sctp: try to fix readlock
[deliverable/linux.git] / net / sctp / socket.c
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel reference Implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * The SCTP reference implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * The SCTP reference implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
85 */
86
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109
110 /* Get the sndbuf space available at the time on the association. */
111 static inline int sctp_wspace(struct sctp_association *asoc)
112 {
113 struct sock *sk = asoc->base.sk;
114 int amt = 0;
115
116 if (asoc->ep->sndbuf_policy) {
117 /* make sure that no association uses more than sk_sndbuf */
118 amt = sk->sk_sndbuf - asoc->sndbuf_used;
119 } else {
120 /* do socket level accounting */
121 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
122 }
123
124 if (amt < 0)
125 amt = 0;
126
127 return amt;
128 }
129
130 /* Increment the used sndbuf space count of the corresponding association by
131 * the size of the outgoing data chunk.
132 * Also, set the skb destructor for sndbuf accounting later.
133 *
134 * Since it is always 1-1 between chunk and skb, and also a new skb is always
135 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
136 * destructor in the data chunk skb for the purpose of the sndbuf space
137 * tracking.
138 */
139 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
140 {
141 struct sctp_association *asoc = chunk->asoc;
142 struct sock *sk = asoc->base.sk;
143
144 /* The sndbuf space is tracked per association. */
145 sctp_association_hold(asoc);
146
147 skb_set_owner_w(chunk->skb, sk);
148
149 chunk->skb->destructor = sctp_wfree;
150 /* Save the chunk pointer in skb for sctp_wfree to use later. */
151 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
152
153 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
154 sizeof(struct sk_buff) +
155 sizeof(struct sctp_chunk);
156
157 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
158 }
159
160 /* Verify that this is a valid address. */
161 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
162 int len)
163 {
164 struct sctp_af *af;
165
166 /* Verify basic sockaddr. */
167 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
168 if (!af)
169 return -EINVAL;
170
171 /* Is this a valid SCTP address? */
172 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
173 return -EINVAL;
174
175 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
176 return -EINVAL;
177
178 return 0;
179 }
180
181 /* Look up the association by its id. If this is not a UDP-style
182 * socket, the ID field is always ignored.
183 */
184 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
185 {
186 struct sctp_association *asoc = NULL;
187
188 /* If this is not a UDP-style socket, assoc id should be ignored. */
189 if (!sctp_style(sk, UDP)) {
190 /* Return NULL if the socket state is not ESTABLISHED. It
191 * could be a TCP-style listening socket or a socket which
192 * hasn't yet called connect() to establish an association.
193 */
194 if (!sctp_sstate(sk, ESTABLISHED))
195 return NULL;
196
197 /* Get the first and the only association from the list. */
198 if (!list_empty(&sctp_sk(sk)->ep->asocs))
199 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
200 struct sctp_association, asocs);
201 return asoc;
202 }
203
204 /* Otherwise this is a UDP-style socket. */
205 if (!id || (id == (sctp_assoc_t)-1))
206 return NULL;
207
208 spin_lock_bh(&sctp_assocs_id_lock);
209 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
210 spin_unlock_bh(&sctp_assocs_id_lock);
211
212 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
213 return NULL;
214
215 return asoc;
216 }
217
218 /* Look up the transport from an address and an assoc id. If both address and
219 * id are specified, the associations matching the address and the id should be
220 * the same.
221 */
222 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
223 struct sockaddr_storage *addr,
224 sctp_assoc_t id)
225 {
226 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
227 struct sctp_transport *transport;
228 union sctp_addr *laddr = (union sctp_addr *)addr;
229
230 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
231 laddr,
232 &transport);
233
234 if (!addr_asoc)
235 return NULL;
236
237 id_asoc = sctp_id2assoc(sk, id);
238 if (id_asoc && (id_asoc != addr_asoc))
239 return NULL;
240
241 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
242 (union sctp_addr *)addr);
243
244 return transport;
245 }
246
247 /* API 3.1.2 bind() - UDP Style Syntax
248 * The syntax of bind() is,
249 *
250 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
251 *
252 * sd - the socket descriptor returned by socket().
253 * addr - the address structure (struct sockaddr_in or struct
254 * sockaddr_in6 [RFC 2553]),
255 * addr_len - the size of the address structure.
256 */
257 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
258 {
259 int retval = 0;
260
261 sctp_lock_sock(sk);
262
263 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
264 sk, addr, addr_len);
265
266 /* Disallow binding twice. */
267 if (!sctp_sk(sk)->ep->base.bind_addr.port)
268 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
269 addr_len);
270 else
271 retval = -EINVAL;
272
273 sctp_release_sock(sk);
274
275 return retval;
276 }
277
278 static long sctp_get_port_local(struct sock *, union sctp_addr *);
279
280 /* Verify this is a valid sockaddr. */
281 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
282 union sctp_addr *addr, int len)
283 {
284 struct sctp_af *af;
285
286 /* Check minimum size. */
287 if (len < sizeof (struct sockaddr))
288 return NULL;
289
290 /* Does this PF support this AF? */
291 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
292 return NULL;
293
294 /* If we get this far, af is valid. */
295 af = sctp_get_af_specific(addr->sa.sa_family);
296
297 if (len < af->sockaddr_len)
298 return NULL;
299
300 return af;
301 }
302
303 /* Bind a local address either to an endpoint or to an association. */
304 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
305 {
306 struct sctp_sock *sp = sctp_sk(sk);
307 struct sctp_endpoint *ep = sp->ep;
308 struct sctp_bind_addr *bp = &ep->base.bind_addr;
309 struct sctp_af *af;
310 unsigned short snum;
311 int ret = 0;
312
313 /* Common sockaddr verification. */
314 af = sctp_sockaddr_af(sp, addr, len);
315 if (!af) {
316 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
317 sk, addr, len);
318 return -EINVAL;
319 }
320
321 snum = ntohs(addr->v4.sin_port);
322
323 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
324 ", port: %d, new port: %d, len: %d)\n",
325 sk,
326 addr,
327 bp->port, snum,
328 len);
329
330 /* PF specific bind() address verification. */
331 if (!sp->pf->bind_verify(sp, addr))
332 return -EADDRNOTAVAIL;
333
334 /* We must either be unbound, or bind to the same port.
335 * It's OK to allow 0 ports if we are already bound.
336 * We'll just inhert an already bound port in this case
337 */
338 if (bp->port) {
339 if (!snum)
340 snum = bp->port;
341 else if (snum != bp->port) {
342 SCTP_DEBUG_PRINTK("sctp_do_bind:"
343 " New port %d does not match existing port "
344 "%d.\n", snum, bp->port);
345 return -EINVAL;
346 }
347 }
348
349 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
350 return -EACCES;
351
352 /* Make sure we are allowed to bind here.
353 * The function sctp_get_port_local() does duplicate address
354 * detection.
355 */
356 if ((ret = sctp_get_port_local(sk, addr))) {
357 if (ret == (long) sk) {
358 /* This endpoint has a conflicting address. */
359 return -EINVAL;
360 } else {
361 return -EADDRINUSE;
362 }
363 }
364
365 /* Refresh ephemeral port. */
366 if (!bp->port)
367 bp->port = inet_sk(sk)->num;
368
369 /* Add the address to the bind address list. */
370 sctp_local_bh_disable();
371 sctp_write_lock(&ep->base.addr_lock);
372
373 /* Use GFP_ATOMIC since BHs are disabled. */
374 ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
375 sctp_write_unlock(&ep->base.addr_lock);
376 sctp_local_bh_enable();
377
378 /* Copy back into socket for getsockname() use. */
379 if (!ret) {
380 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
381 af->to_sk_saddr(addr, sk);
382 }
383
384 return ret;
385 }
386
387 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
388 *
389 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
390 * at any one time. If a sender, after sending an ASCONF chunk, decides
391 * it needs to transfer another ASCONF Chunk, it MUST wait until the
392 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
393 * subsequent ASCONF. Note this restriction binds each side, so at any
394 * time two ASCONF may be in-transit on any given association (one sent
395 * from each endpoint).
396 */
397 static int sctp_send_asconf(struct sctp_association *asoc,
398 struct sctp_chunk *chunk)
399 {
400 int retval = 0;
401
402 /* If there is an outstanding ASCONF chunk, queue it for later
403 * transmission.
404 */
405 if (asoc->addip_last_asconf) {
406 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
407 goto out;
408 }
409
410 /* Hold the chunk until an ASCONF_ACK is received. */
411 sctp_chunk_hold(chunk);
412 retval = sctp_primitive_ASCONF(asoc, chunk);
413 if (retval)
414 sctp_chunk_free(chunk);
415 else
416 asoc->addip_last_asconf = chunk;
417
418 out:
419 return retval;
420 }
421
422 /* Add a list of addresses as bind addresses to local endpoint or
423 * association.
424 *
425 * Basically run through each address specified in the addrs/addrcnt
426 * array/length pair, determine if it is IPv6 or IPv4 and call
427 * sctp_do_bind() on it.
428 *
429 * If any of them fails, then the operation will be reversed and the
430 * ones that were added will be removed.
431 *
432 * Only sctp_setsockopt_bindx() is supposed to call this function.
433 */
434 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
435 {
436 int cnt;
437 int retval = 0;
438 void *addr_buf;
439 struct sockaddr *sa_addr;
440 struct sctp_af *af;
441
442 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
443 sk, addrs, addrcnt);
444
445 addr_buf = addrs;
446 for (cnt = 0; cnt < addrcnt; cnt++) {
447 /* The list may contain either IPv4 or IPv6 address;
448 * determine the address length for walking thru the list.
449 */
450 sa_addr = (struct sockaddr *)addr_buf;
451 af = sctp_get_af_specific(sa_addr->sa_family);
452 if (!af) {
453 retval = -EINVAL;
454 goto err_bindx_add;
455 }
456
457 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
458 af->sockaddr_len);
459
460 addr_buf += af->sockaddr_len;
461
462 err_bindx_add:
463 if (retval < 0) {
464 /* Failed. Cleanup the ones that have been added */
465 if (cnt > 0)
466 sctp_bindx_rem(sk, addrs, cnt);
467 return retval;
468 }
469 }
470
471 return retval;
472 }
473
474 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
475 * associations that are part of the endpoint indicating that a list of local
476 * addresses are added to the endpoint.
477 *
478 * If any of the addresses is already in the bind address list of the
479 * association, we do not send the chunk for that association. But it will not
480 * affect other associations.
481 *
482 * Only sctp_setsockopt_bindx() is supposed to call this function.
483 */
484 static int sctp_send_asconf_add_ip(struct sock *sk,
485 struct sockaddr *addrs,
486 int addrcnt)
487 {
488 struct sctp_sock *sp;
489 struct sctp_endpoint *ep;
490 struct sctp_association *asoc;
491 struct sctp_bind_addr *bp;
492 struct sctp_chunk *chunk;
493 struct sctp_sockaddr_entry *laddr;
494 union sctp_addr *addr;
495 union sctp_addr saveaddr;
496 void *addr_buf;
497 struct sctp_af *af;
498 struct list_head *pos;
499 struct list_head *p;
500 int i;
501 int retval = 0;
502
503 if (!sctp_addip_enable)
504 return retval;
505
506 sp = sctp_sk(sk);
507 ep = sp->ep;
508
509 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
510 __FUNCTION__, sk, addrs, addrcnt);
511
512 list_for_each(pos, &ep->asocs) {
513 asoc = list_entry(pos, struct sctp_association, asocs);
514
515 if (!asoc->peer.asconf_capable)
516 continue;
517
518 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
519 continue;
520
521 if (!sctp_state(asoc, ESTABLISHED))
522 continue;
523
524 /* Check if any address in the packed array of addresses is
525 * in the bind address list of the association. If so,
526 * do not send the asconf chunk to its peer, but continue with
527 * other associations.
