sctp: Support the new specification of sctp_connectx()
[deliverable/linux.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
85 */
86
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 static atomic_t sctp_sockets_allocated;
118
119 static void sctp_enter_memory_pressure(void)
120 {
121 sctp_memory_pressure = 1;
122 }
123
124
125 /* Get the sndbuf space available at the time on the association. */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 int amt;
129
130 if (asoc->ep->sndbuf_policy)
131 amt = asoc->sndbuf_used;
132 else
133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
134
135 if (amt >= asoc->base.sk->sk_sndbuf) {
136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 amt = 0;
138 else {
139 amt = sk_stream_wspace(asoc->base.sk);
140 if (amt < 0)
141 amt = 0;
142 }
143 } else {
144 amt = asoc->base.sk->sk_sndbuf - amt;
145 }
146 return amt;
147 }
148
149 /* Increment the used sndbuf space count of the corresponding association by
150 * the size of the outgoing data chunk.
151 * Also, set the skb destructor for sndbuf accounting later.
152 *
153 * Since it is always 1-1 between chunk and skb, and also a new skb is always
154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155 * destructor in the data chunk skb for the purpose of the sndbuf space
156 * tracking.
157 */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 struct sctp_association *asoc = chunk->asoc;
161 struct sock *sk = asoc->base.sk;
162
163 /* The sndbuf space is tracked per association. */
164 sctp_association_hold(asoc);
165
166 skb_set_owner_w(chunk->skb, sk);
167
168 chunk->skb->destructor = sctp_wfree;
169 /* Save the chunk pointer in skb for sctp_wfree to use later. */
170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171
172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 sizeof(struct sk_buff) +
174 sizeof(struct sctp_chunk);
175
176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 sk->sk_wmem_queued += chunk->skb->truesize;
178 sk_mem_charge(sk, chunk->skb->truesize);
179 }
180
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 int len)
184 {
185 struct sctp_af *af;
186
187 /* Verify basic sockaddr. */
188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 if (!af)
190 return -EINVAL;
191
192 /* Is this a valid SCTP address? */
193 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 return -EINVAL;
195
196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 return -EINVAL;
198
199 return 0;
200 }
201
202 /* Look up the association by its id. If this is not a UDP-style
203 * socket, the ID field is always ignored.
204 */
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
206 {
207 struct sctp_association *asoc = NULL;
208
209 /* If this is not a UDP-style socket, assoc id should be ignored. */
210 if (!sctp_style(sk, UDP)) {
211 /* Return NULL if the socket state is not ESTABLISHED. It
212 * could be a TCP-style listening socket or a socket which
213 * hasn't yet called connect() to establish an association.
214 */
215 if (!sctp_sstate(sk, ESTABLISHED))
216 return NULL;
217
218 /* Get the first and the only association from the list. */
219 if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 struct sctp_association, asocs);
222 return asoc;
223 }
224
225 /* Otherwise this is a UDP-style socket. */
226 if (!id || (id == (sctp_assoc_t)-1))
227 return NULL;
228
229 spin_lock_bh(&sctp_assocs_id_lock);
230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 spin_unlock_bh(&sctp_assocs_id_lock);
232
233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 return NULL;
235
236 return asoc;
237 }
238
239 /* Look up the transport from an address and an assoc id. If both address and
240 * id are specified, the associations matching the address and the id should be
241 * the same.
242 */
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 struct sockaddr_storage *addr,
245 sctp_assoc_t id)
246 {
247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 struct sctp_transport *transport;
249 union sctp_addr *laddr = (union sctp_addr *)addr;
250
251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 laddr,
253 &transport);
254
255 if (!addr_asoc)
256 return NULL;
257
258 id_asoc = sctp_id2assoc(sk, id);
259 if (id_asoc && (id_asoc != addr_asoc))
260 return NULL;
261
262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 (union sctp_addr *)addr);
264
265 return transport;
266 }
267
268 /* API 3.1.2 bind() - UDP Style Syntax
269 * The syntax of bind() is,
270 *
271 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
272 *
273 * sd - the socket descriptor returned by socket().
274 * addr - the address structure (struct sockaddr_in or struct
275 * sockaddr_in6 [RFC 2553]),
276 * addr_len - the size of the address structure.
277 */
278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
279 {
280 int retval = 0;
281
282 sctp_lock_sock(sk);
283
284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 sk, addr, addr_len);
286
287 /* Disallow binding twice. */
288 if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 addr_len);
291 else
292 retval = -EINVAL;
293
294 sctp_release_sock(sk);
295
296 return retval;
297 }
298
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
300
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 union sctp_addr *addr, int len)
304 {
305 struct sctp_af *af;
306
307 /* Check minimum size. */
308 if (len < sizeof (struct sockaddr))
309 return NULL;
310
311 /* Does this PF support this AF? */
312 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 return NULL;
314
315 /* If we get this far, af is valid. */
316 af = sctp_get_af_specific(addr->sa.sa_family);
317
318 if (len < af->sockaddr_len)
319 return NULL;
320
321 return af;
322 }
323
324 /* Bind a local address either to an endpoint or to an association. */
325 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
326 {
327 struct sctp_sock *sp = sctp_sk(sk);
328 struct sctp_endpoint *ep = sp->ep;
329 struct sctp_bind_addr *bp = &ep->base.bind_addr;
330 struct sctp_af *af;
331 unsigned short snum;
332 int ret = 0;
333
334 /* Common sockaddr verification. */
335 af = sctp_sockaddr_af(sp, addr, len);
336 if (!af) {
337 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
338 sk, addr, len);
339 return -EINVAL;
340 }
341
342 snum = ntohs(addr->v4.sin_port);
343
344 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
345 ", port: %d, new port: %d, len: %d)\n",
346 sk,
347 addr,
348 bp->port, snum,
349 len);
350
351 /* PF specific bind() address verification. */
352 if (!sp->pf->bind_verify(sp, addr))
353 return -EADDRNOTAVAIL;
354
355 /* We must either be unbound, or bind to the same port.
356 * It's OK to allow 0 ports if we are already bound.
357 * We'll just inhert an already bound port in this case
358 */
359 if (bp->port) {
360 if (!snum)
361 snum = bp->port;
362 else if (snum != bp->port) {
363 SCTP_DEBUG_PRINTK("sctp_do_bind:"
364 " New port %d does not match existing port "
365 "%d.\n", snum, bp->port);
366 return -EINVAL;
367 }
368 }
369
370 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
371 return -EACCES;
372
373 /* Make sure we are allowed to bind here.
374 * The function sctp_get_port_local() does duplicate address
375 * detection.
376 */
377 addr->v4.sin_port = htons(snum);
378 if ((ret = sctp_get_port_local(sk, addr))) {
379 if (ret == (long) sk) {
380 /* This endpoint has a conflicting address. */
381 return -EINVAL;
382 } else {
383 return -EADDRINUSE;
384 }
385 }
386
387 /* Refresh ephemeral port. */
388 if (!bp->port)
389 bp->port = inet_sk(sk)->num;
390
391 /* Add the address to the bind address list.
392 * Use GFP_ATOMIC since BHs will be disabled.
393 */
394 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
395
396 /* Copy back into socket for getsockname() use. */
397 if (!ret) {
398 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
399 af->to_sk_saddr(addr, sk);
400 }
401
402 return ret;
403 }
404
405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
406 *
407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408 * at any one time. If a sender, after sending an ASCONF chunk, decides
409 * it needs to transfer another ASCONF Chunk, it MUST wait until the
410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411 * subsequent ASCONF. Note this restriction binds each side, so at any
412 * time two ASCONF may be in-transit on any given association (one sent
413 * from each endpoint).
414 */
415 static int sctp_send_asconf(struct sctp_association *asoc,
416 struct sctp_chunk *chunk)
417 {
418 int retval = 0;
419
420 /* If there is an outstanding ASCONF chunk, queue it for later
421 * transmission.
422 */
423 if (asoc->addip_last_asconf) {
424 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
425 goto out;
426 }
427
428 /* Hold the chunk until an ASCONF_ACK is received. */
429 sctp_chunk_hold(chunk);
430 retval = sctp_primitive_ASCONF(asoc, chunk);
431 if (retval)
432 sctp_chunk_free(chunk);
433 else
434 asoc->addip_last_asconf = chunk;
435
436 out:
437 return retval;
438 }
439
440 /* Add a list of addresses as bind addresses to local endpoint or
441 * association.
442 *
443 * Basically run through each address specified in the addrs/addrcnt
444 * array/length pair, determine if it is IPv6 or IPv4 and call
445 * sctp_do_bind() on it.
446 *
447 * If any of them fails, then the operation will be reversed and the
448 * ones that were added will be removed.
449 *
450 * Only sctp_setsockopt_bindx() is supposed to call this function.
451 */
452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
453 {
454 int cnt;
455 int retval = 0;
456 void *addr_buf;
457 struct sockaddr *sa_addr;
458 struct sctp_af *af;
459
460 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
461 sk, addrs, addrcnt);
462
463 addr_buf = addrs;
464 for (cnt = 0; cnt < addrcnt; cnt++) {
465 /* The list may contain either IPv4 or IPv6 address;
466 * determine the address length for walking thru the list.
467 */
468 sa_addr = (struct sockaddr *)addr_buf;
469 af = sctp_get_af_specific(sa_addr->sa_family);
470 if (!af) {
471 retval = -EINVAL;
472 goto err_bindx_add;
473 }
474
475 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
476 af->sockaddr_len);
477
478 addr_buf += af->sockaddr_len;
479
480 err_bindx_add:
481 if (retval < 0) {
482 /* Failed. Cleanup the ones that have been added */
483 if (cnt > 0)
484 sctp_bindx_rem(sk, addrs, cnt);
485 return retval;
486 }
487 }
488
489 return retval;
490 }
491
492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
493 * associations that are part of the endpoint indicating that a list of local
494 * addresses are added to the endpoint.
495 *
496 * If any of the addresses is already in the bind address list of the
497 * association, we do not send the chunk for that association. But it will not
498 * affect other associations.
499 *
500 * Only sctp_setsockopt_bindx() is supposed to call this function.
501 */
502 static int sctp_send_asconf_add_ip(struct sock *sk,
503 struct sockaddr *addrs,
504 int addrcnt)
505 {
506 struct sctp_sock *sp;
507 struct sctp_endpoint *ep;
508 struct sctp_association *asoc;
509 struct sctp_bind_addr *bp;
510 struct sctp_chunk *chunk;
511 struct sctp_sockaddr_entry *laddr;
512 union sctp_addr *addr;
513 union sctp_addr saveaddr;
514 void *addr_buf;
515 struct sctp_af *af;
516 struct list_head *p;
517 int i;
518 int retval = 0;
519
520 if (!sctp_addip_enable)
521 return retval;
522
523 sp = sctp_sk(sk);
524 ep = sp->ep;
525
526 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
527 __func__, sk, addrs, addrcnt);
528
529 list_for_each_entry(asoc, &ep->asocs, asocs) {
530
531 if (!asoc->peer.asconf_capable)
532 continue;
533
534 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
535 continue;
536
537 if (!sctp_state(asoc, ESTABLISHED))
538 continue;
539
540 /* Check if any address in the packed array of addresses is
541 * in the bind address list of the association. If so,
542 * do not send the asconf chunk to its peer, but continue with
543 * other associations.
544 */
545 addr_buf = addrs;
546 for (i = 0; i < addrcnt; i++) {
547 addr = (union sctp_addr *)addr_buf;
548 af = sctp_get_af_specific(addr->v4.sin_family);
549 if (!af) {
550 retval = -EINVAL;
551 goto out;
552 }
553
554 if (sctp_assoc_lookup_laddr(asoc, addr))
555 break;
556
557 addr_buf += af->sockaddr_len;
558 }
559 if (i < addrcnt)
560 continue;
561
562 /* Use the first valid address in bind addr list of
563 * association as Address Parameter of ASCONF CHUNK.
564 */
565 bp = &asoc->base.bind_addr;
566 p = bp->address_list.next;
567 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
568 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
569 addrcnt, SCTP_PARAM_ADD_IP);
570 if (!chunk) {
571 retval = -ENOMEM;
572 goto out;
573 }
574
575 retval = sctp_send_asconf(asoc, chunk);
576 if (retval)
577 goto out;
578
579 /* Add the new addresses to the bind address list with
580 * use_as_src set to 0.
581 */
582 addr_buf = addrs;
583 for (i = 0; i < addrcnt; i++) {
584 addr = (union sctp_addr *)addr_buf;
585 af = sctp_get_af_specific(addr->v4.sin_family);
586 memcpy(&saveaddr, addr, af->sockaddr_len);
587 retval = sctp_add_bind_addr(bp, &saveaddr,
588 SCTP_ADDR_NEW, GFP_ATOMIC);
589 addr_buf += af->sockaddr_len;
590 }
591 }
592
593 out:
594 return retval;
595 }
596
597 /* Remove a list of addresses from bind addresses list. Do not remove the
598 * last address.
599 *
600 * Basically run through each address specified in the addrs/addrcnt
601 * array/length pair, determine if it is IPv6 or IPv4 and call
602 * sctp_del_bind() on it.
603 *
604 * If any of them fails, then the operation will be reversed and the
605 * ones that were removed will be added back.
606 *
607 * At least one address has to be left; if only one address is
608 * available, the operation will return -EBUSY.
609 *
610 * Only sctp_setsockopt_bindx() is supposed to call this function.
611 */
612 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
613 {
614 struct sctp_sock *sp = sctp_sk(sk);
615 struct sctp_endpoint *ep = sp->ep;
616 int cnt;
617 struct sctp_bind_addr *bp = &ep->base.bind_addr;
618 int retval = 0;
619 void *addr_buf;
620 union sctp_addr *sa_addr;
621 struct sctp_af *af;
622
623 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
624 sk, addrs, addrcnt);
625
626 addr_buf = addrs;
627 for (cnt = 0; cnt < addrcnt; cnt++) {
628 /* If the bind address list is empty or if there is only one
629 * bind address, there is nothing more to be removed (we need
630 * at least one address here).
631 */
632 if (list_empty(&bp->address_list) ||
633 (sctp_list_single_entry(&bp->address_list))) {
634 retval = -EBUSY;
635 goto err_bindx_rem;
636 }
637
638 sa_addr = (union sctp_addr *)addr_buf;
639 af = sctp_get_af_specific(sa_addr->sa.sa_family);
640 if (!af) {
641 retval = -EINVAL;
642 goto err_bindx_rem;
643 }
644
645 if (!af->addr_valid(sa_addr, sp, NULL)) {
646 retval = -EADDRNOTAVAIL;
647 goto err_bindx_rem;
648 }
649
650 if (sa_addr->v4.sin_port != htons(bp->port)) {
651 retval = -EINVAL;
652 goto err_bindx_rem;
653 }
654
655 /* FIXME - There is probably a need to check if sk->sk_saddr and
656 * sk->sk_rcv_addr are currently set to one of the addresses to
657 * be removed. This is something which needs to be looked into
658 * when we are fixing the outstanding issues with multi-homing
659 * socket routing and failover schemes. Refer to comments in
660 * sctp_do_bind(). -daisy
661 */
662 retval = sctp_del_bind_addr(bp, sa_addr);
663
664 addr_buf += af->sockaddr_len;
665 err_bindx_rem:
666 if (retval < 0) {
667 /* Failed. Add the ones that has been removed back */
668 if (cnt > 0)
669 sctp_bindx_add(sk, addrs, cnt);
670 return retval;
671 }
672 }
673
674 return retval;
675 }
676
677 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
678 * the associations that are part of the endpoint indicating that a list of
679 * local addresses are removed from the endpoint.
680 *
681 * If any of the addresses is already in the bind address list of the
682 * association, we do not send the chunk for that association. But it will not
683 * affect other associations.
684 *
685 * Only sctp_setsockopt_bindx() is supposed to call this function.
686 */
687 static int sctp_send_asconf_del_ip(struct sock *sk,
688 struct sockaddr *addrs,
689 int addrcnt)
690 {
691 struct sctp_sock *sp;
692 struct sctp_endpoint *ep;
693 struct sctp_association *asoc;
694 struct sctp_transport *transport;
695 struct sctp_bind_addr *bp;
696 struct sctp_chunk *chunk;
697 union sctp_addr *laddr;
698 void *addr_buf;
699 struct sctp_af *af;
700 struct sctp_sockaddr_entry *saddr;
701 int i;
702 int retval = 0;
703
704 if (!sctp_addip_enable)
705 return retval;
706
707 sp = sctp_sk(sk);
708 ep = sp->ep;
709
710 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
711 __func__, sk, addrs, addrcnt);
712
713 list_for_each_entry(asoc, &ep->asocs, asocs) {
714
715 if (!asoc->peer.asconf_capable)
716 continue;
717
718 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
719 continue;
720
721 if (!sctp_state(asoc, ESTABLISHED))
722 continue;
723
724 /* Check if any address in the packed array of addresses is
725 * not present in the bind address list of the association.
726 * If so, do not send the asconf chunk to its peer, but
727 * continue with other associations.
728 */
729 addr_buf = addrs;
730 for (i = 0; i < addrcnt; i++) {
731 laddr = (union sctp_addr *)addr_buf;
732 af = sctp_get_af_specific(laddr->v4.sin_family);
733 if (!af) {
734 retval = -EINVAL;
735 goto out;
736 }
737
738 if (!sctp_assoc_lookup_laddr(asoc, laddr))
739 break;
740
741 addr_buf += af->sockaddr_len;
742 }
743 if (i < addrcnt)
744 continue;
745
746 /* Find one address in the association's bind address list
747 * that is not in the packed array of addresses. This is to
748 * make sure that we do not delete all the addresses in the
749 * association.
750 */
751 bp = &asoc->base.bind_addr;
752 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
753 addrcnt, sp);
754 if (!laddr)
755 continue;
756
757 /* We do not need RCU protection throughout this loop
758 * because this is done under a socket lock from the
759 * setsockopt call.
760 */
761 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
762 SCTP_PARAM_DEL_IP);
763 if (!chunk) {
764 retval = -ENOMEM;
765 goto out;
766 }
767
768 /* Reset use_as_src flag for the addresses in the bind address
769 * list that are to be deleted.
770 */
771 addr_buf = addrs;
772 for (i = 0; i < addrcnt; i++) {
773 laddr = (union sctp_addr *)addr_buf;
774 af = sctp_get_af_specific(laddr->v4.sin_family);
775 list_for_each_entry(saddr, &bp->address_list, list) {
776 if (sctp_cmp_addr_exact(&saddr->a, laddr))
777 saddr->state = SCTP_ADDR_DEL;
778 }
779 addr_buf += af->sockaddr_len;
780 }
781
782 /* Update the route and saddr entries for all the transports
783 * as some of the addresses in the bind address list are
784 * about to be deleted and cannot be used as source addresses.
785 */
786 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
787 transports) {
788 dst_release(transport->dst);
789 sctp_transport_route(transport, NULL,
790 sctp_sk(asoc->base.sk));
791 }
792
793 retval = sctp_send_asconf(asoc, chunk);
794 }
795 out:
796 return retval;
797 }
798
799 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
800 *
801 * API 8.1
802 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
803 * int flags);
804 *
805 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
806 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
807 * or IPv6 addresses.
808 *
809 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
810 * Section 3.1.2 for this usage.
811 *
812 * addrs is a pointer to an array of one or more socket addresses. Each
813 * address is contained in its appropriate structure (i.e. struct
814 * sockaddr_in or struct sockaddr_in6) the family of the address type
815 * must be used to distinguish the address length (note that this
816 * representation is termed a "packed array" of addresses). The caller
817 * specifies the number of addresses in the array with addrcnt.
818 *
819 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
820 * -1, and sets errno to the appropriate error code.
821 *
822 * For SCTP, the port given in each socket address must be the same, or
823 * sctp_bindx() will fail, setting errno to EINVAL.
824 *
825 * The flags parameter is formed from the bitwise OR of zero or more of
826 * the following currently defined flags:
827 *
828 * SCTP_BINDX_ADD_ADDR
829 *
830 * SCTP_BINDX_REM_ADDR
831 *
832 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
833 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
834 * addresses from the association. The two flags are mutually exclusive;
835 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
836 * not remove all addresses from an association; sctp_bindx() will
837 * reject such an attempt with EINVAL.
838 *
839 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
840 * additional addresses with an endpoint after calling bind(). Or use
841 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
842 * socket is associated with so that no new association accepted will be
843 * associated with those addresses. If the endpoint supports dynamic
844 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
845 * endpoint to send the appropriate message to the peer to change the
846 * peers address lists.
847 *
848 * Adding and removing addresses from a connected association is
849 * optional functionality. Implementations that do not support this
850 * functionality should return EOPNOTSUPP.
851 *
852 * Basically do nothing but copying the addresses from user to kernel
853 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
854 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
855 * from userspace.
856 *
857 * We don't use copy_from_user() for optimization: we first do the
858 * sanity checks (buffer size -fast- and access check-healthy
859 * pointer); if all of those succeed, then we can alloc the memory
860 * (expensive operation) needed to copy the data to kernel. Then we do
861 * the copying without checking the user space area
862 * (__copy_from_user()).
863 *
864 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
865 * it.
866 *
867 * sk The sk of the socket
868 * addrs The pointer to the addresses in user land
869 * addrssize Size of the addrs buffer
870 * op Operation to perform (add or remove, see the flags of
871 * sctp_bindx)
872 *
873 * Returns 0 if ok, <0 errno code on error.
874 */
875 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
876 struct sockaddr __user *addrs,
877 int addrs_size, int op)
878 {
879 struct sockaddr *kaddrs;
880 int err;
881 int addrcnt = 0;
882 int walk_size = 0;
883 struct sockaddr *sa_addr;
884 void *addr_buf;
885 struct sctp_af *af;
886
887 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
888 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
889
890 if (unlikely(addrs_size <= 0))
891 return -EINVAL;
892
893 /* Check the user passed a healthy pointer. */
894 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
895 return -EFAULT;
896
897 /* Alloc space for the address array in kernel memory. */
898 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
899 if (unlikely(!kaddrs))
900 return -ENOMEM;
901
902 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
903 kfree(kaddrs);
904 return -EFAULT;
905 }
906
907 /* Walk through the addrs buffer and count the number of addresses. */
908 addr_buf = kaddrs;
909 while (walk_size < addrs_size) {
910 sa_addr = (struct sockaddr *)addr_buf;
911 af = sctp_get_af_specific(sa_addr->sa_family);
912
913 /* If the address family is not supported or if this address
914 * causes the address buffer to overflow return EINVAL.
915 */
916 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
917 kfree(kaddrs);
918 return -EINVAL;
919 }
920 addrcnt++;
921 addr_buf += af->sockaddr_len;
922 walk_size += af->sockaddr_len;
923 }
924
925 /* Do the work. */
926 switch (op) {
927 case SCTP_BINDX_ADD_ADDR:
928 err = sctp_bindx_add(sk, kaddrs, addrcnt);
929 if (err)
930 goto out;
931 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
932 break;
933
934 case SCTP_BINDX_REM_ADDR:
935 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
936 if (err)
937 goto out;
938 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
939 break;
940
941 default:
942 err = -EINVAL;
943 break;
944 }
945
946 out:
947 kfree(kaddrs);
948
949 return err;
950 }
951
952 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
953 *
954 * Common routine for handling connect() and sctp_connectx().
955 * Connect will come in with just a single address.
956 */
957 static int __sctp_connect(struct sock* sk,
958 struct sockaddr *kaddrs,
959 int addrs_size,
960 sctp_assoc_t *assoc_id)
961 {
962 struct sctp_sock *sp;
963 struct sctp_endpoint *ep;
964 struct sctp_association *asoc = NULL;
965 struct sctp_association *asoc2;
966 struct sctp_transport *transport;
967 union sctp_addr to;
968 struct sctp_af *af;
969 sctp_scope_t scope;
970 long timeo;
971 int err = 0;
972 int addrcnt = 0;
973 int walk_size = 0;
974 union sctp_addr *sa_addr = NULL;
975 void *addr_buf;
976 unsigned short port;
977 unsigned int f_flags = 0;
978
979 sp = sctp_sk(sk);
980 ep = sp->ep;
981
982 /* connect() cannot be done on a socket that is already in ESTABLISHED
983 * state - UDP-style peeled off socket or a TCP-style socket that
984 * is already connected.
985 * It cannot be done even on a TCP-style listening socket.
