064 * to be made immediately.
2065 *
2066 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2067 * heartbeat delayis to be set to the value of 0
2068 * milliseconds.
2069 *
2070 * SPP_PMTUD_ENABLE - This field will enable PMTU
2071 * discovery upon the specified address. Note that
2072 * if the address feild is empty then all addresses
2073 * on the association are effected.
2074 *
2075 * SPP_PMTUD_DISABLE - This field will disable PMTU
2076 * discovery upon the specified address. Note that
2077 * if the address feild is empty then all addresses
2078 * on the association are effected. Not also that
2079 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2080 * exclusive. Enabling both will have undetermined
2081 * results.
2082 *
2083 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2084 * on delayed sack. The time specified in spp_sackdelay
2085 * is used to specify the sack delay for this address. Note
2086 * that if spp_address is empty then all addresses will
2087 * enable delayed sack and take on the sack delay
2088 * value specified in spp_sackdelay.
2089 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2090 * off delayed sack. If the spp_address field is blank then
2091 * delayed sack is disabled for the entire association. Note
2092 * also that this field is mutually exclusive to
2093 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2094 * results.
2095 */
2096 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2097 struct sctp_transport *trans,
2098 struct sctp_association *asoc,
2099 struct sctp_sock *sp,
2100 int hb_change,
2101 int pmtud_change,
2102 int sackdelay_change)
2103 {
2104 int error;
2105
2106 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2107 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2108 if (error)
2109 return error;
2110 }
2111
2112 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2113 * this field is ignored. Note also that a value of zero indicates
2114 * the current setting should be left unchanged.
2115 */
2116 if (params->spp_flags & SPP_HB_ENABLE) {
2117
2118 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2119 * set. This lets us use 0 value when this flag
2120 * is set.
2121 */
2122 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2123 params->spp_hbinterval = 0;
2124
2125 if (params->spp_hbinterval ||
2126 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2127 if (trans) {
2128 trans->hbinterval =
2129 msecs_to_jiffies(params->spp_hbinterval);
2130 } else if (asoc) {
2131 asoc->hbinterval =
2132 msecs_to_jiffies(params->spp_hbinterval);
2133 } else {
2134 sp->hbinterval = params->spp_hbinterval;
2135 }
2136 }
2137 }
2138
2139 if (hb_change) {
2140 if (trans) {
2141 trans->param_flags =
2142 (trans->param_flags & ~SPP_HB) | hb_change;
2143 } else if (asoc) {
2144 asoc->param_flags =
2145 (asoc->param_flags & ~SPP_HB) | hb_change;
2146 } else {
2147 sp->param_flags =
2148 (sp->param_flags & ~SPP_HB) | hb_change;
2149 }
2150 }
2151
2152 /* When Path MTU discovery is disabled the value specified here will
2153 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2154 * include the flag SPP_PMTUD_DISABLE for this field to have any
2155 * effect).
2156 */
2157 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2158 if (trans) {
2159 trans->pathmtu = params->spp_pathmtu;
2160 sctp_assoc_sync_pmtu(asoc);
2161 } else if (asoc) {
2162 asoc->pathmtu = params->spp_pathmtu;
2163 sctp_frag_point(sp, params->spp_pathmtu);
2164 } else {
2165 sp->pathmtu = params->spp_pathmtu;
2166 }
2167 }
2168
2169 if (pmtud_change) {
2170 if (trans) {
2171 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2172 (params->spp_flags & SPP_PMTUD_ENABLE);
2173 trans->param_flags =
2174 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2175 if (update) {
2176 sctp_transport_pmtu(trans);
2177 sctp_assoc_sync_pmtu(asoc);
2178 }
2179 } else if (asoc) {
2180 asoc->param_flags =
2181 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2182 } else {
2183 sp->param_flags =
2184 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2185 }
2186 }
2187
2188 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2189 * value of this field is ignored. Note also that a value of zero
2190 * indicates the current setting should be left unchanged.
2191 */
2192 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2193 if (trans) {
2194 trans->sackdelay =
2195 msecs_to_jiffies(params->spp_sackdelay);
2196 } else if (asoc) {
2197 asoc->sackdelay =
2198 msecs_to_jiffies(params->spp_sackdelay);
2199 } else {
2200 sp->sackdelay = params->spp_sackdelay;
2201 }
2202 }
2203
2204 if (sackdelay_change) {
2205 if (trans) {
2206 trans->param_flags =
2207 (trans->param_flags & ~SPP_SACKDELAY) |
2208 sackdelay_change;
2209 } else if (asoc) {
2210 asoc->param_flags =
2211 (asoc->param_flags & ~SPP_SACKDELAY) |
2212 sackdelay_change;
2213 } else {
2214 sp->param_flags =
2215 (sp->param_flags & ~SPP_SACKDELAY) |
2216 sackdelay_change;
2217 }
2218 }
2219
2220 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2221 * of this field is ignored. Note also that a value of zero
2222 * indicates the current setting should be left unchanged.
2223 */
2224 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2225 if (trans) {
2226 trans->pathmaxrxt = params->spp_pathmaxrxt;
2227 } else if (asoc) {
2228 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2229 } else {
2230 sp->pathmaxrxt = params->spp_pathmaxrxt;
2231 }
2232 }
2233
2234 return 0;
2235 }
2236
2237 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2238 char __user *optval, int optlen)
2239 {
2240 struct sctp_paddrparams params;
2241 struct sctp_transport *trans = NULL;
2242 struct sctp_association *asoc = NULL;
2243 struct sctp_sock *sp = sctp_sk(sk);
2244 int error;
2245 int hb_change, pmtud_change, sackdelay_change;
2246
2247 if (optlen != sizeof(struct sctp_paddrparams))
2248 return - EINVAL;
2249
2250 if (copy_from_user(&params, optval, optlen))
2251 return -EFAULT;
2252
2253 /* Validate flags and value parameters. */
2254 hb_change = params.spp_flags & SPP_HB;
2255 pmtud_change = params.spp_flags & SPP_PMTUD;
2256 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2257
2258 if (hb_change == SPP_HB ||
2259 pmtud_change == SPP_PMTUD ||
2260 sackdelay_change == SPP_SACKDELAY ||
2261 params.spp_sackdelay > 500 ||
2262 (params.spp_pathmtu
2263 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2264 return -EINVAL;
2265
2266 /* If an address other than INADDR_ANY is specified, and
2267 * no transport is found, then the request is invalid.
2268 */
2269 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2270 trans = sctp_addr_id2transport(sk, &params.spp_address,
2271 params.spp_assoc_id);
2272 if (!trans)
2273 return -EINVAL;
2274 }
2275
2276 /* Get association, if assoc_id != 0 and the socket is a one
2277 * to many style socket, and an association was not found, then
2278 * the id was invalid.
2279 */
2280 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2281 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2282 return -EINVAL;
2283
2284 /* Heartbeat demand can only be sent on a transport or
2285 * association, but not a socket.
2286 */
2287 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2288 return -EINVAL;
2289
2290 /* Process parameters. */
2291 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2292 hb_change, pmtud_change,
2293 sackdelay_change);
2294
2295 if (error)
2296 return error;
2297
2298 /* If changes are for association, also apply parameters to each
2299 * transport.
2300 */
2301 if (!trans && asoc) {
2302 struct list_head *pos;
2303
2304 list_for_each(pos, &asoc->peer.transport_addr_list) {
2305 trans = list_entry(pos, struct sctp_transport,
2306 transports);
2307 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2308 hb_change, pmtud_change,
2309 sackdelay_change);
2310 }
2311 }
2312
2313 return 0;
2314 }
2315
2316 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2317 *
2318 * This options will get or set the delayed ack timer. The time is set
2319 * in milliseconds. If the assoc_id is 0, then this sets or gets the
2320 * endpoints default delayed ack timer value. If the assoc_id field is
2321 * non-zero, then the set or get effects the specified association.
2322 *
2323 * struct sctp_assoc_value {
2324 * sctp_assoc_t assoc_id;
2325 * uint32_t assoc_value;
2326 * };
2327 *
2328 * assoc_id - This parameter, indicates which association the
2329 * user is preforming an action upon. Note that if
2330 * this field's value is zero then the endpoints
2331 * default value is changed (effecting future
2332 * associations only).
2333 *
2334 * assoc_value - This parameter contains the number of milliseconds
2335 * that the user is requesting the delayed ACK timer
2336 * be set to. Note that this value is defined in
2337 * the standard to be between 200 and 500 milliseconds.
2338 *
2339 * Note: a value of zero will leave the value alone,
2340 * but disable SACK delay. A non-zero value will also
2341 * enable SACK delay.
2342 */
2343
2344 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2345 char __user *optval, int optlen)
2346 {
2347 struct sctp_assoc_value params;
2348 struct sctp_transport *trans = NULL;
2349 struct sctp_association *asoc = NULL;
2350 struct sctp_sock *sp = sctp_sk(sk);
2351
2352 if (optlen != sizeof(struct sctp_assoc_value))
2353 return - EINVAL;
2354
2355 if (copy_from_user(&params, optval, optlen))
2356 return -EFAULT;
2357
2358 /* Validate value parameter. */
2359 if (params.assoc_value > 500)
2360 return -EINVAL;
2361
2362 /* Get association, if assoc_id != 0 and the socket is a one
2363 * to many style socket, and an association was not found, then
2364 * the id was invalid.
2365 */
2366 asoc = sctp_id2assoc(sk, params.assoc_id);
2367 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2368 return -EINVAL;
2369
2370 if (params.assoc_value) {
2371 if (asoc) {
2372 asoc->sackdelay =
2373 msecs_to_jiffies(params.assoc_value);
2374 asoc->param_flags =
2375 (asoc->param_flags & ~SPP_SACKDELAY) |
2376 SPP_SACKDELAY_ENABLE;
2377 } else {
2378 sp->sackdelay = params.assoc_value;
2379 sp->param_flags =
2380 (sp->param_flags & ~SPP_SACKDELAY) |
2381 SPP_SACKDELAY_ENABLE;
2382 }
2383 } else {
2384 if (asoc) {
2385 asoc->param_flags =
2386 (asoc->param_flags & ~SPP_SACKDELAY) |
2387 SPP_SACKDELAY_DISABLE;
2388 } else {
2389 sp->param_flags =
2390 (sp->param_flags & ~SPP_SACKDELAY) |
2391 SPP_SACKDELAY_DISABLE;
2392 }
2393 }
2394
2395 /* If change is for association, also apply to each transport. */
2396 if (asoc) {
2397 struct list_head *pos;
2398
2399 list_for_each(pos, &asoc->peer.transport_addr_list) {
2400 trans = list_entry(pos, struct sctp_transport,
2401 transports);
2402 if (params.assoc_value) {
2403 trans->sackdelay =
2404 msecs_to_jiffies(params.assoc_value);
2405 trans->param_flags =
2406 (trans->param_flags & ~SPP_SACKDELAY) |
2407 SPP_SACKDELAY_ENABLE;
2408 } else {
2409 trans->param_flags =
2410 (trans->param_flags & ~SPP_SACKDELAY) |
2411 SPP_SACKDELAY_DISABLE;
2412 }
2413 }
2414 }
2415
2416 return 0;
2417 }
2418
2419 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2420 *
2421 * Applications can specify protocol parameters for the default association
2422 * initialization. The option name argument to setsockopt() and getsockopt()
2423 * is SCTP_INITMSG.
2424 *
2425 * Setting initialization parameters is effective only on an unconnected
2426 * socket (for UDP-style sockets only future associations are effected
2427 * by the change). With TCP-style sockets, this option is inherited by
2428 * sockets derived from a listener socket.
2429 */
2430 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2431 {
2432 struct sctp_initmsg sinit;
2433 struct sctp_sock *sp = sctp_sk(sk);
2434
2435 if (optlen != sizeof(struct sctp_initmsg))
2436 return -EINVAL;
2437 if (copy_from_user(&sinit, optval, optlen))
2438 return -EFAULT;
2439
2440 if (sinit.sinit_num_ostreams)
2441 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2442 if (sinit.sinit_max_instreams)
2443 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2444 if (sinit.sinit_max_attempts)
2445 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2446 if (sinit.sinit_max_init_timeo)
2447 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2448
2449 return 0;
2450 }
2451
2452 /*
2453 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2454 *
2455 * Applications that wish to use the sendto() system call may wish to
2456 * specify a default set of parameters that would normally be supplied
2457 * through the inclusion of ancillary data. This socket option allows
2458 * such an application to set the default sctp_sndrcvinfo structure.
2459 * The application that wishes to use this socket option simply passes
2460 * in to this call the sctp_sndrcvinfo structure defined in Section
2461 * 5.2.2) The input parameters accepted by this call include
2462 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2463 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2464 * to this call if the caller is using the UDP model.
2465 */
2466 static int sctp_setsockopt_default_send_param(struct sock *sk,
2467 char __user *optval, int optlen)
2468 {
2469 struct sctp_sndrcvinfo info;
2470 struct sctp_association *asoc;
2471 struct sctp_sock *sp = sctp_sk(sk);
2472
2473 if (optlen != sizeof(struct sctp_sndrcvinfo))
2474 return -EINVAL;
2475 if (copy_from_user(&info, optval, optlen))
2476 return -EFAULT;
2477
2478 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2479 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2480 return -EINVAL;
2481
2482 if (asoc) {
2483 asoc->default_stream = info.sinfo_stream;
2484 asoc->default_flags = info.sinfo_flags;
2485 asoc->default_ppid = info.sinfo_ppid;
2486 asoc->default_context = info.sinfo_context;
2487 asoc->default_timetolive = info.sinfo_timetolive;
2488 } else {
2489 sp->default_stream = info.sinfo_stream;
2490 sp->default_flags = info.sinfo_flags;
2491 sp->default_ppid = info.sinfo_ppid;
2492 sp->default_context = info.sinfo_context;
2493 sp->default_timetolive = info.sinfo_timetolive;
2494 }
2495
2496 return 0;
2497 }
2498
2499 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2500 *
2501 * Requests that the local SCTP stack use the enclosed peer address as
2502 * the association primary. The enclosed address must be one of the
2503 * association peer's addresses.
2504 */
2505 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2506 int optlen)
2507 {
2508 struct sctp_prim prim;
2509 struct sctp_transport *trans;
2510
2511 if (optlen != sizeof(struct sctp_prim))
2512 return -EINVAL;
2513
2514 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2515 return -EFAULT;
2516
2517 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2518 if (!trans)
2519 return -EINVAL;
2520
2521 sctp_assoc_set_primary(trans->asoc, trans);
2522
2523 return 0;
2524 }
2525
2526 /*
2527 * 7.1.5 SCTP_NODELAY
2528 *
2529 * Turn on/off any Nagle-like algorithm. This means that packets are
2530 * generally sent as soon as possible and no unnecessary delays are
2531 * introduced, at the cost of more packets in the network. Expects an
2532 * integer boolean flag.
2533 */
2534 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2535 int optlen)
2536 {
2537 int val;
2538
2539 if (optlen < sizeof(int))
2540 return -EINVAL;
2541 if (get_user(val, (int __user *)optval))
2542 return -EFAULT;
2543
2544 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2545 return 0;
2546 }
2547
2548 /*
2549 *
2550 * 7.1.1 SCTP_RTOINFO
2551 *
2552 * The protocol parameters used to initialize and bound retransmission
2553 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2554 * and modify these parameters.
2555 * All parameters are time values, in milliseconds. A value of 0, when
2556 * modifying the parameters, indicates that the current value should not
2557 * be changed.
2558 *
2559 */
2560 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2561 struct sctp_rtoinfo rtoinfo;
2562 struct sctp_association *asoc;
2563
2564 if (optlen != sizeof (struct sctp_rtoinfo))
2565 return -EINVAL;
2566
2567 if (copy_from_user(&rtoinfo, optval, optlen))
2568 return -EFAULT;
2569
2570 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2571
2572 /* Set the values to the specific association */
2573 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2574 return -EINVAL;
2575
2576 if (asoc) {
2577 if (rtoinfo.srto_initial != 0)
2578 asoc->rto_initial =
2579 msecs_to_jiffies(rtoinfo.srto_initial);
2580 if (rtoinfo.srto_max != 0)
2581 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2582 if (rtoinfo.srto_min != 0)
2583 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2584 } else {
2585 /* If there is no association or the association-id = 0
2586 * set the values to the endpoint.