528 */
529 addr_buf = addrs;
530 for (i = 0; i < addrcnt; i++) {
531 addr = (union sctp_addr *)addr_buf;
532 af = sctp_get_af_specific(addr->v4.sin_family);
533 if (!af) {
534 retval = -EINVAL;
535 goto out;
536 }
537
538 if (sctp_assoc_lookup_laddr(asoc, addr))
539 break;
540
541 addr_buf += af->sockaddr_len;
542 }
543 if (i < addrcnt)
544 continue;
545
546 /* Use the first address in bind addr list of association as
547 * Address Parameter of ASCONF CHUNK.
548 */
549 sctp_read_lock(&asoc->base.addr_lock);
550 bp = &asoc->base.bind_addr;
551 p = bp->address_list.next;
552 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
553 sctp_read_unlock(&asoc->base.addr_lock);
554
555 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
556 addrcnt, SCTP_PARAM_ADD_IP);
557 if (!chunk) {
558 retval = -ENOMEM;
559 goto out;
560 }
561
562 retval = sctp_send_asconf(asoc, chunk);
563 if (retval)
564 goto out;
565
566 /* Add the new addresses to the bind address list with
567 * use_as_src set to 0.
568 */
569 sctp_local_bh_disable();
570 sctp_write_lock(&asoc->base.addr_lock);
571 addr_buf = addrs;
572 for (i = 0; i < addrcnt; i++) {
573 addr = (union sctp_addr *)addr_buf;
574 af = sctp_get_af_specific(addr->v4.sin_family);
575 memcpy(&saveaddr, addr, af->sockaddr_len);
576 retval = sctp_add_bind_addr(bp, &saveaddr, 0,
577 GFP_ATOMIC);
578 addr_buf += af->sockaddr_len;
579 }
580 sctp_write_unlock(&asoc->base.addr_lock);
581 sctp_local_bh_enable();
582 }
583
584 out:
585 return retval;
586 }
587
588 /* Remove a list of addresses from bind addresses list. Do not remove the
589 * last address.
590 *
591 * Basically run through each address specified in the addrs/addrcnt
592 * array/length pair, determine if it is IPv6 or IPv4 and call
593 * sctp_del_bind() on it.
594 *
595 * If any of them fails, then the operation will be reversed and the
596 * ones that were removed will be added back.
597 *
598 * At least one address has to be left; if only one address is
599 * available, the operation will return -EBUSY.
600 *
601 * Only sctp_setsockopt_bindx() is supposed to call this function.
602 */
603 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
604 {
605 struct sctp_sock *sp = sctp_sk(sk);
606 struct sctp_endpoint *ep = sp->ep;
607 int cnt;
608 struct sctp_bind_addr *bp = &ep->base.bind_addr;
609 int retval = 0;
610 void *addr_buf;
611 union sctp_addr *sa_addr;
612 struct sctp_af *af;
613
614 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
615 sk, addrs, addrcnt);
616
617 addr_buf = addrs;
618 for (cnt = 0; cnt < addrcnt; cnt++) {
619 /* If the bind address list is empty or if there is only one
620 * bind address, there is nothing more to be removed (we need
621 * at least one address here).
622 */
623 if (list_empty(&bp->address_list) ||
624 (sctp_list_single_entry(&bp->address_list))) {
625 retval = -EBUSY;
626 goto err_bindx_rem;
627 }
628
629 sa_addr = (union sctp_addr *)addr_buf;
630 af = sctp_get_af_specific(sa_addr->sa.sa_family);
631 if (!af) {
632 retval = -EINVAL;
633 goto err_bindx_rem;
634 }
635
636 if (!af->addr_valid(sa_addr, sp, NULL)) {
637 retval = -EADDRNOTAVAIL;
638 goto err_bindx_rem;
639 }
640
641 if (sa_addr->v4.sin_port != htons(bp->port)) {
642 retval = -EINVAL;
643 goto err_bindx_rem;
644 }
645
646 /* FIXME - There is probably a need to check if sk->sk_saddr and
647 * sk->sk_rcv_addr are currently set to one of the addresses to
648 * be removed. This is something which needs to be looked into
649 * when we are fixing the outstanding issues with multi-homing
650 * socket routing and failover schemes. Refer to comments in
651 * sctp_do_bind(). -daisy
652 */
653 sctp_local_bh_disable();
654 sctp_write_lock(&ep->base.addr_lock);
655
656 retval = sctp_del_bind_addr(bp, sa_addr);
657
658 sctp_write_unlock(&ep->base.addr_lock);
659 sctp_local_bh_enable();
660
661 addr_buf += af->sockaddr_len;
662 err_bindx_rem:
663 if (retval < 0) {
664 /* Failed. Add the ones that has been removed back */
665 if (cnt > 0)
666 sctp_bindx_add(sk, addrs, cnt);
667 return retval;
668 }
669 }
670
671 return retval;
672 }
673
674 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
675 * the associations that are part of the endpoint indicating that a list of
676 * local addresses are removed from the endpoint.
677 *
678 * If any of the addresses is already in the bind address list of the
679 * association, we do not send the chunk for that association. But it will not
680 * affect other associations.
681 *
682 * Only sctp_setsockopt_bindx() is supposed to call this function.
683 */
684 static int sctp_send_asconf_del_ip(struct sock *sk,
685 struct sockaddr *addrs,
686 int addrcnt)
687 {
688 struct sctp_sock *sp;
689 struct sctp_endpoint *ep;
690 struct sctp_association *asoc;
691 struct sctp_transport *transport;
692 struct sctp_bind_addr *bp;
693 struct sctp_chunk *chunk;
694 union sctp_addr *laddr;
695 void *addr_buf;
696 struct sctp_af *af;
697 struct list_head *pos, *pos1;
698 struct sctp_sockaddr_entry *saddr;
699 int i;
700 int retval = 0;
701
702 if (!sctp_addip_enable)
703 return retval;
704
705 sp = sctp_sk(sk);
706 ep = sp->ep;
707
708 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
709 __FUNCTION__, sk, addrs, addrcnt);
710
711 list_for_each(pos, &ep->asocs) {
712 asoc = list_entry(pos, struct sctp_association, asocs);
713
714 if (!asoc->peer.asconf_capable)
715 continue;
716
717 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
718 continue;
719
720 if (!sctp_state(asoc, ESTABLISHED))
721 continue;
722
723 /* Check if any address in the packed array of addresses is
724 * not present in the bind address list of the association.
725 * If so, do not send the asconf chunk to its peer, but
726 * continue with other associations.
727 */
728 addr_buf = addrs;
729 for (i = 0; i < addrcnt; i++) {
730 laddr = (union sctp_addr *)addr_buf;
731 af = sctp_get_af_specific(laddr->v4.sin_family);
732 if (!af) {
733 retval = -EINVAL;
734 goto out;
735 }
736
737 if (!sctp_assoc_lookup_laddr(asoc, laddr))
738 break;
739
740 addr_buf += af->sockaddr_len;
741 }
742 if (i < addrcnt)
743 continue;
744
745 /* Find one address in the association's bind address list
746 * that is not in the packed array of addresses. This is to
747 * make sure that we do not delete all the addresses in the
748 * association.
749 */
750 sctp_read_lock(&asoc->base.addr_lock);
751 bp = &asoc->base.bind_addr;
752 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
753 addrcnt, sp);
754 sctp_read_unlock(&asoc->base.addr_lock);
755 if (!laddr)
756 continue;
757
758 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
759 SCTP_PARAM_DEL_IP);
760 if (!chunk) {
761 retval = -ENOMEM;
762 goto out;
763 }
764
765 /* Reset use_as_src flag for the addresses in the bind address
766 * list that are to be deleted.
767 */
768 sctp_local_bh_disable();
769 sctp_write_lock(&asoc->base.addr_lock);
770 addr_buf = addrs;
771 for (i = 0; i < addrcnt; i++) {
772 laddr = (union sctp_addr *)addr_buf;
773 af = sctp_get_af_specific(laddr->v4.sin_family);
774 list_for_each(pos1, &bp->address_list) {
775 saddr = list_entry(pos1,
776 struct sctp_sockaddr_entry,
777 list);
778 if (sctp_cmp_addr_exact(&saddr->a, laddr))
779 saddr->use_as_src = 0;
780 }
781 addr_buf += af->sockaddr_len;
782 }
783 sctp_write_unlock(&asoc->base.addr_lock);
784 sctp_local_bh_enable();
785
786 /* Update the route and saddr entries for all the transports
787 * as some of the addresses in the bind address list are
788 * about to be deleted and cannot be used as source addresses.
789 */
790 list_for_each(pos1, &asoc->peer.transport_addr_list) {
791 transport = list_entry(pos1, struct sctp_transport,
792 transports);
793 dst_release(transport->dst);
794 sctp_transport_route(transport, NULL,
795 sctp_sk(asoc->base.sk));
796 }
797
798 retval = sctp_send_asconf(asoc, chunk);
799 }
800 out:
801 return retval;
802 }
803
804 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
805 *
806 * API 8.1
807 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
808 * int flags);
809 *
810 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
811 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
812 * or IPv6 addresses.
813 *
814 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
815 * Section 3.1.2 for this usage.
816 *
817 * addrs is a pointer to an array of one or more socket addresses. Each
818 * address is contained in its appropriate structure (i.e. struct
819 * sockaddr_in or struct sockaddr_in6) the family of the address type
820 * must be used to distinguish the address length (note that this
821 * representation is termed a "packed array" of addresses). The caller
822 * specifies the number of addresses in the array with addrcnt.
823 *
824 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
825 * -1, and sets errno to the appropriate error code.
826 *
827 * For SCTP, the port given in each socket address must be the same, or
828 * sctp_bindx() will fail, setting errno to EINVAL.
829 *
830 * The flags parameter is formed from the bitwise OR of zero or more of
831 * the following currently defined flags:
832 *
833 * SCTP_BINDX_ADD_ADDR
834 *
835 * SCTP_BINDX_REM_ADDR
836 *
837 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
838 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
839 * addresses from the association. The two flags are mutually exclusive;
840 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
841 * not remove all addresses from an association; sctp_bindx() will
842 * reject such an attempt with EINVAL.
843 *
844 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
845 * additional addresses with an endpoint after calling bind(). Or use
846 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
847 * socket is associated with so that no new association accepted will be
848 * associated with those addresses. If the endpoint supports dynamic
849 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
850 * endpoint to send the appropriate message to the peer to change the
851 * peers address lists.
852 *
853 * Adding and removing addresses from a connected association is
854 * optional functionality. Implementations that do not support this
855 * functionality should return EOPNOTSUPP.
856 *
857 * Basically do nothing but copying the addresses from user to kernel
858 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
859 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
860 * from userspace.
861 *
862 * We don't use copy_from_user() for optimization: we first do the
863 * sanity checks (buffer size -fast- and access check-healthy
864 * pointer); if all of those succeed, then we can alloc the memory
865 * (expensive operation) needed to copy the data to kernel. Then we do
866 * the copying without checking the user space area
867 * (__copy_from_user()).
868 *
869 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
870 * it.
871 *
872 * sk The sk of the socket
873 * addrs The pointer to the addresses in user land
874 * addrssize Size of the addrs buffer
875 * op Operation to perform (add or remove, see the flags of
876 * sctp_bindx)
877 *
878 * Returns 0 if ok, <0 errno code on error.