986 */
987 if (sctp_sstate(sk, ESTABLISHED) ||
988 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
989 err = -EISCONN;
990 goto out_free;
991 }
992
993 /* Walk through the addrs buffer and count the number of addresses. */
994 addr_buf = kaddrs;
995 while (walk_size < addrs_size) {
996 sa_addr = (union sctp_addr *)addr_buf;
997 af = sctp_get_af_specific(sa_addr->sa.sa_family);
998 port = ntohs(sa_addr->v4.sin_port);
999
1000 /* If the address family is not supported or if this address
1001 * causes the address buffer to overflow return EINVAL.
1002 */
1003 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1004 err = -EINVAL;
1005 goto out_free;
1006 }
1007
1008 /* Save current address so we can work with it */
1009 memcpy(&to, sa_addr, af->sockaddr_len);
1010
1011 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1012 if (err)
1013 goto out_free;
1014
1015 /* Make sure the destination port is correctly set
1016 * in all addresses.
1017 */
1018 if (asoc && asoc->peer.port && asoc->peer.port != port)
1019 goto out_free;
1020
1021
1022 /* Check if there already is a matching association on the
1023 * endpoint (other than the one created here).
1024 */
1025 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1026 if (asoc2 && asoc2 != asoc) {
1027 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1028 err = -EISCONN;
1029 else
1030 err = -EALREADY;
1031 goto out_free;
1032 }
1033
1034 /* If we could not find a matching association on the endpoint,
1035 * make sure that there is no peeled-off association matching
1036 * the peer address even on another socket.
1037 */
1038 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1039 err = -EADDRNOTAVAIL;
1040 goto out_free;
1041 }
1042
1043 if (!asoc) {
1044 /* If a bind() or sctp_bindx() is not called prior to
1045 * an sctp_connectx() call, the system picks an
1046 * ephemeral port and will choose an address set
1047 * equivalent to binding with a wildcard address.
1048 */
1049 if (!ep->base.bind_addr.port) {
1050 if (sctp_autobind(sk)) {
1051 err = -EAGAIN;
1052 goto out_free;
1053 }
1054 } else {
1055 /*
1056 * If an unprivileged user inherits a 1-many
1057 * style socket with open associations on a
1058 * privileged port, it MAY be permitted to
1059 * accept new associations, but it SHOULD NOT
1060 * be permitted to open new associations.
1061 */
1062 if (ep->base.bind_addr.port < PROT_SOCK &&
1063 !capable(CAP_NET_BIND_SERVICE)) {
1064 err = -EACCES;
1065 goto out_free;
1066 }
1067 }
1068
1069 scope = sctp_scope(&to);
1070 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1071 if (!asoc) {
1072 err = -ENOMEM;
1073 goto out_free;
1074 }
1075 }
1076
1077 /* Prime the peer's transport structures. */
1078 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1079 SCTP_UNKNOWN);
1080 if (!transport) {
1081 err = -ENOMEM;
1082 goto out_free;
1083 }
1084
1085 addrcnt++;
1086 addr_buf += af->sockaddr_len;
1087 walk_size += af->sockaddr_len;
1088 }
1089
1090 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1091 if (err < 0) {
1092 goto out_free;
1093 }
1094
1095 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1096 if (err < 0) {
1097 goto out_free;
1098 }
1099
1100 /* Initialize sk's dport and daddr for getpeername() */
1101 inet_sk(sk)->dport = htons(asoc->peer.port);
1102 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1103 af->to_sk_daddr(sa_addr, sk);
1104 sk->sk_err = 0;
1105
1106 /* in-kernel sockets don't generally have a file allocated to them
1107 * if all they do is call sock_create_kern().
1108 */
1109 if (sk->sk_socket->file)
1110 f_flags = sk->sk_socket->file->f_flags;
1111
1112 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1113
1114 err = sctp_wait_for_connect(asoc, &timeo);
1115 if (!err && assoc_id)
1116 *assoc_id = asoc->assoc_id;
1117
1118 /* Don't free association on exit. */
1119 asoc = NULL;
1120
1121 out_free:
1122
1123 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1124 " kaddrs: %p err: %d\n",
1125 asoc, kaddrs, err);
1126 if (asoc)
1127 sctp_association_free(asoc);
1128 return err;
1129 }
1130
1131 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1132 *
1133 * API 8.9
1134 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1135 * sctp_assoc_t *asoc);
1136 *
1137 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1138 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1139 * or IPv6 addresses.
1140 *
1141 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1142 * Section 3.1.2 for this usage.
1143 *
1144 * addrs is a pointer to an array of one or more socket addresses. Each
1145 * address is contained in its appropriate structure (i.e. struct
1146 * sockaddr_in or struct sockaddr_in6) the family of the address type
1147 * must be used to distengish the address length (note that this
1148 * representation is termed a "packed array" of addresses). The caller
1149 * specifies the number of addresses in the array with addrcnt.
1150 *
1151 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1152 * the association id of the new association. On failure, sctp_connectx()
1153 * returns -1, and sets errno to the appropriate error code. The assoc_id
1154 * is not touched by the kernel.
1155 *
1156 * For SCTP, the port given in each socket address must be the same, or
1157 * sctp_connectx() will fail, setting errno to EINVAL.
1158 *
1159 * An application can use sctp_connectx to initiate an association with
1160 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1161 * allows a caller to specify multiple addresses at which a peer can be
1162 * reached. The way the SCTP stack uses the list of addresses to set up
1163 * the association is implementation dependant. This function only
1164 * specifies that the stack will try to make use of all the addresses in
1165 * the list when needed.
1166 *
1167 * Note that the list of addresses passed in is only used for setting up
1168 * the association. It does not necessarily equal the set of addresses
1169 * the peer uses for the resulting association. If the caller wants to
1170 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1171 * retrieve them after the association has been set up.
1172 *
1173 * Basically do nothing but copying the addresses from user to kernel
1174 * land and invoking either sctp_connectx(). This is used for tunneling
1175 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1176 *
1177 * We don't use copy_from_user() for optimization: we first do the
1178 * sanity checks (buffer size -fast- and access check-healthy
1179 * pointer); if all of those succeed, then we can alloc the memory
1180 * (expensive operation) needed to copy the data to kernel. Then we do
1181 * the copying without checking the user space area
1182 * (__copy_from_user()).
1183 *
1184 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1185 * it.
1186 *
1187 * sk The sk of the socket
1188 * addrs The pointer to the addresses in user land
1189 * addrssize Size of the addrs buffer
1190 *
1191 * Returns >=0 if ok, <0 errno code on error.
1192 */
1193 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1194 struct sockaddr __user *addrs,
1195 int addrs_size,
1196 sctp_assoc_t *assoc_id)
1197 {
1198 int err = 0;
1199 struct sockaddr *kaddrs;
1200
1201 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1202 __func__, sk, addrs, addrs_size);
1203
1204 if (unlikely(addrs_size <= 0))
1205 return -EINVAL;
1206
1207 /* Check the user passed a healthy pointer. */
1208 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1209 return -EFAULT;
1210
1211 /* Alloc space for the address array in kernel memory. */
1212 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1213 if (unlikely(!kaddrs))
1214 return -ENOMEM;
1215
1216 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1217 err = -EFAULT;
1218 } else {
1219 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1220 }
1221
1222 kfree(kaddrs);
1223
1224 return err;
1225 }
1226
1227 /*
1228 * This is an older interface. It's kept for backward compatibility
1229 * to the option that doesn't provide association id.
1230 */
1231 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1232 struct sockaddr __user *addrs,
1233 int addrs_size)
1234 {
1235 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1236 }
1237
1238 /*
1239 * New interface for the API. The since the API is done with a socket
1240 * option, to make it simple we feed back the association id is as a return
1241 * indication to the call. Error is always negative and association id is
1242 * always positive.
1243 */
1244 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1245 struct sockaddr __user *addrs,
1246 int addrs_size)
1247 {
1248 sctp_assoc_t assoc_id = 0;
1249 int err = 0;
1250
1251 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1252
1253 if (err)
1254 return err;
1255 else
1256 return assoc_id;
1257 }
1258
1259 /* API 3.1.4 close() - UDP Style Syntax
1260 * Applications use close() to perform graceful shutdown (as described in
1261 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1262 * by a UDP-style socket.
1263 *
1264 * The syntax is
1265 *
1266 * ret = close(int sd);
1267 *
1268 * sd - the socket descriptor of the associations to be closed.
1269 *
1270 * To gracefully shutdown a specific association represented by the
1271 * UDP-style socket, an application should use the sendmsg() call,
1272 * passing no user data, but including the appropriate flag in the
1273 * ancillary data (see Section xxxx).
1274 *
1275 * If sd in the close() call is a branched-off socket representing only
1276 * one association, the shutdown is performed on that association only.
1277 *
1278 * 4.1.6 close() - TCP Style Syntax
1279 *
1280 * Applications use close() to gracefully close down an association.
1281 *
1282 * The syntax is:
1283 *
1284 * int close(int sd);
1285 *
1286 * sd - the socket descriptor of the association to be closed.
1287 *
1288 * After an application calls close() on a socket descriptor, no further
1289 * socket operations will succeed on that descriptor.
1290 *
1291 * API 7.1.4 SO_LINGER
1292 *
1293 * An application using the TCP-style socket can use this option to
1294 * perform the SCTP ABORT primitive. The linger option structure is:
1295 *
1296 * struct linger {
1297 * int l_onoff; // option on/off
1298 * int l_linger; // linger time
1299 * };
1300 *
1301 * To enable the option, set l_onoff to 1. If the l_linger value is set
1302 * to 0, calling close() is the same as the ABORT primitive. If the
1303 * value is set to a negative value, the setsockopt() call will return
1304 * an error. If the value is set to a positive value linger_time, the
1305 * close() can be blocked for at most linger_time ms. If the graceful
1306 * shutdown phase does not finish during this period, close() will
1307 * return but the graceful shutdown phase continues in the system.
1308 */
1309 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1310 {
1311 struct sctp_endpoint *ep;
1312 struct sctp_association *asoc;
1313 struct list_head *pos, *temp;
1314
1315 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1316
1317 sctp_lock_sock(sk);
1318 sk->sk_shutdown = SHUTDOWN_MASK;
1319
1320 ep = sctp_sk(sk)->ep;
1321
1322 /* Walk all associations on an endpoint. */
1323 list_for_each_safe(pos, temp, &ep->asocs) {
1324 asoc = list_entry(pos, struct sctp_association, asocs);
1325
1326 if (sctp_style(sk, TCP)) {
1327 /* A closed association can still be in the list if
1328 * it belongs to a TCP-style listening socket that is
1329 * not yet accepted. If so, free it. If not, send an
1330 * ABORT or SHUTDOWN based on the linger options.
1331 */
1332 if (sctp_state(asoc, CLOSED)) {
1333 sctp_unhash_established(asoc);
1334 sctp_association_free(asoc);
1335 continue;
1336 }
1337 }
1338
1339 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1340 struct sctp_chunk *chunk;
1341
1342 chunk = sctp_make_abort_user(asoc, NULL, 0);
1343 if (chunk)
1344 sctp_primitive_ABORT(asoc, chunk);
1345 } else
1346 sctp_primitive_SHUTDOWN(asoc, NULL);
1347 }
1348
1349 /* Clean up any skbs sitting on the receive queue. */
1350 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1351 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1352
1353 /* On a TCP-style socket, block for at most linger_time if set. */
1354 if (sctp_style(sk, TCP) && timeout)
1355 sctp_wait_for_close(sk, timeout);
1356
1357 /* This will run the backlog queue. */
1358 sctp_release_sock(sk);
1359
1360 /* Supposedly, no process has access to the socket, but
1361 * the net layers still may.
1362 */
1363 sctp_local_bh_disable();
1364 sctp_bh_lock_sock(sk);
1365
1366 /* Hold the sock, since sk_common_release() will put sock_put()
1367 * and we have just a little more cleanup.
1368 */
1369 sock_hold(sk);
1370 sk_common_release(sk);
1371
1372 sctp_bh_unlock_sock(sk);
1373 sctp_local_bh_enable();
1374
1375 sock_put(sk);
1376
1377 SCTP_DBG_OBJCNT_DEC(sock);
1378 }
1379
1380 /* Handle EPIPE error. */
1381 static int sctp_error(struct sock *sk, int flags, int err)
1382 {
1383 if (err == -EPIPE)
1384 err = sock_error(sk) ? : -EPIPE;
1385 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1386 send_sig(SIGPIPE, current, 0);
1387 return err;
1388 }
1389
1390 /* API 3.1.3 sendmsg() - UDP Style Syntax
1391 *
1392 * An application uses sendmsg() and recvmsg() calls to transmit data to
1393 * and receive data from its peer.
1394 *
1395 * ssize_t sendmsg(int socket, const struct msghdr *message,
1396 * int flags);
1397 *
1398 * socket - the socket descriptor of the endpoint.
1399 * message - pointer to the msghdr structure which contains a single
1400 * user message and possibly some ancillary data.
1401 *
1402 * See Section 5 for complete description of the data
1403 * structures.
1404 *
1405 * flags - flags sent or received with the user message, see Section
1406 * 5 for complete description of the flags.
1407 *
1408 * Note: This function could use a rewrite especially when explicit
1409 * connect support comes in.
1410 */
1411 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1412
1413 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1414
1415 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1416 struct msghdr *msg, size_t msg_len)
1417 {
1418 struct sctp_sock *sp;
1419 struct sctp_endpoint *ep;
1420 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1421 struct sctp_transport *transport, *chunk_tp;
1422 struct sctp_chunk *chunk;
1423 union sctp_addr to;
1424 struct sockaddr *msg_name = NULL;
1425 struct sctp_sndrcvinfo default_sinfo = { 0 };
1426 struct sctp_sndrcvinfo *sinfo;
1427 struct sctp_initmsg *sinit;
1428 sctp_assoc_t associd = 0;
1429 sctp_cmsgs_t cmsgs = { NULL };
1430 int err;
1431 sctp_scope_t scope;
1432 long timeo;
1433 __u16 sinfo_flags = 0;
1434 struct sctp_datamsg *datamsg;
1435 int msg_flags = msg->msg_flags;
1436
1437 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1438 sk, msg, msg_len);
1439
1440 err = 0;
1441 sp = sctp_sk(sk);
1442 ep = sp->ep;
1443
1444 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1445
1446 /* We cannot send a message over a TCP-style listening socket. */
1447 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1448 err = -EPIPE;
1449 goto out_nounlock;
1450 }
1451
1452 /* Parse out the SCTP CMSGs. */
1453 err = sctp_msghdr_parse(msg, &cmsgs);
1454
1455 if (err) {
1456 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1457 goto out_nounlock;
1458 }
1459
1460 /* Fetch the destination address for this packet. This
1461 * address only selects the association--it is not necessarily
1462 * the address we will send to.
1463 * For a peeled-off socket, msg_name is ignored.
1464 */
1465 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1466 int msg_namelen = msg->msg_namelen;
1467
1468 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1469 msg_namelen);
1470 if (err)
1471 return err;
1472
1473 if (msg_namelen > sizeof(to))
1474 msg_namelen = sizeof(to);
1475 memcpy(&to, msg->msg_name, msg_namelen);
1476 msg_name = msg->msg_name;
1477 }
1478
1479 sinfo = cmsgs.info;
1480 sinit = cmsgs.init;
1481
1482 /* Did the user specify SNDRCVINFO? */
1483 if (sinfo) {
1484 sinfo_flags = sinfo->sinfo_flags;
1485 associd = sinfo->sinfo_assoc_id;
1486 }
1487
1488 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1489 msg_len, sinfo_flags);
1490
1491 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1492 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1493 err = -EINVAL;
1494 goto out_nounlock;
1495 }
1496
1497 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1498 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1499 * If SCTP_ABORT is set, the message length could be non zero with
1500 * the msg_iov set to the user abort reason.
1501 */
1502 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1503 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1504 err = -EINVAL;
1505 goto out_nounlock;
1506 }
1507
1508 /* If SCTP_ADDR_OVER is set, there must be an address
1509 * specified in msg_name.
1510 */
1511 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1512 err = -EINVAL;
1513 goto out_nounlock;
1514 }
1515
1516 transport = NULL;
1517
1518 SCTP_DEBUG_PRINTK("About to look up association.\n");
1519
1520 sctp_lock_sock(sk);
1521
1522 /* If a msg_name has been specified, assume this is to be used. */
1523 if (msg_name) {
1524 /* Look for a matching association on the endpoint. */
1525 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1526 if (!asoc) {
1527 /* If we could not find a matching association on the
1528 * endpoint, make sure that it is not a TCP-style
1529 * socket that already has an association or there is
1530 * no peeled-off association on another socket.
1531 */
1532 if ((sctp_style(sk, TCP) &&
1533 sctp_sstate(sk, ESTABLISHED)) ||
1534 sctp_endpoint_is_peeled_off(ep, &to)) {
1535 err = -EADDRNOTAVAIL;
1536 goto out_unlock;
1537 }
1538 }
1539 } else {
1540 asoc = sctp_id2assoc(sk, associd);
1541 if (!asoc) {
1542 err = -EPIPE;
1543 goto out_unlock;
1544 }
1545 }
1546
1547 if (asoc) {
1548 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1549
1550 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1551 * socket that has an association in CLOSED state. This can
1552 * happen when an accepted socket has an association that is
1553 * already CLOSED.
1554 */
1555 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1556 err = -EPIPE;
1557 goto out_unlock;
1558 }
1559
1560 if (sinfo_flags & SCTP_EOF) {
1561 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1562 asoc);
1563 sctp_primitive_SHUTDOWN(asoc, NULL);
1564 err = 0;
1565 goto out_unlock;
1566 }
1567 if (sinfo_flags & SCTP_ABORT) {
1568
1569 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1570 if (!chunk) {
1571 err = -ENOMEM;
1572 goto out_unlock;
1573 }
1574
1575 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1576 sctp_primitive_ABORT(asoc, chunk);
1577 err = 0;
1578 goto out_unlock;
1579 }
1580 }
1581
1582 /* Do we need to create the association? */
1583 if (!asoc) {
1584 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1585
1586 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1587 err = -EINVAL;
1588 goto out_unlock;
1589 }
1590
1591 /* Check for invalid stream against the stream counts,
1592 * either the default or the user specified stream counts.
1593 */
1594 if (sinfo) {
1595 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1596 /* Check against the defaults. */
1597 if (sinfo->sinfo_stream >=
1598 sp->initmsg.sinit_num_ostreams) {
1599 err = -EINVAL;
1600 goto out_unlock;
1601 }
1602 } else {
1603 /* Check against the requested. */
1604 if (sinfo->sinfo_stream >=
1605 sinit->sinit_num_ostreams) {
1606 err = -EINVAL;
1607 goto out_unlock;
1608 }
1609 }
1610 }
1611
1612 /*
1613 * API 3.1.2 bind() - UDP Style Syntax
1614 * If a bind() or sctp_bindx() is not called prior to a
1615 * sendmsg() call that initiates a new association, the
1616 * system picks an ephemeral port and will choose an address
1617 * set equivalent to binding with a wildcard address.
1618 */
1619 if (!ep->base.bind_addr.port) {
1620 if (sctp_autobind(sk)) {
1621 err = -EAGAIN;
1622 goto out_unlock;
1623 }
1624 } else {
1625 /*
1626 * If an unprivileged user inherits a one-to-many
1627 * style socket with open associations on a privileged
1628 * port, it MAY be permitted to accept new associations,
1629 * but it SHOULD NOT be permitted to open new
1630 * associations.
1631 */
1632 if (ep->base.bind_addr.port < PROT_SOCK &&
1633 !capable(CAP_NET_BIND_SERVICE)) {
1634 err = -EACCES;
1635 goto out_unlock;
1636 }
1637 }
1638
1639 scope = sctp_scope(&to);
1640 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1641 if (!new_asoc) {
1642 err = -ENOMEM;
1643 goto out_unlock;
1644 }
1645 asoc = new_asoc;
1646
1647 /* If the SCTP_INIT ancillary data is specified, set all
1648 * the association init values accordingly.
1649 */
1650 if (sinit) {
1651 if (sinit->sinit_num_ostreams) {
1652 asoc->c.sinit_num_ostreams =
1653 sinit->sinit_num_ostreams;
1654 }
1655 if (sinit->sinit_max_instreams) {
1656 asoc->c.sinit_max_instreams =
1657 sinit->sinit_max_instreams;
1658 }
1659 if (sinit->sinit_max_attempts) {
1660 asoc->max_init_attempts
1661 = sinit->sinit_max_attempts;
1662 }
1663 if (sinit->sinit_max_init_timeo) {
1664 asoc->max_init_timeo =
1665 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1666 }
1667 }
1668
1669 /* Prime the peer's transport structures. */
1670 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1671 if (!transport) {
1672 err = -ENOMEM;
1673 goto out_free;
1674 }
1675 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1676 if (err < 0) {
1677 err = -ENOMEM;
1678 goto out_free;
1679 }
1680 }
1681
1682 /* ASSERT: we have a valid association at this point. */
1683 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1684
1685 if (!sinfo) {
1686 /* If the user didn't specify SNDRCVINFO, make up one with
1687 * some defaults.
1688 */
1689 default_sinfo.sinfo_stream = asoc->default_stream;
1690 default_sinfo.sinfo_flags = asoc->default_flags;
1691 default_sinfo.sinfo_ppid = asoc->default_ppid;
1692 default_sinfo.sinfo_context = asoc->default_context;
1693 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1694 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1695 sinfo = &default_sinfo;
1696 }
1697
1698 /* API 7.1.7, the sndbuf size per association bounds the
1699 * maximum size of data that can be sent in a single send call.
1700 */
1701 if (msg_len > sk->sk_sndbuf) {
1702 err = -EMSGSIZE;
1703 goto out_free;
1704 }
1705
1706 if (asoc->pmtu_pending)
1707 sctp_assoc_pending_pmtu(asoc);
1708
1709 /* If fragmentation is disabled and the message length exceeds the
1710 * association fragmentation point, return EMSGSIZE. The I-D
1711 * does not specify what this error is, but this looks like
1712 * a great fit.
1713 */
1714 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1715 err = -EMSGSIZE;
1716 goto out_free;
1717 }
1718
1719 if (sinfo) {
1720 /* Check for invalid stream. */
1721 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1722 err = -EINVAL;
1723 goto out_free;
1724 }
1725 }
1726
1727 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1728 if (!sctp_wspace(asoc)) {
1729 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1730 if (err)
1731 goto out_free;
1732 }
1733
1734 /* If an address is passed with the sendto/sendmsg call, it is used
1735 * to override the primary destination address in the TCP model, or
1736 * when SCTP_ADDR_OVER flag is set in the UDP model.
1737 */
1738 if ((sctp_style(sk, TCP) && msg_name) ||
1739 (sinfo_flags & SCTP_ADDR_OVER)) {
1740 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1741 if (!chunk_tp) {
1742 err = -EINVAL;
1743 goto out_free;
1744 }
1745 } else
1746 chunk_tp = NULL;
1747
1748 /* Auto-connect, if we aren't connected already. */
1749 if (sctp_state(asoc, CLOSED)) {
1750 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1751 if (err < 0)
1752 goto out_free;
1753 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1754 }
1755
1756 /* Break the message into multiple chunks of maximum size. */
1757 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1758 if (!datamsg) {
1759 err = -ENOMEM;
1760 goto out_free;
1761 }
1762
1763 /* Now send the (possibly) fragmented message. */
1764 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1765 sctp_chunk_hold(chunk);
1766
1767 /* Do accounting for the write space. */
1768 sctp_set_owner_w(chunk);
1769
1770 chunk->transport = chunk_tp;
1771
1772 /* Send it to the lower layers. Note: all chunks
1773 * must either fail or succeed. The lower layer
1774 * works that way today. Keep it that way or this
1775 * breaks.
1776 */
1777 err = sctp_primitive_SEND(asoc, chunk);
1778 /* Did the lower layer accept the chunk? */
1779 if (err)
1780 sctp_chunk_free(chunk);
1781 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1782 }
1783
1784 sctp_datamsg_put(datamsg);
1785 if (err)
1786 goto out_free;
1787 else
1788 err = msg_len;
1789
1790 /* If we are already past ASSOCIATE, the lower
1791 * layers are responsible for association cleanup.
1792 */
1793 goto out_unlock;
1794
1795 out_free:
1796 if (new_asoc)
1797 sctp_association_free(asoc);
1798 out_unlock:
1799 sctp_release_sock(sk);
1800
1801 out_nounlock:
1802 return sctp_error(sk, msg_flags, err);
1803
1804 #if 0
1805 do_sock_err:
1806 if (msg_len)
1807 err = msg_len;
1808 else
1809 err = sock_error(sk);
1810 goto out;
1811
1812 do_interrupted:
1813 if (msg_len)
1814 err = msg_len;
1815 goto out;
1816 #endif /* 0 */
1817 }
1818
1819 /* This is an extended version of skb_pull() that removes the data from the
1820 * start of a skb even when data is spread across the list of skb's in the
1821 * frag_list. len specifies the total amount of data that needs to be removed.