2587 */
2588 struct sctp_sock *sp = sctp_sk(sk);
2589
2590 if (rtoinfo.srto_initial != 0)
2591 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2592 if (rtoinfo.srto_max != 0)
2593 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2594 if (rtoinfo.srto_min != 0)
2595 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2596 }
2597
2598 return 0;
2599 }
2600
2601 /*
2602 *
2603 * 7.1.2 SCTP_ASSOCINFO
2604 *
2605 * This option is used to tune the maximum retransmission attempts
2606 * of the association.
2607 * Returns an error if the new association retransmission value is
2608 * greater than the sum of the retransmission value of the peer.
2609 * See [SCTP] for more information.
2610 *
2611 */
2612 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2613 {
2614
2615 struct sctp_assocparams assocparams;
2616 struct sctp_association *asoc;
2617
2618 if (optlen != sizeof(struct sctp_assocparams))
2619 return -EINVAL;
2620 if (copy_from_user(&assocparams, optval, optlen))
2621 return -EFAULT;
2622
2623 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2624
2625 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2626 return -EINVAL;
2627
2628 /* Set the values to the specific association */
2629 if (asoc) {
2630 if (assocparams.sasoc_asocmaxrxt != 0) {
2631 __u32 path_sum = 0;
2632 int paths = 0;
2633 struct list_head *pos;
2634 struct sctp_transport *peer_addr;
2635
2636 list_for_each(pos, &asoc->peer.transport_addr_list) {
2637 peer_addr = list_entry(pos,
2638 struct sctp_transport,
2639 transports);
2640 path_sum += peer_addr->pathmaxrxt;
2641 paths++;
2642 }
2643
2644 /* Only validate asocmaxrxt if we have more then
2645 * one path/transport. We do this because path
2646 * retransmissions are only counted when we have more
2647 * then one path.
2648 */
2649 if (paths > 1 &&
2650 assocparams.sasoc_asocmaxrxt > path_sum)
2651 return -EINVAL;
2652
2653 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2654 }
2655
2656 if (assocparams.sasoc_cookie_life != 0) {
2657 asoc->cookie_life.tv_sec =
2658 assocparams.sasoc_cookie_life / 1000;
2659 asoc->cookie_life.tv_usec =
2660 (assocparams.sasoc_cookie_life % 1000)
2661 * 1000;
2662 }
2663 } else {
2664 /* Set the values to the endpoint */
2665 struct sctp_sock *sp = sctp_sk(sk);
2666
2667 if (assocparams.sasoc_asocmaxrxt != 0)
2668 sp->assocparams.sasoc_asocmaxrxt =
2669 assocparams.sasoc_asocmaxrxt;
2670 if (assocparams.sasoc_cookie_life != 0)
2671 sp->assocparams.sasoc_cookie_life =
2672 assocparams.sasoc_cookie_life;
2673 }
2674 return 0;
2675 }
2676
2677 /*
2678 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2679 *
2680 * This socket option is a boolean flag which turns on or off mapped V4
2681 * addresses. If this option is turned on and the socket is type
2682 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2683 * If this option is turned off, then no mapping will be done of V4
2684 * addresses and a user will receive both PF_INET6 and PF_INET type
2685 * addresses on the socket.
2686 */
2687 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2688 {
2689 int val;
2690 struct sctp_sock *sp = sctp_sk(sk);
2691
2692 if (optlen < sizeof(int))
2693 return -EINVAL;
2694 if (get_user(val, (int __user *)optval))
2695 return -EFAULT;
2696 if (val)
2697 sp->v4mapped = 1;
2698 else
2699 sp->v4mapped = 0;
2700
2701 return 0;
2702 }
2703
2704 /*
2705 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2706 *
2707 * This socket option specifies the maximum size to put in any outgoing
2708 * SCTP chunk. If a message is larger than this size it will be
2709 * fragmented by SCTP into the specified size. Note that the underlying
2710 * SCTP implementation may fragment into smaller sized chunks when the
2711 * PMTU of the underlying association is smaller than the value set by
2712 * the user.
2713 */
2714 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2715 {
2716 struct sctp_association *asoc;
2717 struct list_head *pos;
2718 struct sctp_sock *sp = sctp_sk(sk);
2719 int val;
2720
2721 if (optlen < sizeof(int))
2722 return -EINVAL;
2723 if (get_user(val, (int __user *)optval))
2724 return -EFAULT;
2725 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2726 return -EINVAL;
2727 sp->user_frag = val;
2728
2729 /* Update the frag_point of the existing associations. */
2730 list_for_each(pos, &(sp->ep->asocs)) {
2731 asoc = list_entry(pos, struct sctp_association, asocs);
2732 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2733 }
2734
2735 return 0;
2736 }
2737
2738
2739 /*
2740 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2741 *
2742 * Requests that the peer mark the enclosed address as the association
2743 * primary. The enclosed address must be one of the association's
2744 * locally bound addresses. The following structure is used to make a
2745 * set primary request:
2746 */
2747 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2748 int optlen)
2749 {
2750 struct sctp_sock *sp;
2751 struct sctp_endpoint *ep;
2752 struct sctp_association *asoc = NULL;
2753 struct sctp_setpeerprim prim;
2754 struct sctp_chunk *chunk;
2755 int err;
2756
2757 sp = sctp_sk(sk);
2758 ep = sp->ep;
2759
2760 if (!sctp_addip_enable)
2761 return -EPERM;
2762
2763 if (optlen != sizeof(struct sctp_setpeerprim))
2764 return -EINVAL;
2765
2766 if (copy_from_user(&prim, optval, optlen))
2767 return -EFAULT;
2768
2769 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2770 if (!asoc)
2771 return -EINVAL;
2772
2773 if (!asoc->peer.asconf_capable)
2774 return -EPERM;
2775
2776 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2777 return -EPERM;
2778
2779 if (!sctp_state(asoc, ESTABLISHED))
2780 return -ENOTCONN;
2781
2782 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2783 return -EADDRNOTAVAIL;
2784
2785 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2786 chunk = sctp_make_asconf_set_prim(asoc,
2787 (union sctp_addr *)&prim.sspp_addr);
2788 if (!chunk)
2789 return -ENOMEM;
2790
2791 err = sctp_send_asconf(asoc, chunk);
2792
2793 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2794
2795 return err;
2796 }
2797
2798 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2799 int optlen)
2800 {
2801 struct sctp_setadaptation adaptation;
2802
2803 if (optlen != sizeof(struct sctp_setadaptation))
2804 return -EINVAL;
2805 if (copy_from_user(&adaptation, optval, optlen))
2806 return -EFAULT;
2807
2808 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2809
2810 return 0;
2811 }
2812
2813 /*
2814 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
2815 *
2816 * The context field in the sctp_sndrcvinfo structure is normally only
2817 * used when a failed message is retrieved holding the value that was
2818 * sent down on the actual send call. This option allows the setting of
2819 * a default context on an association basis that will be received on
2820 * reading messages from the peer. This is especially helpful in the
2821 * one-2-many model for an application to keep some reference to an
2822 * internal state machine that is processing messages on the
2823 * association. Note that the setting of this value only effects
2824 * received messages from the peer and does not effect the value that is
2825 * saved with outbound messages.
2826 */
2827 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2828 int optlen)
2829 {
2830 struct sctp_assoc_value params;
2831 struct sctp_sock *sp;
2832 struct sctp_association *asoc;
2833
2834 if (optlen != sizeof(struct sctp_assoc_value))
2835 return -EINVAL;
2836 if (copy_from_user(&params, optval, optlen))
2837 return -EFAULT;
2838
2839 sp = sctp_sk(sk);
2840
2841 if (params.assoc_id != 0) {
2842 asoc = sctp_id2assoc(sk, params.assoc_id);
2843 if (!asoc)
2844 return -EINVAL;
2845 asoc->default_rcv_context = params.assoc_value;
2846 } else {
2847 sp->default_rcv_context = params.assoc_value;
2848 }
2849
2850 return 0;
2851 }
2852
2853 /*
2854 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2855 *
2856 * This options will at a minimum specify if the implementation is doing
2857 * fragmented interleave. Fragmented interleave, for a one to many
2858 * socket, is when subsequent calls to receive a message may return
2859 * parts of messages from different associations. Some implementations
2860 * may allow you to turn this value on or off. If so, when turned off,
2861 * no fragment interleave will occur (which will cause a head of line
2862 * blocking amongst multiple associations sharing the same one to many
2863 * socket). When this option is turned on, then each receive call may
2864 * come from a different association (thus the user must receive data
2865 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2866 * association each receive belongs to.
2867 *
2868 * This option takes a boolean value. A non-zero value indicates that
2869 * fragmented interleave is on. A value of zero indicates that
2870 * fragmented interleave is off.
2871 *
2872 * Note that it is important that an implementation that allows this
2873 * option to be turned on, have it off by default. Otherwise an unaware
2874 * application using the one to many model may become confused and act
2875 * incorrectly.
2876 */
2877 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2878 char __user *optval,
2879 int optlen)
2880 {
2881 int val;
2882
2883 if (optlen != sizeof(int))
2884 return -EINVAL;
2885 if (get_user(val, (int __user *)optval))
2886 return -EFAULT;
2887
2888 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2889
2890 return 0;
2891 }
2892
2893 /*
2894 * 7.1.25. Set or Get the sctp partial delivery point
2895 * (SCTP_PARTIAL_DELIVERY_POINT)
2896 * This option will set or get the SCTP partial delivery point. This
2897 * point is the size of a message where the partial delivery API will be
2898 * invoked to help free up rwnd space for the peer. Setting this to a
2899 * lower value will cause partial delivery's to happen more often. The
2900 * calls argument is an integer that sets or gets the partial delivery
2901 * point.
2902 */
2903 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2904 char __user *optval,
2905 int optlen)
2906 {
2907 u32 val;
2908
2909 if (optlen != sizeof(u32))
2910 return -EINVAL;
2911 if (get_user(val, (int __user *)optval))
2912 return -EFAULT;
2913
2914 sctp_sk(sk)->pd_point = val;
2915
2916 return 0; /* is this the right error code? */
2917 }
2918
2919 /*
2920 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
2921 *
2922 * This option will allow a user to change the maximum burst of packets
2923 * that can be emitted by this association. Note that the default value
2924 * is 4, and some implementations may restrict this setting so that it
2925 * can only be lowered.
2926 *
2927 * NOTE: This text doesn't seem right. Do this on a socket basis with
2928 * future associations inheriting the socket value.
2929 */
2930 static int sctp_setsockopt_maxburst(struct sock *sk,
2931 char __user *optval,
2932 int optlen)
2933 {
2934 int val;
2935
2936 if (optlen != sizeof(int))
2937 return -EINVAL;
2938 if (get_user(val, (int __user *)optval))
2939 return -EFAULT;
2940
2941 if (val < 0)
2942 return -EINVAL;
2943
2944 sctp_sk(sk)->max_burst = val;
2945
2946 return 0;
2947 }
2948
2949 /* API 6.2 setsockopt(), getsockopt()
2950 *
2951 * Applications use setsockopt() and getsockopt() to set or retrieve
2952 * socket options. Socket options are used to change the default
2953 * behavior of sockets calls. They are described in Section 7.
2954 *
2955 * The syntax is:
2956 *
2957 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
2958 * int __user *optlen);
2959 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2960 * int optlen);
2961 *
2962 * sd - the socket descript.
2963 * level - set to IPPROTO_SCTP for all SCTP options.
2964 * optname - the option name.
2965 * optval - the buffer to store the value of the option.
2966 * optlen - the size of the buffer.
2967 */
2968 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2969 char __user *optval, int optlen)
2970 {
2971 int retval = 0;
2972
2973 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2974 sk, optname);
2975
2976 /* I can hardly begin to describe how wrong this is. This is
2977 * so broken as to be worse than useless. The API draft
2978 * REALLY is NOT helpful here... I am not convinced that the
2979 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2980 * are at all well-founded.
2981 */
2982 if (level != SOL_SCTP) {
2983 struct sctp_af *af = sctp_sk(sk)->pf->af;
2984 retval = af->setsockopt(sk, level, optname, optval, optlen);
2985 goto out_nounlock;
2986 }
2987
2988 sctp_lock_sock(sk);
2989
2990 switch (optname) {
2991 case SCTP_SOCKOPT_BINDX_ADD:
2992 /* 'optlen' is the size of the addresses buffer. */
2993 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2994 optlen, SCTP_BINDX_ADD_ADDR);
2995 break;
2996
2997 case SCTP_SOCKOPT_BINDX_REM:
2998 /* 'optlen' is the size of the addresses buffer. */
2999 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3000 optlen, SCTP_BINDX_REM_ADDR);
3001 break;
3002
3003 case SCTP_SOCKOPT_CONNECTX:
3004 /* 'optlen' is the size of the addresses buffer. */
3005 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
3006 optlen);
3007 break;
3008
3009 case SCTP_DISABLE_FRAGMENTS:
3010 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3011 break;
3012
3013 case SCTP_EVENTS:
3014 retval = sctp_setsockopt_events(sk, optval, optlen);
3015 break;
3016
3017 case SCTP_AUTOCLOSE:
3018 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3019 break;
3020
3021 case SCTP_PEER_ADDR_PARAMS:
3022 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3023 break;
3024
3025 case SCTP_DELAYED_ACK_TIME:
3026 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
3027 break;
3028 case SCTP_PARTIAL_DELIVERY_POINT:
3029 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3030 break;
3031
3032 case SCTP_INITMSG:
3033 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3034 break;
3035 case SCTP_DEFAULT_SEND_PARAM:
3036 retval = sctp_setsockopt_default_send_param(sk, optval,
3037 optlen);
3038 break;
3039 case SCTP_PRIMARY_ADDR:
3040 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3041 break;
3042 case SCTP_SET_PEER_PRIMARY_ADDR:
3043 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3044 break;
3045 case SCTP_NODELAY:
3046 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3047 break;
3048 case SCTP_RTOINFO:
3049 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3050 break;
3051 case SCTP_ASSOCINFO:
3052 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3053 break;
3054 case SCTP_I_WANT_MAPPED_V4_ADDR:
3055 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3056 break;
3057 case SCTP_MAXSEG:
3058 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3059 break;
3060 case SCTP_ADAPTATION_LAYER:
3061 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3062 break;
3063 case SCTP_CONTEXT:
3064 retval = sctp_setsockopt_context(sk, optval, optlen);
3065 break;
3066 case SCTP_FRAGMENT_INTERLEAVE:
3067 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3068 break;
3069 case SCTP_MAX_BURST:
3070 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3071 break;
3072 default:
3073 retval = -ENOPROTOOPT;
3074 break;
3075 }
3076
3077 sctp_release_sock(sk);
3078
3079 out_nounlock:
3080 return retval;
3081 }
3082
3083 /* API 3.1.6 connect() - UDP Style Syntax
3084 *
3085 * An application may use the connect() call in the UDP model to initiate an
3086 * association without sending data.
3087 *
3088 * The syntax is:
3089 *
3090 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3091 *
3092 * sd: the socket descriptor to have a new association added to.
3093 *
3094 * nam: the address structure (either struct sockaddr_in or struct
3095 * sockaddr_in6 defined in RFC2553 [7]).
3096 *
3097 * len: the size of the address.
3098 */
3099 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3100 int addr_len)
3101 {
3102 int err = 0;
3103 struct sctp_af *af;
3104
3105 sctp_lock_sock(sk);
3106
3107 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3108 __FUNCTION__, sk, addr, addr_len);
3109
3110 /* Validate addr_len before calling common connect/connectx routine. */
3111 af = sctp_get_af_specific(addr->sa_family);
3112 if (!af || addr_len < af->sockaddr_len) {
3113 err = -EINVAL;
3114 } else {
3115 /* Pass correct addr len to common routine (so it knows there
3116 * is only one address being passed.