879 */
880 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
881 struct sockaddr __user *addrs,
882 int addrs_size, int op)
883 {
884 struct sockaddr *kaddrs;
885 int err;
886 int addrcnt = 0;
887 int walk_size = 0;
888 struct sockaddr *sa_addr;
889 void *addr_buf;
890 struct sctp_af *af;
891
892 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
893 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
894
895 if (unlikely(addrs_size <= 0))
896 return -EINVAL;
897
898 /* Check the user passed a healthy pointer. */
899 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
900 return -EFAULT;
901
902 /* Alloc space for the address array in kernel memory. */
903 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
904 if (unlikely(!kaddrs))
905 return -ENOMEM;
906
907 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
908 kfree(kaddrs);
909 return -EFAULT;
910 }
911
912 /* Walk through the addrs buffer and count the number of addresses. */
913 addr_buf = kaddrs;
914 while (walk_size < addrs_size) {
915 sa_addr = (struct sockaddr *)addr_buf;
916 af = sctp_get_af_specific(sa_addr->sa_family);
917
918 /* If the address family is not supported or if this address
919 * causes the address buffer to overflow return EINVAL.
920 */
921 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
922 kfree(kaddrs);
923 return -EINVAL;
924 }
925 addrcnt++;
926 addr_buf += af->sockaddr_len;
927 walk_size += af->sockaddr_len;
928 }
929
930 /* Do the work. */
931 switch (op) {
932 case SCTP_BINDX_ADD_ADDR:
933 err = sctp_bindx_add(sk, kaddrs, addrcnt);
934 if (err)
935 goto out;
936 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
937 break;
938
939 case SCTP_BINDX_REM_ADDR:
940 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
941 if (err)
942 goto out;
943 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
944 break;
945
946 default:
947 err = -EINVAL;
948 break;
949 }
950
951 out:
952 kfree(kaddrs);
953
954 return err;
955 }
956
957 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
958 *
959 * Common routine for handling connect() and sctp_connectx().
960 * Connect will come in with just a single address.
961 */
962 static int __sctp_connect(struct sock* sk,
963 struct sockaddr *kaddrs,
964 int addrs_size)
965 {
966 struct sctp_sock *sp;
967 struct sctp_endpoint *ep;
968 struct sctp_association *asoc = NULL;
969 struct sctp_association *asoc2;
970 struct sctp_transport *transport;
971 union sctp_addr to;
972 struct sctp_af *af;
973 sctp_scope_t scope;
974 long timeo;
975 int err = 0;
976 int addrcnt = 0;
977 int walk_size = 0;
978 union sctp_addr *sa_addr;
979 void *addr_buf;
980 unsigned short port;
981 unsigned int f_flags = 0;
982
983 sp = sctp_sk(sk);
984 ep = sp->ep;
985
986 /* connect() cannot be done on a socket that is already in ESTABLISHED
987 * state - UDP-style peeled off socket or a TCP-style socket that
988 * is already connected.
989 * It cannot be done even on a TCP-style listening socket.
990 */
991 if (sctp_sstate(sk, ESTABLISHED) ||
992 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
993 err = -EISCONN;
994 goto out_free;
995 }
996
997 /* Walk through the addrs buffer and count the number of addresses. */
998 addr_buf = kaddrs;
999 while (walk_size < addrs_size) {
1000 sa_addr = (union sctp_addr *)addr_buf;
1001 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1002 port = ntohs(sa_addr->v4.sin_port);
1003
1004 /* If the address family is not supported or if this address
1005 * causes the address buffer to overflow return EINVAL.
1006 */
1007 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1008 err = -EINVAL;
1009 goto out_free;
1010 }
1011
1012 err = sctp_verify_addr(sk, sa_addr, af->sockaddr_len);
1013 if (err)
1014 goto out_free;
1015
1016 /* Make sure the destination port is correctly set
1017 * in all addresses.
1018 */
1019 if (asoc && asoc->peer.port && asoc->peer.port != port)
1020 goto out_free;
1021
1022 memcpy(&to, sa_addr, af->sockaddr_len);
1023
1024 /* Check if there already is a matching association on the
1025 * endpoint (other than the one created here).
1026 */
1027 asoc2 = sctp_endpoint_lookup_assoc(ep, sa_addr, &transport);
1028 if (asoc2 && asoc2 != asoc) {
1029 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1030 err = -EISCONN;
1031 else
1032 err = -EALREADY;
1033 goto out_free;
1034 }
1035
1036 /* If we could not find a matching association on the endpoint,
1037 * make sure that there is no peeled-off association matching
1038 * the peer address even on another socket.
1039 */
1040 if (sctp_endpoint_is_peeled_off(ep, sa_addr)) {
1041 err = -EADDRNOTAVAIL;
1042 goto out_free;
1043 }
1044
1045 if (!asoc) {
1046 /* If a bind() or sctp_bindx() is not called prior to
1047 * an sctp_connectx() call, the system picks an
1048 * ephemeral port and will choose an address set
1049 * equivalent to binding with a wildcard address.
1050 */
1051 if (!ep->base.bind_addr.port) {
1052 if (sctp_autobind(sk)) {
1053 err = -EAGAIN;
1054 goto out_free;
1055 }
1056 } else {
1057 /*
1058 * If an unprivileged user inherits a 1-many
1059 * style socket with open associations on a
1060 * privileged port, it MAY be permitted to
1061 * accept new associations, but it SHOULD NOT
1062 * be permitted to open new associations.
1063 */
1064 if (ep->base.bind_addr.port < PROT_SOCK &&
1065 !capable(CAP_NET_BIND_SERVICE)) {
1066 err = -EACCES;
1067 goto out_free;
1068 }
1069 }
1070
1071 scope = sctp_scope(sa_addr);
1072 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1073 if (!asoc) {
1074 err = -ENOMEM;
1075 goto out_free;
1076 }
1077 }
1078
1079 /* Prime the peer's transport structures. */
1080 transport = sctp_assoc_add_peer(asoc, sa_addr, GFP_KERNEL,
1081 SCTP_UNKNOWN);
1082 if (!transport) {
1083 err = -ENOMEM;
1084 goto out_free;
1085 }
1086
1087 addrcnt++;
1088 addr_buf += af->sockaddr_len;
1089 walk_size += af->sockaddr_len;
1090 }
1091
1092 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1093 if (err < 0) {
1094 goto out_free;
1095 }
1096
1097 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1098 if (err < 0) {
1099 goto out_free;
1100 }
1101
1102 /* Initialize sk's dport and daddr for getpeername() */
1103 inet_sk(sk)->dport = htons(asoc->peer.port);
1104 af = sctp_get_af_specific(to.sa.sa_family);
1105 af->to_sk_daddr(&to, sk);
1106 sk->sk_err = 0;
1107
1108 /* in-kernel sockets don't generally have a file allocated to them
1109 * if all they do is call sock_create_kern().
1110 */
1111 if (sk->sk_socket->file)
1112 f_flags = sk->sk_socket->file->f_flags;
1113
1114 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1115
1116 err = sctp_wait_for_connect(asoc, &timeo);
1117
1118 /* Don't free association on exit. */
1119 asoc = NULL;
1120
1121 out_free:
1122
1123 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1124 " kaddrs: %p err: %d\n",
1125 asoc, kaddrs, err);
1126 if (asoc)
1127 sctp_association_free(asoc);
1128 return err;
1129 }
1130
1131 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1132 *
1133 * API 8.9
1134 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1135 *
1136 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1137 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1138 * or IPv6 addresses.
1139 *
1140 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1141 * Section 3.1.2 for this usage.
1142 *
1143 * addrs is a pointer to an array of one or more socket addresses. Each
1144 * address is contained in its appropriate structure (i.e. struct
1145 * sockaddr_in or struct sockaddr_in6) the family of the address type
1146 * must be used to distengish the address length (note that this
1147 * representation is termed a "packed array" of addresses). The caller
1148 * specifies the number of addresses in the array with addrcnt.
1149 *
1150 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1151 * -1, and sets errno to the appropriate error code.
1152 *
1153 * For SCTP, the port given in each socket address must be the same, or
1154 * sctp_connectx() will fail, setting errno to EINVAL.
1155 *
1156 * An application can use sctp_connectx to initiate an association with
1157 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1158 * allows a caller to specify multiple addresses at which a peer can be
1159 * reached. The way the SCTP stack uses the list of addresses to set up
1160 * the association is implementation dependant. This function only
1161 * specifies that the stack will try to make use of all the addresses in
1162 * the list when needed.
1163 *
1164 * Note that the list of addresses passed in is only used for setting up
1165 * the association. It does not necessarily equal the set of addresses
1166 * the peer uses for the resulting association. If the caller wants to
1167 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1168 * retrieve them after the association has been set up.
1169 *
1170 * Basically do nothing but copying the addresses from user to kernel
1171 * land and invoking either sctp_connectx(). This is used for tunneling
1172 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1173 *
1174 * We don't use copy_from_user() for optimization: we first do the
1175 * sanity checks (buffer size -fast- and access check-healthy
1176 * pointer); if all of those succeed, then we can alloc the memory
1177 * (expensive operation) needed to copy the data to kernel. Then we do
1178 * the copying without checking the user space area
1179 * (__copy_from_user()).
1180 *
1181 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1182 * it.
1183 *
1184 * sk The sk of the socket
1185 * addrs The pointer to the addresses in user land
1186 * addrssize Size of the addrs buffer
1187 *
1188 * Returns 0 if ok, <0 errno code on error.
1189 */
1190 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1191 struct sockaddr __user *addrs,
1192 int addrs_size)
1193 {
1194 int err = 0;
1195 struct sockaddr *kaddrs;
1196
1197 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1198 __FUNCTION__, sk, addrs, addrs_size);
1199
1200 if (unlikely(addrs_size <= 0))
1201 return -EINVAL;
1202
1203 /* Check the user passed a healthy pointer. */
1204 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1205 return -EFAULT;
1206
1207 /* Alloc space for the address array in kernel memory. */
1208 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1209 if (unlikely(!kaddrs))
1210 return -ENOMEM;
1211
1212 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1213 err = -EFAULT;
1214 } else {
1215 err = __sctp_connect(sk, kaddrs, addrs_size);
1216 }
1217
1218 kfree(kaddrs);
1219 return err;
1220 }
1221
1222 /* API 3.1.4 close() - UDP Style Syntax
1223 * Applications use close() to perform graceful shutdown (as described in
1224 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1225 * by a UDP-style socket.
1226 *
1227 * The syntax is
1228 *
1229 * ret = close(int sd);
1230 *
1231 * sd - the socket descriptor of the associations to be closed.
1232 *
1233 * To gracefully shutdown a specific association represented by the
1234 * UDP-style socket, an application should use the sendmsg() call,
1235 * passing no user data, but including the appropriate flag in the
1236 * ancillary data (see Section xxxx).
1237 *
1238 * If sd in the close() call is a branched-off socket representing only
1239 * one association, the shutdown is performed on that association only.
1240 *
1241 * 4.1.6 close() - TCP Style Syntax
1242 *
1243 * Applications use close() to gracefully close down an association.
1244 *
1245 * The syntax is:
1246 *
1247 * int close(int sd);
1248 *
1249 * sd - the socket descriptor of the association to be closed.
1250 *
1251 * After an application calls close() on a socket descriptor, no further
1252 * socket operations will succeed on that descriptor.