1822 * when 'len' bytes could be removed from the skb, it returns 0.
1823 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1824 * could not be removed.
1825 */
1826 static int sctp_skb_pull(struct sk_buff *skb, int len)
1827 {
1828 struct sk_buff *list;
1829 int skb_len = skb_headlen(skb);
1830 int rlen;
1831
1832 if (len <= skb_len) {
1833 __skb_pull(skb, len);
1834 return 0;
1835 }
1836 len -= skb_len;
1837 __skb_pull(skb, skb_len);
1838
1839 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1840 rlen = sctp_skb_pull(list, len);
1841 skb->len -= (len-rlen);
1842 skb->data_len -= (len-rlen);
1843
1844 if (!rlen)
1845 return 0;
1846
1847 len = rlen;
1848 }
1849
1850 return len;
1851 }
1852
1853 /* API 3.1.3 recvmsg() - UDP Style Syntax
1854 *
1855 * ssize_t recvmsg(int socket, struct msghdr *message,
1856 * int flags);
1857 *
1858 * socket - the socket descriptor of the endpoint.
1859 * message - pointer to the msghdr structure which contains a single
1860 * user message and possibly some ancillary data.
1861 *
1862 * See Section 5 for complete description of the data
1863 * structures.
1864 *
1865 * flags - flags sent or received with the user message, see Section
1866 * 5 for complete description of the flags.
1867 */
1868 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1869
1870 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1871 struct msghdr *msg, size_t len, int noblock,
1872 int flags, int *addr_len)
1873 {
1874 struct sctp_ulpevent *event = NULL;
1875 struct sctp_sock *sp = sctp_sk(sk);
1876 struct sk_buff *skb;
1877 int copied;
1878 int err = 0;
1879 int skb_len;
1880
1881 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1882 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1883 "len", len, "knoblauch", noblock,
1884 "flags", flags, "addr_len", addr_len);
1885
1886 sctp_lock_sock(sk);
1887
1888 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1889 err = -ENOTCONN;
1890 goto out;
1891 }
1892
1893 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1894 if (!skb)
1895 goto out;
1896
1897 /* Get the total length of the skb including any skb's in the
1898 * frag_list.
1899 */
1900 skb_len = skb->len;
1901
1902 copied = skb_len;
1903 if (copied > len)
1904 copied = len;
1905
1906 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1907
1908 event = sctp_skb2event(skb);
1909
1910 if (err)
1911 goto out_free;
1912
1913 sock_recv_timestamp(msg, sk, skb);
1914 if (sctp_ulpevent_is_notification(event)) {
1915 msg->msg_flags |= MSG_NOTIFICATION;
1916 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1917 } else {
1918 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1919 }
1920
1921 /* Check if we allow SCTP_SNDRCVINFO. */
1922 if (sp->subscribe.sctp_data_io_event)
1923 sctp_ulpevent_read_sndrcvinfo(event, msg);
1924 #if 0
1925 /* FIXME: we should be calling IP/IPv6 layers. */
1926 if (sk->sk_protinfo.af_inet.cmsg_flags)
1927 ip_cmsg_recv(msg, skb);
1928 #endif
1929
1930 err = copied;
1931
1932 /* If skb's length exceeds the user's buffer, update the skb and
1933 * push it back to the receive_queue so that the next call to
1934 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1935 */
1936 if (skb_len > copied) {
1937 msg->msg_flags &= ~MSG_EOR;
1938 if (flags & MSG_PEEK)
1939 goto out_free;
1940 sctp_skb_pull(skb, copied);
1941 skb_queue_head(&sk->sk_receive_queue, skb);
1942
1943 /* When only partial message is copied to the user, increase
1944 * rwnd by that amount. If all the data in the skb is read,
1945 * rwnd is updated when the event is freed.
1946 */
1947 if (!sctp_ulpevent_is_notification(event))
1948 sctp_assoc_rwnd_increase(event->asoc, copied);
1949 goto out;
1950 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1951 (event->msg_flags & MSG_EOR))
1952 msg->msg_flags |= MSG_EOR;
1953 else
1954 msg->msg_flags &= ~MSG_EOR;
1955
1956 out_free:
1957 if (flags & MSG_PEEK) {
1958 /* Release the skb reference acquired after peeking the skb in
1959 * sctp_skb_recv_datagram().
1960 */
1961 kfree_skb(skb);
1962 } else {
1963 /* Free the event which includes releasing the reference to
1964 * the owner of the skb, freeing the skb and updating the
1965 * rwnd.
1966 */
1967 sctp_ulpevent_free(event);
1968 }
1969 out:
1970 sctp_release_sock(sk);
1971 return err;
1972 }
1973
1974 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1975 *
1976 * This option is a on/off flag. If enabled no SCTP message
1977 * fragmentation will be performed. Instead if a message being sent
1978 * exceeds the current PMTU size, the message will NOT be sent and
1979 * instead a error will be indicated to the user.
1980 */
1981 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1982 char __user *optval, int optlen)
1983 {
1984 int val;
1985
1986 if (optlen < sizeof(int))
1987 return -EINVAL;
1988
1989 if (get_user(val, (int __user *)optval))
1990 return -EFAULT;
1991
1992 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1993
1994 return 0;
1995 }
1996
1997 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1998 int optlen)
1999 {
2000 if (optlen > sizeof(struct sctp_event_subscribe))
2001 return -EINVAL;
2002 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2003 return -EFAULT;
2004 return 0;
2005 }
2006
2007 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2008 *
2009 * This socket option is applicable to the UDP-style socket only. When
2010 * set it will cause associations that are idle for more than the
2011 * specified number of seconds to automatically close. An association
2012 * being idle is defined an association that has NOT sent or received
2013 * user data. The special value of '0' indicates that no automatic
2014 * close of any associations should be performed. The option expects an
2015 * integer defining the number of seconds of idle time before an
2016 * association is closed.
2017 */
2018 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2019 int optlen)
2020 {
2021 struct sctp_sock *sp = sctp_sk(sk);
2022
2023 /* Applicable to UDP-style socket only */
2024 if (sctp_style(sk, TCP))
2025 return -EOPNOTSUPP;
2026 if (optlen != sizeof(int))
2027 return -EINVAL;
2028 if (copy_from_user(&sp->autoclose, optval, optlen))
2029 return -EFAULT;
2030
2031 return 0;
2032 }
2033
2034 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2035 *
2036 * Applications can enable or disable heartbeats for any peer address of
2037 * an association, modify an address's heartbeat interval, force a
2038 * heartbeat to be sent immediately, and adjust the address's maximum
2039 * number of retransmissions sent before an address is considered
2040 * unreachable. The following structure is used to access and modify an
2041 * address's parameters:
2042 *
2043 * struct sctp_paddrparams {
2044 * sctp_assoc_t spp_assoc_id;
2045 * struct sockaddr_storage spp_address;
2046 * uint32_t spp_hbinterval;
2047 * uint16_t spp_pathmaxrxt;
2048 * uint32_t spp_pathmtu;
2049 * uint32_t spp_sackdelay;
2050 * uint32_t spp_flags;
2051 * };
2052 *
2053 * spp_assoc_id - (one-to-many style socket) This is filled in the
2054 * application, and identifies the association for
2055 * this query.
2056 * spp_address - This specifies which address is of interest.
2057 * spp_hbinterval - This contains the value of the heartbeat interval,
2058 * in milliseconds. If a value of zero
2059 * is present in this field then no changes are to
2060 * be made to this parameter.
2061 * spp_pathmaxrxt - This contains the maximum number of
2062 * retransmissions before this address shall be
2063 * considered unreachable. If a value of zero
2064 * is present in this field then no changes are to
2065 * be made to this parameter.
2066 * spp_pathmtu - When Path MTU discovery is disabled the value
2067 * specified here will be the "fixed" path mtu.
2068 * Note that if the spp_address field is empty
2069 * then all associations on this address will
2070 * have this fixed path mtu set upon them.
2071 *
2072 * spp_sackdelay - When delayed sack is enabled, this value specifies
2073 * the number of milliseconds that sacks will be delayed
2074 * for. This value will apply to all addresses of an
2075 * association if the spp_address field is empty. Note
2076 * also, that if delayed sack is enabled and this
2077 * value is set to 0, no change is made to the last
2078 * recorded delayed sack timer value.
2079 *
2080 * spp_flags - These flags are used to control various features
2081 * on an association. The flag field may contain
2082 * zero or more of the following options.
2083 *
2084 * SPP_HB_ENABLE - Enable heartbeats on the
2085 * specified address. Note that if the address
2086 * field is empty all addresses for the association
2087 * have heartbeats enabled upon them.
2088 *
2089 * SPP_HB_DISABLE - Disable heartbeats on the
2090 * speicifed address. Note that if the address
2091 * field is empty all addresses for the association
2092 * will have their heartbeats disabled. Note also
2093 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2094 * mutually exclusive, only one of these two should
2095 * be specified. Enabling both fields will have
2096 * undetermined results.
2097 *
2098 * SPP_HB_DEMAND - Request a user initiated heartbeat
2099 * to be made immediately.
2100 *
2101 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2102 * heartbeat delayis to be set to the value of 0
2103 * milliseconds.
2104 *
2105 * SPP_PMTUD_ENABLE - This field will enable PMTU
2106 * discovery upon the specified address. Note that
2107 * if the address feild is empty then all addresses
2108 * on the association are effected.
2109 *
2110 * SPP_PMTUD_DISABLE - This field will disable PMTU
2111 * discovery upon the specified address. Note that
2112 * if the address feild is empty then all addresses
2113 * on the association are effected. Not also that
2114 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2115 * exclusive. Enabling both will have undetermined
2116 * results.
2117 *
2118 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2119 * on delayed sack. The time specified in spp_sackdelay
2120 * is used to specify the sack delay for this address. Note
2121 * that if spp_address is empty then all addresses will
2122 * enable delayed sack and take on the sack delay
2123 * value specified in spp_sackdelay.
2124 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2125 * off delayed sack. If the spp_address field is blank then
2126 * delayed sack is disabled for the entire association. Note
2127 * also that this field is mutually exclusive to
2128 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2129 * results.
2130 */
2131 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2132 struct sctp_transport *trans,
2133 struct sctp_association *asoc,
2134 struct sctp_sock *sp,
2135 int hb_change,
2136 int pmtud_change,
2137 int sackdelay_change)
2138 {
2139 int error;
2140
2141 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2142 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2143 if (error)
2144 return error;
2145 }
2146
2147 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2148 * this field is ignored. Note also that a value of zero indicates
2149 * the current setting should be left unchanged.
2150 */
2151 if (params->spp_flags & SPP_HB_ENABLE) {
2152
2153 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2154 * set. This lets us use 0 value when this flag
2155 * is set.
2156 */
2157 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2158 params->spp_hbinterval = 0;
2159
2160 if (params->spp_hbinterval ||
2161 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2162 if (trans) {
2163 trans->hbinterval =
2164 msecs_to_jiffies(params->spp_hbinterval);
2165 } else if (asoc) {
2166 asoc->hbinterval =
2167 msecs_to_jiffies(params->spp_hbinterval);
2168 } else {
2169 sp->hbinterval = params->spp_hbinterval;
2170 }
2171 }
2172 }
2173
2174 if (hb_change) {
2175 if (trans) {
2176 trans->param_flags =
2177 (trans->param_flags & ~SPP_HB) | hb_change;
2178 } else if (asoc) {
2179 asoc->param_flags =
2180 (asoc->param_flags & ~SPP_HB) | hb_change;
2181 } else {
2182 sp->param_flags =
2183 (sp->param_flags & ~SPP_HB) | hb_change;
2184 }
2185 }
2186
2187 /* When Path MTU discovery is disabled the value specified here will
2188 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2189 * include the flag SPP_PMTUD_DISABLE for this field to have any
2190 * effect).
2191 */
2192 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2193 if (trans) {
2194 trans->pathmtu = params->spp_pathmtu;
2195 sctp_assoc_sync_pmtu(asoc);
2196 } else if (asoc) {
2197 asoc->pathmtu = params->spp_pathmtu;
2198 sctp_frag_point(sp, params->spp_pathmtu);
2199 } else {
2200 sp->pathmtu = params->spp_pathmtu;
2201 }
2202 }
2203
2204 if (pmtud_change) {
2205 if (trans) {
2206 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2207 (params->spp_flags & SPP_PMTUD_ENABLE);
2208 trans->param_flags =
2209 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2210 if (update) {
2211 sctp_transport_pmtu(trans);
2212 sctp_assoc_sync_pmtu(asoc);
2213 }
2214 } else if (asoc) {
2215 asoc->param_flags =
2216 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2217 } else {
2218 sp->param_flags =
2219 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2220 }
2221 }
2222
2223 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2224 * value of this field is ignored. Note also that a value of zero
2225 * indicates the current setting should be left unchanged.
2226 */
2227 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2228 if (trans) {
2229 trans->sackdelay =
2230 msecs_to_jiffies(params->spp_sackdelay);
2231 } else if (asoc) {
2232 asoc->sackdelay =
2233 msecs_to_jiffies(params->spp_sackdelay);
2234 } else {
2235 sp->sackdelay = params->spp_sackdelay;
2236 }
2237 }
2238
2239 if (sackdelay_change) {
2240 if (trans) {
2241 trans->param_flags =
2242 (trans->param_flags & ~SPP_SACKDELAY) |
2243 sackdelay_change;
2244 } else if (asoc) {
2245 asoc->param_flags =
2246 (asoc->param_flags & ~SPP_SACKDELAY) |
2247 sackdelay_change;
2248 } else {
2249 sp->param_flags =
2250 (sp->param_flags & ~SPP_SACKDELAY) |
2251 sackdelay_change;
2252 }
2253 }
2254
2255 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2256 * of this field is ignored. Note also that a value of zero
2257 * indicates the current setting should be left unchanged.
2258 */
2259 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2260 if (trans) {
2261 trans->pathmaxrxt = params->spp_pathmaxrxt;
2262 } else if (asoc) {
2263 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2264 } else {
2265 sp->pathmaxrxt = params->spp_pathmaxrxt;
2266 }
2267 }
2268
2269 return 0;
2270 }
2271
2272 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2273 char __user *optval, int optlen)
2274 {
2275 struct sctp_paddrparams params;
2276 struct sctp_transport *trans = NULL;
2277 struct sctp_association *asoc = NULL;
2278 struct sctp_sock *sp = sctp_sk(sk);
2279 int error;
2280 int hb_change, pmtud_change, sackdelay_change;
2281
2282 if (optlen != sizeof(struct sctp_paddrparams))
2283 return - EINVAL;
2284
2285 if (copy_from_user(&params, optval, optlen))
2286 return -EFAULT;
2287
2288 /* Validate flags and value parameters. */
2289 hb_change = params.spp_flags & SPP_HB;
2290 pmtud_change = params.spp_flags & SPP_PMTUD;
2291 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2292
2293 if (hb_change == SPP_HB ||
2294 pmtud_change == SPP_PMTUD ||
2295 sackdelay_change == SPP_SACKDELAY ||
2296 params.spp_sackdelay > 500 ||
2297 (params.spp_pathmtu
2298 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2299 return -EINVAL;
2300
2301 /* If an address other than INADDR_ANY is specified, and
2302 * no transport is found, then the request is invalid.
2303 */
2304 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2305 trans = sctp_addr_id2transport(sk, &params.spp_address,
2306 params.spp_assoc_id);
2307 if (!trans)
2308 return -EINVAL;
2309 }
2310
2311 /* Get association, if assoc_id != 0 and the socket is a one
2312 * to many style socket, and an association was not found, then
2313 * the id was invalid.
2314 */
2315 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2316 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2317 return -EINVAL;
2318
2319 /* Heartbeat demand can only be sent on a transport or
2320 * association, but not a socket.
2321 */
2322 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2323 return -EINVAL;
2324
2325 /* Process parameters. */
2326 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2327 hb_change, pmtud_change,
2328 sackdelay_change);
2329
2330 if (error)
2331 return error;
2332
2333 /* If changes are for association, also apply parameters to each
2334 * transport.
2335 */
2336 if (!trans && asoc) {
2337 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2338 transports) {
2339 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2340 hb_change, pmtud_change,
2341 sackdelay_change);
2342 }
2343 }
2344
2345 return 0;
2346 }
2347
2348 /*
2349 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2350 *
2351 * This option will effect the way delayed acks are performed. This
2352 * option allows you to get or set the delayed ack time, in
2353 * milliseconds. It also allows changing the delayed ack frequency.
2354 * Changing the frequency to 1 disables the delayed sack algorithm. If
2355 * the assoc_id is 0, then this sets or gets the endpoints default
2356 * values. If the assoc_id field is non-zero, then the set or get
2357 * effects the specified association for the one to many model (the
2358 * assoc_id field is ignored by the one to one model). Note that if
2359 * sack_delay or sack_freq are 0 when setting this option, then the
2360 * current values will remain unchanged.
2361 *
2362 * struct sctp_sack_info {
2363 * sctp_assoc_t sack_assoc_id;
2364 * uint32_t sack_delay;
2365 * uint32_t sack_freq;
2366 * };
2367 *
2368 * sack_assoc_id - This parameter, indicates which association the user
2369 * is performing an action upon. Note that if this field's value is
2370 * zero then the endpoints default value is changed (effecting future
2371 * associations only).
2372 *
2373 * sack_delay - This parameter contains the number of milliseconds that
2374 * the user is requesting the delayed ACK timer be set to. Note that
2375 * this value is defined in the standard to be between 200 and 500
2376 * milliseconds.
2377 *
2378 * sack_freq - This parameter contains the number of packets that must
2379 * be received before a sack is sent without waiting for the delay
2380 * timer to expire. The default value for this is 2, setting this
2381 * value to 1 will disable the delayed sack algorithm.
2382 */
2383
2384 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2385 char __user *optval, int optlen)
2386 {
2387 struct sctp_sack_info params;
2388 struct sctp_transport *trans = NULL;
2389 struct sctp_association *asoc = NULL;
2390 struct sctp_sock *sp = sctp_sk(sk);
2391
2392 if (optlen == sizeof(struct sctp_sack_info)) {
2393 if (copy_from_user(&params, optval, optlen))
2394 return -EFAULT;
2395
2396 if (params.sack_delay == 0 && params.sack_freq == 0)
2397 return 0;
2398 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2399 printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info "
2400 "in delayed_ack socket option deprecated\n");
2401 printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n");
2402 if (copy_from_user(&params, optval, optlen))
2403 return -EFAULT;
2404
2405 if (params.sack_delay == 0)
2406 params.sack_freq = 1;
2407 else
2408 params.sack_freq = 0;
2409 } else
2410 return - EINVAL;
2411
2412 /* Validate value parameter. */
2413 if (params.sack_delay > 500)
2414 return -EINVAL;
2415
2416 /* Get association, if sack_assoc_id != 0 and the socket is a one
2417 * to many style socket, and an association was not found, then
2418 * the id was invalid.
2419 */
2420 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2421 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2422 return -EINVAL;
2423
2424 if (params.sack_delay) {
2425 if (asoc) {
2426 asoc->sackdelay =
2427 msecs_to_jiffies(params.sack_delay);
2428 asoc->param_flags =
2429 (asoc->param_flags & ~SPP_SACKDELAY) |
2430 SPP_SACKDELAY_ENABLE;
2431 } else {
2432 sp->sackdelay = params.sack_delay;
2433 sp->param_flags =
2434 (sp->param_flags & ~SPP_SACKDELAY) |
2435 SPP_SACKDELAY_ENABLE;
2436 }
2437 }
2438
2439 if (params.sack_freq == 1) {
2440 if (asoc) {
2441 asoc->param_flags =
2442 (asoc->param_flags & ~SPP_SACKDELAY) |
2443 SPP_SACKDELAY_DISABLE;
2444 } else {
2445 sp->param_flags =
2446 (sp->param_flags & ~SPP_SACKDELAY) |
2447 SPP_SACKDELAY_DISABLE;
2448 }
2449 } else if (params.sack_freq > 1) {
2450 if (asoc) {
2451 asoc->sackfreq = params.sack_freq;
2452 asoc->param_flags =
2453 (asoc->param_flags & ~SPP_SACKDELAY) |
2454 SPP_SACKDELAY_ENABLE;
2455 } else {
2456 sp->sackfreq = params.sack_freq;
2457 sp->param_flags =
2458 (sp->param_flags & ~SPP_SACKDELAY) |
2459 SPP_SACKDELAY_ENABLE;
2460 }
2461 }
2462
2463 /* If change is for association, also apply to each transport. */
2464 if (asoc) {
2465 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2466 transports) {
2467 if (params.sack_delay) {
2468 trans->sackdelay =
2469 msecs_to_jiffies(params.sack_delay);
2470 trans->param_flags =
2471 (trans->param_flags & ~SPP_SACKDELAY) |
2472 SPP_SACKDELAY_ENABLE;
2473 }
2474 if (params.sack_delay == 1) {
2475 trans->param_flags =
2476 (trans->param_flags & ~SPP_SACKDELAY) |
2477 SPP_SACKDELAY_DISABLE;
2478 } else if (params.sack_freq > 1) {
2479 trans->sackfreq = params.sack_freq;
2480 trans->param_flags =
2481 (trans->param_flags & ~SPP_SACKDELAY) |
2482 SPP_SACKDELAY_ENABLE;
2483 }
2484 }
2485 }
2486
2487 return 0;
2488 }
2489
2490 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2491 *
2492 * Applications can specify protocol parameters for the default association
2493 * initialization. The option name argument to setsockopt() and getsockopt()
2494 * is SCTP_INITMSG.
2495 *
2496 * Setting initialization parameters is effective only on an unconnected
2497 * socket (for UDP-style sockets only future associations are effected
2498 * by the change). With TCP-style sockets, this option is inherited by
2499 * sockets derived from a listener socket.
2500 */
2501 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2502 {
2503 struct sctp_initmsg sinit;
2504 struct sctp_sock *sp = sctp_sk(sk);
2505
2506 if (optlen != sizeof(struct sctp_initmsg))
2507 return -EINVAL;
2508 if (copy_from_user(&sinit, optval, optlen))
2509 return -EFAULT;
2510
2511 if (sinit.sinit_num_ostreams)
2512 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2513 if (sinit.sinit_max_instreams)
2514 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2515 if (sinit.sinit_max_attempts)
2516 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2517 if (sinit.sinit_max_init_timeo)
2518 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2519
2520 return 0;
2521 }
2522
2523 /*
2524 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2525 *
2526 * Applications that wish to use the sendto() system call may wish to
2527 * specify a default set of parameters that would normally be supplied
2528 * through the inclusion of ancillary data. This socket option allows
2529 * such an application to set the default sctp_sndrcvinfo structure.
2530 * The application that wishes to use this socket option simply passes
2531 * in to this call the sctp_sndrcvinfo structure defined in Section
2532 * 5.2.2) The input parameters accepted by this call include
2533 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2534 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2535 * to this call if the caller is using the UDP model.
2536 */
2537 static int sctp_setsockopt_default_send_param(struct sock *sk,
2538 char __user *optval, int optlen)
2539 {
2540 struct sctp_sndrcvinfo info;
2541 struct sctp_association *asoc;
2542 struct sctp_sock *sp = sctp_sk(sk);
2543
2544 if (optlen != sizeof(struct sctp_sndrcvinfo))
2545 return -EINVAL;
2546 if (copy_from_user(&info, optval, optlen))
2547 return -EFAULT;
2548
2549 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2550 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2551 return -EINVAL;
2552
2553 if (asoc) {
2554 asoc->default_stream = info.sinfo_stream;
2555 asoc->default_flags = info.sinfo_flags;
2556 asoc->default_ppid = info.sinfo_ppid;
2557 asoc->default_context = info.sinfo_context;
2558 asoc->default_timetolive = info.sinfo_timetolive;
2559 } else {
2560 sp->default_stream = info.sinfo_stream;
2561 sp->default_flags = info.sinfo_flags;
2562 sp->default_ppid = info.sinfo_ppid;
2563 sp->default_context = info.sinfo_context;
2564 sp->default_timetolive = info.sinfo_timetolive;
2565 }
2566
2567 return 0;
2568 }
2569
2570 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2571 *
2572 * Requests that the local SCTP stack use the enclosed peer address as
2573 * the association primary. The enclosed address must be one of the
2574 * association peer's addresses.