3117 */
3118 err = __sctp_connect(sk, addr, af->sockaddr_len);
3119 }
3120
3121 sctp_release_sock(sk);
3122 return err;
3123 }
3124
3125 /* FIXME: Write comments. */
3126 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3127 {
3128 return -EOPNOTSUPP; /* STUB */
3129 }
3130
3131 /* 4.1.4 accept() - TCP Style Syntax
3132 *
3133 * Applications use accept() call to remove an established SCTP
3134 * association from the accept queue of the endpoint. A new socket
3135 * descriptor will be returned from accept() to represent the newly
3136 * formed association.
3137 */
3138 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3139 {
3140 struct sctp_sock *sp;
3141 struct sctp_endpoint *ep;
3142 struct sock *newsk = NULL;
3143 struct sctp_association *asoc;
3144 long timeo;
3145 int error = 0;
3146
3147 sctp_lock_sock(sk);
3148
3149 sp = sctp_sk(sk);
3150 ep = sp->ep;
3151
3152 if (!sctp_style(sk, TCP)) {
3153 error = -EOPNOTSUPP;
3154 goto out;
3155 }
3156
3157 if (!sctp_sstate(sk, LISTENING)) {
3158 error = -EINVAL;
3159 goto out;
3160 }
3161
3162 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3163
3164 error = sctp_wait_for_accept(sk, timeo);
3165 if (error)
3166 goto out;
3167
3168 /* We treat the list of associations on the endpoint as the accept
3169 * queue and pick the first association on the list.
3170 */
3171 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3172
3173 newsk = sp->pf->create_accept_sk(sk, asoc);
3174 if (!newsk) {
3175 error = -ENOMEM;
3176 goto out;
3177 }
3178
3179 /* Populate the fields of the newsk from the oldsk and migrate the
3180 * asoc to the newsk.
3181 */
3182 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3183
3184 out:
3185 sctp_release_sock(sk);
3186 *err = error;
3187 return newsk;
3188 }
3189
3190 /* The SCTP ioctl handler. */
3191 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3192 {
3193 return -ENOIOCTLCMD;
3194 }
3195
3196 /* This is the function which gets called during socket creation to
3197 * initialized the SCTP-specific portion of the sock.
3198 * The sock structure should already be zero-filled memory.
3199 */
3200 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3201 {
3202 struct sctp_endpoint *ep;
3203 struct sctp_sock *sp;
3204
3205 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3206
3207 sp = sctp_sk(sk);
3208
3209 /* Initialize the SCTP per socket area. */
3210 switch (sk->sk_type) {
3211 case SOCK_SEQPACKET:
3212 sp->type = SCTP_SOCKET_UDP;
3213 break;
3214 case SOCK_STREAM:
3215 sp->type = SCTP_SOCKET_TCP;
3216 break;
3217 default:
3218 return -ESOCKTNOSUPPORT;
3219 }
3220
3221 /* Initialize default send parameters. These parameters can be
3222 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3223 */
3224 sp->default_stream = 0;
3225 sp->default_ppid = 0;
3226 sp->default_flags = 0;
3227 sp->default_context = 0;
3228 sp->default_timetolive = 0;
3229
3230 sp->default_rcv_context = 0;
3231 sp->max_burst = sctp_max_burst;
3232
3233 /* Initialize default setup parameters. These parameters
3234 * can be modified with the SCTP_INITMSG socket option or
3235 * overridden by the SCTP_INIT CMSG.
3236 */
3237 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3238 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3239 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3240 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3241
3242 /* Initialize default RTO related parameters. These parameters can
3243 * be modified for with the SCTP_RTOINFO socket option.
3244 */
3245 sp->rtoinfo.srto_initial = sctp_rto_initial;
3246 sp->rtoinfo.srto_max = sctp_rto_max;
3247 sp->rtoinfo.srto_min = sctp_rto_min;
3248
3249 /* Initialize default association related parameters. These parameters
3250 * can be modified with the SCTP_ASSOCINFO socket option.
3251 */
3252 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3253 sp->assocparams.sasoc_number_peer_destinations = 0;
3254 sp->assocparams.sasoc_peer_rwnd = 0;
3255 sp->assocparams.sasoc_local_rwnd = 0;
3256 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3257
3258 /* Initialize default event subscriptions. By default, all the
3259 * options are off.
3260 */
3261 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3262
3263 /* Default Peer Address Parameters. These defaults can
3264 * be modified via SCTP_PEER_ADDR_PARAMS
3265 */
3266 sp->hbinterval = sctp_hb_interval;
3267 sp->pathmaxrxt = sctp_max_retrans_path;
3268 sp->pathmtu = 0; // allow default discovery
3269 sp->sackdelay = sctp_sack_timeout;
3270 sp->param_flags = SPP_HB_ENABLE |
3271 SPP_PMTUD_ENABLE |
3272 SPP_SACKDELAY_ENABLE;
3273
3274 /* If enabled no SCTP message fragmentation will be performed.
3275 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3276 */
3277 sp->disable_fragments = 0;
3278
3279 /* Enable Nagle algorithm by default. */
3280 sp->nodelay = 0;
3281
3282 /* Enable by default. */
3283 sp->v4mapped = 1;
3284
3285 /* Auto-close idle associations after the configured
3286 * number of seconds. A value of 0 disables this
3287 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3288 * for UDP-style sockets only.
3289 */
3290 sp->autoclose = 0;
3291
3292 /* User specified fragmentation limit. */
3293 sp->user_frag = 0;
3294
3295 sp->adaptation_ind = 0;
3296
3297 sp->pf = sctp_get_pf_specific(sk->sk_family);
3298
3299 /* Control variables for partial data delivery. */
3300 atomic_set(&sp->pd_mode, 0);
3301 skb_queue_head_init(&sp->pd_lobby);
3302 sp->frag_interleave = 0;
3303
3304 /* Create a per socket endpoint structure. Even if we
3305 * change the data structure relationships, this may still
3306 * be useful for storing pre-connect address information.
3307 */
3308 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3309 if (!ep)
3310 return -ENOMEM;
3311
3312 sp->ep = ep;
3313 sp->hmac = NULL;
3314
3315 SCTP_DBG_OBJCNT_INC(sock);
3316 atomic_inc(&sctp_sockets_allocated);
3317 return 0;
3318 }
3319
3320 /* Cleanup any SCTP per socket resources. */
3321 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3322 {
3323 struct sctp_endpoint *ep;
3324
3325 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3326
3327 /* Release our hold on the endpoint. */
3328 ep = sctp_sk(sk)->ep;
3329 sctp_endpoint_free(ep);
3330 atomic_dec(&sctp_sockets_allocated);
3331 return 0;
3332 }
3333
3334 /* API 4.1.7 shutdown() - TCP Style Syntax
3335 * int shutdown(int socket, int how);
3336 *
3337 * sd - the socket descriptor of the association to be closed.
3338 * how - Specifies the type of shutdown. The values are
3339 * as follows:
3340 * SHUT_RD
3341 * Disables further receive operations. No SCTP
3342 * protocol action is taken.
3343 * SHUT_WR
3344 * Disables further send operations, and initiates
3345 * the SCTP shutdown sequence.
3346 * SHUT_RDWR
3347 * Disables further send and receive operations
3348 * and initiates the SCTP shutdown sequence.
3349 */
3350 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3351 {
3352 struct sctp_endpoint *ep;
3353 struct sctp_association *asoc;
3354
3355 if (!sctp_style(sk, TCP))
3356 return;
3357
3358 if (how & SEND_SHUTDOWN) {
3359 ep = sctp_sk(sk)->ep;
3360 if (!list_empty(&ep->asocs)) {
3361 asoc = list_entry(ep->asocs.next,
3362 struct sctp_association, asocs);
3363 sctp_primitive_SHUTDOWN(asoc, NULL);
3364 }
3365 }
3366 }
3367
3368 /* 7.2.1 Association Status (SCTP_STATUS)
3369
3370 * Applications can retrieve current status information about an
3371 * association, including association state, peer receiver window size,
3372 * number of unacked data chunks, and number of data chunks pending
3373 * receipt. This information is read-only.
3374 */
3375 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3376 char __user *optval,
3377 int __user *optlen)
3378 {
3379 struct sctp_status status;
3380 struct sctp_association *asoc = NULL;
3381 struct sctp_transport *transport;
3382 sctp_assoc_t associd;
3383 int retval = 0;
3384
3385 if (len < sizeof(status)) {
3386 retval = -EINVAL;
3387 goto out;
3388 }
3389
3390 len = sizeof(status);
3391 if (copy_from_user(&status, optval, len)) {
3392 retval = -EFAULT;
3393 goto out;
3394 }
3395
3396 associd = status.sstat_assoc_id;
3397 asoc = sctp_id2assoc(sk, associd);
3398 if (!asoc) {
3399 retval = -EINVAL;
3400 goto out;
3401 }
3402
3403 transport = asoc->peer.primary_path;
3404
3405 status.sstat_assoc_id = sctp_assoc2id(asoc);
3406 status.sstat_state = asoc->state;
3407 status.sstat_rwnd = asoc->peer.rwnd;
3408 status.sstat_unackdata = asoc->unack_data;
3409
3410 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3411 status.sstat_instrms = asoc->c.sinit_max_instreams;
3412 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3413 status.sstat_fragmentation_point = asoc->frag_point;
3414 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3415 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3416 transport->af_specific->sockaddr_len);
3417 /* Map ipv4 address into v4-mapped-on-v6 address. */
3418 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3419 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3420 status.sstat_primary.spinfo_state = transport->state;
3421 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3422 status.sstat_primary.spinfo_srtt = transport->srtt;
3423 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3424 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3425
3426 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3427 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3428
3429 if (put_user(len, optlen)) {
3430 retval = -EFAULT;
3431 goto out;
3432 }
3433
3434 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3435 len, status.sstat_state, status.sstat_rwnd,
3436 status.sstat_assoc_id);
3437
3438 if (copy_to_user(optval, &status, len)) {
3439 retval = -EFAULT;
3440 goto out;
3441 }
3442
3443 out:
3444 return (retval);
3445 }
3446
3447
3448 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3449 *
3450 * Applications can retrieve information about a specific peer address
3451 * of an association, including its reachability state, congestion
3452 * window, and retransmission timer values. This information is
3453 * read-only.
3454 */
3455 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3456 char __user *optval,
3457 int __user *optlen)
3458 {
3459 struct sctp_paddrinfo pinfo;
3460 struct sctp_transport *transport;
3461 int retval = 0;
3462
3463 if (len < sizeof(pinfo)) {
3464 retval = -EINVAL;
3465 goto out;
3466 }
3467
3468 len = sizeof(pinfo);
3469 if (copy_from_user(&pinfo, optval, len)) {
3470 retval = -EFAULT;
3471 goto out;
3472 }
3473
3474 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3475 pinfo.spinfo_assoc_id);
3476 if (!transport)
3477 return -EINVAL;
3478
3479 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3480 pinfo.spinfo_state = transport->state;
3481 pinfo.spinfo_cwnd = transport->cwnd;
3482 pinfo.spinfo_srtt = transport->srtt;
3483 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3484 pinfo.spinfo_mtu = transport->pathmtu;
3485
3486 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3487 pinfo.spinfo_state = SCTP_ACTIVE;
3488
3489 if (put_user(len, optlen)) {
3490 retval = -EFAULT;
3491 goto out;
3492 }
3493
3494 if (copy_to_user(optval, &pinfo, len)) {
3495 retval = -EFAULT;
3496 goto out;
3497 }
3498
3499 out:
3500 return (retval);
3501 }
3502
3503 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3504 *
3505 * This option is a on/off flag. If enabled no SCTP message
3506 * fragmentation will be performed. Instead if a message being sent
3507 * exceeds the current PMTU size, the message will NOT be sent and
3508 * instead a error will be indicated to the user.
3509 */
3510 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3511 char __user *optval, int __user *optlen)
3512 {
3513 int val;
3514
3515 if (len < sizeof(int))
3516 return -EINVAL;
3517
3518 len = sizeof(int);
3519 val = (sctp_sk(sk)->disable_fragments == 1);
3520 if (put_user(len, optlen))
3521 return -EFAULT;
3522 if (copy_to_user(optval, &val, len))
3523 return -EFAULT;
3524 return 0;
3525 }
3526
3527 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3528 *
3529 * This socket option is used to specify various notifications and
3530 * ancillary data the user wishes to receive.
3531 */
3532 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3533 int __user *optlen)
3534 {
3535 if (len < sizeof(struct sctp_event_subscribe))
3536 return -EINVAL;
3537 len = sizeof(struct sctp_event_subscribe);
3538 if (put_user(len, optlen))
3539 return -EFAULT;
3540 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3541 return -EFAULT;
3542 return 0;
3543 }
3544
3545 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3546 *
3547 * This socket option is applicable to the UDP-style socket only. When
3548 * set it will cause associations that are idle for more than the
3549 * specified number of seconds to automatically close. An association
3550 * being idle is defined an association that has NOT sent or received
3551 * user data. The special value of '0' indicates that no automatic
3552 * close of any associations should be performed. The option expects an
3553 * integer defining the number of seconds of idle time before an
3554 * association is closed.
3555 */
3556 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3557 {
3558 /* Applicable to UDP-style socket only */
3559 if (sctp_style(sk, TCP))
3560 return -EOPNOTSUPP;
3561 if (len < sizeof(int))
3562 return -EINVAL;
3563 len = sizeof(int);
3564 if (put_user(len, optlen))
3565 return -EFAULT;
3566 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3567 return -EFAULT;
3568 return 0;
3569 }
3570
3571 /* Helper routine to branch off an association to a new socket. */
3572 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3573 struct socket **sockp)
3574 {
3575 struct sock *sk = asoc->base.sk;
3576 struct socket *sock;
3577 struct inet_sock *inetsk;
3578 struct sctp_af *af;
3579 int err = 0;
3580
3581 /* An association cannot be branched off from an already peeled-off
3582 * socket, nor is this supported for tcp style sockets.
3583 */
3584 if (!sctp_style(sk, UDP))
3585 return -EINVAL;
3586
3587 /* Create a new socket. */
3588 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3589 if (err < 0)
3590 return err;
3591
3592 /* Populate the fields of the newsk from the oldsk and migrate the
3593 * asoc to the newsk.
3594 */
3595 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3596
3597 /* Make peeled-off sockets more like 1-1 accepted sockets.
3598 * Set the daddr and initialize id to something more random
3599 */
3600 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3601 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3602 inetsk = inet_sk(sock->sk);
3603 inetsk->id = asoc->next_tsn ^ jiffies;
3604
3605 *sockp = sock;
3606
3607 return err;
3608 }
3609
3610 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3611 {
3612 sctp_peeloff_arg_t peeloff;
3613 struct socket *newsock;
3614 int retval = 0;
3615 struct sctp_association *asoc;
3616
3617 if (len < sizeof(sctp_peeloff_arg_t))
3618 return -EINVAL;
3619 len = sizeof(sctp_peeloff_arg_t);
3620 if (copy_from_user(&peeloff, optval, len))
3621 return -EFAULT;
3622
3623 asoc = sctp_id2assoc(sk, peeloff.associd);
3624 if (!asoc) {
3625 retval = -EINVAL;
3626 goto out;
3627 }
3628
3629 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3630
3631 retval = sctp_do_peeloff(asoc, &newsock);
3632 if (retval < 0)
3633 goto out;
3634
3635 /* Map the socket to an unused fd that can be returned to the user. */
3636 retval = sock_map_fd(newsock);
3637 if (retval < 0) {
3638 sock_release(newsock);
3639 goto out;
3640 }
3641
3642 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3643 __FUNCTION__, sk, asoc, newsock->sk, retval);
3644
3645 /* Return the fd mapped to the new socket. */
3646 peeloff.sd = retval;
3647 if (put_user(len, optlen))
3648 return -EFAULT;
3649 if (copy_to_user(optval, &peeloff, len))
3650 retval = -EFAULT;
3651
3652 out:
3653 return retval;
3654 }
3655
3656 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3657 *
3658 * Applications can enable or disable heartbeats for any peer address of
3659 * an association, modify an address's heartbeat interval, force a
3660 * heartbeat to be sent immediately, and adjust the address's maximum
3661 * number of retransmissions sent before an address is considered
3662 * unreachable. The following structure is used to access and modify an
3663 * address's parameters:
3664 *
3665 * struct sctp_paddrparams {
3666 * sctp_assoc_t spp_assoc_id;
3667 * struct sockaddr_storage spp_address;
3668 * uint32_t spp_hbinterval;
3669 * uint16_t spp_pathmaxrxt;
3670 * uint32_t spp_pathmtu;
3671 * uint32_t spp_sackdelay;
3672 * uint32_t spp_flags;
3673 * };
3674 *
3675 * spp_assoc_id - (one-to-many style socket) This is filled in the
3676 * application, and identifies the association for
3677 * this query.