1253 *
1254 * API 7.1.4 SO_LINGER
1255 *
1256 * An application using the TCP-style socket can use this option to
1257 * perform the SCTP ABORT primitive. The linger option structure is:
1258 *
1259 * struct linger {
1260 * int l_onoff; // option on/off
1261 * int l_linger; // linger time
1262 * };
1263 *
1264 * To enable the option, set l_onoff to 1. If the l_linger value is set
1265 * to 0, calling close() is the same as the ABORT primitive. If the
1266 * value is set to a negative value, the setsockopt() call will return
1267 * an error. If the value is set to a positive value linger_time, the
1268 * close() can be blocked for at most linger_time ms. If the graceful
1269 * shutdown phase does not finish during this period, close() will
1270 * return but the graceful shutdown phase continues in the system.
1271 */
1272 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1273 {
1274 struct sctp_endpoint *ep;
1275 struct sctp_association *asoc;
1276 struct list_head *pos, *temp;
1277
1278 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1279
1280 sctp_lock_sock(sk);
1281 sk->sk_shutdown = SHUTDOWN_MASK;
1282
1283 ep = sctp_sk(sk)->ep;
1284
1285 /* Walk all associations on an endpoint. */
1286 list_for_each_safe(pos, temp, &ep->asocs) {
1287 asoc = list_entry(pos, struct sctp_association, asocs);
1288
1289 if (sctp_style(sk, TCP)) {
1290 /* A closed association can still be in the list if
1291 * it belongs to a TCP-style listening socket that is
1292 * not yet accepted. If so, free it. If not, send an
1293 * ABORT or SHUTDOWN based on the linger options.
1294 */
1295 if (sctp_state(asoc, CLOSED)) {
1296 sctp_unhash_established(asoc);
1297 sctp_association_free(asoc);
1298 continue;
1299 }
1300 }
1301
1302 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1303 struct sctp_chunk *chunk;
1304
1305 chunk = sctp_make_abort_user(asoc, NULL, 0);
1306 if (chunk)
1307 sctp_primitive_ABORT(asoc, chunk);
1308 } else
1309 sctp_primitive_SHUTDOWN(asoc, NULL);
1310 }
1311
1312 /* Clean up any skbs sitting on the receive queue. */
1313 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1314 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1315
1316 /* On a TCP-style socket, block for at most linger_time if set. */
1317 if (sctp_style(sk, TCP) && timeout)
1318 sctp_wait_for_close(sk, timeout);
1319
1320 /* This will run the backlog queue. */
1321 sctp_release_sock(sk);
1322
1323 /* Supposedly, no process has access to the socket, but
1324 * the net layers still may.
1325 */
1326 sctp_local_bh_disable();
1327 sctp_bh_lock_sock(sk);
1328
1329 /* Hold the sock, since sk_common_release() will put sock_put()
1330 * and we have just a little more cleanup.
1331 */
1332 sock_hold(sk);
1333 sk_common_release(sk);
1334
1335 sctp_bh_unlock_sock(sk);
1336 sctp_local_bh_enable();
1337
1338 sock_put(sk);
1339
1340 SCTP_DBG_OBJCNT_DEC(sock);
1341 }
1342
1343 /* Handle EPIPE error. */
1344 static int sctp_error(struct sock *sk, int flags, int err)
1345 {
1346 if (err == -EPIPE)
1347 err = sock_error(sk) ? : -EPIPE;
1348 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1349 send_sig(SIGPIPE, current, 0);
1350 return err;
1351 }
1352
1353 /* API 3.1.3 sendmsg() - UDP Style Syntax
1354 *
1355 * An application uses sendmsg() and recvmsg() calls to transmit data to
1356 * and receive data from its peer.
1357 *
1358 * ssize_t sendmsg(int socket, const struct msghdr *message,
1359 * int flags);
1360 *
1361 * socket - the socket descriptor of the endpoint.
1362 * message - pointer to the msghdr structure which contains a single
1363 * user message and possibly some ancillary data.
1364 *
1365 * See Section 5 for complete description of the data
1366 * structures.
1367 *
1368 * flags - flags sent or received with the user message, see Section
1369 * 5 for complete description of the flags.
1370 *
1371 * Note: This function could use a rewrite especially when explicit
1372 * connect support comes in.
1373 */
1374 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1375
1376 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1377
1378 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1379 struct msghdr *msg, size_t msg_len)
1380 {
1381 struct sctp_sock *sp;
1382 struct sctp_endpoint *ep;
1383 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1384 struct sctp_transport *transport, *chunk_tp;
1385 struct sctp_chunk *chunk;
1386 union sctp_addr to;
1387 struct sockaddr *msg_name = NULL;
1388 struct sctp_sndrcvinfo default_sinfo = { 0 };
1389 struct sctp_sndrcvinfo *sinfo;
1390 struct sctp_initmsg *sinit;
1391 sctp_assoc_t associd = 0;
1392 sctp_cmsgs_t cmsgs = { NULL };
1393 int err;
1394 sctp_scope_t scope;
1395 long timeo;
1396 __u16 sinfo_flags = 0;
1397 struct sctp_datamsg *datamsg;
1398 struct list_head *pos;
1399 int msg_flags = msg->msg_flags;
1400
1401 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1402 sk, msg, msg_len);
1403
1404 err = 0;
1405 sp = sctp_sk(sk);
1406 ep = sp->ep;
1407
1408 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1409
1410 /* We cannot send a message over a TCP-style listening socket. */
1411 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1412 err = -EPIPE;
1413 goto out_nounlock;
1414 }
1415
1416 /* Parse out the SCTP CMSGs. */
1417 err = sctp_msghdr_parse(msg, &cmsgs);
1418
1419 if (err) {
1420 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1421 goto out_nounlock;
1422 }
1423
1424 /* Fetch the destination address for this packet. This
1425 * address only selects the association--it is not necessarily
1426 * the address we will send to.
1427 * For a peeled-off socket, msg_name is ignored.
1428 */
1429 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1430 int msg_namelen = msg->msg_namelen;
1431
1432 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1433 msg_namelen);
1434 if (err)
1435 return err;
1436
1437 if (msg_namelen > sizeof(to))
1438 msg_namelen = sizeof(to);
1439 memcpy(&to, msg->msg_name, msg_namelen);
1440 msg_name = msg->msg_name;
1441 }
1442
1443 sinfo = cmsgs.info;
1444 sinit = cmsgs.init;
1445
1446 /* Did the user specify SNDRCVINFO? */
1447 if (sinfo) {
1448 sinfo_flags = sinfo->sinfo_flags;
1449 associd = sinfo->sinfo_assoc_id;
1450 }
1451
1452 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1453 msg_len, sinfo_flags);
1454
1455 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1456 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1457 err = -EINVAL;
1458 goto out_nounlock;
1459 }
1460
1461 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1462 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1463 * If SCTP_ABORT is set, the message length could be non zero with
1464 * the msg_iov set to the user abort reason.
1465 */
1466 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1467 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1468 err = -EINVAL;
1469 goto out_nounlock;
1470 }
1471
1472 /* If SCTP_ADDR_OVER is set, there must be an address
1473 * specified in msg_name.
1474 */
1475 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1476 err = -EINVAL;
1477 goto out_nounlock;
1478 }
1479
1480 transport = NULL;
1481
1482 SCTP_DEBUG_PRINTK("About to look up association.\n");
1483
1484 sctp_lock_sock(sk);
1485
1486 /* If a msg_name has been specified, assume this is to be used. */
1487 if (msg_name) {
1488 /* Look for a matching association on the endpoint. */
1489 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1490 if (!asoc) {
1491 /* If we could not find a matching association on the
1492 * endpoint, make sure that it is not a TCP-style
1493 * socket that already has an association or there is
1494 * no peeled-off association on another socket.
1495 */
1496 if ((sctp_style(sk, TCP) &&
1497 sctp_sstate(sk, ESTABLISHED)) ||
1498 sctp_endpoint_is_peeled_off(ep, &to)) {
1499 err = -EADDRNOTAVAIL;
1500 goto out_unlock;
1501 }
1502 }
1503 } else {
1504 asoc = sctp_id2assoc(sk, associd);
1505 if (!asoc) {
1506 err = -EPIPE;
1507 goto out_unlock;
1508 }
1509 }
1510
1511 if (asoc) {
1512 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1513
1514 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1515 * socket that has an association in CLOSED state. This can
1516 * happen when an accepted socket has an association that is
1517 * already CLOSED.
1518 */
1519 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1520 err = -EPIPE;
1521 goto out_unlock;
1522 }
1523
1524 if (sinfo_flags & SCTP_EOF) {
1525 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1526 asoc);
1527 sctp_primitive_SHUTDOWN(asoc, NULL);
1528 err = 0;
1529 goto out_unlock;
1530 }
1531 if (sinfo_flags & SCTP_ABORT) {
1532
1533 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1534 if (!chunk) {
1535 err = -ENOMEM;
1536 goto out_unlock;
1537 }
1538
1539 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1540 sctp_primitive_ABORT(asoc, chunk);
1541 err = 0;
1542 goto out_unlock;
1543 }
1544 }
1545
1546 /* Do we need to create the association? */
1547 if (!asoc) {
1548 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1549
1550 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1551 err = -EINVAL;
1552 goto out_unlock;
1553 }
1554
1555 /* Check for invalid stream against the stream counts,
1556 * either the default or the user specified stream counts.
1557 */
1558 if (sinfo) {
1559 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1560 /* Check against the defaults. */
1561 if (sinfo->sinfo_stream >=
1562 sp->initmsg.sinit_num_ostreams) {
1563 err = -EINVAL;
1564 goto out_unlock;
1565 }
1566 } else {
1567 /* Check against the requested. */
1568 if (sinfo->sinfo_stream >=
1569 sinit->sinit_num_ostreams) {
1570 err = -EINVAL;
1571 goto out_unlock;
1572 }
1573 }
1574 }
1575
1576 /*
1577 * API 3.1.2 bind() - UDP Style Syntax
1578 * If a bind() or sctp_bindx() is not called prior to a
1579 * sendmsg() call that initiates a new association, the
1580 * system picks an ephemeral port and will choose an address
1581 * set equivalent to binding with a wildcard address.
1582 */
1583 if (!ep->base.bind_addr.port) {
1584 if (sctp_autobind(sk)) {
1585 err = -EAGAIN;
1586 goto out_unlock;
1587 }
1588 } else {
1589 /*
1590 * If an unprivileged user inherits a one-to-many
1591 * style socket with open associations on a privileged
1592 * port, it MAY be permitted to accept new associations,
1593 * but it SHOULD NOT be permitted to open new
1594 * associations.
1595 */
1596 if (ep->base.bind_addr.port < PROT_SOCK &&
1597 !capable(CAP_NET_BIND_SERVICE)) {
1598 err = -EACCES;
1599 goto out_unlock;
1600 }
1601 }
1602
1603 scope = sctp_scope(&to);
1604 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1605 if (!new_asoc) {
1606 err = -ENOMEM;
1607 goto out_unlock;
1608 }
1609 asoc = new_asoc;
1610
1611 /* If the SCTP_INIT ancillary data is specified, set all
1612 * the association init values accordingly.
1613 */
1614 if (sinit) {
1615 if (sinit->sinit_num_ostreams) {
1616 asoc->c.sinit_num_ostreams =
1617 sinit->sinit_num_ostreams;
1618 }
1619 if (sinit->sinit_max_instreams) {
1620 asoc->c.sinit_max_instreams =
1621 sinit->sinit_max_instreams;
1622 }
1623 if (sinit->sinit_max_attempts) {
1624 asoc->max_init_attempts
1625 = sinit->sinit_max_attempts;
1626 }
1627 if (sinit->sinit_max_init_timeo) {
1628 asoc->max_init_timeo =
1629 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1630 }
1631 }
1632
1633 /* Prime the peer's transport structures. */
1634 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1635 if (!transport) {
1636 err = -ENOMEM;
1637 goto out_free;
1638 }
1639 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1640 if (err < 0) {
1641 err = -ENOMEM;
1642 goto out_free;
1643 }
1644 }
1645
1646 /* ASSERT: we have a valid association at this point. */
1647 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1648
1649 if (!sinfo) {
1650 /* If the user didn't specify SNDRCVINFO, make up one with
1651 * some defaults.