2575 */
2576 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2577 int optlen)
2578 {
2579 struct sctp_prim prim;
2580 struct sctp_transport *trans;
2581
2582 if (optlen != sizeof(struct sctp_prim))
2583 return -EINVAL;
2584
2585 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2586 return -EFAULT;
2587
2588 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2589 if (!trans)
2590 return -EINVAL;
2591
2592 sctp_assoc_set_primary(trans->asoc, trans);
2593
2594 return 0;
2595 }
2596
2597 /*
2598 * 7.1.5 SCTP_NODELAY
2599 *
2600 * Turn on/off any Nagle-like algorithm. This means that packets are
2601 * generally sent as soon as possible and no unnecessary delays are
2602 * introduced, at the cost of more packets in the network. Expects an
2603 * integer boolean flag.
2604 */
2605 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2606 int optlen)
2607 {
2608 int val;
2609
2610 if (optlen < sizeof(int))
2611 return -EINVAL;
2612 if (get_user(val, (int __user *)optval))
2613 return -EFAULT;
2614
2615 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2616 return 0;
2617 }
2618
2619 /*
2620 *
2621 * 7.1.1 SCTP_RTOINFO
2622 *
2623 * The protocol parameters used to initialize and bound retransmission
2624 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2625 * and modify these parameters.
2626 * All parameters are time values, in milliseconds. A value of 0, when
2627 * modifying the parameters, indicates that the current value should not
2628 * be changed.
2629 *
2630 */
2631 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2632 struct sctp_rtoinfo rtoinfo;
2633 struct sctp_association *asoc;
2634
2635 if (optlen != sizeof (struct sctp_rtoinfo))
2636 return -EINVAL;
2637
2638 if (copy_from_user(&rtoinfo, optval, optlen))
2639 return -EFAULT;
2640
2641 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2642
2643 /* Set the values to the specific association */
2644 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2645 return -EINVAL;
2646
2647 if (asoc) {
2648 if (rtoinfo.srto_initial != 0)
2649 asoc->rto_initial =
2650 msecs_to_jiffies(rtoinfo.srto_initial);
2651 if (rtoinfo.srto_max != 0)
2652 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2653 if (rtoinfo.srto_min != 0)
2654 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2655 } else {
2656 /* If there is no association or the association-id = 0
2657 * set the values to the endpoint.
2658 */
2659 struct sctp_sock *sp = sctp_sk(sk);
2660
2661 if (rtoinfo.srto_initial != 0)
2662 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2663 if (rtoinfo.srto_max != 0)
2664 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2665 if (rtoinfo.srto_min != 0)
2666 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2667 }
2668
2669 return 0;
2670 }
2671
2672 /*
2673 *
2674 * 7.1.2 SCTP_ASSOCINFO
2675 *
2676 * This option is used to tune the maximum retransmission attempts
2677 * of the association.
2678 * Returns an error if the new association retransmission value is
2679 * greater than the sum of the retransmission value of the peer.
2680 * See [SCTP] for more information.
2681 *
2682 */
2683 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2684 {
2685
2686 struct sctp_assocparams assocparams;
2687 struct sctp_association *asoc;
2688
2689 if (optlen != sizeof(struct sctp_assocparams))
2690 return -EINVAL;
2691 if (copy_from_user(&assocparams, optval, optlen))
2692 return -EFAULT;
2693
2694 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2695
2696 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2697 return -EINVAL;
2698
2699 /* Set the values to the specific association */
2700 if (asoc) {
2701 if (assocparams.sasoc_asocmaxrxt != 0) {
2702 __u32 path_sum = 0;
2703 int paths = 0;
2704 struct sctp_transport *peer_addr;
2705
2706 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2707 transports) {
2708 path_sum += peer_addr->pathmaxrxt;
2709 paths++;
2710 }
2711
2712 /* Only validate asocmaxrxt if we have more then
2713 * one path/transport. We do this because path
2714 * retransmissions are only counted when we have more
2715 * then one path.
2716 */
2717 if (paths > 1 &&
2718 assocparams.sasoc_asocmaxrxt > path_sum)
2719 return -EINVAL;
2720
2721 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2722 }
2723
2724 if (assocparams.sasoc_cookie_life != 0) {
2725 asoc->cookie_life.tv_sec =
2726 assocparams.sasoc_cookie_life / 1000;
2727 asoc->cookie_life.tv_usec =
2728 (assocparams.sasoc_cookie_life % 1000)
2729 * 1000;
2730 }
2731 } else {
2732 /* Set the values to the endpoint */
2733 struct sctp_sock *sp = sctp_sk(sk);
2734
2735 if (assocparams.sasoc_asocmaxrxt != 0)
2736 sp->assocparams.sasoc_asocmaxrxt =
2737 assocparams.sasoc_asocmaxrxt;
2738 if (assocparams.sasoc_cookie_life != 0)
2739 sp->assocparams.sasoc_cookie_life =
2740 assocparams.sasoc_cookie_life;
2741 }
2742 return 0;
2743 }
2744
2745 /*
2746 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2747 *
2748 * This socket option is a boolean flag which turns on or off mapped V4
2749 * addresses. If this option is turned on and the socket is type
2750 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2751 * If this option is turned off, then no mapping will be done of V4
2752 * addresses and a user will receive both PF_INET6 and PF_INET type
2753 * addresses on the socket.
2754 */
2755 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2756 {
2757 int val;
2758 struct sctp_sock *sp = sctp_sk(sk);
2759
2760 if (optlen < sizeof(int))
2761 return -EINVAL;
2762 if (get_user(val, (int __user *)optval))
2763 return -EFAULT;
2764 if (val)
2765 sp->v4mapped = 1;
2766 else
2767 sp->v4mapped = 0;
2768
2769 return 0;
2770 }
2771
2772 /*
2773 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2774 *
2775 * This socket option specifies the maximum size to put in any outgoing
2776 * SCTP chunk. If a message is larger than this size it will be
2777 * fragmented by SCTP into the specified size. Note that the underlying
2778 * SCTP implementation may fragment into smaller sized chunks when the
2779 * PMTU of the underlying association is smaller than the value set by
2780 * the user.
2781 */
2782 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2783 {
2784 struct sctp_association *asoc;
2785 struct sctp_sock *sp = sctp_sk(sk);
2786 int val;
2787
2788 if (optlen < sizeof(int))
2789 return -EINVAL;
2790 if (get_user(val, (int __user *)optval))
2791 return -EFAULT;
2792 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2793 return -EINVAL;
2794 sp->user_frag = val;
2795
2796 /* Update the frag_point of the existing associations. */
2797 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
2798 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2799 }
2800
2801 return 0;
2802 }
2803
2804
2805 /*
2806 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2807 *
2808 * Requests that the peer mark the enclosed address as the association
2809 * primary. The enclosed address must be one of the association's
2810 * locally bound addresses. The following structure is used to make a
2811 * set primary request:
2812 */
2813 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2814 int optlen)
2815 {
2816 struct sctp_sock *sp;
2817 struct sctp_endpoint *ep;
2818 struct sctp_association *asoc = NULL;
2819 struct sctp_setpeerprim prim;
2820 struct sctp_chunk *chunk;
2821 int err;
2822
2823 sp = sctp_sk(sk);
2824 ep = sp->ep;
2825
2826 if (!sctp_addip_enable)
2827 return -EPERM;
2828
2829 if (optlen != sizeof(struct sctp_setpeerprim))
2830 return -EINVAL;
2831
2832 if (copy_from_user(&prim, optval, optlen))
2833 return -EFAULT;
2834
2835 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2836 if (!asoc)
2837 return -EINVAL;
2838
2839 if (!asoc->peer.asconf_capable)
2840 return -EPERM;
2841
2842 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2843 return -EPERM;
2844
2845 if (!sctp_state(asoc, ESTABLISHED))
2846 return -ENOTCONN;
2847
2848 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2849 return -EADDRNOTAVAIL;
2850
2851 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2852 chunk = sctp_make_asconf_set_prim(asoc,
2853 (union sctp_addr *)&prim.sspp_addr);
2854 if (!chunk)
2855 return -ENOMEM;
2856
2857 err = sctp_send_asconf(asoc, chunk);
2858
2859 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2860
2861 return err;
2862 }
2863
2864 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2865 int optlen)
2866 {
2867 struct sctp_setadaptation adaptation;
2868
2869 if (optlen != sizeof(struct sctp_setadaptation))
2870 return -EINVAL;
2871 if (copy_from_user(&adaptation, optval, optlen))
2872 return -EFAULT;
2873
2874 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2875
2876 return 0;
2877 }
2878
2879 /*
2880 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
2881 *
2882 * The context field in the sctp_sndrcvinfo structure is normally only
2883 * used when a failed message is retrieved holding the value that was
2884 * sent down on the actual send call. This option allows the setting of
2885 * a default context on an association basis that will be received on
2886 * reading messages from the peer. This is especially helpful in the
2887 * one-2-many model for an application to keep some reference to an
2888 * internal state machine that is processing messages on the
2889 * association. Note that the setting of this value only effects
2890 * received messages from the peer and does not effect the value that is
2891 * saved with outbound messages.
2892 */
2893 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2894 int optlen)
2895 {
2896 struct sctp_assoc_value params;
2897 struct sctp_sock *sp;
2898 struct sctp_association *asoc;
2899
2900 if (optlen != sizeof(struct sctp_assoc_value))
2901 return -EINVAL;
2902 if (copy_from_user(&params, optval, optlen))
2903 return -EFAULT;
2904
2905 sp = sctp_sk(sk);
2906
2907 if (params.assoc_id != 0) {
2908 asoc = sctp_id2assoc(sk, params.assoc_id);
2909 if (!asoc)
2910 return -EINVAL;
2911 asoc->default_rcv_context = params.assoc_value;
2912 } else {
2913 sp->default_rcv_context = params.assoc_value;
2914 }
2915
2916 return 0;
2917 }
2918
2919 /*
2920 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2921 *
2922 * This options will at a minimum specify if the implementation is doing
2923 * fragmented interleave. Fragmented interleave, for a one to many
2924 * socket, is when subsequent calls to receive a message may return
2925 * parts of messages from different associations. Some implementations
2926 * may allow you to turn this value on or off. If so, when turned off,
2927 * no fragment interleave will occur (which will cause a head of line
2928 * blocking amongst multiple associations sharing the same one to many
2929 * socket). When this option is turned on, then each receive call may
2930 * come from a different association (thus the user must receive data
2931 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2932 * association each receive belongs to.
2933 *
2934 * This option takes a boolean value. A non-zero value indicates that
2935 * fragmented interleave is on. A value of zero indicates that
2936 * fragmented interleave is off.
2937 *
2938 * Note that it is important that an implementation that allows this
2939 * option to be turned on, have it off by default. Otherwise an unaware
2940 * application using the one to many model may become confused and act
2941 * incorrectly.
2942 */
2943 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2944 char __user *optval,
2945 int optlen)
2946 {
2947 int val;
2948
2949 if (optlen != sizeof(int))
2950 return -EINVAL;
2951 if (get_user(val, (int __user *)optval))
2952 return -EFAULT;
2953
2954 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2955
2956 return 0;
2957 }
2958
2959 /*
2960 * 7.1.25. Set or Get the sctp partial delivery point
2961 * (SCTP_PARTIAL_DELIVERY_POINT)
2962 * This option will set or get the SCTP partial delivery point. This
2963 * point is the size of a message where the partial delivery API will be
2964 * invoked to help free up rwnd space for the peer. Setting this to a
2965 * lower value will cause partial delivery's to happen more often. The
2966 * calls argument is an integer that sets or gets the partial delivery
2967 * point.
2968 */
2969 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2970 char __user *optval,
2971 int optlen)
2972 {
2973 u32 val;
2974
2975 if (optlen != sizeof(u32))
2976 return -EINVAL;
2977 if (get_user(val, (int __user *)optval))
2978 return -EFAULT;
2979
2980 sctp_sk(sk)->pd_point = val;
2981
2982 return 0; /* is this the right error code? */
2983 }
2984
2985 /*
2986 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
2987 *
2988 * This option will allow a user to change the maximum burst of packets
2989 * that can be emitted by this association. Note that the default value
2990 * is 4, and some implementations may restrict this setting so that it
2991 * can only be lowered.
2992 *
2993 * NOTE: This text doesn't seem right. Do this on a socket basis with
2994 * future associations inheriting the socket value.
2995 */
2996 static int sctp_setsockopt_maxburst(struct sock *sk,
2997 char __user *optval,
2998 int optlen)
2999 {
3000 struct sctp_assoc_value params;
3001 struct sctp_sock *sp;
3002 struct sctp_association *asoc;
3003 int val;
3004 int assoc_id = 0;
3005
3006 if (optlen < sizeof(int))
3007 return -EINVAL;
3008
3009 if (optlen == sizeof(int)) {
3010 printk(KERN_WARNING
3011 "SCTP: Use of int in max_burst socket option deprecated\n");
3012 printk(KERN_WARNING
3013 "SCTP: Use struct sctp_assoc_value instead\n");
3014 if (copy_from_user(&val, optval, optlen))
3015 return -EFAULT;
3016 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3017 if (copy_from_user(&params, optval, optlen))
3018 return -EFAULT;
3019 val = params.assoc_value;
3020 assoc_id = params.assoc_id;
3021 } else
3022 return -EINVAL;
3023
3024 sp = sctp_sk(sk);
3025
3026 if (assoc_id != 0) {
3027 asoc = sctp_id2assoc(sk, assoc_id);
3028 if (!asoc)
3029 return -EINVAL;
3030 asoc->max_burst = val;
3031 } else
3032 sp->max_burst = val;
3033
3034 return 0;
3035 }
3036
3037 /*
3038 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3039 *
3040 * This set option adds a chunk type that the user is requesting to be
3041 * received only in an authenticated way. Changes to the list of chunks
3042 * will only effect future associations on the socket.
3043 */
3044 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3045 char __user *optval,
3046 int optlen)
3047 {
3048 struct sctp_authchunk val;
3049
3050 if (optlen != sizeof(struct sctp_authchunk))
3051 return -EINVAL;
3052 if (copy_from_user(&val, optval, optlen))
3053 return -EFAULT;
3054
3055 switch (val.sauth_chunk) {
3056 case SCTP_CID_INIT:
3057 case SCTP_CID_INIT_ACK:
3058 case SCTP_CID_SHUTDOWN_COMPLETE:
3059 case SCTP_CID_AUTH:
3060 return -EINVAL;
3061 }
3062
3063 /* add this chunk id to the endpoint */
3064 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3065 }
3066
3067 /*
3068 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3069 *
3070 * This option gets or sets the list of HMAC algorithms that the local
3071 * endpoint requires the peer to use.
3072 */
3073 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3074 char __user *optval,
3075 int optlen)
3076 {
3077 struct sctp_hmacalgo *hmacs;
3078 int err;
3079
3080 if (optlen < sizeof(struct sctp_hmacalgo))
3081 return -EINVAL;
3082
3083 hmacs = kmalloc(optlen, GFP_KERNEL);
3084 if (!hmacs)
3085 return -ENOMEM;
3086
3087 if (copy_from_user(hmacs, optval, optlen)) {
3088 err = -EFAULT;
3089 goto out;
3090 }
3091
3092 if (hmacs->shmac_num_idents == 0 ||
3093 hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) {
3094 err = -EINVAL;
3095 goto out;
3096 }
3097
3098 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3099 out:
3100 kfree(hmacs);
3101 return err;
3102 }
3103
3104 /*
3105 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3106 *
3107 * This option will set a shared secret key which is used to build an
3108 * association shared key.
3109 */
3110 static int sctp_setsockopt_auth_key(struct sock *sk,
3111 char __user *optval,
3112 int optlen)
3113 {
3114 struct sctp_authkey *authkey;
3115 struct sctp_association *asoc;
3116 int ret;
3117
3118 if (optlen <= sizeof(struct sctp_authkey))
3119 return -EINVAL;
3120
3121 authkey = kmalloc(optlen, GFP_KERNEL);
3122 if (!authkey)
3123 return -ENOMEM;
3124
3125 if (copy_from_user(authkey, optval, optlen)) {
3126 ret = -EFAULT;
3127 goto out;
3128 }
3129
3130 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3131 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3132 ret = -EINVAL;
3133 goto out;
3134 }
3135
3136 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3137 out:
3138 kfree(authkey);
3139 return ret;
3140 }
3141
3142 /*
3143 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3144 *
3145 * This option will get or set the active shared key to be used to build
3146 * the association shared key.
3147 */
3148 static int sctp_setsockopt_active_key(struct sock *sk,
3149 char __user *optval,
3150 int optlen)
3151 {
3152 struct sctp_authkeyid val;
3153 struct sctp_association *asoc;
3154
3155 if (optlen != sizeof(struct sctp_authkeyid))
3156 return -EINVAL;
3157 if (copy_from_user(&val, optval, optlen))
3158 return -EFAULT;
3159
3160 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3161 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3162 return -EINVAL;
3163
3164 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3165 val.scact_keynumber);
3166 }
3167
3168 /*
3169 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3170 *
3171 * This set option will delete a shared secret key from use.
3172 */
3173 static int sctp_setsockopt_del_key(struct sock *sk,
3174 char __user *optval,
3175 int optlen)
3176 {
3177 struct sctp_authkeyid val;
3178 struct sctp_association *asoc;
3179
3180 if (optlen != sizeof(struct sctp_authkeyid))
3181 return -EINVAL;
3182 if (copy_from_user(&val, optval, optlen))
3183 return -EFAULT;
3184
3185 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3186 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3187 return -EINVAL;
3188
3189 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3190 val.scact_keynumber);
3191
3192 }
3193
3194
3195 /* API 6.2 setsockopt(), getsockopt()
3196 *
3197 * Applications use setsockopt() and getsockopt() to set or retrieve
3198 * socket options. Socket options are used to change the default
3199 * behavior of sockets calls. They are described in Section 7.
3200 *
3201 * The syntax is:
3202 *
3203 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3204 * int __user *optlen);
3205 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3206 * int optlen);
3207 *
3208 * sd - the socket descript.
3209 * level - set to IPPROTO_SCTP for all SCTP options.
3210 * optname - the option name.
3211 * optval - the buffer to store the value of the option.
3212 * optlen - the size of the buffer.
3213 */
3214 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3215 char __user *optval, int optlen)
3216 {
3217 int retval = 0;
3218
3219 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3220 sk, optname);
3221
3222 /* I can hardly begin to describe how wrong this is. This is
3223 * so broken as to be worse than useless. The API draft
3224 * REALLY is NOT helpful here... I am not convinced that the
3225 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3226 * are at all well-founded.
3227 */
3228 if (level != SOL_SCTP) {
3229 struct sctp_af *af = sctp_sk(sk)->pf->af;
3230 retval = af->setsockopt(sk, level, optname, optval, optlen);
3231 goto out_nounlock;
3232 }
3233
3234 sctp_lock_sock(sk);
3235
3236 switch (optname) {
3237 case SCTP_SOCKOPT_BINDX_ADD:
3238 /* 'optlen' is the size of the addresses buffer. */
3239 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3240 optlen, SCTP_BINDX_ADD_ADDR);
3241 break;
3242
3243 case SCTP_SOCKOPT_BINDX_REM:
3244 /* 'optlen' is the size of the addresses buffer. */
3245 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3246 optlen, SCTP_BINDX_REM_ADDR);
3247 break;
3248
3249 case SCTP_SOCKOPT_CONNECTX_OLD:
3250 /* 'optlen' is the size of the addresses buffer. */
3251 retval = sctp_setsockopt_connectx_old(sk,
3252 (struct sockaddr __user *)optval,
3253 optlen);
3254 break;
3255
3256 case SCTP_SOCKOPT_CONNECTX:
3257 /* 'optlen' is the size of the addresses buffer. */
3258 retval = sctp_setsockopt_connectx(sk,
3259 (struct sockaddr __user *)optval,
3260 optlen);
3261 break;
3262
3263 case SCTP_DISABLE_FRAGMENTS:
3264 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3265 break;
3266
3267 case SCTP_EVENTS:
3268 retval = sctp_setsockopt_events(sk, optval, optlen);
3269 break;
3270
3271 case SCTP_AUTOCLOSE:
3272 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3273 break;
3274
3275 case SCTP_PEER_ADDR_PARAMS:
3276 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3277 break;
3278
3279 case SCTP_DELAYED_ACK:
3280 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3281 break;
3282 case SCTP_PARTIAL_DELIVERY_POINT:
3283 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3284 break;
3285
3286 case SCTP_INITMSG:
3287 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3288 break;
3289 case SCTP_DEFAULT_SEND_PARAM:
3290 retval = sctp_setsockopt_default_send_param(sk, optval,
3291 optlen);
3292 break;
3293 case SCTP_PRIMARY_ADDR:
3294 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3295 break;
3296 case SCTP_SET_PEER_PRIMARY_ADDR:
3297 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3298 break;
3299 case SCTP_NODELAY:
3300 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3301 break;
3302 case SCTP_RTOINFO:
3303 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3304 break;
3305 case SCTP_ASSOCINFO:
3306 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3307 break;
3308 case SCTP_I_WANT_MAPPED_V4_ADDR:
3309 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3310 break;
3311 case SCTP_MAXSEG:
3312 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3313 break;
3314 case SCTP_ADAPTATION_LAYER:
3315 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3316 break;
3317 case SCTP_CONTEXT:
3318 retval = sctp_setsockopt_context(sk, optval, optlen);
3319 break;
3320 case SCTP_FRAGMENT_INTERLEAVE:
3321 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3322 break;
3323 case SCTP_MAX_BURST:
3324 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3325 break;
3326 case SCTP_AUTH_CHUNK:
3327 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3328 break;
3329 case SCTP_HMAC_IDENT:
3330 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3331 break;
3332 case SCTP_AUTH_KEY:
3333 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3334 break;
3335 case SCTP_AUTH_ACTIVE_KEY:
3336 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3337 break;
3338 case SCTP_AUTH_DELETE_KEY:
3339 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3340 break;
3341 default:
3342 retval = -ENOPROTOOPT;
3343 break;
3344 }
3345
3346 sctp_release_sock(sk);
3347
3348 out_nounlock:
3349 return retval;
3350 }
3351
3352 /* API 3.1.6 connect() - UDP Style Syntax
3353 *
3354 * An application may use the connect() call in the UDP model to initiate an
3355 * association without sending data.
3356 *
3357 * The syntax is:
3358 *
3359 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3360 *
3361 * sd: the socket descriptor to have a new association added to.
3362 *
3363 * nam: the address structure (either struct sockaddr_in or struct
3364 * sockaddr_in6 defined in RFC2553 [7]).
3365 *
3366 * len: the size of the address.
3367 */
3368 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3369 int addr_len)
3370 {
3371 int err = 0;
3372 struct sctp_af *af;
3373
3374 sctp_lock_sock(sk);
3375
3376 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3377 __func__, sk, addr, addr_len);
3378
3379 /* Validate addr_len before calling common connect/connectx routine. */
3380 af = sctp_get_af_specific(addr->sa_family);
3381 if (!af || addr_len < af->sockaddr_len) {
3382 err = -EINVAL;
3383 } else {
3384 /* Pass correct addr len to common routine (so it knows there
3385 * is only one address being passed.
3386 */
3387 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3388 }
3389
3390 sctp_release_sock(sk);
3391 return err;
3392 }
3393
3394 /* FIXME: Write comments. */
3395 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3396 {
3397 return -EOPNOTSUPP; /* STUB */
3398 }
3399
3400 /* 4.1.4 accept() - TCP Style Syntax
3401 *
3402 * Applications use accept() call to remove an established SCTP
3403 * association from the accept queue of the endpoint. A new socket
3404 * descriptor will be returned from accept() to represent the newly
3405 * formed association.
3406 */
3407 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3408 {
3409 struct sctp_sock *sp;
3410 struct sctp_endpoint *ep;
3411 struct sock *newsk = NULL;
3412 struct sctp_association *asoc;
3413 long timeo;
3414 int error = 0;
3415
3416 sctp_lock_sock(sk);
3417
3418 sp = sctp_sk(sk);
3419 ep = sp->ep;
3420
3421 if (!sctp_style(sk, TCP)) {
3422 error = -EOPNOTSUPP;
3423 goto out;
3424 }
3425
3426 if (!sctp_sstate(sk, LISTENING)) {
3427 error = -EINVAL;
3428 goto out;
3429 }
3430
3431 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3432
3433 error = sctp_wait_for_accept(sk, timeo);
3434 if (error)
3435 goto out;
3436
3437 /* We treat the list of associations on the endpoint as the accept
3438 * queue and pick the first association on the list.