3678 * spp_address - This specifies which address is of interest.
3679 * spp_hbinterval - This contains the value of the heartbeat interval,
3680 * in milliseconds. If a value of zero
3681 * is present in this field then no changes are to
3682 * be made to this parameter.
3683 * spp_pathmaxrxt - This contains the maximum number of
3684 * retransmissions before this address shall be
3685 * considered unreachable. If a value of zero
3686 * is present in this field then no changes are to
3687 * be made to this parameter.
3688 * spp_pathmtu - When Path MTU discovery is disabled the value
3689 * specified here will be the "fixed" path mtu.
3690 * Note that if the spp_address field is empty
3691 * then all associations on this address will
3692 * have this fixed path mtu set upon them.
3693 *
3694 * spp_sackdelay - When delayed sack is enabled, this value specifies
3695 * the number of milliseconds that sacks will be delayed
3696 * for. This value will apply to all addresses of an
3697 * association if the spp_address field is empty. Note
3698 * also, that if delayed sack is enabled and this
3699 * value is set to 0, no change is made to the last
3700 * recorded delayed sack timer value.
3701 *
3702 * spp_flags - These flags are used to control various features
3703 * on an association. The flag field may contain
3704 * zero or more of the following options.
3705 *
3706 * SPP_HB_ENABLE - Enable heartbeats on the
3707 * specified address. Note that if the address
3708 * field is empty all addresses for the association
3709 * have heartbeats enabled upon them.
3710 *
3711 * SPP_HB_DISABLE - Disable heartbeats on the
3712 * speicifed address. Note that if the address
3713 * field is empty all addresses for the association
3714 * will have their heartbeats disabled. Note also
3715 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
3716 * mutually exclusive, only one of these two should
3717 * be specified. Enabling both fields will have
3718 * undetermined results.
3719 *
3720 * SPP_HB_DEMAND - Request a user initiated heartbeat
3721 * to be made immediately.
3722 *
3723 * SPP_PMTUD_ENABLE - This field will enable PMTU
3724 * discovery upon the specified address. Note that
3725 * if the address feild is empty then all addresses
3726 * on the association are effected.
3727 *
3728 * SPP_PMTUD_DISABLE - This field will disable PMTU
3729 * discovery upon the specified address. Note that
3730 * if the address feild is empty then all addresses
3731 * on the association are effected. Not also that
3732 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3733 * exclusive. Enabling both will have undetermined
3734 * results.
3735 *
3736 * SPP_SACKDELAY_ENABLE - Setting this flag turns
3737 * on delayed sack. The time specified in spp_sackdelay
3738 * is used to specify the sack delay for this address. Note
3739 * that if spp_address is empty then all addresses will
3740 * enable delayed sack and take on the sack delay
3741 * value specified in spp_sackdelay.
3742 * SPP_SACKDELAY_DISABLE - Setting this flag turns
3743 * off delayed sack. If the spp_address field is blank then
3744 * delayed sack is disabled for the entire association. Note
3745 * also that this field is mutually exclusive to
3746 * SPP_SACKDELAY_ENABLE, setting both will have undefined
3747 * results.
3748 */
3749 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3750 char __user *optval, int __user *optlen)
3751 {
3752 struct sctp_paddrparams params;
3753 struct sctp_transport *trans = NULL;
3754 struct sctp_association *asoc = NULL;
3755 struct sctp_sock *sp = sctp_sk(sk);
3756
3757 if (len < sizeof(struct sctp_paddrparams))
3758 return -EINVAL;
3759 len = sizeof(struct sctp_paddrparams);
3760 if (copy_from_user(&params, optval, len))
3761 return -EFAULT;
3762
3763 /* If an address other than INADDR_ANY is specified, and
3764 * no transport is found, then the request is invalid.
3765 */
3766 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3767 trans = sctp_addr_id2transport(sk, &params.spp_address,
3768 params.spp_assoc_id);
3769 if (!trans) {
3770 SCTP_DEBUG_PRINTK("Failed no transport\n");
3771 return -EINVAL;
3772 }
3773 }
3774
3775 /* Get association, if assoc_id != 0 and the socket is a one
3776 * to many style socket, and an association was not found, then
3777 * the id was invalid.
3778 */
3779 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3780 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3781 SCTP_DEBUG_PRINTK("Failed no association\n");
3782 return -EINVAL;
3783 }
3784
3785 if (trans) {
3786 /* Fetch transport values. */
3787 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3788 params.spp_pathmtu = trans->pathmtu;
3789 params.spp_pathmaxrxt = trans->pathmaxrxt;
3790 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
3791
3792 /*draft-11 doesn't say what to return in spp_flags*/
3793 params.spp_flags = trans->param_flags;
3794 } else if (asoc) {
3795 /* Fetch association values. */
3796 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3797 params.spp_pathmtu = asoc->pathmtu;
3798 params.spp_pathmaxrxt = asoc->pathmaxrxt;
3799 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
3800
3801 /*draft-11 doesn't say what to return in spp_flags*/
3802 params.spp_flags = asoc->param_flags;
3803 } else {
3804 /* Fetch socket values. */
3805 params.spp_hbinterval = sp->hbinterval;
3806 params.spp_pathmtu = sp->pathmtu;
3807 params.spp_sackdelay = sp->sackdelay;
3808 params.spp_pathmaxrxt = sp->pathmaxrxt;
3809
3810 /*draft-11 doesn't say what to return in spp_flags*/
3811 params.spp_flags = sp->param_flags;
3812 }
3813
3814 if (copy_to_user(optval, &params, len))
3815 return -EFAULT;
3816
3817 if (put_user(len, optlen))
3818 return -EFAULT;
3819
3820 return 0;
3821 }
3822
3823 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3824 *
3825 * This options will get or set the delayed ack timer. The time is set
3826 * in milliseconds. If the assoc_id is 0, then this sets or gets the
3827 * endpoints default delayed ack timer value. If the assoc_id field is
3828 * non-zero, then the set or get effects the specified association.
3829 *
3830 * struct sctp_assoc_value {
3831 * sctp_assoc_t assoc_id;
3832 * uint32_t assoc_value;
3833 * };
3834 *
3835 * assoc_id - This parameter, indicates which association the
3836 * user is preforming an action upon. Note that if
3837 * this field's value is zero then the endpoints
3838 * default value is changed (effecting future
3839 * associations only).
3840 *
3841 * assoc_value - This parameter contains the number of milliseconds
3842 * that the user is requesting the delayed ACK timer
3843 * be set to. Note that this value is defined in
3844 * the standard to be between 200 and 500 milliseconds.
3845 *
3846 * Note: a value of zero will leave the value alone,
3847 * but disable SACK delay. A non-zero value will also
3848 * enable SACK delay.
3849 */
3850 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3851 char __user *optval,
3852 int __user *optlen)
3853 {
3854 struct sctp_assoc_value params;
3855 struct sctp_association *asoc = NULL;
3856 struct sctp_sock *sp = sctp_sk(sk);
3857
3858 if (len < sizeof(struct sctp_assoc_value))
3859 return - EINVAL;
3860
3861 len = sizeof(struct sctp_assoc_value);
3862
3863 if (copy_from_user(&params, optval, len))
3864 return -EFAULT;
3865
3866 /* Get association, if assoc_id != 0 and the socket is a one
3867 * to many style socket, and an association was not found, then
3868 * the id was invalid.
3869 */
3870 asoc = sctp_id2assoc(sk, params.assoc_id);
3871 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3872 return -EINVAL;
3873
3874 if (asoc) {
3875 /* Fetch association values. */
3876 if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3877 params.assoc_value = jiffies_to_msecs(
3878 asoc->sackdelay);
3879 else
3880 params.assoc_value = 0;
3881 } else {
3882 /* Fetch socket values. */
3883 if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3884 params.assoc_value = sp->sackdelay;
3885 else
3886 params.assoc_value = 0;
3887 }
3888
3889 if (copy_to_user(optval, &params, len))
3890 return -EFAULT;
3891
3892 if (put_user(len, optlen))
3893 return -EFAULT;
3894
3895 return 0;
3896 }
3897
3898 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3899 *
3900 * Applications can specify protocol parameters for the default association
3901 * initialization. The option name argument to setsockopt() and getsockopt()
3902 * is SCTP_INITMSG.
3903 *
3904 * Setting initialization parameters is effective only on an unconnected
3905 * socket (for UDP-style sockets only future associations are effected
3906 * by the change). With TCP-style sockets, this option is inherited by
3907 * sockets derived from a listener socket.
3908 */
3909 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3910 {
3911 if (len < sizeof(struct sctp_initmsg))
3912 return -EINVAL;
3913 len = sizeof(struct sctp_initmsg);
3914 if (put_user(len, optlen))
3915 return -EFAULT;
3916 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3917 return -EFAULT;
3918 return 0;
3919 }
3920
3921 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3922 char __user *optval,
3923 int __user *optlen)
3924 {
3925 sctp_assoc_t id;
3926 struct sctp_association *asoc;
3927 struct list_head *pos;
3928 int cnt = 0;
3929
3930 if (len < sizeof(sctp_assoc_t))
3931 return -EINVAL;
3932
3933 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3934 return -EFAULT;
3935
3936 /* For UDP-style sockets, id specifies the association to query. */
3937 asoc = sctp_id2assoc(sk, id);
3938 if (!asoc)
3939 return -EINVAL;
3940
3941 list_for_each(pos, &asoc->peer.transport_addr_list) {
3942 cnt ++;
3943 }
3944
3945 return cnt;
3946 }
3947
3948 /*
3949 * Old API for getting list of peer addresses. Does not work for 32-bit
3950 * programs running on a 64-bit kernel
3951 */
3952 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3953 char __user *optval,
3954 int __user *optlen)
3955 {
3956 struct sctp_association *asoc;
3957 struct list_head *pos;
3958 int cnt = 0;
3959 struct sctp_getaddrs_old getaddrs;
3960 struct sctp_transport *from;
3961 void __user *to;
3962 union sctp_addr temp;
3963 struct sctp_sock *sp = sctp_sk(sk);
3964 int addrlen;
3965
3966 if (len < sizeof(struct sctp_getaddrs_old))
3967 return -EINVAL;
3968
3969 len = sizeof(struct sctp_getaddrs_old);
3970
3971 if (copy_from_user(&getaddrs, optval, len))
3972 return -EFAULT;
3973
3974 if (getaddrs.addr_num <= 0) return -EINVAL;
3975
3976 /* For UDP-style sockets, id specifies the association to query. */
3977 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3978 if (!asoc)
3979 return -EINVAL;
3980
3981 to = (void __user *)getaddrs.addrs;
3982 list_for_each(pos, &asoc->peer.transport_addr_list) {
3983 from = list_entry(pos, struct sctp_transport, transports);
3984 memcpy(&temp, &from->ipaddr, sizeof(temp));
3985 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3986 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3987 if (copy_to_user(to, &temp, addrlen))
3988 return -EFAULT;
3989 to += addrlen ;
3990 cnt ++;
3991 if (cnt >= getaddrs.addr_num) break;
3992 }
3993 getaddrs.addr_num = cnt;
3994 if (put_user(len, optlen))
3995 return -EFAULT;
3996 if (copy_to_user(optval, &getaddrs, len))
3997 return -EFAULT;
3998
3999 return 0;
4000 }
4001
4002 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4003 char __user *optval, int __user *optlen)
4004 {
4005 struct sctp_association *asoc;
4006 struct list_head *pos;
4007 int cnt = 0;
4008 struct sctp_getaddrs getaddrs;
4009 struct sctp_transport *from;
4010 void __user *to;
4011 union sctp_addr temp;
4012 struct sctp_sock *sp = sctp_sk(sk);
4013 int addrlen;
4014 size_t space_left;
4015 int bytes_copied;
4016
4017 if (len < sizeof(struct sctp_getaddrs))
4018 return -EINVAL;
4019
4020 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4021 return -EFAULT;
4022
4023 /* For UDP-style sockets, id specifies the association to query. */
4024 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4025 if (!asoc)
4026 return -EINVAL;
4027
4028 to = optval + offsetof(struct sctp_getaddrs,addrs);
4029 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4030
4031 list_for_each(pos, &asoc->peer.transport_addr_list) {
4032 from = list_entry(pos, struct sctp_transport, transports);
4033 memcpy(&temp, &from->ipaddr, sizeof(temp));
4034 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4035 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4036 if (space_left < addrlen)
4037 return -ENOMEM;
4038 if (copy_to_user(to, &temp, addrlen))
4039 return -EFAULT;
4040 to += addrlen;
4041 cnt++;
4042 space_left -= addrlen;
4043 }
4044
4045 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4046 return -EFAULT;
4047 bytes_copied = ((char __user *)to) - optval;
4048 if (put_user(bytes_copied, optlen))
4049 return -EFAULT;
4050
4051 return 0;
4052 }
4053
4054 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4055 char __user *optval,
4056 int __user *optlen)
4057 {
4058 sctp_assoc_t id;
4059 struct sctp_bind_addr *bp;
4060 struct sctp_association *asoc;
4061 struct sctp_sockaddr_entry *addr;
4062 int cnt = 0;
4063
4064 if (len < sizeof(sctp_assoc_t))
4065 return -EINVAL;
4066
4067 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4068 return -EFAULT;
4069
4070 /*
4071 * For UDP-style sockets, id specifies the association to query.
4072 * If the id field is set to the value '0' then the locally bound
4073 * addresses are returned without regard to any particular
4074 * association.
4075 */
4076 if (0 == id) {
4077 bp = &sctp_sk(sk)->ep->base.bind_addr;
4078 } else {
4079 asoc = sctp_id2assoc(sk, id);
4080 if (!asoc)
4081 return -EINVAL;
4082 bp = &asoc->base.bind_addr;
4083 }
4084
4085 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4086 * addresses from the global local address list.
4087 */
4088 if (sctp_list_single_entry(&bp->address_list)) {
4089 addr = list_entry(bp->address_list.next,
4090 struct sctp_sockaddr_entry, list);
4091 if (sctp_is_any(&addr->a)) {
4092 rcu_read_lock();
4093 list_for_each_entry_rcu(addr,
4094 &sctp_local_addr_list, list) {
4095 if (!addr->valid)
4096 continue;
4097
4098 if ((PF_INET == sk->sk_family) &&
4099 (AF_INET6 == addr->a.sa.sa_family))
4100 continue;
4101
4102 cnt++;
4103 }
4104 rcu_read_unlock();
4105 } else {
4106 cnt = 1;
4107 }
4108 goto done;
4109 }
4110
4111 /* Protection on the bound address list is not needed,
4112 * since in the socket option context we hold the socket lock,
4113 * so there is no way that the bound address list can change.
4114 */
4115 list_for_each_entry(addr, &bp->address_list, list) {
4116 cnt ++;
4117 }
4118 done:
4119 return cnt;
4120 }
4121
4122 /* Helper function that copies local addresses to user and returns the number
4123 * of addresses copied.