1652 */
1653 default_sinfo.sinfo_stream = asoc->default_stream;
1654 default_sinfo.sinfo_flags = asoc->default_flags;
1655 default_sinfo.sinfo_ppid = asoc->default_ppid;
1656 default_sinfo.sinfo_context = asoc->default_context;
1657 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1658 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1659 sinfo = &default_sinfo;
1660 }
1661
1662 /* API 7.1.7, the sndbuf size per association bounds the
1663 * maximum size of data that can be sent in a single send call.
1664 */
1665 if (msg_len > sk->sk_sndbuf) {
1666 err = -EMSGSIZE;
1667 goto out_free;
1668 }
1669
1670 if (asoc->pmtu_pending)
1671 sctp_assoc_pending_pmtu(asoc);
1672
1673 /* If fragmentation is disabled and the message length exceeds the
1674 * association fragmentation point, return EMSGSIZE. The I-D
1675 * does not specify what this error is, but this looks like
1676 * a great fit.
1677 */
1678 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1679 err = -EMSGSIZE;
1680 goto out_free;
1681 }
1682
1683 if (sinfo) {
1684 /* Check for invalid stream. */
1685 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1686 err = -EINVAL;
1687 goto out_free;
1688 }
1689 }
1690
1691 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1692 if (!sctp_wspace(asoc)) {
1693 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1694 if (err)
1695 goto out_free;
1696 }
1697
1698 /* If an address is passed with the sendto/sendmsg call, it is used
1699 * to override the primary destination address in the TCP model, or
1700 * when SCTP_ADDR_OVER flag is set in the UDP model.
1701 */
1702 if ((sctp_style(sk, TCP) && msg_name) ||
1703 (sinfo_flags & SCTP_ADDR_OVER)) {
1704 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1705 if (!chunk_tp) {
1706 err = -EINVAL;
1707 goto out_free;
1708 }
1709 } else
1710 chunk_tp = NULL;
1711
1712 /* Auto-connect, if we aren't connected already. */
1713 if (sctp_state(asoc, CLOSED)) {
1714 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1715 if (err < 0)
1716 goto out_free;
1717 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1718 }
1719
1720 /* Break the message into multiple chunks of maximum size. */
1721 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1722 if (!datamsg) {
1723 err = -ENOMEM;
1724 goto out_free;
1725 }
1726
1727 /* Now send the (possibly) fragmented message. */
1728 list_for_each(pos, &datamsg->chunks) {
1729 chunk = list_entry(pos, struct sctp_chunk, frag_list);
1730 sctp_datamsg_track(chunk);
1731
1732 /* Do accounting for the write space. */
1733 sctp_set_owner_w(chunk);
1734
1735 chunk->transport = chunk_tp;
1736
1737 /* Send it to the lower layers. Note: all chunks
1738 * must either fail or succeed. The lower layer
1739 * works that way today. Keep it that way or this
1740 * breaks.
1741 */
1742 err = sctp_primitive_SEND(asoc, chunk);
1743 /* Did the lower layer accept the chunk? */
1744 if (err)
1745 sctp_chunk_free(chunk);
1746 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1747 }
1748
1749 sctp_datamsg_free(datamsg);
1750 if (err)
1751 goto out_free;
1752 else
1753 err = msg_len;
1754
1755 /* If we are already past ASSOCIATE, the lower
1756 * layers are responsible for association cleanup.
1757 */
1758 goto out_unlock;
1759
1760 out_free:
1761 if (new_asoc)
1762 sctp_association_free(asoc);
1763 out_unlock:
1764 sctp_release_sock(sk);
1765
1766 out_nounlock:
1767 return sctp_error(sk, msg_flags, err);
1768
1769 #if 0
1770 do_sock_err:
1771 if (msg_len)
1772 err = msg_len;
1773 else
1774 err = sock_error(sk);
1775 goto out;
1776
1777 do_interrupted:
1778 if (msg_len)
1779 err = msg_len;
1780 goto out;
1781 #endif /* 0 */
1782 }
1783
1784 /* This is an extended version of skb_pull() that removes the data from the
1785 * start of a skb even when data is spread across the list of skb's in the
1786 * frag_list. len specifies the total amount of data that needs to be removed.
1787 * when 'len' bytes could be removed from the skb, it returns 0.
1788 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1789 * could not be removed.
1790 */
1791 static int sctp_skb_pull(struct sk_buff *skb, int len)
1792 {
1793 struct sk_buff *list;
1794 int skb_len = skb_headlen(skb);
1795 int rlen;
1796
1797 if (len <= skb_len) {
1798 __skb_pull(skb, len);
1799 return 0;
1800 }
1801 len -= skb_len;
1802 __skb_pull(skb, skb_len);
1803
1804 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1805 rlen = sctp_skb_pull(list, len);
1806 skb->len -= (len-rlen);
1807 skb->data_len -= (len-rlen);
1808
1809 if (!rlen)
1810 return 0;
1811
1812 len = rlen;
1813 }
1814
1815 return len;
1816 }
1817
1818 /* API 3.1.3 recvmsg() - UDP Style Syntax
1819 *
1820 * ssize_t recvmsg(int socket, struct msghdr *message,
1821 * int flags);
1822 *
1823 * socket - the socket descriptor of the endpoint.
1824 * message - pointer to the msghdr structure which contains a single
1825 * user message and possibly some ancillary data.
1826 *
1827 * See Section 5 for complete description of the data
1828 * structures.
1829 *
1830 * flags - flags sent or received with the user message, see Section
1831 * 5 for complete description of the flags.
1832 */
1833 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1834
1835 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1836 struct msghdr *msg, size_t len, int noblock,
1837 int flags, int *addr_len)
1838 {
1839 struct sctp_ulpevent *event = NULL;
1840 struct sctp_sock *sp = sctp_sk(sk);
1841 struct sk_buff *skb;
1842 int copied;
1843 int err = 0;
1844 int skb_len;
1845
1846 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1847 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1848 "len", len, "knoblauch", noblock,
1849 "flags", flags, "addr_len", addr_len);
1850
1851 sctp_lock_sock(sk);
1852
1853 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1854 err = -ENOTCONN;
1855 goto out;
1856 }
1857
1858 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1859 if (!skb)
1860 goto out;
1861
1862 /* Get the total length of the skb including any skb's in the
1863 * frag_list.
1864 */
1865 skb_len = skb->len;
1866
1867 copied = skb_len;
1868 if (copied > len)
1869 copied = len;
1870
1871 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1872
1873 event = sctp_skb2event(skb);
1874
1875 if (err)
1876 goto out_free;
1877
1878 sock_recv_timestamp(msg, sk, skb);
1879 if (sctp_ulpevent_is_notification(event)) {
1880 msg->msg_flags |= MSG_NOTIFICATION;
1881 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1882 } else {
1883 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1884 }
1885
1886 /* Check if we allow SCTP_SNDRCVINFO. */
1887 if (sp->subscribe.sctp_data_io_event)
1888 sctp_ulpevent_read_sndrcvinfo(event, msg);
1889 #if 0
1890 /* FIXME: we should be calling IP/IPv6 layers. */
1891 if (sk->sk_protinfo.af_inet.cmsg_flags)
1892 ip_cmsg_recv(msg, skb);
1893 #endif
1894
1895 err = copied;
1896
1897 /* If skb's length exceeds the user's buffer, update the skb and
1898 * push it back to the receive_queue so that the next call to
1899 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1900 */
1901 if (skb_len > copied) {
1902 msg->msg_flags &= ~MSG_EOR;
1903 if (flags & MSG_PEEK)
1904 goto out_free;
1905 sctp_skb_pull(skb, copied);
1906 skb_queue_head(&sk->sk_receive_queue, skb);
1907
1908 /* When only partial message is copied to the user, increase
1909 * rwnd by that amount. If all the data in the skb is read,
1910 * rwnd is updated when the event is freed.
1911 */
1912 sctp_assoc_rwnd_increase(event->asoc, copied);
1913 goto out;
1914 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1915 (event->msg_flags & MSG_EOR))
1916 msg->msg_flags |= MSG_EOR;
1917 else
1918 msg->msg_flags &= ~MSG_EOR;
1919
1920 out_free:
1921 if (flags & MSG_PEEK) {
1922 /* Release the skb reference acquired after peeking the skb in
1923 * sctp_skb_recv_datagram().
1924 */
1925 kfree_skb(skb);
1926 } else {
1927 /* Free the event which includes releasing the reference to
1928 * the owner of the skb, freeing the skb and updating the
1929 * rwnd.
1930 */
1931 sctp_ulpevent_free(event);
1932 }
1933 out:
1934 sctp_release_sock(sk);
1935 return err;
1936 }
1937
1938 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1939 *
1940 * This option is a on/off flag. If enabled no SCTP message
1941 * fragmentation will be performed. Instead if a message being sent
1942 * exceeds the current PMTU size, the message will NOT be sent and
1943 * instead a error will be indicated to the user.
1944 */
1945 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1946 char __user *optval, int optlen)
1947 {
1948 int val;
1949
1950 if (optlen < sizeof(int))
1951 return -EINVAL;
1952
1953 if (get_user(val, (int __user *)optval))
1954 return -EFAULT;
1955
1956 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1957
1958 return 0;
1959 }
1960
1961 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1962 int optlen)
1963 {
1964 if (optlen != sizeof(struct sctp_event_subscribe))
1965 return -EINVAL;
1966 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1967 return -EFAULT;
1968 return 0;
1969 }
1970
1971 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1972 *
1973 * This socket option is applicable to the UDP-style socket only. When
1974 * set it will cause associations that are idle for more than the
1975 * specified number of seconds to automatically close. An association
1976 * being idle is defined an association that has NOT sent or received
1977 * user data. The special value of '0' indicates that no automatic
1978 * close of any associations should be performed. The option expects an
1979 * integer defining the number of seconds of idle time before an
1980 * association is closed.
1981 */
1982 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1983 int optlen)
1984 {
1985 struct sctp_sock *sp = sctp_sk(sk);
1986
1987 /* Applicable to UDP-style socket only */
1988 if (sctp_style(sk, TCP))
1989 return -EOPNOTSUPP;
1990 if (optlen != sizeof(int))
1991 return -EINVAL;
1992 if (copy_from_user(&sp->autoclose, optval, optlen))
1993 return -EFAULT;
1994
1995 return 0;
1996 }
1997
1998 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1999 *
2000 * Applications can enable or disable heartbeats for any peer address of
2001 * an association, modify an address's heartbeat interval, force a
2002 * heartbeat to be sent immediately, and adjust the address's maximum
2003 * number of retransmissions sent before an address is considered
2004 * unreachable. The following structure is used to access and modify an
2005 * address's parameters:
2006 *
2007 * struct sctp_paddrparams {
2008 * sctp_assoc_t spp_assoc_id;
2009 * struct sockaddr_storage spp_address;
2010 * uint32_t spp_hbinterval;
2011 * uint16_t spp_pathmaxrxt;
2012 * uint32_t spp_pathmtu;
2013 * uint32_t spp_sackdelay;
2014 * uint32_t spp_flags;
2015 * };
2016 *
2017 * spp_assoc_id - (one-to-many style socket) This is filled in the
2018 * application, and identifies the association for
2019 * this query.