3439 */
3440 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3441
3442 newsk = sp->pf->create_accept_sk(sk, asoc);
3443 if (!newsk) {
3444 error = -ENOMEM;
3445 goto out;
3446 }
3447
3448 /* Populate the fields of the newsk from the oldsk and migrate the
3449 * asoc to the newsk.
3450 */
3451 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3452
3453 out:
3454 sctp_release_sock(sk);
3455 *err = error;
3456 return newsk;
3457 }
3458
3459 /* The SCTP ioctl handler. */
3460 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3461 {
3462 return -ENOIOCTLCMD;
3463 }
3464
3465 /* This is the function which gets called during socket creation to
3466 * initialized the SCTP-specific portion of the sock.
3467 * The sock structure should already be zero-filled memory.
3468 */
3469 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3470 {
3471 struct sctp_endpoint *ep;
3472 struct sctp_sock *sp;
3473
3474 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3475
3476 sp = sctp_sk(sk);
3477
3478 /* Initialize the SCTP per socket area. */
3479 switch (sk->sk_type) {
3480 case SOCK_SEQPACKET:
3481 sp->type = SCTP_SOCKET_UDP;
3482 break;
3483 case SOCK_STREAM:
3484 sp->type = SCTP_SOCKET_TCP;
3485 break;
3486 default:
3487 return -ESOCKTNOSUPPORT;
3488 }
3489
3490 /* Initialize default send parameters. These parameters can be
3491 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3492 */
3493 sp->default_stream = 0;
3494 sp->default_ppid = 0;
3495 sp->default_flags = 0;
3496 sp->default_context = 0;
3497 sp->default_timetolive = 0;
3498
3499 sp->default_rcv_context = 0;
3500 sp->max_burst = sctp_max_burst;
3501
3502 /* Initialize default setup parameters. These parameters
3503 * can be modified with the SCTP_INITMSG socket option or
3504 * overridden by the SCTP_INIT CMSG.
3505 */
3506 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3507 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3508 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3509 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3510
3511 /* Initialize default RTO related parameters. These parameters can
3512 * be modified for with the SCTP_RTOINFO socket option.
3513 */
3514 sp->rtoinfo.srto_initial = sctp_rto_initial;
3515 sp->rtoinfo.srto_max = sctp_rto_max;
3516 sp->rtoinfo.srto_min = sctp_rto_min;
3517
3518 /* Initialize default association related parameters. These parameters
3519 * can be modified with the SCTP_ASSOCINFO socket option.
3520 */
3521 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3522 sp->assocparams.sasoc_number_peer_destinations = 0;
3523 sp->assocparams.sasoc_peer_rwnd = 0;
3524 sp->assocparams.sasoc_local_rwnd = 0;
3525 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3526
3527 /* Initialize default event subscriptions. By default, all the
3528 * options are off.
3529 */
3530 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3531
3532 /* Default Peer Address Parameters. These defaults can
3533 * be modified via SCTP_PEER_ADDR_PARAMS
3534 */
3535 sp->hbinterval = sctp_hb_interval;
3536 sp->pathmaxrxt = sctp_max_retrans_path;
3537 sp->pathmtu = 0; // allow default discovery
3538 sp->sackdelay = sctp_sack_timeout;
3539 sp->sackfreq = 3;
3540 sp->param_flags = SPP_HB_ENABLE |
3541 SPP_PMTUD_ENABLE |
3542 SPP_SACKDELAY_ENABLE;
3543
3544 /* If enabled no SCTP message fragmentation will be performed.
3545 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3546 */
3547 sp->disable_fragments = 0;
3548
3549 /* Enable Nagle algorithm by default. */
3550 sp->nodelay = 0;
3551
3552 /* Enable by default. */
3553 sp->v4mapped = 1;
3554
3555 /* Auto-close idle associations after the configured
3556 * number of seconds. A value of 0 disables this
3557 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3558 * for UDP-style sockets only.
3559 */
3560 sp->autoclose = 0;
3561
3562 /* User specified fragmentation limit. */
3563 sp->user_frag = 0;
3564
3565 sp->adaptation_ind = 0;
3566
3567 sp->pf = sctp_get_pf_specific(sk->sk_family);
3568
3569 /* Control variables for partial data delivery. */
3570 atomic_set(&sp->pd_mode, 0);
3571 skb_queue_head_init(&sp->pd_lobby);
3572 sp->frag_interleave = 0;
3573
3574 /* Create a per socket endpoint structure. Even if we
3575 * change the data structure relationships, this may still
3576 * be useful for storing pre-connect address information.
3577 */
3578 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3579 if (!ep)
3580 return -ENOMEM;
3581
3582 sp->ep = ep;
3583 sp->hmac = NULL;
3584
3585 SCTP_DBG_OBJCNT_INC(sock);
3586 atomic_inc(&sctp_sockets_allocated);
3587 return 0;
3588 }
3589
3590 /* Cleanup any SCTP per socket resources. */
3591 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3592 {
3593 struct sctp_endpoint *ep;
3594
3595 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3596
3597 /* Release our hold on the endpoint. */
3598 ep = sctp_sk(sk)->ep;
3599 sctp_endpoint_free(ep);
3600 atomic_dec(&sctp_sockets_allocated);
3601 return 0;
3602 }
3603
3604 /* API 4.1.7 shutdown() - TCP Style Syntax
3605 * int shutdown(int socket, int how);
3606 *
3607 * sd - the socket descriptor of the association to be closed.
3608 * how - Specifies the type of shutdown. The values are
3609 * as follows:
3610 * SHUT_RD
3611 * Disables further receive operations. No SCTP
3612 * protocol action is taken.
3613 * SHUT_WR
3614 * Disables further send operations, and initiates
3615 * the SCTP shutdown sequence.
3616 * SHUT_RDWR
3617 * Disables further send and receive operations
3618 * and initiates the SCTP shutdown sequence.
3619 */
3620 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3621 {
3622 struct sctp_endpoint *ep;
3623 struct sctp_association *asoc;
3624
3625 if (!sctp_style(sk, TCP))
3626 return;
3627
3628 if (how & SEND_SHUTDOWN) {
3629 ep = sctp_sk(sk)->ep;
3630 if (!list_empty(&ep->asocs)) {
3631 asoc = list_entry(ep->asocs.next,
3632 struct sctp_association, asocs);
3633 sctp_primitive_SHUTDOWN(asoc, NULL);
3634 }
3635 }
3636 }
3637
3638 /* 7.2.1 Association Status (SCTP_STATUS)
3639
3640 * Applications can retrieve current status information about an
3641 * association, including association state, peer receiver window size,
3642 * number of unacked data chunks, and number of data chunks pending
3643 * receipt. This information is read-only.
3644 */
3645 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3646 char __user *optval,
3647 int __user *optlen)
3648 {
3649 struct sctp_status status;
3650 struct sctp_association *asoc = NULL;
3651 struct sctp_transport *transport;
3652 sctp_assoc_t associd;
3653 int retval = 0;
3654
3655 if (len < sizeof(status)) {
3656 retval = -EINVAL;
3657 goto out;
3658 }
3659
3660 len = sizeof(status);
3661 if (copy_from_user(&status, optval, len)) {
3662 retval = -EFAULT;
3663 goto out;
3664 }
3665
3666 associd = status.sstat_assoc_id;
3667 asoc = sctp_id2assoc(sk, associd);
3668 if (!asoc) {
3669 retval = -EINVAL;
3670 goto out;
3671 }
3672
3673 transport = asoc->peer.primary_path;
3674
3675 status.sstat_assoc_id = sctp_assoc2id(asoc);
3676 status.sstat_state = asoc->state;
3677 status.sstat_rwnd = asoc->peer.rwnd;
3678 status.sstat_unackdata = asoc->unack_data;
3679
3680 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3681 status.sstat_instrms = asoc->c.sinit_max_instreams;
3682 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3683 status.sstat_fragmentation_point = asoc->frag_point;
3684 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3685 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3686 transport->af_specific->sockaddr_len);
3687 /* Map ipv4 address into v4-mapped-on-v6 address. */
3688 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3689 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3690 status.sstat_primary.spinfo_state = transport->state;
3691 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3692 status.sstat_primary.spinfo_srtt = transport->srtt;
3693 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3694 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3695
3696 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3697 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3698
3699 if (put_user(len, optlen)) {
3700 retval = -EFAULT;
3701 goto out;
3702 }
3703
3704 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3705 len, status.sstat_state, status.sstat_rwnd,
3706 status.sstat_assoc_id);
3707
3708 if (copy_to_user(optval, &status, len)) {
3709 retval = -EFAULT;
3710 goto out;
3711 }
3712
3713 out:
3714 return (retval);
3715 }
3716
3717
3718 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3719 *
3720 * Applications can retrieve information about a specific peer address
3721 * of an association, including its reachability state, congestion
3722 * window, and retransmission timer values. This information is
3723 * read-only.
3724 */
3725 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3726 char __user *optval,
3727 int __user *optlen)
3728 {
3729 struct sctp_paddrinfo pinfo;
3730 struct sctp_transport *transport;
3731 int retval = 0;
3732
3733 if (len < sizeof(pinfo)) {
3734 retval = -EINVAL;
3735 goto out;
3736 }
3737
3738 len = sizeof(pinfo);
3739 if (copy_from_user(&pinfo, optval, len)) {
3740 retval = -EFAULT;
3741 goto out;
3742 }
3743
3744 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3745 pinfo.spinfo_assoc_id);
3746 if (!transport)
3747 return -EINVAL;
3748
3749 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3750 pinfo.spinfo_state = transport->state;
3751 pinfo.spinfo_cwnd = transport->cwnd;
3752 pinfo.spinfo_srtt = transport->srtt;
3753 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3754 pinfo.spinfo_mtu = transport->pathmtu;
3755
3756 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3757 pinfo.spinfo_state = SCTP_ACTIVE;
3758
3759 if (put_user(len, optlen)) {
3760 retval = -EFAULT;
3761 goto out;
3762 }
3763
3764 if (copy_to_user(optval, &pinfo, len)) {
3765 retval = -EFAULT;
3766 goto out;
3767 }
3768
3769 out:
3770 return (retval);
3771 }
3772
3773 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3774 *
3775 * This option is a on/off flag. If enabled no SCTP message
3776 * fragmentation will be performed. Instead if a message being sent
3777 * exceeds the current PMTU size, the message will NOT be sent and
3778 * instead a error will be indicated to the user.
3779 */
3780 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3781 char __user *optval, int __user *optlen)
3782 {
3783 int val;
3784
3785 if (len < sizeof(int))
3786 return -EINVAL;
3787
3788 len = sizeof(int);
3789 val = (sctp_sk(sk)->disable_fragments == 1);
3790 if (put_user(len, optlen))
3791 return -EFAULT;
3792 if (copy_to_user(optval, &val, len))
3793 return -EFAULT;
3794 return 0;
3795 }
3796
3797 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3798 *
3799 * This socket option is used to specify various notifications and
3800 * ancillary data the user wishes to receive.
3801 */
3802 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3803 int __user *optlen)
3804 {
3805 if (len < sizeof(struct sctp_event_subscribe))
3806 return -EINVAL;
3807 len = sizeof(struct sctp_event_subscribe);
3808 if (put_user(len, optlen))
3809 return -EFAULT;
3810 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3811 return -EFAULT;
3812 return 0;
3813 }
3814
3815 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3816 *
3817 * This socket option is applicable to the UDP-style socket only. When
3818 * set it will cause associations that are idle for more than the
3819 * specified number of seconds to automatically close. An association
3820 * being idle is defined an association that has NOT sent or received
3821 * user data. The special value of '0' indicates that no automatic
3822 * close of any associations should be performed. The option expects an
3823 * integer defining the number of seconds of idle time before an
3824 * association is closed.
3825 */
3826 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3827 {
3828 /* Applicable to UDP-style socket only */
3829 if (sctp_style(sk, TCP))
3830 return -EOPNOTSUPP;
3831 if (len < sizeof(int))
3832 return -EINVAL;
3833 len = sizeof(int);
3834 if (put_user(len, optlen))
3835 return -EFAULT;
3836 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3837 return -EFAULT;
3838 return 0;
3839 }
3840
3841 /* Helper routine to branch off an association to a new socket. */
3842 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3843 struct socket **sockp)
3844 {
3845 struct sock *sk = asoc->base.sk;
3846 struct socket *sock;
3847 struct inet_sock *inetsk;
3848 struct sctp_af *af;
3849 int err = 0;
3850
3851 /* An association cannot be branched off from an already peeled-off
3852 * socket, nor is this supported for tcp style sockets.
3853 */
3854 if (!sctp_style(sk, UDP))
3855 return -EINVAL;
3856
3857 /* Create a new socket. */
3858 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3859 if (err < 0)
3860 return err;
3861
3862 /* Populate the fields of the newsk from the oldsk and migrate the
3863 * asoc to the newsk.
3864 */
3865 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3866
3867 /* Make peeled-off sockets more like 1-1 accepted sockets.
3868 * Set the daddr and initialize id to something more random
3869 */
3870 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3871 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3872 inetsk = inet_sk(sock->sk);
3873 inetsk->id = asoc->next_tsn ^ jiffies;
3874
3875 *sockp = sock;
3876
3877 return err;
3878 }
3879
3880 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3881 {
3882 sctp_peeloff_arg_t peeloff;
3883 struct socket *newsock;
3884 int retval = 0;
3885 struct sctp_association *asoc;
3886
3887 if (len < sizeof(sctp_peeloff_arg_t))
3888 return -EINVAL;
3889 len = sizeof(sctp_peeloff_arg_t);
3890 if (copy_from_user(&peeloff, optval, len))
3891 return -EFAULT;
3892
3893 asoc = sctp_id2assoc(sk, peeloff.associd);
3894 if (!asoc) {
3895 retval = -EINVAL;
3896 goto out;
3897 }
3898
3899 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
3900
3901 retval = sctp_do_peeloff(asoc, &newsock);
3902 if (retval < 0)
3903 goto out;
3904
3905 /* Map the socket to an unused fd that can be returned to the user. */
3906 retval = sock_map_fd(newsock);
3907 if (retval < 0) {
3908 sock_release(newsock);
3909 goto out;
3910 }
3911
3912 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3913 __func__, sk, asoc, newsock->sk, retval);
3914
3915 /* Return the fd mapped to the new socket. */
3916 peeloff.sd = retval;
3917 if (put_user(len, optlen))
3918 return -EFAULT;
3919 if (copy_to_user(optval, &peeloff, len))
3920 retval = -EFAULT;
3921
3922 out:
3923 return retval;
3924 }
3925
3926 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3927 *
3928 * Applications can enable or disable heartbeats for any peer address of
3929 * an association, modify an address's heartbeat interval, force a
3930 * heartbeat to be sent immediately, and adjust the address's maximum
3931 * number of retransmissions sent before an address is considered
3932 * unreachable. The following structure is used to access and modify an
3933 * address's parameters:
3934 *
3935 * struct sctp_paddrparams {
3936 * sctp_assoc_t spp_assoc_id;
3937 * struct sockaddr_storage spp_address;
3938 * uint32_t spp_hbinterval;
3939 * uint16_t spp_pathmaxrxt;
3940 * uint32_t spp_pathmtu;
3941 * uint32_t spp_sackdelay;
3942 * uint32_t spp_flags;
3943 * };
3944 *
3945 * spp_assoc_id - (one-to-many style socket) This is filled in the
3946 * application, and identifies the association for
3947 * this query.
3948 * spp_address - This specifies which address is of interest.
3949 * spp_hbinterval - This contains the value of the heartbeat interval,
3950 * in milliseconds. If a value of zero
3951 * is present in this field then no changes are to
3952 * be made to this parameter.
3953 * spp_pathmaxrxt - This contains the maximum number of
3954 * retransmissions before this address shall be
3955 * considered unreachable. If a value of zero
3956 * is present in this field then no changes are to
3957 * be made to this parameter.
3958 * spp_pathmtu - When Path MTU discovery is disabled the value
3959 * specified here will be the "fixed" path mtu.
3960 * Note that if the spp_address field is empty
3961 * then all associations on this address will
3962 * have this fixed path mtu set upon them.
3963 *
3964 * spp_sackdelay - When delayed sack is enabled, this value specifies
3965 * the number of milliseconds that sacks will be delayed
3966 * for. This value will apply to all addresses of an
3967 * association if the spp_address field is empty. Note
3968 * also, that if delayed sack is enabled and this
3969 * value is set to 0, no change is made to the last
3970 * recorded delayed sack timer value.
3971 *
3972 * spp_flags - These flags are used to control various features
3973 * on an association. The flag field may contain
3974 * zero or more of the following options.
3975 *
3976 * SPP_HB_ENABLE - Enable heartbeats on the
3977 * specified address. Note that if the address
3978 * field is empty all addresses for the association
3979 * have heartbeats enabled upon them.
3980 *
3981 * SPP_HB_DISABLE - Disable heartbeats on the
3982 * speicifed address. Note that if the address
3983 * field is empty all addresses for the association
3984 * will have their heartbeats disabled. Note also
3985 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
3986 * mutually exclusive, only one of these two should
3987 * be specified. Enabling both fields will have
3988 * undetermined results.
3989 *
3990 * SPP_HB_DEMAND - Request a user initiated heartbeat
3991 * to be made immediately.
3992 *
3993 * SPP_PMTUD_ENABLE - This field will enable PMTU
3994 * discovery upon the specified address. Note that
3995 * if the address feild is empty then all addresses
3996 * on the association are effected.
3997 *
3998 * SPP_PMTUD_DISABLE - This field will disable PMTU
3999 * discovery upon the specified address. Note that
4000 * if the address feild is empty then all addresses
4001 * on the association are effected. Not also that
4002 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4003 * exclusive. Enabling both will have undetermined
4004 * results.
4005 *
4006 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4007 * on delayed sack. The time specified in spp_sackdelay
4008 * is used to specify the sack delay for this address. Note
4009 * that if spp_address is empty then all addresses will
4010 * enable delayed sack and take on the sack delay
4011 * value specified in spp_sackdelay.
4012 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4013 * off delayed sack. If the spp_address field is blank then
4014 * delayed sack is disabled for the entire association. Note
4015 * also that this field is mutually exclusive to
4016 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4017 * results.
4018 */
4019 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4020 char __user *optval, int __user *optlen)
4021 {
4022 struct sctp_paddrparams params;
4023 struct sctp_transport *trans = NULL;
4024 struct sctp_association *asoc = NULL;
4025 struct sctp_sock *sp = sctp_sk(sk);
4026
4027 if (len < sizeof(struct sctp_paddrparams))
4028 return -EINVAL;
4029 len = sizeof(struct sctp_paddrparams);
4030 if (copy_from_user(&params, optval, len))
4031 return -EFAULT;
4032
4033 /* If an address other than INADDR_ANY is specified, and
4034 * no transport is found, then the request is invalid.
4035 */
4036 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
4037 trans = sctp_addr_id2transport(sk, &params.spp_address,
4038 params.spp_assoc_id);
4039 if (!trans) {
4040 SCTP_DEBUG_PRINTK("Failed no transport\n");
4041 return -EINVAL;
4042 }
4043 }
4044
4045 /* Get association, if assoc_id != 0 and the socket is a one
4046 * to many style socket, and an association was not found, then
4047 * the id was invalid.
4048 */
4049 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4050 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4051 SCTP_DEBUG_PRINTK("Failed no association\n");
4052 return -EINVAL;
4053 }
4054
4055 if (trans) {
4056 /* Fetch transport values. */
4057 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4058 params.spp_pathmtu = trans->pathmtu;
4059 params.spp_pathmaxrxt = trans->pathmaxrxt;
4060 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4061
4062 /*draft-11 doesn't say what to return in spp_flags*/
4063 params.spp_flags = trans->param_flags;
4064 } else if (asoc) {
4065 /* Fetch association values. */
4066 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4067 params.spp_pathmtu = asoc->pathmtu;
4068 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4069 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4070
4071 /*draft-11 doesn't say what to return in spp_flags*/
4072 params.spp_flags = asoc->param_flags;
4073 } else {
4074 /* Fetch socket values. */
4075 params.spp_hbinterval = sp->hbinterval;
4076 params.spp_pathmtu = sp->pathmtu;
4077 params.spp_sackdelay = sp->sackdelay;
4078 params.spp_pathmaxrxt = sp->pathmaxrxt;
4079
4080 /*draft-11 doesn't say what to return in spp_flags*/
4081 params.spp_flags = sp->param_flags;
4082 }
4083
4084 if (copy_to_user(optval, &params, len))
4085 return -EFAULT;
4086
4087 if (put_user(len, optlen))
4088 return -EFAULT;
4089
4090 return 0;
4091 }
4092
4093 /*
4094 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4095 *
4096 * This option will effect the way delayed acks are performed. This
4097 * option allows you to get or set the delayed ack time, in
4098 * milliseconds. It also allows changing the delayed ack frequency.
4099 * Changing the frequency to 1 disables the delayed sack algorithm. If
4100 * the assoc_id is 0, then this sets or gets the endpoints default
4101 * values. If the assoc_id field is non-zero, then the set or get
4102 * effects the specified association for the one to many model (the
4103 * assoc_id field is ignored by the one to one model). Note that if
4104 * sack_delay or sack_freq are 0 when setting this option, then the
4105 * current values will remain unchanged.
4106 *
4107 * struct sctp_sack_info {
4108 * sctp_assoc_t sack_assoc_id;
4109 * uint32_t sack_delay;
4110 * uint32_t sack_freq;
4111 * };
4112 *
4113 * sack_assoc_id - This parameter, indicates which association the user
4114 * is performing an action upon. Note that if this field's value is
4115 * zero then the endpoints default value is changed (effecting future
4116 * associations only).
4117 *
4118 * sack_delay - This parameter contains the number of milliseconds that
4119 * the user is requesting the delayed ACK timer be set to. Note that
4120 * this value is defined in the standard to be between 200 and 500
4121 * milliseconds.
4122 *
4123 * sack_freq - This parameter contains the number of packets that must
4124 * be received before a sack is sent without waiting for the delay
4125 * timer to expire. The default value for this is 2, setting this
4126 * value to 1 will disable the delayed sack algorithm.
4127 */
4128 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4129 char __user *optval,
4130 int __user *optlen)
4131 {
4132 struct sctp_sack_info params;
4133 struct sctp_association *asoc = NULL;
4134 struct sctp_sock *sp = sctp_sk(sk);
4135
4136 if (len >= sizeof(struct sctp_sack_info)) {
4137 len = sizeof(struct sctp_sack_info);
4138
4139 if (copy_from_user(&params, optval, len))
4140 return -EFAULT;
4141 } else if (len == sizeof(struct sctp_assoc_value)) {
4142 printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info "
4143 "in delayed_ack socket option deprecated\n");
4144 printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n");
4145 if (copy_from_user(&params, optval, len))
4146 return -EFAULT;
4147 } else
4148 return - EINVAL;
4149
4150 /* Get association, if sack_assoc_id != 0 and the socket is a one
4151 * to many style socket, and an association was not found, then
4152 * the id was invalid.
4153 */
4154 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4155 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4156 return -EINVAL;
4157
4158 if (asoc) {
4159 /* Fetch association values. */
4160 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4161 params.sack_delay = jiffies_to_msecs(
4162 asoc->sackdelay);
4163 params.sack_freq = asoc->sackfreq;
4164
4165 } else {
4166 params.sack_delay = 0;
4167 params.sack_freq = 1;
4168 }
4169 } else {
4170 /* Fetch socket values. */
4171 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4172 params.sack_delay = sp->sackdelay;
4173 params.sack_freq = sp->sackfreq;
4174 } else {
4175 params.sack_delay = 0;
4176 params.sack_freq = 1;
4177 }
4178 }
4179
4180 if (copy_to_user(optval, &params, len))
4181 return -EFAULT;
4182
4183 if (put_user(len, optlen))
4184 return -EFAULT;
4185
4186 return 0;
4187 }
4188
4189 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4190 *
4191 * Applications can specify protocol parameters for the default association
4192 * initialization. The option name argument to setsockopt() and getsockopt()
4193 * is SCTP_INITMSG.
4194 *
4195 * Setting initialization parameters is effective only on an unconnected
4196 * socket (for UDP-style sockets only future associations are effected
4197 * by the change). With TCP-style sockets, this option is inherited by
4198 * sockets derived from a listener socket.