4124 */
4125 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4126 int max_addrs, void *to,
4127 int *bytes_copied)
4128 {
4129 struct sctp_sockaddr_entry *addr;
4130 union sctp_addr temp;
4131 int cnt = 0;
4132 int addrlen;
4133
4134 rcu_read_lock();
4135 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4136 if (!addr->valid)
4137 continue;
4138
4139 if ((PF_INET == sk->sk_family) &&
4140 (AF_INET6 == addr->a.sa.sa_family))
4141 continue;
4142 memcpy(&temp, &addr->a, sizeof(temp));
4143 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4144 &temp);
4145 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4146 memcpy(to, &temp, addrlen);
4147
4148 to += addrlen;
4149 *bytes_copied += addrlen;
4150 cnt ++;
4151 if (cnt >= max_addrs) break;
4152 }
4153 rcu_read_unlock();
4154
4155 return cnt;
4156 }
4157
4158 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4159 size_t space_left, int *bytes_copied)
4160 {
4161 struct sctp_sockaddr_entry *addr;
4162 union sctp_addr temp;
4163 int cnt = 0;
4164 int addrlen;
4165
4166 rcu_read_lock();
4167 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4168 if (!addr->valid)
4169 continue;
4170
4171 if ((PF_INET == sk->sk_family) &&
4172 (AF_INET6 == addr->a.sa.sa_family))
4173 continue;
4174 memcpy(&temp, &addr->a, sizeof(temp));
4175 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4176 &temp);
4177 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4178 if (space_left < addrlen) {
4179 cnt = -ENOMEM;
4180 break;
4181 }
4182 memcpy(to, &temp, addrlen);
4183
4184 to += addrlen;
4185 cnt ++;
4186 space_left -= addrlen;
4187 *bytes_copied += addrlen;
4188 }
4189 rcu_read_unlock();
4190
4191 return cnt;
4192 }
4193
4194 /* Old API for getting list of local addresses. Does not work for 32-bit
4195 * programs running on a 64-bit kernel
4196 */
4197 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4198 char __user *optval, int __user *optlen)
4199 {
4200 struct sctp_bind_addr *bp;
4201 struct sctp_association *asoc;
4202 int cnt = 0;
4203 struct sctp_getaddrs_old getaddrs;
4204 struct sctp_sockaddr_entry *addr;
4205 void __user *to;
4206 union sctp_addr temp;
4207 struct sctp_sock *sp = sctp_sk(sk);
4208 int addrlen;
4209 int err = 0;
4210 void *addrs;
4211 void *buf;
4212 int bytes_copied = 0;
4213
4214 if (len < sizeof(struct sctp_getaddrs_old))
4215 return -EINVAL;
4216
4217 len = sizeof(struct sctp_getaddrs_old);
4218 if (copy_from_user(&getaddrs, optval, len))
4219 return -EFAULT;
4220
4221 if (getaddrs.addr_num <= 0) return -EINVAL;
4222 /*
4223 * For UDP-style sockets, id specifies the association to query.
4224 * If the id field is set to the value '0' then the locally bound
4225 * addresses are returned without regard to any particular
4226 * association.
4227 */
4228 if (0 == getaddrs.assoc_id) {
4229 bp = &sctp_sk(sk)->ep->base.bind_addr;
4230 } else {
4231 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4232 if (!asoc)
4233 return -EINVAL;
4234 bp = &asoc->base.bind_addr;
4235 }
4236
4237 to = getaddrs.addrs;
4238
4239 /* Allocate space for a local instance of packed array to hold all
4240 * the data. We store addresses here first and then put write them
4241 * to the user in one shot.
4242 */
4243 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4244 GFP_KERNEL);
4245 if (!addrs)
4246 return -ENOMEM;
4247
4248 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4249 * addresses from the global local address list.
4250 */
4251 if (sctp_list_single_entry(&bp->address_list)) {
4252 addr = list_entry(bp->address_list.next,
4253 struct sctp_sockaddr_entry, list);
4254 if (sctp_is_any(&addr->a)) {
4255 cnt = sctp_copy_laddrs_old(sk, bp->port,
4256 getaddrs.addr_num,
4257 addrs, &bytes_copied);
4258 goto copy_getaddrs;
4259 }
4260 }
4261
4262 buf = addrs;
4263 /* Protection on the bound address list is not needed since
4264 * in the socket option context we hold a socket lock and
4265 * thus the bound address list can't change.
4266 */
4267 list_for_each_entry(addr, &bp->address_list, list) {
4268 memcpy(&temp, &addr->a, sizeof(temp));
4269 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4270 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4271 memcpy(buf, &temp, addrlen);
4272 buf += addrlen;
4273 bytes_copied += addrlen;
4274 cnt ++;
4275 if (cnt >= getaddrs.addr_num) break;
4276 }
4277
4278 copy_getaddrs:
4279 /* copy the entire address list into the user provided space */
4280 if (copy_to_user(to, addrs, bytes_copied)) {
4281 err = -EFAULT;
4282 goto error;
4283 }
4284
4285 /* copy the leading structure back to user */
4286 getaddrs.addr_num = cnt;
4287 if (copy_to_user(optval, &getaddrs, len))
4288 err = -EFAULT;
4289
4290 error:
4291 kfree(addrs);
4292 return err;
4293 }
4294
4295 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4296 char __user *optval, int __user *optlen)
4297 {
4298 struct sctp_bind_addr *bp;
4299 struct sctp_association *asoc;
4300 int cnt = 0;
4301 struct sctp_getaddrs getaddrs;
4302 struct sctp_sockaddr_entry *addr;
4303 void __user *to;
4304 union sctp_addr temp;
4305 struct sctp_sock *sp = sctp_sk(sk);
4306 int addrlen;
4307 int err = 0;
4308 size_t space_left;
4309 int bytes_copied = 0;
4310 void *addrs;
4311 void *buf;
4312
4313 if (len < sizeof(struct sctp_getaddrs))
4314 return -EINVAL;
4315
4316 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4317 return -EFAULT;
4318
4319 /*
4320 * For UDP-style sockets, id specifies the association to query.
4321 * If the id field is set to the value '0' then the locally bound
4322 * addresses are returned without regard to any particular
4323 * association.
4324 */
4325 if (0 == getaddrs.assoc_id) {
4326 bp = &sctp_sk(sk)->ep->base.bind_addr;
4327 } else {
4328 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4329 if (!asoc)
4330 return -EINVAL;
4331 bp = &asoc->base.bind_addr;
4332 }
4333
4334 to = optval + offsetof(struct sctp_getaddrs,addrs);
4335 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4336
4337 addrs = kmalloc(space_left, GFP_KERNEL);
4338 if (!addrs)
4339 return -ENOMEM;
4340
4341 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4342 * addresses from the global local address list.
4343 */
4344 if (sctp_list_single_entry(&bp->address_list)) {
4345 addr = list_entry(bp->address_list.next,
4346 struct sctp_sockaddr_entry, list);
4347 if (sctp_is_any(&addr->a)) {
4348 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4349 space_left, &bytes_copied);
4350 if (cnt < 0) {
4351 err = cnt;
4352 goto out;
4353 }
4354 goto copy_getaddrs;
4355 }
4356 }
4357
4358 buf = addrs;
4359 /* Protection on the bound address list is not needed since
4360 * in the socket option context we hold a socket lock and
4361 * thus the bound address list can't change.
4362 */
4363 list_for_each_entry(addr, &bp->address_list, list) {
4364 memcpy(&temp, &addr->a, sizeof(temp));
4365 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4366 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4367 if (space_left < addrlen) {
4368 err = -ENOMEM; /*fixme: right error?*/
4369 goto out;
4370 }
4371 memcpy(buf, &temp, addrlen);
4372 buf += addrlen;
4373 bytes_copied += addrlen;
4374 cnt ++;
4375 space_left -= addrlen;
4376 }
4377
4378 copy_getaddrs:
4379 if (copy_to_user(to, addrs, bytes_copied)) {
4380 err = -EFAULT;
4381 goto out;
4382 }
4383 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4384 err = -EFAULT;
4385 goto out;
4386 }
4387 if (put_user(bytes_copied, optlen))
4388 err = -EFAULT;
4389 out:
4390 kfree(addrs);
4391 return err;
4392 }
4393
4394 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4395 *
4396 * Requests that the local SCTP stack use the enclosed peer address as
4397 * the association primary. The enclosed address must be one of the
4398 * association peer's addresses.
4399 */
4400 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4401 char __user *optval, int __user *optlen)
4402 {
4403 struct sctp_prim prim;
4404 struct sctp_association *asoc;
4405 struct sctp_sock *sp = sctp_sk(sk);
4406
4407 if (len < sizeof(struct sctp_prim))
4408 return -EINVAL;
4409
4410 len = sizeof(struct sctp_prim);
4411
4412 if (copy_from_user(&prim, optval, len))
4413 return -EFAULT;
4414
4415 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4416 if (!asoc)
4417 return -EINVAL;
4418
4419 if (!asoc->peer.primary_path)
4420 return -ENOTCONN;
4421
4422 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4423 asoc->peer.primary_path->af_specific->sockaddr_len);
4424
4425 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4426 (union sctp_addr *)&prim.ssp_addr);
4427
4428 if (put_user(len, optlen))
4429 return -EFAULT;
4430 if (copy_to_user(optval, &prim, len))
4431 return -EFAULT;
4432
4433 return 0;
4434 }
4435
4436 /*
4437 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4438 *
4439 * Requests that the local endpoint set the specified Adaptation Layer
4440 * Indication parameter for all future INIT and INIT-ACK exchanges.
4441 */
4442 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4443 char __user *optval, int __user *optlen)
4444 {
4445 struct sctp_setadaptation adaptation;
4446
4447 if (len < sizeof(struct sctp_setadaptation))
4448 return -EINVAL;
4449
4450 len = sizeof(struct sctp_setadaptation);
4451
4452 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4453
4454 if (put_user(len, optlen))
4455 return -EFAULT;
4456 if (copy_to_user(optval, &adaptation, len))
4457 return -EFAULT;
4458
4459 return 0;
4460 }
4461
4462 /*
4463 *
4464 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4465 *
4466 * Applications that wish to use the sendto() system call may wish to
4467 * specify a default set of parameters that would normally be supplied
4468 * through the inclusion of ancillary data. This socket option allows
4469 * such an application to set the default sctp_sndrcvinfo structure.
4470
4471
4472 * The application that wishes to use this socket option simply passes
4473 * in to this call the sctp_sndrcvinfo structure defined in Section
4474 * 5.2.2) The input parameters accepted by this call include
4475 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4476 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4477 * to this call if the caller is using the UDP model.
4478 *
4479 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4480 */
4481 static int sctp_getsockopt_default_send_param(struct sock *sk,
4482 int len, char __user *optval,
4483 int __user *optlen)
4484 {
4485 struct sctp_sndrcvinfo info;
4486 struct sctp_association *asoc;
4487 struct sctp_sock *sp = sctp_sk(sk);
4488
4489 if (len < sizeof(struct sctp_sndrcvinfo))
4490 return -EINVAL;
4491
4492 len = sizeof(struct sctp_sndrcvinfo);
4493
4494 if (copy_from_user(&info, optval, len))
4495 return -EFAULT;
4496
4497 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4498 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4499 return -EINVAL;
4500
4501 if (asoc) {
4502 info.sinfo_stream = asoc->default_stream;
4503 info.sinfo_flags = asoc->default_flags;
4504 info.sinfo_ppid = asoc->default_ppid;
4505 info.sinfo_context = asoc->default_context;
4506 info.sinfo_timetolive = asoc->default_timetolive;
4507 } else {
4508 info.sinfo_stream = sp->default_stream;
4509 info.sinfo_flags = sp->default_flags;
4510 info.sinfo_ppid = sp->default_ppid;
4511 info.sinfo_context = sp->default_context;
4512 info.sinfo_timetolive = sp->default_timetolive;
4513 }
4514
4515 if (put_user(len, optlen))
4516 return -EFAULT;
4517 if (copy_to_user(optval, &info, len))
4518 return -EFAULT;
4519
4520 return 0;
4521 }
4522
4523 /*
4524 *
4525 * 7.1.5 SCTP_NODELAY
4526 *
4527 * Turn on/off any Nagle-like algorithm. This means that packets are
4528 * generally sent as soon as possible and no unnecessary delays are
4529 * introduced, at the cost of more packets in the network. Expects an
4530 * integer boolean flag.
4531 */
4532
4533 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4534 char __user *optval, int __user *optlen)
4535 {
4536 int val;
4537
4538 if (len < sizeof(int))
4539 return -EINVAL;
4540
4541 len = sizeof(int);
4542 val = (sctp_sk(sk)->nodelay == 1);
4543 if (put_user(len, optlen))
4544 return -EFAULT;
4545 if (copy_to_user(optval, &val, len))
4546 return -EFAULT;
4547 return 0;
4548 }
4549
4550 /*
4551 *
4552 * 7.1.1 SCTP_RTOINFO
4553 *
4554 * The protocol parameters used to initialize and bound retransmission
4555 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4556 * and modify these parameters.
4557 * All parameters are time values, in milliseconds. A value of 0, when
4558 * modifying the parameters, indicates that the current value should not
4559 * be changed.
4560 *
4561 */
4562 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4563 char __user *optval,
4564 int __user *optlen) {
4565 struct sctp_rtoinfo rtoinfo;
4566 struct sctp_association *asoc;
4567
4568 if (len < sizeof (struct sctp_rtoinfo))
4569 return -EINVAL;
4570
4571 len = sizeof(struct sctp_rtoinfo);
4572
4573 if (copy_from_user(&rtoinfo, optval, len))
4574 return -EFAULT;
4575
4576 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4577
4578 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4579 return -EINVAL;
4580
4581 /* Values corresponding to the specific association. */
4582 if (asoc) {
4583 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4584 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4585 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4586 } else {
4587 /* Values corresponding to the endpoint. */
4588 struct sctp_sock *sp = sctp_sk(sk);
4589
4590 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4591 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4592 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4593 }
4594
4595 if (put_user(len, optlen))
4596 return -EFAULT;
4597
4598 if (copy_to_user(optval, &rtoinfo, len))
4599 return -EFAULT;
4600
4601 return 0;
4602 }
4603
4604 /*
4605 *
4606 * 7.1.2 SCTP_ASSOCINFO
4607 *
4608 * This option is used to tune the maximum retransmission attempts
4609 * of the association.
4610 * Returns an error if the new association retransmission value is
4611 * greater than the sum of the retransmission value of the peer.
4612 * See [SCTP] for more information.
4613 *
4614 */
4615 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4616 char __user *optval,
4617 int __user *optlen)
4618 {
4619
4620 struct sctp_assocparams assocparams;
4621 struct sctp_association *asoc;
4622 struct list_head *pos;
4623 int cnt = 0;
4624
4625 if (len < sizeof (struct sctp_assocparams))
4626 return -EINVAL;
4627
4628 len = sizeof(struct sctp_assocparams);
4629
4630 if (copy_from_user(&assocparams, optval, len))
4631 return -EFAULT;
4632
4633 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4634
4635 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4636 return -EINVAL;
4637
4638 /* Values correspoinding to the specific association */
4639 if (asoc) {
4640 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4641 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4642 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4643 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4644 * 1000) +
4645 (asoc->cookie_life.tv_usec
4646 / 1000);
4647
4648 list_for_each(pos, &asoc->peer.transport_addr_list) {
4649 cnt ++;
4650 }
4651
4652 assocparams.sasoc_number_peer_destinations = cnt;
4653 } else {
4654 /* Values corresponding to the endpoint */
4655 struct sctp_sock *sp = sctp_sk(sk);
4656
4657 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4658 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4659 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4660 assocparams.sasoc_cookie_life =
4661 sp->assocparams.sasoc_cookie_life;
4662 assocparams.sasoc_number_peer_destinations =
4663 sp->assocparams.
4664 sasoc_number_peer_destinations;
4665 }
4666
4667 if (put_user(len, optlen))
4668 return -EFAULT;
4669
4670 if (copy_to_user(optval, &assocparams, len))
4671 return -EFAULT;
4672
4673 return 0;
4674 }
4675
4676 /*
4677 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4678 *
4679 * This socket option is a boolean flag which turns on or off mapped V4
4680 * addresses. If this option is turned on and the socket is type
4681 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4682 * If this option is turned off, then no mapping will be done of V4
4683 * addresses and a user will receive both PF_INET6 and PF_INET type
4684 * addresses on the socket.