2020 * spp_address - This specifies which address is of interest.
2021 * spp_hbinterval - This contains the value of the heartbeat interval,
2022 * in milliseconds. If a value of zero
2023 * is present in this field then no changes are to
2024 * be made to this parameter.
2025 * spp_pathmaxrxt - This contains the maximum number of
2026 * retransmissions before this address shall be
2027 * considered unreachable. If a value of zero
2028 * is present in this field then no changes are to
2029 * be made to this parameter.
2030 * spp_pathmtu - When Path MTU discovery is disabled the value
2031 * specified here will be the "fixed" path mtu.
2032 * Note that if the spp_address field is empty
2033 * then all associations on this address will
2034 * have this fixed path mtu set upon them.
2035 *
2036 * spp_sackdelay - When delayed sack is enabled, this value specifies
2037 * the number of milliseconds that sacks will be delayed
2038 * for. This value will apply to all addresses of an
2039 * association if the spp_address field is empty. Note
2040 * also, that if delayed sack is enabled and this
2041 * value is set to 0, no change is made to the last
2042 * recorded delayed sack timer value.
2043 *
2044 * spp_flags - These flags are used to control various features
2045 * on an association. The flag field may contain
2046 * zero or more of the following options.
2047 *
2048 * SPP_HB_ENABLE - Enable heartbeats on the
2049 * specified address. Note that if the address
2050 * field is empty all addresses for the association
2051 * have heartbeats enabled upon them.
2052 *
2053 * SPP_HB_DISABLE - Disable heartbeats on the
2054 * speicifed address. Note that if the address
2055 * field is empty all addresses for the association
2056 * will have their heartbeats disabled. Note also
2057 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2058 * mutually exclusive, only one of these two should
2059 * be specified. Enabling both fields will have
2060 * undetermined results.
2061 *
2062 * SPP_HB_DEMAND - Request a user initiated heartbeat
2063 * to be made immediately.
2064 *
2065 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2066 * heartbeat delayis to be set to the value of 0
2067 * milliseconds.
2068 *
2069 * SPP_PMTUD_ENABLE - This field will enable PMTU
2070 * discovery upon the specified address. Note that
2071 * if the address feild is empty then all addresses
2072 * on the association are effected.
2073 *
2074 * SPP_PMTUD_DISABLE - This field will disable PMTU
2075 * discovery upon the specified address. Note that
2076 * if the address feild is empty then all addresses
2077 * on the association are effected. Not also that
2078 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2079 * exclusive. Enabling both will have undetermined
2080 * results.
2081 *
2082 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2083 * on delayed sack. The time specified in spp_sackdelay
2084 * is used to specify the sack delay for this address. Note
2085 * that if spp_address is empty then all addresses will
2086 * enable delayed sack and take on the sack delay
2087 * value specified in spp_sackdelay.
2088 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2089 * off delayed sack. If the spp_address field is blank then
2090 * delayed sack is disabled for the entire association. Note
2091 * also that this field is mutually exclusive to
2092 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2093 * results.
2094 */
2095 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2096 struct sctp_transport *trans,
2097 struct sctp_association *asoc,
2098 struct sctp_sock *sp,
2099 int hb_change,
2100 int pmtud_change,
2101 int sackdelay_change)
2102 {
2103 int error;
2104
2105 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2106 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2107 if (error)
2108 return error;
2109 }
2110
2111 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2112 * this field is ignored. Note also that a value of zero indicates
2113 * the current setting should be left unchanged.
2114 */
2115 if (params->spp_flags & SPP_HB_ENABLE) {
2116
2117 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2118 * set. This lets us use 0 value when this flag
2119 * is set.
2120 */
2121 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2122 params->spp_hbinterval = 0;
2123
2124 if (params->spp_hbinterval ||
2125 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2126 if (trans) {
2127 trans->hbinterval =
2128 msecs_to_jiffies(params->spp_hbinterval);
2129 } else if (asoc) {
2130 asoc->hbinterval =
2131 msecs_to_jiffies(params->spp_hbinterval);
2132 } else {
2133 sp->hbinterval = params->spp_hbinterval;
2134 }
2135 }
2136 }
2137
2138 if (hb_change) {
2139 if (trans) {
2140 trans->param_flags =
2141 (trans->param_flags & ~SPP_HB) | hb_change;
2142 } else if (asoc) {
2143 asoc->param_flags =
2144 (asoc->param_flags & ~SPP_HB) | hb_change;
2145 } else {
2146 sp->param_flags =
2147 (sp->param_flags & ~SPP_HB) | hb_change;
2148 }
2149 }
2150
2151 /* When Path MTU discovery is disabled the value specified here will
2152 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2153 * include the flag SPP_PMTUD_DISABLE for this field to have any
2154 * effect).
2155 */
2156 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2157 if (trans) {
2158 trans->pathmtu = params->spp_pathmtu;
2159 sctp_assoc_sync_pmtu(asoc);
2160 } else if (asoc) {
2161 asoc->pathmtu = params->spp_pathmtu;
2162 sctp_frag_point(sp, params->spp_pathmtu);
2163 } else {
2164 sp->pathmtu = params->spp_pathmtu;
2165 }
2166 }
2167
2168 if (pmtud_change) {
2169 if (trans) {
2170 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2171 (params->spp_flags & SPP_PMTUD_ENABLE);
2172 trans->param_flags =
2173 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2174 if (update) {
2175 sctp_transport_pmtu(trans);
2176 sctp_assoc_sync_pmtu(asoc);
2177 }
2178 } else if (asoc) {
2179 asoc->param_flags =
2180 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2181 } else {
2182 sp->param_flags =
2183 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2184 }
2185 }
2186
2187 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2188 * value of this field is ignored. Note also that a value of zero
2189 * indicates the current setting should be left unchanged.
2190 */
2191 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2192 if (trans) {
2193 trans->sackdelay =
2194 msecs_to_jiffies(params->spp_sackdelay);
2195 } else if (asoc) {
2196 asoc->sackdelay =
2197 msecs_to_jiffies(params->spp_sackdelay);
2198 } else {
2199 sp->sackdelay = params->spp_sackdelay;
2200 }
2201 }
2202
2203 if (sackdelay_change) {
2204 if (trans) {
2205 trans->param_flags =
2206 (trans->param_flags & ~SPP_SACKDELAY) |
2207 sackdelay_change;
2208 } else if (asoc) {
2209 asoc->param_flags =
2210 (asoc->param_flags & ~SPP_SACKDELAY) |
2211 sackdelay_change;
2212 } else {
2213 sp->param_flags =
2214 (sp->param_flags & ~SPP_SACKDELAY) |
2215 sackdelay_change;
2216 }
2217 }
2218
2219 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2220 * of this field is ignored. Note also that a value of zero
2221 * indicates the current setting should be left unchanged.
2222 */
2223 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2224 if (trans) {
2225 trans->pathmaxrxt = params->spp_pathmaxrxt;
2226 } else if (asoc) {
2227 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2228 } else {
2229 sp->pathmaxrxt = params->spp_pathmaxrxt;
2230 }
2231 }
2232
2233 return 0;
2234 }
2235
2236 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2237 char __user *optval, int optlen)
2238 {
2239 struct sctp_paddrparams params;
2240 struct sctp_transport *trans = NULL;
2241 struct sctp_association *asoc = NULL;
2242 struct sctp_sock *sp = sctp_sk(sk);
2243 int error;
2244 int hb_change, pmtud_change, sackdelay_change;
2245
2246 if (optlen != sizeof(struct sctp_paddrparams))
2247 return - EINVAL;
2248
2249 if (copy_from_user(&params, optval, optlen))
2250 return -EFAULT;
2251
2252 /* Validate flags and value parameters. */
2253 hb_change = params.spp_flags & SPP_HB;
2254 pmtud_change = params.spp_flags & SPP_PMTUD;
2255 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2256
2257 if (hb_change == SPP_HB ||
2258 pmtud_change == SPP_PMTUD ||
2259 sackdelay_change == SPP_SACKDELAY ||
2260 params.spp_sackdelay > 500 ||
2261 (params.spp_pathmtu
2262 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2263 return -EINVAL;
2264
2265 /* If an address other than INADDR_ANY is specified, and
2266 * no transport is found, then the request is invalid.
2267 */
2268 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2269 trans = sctp_addr_id2transport(sk, &params.spp_address,
2270 params.spp_assoc_id);
2271 if (!trans)
2272 return -EINVAL;
2273 }
2274
2275 /* Get association, if assoc_id != 0 and the socket is a one
2276 * to many style socket, and an association was not found, then
2277 * the id was invalid.
2278 */
2279 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2280 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2281 return -EINVAL;
2282
2283 /* Heartbeat demand can only be sent on a transport or
2284 * association, but not a socket.
2285 */
2286 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2287 return -EINVAL;
2288
2289 /* Process parameters. */
2290 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2291 hb_change, pmtud_change,
2292 sackdelay_change);
2293
2294 if (error)
2295 return error;
2296
2297 /* If changes are for association, also apply parameters to each
2298 * transport.
2299 */
2300 if (!trans && asoc) {
2301 struct list_head *pos;
2302
2303 list_for_each(pos, &asoc->peer.transport_addr_list) {
2304 trans = list_entry(pos, struct sctp_transport,
2305 transports);
2306 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2307 hb_change, pmtud_change,
2308 sackdelay_change);
2309 }
2310 }
2311
2312 return 0;
2313 }
2314
2315 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2316 *
2317 * This options will get or set the delayed ack timer. The time is set
2318 * in milliseconds. If the assoc_id is 0, then this sets or gets the
2319 * endpoints default delayed ack timer value. If the assoc_id field is
2320 * non-zero, then the set or get effects the specified association.
2321 *
2322 * struct sctp_assoc_value {
2323 * sctp_assoc_t assoc_id;
2324 * uint32_t assoc_value;
2325 * };
2326 *
2327 * assoc_id - This parameter, indicates which association the
2328 * user is preforming an action upon. Note that if
2329 * this field's value is zero then the endpoints
2330 * default value is changed (effecting future
2331 * associations only).
2332 *
2333 * assoc_value - This parameter contains the number of milliseconds
2334 * that the user is requesting the delayed ACK timer
2335 * be set to. Note that this value is defined in
2336 * the standard to be between 200 and 500 milliseconds.
2337 *
2338 * Note: a value of zero will leave the value alone,
2339 * but disable SACK delay. A non-zero value will also
2340 * enable SACK delay.
2341 */
2342
2343 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2344 char __user *optval, int optlen)
2345 {
2346 struct sctp_assoc_value params;
2347 struct sctp_transport *trans = NULL;
2348 struct sctp_association *asoc = NULL;
2349 struct sctp_sock *sp = sctp_sk(sk);
2350
2351 if (optlen != sizeof(struct sctp_assoc_value))
2352 return - EINVAL;
2353
2354 if (copy_from_user(&params, optval, optlen))
2355 return -EFAULT;
2356
2357 /* Validate value parameter. */
2358 if (params.assoc_value > 500)
2359 return -EINVAL;
2360
2361 /* Get association, if assoc_id != 0 and the socket is a one
2362 * to many style socket, and an association was not found, then
2363 * the id was invalid.