4199 */
4200 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4201 {
4202 if (len < sizeof(struct sctp_initmsg))
4203 return -EINVAL;
4204 len = sizeof(struct sctp_initmsg);
4205 if (put_user(len, optlen))
4206 return -EFAULT;
4207 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4208 return -EFAULT;
4209 return 0;
4210 }
4211
4212 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4213 char __user *optval,
4214 int __user *optlen)
4215 {
4216 sctp_assoc_t id;
4217 struct sctp_association *asoc;
4218 struct list_head *pos;
4219 int cnt = 0;
4220
4221 if (len < sizeof(sctp_assoc_t))
4222 return -EINVAL;
4223
4224 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4225 return -EFAULT;
4226
4227 /* For UDP-style sockets, id specifies the association to query. */
4228 asoc = sctp_id2assoc(sk, id);
4229 if (!asoc)
4230 return -EINVAL;
4231
4232 list_for_each(pos, &asoc->peer.transport_addr_list) {
4233 cnt ++;
4234 }
4235
4236 return cnt;
4237 }
4238
4239 /*
4240 * Old API for getting list of peer addresses. Does not work for 32-bit
4241 * programs running on a 64-bit kernel
4242 */
4243 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4244 char __user *optval,
4245 int __user *optlen)
4246 {
4247 struct sctp_association *asoc;
4248 int cnt = 0;
4249 struct sctp_getaddrs_old getaddrs;
4250 struct sctp_transport *from;
4251 void __user *to;
4252 union sctp_addr temp;
4253 struct sctp_sock *sp = sctp_sk(sk);
4254 int addrlen;
4255
4256 if (len < sizeof(struct sctp_getaddrs_old))
4257 return -EINVAL;
4258
4259 len = sizeof(struct sctp_getaddrs_old);
4260
4261 if (copy_from_user(&getaddrs, optval, len))
4262 return -EFAULT;
4263
4264 if (getaddrs.addr_num <= 0) return -EINVAL;
4265
4266 /* For UDP-style sockets, id specifies the association to query. */
4267 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4268 if (!asoc)
4269 return -EINVAL;
4270
4271 to = (void __user *)getaddrs.addrs;
4272 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4273 transports) {
4274 memcpy(&temp, &from->ipaddr, sizeof(temp));
4275 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4276 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4277 if (copy_to_user(to, &temp, addrlen))
4278 return -EFAULT;
4279 to += addrlen ;
4280 cnt ++;
4281 if (cnt >= getaddrs.addr_num) break;
4282 }
4283 getaddrs.addr_num = cnt;
4284 if (put_user(len, optlen))
4285 return -EFAULT;
4286 if (copy_to_user(optval, &getaddrs, len))
4287 return -EFAULT;
4288
4289 return 0;
4290 }
4291
4292 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4293 char __user *optval, int __user *optlen)
4294 {
4295 struct sctp_association *asoc;
4296 int cnt = 0;
4297 struct sctp_getaddrs getaddrs;
4298 struct sctp_transport *from;
4299 void __user *to;
4300 union sctp_addr temp;
4301 struct sctp_sock *sp = sctp_sk(sk);
4302 int addrlen;
4303 size_t space_left;
4304 int bytes_copied;
4305
4306 if (len < sizeof(struct sctp_getaddrs))
4307 return -EINVAL;
4308
4309 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4310 return -EFAULT;
4311
4312 /* For UDP-style sockets, id specifies the association to query. */
4313 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4314 if (!asoc)
4315 return -EINVAL;
4316
4317 to = optval + offsetof(struct sctp_getaddrs,addrs);
4318 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4319
4320 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4321 transports) {
4322 memcpy(&temp, &from->ipaddr, sizeof(temp));
4323 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4324 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4325 if (space_left < addrlen)
4326 return -ENOMEM;
4327 if (copy_to_user(to, &temp, addrlen))
4328 return -EFAULT;
4329 to += addrlen;
4330 cnt++;
4331 space_left -= addrlen;
4332 }
4333
4334 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4335 return -EFAULT;
4336 bytes_copied = ((char __user *)to) - optval;
4337 if (put_user(bytes_copied, optlen))
4338 return -EFAULT;
4339
4340 return 0;
4341 }
4342
4343 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4344 char __user *optval,
4345 int __user *optlen)
4346 {
4347 sctp_assoc_t id;
4348 struct sctp_bind_addr *bp;
4349 struct sctp_association *asoc;
4350 struct sctp_sockaddr_entry *addr;
4351 int cnt = 0;
4352
4353 if (len < sizeof(sctp_assoc_t))
4354 return -EINVAL;
4355
4356 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4357 return -EFAULT;
4358
4359 /*
4360 * For UDP-style sockets, id specifies the association to query.
4361 * If the id field is set to the value '0' then the locally bound
4362 * addresses are returned without regard to any particular
4363 * association.
4364 */
4365 if (0 == id) {
4366 bp = &sctp_sk(sk)->ep->base.bind_addr;
4367 } else {
4368 asoc = sctp_id2assoc(sk, id);
4369 if (!asoc)
4370 return -EINVAL;
4371 bp = &asoc->base.bind_addr;
4372 }
4373
4374 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4375 * addresses from the global local address list.
4376 */
4377 if (sctp_list_single_entry(&bp->address_list)) {
4378 addr = list_entry(bp->address_list.next,
4379 struct sctp_sockaddr_entry, list);
4380 if (sctp_is_any(&addr->a)) {
4381 rcu_read_lock();
4382 list_for_each_entry_rcu(addr,
4383 &sctp_local_addr_list, list) {
4384 if (!addr->valid)
4385 continue;
4386
4387 if ((PF_INET == sk->sk_family) &&
4388 (AF_INET6 == addr->a.sa.sa_family))
4389 continue;
4390
4391 cnt++;
4392 }
4393 rcu_read_unlock();
4394 } else {
4395 cnt = 1;
4396 }
4397 goto done;
4398 }
4399
4400 /* Protection on the bound address list is not needed,
4401 * since in the socket option context we hold the socket lock,
4402 * so there is no way that the bound address list can change.
4403 */
4404 list_for_each_entry(addr, &bp->address_list, list) {
4405 cnt ++;
4406 }
4407 done:
4408 return cnt;
4409 }
4410
4411 /* Helper function that copies local addresses to user and returns the number
4412 * of addresses copied.
4413 */
4414 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4415 int max_addrs, void *to,
4416 int *bytes_copied)
4417 {
4418 struct sctp_sockaddr_entry *addr;
4419 union sctp_addr temp;
4420 int cnt = 0;
4421 int addrlen;
4422
4423 rcu_read_lock();
4424 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4425 if (!addr->valid)
4426 continue;
4427
4428 if ((PF_INET == sk->sk_family) &&
4429 (AF_INET6 == addr->a.sa.sa_family))
4430 continue;
4431 memcpy(&temp, &addr->a, sizeof(temp));
4432 if (!temp.v4.sin_port)
4433 temp.v4.sin_port = htons(port);
4434
4435 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4436 &temp);
4437 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4438 memcpy(to, &temp, addrlen);
4439
4440 to += addrlen;
4441 *bytes_copied += addrlen;
4442 cnt ++;
4443 if (cnt >= max_addrs) break;
4444 }
4445 rcu_read_unlock();
4446
4447 return cnt;
4448 }
4449
4450 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4451 size_t space_left, int *bytes_copied)
4452 {
4453 struct sctp_sockaddr_entry *addr;
4454 union sctp_addr temp;
4455 int cnt = 0;
4456 int addrlen;
4457
4458 rcu_read_lock();
4459 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4460 if (!addr->valid)
4461 continue;
4462
4463 if ((PF_INET == sk->sk_family) &&
4464 (AF_INET6 == addr->a.sa.sa_family))
4465 continue;
4466 memcpy(&temp, &addr->a, sizeof(temp));
4467 if (!temp.v4.sin_port)
4468 temp.v4.sin_port = htons(port);
4469
4470 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4471 &temp);
4472 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4473 if (space_left < addrlen) {
4474 cnt = -ENOMEM;
4475 break;
4476 }
4477 memcpy(to, &temp, addrlen);
4478
4479 to += addrlen;
4480 cnt ++;
4481 space_left -= addrlen;
4482 *bytes_copied += addrlen;
4483 }
4484 rcu_read_unlock();
4485
4486 return cnt;
4487 }
4488
4489 /* Old API for getting list of local addresses. Does not work for 32-bit
4490 * programs running on a 64-bit kernel
4491 */
4492 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4493 char __user *optval, int __user *optlen)
4494 {
4495 struct sctp_bind_addr *bp;
4496 struct sctp_association *asoc;
4497 int cnt = 0;
4498 struct sctp_getaddrs_old getaddrs;
4499 struct sctp_sockaddr_entry *addr;
4500 void __user *to;
4501 union sctp_addr temp;
4502 struct sctp_sock *sp = sctp_sk(sk);
4503 int addrlen;
4504 int err = 0;
4505 void *addrs;
4506 void *buf;
4507 int bytes_copied = 0;
4508
4509 if (len < sizeof(struct sctp_getaddrs_old))
4510 return -EINVAL;
4511
4512 len = sizeof(struct sctp_getaddrs_old);
4513 if (copy_from_user(&getaddrs, optval, len))
4514 return -EFAULT;
4515
4516 if (getaddrs.addr_num <= 0) return -EINVAL;
4517 /*
4518 * For UDP-style sockets, id specifies the association to query.
4519 * If the id field is set to the value '0' then the locally bound
4520 * addresses are returned without regard to any particular
4521 * association.
4522 */
4523 if (0 == getaddrs.assoc_id) {
4524 bp = &sctp_sk(sk)->ep->base.bind_addr;
4525 } else {
4526 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4527 if (!asoc)
4528 return -EINVAL;
4529 bp = &asoc->base.bind_addr;
4530 }
4531
4532 to = getaddrs.addrs;
4533
4534 /* Allocate space for a local instance of packed array to hold all
4535 * the data. We store addresses here first and then put write them
4536 * to the user in one shot.
4537 */
4538 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4539 GFP_KERNEL);
4540 if (!addrs)
4541 return -ENOMEM;
4542
4543 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4544 * addresses from the global local address list.
4545 */
4546 if (sctp_list_single_entry(&bp->address_list)) {
4547 addr = list_entry(bp->address_list.next,
4548 struct sctp_sockaddr_entry, list);
4549 if (sctp_is_any(&addr->a)) {
4550 cnt = sctp_copy_laddrs_old(sk, bp->port,
4551 getaddrs.addr_num,
4552 addrs, &bytes_copied);
4553 goto copy_getaddrs;
4554 }
4555 }
4556
4557 buf = addrs;
4558 /* Protection on the bound address list is not needed since
4559 * in the socket option context we hold a socket lock and
4560 * thus the bound address list can't change.
4561 */
4562 list_for_each_entry(addr, &bp->address_list, list) {
4563 memcpy(&temp, &addr->a, sizeof(temp));
4564 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4565 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4566 memcpy(buf, &temp, addrlen);
4567 buf += addrlen;
4568 bytes_copied += addrlen;
4569 cnt ++;
4570 if (cnt >= getaddrs.addr_num) break;
4571 }
4572
4573 copy_getaddrs:
4574 /* copy the entire address list into the user provided space */
4575 if (copy_to_user(to, addrs, bytes_copied)) {
4576 err = -EFAULT;
4577 goto error;
4578 }
4579
4580 /* copy the leading structure back to user */
4581 getaddrs.addr_num = cnt;
4582 if (copy_to_user(optval, &getaddrs, len))
4583 err = -EFAULT;
4584
4585 error:
4586 kfree(addrs);
4587 return err;
4588 }
4589
4590 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4591 char __user *optval, int __user *optlen)
4592 {
4593 struct sctp_bind_addr *bp;
4594 struct sctp_association *asoc;
4595 int cnt = 0;
4596 struct sctp_getaddrs getaddrs;
4597 struct sctp_sockaddr_entry *addr;
4598 void __user *to;
4599 union sctp_addr temp;
4600 struct sctp_sock *sp = sctp_sk(sk);
4601 int addrlen;
4602 int err = 0;
4603 size_t space_left;
4604 int bytes_copied = 0;
4605 void *addrs;
4606 void *buf;
4607
4608 if (len < sizeof(struct sctp_getaddrs))
4609 return -EINVAL;
4610
4611 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4612 return -EFAULT;
4613
4614 /*
4615 * For UDP-style sockets, id specifies the association to query.
4616 * If the id field is set to the value '0' then the locally bound
4617 * addresses are returned without regard to any particular
4618 * association.
4619 */
4620 if (0 == getaddrs.assoc_id) {
4621 bp = &sctp_sk(sk)->ep->base.bind_addr;
4622 } else {
4623 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4624 if (!asoc)
4625 return -EINVAL;
4626 bp = &asoc->base.bind_addr;
4627 }
4628
4629 to = optval + offsetof(struct sctp_getaddrs,addrs);
4630 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4631
4632 addrs = kmalloc(space_left, GFP_KERNEL);
4633 if (!addrs)
4634 return -ENOMEM;
4635
4636 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4637 * addresses from the global local address list.
4638 */
4639 if (sctp_list_single_entry(&bp->address_list)) {
4640 addr = list_entry(bp->address_list.next,
4641 struct sctp_sockaddr_entry, list);
4642 if (sctp_is_any(&addr->a)) {
4643 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4644 space_left, &bytes_copied);
4645 if (cnt < 0) {
4646 err = cnt;
4647 goto out;
4648 }
4649 goto copy_getaddrs;
4650 }
4651 }
4652
4653 buf = addrs;
4654 /* Protection on the bound address list is not needed since
4655 * in the socket option context we hold a socket lock and
4656 * thus the bound address list can't change.
4657 */
4658 list_for_each_entry(addr, &bp->address_list, list) {
4659 memcpy(&temp, &addr->a, sizeof(temp));
4660 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4661 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4662 if (space_left < addrlen) {
4663 err = -ENOMEM; /*fixme: right error?*/
4664 goto out;
4665 }
4666 memcpy(buf, &temp, addrlen);
4667 buf += addrlen;
4668 bytes_copied += addrlen;
4669 cnt ++;
4670 space_left -= addrlen;
4671 }
4672
4673 copy_getaddrs:
4674 if (copy_to_user(to, addrs, bytes_copied)) {
4675 err = -EFAULT;
4676 goto out;
4677 }
4678 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4679 err = -EFAULT;
4680 goto out;
4681 }
4682 if (put_user(bytes_copied, optlen))
4683 err = -EFAULT;
4684 out:
4685 kfree(addrs);
4686 return err;
4687 }
4688
4689 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4690 *
4691 * Requests that the local SCTP stack use the enclosed peer address as
4692 * the association primary. The enclosed address must be one of the
4693 * association peer's addresses.
4694 */
4695 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4696 char __user *optval, int __user *optlen)
4697 {
4698 struct sctp_prim prim;
4699 struct sctp_association *asoc;
4700 struct sctp_sock *sp = sctp_sk(sk);
4701
4702 if (len < sizeof(struct sctp_prim))
4703 return -EINVAL;
4704
4705 len = sizeof(struct sctp_prim);
4706
4707 if (copy_from_user(&prim, optval, len))
4708 return -EFAULT;
4709
4710 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4711 if (!asoc)
4712 return -EINVAL;
4713
4714 if (!asoc->peer.primary_path)
4715 return -ENOTCONN;
4716
4717 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4718 asoc->peer.primary_path->af_specific->sockaddr_len);
4719
4720 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4721 (union sctp_addr *)&prim.ssp_addr);
4722
4723 if (put_user(len, optlen))
4724 return -EFAULT;
4725 if (copy_to_user(optval, &prim, len))
4726 return -EFAULT;
4727
4728 return 0;
4729 }
4730
4731 /*
4732 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4733 *
4734 * Requests that the local endpoint set the specified Adaptation Layer
4735 * Indication parameter for all future INIT and INIT-ACK exchanges.
4736 */
4737 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4738 char __user *optval, int __user *optlen)
4739 {
4740 struct sctp_setadaptation adaptation;
4741
4742 if (len < sizeof(struct sctp_setadaptation))
4743 return -EINVAL;
4744
4745 len = sizeof(struct sctp_setadaptation);
4746
4747 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4748
4749 if (put_user(len, optlen))
4750 return -EFAULT;
4751 if (copy_to_user(optval, &adaptation, len))
4752 return -EFAULT;
4753
4754 return 0;
4755 }
4756
4757 /*
4758 *
4759 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4760 *
4761 * Applications that wish to use the sendto() system call may wish to
4762 * specify a default set of parameters that would normally be supplied
4763 * through the inclusion of ancillary data. This socket option allows
4764 * such an application to set the default sctp_sndrcvinfo structure.
4765
4766
4767 * The application that wishes to use this socket option simply passes
4768 * in to this call the sctp_sndrcvinfo structure defined in Section
4769 * 5.2.2) The input parameters accepted by this call include
4770 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4771 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4772 * to this call if the caller is using the UDP model.
4773 *
4774 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4775 */
4776 static int sctp_getsockopt_default_send_param(struct sock *sk,
4777 int len, char __user *optval,
4778 int __user *optlen)
4779 {
4780 struct sctp_sndrcvinfo info;
4781 struct sctp_association *asoc;
4782 struct sctp_sock *sp = sctp_sk(sk);
4783
4784 if (len < sizeof(struct sctp_sndrcvinfo))
4785 return -EINVAL;
4786
4787 len = sizeof(struct sctp_sndrcvinfo);
4788
4789 if (copy_from_user(&info, optval, len))
4790 return -EFAULT;
4791
4792 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4793 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4794 return -EINVAL;
4795
4796 if (asoc) {
4797 info.sinfo_stream = asoc->default_stream;
4798 info.sinfo_flags = asoc->default_flags;
4799 info.sinfo_ppid = asoc->default_ppid;
4800 info.sinfo_context = asoc->default_context;
4801 info.sinfo_timetolive = asoc->default_timetolive;
4802 } else {
4803 info.sinfo_stream = sp->default_stream;
4804 info.sinfo_flags = sp->default_flags;
4805 info.sinfo_ppid = sp->default_ppid;
4806 info.sinfo_context = sp->default_context;
4807 info.sinfo_timetolive = sp->default_timetolive;
4808 }
4809
4810 if (put_user(len, optlen))
4811 return -EFAULT;
4812 if (copy_to_user(optval, &info, len))
4813 return -EFAULT;
4814
4815 return 0;
4816 }
4817
4818 /*
4819 *
4820 * 7.1.5 SCTP_NODELAY
4821 *
4822 * Turn on/off any Nagle-like algorithm. This means that packets are
4823 * generally sent as soon as possible and no unnecessary delays are
4824 * introduced, at the cost of more packets in the network. Expects an
4825 * integer boolean flag.
4826 */
4827
4828 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4829 char __user *optval, int __user *optlen)
4830 {
4831 int val;
4832
4833 if (len < sizeof(int))
4834 return -EINVAL;
4835
4836 len = sizeof(int);
4837 val = (sctp_sk(sk)->nodelay == 1);
4838 if (put_user(len, optlen))
4839 return -EFAULT;
4840 if (copy_to_user(optval, &val, len))
4841 return -EFAULT;
4842 return 0;
4843 }
4844
4845 /*
4846 *
4847 * 7.1.1 SCTP_RTOINFO
4848 *
4849 * The protocol parameters used to initialize and bound retransmission
4850 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4851 * and modify these parameters.
4852 * All parameters are time values, in milliseconds. A value of 0, when
4853 * modifying the parameters, indicates that the current value should not
4854 * be changed.
4855 *
4856 */
4857 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4858 char __user *optval,
4859 int __user *optlen) {
4860 struct sctp_rtoinfo rtoinfo;
4861 struct sctp_association *asoc;
4862
4863 if (len < sizeof (struct sctp_rtoinfo))
4864 return -EINVAL;
4865
4866 len = sizeof(struct sctp_rtoinfo);
4867
4868 if (copy_from_user(&rtoinfo, optval, len))
4869 return -EFAULT;
4870
4871 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4872
4873 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4874 return -EINVAL;
4875
4876 /* Values corresponding to the specific association. */
4877 if (asoc) {
4878 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4879 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4880 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4881 } else {
4882 /* Values corresponding to the endpoint. */
4883 struct sctp_sock *sp = sctp_sk(sk);
4884
4885 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4886 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4887 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4888 }
4889
4890 if (put_user(len, optlen))
4891 return -EFAULT;
4892
4893 if (copy_to_user(optval, &rtoinfo, len))
4894 return -EFAULT;
4895
4896 return 0;
4897 }
4898
4899 /*
4900 *
4901 * 7.1.2 SCTP_ASSOCINFO
4902 *
4903 * This option is used to tune the maximum retransmission attempts
4904 * of the association.
4905 * Returns an error if the new association retransmission value is
4906 * greater than the sum of the retransmission value of the peer.
4907 * See [SCTP] for more information.
4908 *
4909 */
4910 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4911 char __user *optval,
4912 int __user *optlen)
4913 {
4914
4915 struct sctp_assocparams assocparams;
4916 struct sctp_association *asoc;
4917 struct list_head *pos;
4918 int cnt = 0;
4919
4920 if (len < sizeof (struct sctp_assocparams))
4921 return -EINVAL;
4922
4923 len = sizeof(struct sctp_assocparams);
4924
4925 if (copy_from_user(&assocparams, optval, len))
4926 return -EFAULT;
4927
4928 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4929
4930 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4931 return -EINVAL;
4932
4933 /* Values correspoinding to the specific association */
4934 if (asoc) {
4935 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4936 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4937 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4938 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4939 * 1000) +
4940 (asoc->cookie_life.tv_usec
4941 / 1000);
4942
4943 list_for_each(pos, &asoc->peer.transport_addr_list) {
4944 cnt ++;
4945 }
4946
4947 assocparams.sasoc_number_peer_destinations = cnt;
4948 } else {
4949 /* Values corresponding to the endpoint */
4950 struct sctp_sock *sp = sctp_sk(sk);
4951
4952 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4953 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4954 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4955 assocparams.sasoc_cookie_life =
4956 sp->assocparams.sasoc_cookie_life;
4957 assocparams.sasoc_number_peer_destinations =
4958 sp->assocparams.
4959 sasoc_number_peer_destinations;
4960 }
4961
4962 if (put_user(len, optlen))
4963 return -EFAULT;
4964
4965 if (copy_to_user(optval, &assocparams, len))
4966 return -EFAULT;
4967
4968 return 0;
4969 }
4970
4971 /*
4972 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4973 *
4974 * This socket option is a boolean flag which turns on or off mapped V4
4975 * addresses. If this option is turned on and the socket is type
4976 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4977 * If this option is turned off, then no mapping will be done of V4
4978 * addresses and a user will receive both PF_INET6 and PF_INET type
4979 * addresses on the socket.
4980 */
4981 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4982 char __user *optval, int __user *optlen)
4983 {
4984 int val;
4985 struct sctp_sock *sp = sctp_sk(sk);
4986
4987 if (len < sizeof(int))
4988 return -EINVAL;
4989
4990 len = sizeof(int);
4991 val = sp->v4mapped;
4992 if (put_user(len, optlen))
4993 return -EFAULT;
4994 if (copy_to_user(optval, &val, len))
4995 return -EFAULT;
4996
4997 return 0;
4998 }
4999
5000 /*
5001 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5002 * (chapter and verse is quoted at sctp_setsockopt_context())
5003 */
5004 static int sctp_getsockopt_context(struct sock *sk, int len,
5005 char __user *optval, int __user *optlen)
5006 {
5007 struct sctp_assoc_value params;
5008 struct sctp_sock *sp;
5009 struct sctp_association *asoc;
5010
5011 if (len < sizeof(struct sctp_assoc_value))
5012 return -EINVAL;
5013
5014 len = sizeof(struct sctp_assoc_value);
5015
5016 if (copy_from_user(&params, optval, len))
5017 return -EFAULT;
5018
5019 sp = sctp_sk(sk);
5020
5021 if (params.assoc_id != 0) {
5022 asoc = sctp_id2assoc(sk, params.assoc_id);
5023 if (!asoc)
5024 return -EINVAL;
5025 params.assoc_value = asoc->default_rcv_context;
5026 } else {
5027 params.assoc_value = sp->default_rcv_context;
5028 }
5029
5030 if (put_user(len, optlen))
5031 return -EFAULT;
5032 if (copy_to_user(optval, &params, len))
5033 return -EFAULT;
5034
5035 return 0;
5036 }
5037
5038 /*
5039 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
5040 *
5041 * This socket option specifies the maximum size to put in any outgoing
5042 * SCTP chunk. If a message is larger than this size it will be
5043 * fragmented by SCTP into the specified size. Note that the underlying
5044 * SCTP implementation may fragment into smaller sized chunks when the
5045 * PMTU of the underlying association is smaller than the value set by
5046 * the user.