4685 */
4686 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4687 char __user *optval, int __user *optlen)
4688 {
4689 int val;
4690 struct sctp_sock *sp = sctp_sk(sk);
4691
4692 if (len < sizeof(int))
4693 return -EINVAL;
4694
4695 len = sizeof(int);
4696 val = sp->v4mapped;
4697 if (put_user(len, optlen))
4698 return -EFAULT;
4699 if (copy_to_user(optval, &val, len))
4700 return -EFAULT;
4701
4702 return 0;
4703 }
4704
4705 /*
4706 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
4707 * (chapter and verse is quoted at sctp_setsockopt_context())
4708 */
4709 static int sctp_getsockopt_context(struct sock *sk, int len,
4710 char __user *optval, int __user *optlen)
4711 {
4712 struct sctp_assoc_value params;
4713 struct sctp_sock *sp;
4714 struct sctp_association *asoc;
4715
4716 if (len < sizeof(struct sctp_assoc_value))
4717 return -EINVAL;
4718
4719 len = sizeof(struct sctp_assoc_value);
4720
4721 if (copy_from_user(&params, optval, len))
4722 return -EFAULT;
4723
4724 sp = sctp_sk(sk);
4725
4726 if (params.assoc_id != 0) {
4727 asoc = sctp_id2assoc(sk, params.assoc_id);
4728 if (!asoc)
4729 return -EINVAL;
4730 params.assoc_value = asoc->default_rcv_context;
4731 } else {
4732 params.assoc_value = sp->default_rcv_context;
4733 }
4734
4735 if (put_user(len, optlen))
4736 return -EFAULT;
4737 if (copy_to_user(optval, &params, len))
4738 return -EFAULT;
4739
4740 return 0;
4741 }
4742
4743 /*
4744 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4745 *
4746 * This socket option specifies the maximum size to put in any outgoing
4747 * SCTP chunk. If a message is larger than this size it will be
4748 * fragmented by SCTP into the specified size. Note that the underlying
4749 * SCTP implementation may fragment into smaller sized chunks when the
4750 * PMTU of the underlying association is smaller than the value set by
4751 * the user.
4752 */
4753 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4754 char __user *optval, int __user *optlen)
4755 {
4756 int val;
4757
4758 if (len < sizeof(int))
4759 return -EINVAL;
4760
4761 len = sizeof(int);
4762
4763 val = sctp_sk(sk)->user_frag;
4764 if (put_user(len, optlen))
4765 return -EFAULT;
4766 if (copy_to_user(optval, &val, len))
4767 return -EFAULT;
4768
4769 return 0;
4770 }
4771
4772 /*
4773 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
4774 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
4775 */
4776 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
4777 char __user *optval, int __user *optlen)
4778 {
4779 int val;
4780
4781 if (len < sizeof(int))
4782 return -EINVAL;
4783
4784 len = sizeof(int);
4785
4786 val = sctp_sk(sk)->frag_interleave;
4787 if (put_user(len, optlen))
4788 return -EFAULT;
4789 if (copy_to_user(optval, &val, len))
4790 return -EFAULT;
4791
4792 return 0;
4793 }
4794
4795 /*
4796 * 7.1.25. Set or Get the sctp partial delivery point
4797 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
4798 */
4799 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
4800 char __user *optval,
4801 int __user *optlen)
4802 {
4803 u32 val;
4804
4805 if (len < sizeof(u32))
4806 return -EINVAL;
4807
4808 len = sizeof(u32);
4809
4810 val = sctp_sk(sk)->pd_point;
4811 if (put_user(len, optlen))
4812 return -EFAULT;
4813 if (copy_to_user(optval, &val, len))
4814 return -EFAULT;
4815
4816 return -ENOTSUPP;
4817 }
4818
4819 /*
4820 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
4821 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
4822 */
4823 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
4824 char __user *optval,
4825 int __user *optlen)
4826 {
4827 int val;
4828
4829 if (len < sizeof(int))
4830 return -EINVAL;
4831
4832 len = sizeof(int);
4833
4834 val = sctp_sk(sk)->max_burst;
4835 if (put_user(len, optlen))
4836 return -EFAULT;
4837 if (copy_to_user(optval, &val, len))
4838 return -EFAULT;
4839
4840 return -ENOTSUPP;
4841 }
4842
4843 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4844 char __user *optval, int __user *optlen)
4845 {
4846 int retval = 0;
4847 int len;
4848
4849 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4850 sk, optname);
4851
4852 /* I can hardly begin to describe how wrong this is. This is
4853 * so broken as to be worse than useless. The API draft
4854 * REALLY is NOT helpful here... I am not convinced that the
4855 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4856 * are at all well-founded.
4857 */
4858 if (level != SOL_SCTP) {
4859 struct sctp_af *af = sctp_sk(sk)->pf->af;
4860
4861 retval = af->getsockopt(sk, level, optname, optval, optlen);
4862 return retval;
4863 }
4864
4865 if (get_user(len, optlen))
4866 return -EFAULT;
4867
4868 sctp_lock_sock(sk);
4869
4870 switch (optname) {
4871 case SCTP_STATUS:
4872 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4873 break;
4874 case SCTP_DISABLE_FRAGMENTS:
4875 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4876 optlen);
4877 break;
4878 case SCTP_EVENTS:
4879 retval = sctp_getsockopt_events(sk, len, optval, optlen);
4880 break;
4881 case SCTP_AUTOCLOSE:
4882 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4883 break;
4884 case SCTP_SOCKOPT_PEELOFF:
4885 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4886 break;
4887 case SCTP_PEER_ADDR_PARAMS:
4888 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4889 optlen);
4890 break;
4891 case SCTP_DELAYED_ACK_TIME:
4892 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4893 optlen);
4894 break;
4895 case SCTP_INITMSG:
4896 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4897 break;
4898 case SCTP_GET_PEER_ADDRS_NUM_OLD:
4899 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4900 optlen);
4901 break;
4902 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4903 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4904 optlen);
4905 break;
4906 case SCTP_GET_PEER_ADDRS_OLD:
4907 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4908 optlen);
4909 break;
4910 case SCTP_GET_LOCAL_ADDRS_OLD:
4911 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4912 optlen);
4913 break;
4914 case SCTP_GET_PEER_ADDRS:
4915 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4916 optlen);
4917 break;
4918 case SCTP_GET_LOCAL_ADDRS:
4919 retval = sctp_getsockopt_local_addrs(sk, len, optval,
4920 optlen);
4921 break;
4922 case SCTP_DEFAULT_SEND_PARAM:
4923 retval = sctp_getsockopt_default_send_param(sk, len,
4924 optval, optlen);
4925 break;
4926 case SCTP_PRIMARY_ADDR:
4927 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4928 break;
4929 case SCTP_NODELAY:
4930 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4931 break;
4932 case SCTP_RTOINFO:
4933 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4934 break;
4935 case SCTP_ASSOCINFO:
4936 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4937 break;
4938 case SCTP_I_WANT_MAPPED_V4_ADDR:
4939 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4940 break;
4941 case SCTP_MAXSEG:
4942 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4943 break;
4944 case SCTP_GET_PEER_ADDR_INFO:
4945 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4946 optlen);
4947 break;
4948 case SCTP_ADAPTATION_LAYER:
4949 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
4950 optlen);
4951 break;
4952 case SCTP_CONTEXT:
4953 retval = sctp_getsockopt_context(sk, len, optval, optlen);
4954 break;
4955 case SCTP_FRAGMENT_INTERLEAVE:
4956 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
4957 optlen);
4958 break;
4959 case SCTP_PARTIAL_DELIVERY_POINT:
4960 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
4961 optlen);
4962 break;
4963 case SCTP_MAX_BURST:
4964 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
4965 break;
4966 default:
4967 retval = -ENOPROTOOPT;
4968 break;
4969 }
4970
4971 sctp_release_sock(sk);
4972 return retval;
4973 }
4974
4975 static void sctp_hash(struct sock *sk)
4976 {
4977 /* STUB */
4978 }
4979
4980 static void sctp_unhash(struct sock *sk)
4981 {
4982 /* STUB */
4983 }
4984
4985 /* Check if port is acceptable. Possibly find first available port.
4986 *
4987 * The port hash table (contained in the 'global' SCTP protocol storage
4988 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4989 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4990 * list (the list number is the port number hashed out, so as you
4991 * would expect from a hash function, all the ports in a given list have
4992 * such a number that hashes out to the same list number; you were
4993 * expecting that, right?); so each list has a set of ports, with a
4994 * link to the socket (struct sock) that uses it, the port number and
4995 * a fastreuse flag (FIXME: NPI ipg).
4996 */
4997 static struct sctp_bind_bucket *sctp_bucket_create(
4998 struct sctp_bind_hashbucket *head, unsigned short snum);
4999
5000 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5001 {
5002 struct sctp_bind_hashbucket *head; /* hash list */
5003 struct sctp_bind_bucket *pp; /* hash list port iterator */
5004 unsigned short snum;
5005 int ret;
5006
5007 snum = ntohs(addr->v4.sin_port);
5008
5009 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5010 sctp_local_bh_disable();
5011
5012 if (snum == 0) {
5013 /* Search for an available port.
5014 *
5015 * 'sctp_port_rover' was the last port assigned, so
5016 * we start to search from 'sctp_port_rover +
5017 * 1'. What we do is first check if port 'rover' is
5018 * already in the hash table; if not, we use that; if
5019 * it is, we try next.
5020 */
5021 int low = sysctl_local_port_range[0];
5022 int high = sysctl_local_port_range[1];
5023 int remaining = (high - low) + 1;
5024 int rover;
5025 int index;
5026
5027 sctp_spin_lock(&sctp_port_alloc_lock);
5028 rover = sctp_port_rover;
5029 do {
5030 rover++;
5031 if ((rover < low) || (rover > high))
5032 rover = low;
5033 index = sctp_phashfn(rover);
5034 head = &sctp_port_hashtable[index];
5035 sctp_spin_lock(&head->lock);
5036 for (pp = head->chain; pp; pp = pp->next)
5037 if (pp->port == rover)
5038 goto next;
5039 break;
5040 next:
5041 sctp_spin_unlock(&head->lock);
5042 } while (--remaining > 0);
5043 sctp_port_rover = rover;
5044 sctp_spin_unlock(&sctp_port_alloc_lock);
5045
5046 /* Exhausted local port range during search? */
5047 ret = 1;
5048 if (remaining <= 0)
5049 goto fail;
5050
5051 /* OK, here is the one we will use. HEAD (the port
5052 * hash table list entry) is non-NULL and we hold it's
5053 * mutex.
5054 */
5055 snum = rover;
5056 } else {
5057 /* We are given an specific port number; we verify
5058 * that it is not being used. If it is used, we will
5059 * exahust the search in the hash list corresponding
5060 * to the port number (snum) - we detect that with the
5061 * port iterator, pp being NULL.
5062 */
5063 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5064 sctp_spin_lock(&head->lock);
5065 for (pp = head->chain; pp; pp = pp->next) {
5066 if (pp->port == snum)
5067 goto pp_found;
5068 }
5069 }
5070 pp = NULL;
5071 goto pp_not_found;
5072 pp_found:
5073 if (!hlist_empty(&pp->owner)) {
5074 /* We had a port hash table hit - there is an
5075 * available port (pp != NULL) and it is being
5076 * used by other socket (pp->owner not empty); that other
5077 * socket is going to be sk2.
5078 */
5079 int reuse = sk->sk_reuse;
5080 struct sock *sk2;
5081 struct hlist_node *node;
5082
5083 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5084 if (pp->fastreuse && sk->sk_reuse &&
5085 sk->sk_state != SCTP_SS_LISTENING)
5086 goto success;
5087
5088 /* Run through the list of sockets bound to the port
5089 * (pp->port) [via the pointers bind_next and
5090 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5091 * we get the endpoint they describe and run through
5092 * the endpoint's list of IP (v4 or v6) addresses,
5093 * comparing each of the addresses with the address of
5094 * the socket sk. If we find a match, then that means
5095 * that this port/socket (sk) combination are already
5096 * in an endpoint.
5097 */
5098 sk_for_each_bound(sk2, node, &pp->owner) {
5099 struct sctp_endpoint *ep2;
5100 ep2 = sctp_sk(sk2)->ep;
5101
5102 if (reuse && sk2->sk_reuse &&
5103 sk2->sk_state != SCTP_SS_LISTENING)
5104 continue;
5105
5106 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
5107 sctp_sk(sk))) {
5108 ret = (long)sk2;
5109 goto fail_unlock;
5110 }
5111 }
5112 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5113 }
5114 pp_not_found:
5115 /* If there was a hash table miss, create a new port. */
5116 ret = 1;
5117 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5118 goto fail_unlock;
5119
5120 /* In either case (hit or miss), make sure fastreuse is 1 only
5121 * if sk->sk_reuse is too (that is, if the caller requested
5122 * SO_REUSEADDR on this socket -sk-).
5123 */
5124 if (hlist_empty(&pp->owner)) {
5125 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5126 pp->fastreuse = 1;
5127 else
5128 pp->fastreuse = 0;
5129 } else if (pp->fastreuse &&
5130 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5131 pp->fastreuse = 0;
5132
5133 /* We are set, so fill up all the data in the hash table
5134 * entry, tie the socket list information with the rest of the
5135 * sockets FIXME: Blurry, NPI (ipg).
5136 */
5137 success:
5138 if (!sctp_sk(sk)->bind_hash) {
5139 inet_sk(sk)->num = snum;
5140 sk_add_bind_node(sk, &pp->owner);
5141 sctp_sk(sk)->bind_hash = pp;
5142 }
5143 ret = 0;
5144
5145 fail_unlock:
5146 sctp_spin_unlock(&head->lock);
5147
5148 fail:
5149 sctp_local_bh_enable();
5150 return ret;
5151 }
5152
5153 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5154 * port is requested.
5155 */
5156 static int sctp_get_port(struct sock *sk, unsigned short snum)
5157 {
5158 long ret;
5159 union sctp_addr addr;
5160 struct sctp_af *af = sctp_sk(sk)->pf->af;
5161
5162 /* Set up a dummy address struct from the sk. */
5163 af->from_sk(&addr, sk);
5164 addr.v4.sin_port = htons(snum);
5165
5166 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5167 ret = sctp_get_port_local(sk, &addr);
5168
5169 return (ret ? 1 : 0);
5170 }
5171
5172 /*
5173 * 3.1.3 listen() - UDP Style Syntax
5174 *
5175 * By default, new associations are not accepted for UDP style sockets.
5176 * An application uses listen() to mark a socket as being able to
5177 * accept new associations.
5178 */
5179 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5180 {
5181 struct sctp_sock *sp = sctp_sk(sk);
5182 struct sctp_endpoint *ep = sp->ep;
5183
5184 /* Only UDP style sockets that are not peeled off are allowed to
5185 * listen().
5186 */
5187 if (!sctp_style(sk, UDP))
5188 return -EINVAL;
5189
5190 /* If backlog is zero, disable listening. */
5191 if (!backlog) {
5192 if (sctp_sstate(sk, CLOSED))
5193 return 0;
5194
5195 sctp_unhash_endpoint(ep);
5196 sk->sk_state = SCTP_SS_CLOSED;
5197 return 0;
5198 }
5199
5200 /* Return if we are already listening. */
5201 if (sctp_sstate(sk, LISTENING))
5202 return 0;
5203
5204 /*
5205 * If a bind() or sctp_bindx() is not called prior to a listen()
5206 * call that allows new associations to be accepted, the system
5207 * picks an ephemeral port and will choose an address set equivalent
5208 * to binding with a wildcard address.
5209 *
5210 * This is not currently spelled out in the SCTP sockets
5211 * extensions draft, but follows the practice as seen in TCP
5212 * sockets.