2364 */
2365 asoc = sctp_id2assoc(sk, params.assoc_id);
2366 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2367 return -EINVAL;
2368
2369 if (params.assoc_value) {
2370 if (asoc) {
2371 asoc->sackdelay =
2372 msecs_to_jiffies(params.assoc_value);
2373 asoc->param_flags =
2374 (asoc->param_flags & ~SPP_SACKDELAY) |
2375 SPP_SACKDELAY_ENABLE;
2376 } else {
2377 sp->sackdelay = params.assoc_value;
2378 sp->param_flags =
2379 (sp->param_flags & ~SPP_SACKDELAY) |
2380 SPP_SACKDELAY_ENABLE;
2381 }
2382 } else {
2383 if (asoc) {
2384 asoc->param_flags =
2385 (asoc->param_flags & ~SPP_SACKDELAY) |
2386 SPP_SACKDELAY_DISABLE;
2387 } else {
2388 sp->param_flags =
2389 (sp->param_flags & ~SPP_SACKDELAY) |
2390 SPP_SACKDELAY_DISABLE;
2391 }
2392 }
2393
2394 /* If change is for association, also apply to each transport. */
2395 if (asoc) {
2396 struct list_head *pos;
2397
2398 list_for_each(pos, &asoc->peer.transport_addr_list) {
2399 trans = list_entry(pos, struct sctp_transport,
2400 transports);
2401 if (params.assoc_value) {
2402 trans->sackdelay =
2403 msecs_to_jiffies(params.assoc_value);
2404 trans->param_flags =
2405 (trans->param_flags & ~SPP_SACKDELAY) |
2406 SPP_SACKDELAY_ENABLE;
2407 } else {
2408 trans->param_flags =
2409 (trans->param_flags & ~SPP_SACKDELAY) |
2410 SPP_SACKDELAY_DISABLE;
2411 }
2412 }
2413 }
2414
2415 return 0;
2416 }
2417
2418 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2419 *
2420 * Applications can specify protocol parameters for the default association
2421 * initialization. The option name argument to setsockopt() and getsockopt()
2422 * is SCTP_INITMSG.
2423 *
2424 * Setting initialization parameters is effective only on an unconnected
2425 * socket (for UDP-style sockets only future associations are effected
2426 * by the change). With TCP-style sockets, this option is inherited by
2427 * sockets derived from a listener socket.
2428 */
2429 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2430 {
2431 struct sctp_initmsg sinit;
2432 struct sctp_sock *sp = sctp_sk(sk);
2433
2434 if (optlen != sizeof(struct sctp_initmsg))
2435 return -EINVAL;
2436 if (copy_from_user(&sinit, optval, optlen))
2437 return -EFAULT;
2438
2439 if (sinit.sinit_num_ostreams)
2440 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2441 if (sinit.sinit_max_instreams)
2442 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2443 if (sinit.sinit_max_attempts)
2444 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2445 if (sinit.sinit_max_init_timeo)
2446 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2447
2448 return 0;
2449 }
2450
2451 /*
2452 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2453 *
2454 * Applications that wish to use the sendto() system call may wish to
2455 * specify a default set of parameters that would normally be supplied
2456 * through the inclusion of ancillary data. This socket option allows
2457 * such an application to set the default sctp_sndrcvinfo structure.
2458 * The application that wishes to use this socket option simply passes
2459 * in to this call the sctp_sndrcvinfo structure defined in Section
2460 * 5.2.2) The input parameters accepted by this call include
2461 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2462 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2463 * to this call if the caller is using the UDP model.
2464 */
2465 static int sctp_setsockopt_default_send_param(struct sock *sk,
2466 char __user *optval, int optlen)
2467 {
2468 struct sctp_sndrcvinfo info;
2469 struct sctp_association *asoc;
2470 struct sctp_sock *sp = sctp_sk(sk);
2471
2472 if (optlen != sizeof(struct sctp_sndrcvinfo))
2473 return -EINVAL;
2474 if (copy_from_user(&info, optval, optlen))
2475 return -EFAULT;
2476
2477 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2478 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2479 return -EINVAL;
2480
2481 if (asoc) {
2482 asoc->default_stream = info.sinfo_stream;
2483 asoc->default_flags = info.sinfo_flags;
2484 asoc->default_ppid = info.sinfo_ppid;
2485 asoc->default_context = info.sinfo_context;
2486 asoc->default_timetolive = info.sinfo_timetolive;
2487 } else {
2488 sp->default_stream = info.sinfo_stream;
2489 sp->default_flags = info.sinfo_flags;
2490 sp->default_ppid = info.sinfo_ppid;
2491 sp->default_context = info.sinfo_context;
2492 sp->default_timetolive = info.sinfo_timetolive;
2493 }
2494
2495 return 0;
2496 }
2497
2498 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2499 *
2500 * Requests that the local SCTP stack use the enclosed peer address as
2501 * the association primary. The enclosed address must be one of the
2502 * association peer's addresses.
2503 */
2504 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2505 int optlen)
2506 {
2507 struct sctp_prim prim;
2508 struct sctp_transport *trans;
2509
2510 if (optlen != sizeof(struct sctp_prim))
2511 return -EINVAL;
2512
2513 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2514 return -EFAULT;
2515
2516 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2517 if (!trans)
2518 return -EINVAL;
2519
2520 sctp_assoc_set_primary(trans->asoc, trans);
2521
2522 return 0;
2523 }
2524
2525 /*
2526 * 7.1.5 SCTP_NODELAY
2527 *
2528 * Turn on/off any Nagle-like algorithm. This means that packets are
2529 * generally sent as soon as possible and no unnecessary delays are
2530 * introduced, at the cost of more packets in the network. Expects an
2531 * integer boolean flag.
2532 */
2533 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2534 int optlen)
2535 {
2536 int val;
2537
2538 if (optlen < sizeof(int))
2539 return -EINVAL;
2540 if (get_user(val, (int __user *)optval))
2541 return -EFAULT;
2542
2543 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2544 return 0;
2545 }
2546
2547 /*
2548 *
2549 * 7.1.1 SCTP_RTOINFO
2550 *
2551 * The protocol parameters used to initialize and bound retransmission
2552 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2553 * and modify these parameters.
2554 * All parameters are time values, in milliseconds. A value of 0, when
2555 * modifying the parameters, indicates that the current value should not
2556 * be changed.
2557 *
2558 */
2559 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2560 struct sctp_rtoinfo rtoinfo;
2561 struct sctp_association *asoc;
2562
2563 if (optlen != sizeof (struct sctp_rtoinfo))
2564 return -EINVAL;
2565
2566 if (copy_from_user(&rtoinfo, optval, optlen))
2567 return -EFAULT;
2568
2569 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2570
2571 /* Set the values to the specific association */
2572 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2573 return -EINVAL;
2574
2575 if (asoc) {
2576 if (rtoinfo.srto_initial != 0)
2577 asoc->rto_initial =
2578 msecs_to_jiffies(rtoinfo.srto_initial);
2579 if (rtoinfo.srto_max != 0)
2580 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2581 if (rtoinfo.srto_min != 0)
2582 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2583 } else {
2584 /* If there is no association or the association-id = 0
2585 * set the values to the endpoint.
2586 */
2587 struct sctp_sock *sp = sctp_sk(sk);
2588
2589 if (rtoinfo.srto_initial != 0)
2590 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2591 if (rtoinfo.srto_max != 0)
2592 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2593 if (rtoinfo.srto_min != 0)
2594 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2595 }
2596
2597 return 0;
2598 }
2599
2600 /*
2601 *
2602 * 7.1.2 SCTP_ASSOCINFO
2603 *
2604 * This option is used to tune the maximum retransmission attempts
2605 * of the association.
2606 * Returns an error if the new association retransmission value is
2607 * greater than the sum of the retransmission value of the peer.
2608 * See [SCTP] for more information.
2609 *
2610 */
2611 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2612 {
2613
2614 struct sctp_assocparams assocparams;
2615 struct sctp_association *asoc;
2616
2617 if (optlen != sizeof(struct sctp_assocparams))
2618 return -EINVAL;
2619 if (copy_from_user(&assocparams, optval, optlen))
2620 return -EFAULT;
2621
2622 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2623
2624 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2625 return -EINVAL;
2626
2627 /* Set the values to the specific association */
2628 if (asoc) {
2629 if (assocparams.sasoc_asocmaxrxt != 0) {
2630 __u32 path_sum = 0;
2631 int paths = 0;
2632 struct list_head *pos;
2633 struct sctp_transport *peer_addr;
2634
2635 list_for_each(pos, &asoc->peer.transport_addr_list) {
2636 peer_addr = list_entry(pos,
2637 struct sctp_transport,
2638 transports);
2639 path_sum += peer_addr->pathmaxrxt;
2640 paths++;
2641 }
2642
2643 /* Only validate asocmaxrxt if we have more then
2644 * one path/transport. We do this because path
2645 * retransmissions are only counted when we have more
2646 * then one path.
2647 */
2648 if (paths > 1 &&
2649 assocparams.sasoc_asocmaxrxt > path_sum)
2650 return -EINVAL;
2651
2652 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2653 }
2654
2655 if (assocparams.sasoc_cookie_life != 0) {
2656 asoc->cookie_life.tv_sec =
2657 assocparams.sasoc_cookie_life / 1000;
2658 asoc->cookie_life.tv_usec =
2659 (assocparams.sasoc_cookie_life % 1000)
2660 * 1000;
2661 }
2662 } else {
2663 /* Set the values to the endpoint */
2664 struct sctp_sock *sp = sctp_sk(sk);
2665
2666 if (assocparams.sasoc_asocmaxrxt != 0)
2667 sp->assocparams.sasoc_asocmaxrxt =
2668 assocparams.sasoc_asocmaxrxt;
2669 if (assocparams.sasoc_cookie_life != 0)
2670 sp->assocparams.sasoc_cookie_life =
2671 assocparams.sasoc_cookie_life;
2672 }
2673 return 0;
2674 }
2675
2676 /*
2677 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2678 *
2679 * This socket option is a boolean flag which turns on or off mapped V4
2680 * addresses. If this option is turned on and the socket is type
2681 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2682 * If this option is turned off, then no mapping will be done of V4
2683 * addresses and a user will receive both PF_INET6 and PF_INET type
2684 * addresses on the socket.
2685 */
2686 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2687 {
2688 int val;
2689 struct sctp_sock *sp = sctp_sk(sk);
2690
2691 if (optlen < sizeof(int))
2692 return -EINVAL;
2693 if (get_user(val, (int __user *)optval))
2694 return -EFAULT;
2695 if (val)
2696 sp->v4mapped = 1;
2697 else
2698 sp->v4mapped = 0;
2699
2700 return 0;
2701 }
2702
2703 /*
2704 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2705 *
2706 * This socket option specifies the maximum size to put in any outgoing
2707 * SCTP chunk. If a message is larger than this size it will be
2708 * fragmented by SCTP into the specified size. Note that the underlying
2709 * SCTP implementation may fragment into smaller sized chunks when the
2710 * PMTU of the underlying association is smaller than the value set by
2711 * the user.