5047 */
5048 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5049 char __user *optval, int __user *optlen)
5050 {
5051 int val;
5052
5053 if (len < sizeof(int))
5054 return -EINVAL;
5055
5056 len = sizeof(int);
5057
5058 val = sctp_sk(sk)->user_frag;
5059 if (put_user(len, optlen))
5060 return -EFAULT;
5061 if (copy_to_user(optval, &val, len))
5062 return -EFAULT;
5063
5064 return 0;
5065 }
5066
5067 /*
5068 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5069 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5070 */
5071 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5072 char __user *optval, int __user *optlen)
5073 {
5074 int val;
5075
5076 if (len < sizeof(int))
5077 return -EINVAL;
5078
5079 len = sizeof(int);
5080
5081 val = sctp_sk(sk)->frag_interleave;
5082 if (put_user(len, optlen))
5083 return -EFAULT;
5084 if (copy_to_user(optval, &val, len))
5085 return -EFAULT;
5086
5087 return 0;
5088 }
5089
5090 /*
5091 * 7.1.25. Set or Get the sctp partial delivery point
5092 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5093 */
5094 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5095 char __user *optval,
5096 int __user *optlen)
5097 {
5098 u32 val;
5099
5100 if (len < sizeof(u32))
5101 return -EINVAL;
5102
5103 len = sizeof(u32);
5104
5105 val = sctp_sk(sk)->pd_point;
5106 if (put_user(len, optlen))
5107 return -EFAULT;
5108 if (copy_to_user(optval, &val, len))
5109 return -EFAULT;
5110
5111 return -ENOTSUPP;
5112 }
5113
5114 /*
5115 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5116 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5117 */
5118 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5119 char __user *optval,
5120 int __user *optlen)
5121 {
5122 struct sctp_assoc_value params;
5123 struct sctp_sock *sp;
5124 struct sctp_association *asoc;
5125
5126 if (len < sizeof(int))
5127 return -EINVAL;
5128
5129 if (len == sizeof(int)) {
5130 printk(KERN_WARNING
5131 "SCTP: Use of int in max_burst socket option deprecated\n");
5132 printk(KERN_WARNING
5133 "SCTP: Use struct sctp_assoc_value instead\n");
5134 params.assoc_id = 0;
5135 } else if (len == sizeof (struct sctp_assoc_value)) {
5136 if (copy_from_user(&params, optval, len))
5137 return -EFAULT;
5138 } else
5139 return -EINVAL;
5140
5141 sp = sctp_sk(sk);
5142
5143 if (params.assoc_id != 0) {
5144 asoc = sctp_id2assoc(sk, params.assoc_id);
5145 if (!asoc)
5146 return -EINVAL;
5147 params.assoc_value = asoc->max_burst;
5148 } else
5149 params.assoc_value = sp->max_burst;
5150
5151 if (len == sizeof(int)) {
5152 if (copy_to_user(optval, &params.assoc_value, len))
5153 return -EFAULT;
5154 } else {
5155 if (copy_to_user(optval, &params, len))
5156 return -EFAULT;
5157 }
5158
5159 return 0;
5160
5161 }
5162
5163 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5164 char __user *optval, int __user *optlen)
5165 {
5166 struct sctp_hmac_algo_param *hmacs;
5167 __u16 param_len;
5168
5169 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5170 param_len = ntohs(hmacs->param_hdr.length);
5171
5172 if (len < param_len)
5173 return -EINVAL;
5174 if (put_user(len, optlen))
5175 return -EFAULT;
5176 if (copy_to_user(optval, hmacs->hmac_ids, len))
5177 return -EFAULT;
5178
5179 return 0;
5180 }
5181
5182 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5183 char __user *optval, int __user *optlen)
5184 {
5185 struct sctp_authkeyid val;
5186 struct sctp_association *asoc;
5187
5188 if (len < sizeof(struct sctp_authkeyid))
5189 return -EINVAL;
5190 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5191 return -EFAULT;
5192
5193 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5194 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5195 return -EINVAL;
5196
5197 if (asoc)
5198 val.scact_keynumber = asoc->active_key_id;
5199 else
5200 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5201
5202 return 0;
5203 }
5204
5205 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5206 char __user *optval, int __user *optlen)
5207 {
5208 struct sctp_authchunks __user *p = (void __user *)optval;
5209 struct sctp_authchunks val;
5210 struct sctp_association *asoc;
5211 struct sctp_chunks_param *ch;
5212 u32 num_chunks;
5213 char __user *to;
5214
5215 if (len <= sizeof(struct sctp_authchunks))
5216 return -EINVAL;
5217
5218 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
5219 return -EFAULT;
5220
5221 to = p->gauth_chunks;
5222 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5223 if (!asoc)
5224 return -EINVAL;
5225
5226 ch = asoc->peer.peer_chunks;
5227
5228 /* See if the user provided enough room for all the data */
5229 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5230 if (len < num_chunks)
5231 return -EINVAL;
5232
5233 len = num_chunks;
5234 if (put_user(len, optlen))
5235 return -EFAULT;
5236 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5237 return -EFAULT;
5238 if (copy_to_user(to, ch->chunks, len))
5239 return -EFAULT;
5240
5241 return 0;
5242 }
5243
5244 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5245 char __user *optval, int __user *optlen)
5246 {
5247 struct sctp_authchunks __user *p = (void __user *)optval;
5248 struct sctp_authchunks val;
5249 struct sctp_association *asoc;
5250 struct sctp_chunks_param *ch;
5251 u32 num_chunks;
5252 char __user *to;
5253
5254 if (len <= sizeof(struct sctp_authchunks))
5255 return -EINVAL;
5256
5257 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
5258 return -EFAULT;
5259
5260 to = p->gauth_chunks;
5261 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5262 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5263 return -EINVAL;
5264
5265 if (asoc)
5266 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5267 else
5268 ch = sctp_sk(sk)->ep->auth_chunk_list;
5269
5270 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5271 if (len < num_chunks)
5272 return -EINVAL;
5273
5274 len = num_chunks;
5275 if (put_user(len, optlen))
5276 return -EFAULT;
5277 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5278 return -EFAULT;
5279 if (copy_to_user(to, ch->chunks, len))
5280 return -EFAULT;
5281
5282 return 0;
5283 }
5284
5285 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5286 char __user *optval, int __user *optlen)
5287 {
5288 int retval = 0;
5289 int len;
5290
5291 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5292 sk, optname);
5293
5294 /* I can hardly begin to describe how wrong this is. This is
5295 * so broken as to be worse than useless. The API draft
5296 * REALLY is NOT helpful here... I am not convinced that the
5297 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5298 * are at all well-founded.
5299 */
5300 if (level != SOL_SCTP) {
5301 struct sctp_af *af = sctp_sk(sk)->pf->af;
5302
5303 retval = af->getsockopt(sk, level, optname, optval, optlen);
5304 return retval;
5305 }
5306
5307 if (get_user(len, optlen))
5308 return -EFAULT;
5309
5310 sctp_lock_sock(sk);
5311
5312 switch (optname) {
5313 case SCTP_STATUS:
5314 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5315 break;
5316 case SCTP_DISABLE_FRAGMENTS:
5317 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5318 optlen);
5319 break;
5320 case SCTP_EVENTS:
5321 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5322 break;
5323 case SCTP_AUTOCLOSE:
5324 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5325 break;
5326 case SCTP_SOCKOPT_PEELOFF:
5327 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5328 break;
5329 case SCTP_PEER_ADDR_PARAMS:
5330 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5331 optlen);
5332 break;
5333 case SCTP_DELAYED_ACK:
5334 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5335 optlen);
5336 break;
5337 case SCTP_INITMSG:
5338 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5339 break;
5340 case SCTP_GET_PEER_ADDRS_NUM_OLD:
5341 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5342 optlen);
5343 break;
5344 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5345 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5346 optlen);
5347 break;
5348 case SCTP_GET_PEER_ADDRS_OLD:
5349 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5350 optlen);
5351 break;
5352 case SCTP_GET_LOCAL_ADDRS_OLD:
5353 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5354 optlen);
5355 break;
5356 case SCTP_GET_PEER_ADDRS:
5357 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5358 optlen);
5359 break;
5360 case SCTP_GET_LOCAL_ADDRS:
5361 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5362 optlen);
5363 break;
5364 case SCTP_DEFAULT_SEND_PARAM:
5365 retval = sctp_getsockopt_default_send_param(sk, len,
5366 optval, optlen);
5367 break;
5368 case SCTP_PRIMARY_ADDR:
5369 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5370 break;
5371 case SCTP_NODELAY:
5372 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5373 break;
5374 case SCTP_RTOINFO:
5375 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5376 break;
5377 case SCTP_ASSOCINFO:
5378 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5379 break;
5380 case SCTP_I_WANT_MAPPED_V4_ADDR:
5381 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5382 break;
5383 case SCTP_MAXSEG:
5384 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5385 break;
5386 case SCTP_GET_PEER_ADDR_INFO:
5387 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5388 optlen);
5389 break;
5390 case SCTP_ADAPTATION_LAYER:
5391 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5392 optlen);
5393 break;
5394 case SCTP_CONTEXT:
5395 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5396 break;
5397 case SCTP_FRAGMENT_INTERLEAVE:
5398 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5399 optlen);
5400 break;
5401 case SCTP_PARTIAL_DELIVERY_POINT:
5402 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5403 optlen);
5404 break;
5405 case SCTP_MAX_BURST:
5406 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5407 break;
5408 case SCTP_AUTH_KEY:
5409 case SCTP_AUTH_CHUNK:
5410 case SCTP_AUTH_DELETE_KEY:
5411 retval = -EOPNOTSUPP;
5412 break;
5413 case SCTP_HMAC_IDENT:
5414 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5415 break;
5416 case SCTP_AUTH_ACTIVE_KEY:
5417 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5418 break;
5419 case SCTP_PEER_AUTH_CHUNKS:
5420 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5421 optlen);
5422 break;
5423 case SCTP_LOCAL_AUTH_CHUNKS:
5424 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5425 optlen);
5426 break;
5427 default:
5428 retval = -ENOPROTOOPT;
5429 break;
5430 }
5431
5432 sctp_release_sock(sk);
5433 return retval;
5434 }
5435
5436 static void sctp_hash(struct sock *sk)
5437 {
5438 /* STUB */
5439 }
5440
5441 static void sctp_unhash(struct sock *sk)
5442 {
5443 /* STUB */
5444 }
5445
5446 /* Check if port is acceptable. Possibly find first available port.
5447 *
5448 * The port hash table (contained in the 'global' SCTP protocol storage
5449 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5450 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5451 * list (the list number is the port number hashed out, so as you
5452 * would expect from a hash function, all the ports in a given list have
5453 * such a number that hashes out to the same list number; you were
5454 * expecting that, right?); so each list has a set of ports, with a
5455 * link to the socket (struct sock) that uses it, the port number and
5456 * a fastreuse flag (FIXME: NPI ipg).
5457 */
5458 static struct sctp_bind_bucket *sctp_bucket_create(
5459 struct sctp_bind_hashbucket *head, unsigned short snum);
5460
5461 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5462 {
5463 struct sctp_bind_hashbucket *head; /* hash list */
5464 struct sctp_bind_bucket *pp; /* hash list port iterator */
5465 struct hlist_node *node;
5466 unsigned short snum;
5467 int ret;
5468
5469 snum = ntohs(addr->v4.sin_port);
5470
5471 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5472 sctp_local_bh_disable();
5473
5474 if (snum == 0) {
5475 /* Search for an available port. */
5476 int low, high, remaining, index;
5477 unsigned int rover;
5478
5479 inet_get_local_port_range(&low, &high);
5480 remaining = (high - low) + 1;
5481 rover = net_random() % remaining + low;
5482
5483 do {
5484 rover++;
5485 if ((rover < low) || (rover > high))
5486 rover = low;
5487 index = sctp_phashfn(rover);
5488 head = &sctp_port_hashtable[index];
5489 sctp_spin_lock(&head->lock);
5490 sctp_for_each_hentry(pp, node, &head->chain)
5491 if (pp->port == rover)
5492 goto next;
5493 break;
5494 next:
5495 sctp_spin_unlock(&head->lock);
5496 } while (--remaining > 0);
5497
5498 /* Exhausted local port range during search? */
5499 ret = 1;
5500 if (remaining <= 0)
5501 goto fail;
5502
5503 /* OK, here is the one we will use. HEAD (the port
5504 * hash table list entry) is non-NULL and we hold it's
5505 * mutex.
5506 */
5507 snum = rover;
5508 } else {
5509 /* We are given an specific port number; we verify
5510 * that it is not being used. If it is used, we will
5511 * exahust the search in the hash list corresponding
5512 * to the port number (snum) - we detect that with the
5513 * port iterator, pp being NULL.
5514 */
5515 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5516 sctp_spin_lock(&head->lock);
5517 sctp_for_each_hentry(pp, node, &head->chain) {
5518 if (pp->port == snum)
5519 goto pp_found;
5520 }
5521 }
5522 pp = NULL;
5523 goto pp_not_found;
5524 pp_found:
5525 if (!hlist_empty(&pp->owner)) {
5526 /* We had a port hash table hit - there is an
5527 * available port (pp != NULL) and it is being
5528 * used by other socket (pp->owner not empty); that other
5529 * socket is going to be sk2.
5530 */
5531 int reuse = sk->sk_reuse;
5532 struct sock *sk2;
5533 struct hlist_node *node;
5534
5535 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5536 if (pp->fastreuse && sk->sk_reuse &&
5537 sk->sk_state != SCTP_SS_LISTENING)
5538 goto success;
5539
5540 /* Run through the list of sockets bound to the port
5541 * (pp->port) [via the pointers bind_next and
5542 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5543 * we get the endpoint they describe and run through
5544 * the endpoint's list of IP (v4 or v6) addresses,
5545 * comparing each of the addresses with the address of
5546 * the socket sk. If we find a match, then that means
5547 * that this port/socket (sk) combination are already
5548 * in an endpoint.
5549 */
5550 sk_for_each_bound(sk2, node, &pp->owner) {
5551 struct sctp_endpoint *ep2;
5552 ep2 = sctp_sk(sk2)->ep;
5553
5554 if (reuse && sk2->sk_reuse &&
5555 sk2->sk_state != SCTP_SS_LISTENING)
5556 continue;
5557
5558 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
5559 sctp_sk(sk))) {
5560 ret = (long)sk2;
5561 goto fail_unlock;
5562 }
5563 }
5564 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5565 }
5566 pp_not_found:
5567 /* If there was a hash table miss, create a new port. */
5568 ret = 1;
5569 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5570 goto fail_unlock;
5571
5572 /* In either case (hit or miss), make sure fastreuse is 1 only
5573 * if sk->sk_reuse is too (that is, if the caller requested
5574 * SO_REUSEADDR on this socket -sk-).
5575 */
5576 if (hlist_empty(&pp->owner)) {
5577 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5578 pp->fastreuse = 1;
5579 else
5580 pp->fastreuse = 0;
5581 } else if (pp->fastreuse &&
5582 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5583 pp->fastreuse = 0;
5584
5585 /* We are set, so fill up all the data in the hash table
5586 * entry, tie the socket list information with the rest of the
5587 * sockets FIXME: Blurry, NPI (ipg).
5588 */
5589 success:
5590 if (!sctp_sk(sk)->bind_hash) {
5591 inet_sk(sk)->num = snum;
5592 sk_add_bind_node(sk, &pp->owner);
5593 sctp_sk(sk)->bind_hash = pp;
5594 }
5595 ret = 0;
5596
5597 fail_unlock:
5598 sctp_spin_unlock(&head->lock);
5599
5600 fail:
5601 sctp_local_bh_enable();
5602 return ret;
5603 }
5604
5605 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5606 * port is requested.
5607 */
5608 static int sctp_get_port(struct sock *sk, unsigned short snum)
5609 {
5610 long ret;
5611 union sctp_addr addr;
5612 struct sctp_af *af = sctp_sk(sk)->pf->af;
5613
5614 /* Set up a dummy address struct from the sk. */
5615 af->from_sk(&addr, sk);
5616 addr.v4.sin_port = htons(snum);
5617
5618 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5619 ret = sctp_get_port_local(sk, &addr);
5620
5621 return (ret ? 1 : 0);
5622 }
5623
5624 /*
5625 * 3.1.3 listen() - UDP Style Syntax
5626 *
5627 * By default, new associations are not accepted for UDP style sockets.
5628 * An application uses listen() to mark a socket as being able to
5629 * accept new associations.
5630 */
5631 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5632 {
5633 struct sctp_sock *sp = sctp_sk(sk);
5634 struct sctp_endpoint *ep = sp->ep;
5635
5636 /* Only UDP style sockets that are not peeled off are allowed to
5637 * listen().
5638 */
5639 if (!sctp_style(sk, UDP))
5640 return -EINVAL;
5641
5642 /* If backlog is zero, disable listening. */
5643 if (!backlog) {
5644 if (sctp_sstate(sk, CLOSED))
5645 return 0;
5646
5647 sctp_unhash_endpoint(ep);
5648 sk->sk_state = SCTP_SS_CLOSED;
5649 return 0;
5650 }
5651
5652 /* Return if we are already listening. */
5653 if (sctp_sstate(sk, LISTENING))
5654 return 0;
5655
5656 /*
5657 * If a bind() or sctp_bindx() is not called prior to a listen()
5658 * call that allows new associations to be accepted, the system
5659 * picks an ephemeral port and will choose an address set equivalent
5660 * to binding with a wildcard address.
5661 *
5662 * This is not currently spelled out in the SCTP sockets
5663 * extensions draft, but follows the practice as seen in TCP
5664 * sockets.
5665 *
5666 * Additionally, turn off fastreuse flag since we are not listening
5667 */
5668 sk->sk_state = SCTP_SS_LISTENING;
5669 if (!ep->base.bind_addr.port) {
5670 if (sctp_autobind(sk))
5671 return -EAGAIN;
5672 } else
5673 sctp_sk(sk)->bind_hash->fastreuse = 0;
5674
5675 sctp_hash_endpoint(ep);
5676 return 0;
5677 }
5678
5679 /*
5680 * 4.1.3 listen() - TCP Style Syntax
5681 *
5682 * Applications uses listen() to ready the SCTP endpoint for accepting
5683 * inbound associations.
5684 */
5685 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5686 {
5687 struct sctp_sock *sp = sctp_sk(sk);
5688 struct sctp_endpoint *ep = sp->ep;
5689
5690 /* If backlog is zero, disable listening. */
5691 if (!backlog) {
5692 if (sctp_sstate(sk, CLOSED))
5693 return 0;
5694
5695 sctp_unhash_endpoint(ep);
5696 sk->sk_state = SCTP_SS_CLOSED;
5697 return 0;
5698 }
5699
5700 if (sctp_sstate(sk, LISTENING))
5701 return 0;
5702
5703 /*
5704 * If a bind() or sctp_bindx() is not called prior to a listen()
5705 * call that allows new associations to be accepted, the system
5706 * picks an ephemeral port and will choose an address set equivalent
5707 * to binding with a wildcard address.
5708 *
5709 * This is not currently spelled out in the SCTP sockets
5710 * extensions draft, but follows the practice as seen in TCP
5711 * sockets.
5712 */
5713 sk->sk_state = SCTP_SS_LISTENING;
5714 if (!ep->base.bind_addr.port) {
5715 if (sctp_autobind(sk))
5716 return -EAGAIN;
5717 } else
5718 sctp_sk(sk)->bind_hash->fastreuse = 0;
5719
5720 sk->sk_max_ack_backlog = backlog;
5721 sctp_hash_endpoint(ep);
5722 return 0;
5723 }
5724
5725 /*
5726 * Move a socket to LISTENING state.
5727 */
5728 int sctp_inet_listen(struct socket *sock, int backlog)
5729 {
5730 struct sock *sk = sock->sk;
5731 struct crypto_hash *tfm = NULL;
5732 int err = -EINVAL;
5733
5734 if (unlikely(backlog < 0))
5735 goto out;
5736
5737 sctp_lock_sock(sk);
5738
5739 if (sock->state != SS_UNCONNECTED)
5740 goto out;
5741
5742 /* Allocate HMAC for generating cookie. */
5743 if (sctp_hmac_alg) {
5744 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5745 if (IS_ERR(tfm)) {
5746 if (net_ratelimit()) {
5747 printk(KERN_INFO
5748 "SCTP: failed to load transform for %s: %ld\n",
5749 sctp_hmac_alg, PTR_ERR(tfm));
5750 }
5751 err = -ENOSYS;
5752 goto out;
5753 }
5754 }
5755
5756 switch (sock->type) {
5757 case SOCK_SEQPACKET:
5758 err = sctp_seqpacket_listen(sk, backlog);
5759 break;
5760 case SOCK_STREAM:
5761 err = sctp_stream_listen(sk, backlog);
5762 break;
5763 default:
5764 break;
5765 }
5766
5767 if (err)
5768 goto cleanup;
5769
5770 /* Store away the transform reference. */
5771 sctp_sk(sk)->hmac = tfm;
5772 out:
5773 sctp_release_sock(sk);
5774 return err;
5775 cleanup:
5776 crypto_free_hash(tfm);
5777 goto out;
5778 }
5779
5780 /*
5781 * This function is done by modeling the current datagram_poll() and the
5782 * tcp_poll(). Note that, based on these implementations, we don't
5783 * lock the socket in this function, even though it seems that,
5784 * ideally, locking or some other mechanisms can be used to ensure
5785 * the integrity of the counters (sndbuf and wmem_alloc) used
5786 * in this place. We assume that we don't need locks either until proven
5787 * otherwise.
5788 *
5789 * Another thing to note is that we include the Async I/O support
5790 * here, again, by modeling the current TCP/UDP code. We don't have
5791 * a good way to test with it yet.
5792 */
5793 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5794 {
5795 struct sock *sk = sock->sk;
5796 struct sctp_sock *sp = sctp_sk(sk);
5797 unsigned int mask;
5798
5799 poll_wait(file, sk->sk_sleep, wait);
5800
5801 /* A TCP-style listening socket becomes readable when the accept queue
5802 * is not empty.
5803 */
5804 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5805 return (!list_empty(&sp->ep->asocs)) ?
5806 (POLLIN | POLLRDNORM) : 0;
5807
5808 mask = 0;
5809
5810 /* Is there any exceptional events? */
5811 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5812 mask |= POLLERR;
5813 if (sk->sk_shutdown & RCV_SHUTDOWN)
5814 mask |= POLLRDHUP;
5815 if (sk->sk_shutdown == SHUTDOWN_MASK)
5816 mask |= POLLHUP;
5817
5818 /* Is it readable? Reconsider this code with TCP-style support. */
5819 if (!skb_queue_empty(&sk->sk_receive_queue) ||
5820 (sk->sk_shutdown & RCV_SHUTDOWN))
5821 mask |= POLLIN | POLLRDNORM;
5822
5823 /* The association is either gone or not ready. */
5824 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5825 return mask;
5826
5827 /* Is it writable? */
5828 if (sctp_writeable(sk)) {
5829 mask |= POLLOUT | POLLWRNORM;
5830 } else {
5831 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5832 /*
5833 * Since the socket is not locked, the buffer
5834 * might be made available after the writeable check and
5835 * before the bit is set. This could cause a lost I/O
5836 * signal. tcp_poll() has a race breaker for this race
5837 * condition. Based on their implementation, we put
5838 * in the following code to cover it as well.
5839 */
5840 if (sctp_writeable(sk))
5841 mask |= POLLOUT | POLLWRNORM;
5842 }
5843 return mask;
5844 }
5845
5846 /********************************************************************
5847 * 2nd Level Abstractions
5848 ********************************************************************/
5849
5850 static struct sctp_bind_bucket *sctp_bucket_create(
5851 struct sctp_bind_hashbucket *head, unsigned short snum)
5852 {
5853 struct sctp_bind_bucket *pp;
5854
5855 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5856 if (pp) {
5857 SCTP_DBG_OBJCNT_INC(bind_bucket);
5858 pp->port = snum;
5859 pp->fastreuse = 0;
5860 INIT_HLIST_HEAD(&pp->owner);
5861 hlist_add_head(&pp->node, &head->chain);
5862 }
5863 return pp;
5864 }
5865
5866 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5867 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5868 {
5869 if (pp && hlist_empty(&pp->owner)) {
5870 __hlist_del(&pp->node);
5871 kmem_cache_free(sctp_bucket_cachep, pp);
5872 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5873 }
5874 }
5875
5876 /* Release this socket's reference to a local port. */
5877 static inline void __sctp_put_port(struct sock *sk)
5878 {
5879 struct sctp_bind_hashbucket *head =
5880 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5881 struct sctp_bind_bucket *pp;
5882
5883 sctp_spin_lock(&head->lock);
5884 pp = sctp_sk(sk)->bind_hash;
5885 __sk_del_bind_node(sk);
5886 sctp_sk(sk)->bind_hash = NULL;
5887 inet_sk(sk)->num = 0;
5888 sctp_bucket_destroy(pp);
5889 sctp_spin_unlock(&head->lock);
5890 }
5891
5892 void sctp_put_port(struct sock *sk)
5893 {
5894 sctp_local_bh_disable();
5895 __sctp_put_port(sk);
5896 sctp_local_bh_enable();
5897 }
5898
5899 /*
5900 * The system picks an ephemeral port and choose an address set equivalent
5901 * to binding with a wildcard address.