5213 *
5214 * Additionally, turn off fastreuse flag since we are not listening
5215 */
5216 sk->sk_state = SCTP_SS_LISTENING;
5217 if (!ep->base.bind_addr.port) {
5218 if (sctp_autobind(sk))
5219 return -EAGAIN;
5220 } else
5221 sctp_sk(sk)->bind_hash->fastreuse = 0;
5222
5223 sctp_hash_endpoint(ep);
5224 return 0;
5225 }
5226
5227 /*
5228 * 4.1.3 listen() - TCP Style Syntax
5229 *
5230 * Applications uses listen() to ready the SCTP endpoint for accepting
5231 * inbound associations.
5232 */
5233 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5234 {
5235 struct sctp_sock *sp = sctp_sk(sk);
5236 struct sctp_endpoint *ep = sp->ep;
5237
5238 /* If backlog is zero, disable listening. */
5239 if (!backlog) {
5240 if (sctp_sstate(sk, CLOSED))
5241 return 0;
5242
5243 sctp_unhash_endpoint(ep);
5244 sk->sk_state = SCTP_SS_CLOSED;
5245 return 0;
5246 }
5247
5248 if (sctp_sstate(sk, LISTENING))
5249 return 0;
5250
5251 /*
5252 * If a bind() or sctp_bindx() is not called prior to a listen()
5253 * call that allows new associations to be accepted, the system
5254 * picks an ephemeral port and will choose an address set equivalent
5255 * to binding with a wildcard address.
5256 *
5257 * This is not currently spelled out in the SCTP sockets
5258 * extensions draft, but follows the practice as seen in TCP
5259 * sockets.
5260 */
5261 sk->sk_state = SCTP_SS_LISTENING;
5262 if (!ep->base.bind_addr.port) {
5263 if (sctp_autobind(sk))
5264 return -EAGAIN;
5265 } else
5266 sctp_sk(sk)->bind_hash->fastreuse = 0;
5267
5268 sk->sk_max_ack_backlog = backlog;
5269 sctp_hash_endpoint(ep);
5270 return 0;
5271 }
5272
5273 /*
5274 * Move a socket to LISTENING state.
5275 */
5276 int sctp_inet_listen(struct socket *sock, int backlog)
5277 {
5278 struct sock *sk = sock->sk;
5279 struct crypto_hash *tfm = NULL;
5280 int err = -EINVAL;
5281
5282 if (unlikely(backlog < 0))
5283 goto out;
5284
5285 sctp_lock_sock(sk);
5286
5287 if (sock->state != SS_UNCONNECTED)
5288 goto out;
5289
5290 /* Allocate HMAC for generating cookie. */
5291 if (sctp_hmac_alg) {
5292 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5293 if (IS_ERR(tfm)) {
5294 if (net_ratelimit()) {
5295 printk(KERN_INFO
5296 "SCTP: failed to load transform for %s: %ld\n",
5297 sctp_hmac_alg, PTR_ERR(tfm));
5298 }
5299 err = -ENOSYS;
5300 goto out;
5301 }
5302 }
5303
5304 switch (sock->type) {
5305 case SOCK_SEQPACKET:
5306 err = sctp_seqpacket_listen(sk, backlog);
5307 break;
5308 case SOCK_STREAM:
5309 err = sctp_stream_listen(sk, backlog);
5310 break;
5311 default:
5312 break;
5313 }
5314
5315 if (err)
5316 goto cleanup;
5317
5318 /* Store away the transform reference. */
5319 sctp_sk(sk)->hmac = tfm;
5320 out:
5321 sctp_release_sock(sk);
5322 return err;
5323 cleanup:
5324 crypto_free_hash(tfm);
5325 goto out;
5326 }
5327
5328 /*
5329 * This function is done by modeling the current datagram_poll() and the
5330 * tcp_poll(). Note that, based on these implementations, we don't
5331 * lock the socket in this function, even though it seems that,
5332 * ideally, locking or some other mechanisms can be used to ensure
5333 * the integrity of the counters (sndbuf and wmem_alloc) used
5334 * in this place. We assume that we don't need locks either until proven
5335 * otherwise.
5336 *
5337 * Another thing to note is that we include the Async I/O support
5338 * here, again, by modeling the current TCP/UDP code. We don't have
5339 * a good way to test with it yet.
5340 */
5341 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5342 {
5343 struct sock *sk = sock->sk;
5344 struct sctp_sock *sp = sctp_sk(sk);
5345 unsigned int mask;
5346
5347 poll_wait(file, sk->sk_sleep, wait);
5348
5349 /* A TCP-style listening socket becomes readable when the accept queue
5350 * is not empty.
5351 */
5352 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5353 return (!list_empty(&sp->ep->asocs)) ?
5354 (POLLIN | POLLRDNORM) : 0;
5355
5356 mask = 0;
5357
5358 /* Is there any exceptional events? */
5359 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5360 mask |= POLLERR;
5361 if (sk->sk_shutdown & RCV_SHUTDOWN)
5362 mask |= POLLRDHUP;
5363 if (sk->sk_shutdown == SHUTDOWN_MASK)
5364 mask |= POLLHUP;
5365
5366 /* Is it readable? Reconsider this code with TCP-style support. */
5367 if (!skb_queue_empty(&sk->sk_receive_queue) ||
5368 (sk->sk_shutdown & RCV_SHUTDOWN))
5369 mask |= POLLIN | POLLRDNORM;
5370
5371 /* The association is either gone or not ready. */
5372 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5373 return mask;
5374
5375 /* Is it writable? */
5376 if (sctp_writeable(sk)) {
5377 mask |= POLLOUT | POLLWRNORM;
5378 } else {
5379 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5380 /*
5381 * Since the socket is not locked, the buffer
5382 * might be made available after the writeable check and
5383 * before the bit is set. This could cause a lost I/O
5384 * signal. tcp_poll() has a race breaker for this race
5385 * condition. Based on their implementation, we put
5386 * in the following code to cover it as well.
5387 */
5388 if (sctp_writeable(sk))
5389 mask |= POLLOUT | POLLWRNORM;
5390 }
5391 return mask;
5392 }
5393
5394 /********************************************************************
5395 * 2nd Level Abstractions
5396 ********************************************************************/
5397
5398 static struct sctp_bind_bucket *sctp_bucket_create(
5399 struct sctp_bind_hashbucket *head, unsigned short snum)
5400 {
5401 struct sctp_bind_bucket *pp;
5402
5403 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5404 SCTP_DBG_OBJCNT_INC(bind_bucket);
5405 if (pp) {
5406 pp->port = snum;
5407 pp->fastreuse = 0;
5408 INIT_HLIST_HEAD(&pp->owner);
5409 if ((pp->next = head->chain) != NULL)
5410 pp->next->pprev = &pp->next;
5411 head->chain = pp;
5412 pp->pprev = &head->chain;
5413 }
5414 return pp;
5415 }
5416
5417 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5418 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5419 {
5420 if (pp && hlist_empty(&pp->owner)) {
5421 if (pp->next)
5422 pp->next->pprev = pp->pprev;
5423 *(pp->pprev) = pp->next;
5424 kmem_cache_free(sctp_bucket_cachep, pp);
5425 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5426 }
5427 }
5428
5429 /* Release this socket's reference to a local port. */
5430 static inline void __sctp_put_port(struct sock *sk)
5431 {
5432 struct sctp_bind_hashbucket *head =
5433 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5434 struct sctp_bind_bucket *pp;
5435
5436 sctp_spin_lock(&head->lock);
5437 pp = sctp_sk(sk)->bind_hash;
5438 __sk_del_bind_node(sk);
5439 sctp_sk(sk)->bind_hash = NULL;
5440 inet_sk(sk)->num = 0;
5441 sctp_bucket_destroy(pp);
5442 sctp_spin_unlock(&head->lock);
5443 }
5444
5445 void sctp_put_port(struct sock *sk)
5446 {
5447 sctp_local_bh_disable();
5448 __sctp_put_port(sk);
5449 sctp_local_bh_enable();
5450 }
5451
5452 /*
5453 * The system picks an ephemeral port and choose an address set equivalent
5454 * to binding with a wildcard address.
5455 * One of those addresses will be the primary address for the association.
5456 * This automatically enables the multihoming capability of SCTP.
5457 */
5458 static int sctp_autobind(struct sock *sk)
5459 {
5460 union sctp_addr autoaddr;
5461 struct sctp_af *af;
5462 __be16 port;
5463
5464 /* Initialize a local sockaddr structure to INADDR_ANY. */
5465 af = sctp_sk(sk)->pf->af;
5466
5467 port = htons(inet_sk(sk)->num);
5468 af->inaddr_any(&autoaddr, port);
5469
5470 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5471 }
5472
5473 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5474 *
5475 * From RFC 2292
5476 * 4.2 The cmsghdr Structure *
5477 *
5478 * When ancillary data is sent or received, any number of ancillary data
5479 * objects can be specified by the msg_control and msg_controllen members of
5480 * the msghdr structure, because each object is preceded by
5481 * a cmsghdr structure defining the object's length (the cmsg_len member).
5482 * Historically Berkeley-derived implementations have passed only one object
5483 * at a time, but this API allows multiple objects to be
5484 * passed in a single call to sendmsg() or recvmsg(). The following example
5485 * shows two ancillary data objects in a control buffer.
5486 *
5487 * |<--------------------------- msg_controllen -------------------------->|
5488 * | |
5489 *
5490 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5491 *
5492 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5493 * | | |
5494 *
5495 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5496 *
5497 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5498 * | | | | |
5499 *
5500 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5501 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5502 *
5503 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5504 *
5505 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5506 * ^
5507 * |
5508 *
5509 * msg_control
5510 * points here
5511 */
5512 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5513 sctp_cmsgs_t *cmsgs)
5514 {
5515 struct cmsghdr *cmsg;
5516
5517 for (cmsg = CMSG_FIRSTHDR(msg);
5518 cmsg != NULL;
5519 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5520 if (!CMSG_OK(msg, cmsg))
5521 return -EINVAL;
5522
5523 /* Should we parse this header or ignore? */
5524 if (cmsg->cmsg_level != IPPROTO_SCTP)
5525 continue;
5526
5527 /* Strictly check lengths following example in SCM code. */
5528 switch (cmsg->cmsg_type) {
5529 case SCTP_INIT:
5530 /* SCTP Socket API Extension
5531 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5532 *
5533 * This cmsghdr structure provides information for
5534 * initializing new SCTP associations with sendmsg().
5535 * The SCTP_INITMSG socket option uses this same data
5536 * structure. This structure is not used for
5537 * recvmsg().
5538 *
5539 * cmsg_level cmsg_type cmsg_data[]
5540 * ------------ ------------ ----------------------
5541 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5542 */
5543 if (cmsg->cmsg_len !=
5544 CMSG_LEN(sizeof(struct sctp_initmsg)))
5545 return -EINVAL;
5546 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5547 break;
5548
5549 case SCTP_SNDRCV:
5550 /* SCTP Socket API Extension
5551 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5552 *
5553 * This cmsghdr structure specifies SCTP options for
5554 * sendmsg() and describes SCTP header information
5555 * about a received message through recvmsg().
5556 *
5557 * cmsg_level cmsg_type cmsg_data[]
5558 * ------------ ------------ ----------------------
5559 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
5560 */
5561 if (cmsg->cmsg_len !=
5562 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5563 return -EINVAL;
5564
5565 cmsgs->info =
5566 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5567
5568 /* Minimally, validate the sinfo_flags. */
5569 if (cmsgs->info->sinfo_flags &
5570 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5571 SCTP_ABORT | SCTP_EOF))
5572 return -EINVAL;
5573 break;
5574
5575 default:
5576 return -EINVAL;
5577 }
5578 }
5579 return 0;
5580 }
5581
5582 /*
5583 * Wait for a packet..
5584 * Note: This function is the same function as in core/datagram.c
5585 * with a few modifications to make lksctp work.
5586 */
5587 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5588 {
5589 int error;
5590 DEFINE_WAIT(wait);
5591
5592 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5593
5594 /* Socket errors? */
5595 error = sock_error(sk);
5596 if (error)
5597 goto out;
5598
5599 if (!skb_queue_empty(&sk->sk_receive_queue))
5600 goto ready;
5601
5602 /* Socket shut down? */
5603 if (sk->sk_shutdown & RCV_SHUTDOWN)
5604 goto out;
5605
5606 /* Sequenced packets can come disconnected. If so we report the
5607 * problem.
5608 */
5609 error = -ENOTCONN;
5610
5611 /* Is there a good reason to think that we may receive some data? */
5612 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5613 goto out;
5614
5615 /* Handle signals. */
5616 if (signal_pending(current))
5617 goto interrupted;
5618
5619 /* Let another process have a go. Since we are going to sleep
5620 * anyway. Note: This may cause odd behaviors if the message
5621 * does not fit in the user's buffer, but this seems to be the
5622 * only way to honor MSG_DONTWAIT realistically.
5623 */
5624 sctp_release_sock(sk);
5625 *timeo_p = schedule_timeout(*timeo_p);
5626 sctp_lock_sock(sk);
5627
5628 ready:
5629 finish_wait(sk->sk_sleep, &wait);
5630 return 0;
5631
5632 interrupted:
5633 error = sock_intr_errno(*timeo_p);
5634
5635 out:
5636 finish_wait(sk->sk_sleep, &wait);
5637 *err = error;
5638 return error;
5639 }
5640
5641 /* Receive a datagram.
5642 * Note: This is pretty much the same routine as in core/datagram.c
5643 * with a few changes to make lksctp work.
5644 */
5645 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5646 int noblock, int *err)
5647 {
5648 int error;
5649 struct sk_buff *skb;
5650 long timeo;
5651
5652 timeo = sock_rcvtimeo(sk, noblock);
5653
5654 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5655 timeo, MAX_SCHEDULE_TIMEOUT);
5656
5657 do {
5658 /* Again only user level code calls this function,
5659 * so nothing interrupt level
5660 * will suddenly eat the receive_queue.
5661 *
5662 * Look at current nfs client by the way...
5663 * However, this function was corrent in any case. 8)
5664 */
5665 if (flags & MSG_PEEK) {
5666 spin_lock_bh(&sk->sk_receive_queue.lock);
5667 skb = skb_peek(&sk->sk_receive_queue);
5668 if (skb)
5669 atomic_inc(&skb->users);
5670 spin_unlock_bh(&sk->sk_receive_queue.lock);
5671 } else {
5672 skb = skb_dequeue(&sk->sk_receive_queue);
5673 }
5674
5675 if (skb)
5676 return skb;
5677
5678 /* Caller is allowed not to check sk->sk_err before calling. */
5679 error = sock_error(sk);
5680 if (error)
5681 goto no_packet;
5682
5683 if (sk->sk_shutdown & RCV_SHUTDOWN)
5684 break;
5685
5686 /* User doesn't want to wait. */
5687 error = -EAGAIN;
5688 if (!timeo)
5689 goto no_packet;
5690 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5691
5692 return NULL;
5693
5694 no_packet:
5695 *err = error;
5696 return NULL;
5697 }
5698
5699 /* If sndbuf has changed, wake up per association sndbuf waiters. */
5700 static void __sctp_write_space(struct sctp_association *asoc)
5701 {
5702 struct sock *sk = asoc->base.sk;
5703 struct socket *sock = sk->sk_socket;
5704
5705 if ((sctp_wspace(asoc) > 0) && sock) {
5706 if (waitqueue_active(&asoc->wait))
5707 wake_up_interruptible(&asoc->wait);
5708
5709 if (sctp_writeable(sk)) {
5710 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5711 wake_up_interruptible(sk->sk_sleep);
5712
5713 /* Note that we try to include the Async I/O support
5714 * here by modeling from the current TCP/UDP code.
5715 * We have not tested with it yet.
5716 */
5717 if (sock->fasync_list &&
5718 !(sk->sk_shutdown & SEND_SHUTDOWN))
5719 sock_wake_async(sock, 2, POLL_OUT);
5720 }
5721 }
5722 }
5723
5724 /* Do accounting for the sndbuf space.
5725 * Decrement the used sndbuf space of the corresponding association by the
5726 * data size which was just transmitted(freed).