5902 * One of those addresses will be the primary address for the association.
5903 * This automatically enables the multihoming capability of SCTP.
5904 */
5905 static int sctp_autobind(struct sock *sk)
5906 {
5907 union sctp_addr autoaddr;
5908 struct sctp_af *af;
5909 __be16 port;
5910
5911 /* Initialize a local sockaddr structure to INADDR_ANY. */
5912 af = sctp_sk(sk)->pf->af;
5913
5914 port = htons(inet_sk(sk)->num);
5915 af->inaddr_any(&autoaddr, port);
5916
5917 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5918 }
5919
5920 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5921 *
5922 * From RFC 2292
5923 * 4.2 The cmsghdr Structure *
5924 *
5925 * When ancillary data is sent or received, any number of ancillary data
5926 * objects can be specified by the msg_control and msg_controllen members of
5927 * the msghdr structure, because each object is preceded by
5928 * a cmsghdr structure defining the object's length (the cmsg_len member).
5929 * Historically Berkeley-derived implementations have passed only one object
5930 * at a time, but this API allows multiple objects to be
5931 * passed in a single call to sendmsg() or recvmsg(). The following example
5932 * shows two ancillary data objects in a control buffer.
5933 *
5934 * |<--------------------------- msg_controllen -------------------------->|
5935 * | |
5936 *
5937 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5938 *
5939 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5940 * | | |
5941 *
5942 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5943 *
5944 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5945 * | | | | |
5946 *
5947 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5948 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5949 *
5950 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5951 *
5952 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5953 * ^
5954 * |
5955 *
5956 * msg_control
5957 * points here
5958 */
5959 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5960 sctp_cmsgs_t *cmsgs)
5961 {
5962 struct cmsghdr *cmsg;
5963 struct msghdr *my_msg = (struct msghdr *)msg;
5964
5965 for (cmsg = CMSG_FIRSTHDR(msg);
5966 cmsg != NULL;
5967 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
5968 if (!CMSG_OK(my_msg, cmsg))
5969 return -EINVAL;
5970
5971 /* Should we parse this header or ignore? */
5972 if (cmsg->cmsg_level != IPPROTO_SCTP)
5973 continue;
5974
5975 /* Strictly check lengths following example in SCM code. */
5976 switch (cmsg->cmsg_type) {
5977 case SCTP_INIT:
5978 /* SCTP Socket API Extension
5979 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5980 *
5981 * This cmsghdr structure provides information for
5982 * initializing new SCTP associations with sendmsg().
5983 * The SCTP_INITMSG socket option uses this same data
5984 * structure. This structure is not used for
5985 * recvmsg().
5986 *
5987 * cmsg_level cmsg_type cmsg_data[]
5988 * ------------ ------------ ----------------------
5989 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5990 */
5991 if (cmsg->cmsg_len !=
5992 CMSG_LEN(sizeof(struct sctp_initmsg)))
5993 return -EINVAL;
5994 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5995 break;
5996
5997 case SCTP_SNDRCV:
5998 /* SCTP Socket API Extension
5999 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6000 *
6001 * This cmsghdr structure specifies SCTP options for
6002 * sendmsg() and describes SCTP header information
6003 * about a received message through recvmsg().
6004 *
6005 * cmsg_level cmsg_type cmsg_data[]
6006 * ------------ ------------ ----------------------
6007 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6008 */
6009 if (cmsg->cmsg_len !=
6010 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6011 return -EINVAL;
6012
6013 cmsgs->info =
6014 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6015
6016 /* Minimally, validate the sinfo_flags. */
6017 if (cmsgs->info->sinfo_flags &
6018 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6019 SCTP_ABORT | SCTP_EOF))
6020 return -EINVAL;
6021 break;
6022
6023 default:
6024 return -EINVAL;
6025 }
6026 }
6027 return 0;
6028 }
6029
6030 /*
6031 * Wait for a packet..
6032 * Note: This function is the same function as in core/datagram.c
6033 * with a few modifications to make lksctp work.
6034 */
6035 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6036 {
6037 int error;
6038 DEFINE_WAIT(wait);
6039
6040 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6041
6042 /* Socket errors? */
6043 error = sock_error(sk);
6044 if (error)
6045 goto out;
6046
6047 if (!skb_queue_empty(&sk->sk_receive_queue))
6048 goto ready;
6049
6050 /* Socket shut down? */
6051 if (sk->sk_shutdown & RCV_SHUTDOWN)
6052 goto out;
6053
6054 /* Sequenced packets can come disconnected. If so we report the
6055 * problem.
6056 */
6057 error = -ENOTCONN;
6058
6059 /* Is there a good reason to think that we may receive some data? */
6060 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6061 goto out;
6062
6063 /* Handle signals. */
6064 if (signal_pending(current))
6065 goto interrupted;
6066
6067 /* Let another process have a go. Since we are going to sleep
6068 * anyway. Note: This may cause odd behaviors if the message
6069 * does not fit in the user's buffer, but this seems to be the
6070 * only way to honor MSG_DONTWAIT realistically.
6071 */
6072 sctp_release_sock(sk);
6073 *timeo_p = schedule_timeout(*timeo_p);
6074 sctp_lock_sock(sk);
6075
6076 ready:
6077 finish_wait(sk->sk_sleep, &wait);
6078 return 0;
6079
6080 interrupted:
6081 error = sock_intr_errno(*timeo_p);
6082
6083 out:
6084 finish_wait(sk->sk_sleep, &wait);
6085 *err = error;
6086 return error;
6087 }
6088
6089 /* Receive a datagram.
6090 * Note: This is pretty much the same routine as in core/datagram.c
6091 * with a few changes to make lksctp work.
6092 */
6093 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6094 int noblock, int *err)
6095 {
6096 int error;
6097 struct sk_buff *skb;
6098 long timeo;
6099
6100 timeo = sock_rcvtimeo(sk, noblock);
6101
6102 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6103 timeo, MAX_SCHEDULE_TIMEOUT);
6104
6105 do {
6106 /* Again only user level code calls this function,
6107 * so nothing interrupt level
6108 * will suddenly eat the receive_queue.
6109 *
6110 * Look at current nfs client by the way...
6111 * However, this function was corrent in any case. 8)
6112 */
6113 if (flags & MSG_PEEK) {
6114 spin_lock_bh(&sk->sk_receive_queue.lock);
6115 skb = skb_peek(&sk->sk_receive_queue);
6116 if (skb)
6117 atomic_inc(&skb->users);
6118 spin_unlock_bh(&sk->sk_receive_queue.lock);
6119 } else {
6120 skb = skb_dequeue(&sk->sk_receive_queue);
6121 }
6122
6123 if (skb)
6124 return skb;
6125
6126 /* Caller is allowed not to check sk->sk_err before calling. */
6127 error = sock_error(sk);
6128 if (error)
6129 goto no_packet;
6130
6131 if (sk->sk_shutdown & RCV_SHUTDOWN)
6132 break;
6133
6134 /* User doesn't want to wait. */
6135 error = -EAGAIN;
6136 if (!timeo)
6137 goto no_packet;
6138 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6139
6140 return NULL;
6141
6142 no_packet:
6143 *err = error;
6144 return NULL;
6145 }
6146
6147 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6148 static void __sctp_write_space(struct sctp_association *asoc)
6149 {
6150 struct sock *sk = asoc->base.sk;
6151 struct socket *sock = sk->sk_socket;
6152
6153 if ((sctp_wspace(asoc) > 0) && sock) {
6154 if (waitqueue_active(&asoc->wait))
6155 wake_up_interruptible(&asoc->wait);
6156
6157 if (sctp_writeable(sk)) {
6158 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6159 wake_up_interruptible(sk->sk_sleep);
6160
6161 /* Note that we try to include the Async I/O support
6162 * here by modeling from the current TCP/UDP code.
6163 * We have not tested with it yet.
6164 */
6165 if (sock->fasync_list &&
6166 !(sk->sk_shutdown & SEND_SHUTDOWN))
6167 sock_wake_async(sock,
6168 SOCK_WAKE_SPACE, POLL_OUT);
6169 }
6170 }
6171 }
6172
6173 /* Do accounting for the sndbuf space.
6174 * Decrement the used sndbuf space of the corresponding association by the
6175 * data size which was just transmitted(freed).
6176 */
6177 static void sctp_wfree(struct sk_buff *skb)
6178 {
6179 struct sctp_association *asoc;
6180 struct sctp_chunk *chunk;
6181 struct sock *sk;
6182
6183 /* Get the saved chunk pointer. */
6184 chunk = *((struct sctp_chunk **)(skb->cb));
6185 asoc = chunk->asoc;
6186 sk = asoc->base.sk;
6187 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6188 sizeof(struct sk_buff) +
6189 sizeof(struct sctp_chunk);
6190
6191 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6192
6193 /*
6194 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6195 */
6196 sk->sk_wmem_queued -= skb->truesize;
6197 sk_mem_uncharge(sk, skb->truesize);
6198
6199 sock_wfree(skb);
6200 __sctp_write_space(asoc);
6201
6202 sctp_association_put(asoc);
6203 }
6204
6205 /* Do accounting for the receive space on the socket.
6206 * Accounting for the association is done in ulpevent.c
6207 * We set this as a destructor for the cloned data skbs so that
6208 * accounting is done at the correct time.
6209 */
6210 void sctp_sock_rfree(struct sk_buff *skb)
6211 {
6212 struct sock *sk = skb->sk;
6213 struct sctp_ulpevent *event = sctp_skb2event(skb);
6214
6215 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6216
6217 /*
6218 * Mimic the behavior of sock_rfree
6219 */
6220 sk_mem_uncharge(sk, event->rmem_len);
6221 }
6222
6223
6224 /* Helper function to wait for space in the sndbuf. */
6225 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6226 size_t msg_len)
6227 {
6228 struct sock *sk = asoc->base.sk;
6229 int err = 0;
6230 long current_timeo = *timeo_p;
6231 DEFINE_WAIT(wait);
6232
6233 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6234 asoc, (long)(*timeo_p), msg_len);
6235
6236 /* Increment the association's refcnt. */
6237 sctp_association_hold(asoc);
6238
6239 /* Wait on the association specific sndbuf space. */
6240 for (;;) {
6241 prepare_to_wait_exclusive(&asoc->wait, &wait,
6242 TASK_INTERRUPTIBLE);
6243 if (!*timeo_p)
6244 goto do_nonblock;
6245 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6246 asoc->base.dead)
6247 goto do_error;
6248 if (signal_pending(current))
6249 goto do_interrupted;
6250 if (msg_len <= sctp_wspace(asoc))
6251 break;
6252
6253 /* Let another process have a go. Since we are going
6254 * to sleep anyway.
6255 */
6256 sctp_release_sock(sk);
6257 current_timeo = schedule_timeout(current_timeo);
6258 BUG_ON(sk != asoc->base.sk);
6259 sctp_lock_sock(sk);
6260
6261 *timeo_p = current_timeo;
6262 }
6263
6264 out:
6265 finish_wait(&asoc->wait, &wait);
6266
6267 /* Release the association's refcnt. */
6268 sctp_association_put(asoc);
6269
6270 return err;
6271
6272 do_error:
6273 err = -EPIPE;
6274 goto out;
6275
6276 do_interrupted:
6277 err = sock_intr_errno(*timeo_p);
6278 goto out;
6279
6280 do_nonblock:
6281 err = -EAGAIN;
6282 goto out;
6283 }
6284
6285 /* If socket sndbuf has changed, wake up all per association waiters. */
6286 void sctp_write_space(struct sock *sk)
6287 {
6288 struct sctp_association *asoc;
6289
6290 /* Wake up the tasks in each wait queue. */
6291 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6292 __sctp_write_space(asoc);
6293 }
6294 }
6295
6296 /* Is there any sndbuf space available on the socket?
6297 *
6298 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6299 * associations on the same socket. For a UDP-style socket with
6300 * multiple associations, it is possible for it to be "unwriteable"
6301 * prematurely. I assume that this is acceptable because
6302 * a premature "unwriteable" is better than an accidental "writeable" which
6303 * would cause an unwanted block under certain circumstances. For the 1-1
6304 * UDP-style sockets or TCP-style sockets, this code should work.
6305 * - Daisy
6306 */
6307 static int sctp_writeable(struct sock *sk)
6308 {
6309 int amt = 0;
6310
6311 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
6312 if (amt < 0)
6313 amt = 0;
6314 return amt;
6315 }
6316
6317 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6318 * returns immediately with EINPROGRESS.
6319 */
6320 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6321 {
6322 struct sock *sk = asoc->base.sk;
6323 int err = 0;
6324 long current_timeo = *timeo_p;
6325 DEFINE_WAIT(wait);
6326
6327 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6328 (long)(*timeo_p));
6329
6330 /* Increment the association's refcnt. */
6331 sctp_association_hold(asoc);
6332
6333 for (;;) {
6334 prepare_to_wait_exclusive(&asoc->wait, &wait,
6335 TASK_INTERRUPTIBLE);
6336 if (!*timeo_p)
6337 goto do_nonblock;
6338 if (sk->sk_shutdown & RCV_SHUTDOWN)
6339 break;
6340 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6341 asoc->base.dead)
6342 goto do_error;
6343 if (signal_pending(current))
6344 goto do_interrupted;
6345
6346 if (sctp_state(asoc, ESTABLISHED))
6347 break;
6348
6349 /* Let another process have a go. Since we are going
6350 * to sleep anyway.
6351 */
6352 sctp_release_sock(sk);
6353 current_timeo = schedule_timeout(current_timeo);
6354 sctp_lock_sock(sk);
6355
6356 *timeo_p = current_timeo;
6357 }
6358
6359 out:
6360 finish_wait(&asoc->wait, &wait);
6361
6362 /* Release the association's refcnt. */
6363 sctp_association_put(asoc);
6364
6365 return err;
6366
6367 do_error:
6368 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6369 err = -ETIMEDOUT;
6370 else
6371 err = -ECONNREFUSED;
6372 goto out;
6373
6374 do_interrupted:
6375 err = sock_intr_errno(*timeo_p);
6376 goto out;
6377
6378 do_nonblock:
6379 err = -EINPROGRESS;
6380 goto out;
6381 }
6382
6383 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6384 {
6385 struct sctp_endpoint *ep;
6386 int err = 0;
6387 DEFINE_WAIT(wait);
6388
6389 ep = sctp_sk(sk)->ep;
6390
6391
6392 for (;;) {
6393 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6394 TASK_INTERRUPTIBLE);
6395
6396 if (list_empty(&ep->asocs)) {
6397 sctp_release_sock(sk);
6398 timeo = schedule_timeout(timeo);
6399 sctp_lock_sock(sk);
6400 }
6401
6402 err = -EINVAL;
6403 if (!sctp_sstate(sk, LISTENING))
6404 break;
6405
6406 err = 0;
6407 if (!list_empty(&ep->asocs))
6408 break;
6409
6410 err = sock_intr_errno(timeo);
6411 if (signal_pending(current))
6412 break;
6413
6414 err = -EAGAIN;
6415 if (!timeo)
6416 break;
6417 }
6418
6419 finish_wait(sk->sk_sleep, &wait);
6420
6421 return err;
6422 }
6423
6424 static void sctp_wait_for_close(struct sock *sk, long timeout)
6425 {
6426 DEFINE_WAIT(wait);
6427
6428 do {
6429 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6430 if (list_empty(&sctp_sk(sk)->ep->asocs))
6431 break;
6432 sctp_release_sock(sk);
6433 timeout = schedule_timeout(timeout);
6434 sctp_lock_sock(sk);
6435 } while (!signal_pending(current) && timeout);
6436
6437 finish_wait(sk->sk_sleep, &wait);
6438 }
6439
6440 static void sctp_sock_rfree_frag(struct sk_buff *skb)
6441 {
6442 struct sk_buff *frag;
6443
6444 if (!skb->data_len)
6445 goto done;
6446
6447 /* Don't forget the fragments. */
6448 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6449 sctp_sock_rfree_frag(frag);
6450
6451 done:
6452 sctp_sock_rfree(skb);
6453 }
6454
6455 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6456 {
6457 struct sk_buff *frag;
6458
6459 if (!skb->data_len)
6460 goto done;
6461
6462 /* Don't forget the fragments. */
6463 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6464 sctp_skb_set_owner_r_frag(frag, sk);
6465
6466 done:
6467 sctp_skb_set_owner_r(skb, sk);
6468 }
6469
6470 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6471 * and its messages to the newsk.
6472 */
6473 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6474 struct sctp_association *assoc,
6475 sctp_socket_type_t type)
6476 {
6477 struct sctp_sock *oldsp = sctp_sk(oldsk);
6478 struct sctp_sock *newsp = sctp_sk(newsk);
6479 struct sctp_bind_bucket *pp; /* hash list port iterator */
6480 struct sctp_endpoint *newep = newsp->ep;
6481 struct sk_buff *skb, *tmp;
6482 struct sctp_ulpevent *event;
6483 struct sctp_bind_hashbucket *head;
6484
6485 /* Migrate socket buffer sizes and all the socket level options to the
6486 * new socket.
6487 */
6488 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6489 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6490 /* Brute force copy old sctp opt. */
6491 inet_sk_copy_descendant(newsk, oldsk);
6492
6493 /* Restore the ep value that was overwritten with the above structure
6494 * copy.
6495 */
6496 newsp->ep = newep;
6497 newsp->hmac = NULL;
6498
6499 /* Hook this new socket in to the bind_hash list. */
6500 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
6501 sctp_local_bh_disable();
6502 sctp_spin_lock(&head->lock);
6503 pp = sctp_sk(oldsk)->bind_hash;
6504 sk_add_bind_node(newsk, &pp->owner);
6505 sctp_sk(newsk)->bind_hash = pp;
6506 inet_sk(newsk)->num = inet_sk(oldsk)->num;
6507 sctp_spin_unlock(&head->lock);
6508 sctp_local_bh_enable();
6509
6510 /* Copy the bind_addr list from the original endpoint to the new
6511 * endpoint so that we can handle restarts properly
6512 */
6513 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6514 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6515
6516 /* Move any messages in the old socket's receive queue that are for the
6517 * peeled off association to the new socket's receive queue.
6518 */
6519 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6520 event = sctp_skb2event(skb);
6521 if (event->asoc == assoc) {
6522 sctp_sock_rfree_frag(skb);
6523 __skb_unlink(skb, &oldsk->sk_receive_queue);
6524 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6525 sctp_skb_set_owner_r_frag(skb, newsk);
6526 }
6527 }
6528
6529 /* Clean up any messages pending delivery due to partial
6530 * delivery. Three cases:
6531 * 1) No partial deliver; no work.
6532 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6533 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6534 */
6535 skb_queue_head_init(&newsp->pd_lobby);
6536 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6537
6538 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6539 struct sk_buff_head *queue;
6540
6541 /* Decide which queue to move pd_lobby skbs to. */
6542 if (assoc->ulpq.pd_mode) {
6543 queue = &newsp->pd_lobby;
6544 } else
6545 queue = &newsk->sk_receive_queue;
6546
6547 /* Walk through the pd_lobby, looking for skbs that
6548 * need moved to the new socket.
6549 */
6550 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6551 event = sctp_skb2event(skb);
6552 if (event->asoc == assoc) {
6553 sctp_sock_rfree_frag(skb);
6554 __skb_unlink(skb, &oldsp->pd_lobby);
6555 __skb_queue_tail(queue, skb);
6556 sctp_skb_set_owner_r_frag(skb, newsk);
6557 }
6558 }
6559
6560 /* Clear up any skbs waiting for the partial
6561 * delivery to finish.
6562 */
6563 if (assoc->ulpq.pd_mode)
6564 sctp_clear_pd(oldsk, NULL);
6565
6566 }
6567
6568 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6569 sctp_sock_rfree_frag(skb);
6570 sctp_skb_set_owner_r_frag(skb, newsk);
6571 }
6572
6573 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6574 sctp_sock_rfree_frag(skb);
6575 sctp_skb_set_owner_r_frag(skb, newsk);
6576 }
6577
6578 /* Set the type of socket to indicate that it is peeled off from the
6579 * original UDP-style socket or created with the accept() call on a
6580 * TCP-style socket..
6581 */
6582 newsp->type = type;
6583
6584 /* Mark the new socket "in-use" by the user so that any packets
6585 * that may arrive on the association after we've moved it are
6586 * queued to the backlog. This prevents a potential race between
6587 * backlog processing on the old socket and new-packet processing
6588 * on the new socket.
6589 *
6590 * The caller has just allocated newsk so we can guarantee that other
6591 * paths won't try to lock it and then oldsk.
6592 */
6593 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6594 sctp_assoc_migrate(assoc, newsk);
6595
6596 /* If the association on the newsk is already closed before accept()
6597 * is called, set RCV_SHUTDOWN flag.
6598 */
6599 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6600 newsk->sk_shutdown |= RCV_SHUTDOWN;
6601
6602 newsk->sk_state = SCTP_SS_ESTABLISHED;
6603 sctp_release_sock(newsk);
6604 }
6605
6606
6607 /* This proto struct describes the ULP interface for SCTP. */
6608 struct proto sctp_prot = {
6609 .name = "SCTP",
6610 .owner = THIS_MODULE,
6611 .close = sctp_close,
6612 .connect = sctp_connect,
6613 .disconnect = sctp_disconnect,
6614 .accept = sctp_accept,
6615 .ioctl = sctp_ioctl,
6616 .init = sctp_init_sock,
6617 .destroy = sctp_destroy_sock,
6618 .shutdown = sctp_shutdown,
6619 .setsockopt = sctp_setsockopt,
6620 .getsockopt = sctp_getsockopt,
6621 .sendmsg = sctp_sendmsg,
6622 .recvmsg = sctp_recvmsg,
6623 .bind = sctp_bind,
6624 .backlog_rcv = sctp_backlog_rcv,
6625 .hash = sctp_hash,
6626 .unhash = sctp_unhash,
6627 .get_port = sctp_get_port,
6628 .obj_size = sizeof(struct sctp_sock),
6629 .sysctl_mem = sysctl_sctp_mem,
6630 .sysctl_rmem = sysctl_sctp_rmem,
6631 .sysctl_wmem = sysctl_sctp_wmem,
6632 .memory_pressure = &sctp_memory_pressure,
6633 .enter_memory_pressure = sctp_enter_memory_pressure,
6634 .memory_allocated = &sctp_memory_allocated,
6635 .sockets_allocated = &sctp_sockets_allocated,
6636 };
6637
6638 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6639
6640 struct proto sctpv6_prot = {
6641 .name = "SCTPv6",
6642 .owner = THIS_MODULE,
6643 .close = sctp_close,
6644 .connect = sctp_connect,
6645 .disconnect = sctp_disconnect,
6646 .accept = sctp_accept,
6647 .ioctl = sctp_ioctl,
6648 .init = sctp_init_sock,
6649 .destroy = sctp_destroy_sock,
6650 .shutdown = sctp_shutdown,
6651 .setsockopt = sctp_setsockopt,
6652 .getsockopt = sctp_getsockopt,
6653 .sendmsg = sctp_sendmsg,
6654 .recvmsg = sctp_recvmsg,
6655 .bind = sctp_bind,
6656 .backlog_rcv = sctp_backlog_rcv,
6657 .hash = sctp_hash,
6658 .unhash = sctp_unhash,
6659 .get_port = sctp_get_port,
6660 .obj_size = sizeof(struct sctp6_sock),
6661 .sysctl_mem = sysctl_sctp_mem,
6662 .sysctl_rmem = sysctl_sctp_rmem,
6663 .sysctl_wmem = sysctl_sctp_wmem,
6664 .memory_pressure = &sctp_memory_pressure,
6665 .enter_memory_pressure = sctp_enter_memory_pressure,
6666 .memory_allocated = &sctp_memory_allocated,
6667 .sockets_allocated = &sctp_sockets_allocated,
6668 };
6669 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
This page took 0.172786 seconds and 5 git commands to generate.