5727 */
5728 static void sctp_wfree(struct sk_buff *skb)
5729 {
5730 struct sctp_association *asoc;
5731 struct sctp_chunk *chunk;
5732 struct sock *sk;
5733
5734 /* Get the saved chunk pointer. */
5735 chunk = *((struct sctp_chunk **)(skb->cb));
5736 asoc = chunk->asoc;
5737 sk = asoc->base.sk;
5738 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5739 sizeof(struct sk_buff) +
5740 sizeof(struct sctp_chunk);
5741
5742 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5743
5744 /*
5745 * This undoes what is done via sk_charge_skb
5746 */
5747 sk->sk_wmem_queued -= skb->truesize;
5748 sk->sk_forward_alloc += skb->truesize;
5749
5750 sock_wfree(skb);
5751 __sctp_write_space(asoc);
5752
5753 sctp_association_put(asoc);
5754 }
5755
5756 /* Do accounting for the receive space on the socket.
5757 * Accounting for the association is done in ulpevent.c
5758 * We set this as a destructor for the cloned data skbs so that
5759 * accounting is done at the correct time.
5760 */
5761 void sctp_sock_rfree(struct sk_buff *skb)
5762 {
5763 struct sock *sk = skb->sk;
5764 struct sctp_ulpevent *event = sctp_skb2event(skb);
5765
5766 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
5767
5768 /*
5769 * Mimic the behavior of sk_stream_rfree
5770 */
5771 sk->sk_forward_alloc += event->rmem_len;
5772 }
5773
5774
5775 /* Helper function to wait for space in the sndbuf. */
5776 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5777 size_t msg_len)
5778 {
5779 struct sock *sk = asoc->base.sk;
5780 int err = 0;
5781 long current_timeo = *timeo_p;
5782 DEFINE_WAIT(wait);
5783
5784 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5785 asoc, (long)(*timeo_p), msg_len);
5786
5787 /* Increment the association's refcnt. */
5788 sctp_association_hold(asoc);
5789
5790 /* Wait on the association specific sndbuf space. */
5791 for (;;) {
5792 prepare_to_wait_exclusive(&asoc->wait, &wait,
5793 TASK_INTERRUPTIBLE);
5794 if (!*timeo_p)
5795 goto do_nonblock;
5796 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5797 asoc->base.dead)
5798 goto do_error;
5799 if (signal_pending(current))
5800 goto do_interrupted;
5801 if (msg_len <= sctp_wspace(asoc))
5802 break;
5803
5804 /* Let another process have a go. Since we are going
5805 * to sleep anyway.
5806 */
5807 sctp_release_sock(sk);
5808 current_timeo = schedule_timeout(current_timeo);
5809 BUG_ON(sk != asoc->base.sk);
5810 sctp_lock_sock(sk);
5811
5812 *timeo_p = current_timeo;
5813 }
5814
5815 out:
5816 finish_wait(&asoc->wait, &wait);
5817
5818 /* Release the association's refcnt. */
5819 sctp_association_put(asoc);
5820
5821 return err;
5822
5823 do_error:
5824 err = -EPIPE;
5825 goto out;
5826
5827 do_interrupted:
5828 err = sock_intr_errno(*timeo_p);
5829 goto out;
5830
5831 do_nonblock:
5832 err = -EAGAIN;
5833 goto out;
5834 }
5835
5836 /* If socket sndbuf has changed, wake up all per association waiters. */
5837 void sctp_write_space(struct sock *sk)
5838 {
5839 struct sctp_association *asoc;
5840 struct list_head *pos;
5841
5842 /* Wake up the tasks in each wait queue. */
5843 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5844 asoc = list_entry(pos, struct sctp_association, asocs);
5845 __sctp_write_space(asoc);
5846 }
5847 }
5848
5849 /* Is there any sndbuf space available on the socket?
5850 *
5851 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5852 * associations on the same socket. For a UDP-style socket with
5853 * multiple associations, it is possible for it to be "unwriteable"
5854 * prematurely. I assume that this is acceptable because
5855 * a premature "unwriteable" is better than an accidental "writeable" which
5856 * would cause an unwanted block under certain circumstances. For the 1-1
5857 * UDP-style sockets or TCP-style sockets, this code should work.
5858 * - Daisy
5859 */
5860 static int sctp_writeable(struct sock *sk)
5861 {
5862 int amt = 0;
5863
5864 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5865 if (amt < 0)
5866 amt = 0;
5867 return amt;
5868 }
5869
5870 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5871 * returns immediately with EINPROGRESS.
5872 */
5873 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5874 {
5875 struct sock *sk = asoc->base.sk;
5876 int err = 0;
5877 long current_timeo = *timeo_p;
5878 DEFINE_WAIT(wait);
5879
5880 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5881 (long)(*timeo_p));
5882
5883 /* Increment the association's refcnt. */
5884 sctp_association_hold(asoc);
5885
5886 for (;;) {
5887 prepare_to_wait_exclusive(&asoc->wait, &wait,
5888 TASK_INTERRUPTIBLE);
5889 if (!*timeo_p)
5890 goto do_nonblock;
5891 if (sk->sk_shutdown & RCV_SHUTDOWN)
5892 break;
5893 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5894 asoc->base.dead)
5895 goto do_error;
5896 if (signal_pending(current))
5897 goto do_interrupted;
5898
5899 if (sctp_state(asoc, ESTABLISHED))
5900 break;
5901
5902 /* Let another process have a go. Since we are going
5903 * to sleep anyway.
5904 */
5905 sctp_release_sock(sk);
5906 current_timeo = schedule_timeout(current_timeo);
5907 sctp_lock_sock(sk);
5908
5909 *timeo_p = current_timeo;
5910 }
5911
5912 out:
5913 finish_wait(&asoc->wait, &wait);
5914
5915 /* Release the association's refcnt. */
5916 sctp_association_put(asoc);
5917
5918 return err;
5919
5920 do_error:
5921 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5922 err = -ETIMEDOUT;
5923 else
5924 err = -ECONNREFUSED;
5925 goto out;
5926
5927 do_interrupted:
5928 err = sock_intr_errno(*timeo_p);
5929 goto out;
5930
5931 do_nonblock:
5932 err = -EINPROGRESS;
5933 goto out;
5934 }
5935
5936 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5937 {
5938 struct sctp_endpoint *ep;
5939 int err = 0;
5940 DEFINE_WAIT(wait);
5941
5942 ep = sctp_sk(sk)->ep;
5943
5944
5945 for (;;) {
5946 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5947 TASK_INTERRUPTIBLE);
5948
5949 if (list_empty(&ep->asocs)) {
5950 sctp_release_sock(sk);
5951 timeo = schedule_timeout(timeo);
5952 sctp_lock_sock(sk);
5953 }
5954
5955 err = -EINVAL;
5956 if (!sctp_sstate(sk, LISTENING))
5957 break;
5958
5959 err = 0;
5960 if (!list_empty(&ep->asocs))
5961 break;
5962
5963 err = sock_intr_errno(timeo);
5964 if (signal_pending(current))
5965 break;
5966
5967 err = -EAGAIN;
5968 if (!timeo)
5969 break;
5970 }
5971
5972 finish_wait(sk->sk_sleep, &wait);
5973
5974 return err;
5975 }
5976
5977 static void sctp_wait_for_close(struct sock *sk, long timeout)
5978 {
5979 DEFINE_WAIT(wait);
5980
5981 do {
5982 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5983 if (list_empty(&sctp_sk(sk)->ep->asocs))
5984 break;
5985 sctp_release_sock(sk);
5986 timeout = schedule_timeout(timeout);
5987 sctp_lock_sock(sk);
5988 } while (!signal_pending(current) && timeout);
5989
5990 finish_wait(sk->sk_sleep, &wait);
5991 }
5992
5993 static void sctp_sock_rfree_frag(struct sk_buff *skb)
5994 {
5995 struct sk_buff *frag;
5996
5997 if (!skb->data_len)
5998 goto done;
5999
6000 /* Don't forget the fragments. */
6001 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6002 sctp_sock_rfree_frag(frag);
6003
6004 done:
6005 sctp_sock_rfree(skb);
6006 }
6007
6008 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6009 {
6010 struct sk_buff *frag;
6011
6012 if (!skb->data_len)
6013 goto done;
6014
6015 /* Don't forget the fragments. */
6016 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6017 sctp_skb_set_owner_r_frag(frag, sk);
6018
6019 done:
6020 sctp_skb_set_owner_r(skb, sk);
6021 }
6022
6023 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6024 * and its messages to the newsk.
6025 */
6026 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6027 struct sctp_association *assoc,
6028 sctp_socket_type_t type)
6029 {
6030 struct sctp_sock *oldsp = sctp_sk(oldsk);
6031 struct sctp_sock *newsp = sctp_sk(newsk);
6032 struct sctp_bind_bucket *pp; /* hash list port iterator */
6033 struct sctp_endpoint *newep = newsp->ep;
6034 struct sk_buff *skb, *tmp;
6035 struct sctp_ulpevent *event;
6036 int flags = 0;
6037
6038 /* Migrate socket buffer sizes and all the socket level options to the
6039 * new socket.
6040 */
6041 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6042 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6043 /* Brute force copy old sctp opt. */
6044 inet_sk_copy_descendant(newsk, oldsk);
6045
6046 /* Restore the ep value that was overwritten with the above structure
6047 * copy.
6048 */
6049 newsp->ep = newep;
6050 newsp->hmac = NULL;
6051
6052 /* Hook this new socket in to the bind_hash list. */
6053 pp = sctp_sk(oldsk)->bind_hash;
6054 sk_add_bind_node(newsk, &pp->owner);
6055 sctp_sk(newsk)->bind_hash = pp;
6056 inet_sk(newsk)->num = inet_sk(oldsk)->num;
6057
6058 /* Copy the bind_addr list from the original endpoint to the new
6059 * endpoint so that we can handle restarts properly
6060 */
6061 if (PF_INET6 == assoc->base.sk->sk_family)
6062 flags = SCTP_ADDR6_ALLOWED;
6063 if (assoc->peer.ipv4_address)
6064 flags |= SCTP_ADDR4_PEERSUPP;
6065 if (assoc->peer.ipv6_address)
6066 flags |= SCTP_ADDR6_PEERSUPP;
6067 sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
6068 &oldsp->ep->base.bind_addr,
6069 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
6070
6071 /* Move any messages in the old socket's receive queue that are for the
6072 * peeled off association to the new socket's receive queue.
6073 */
6074 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6075 event = sctp_skb2event(skb);
6076 if (event->asoc == assoc) {
6077 sctp_sock_rfree_frag(skb);
6078 __skb_unlink(skb, &oldsk->sk_receive_queue);
6079 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6080 sctp_skb_set_owner_r_frag(skb, newsk);
6081 }
6082 }
6083
6084 /* Clean up any messages pending delivery due to partial
6085 * delivery. Three cases:
6086 * 1) No partial deliver; no work.
6087 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6088 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6089 */
6090 skb_queue_head_init(&newsp->pd_lobby);
6091 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6092
6093 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6094 struct sk_buff_head *queue;
6095
6096 /* Decide which queue to move pd_lobby skbs to. */
6097 if (assoc->ulpq.pd_mode) {
6098 queue = &newsp->pd_lobby;
6099 } else
6100 queue = &newsk->sk_receive_queue;
6101
6102 /* Walk through the pd_lobby, looking for skbs that
6103 * need moved to the new socket.
6104 */
6105 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6106 event = sctp_skb2event(skb);
6107 if (event->asoc == assoc) {
6108 sctp_sock_rfree_frag(skb);
6109 __skb_unlink(skb, &oldsp->pd_lobby);
6110 __skb_queue_tail(queue, skb);
6111 sctp_skb_set_owner_r_frag(skb, newsk);
6112 }
6113 }
6114
6115 /* Clear up any skbs waiting for the partial
6116 * delivery to finish.
6117 */
6118 if (assoc->ulpq.pd_mode)
6119 sctp_clear_pd(oldsk, NULL);
6120
6121 }
6122
6123 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6124 sctp_sock_rfree_frag(skb);
6125 sctp_skb_set_owner_r_frag(skb, newsk);
6126 }
6127
6128 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6129 sctp_sock_rfree_frag(skb);
6130 sctp_skb_set_owner_r_frag(skb, newsk);
6131 }
6132
6133 /* Set the type of socket to indicate that it is peeled off from the
6134 * original UDP-style socket or created with the accept() call on a
6135 * TCP-style socket..
6136 */
6137 newsp->type = type;
6138
6139 /* Mark the new socket "in-use" by the user so that any packets
6140 * that may arrive on the association after we've moved it are
6141 * queued to the backlog. This prevents a potential race between
6142 * backlog processing on the old socket and new-packet processing
6143 * on the new socket.
6144 *
6145 * The caller has just allocated newsk so we can guarantee that other
6146 * paths won't try to lock it and then oldsk.
6147 */
6148 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6149 sctp_assoc_migrate(assoc, newsk);
6150
6151 /* If the association on the newsk is already closed before accept()
6152 * is called, set RCV_SHUTDOWN flag.
6153 */
6154 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6155 newsk->sk_shutdown |= RCV_SHUTDOWN;
6156
6157 newsk->sk_state = SCTP_SS_ESTABLISHED;
6158 sctp_release_sock(newsk);
6159 }
6160
6161
6162 /* This proto struct describes the ULP interface for SCTP. */
6163 struct proto sctp_prot = {
6164 .name = "SCTP",
6165 .owner = THIS_MODULE,
6166 .close = sctp_close,
6167 .connect = sctp_connect,
6168 .disconnect = sctp_disconnect,
6169 .accept = sctp_accept,
6170 .ioctl = sctp_ioctl,
6171 .init = sctp_init_sock,
6172 .destroy = sctp_destroy_sock,
6173 .shutdown = sctp_shutdown,
6174 .setsockopt = sctp_setsockopt,
6175 .getsockopt = sctp_getsockopt,
6176 .sendmsg = sctp_sendmsg,
6177 .recvmsg = sctp_recvmsg,
6178 .bind = sctp_bind,
6179 .backlog_rcv = sctp_backlog_rcv,
6180 .hash = sctp_hash,
6181 .unhash = sctp_unhash,
6182 .get_port = sctp_get_port,
6183 .obj_size = sizeof(struct sctp_sock),
6184 .sysctl_mem = sysctl_sctp_mem,
6185 .sysctl_rmem = sysctl_sctp_rmem,
6186 .sysctl_wmem = sysctl_sctp_wmem,
6187 .memory_pressure = &sctp_memory_pressure,
6188 .enter_memory_pressure = sctp_enter_memory_pressure,
6189 .memory_allocated = &sctp_memory_allocated,
6190 };
6191
6192 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6193 struct proto sctpv6_prot = {
6194 .name = "SCTPv6",
6195 .owner = THIS_MODULE,
6196 .close = sctp_close,
6197 .connect = sctp_connect,
6198 .disconnect = sctp_disconnect,
6199 .accept = sctp_accept,
6200 .ioctl = sctp_ioctl,
6201 .init = sctp_init_sock,
6202 .destroy = sctp_destroy_sock,
6203 .shutdown = sctp_shutdown,
6204 .setsockopt = sctp_setsockopt,
6205 .getsockopt = sctp_getsockopt,
6206 .sendmsg = sctp_sendmsg,
6207 .recvmsg = sctp_recvmsg,
6208 .bind = sctp_bind,
6209 .backlog_rcv = sctp_backlog_rcv,
6210 .hash = sctp_hash,
6211 .unhash = sctp_unhash,
6212 .get_port = sctp_get_port,
6213 .obj_size = sizeof(struct sctp6_sock),
6214 .sysctl_mem = sysctl_sctp_mem,
6215 .sysctl_rmem = sysctl_sctp_rmem,
6216 .sysctl_wmem = sysctl_sctp_wmem,
6217 .memory_pressure = &sctp_memory_pressure,
6218 .enter_memory_pressure = sctp_enter_memory_pressure,
6219 .memory_allocated = &sctp_memory_allocated,
6220 };
6221 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
This page took 0.189905 seconds and 4 git commands to generate.