2712 */
2713 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2714 {
2715 struct sctp_association *asoc;
2716 struct list_head *pos;
2717 struct sctp_sock *sp = sctp_sk(sk);
2718 int val;
2719
2720 if (optlen < sizeof(int))
2721 return -EINVAL;
2722 if (get_user(val, (int __user *)optval))
2723 return -EFAULT;
2724 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2725 return -EINVAL;
2726 sp->user_frag = val;
2727
2728 /* Update the frag_point of the existing associations. */
2729 list_for_each(pos, &(sp->ep->asocs)) {
2730 asoc = list_entry(pos, struct sctp_association, asocs);
2731 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2732 }
2733
2734 return 0;
2735 }
2736
2737
2738 /*
2739 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2740 *
2741 * Requests that the peer mark the enclosed address as the association
2742 * primary. The enclosed address must be one of the association's
2743 * locally bound addresses. The following structure is used to make a
2744 * set primary request:
2745 */
2746 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2747 int optlen)
2748 {
2749 struct sctp_sock *sp;
2750 struct sctp_endpoint *ep;
2751 struct sctp_association *asoc = NULL;
2752 struct sctp_setpeerprim prim;
2753 struct sctp_chunk *chunk;
2754 int err;
2755
2756 sp = sctp_sk(sk);
2757 ep = sp->ep;
2758
2759 if (!sctp_addip_enable)
2760 return -EPERM;
2761
2762 if (optlen != sizeof(struct sctp_setpeerprim))
2763 return -EINVAL;
2764
2765 if (copy_from_user(&prim, optval, optlen))
2766 return -EFAULT;
2767
2768 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2769 if (!asoc)
2770 return -EINVAL;
2771
2772 if (!asoc->peer.asconf_capable)
2773 return -EPERM;
2774
2775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2776 return -EPERM;
2777
2778 if (!sctp_state(asoc, ESTABLISHED))
2779 return -ENOTCONN;
2780
2781 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2782 return -EADDRNOTAVAIL;
2783
2784 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2785 chunk = sctp_make_asconf_set_prim(asoc,
2786 (union sctp_addr *)&prim.sspp_addr);
2787 if (!chunk)
2788 return -ENOMEM;
2789
2790 err = sctp_send_asconf(asoc, chunk);
2791
2792 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2793
2794 return err;
2795 }
2796
2797 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2798 int optlen)
2799 {
2800 struct sctp_setadaptation adaptation;
2801
2802 if (optlen != sizeof(struct sctp_setadaptation))
2803 return -EINVAL;
2804 if (copy_from_user(&adaptation, optval, optlen))
2805 return -EFAULT;
2806
2807 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2808
2809 return 0;
2810 }
2811
2812 /*
2813 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
2814 *
2815 * The context field in the sctp_sndrcvinfo structure is normally only
2816 * used when a failed message is retrieved holding the value that was
2817 * sent down on the actual send call. This option allows the setting of
2818 * a default context on an association basis that will be received on
2819 * reading messages from the peer. This is especially helpful in the
2820 * one-2-many model for an application to keep some reference to an
2821 * internal state machine that is processing messages on the
2822 * association. Note that the setting of this value only effects
2823 * received messages from the peer and does not effect the value that is
2824 * saved with outbound messages.
2825 */
2826 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2827 int optlen)
2828 {
2829 struct sctp_assoc_value params;
2830 struct sctp_sock *sp;
2831 struct sctp_association *asoc;
2832
2833 if (optlen != sizeof(struct sctp_assoc_value))
2834 return -EINVAL;
2835 if (copy_from_user(&params, optval, optlen))
2836 return -EFAULT;
2837
2838 sp = sctp_sk(sk);
2839
2840 if (params.assoc_id != 0) {
2841 asoc = sctp_id2assoc(sk, params.assoc_id);
2842 if (!asoc)
2843 return -EINVAL;
2844 asoc->default_rcv_context = params.assoc_value;
2845 } else {
2846 sp->default_rcv_context = params.assoc_value;
2847 }
2848
2849 return 0;
2850 }
2851
2852 /*
2853 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2854 *
2855 * This options will at a minimum specify if the implementation is doing
2856 * fragmented interleave. Fragmented interleave, for a one to many
2857 * socket, is when subsequent calls to receive a message may return
2858 * parts of messages from different associations. Some implementations
2859 * may allow you to turn this value on or off. If so, when turned off,
2860 * no fragment interleave will occur (which will cause a head of line
2861 * blocking amongst multiple associations sharing the same one to many
2862 * socket). When this option is turned on, then each receive call may
2863 * come from a different association (thus the user must receive data
2864 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2865 * association each receive belongs to.
2866 *
2867 * This option takes a boolean value. A non-zero value indicates that
2868 * fragmented interleave is on. A value of zero indicates that
2869 * fragmented interleave is off.
2870 *
2871 * Note that it is important that an implementation that allows this
2872 * option to be turned on, have it off by default. Otherwise an unaware
2873 * application using the one to many model may become confused and act
2874 * incorrectly.
2875 */
2876 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2877 char __user *optval,
2878 int optlen)
2879 {
2880 int val;
2881
2882 if (optlen != sizeof(int))
2883 return -EINVAL;
2884 if (get_user(val, (int __user *)optval))
2885 return -EFAULT;
2886
2887 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2888
2889 return 0;
2890 }
2891
2892 /*
2893 * 7.1.25. Set or Get the sctp partial delivery point
2894 * (SCTP_PARTIAL_DELIVERY_POINT)
2895 * This option will set or get the SCTP partial delivery point. This
2896 * point is the size of a message where the partial delivery API will be
2897 * invoked to help free up rwnd space for the peer. Setting this to a
2898 * lower value will cause partial delivery's to happen more often. The
2899 * calls argument is an integer that sets or gets the partial delivery
2900 * point.
2901 */
2902 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2903 char __user *optval,
2904 int optlen)
2905 {
2906 u32 val;
2907
2908 if (optlen != sizeof(u32))
2909 return -EINVAL;
2910 if (get_user(val, (int __user *)optval))
2911 return -EFAULT;
2912
2913 sctp_sk(sk)->pd_point = val;
2914
2915 return 0; /* is this the right error code? */
2916 }
2917
2918 /*
2919 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
2920 *
2921 * This option will allow a user to change the maximum burst of packets
2922 * that can be emitted by this association. Note that the default value
2923 * is 4, and some implementations may restrict this setting so that it
2924 * can only be lowered.
2925 *
2926 * NOTE: This text doesn't seem right. Do this on a socket basis with
2927 * future associations inheriting the socket value.
2928 */
2929 static int sctp_setsockopt_maxburst(struct sock *sk,
2930 char __user *optval,
2931 int optlen)
2932 {
2933 int val;
2934
2935 if (optlen != sizeof(int))
2936 return -EINVAL;
2937 if (get_user(val, (int __user *)optval))
2938 return -EFAULT;
2939
2940 if (val < 0)
2941 return -EINVAL;
2942
2943 sctp_sk(sk)->max_burst = val;
2944
2945 return 0;
2946 }
2947
2948 /* API 6.2 setsockopt(), getsockopt()
2949 *
2950 * Applications use setsockopt() and getsockopt() to set or retrieve
2951 * socket options. Socket options are used to change the default
2952 * behavior of sockets calls. They are described in Section 7.
2953 *
2954 * The syntax is:
2955 *
2956 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
2957 * int __user *optlen);
2958 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2959 * int optlen);
2960 *
2961 * sd - the socket descript.
2962 * level - set to IPPROTO_SCTP for all SCTP options.
2963 * optname - the option name.
2964 * optval - the buffer to store the value of the option.
2965 * optlen - the size of the buffer.
2966 */
2967 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2968 char __user *optval, int optlen)
2969 {
2970 int retval = 0;
2971
2972 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2973 sk, optname);
2974
2975 /* I can hardly begin to describe how wrong this is. This is
2976 * so broken as to be worse than useless. The API draft
2977 * REALLY is NOT helpful here... I am not convinced that the
2978 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2979 * are at all well-founded.
2980 */
2981 if (level != SOL_SCTP) {
2982 struct sctp_af *af = sctp_sk(sk)->pf->af;
2983 retval = af->setsockopt(sk, level, optname, optval, optlen);
2984 goto out_nounlock;
2985 }
2986
2987 sctp_lock_sock(sk);
2988
2989 switch (optname) {
2990 case SCTP_SOCKOPT_BINDX_ADD:
2991 /* 'optlen' is the size of the addresses buffer. */
2992 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2993 optlen, SCTP_BINDX_ADD_ADDR);
2994 break;
2995
2996 case SCTP_SOCKOPT_BINDX_REM:
2997 /* 'optlen' is the size of the addresses buffer. */
2998 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2999 optlen, SCTP_BINDX_REM_ADDR);
3000 break;
3001
3002 case SCTP_SOCKOPT_CONNECTX:
3003 /* 'optlen' is the size of the addresses buffer. */
3004 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
3005 optlen);
3006 break;
3007
3008 case SCTP_DISABLE_FRAGMENTS:
3009 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3010 break;
3011
3012 case SCTP_EVENTS:
3013 retval = sctp_setsockopt_events(sk, optval, optlen);
3014 break;
3015
3016 case SCTP_AUTOCLOSE:
3017 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3018 break;
3019
3020 case SCTP_PEER_ADDR_PARAMS:
3021 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3022 break;
3023
3024 case SCTP_DELAYED_ACK_TIME:
3025 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
3026 break;
3027 case SCTP_PARTIAL_DELIVERY_POINT:
3028 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3029 break;
3030
3031 case SCTP_INITMSG:
3032 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3033 break;
3034 case SCTP_DEFAULT_SEND_PARAM:
3035 retval = sctp_setsockopt_default_send_param(sk, optval,
3036 optlen);
3037 break;
3038 case SCTP_PRIMARY_ADDR:
3039 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3040 break;
3041 case SCTP_SET_PEER_PRIMARY_ADDR:
3042 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3043 break;
3044 case SCTP_NODELAY:
3045 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3046 break;
3047 case SCTP_RTOINFO:
3048 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3049 break;
3050 case SCTP_ASSOCINFO:
3051 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3052 break;
3053 case SCTP_I_WANT_MAPPED_V4_ADDR:
3054 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3055 break;
3056 case SCTP_MAXSEG:
3057 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3058 break;
3059 case SCTP_ADAPTATION_LAYER:
3060 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3061 break;
3062 case SCTP_CONTEXT:
3063 retval = sctp_setsockopt_context(sk, optval, optlen);
3064 break;
3065 case SCTP_FRAGMENT_INTERLEAVE:
3066 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3067 break;
3068 case SCTP_MAX_BURST:
3069 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3070 break;
3071 default:
3072 retval = -ENOPROTOOPT;
3073 break;
3074 }
3075
3076 sctp_release_sock(sk);
3077
3078 out_nounlock:
3079 return retval;
3080 }
3081
3082 /* API 3.1.6 connect() - UDP Style Syntax
3083 *
3084 * An application may use the connect() call in the UDP model to initiate an
3085 * association without sending data.
3086 *
3087 * The syntax is:
3088 *
3089 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3090 *
3091 * sd: the socket descriptor to have a new association added to.
3092 *
3093 * nam: the address structure (either struct sockaddr_in or struct
3094 * sockaddr_in6 defined in RFC2553 [7]).
3095 *
3096 * len: the size of the address.
3097 */
3098 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3099 int addr_len)
3100 {
3101 int err = 0;
3102 struct sctp_af *af;
3103
3104 sctp_lock_sock(sk);
3105
3106 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3107 __FUNCTION__, sk, addr, addr_len);
3108
3109 /* Validate addr_len before calling common connect/connectx routine. */
3110 af = sctp_get_af_specific(addr->sa_family);
3111 if (!af || addr_len < af->sockaddr_len) {
3112 err = -EINVAL;
3113 } else {
3114 /* Pass correct addr len to common routine (so it knows there
3115 * is only one address being passed.
3116 */
3117 err = __sctp_connect(sk, addr, af->sockaddr_len);
3118 }
3119
3120 sctp_release_sock(sk);
3121 return err;
3122 }
3123
3124 /* FIXME: Write comments. */
3125 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3126 {
3127 return -EOPNOTSUPP; /* STUB */
3128 }
3129
3130 /* 4.1.4 accept() - TCP Style Syntax
3131 *
3132 * Applications use accept() call to remove an established SCTP
3133 * association from the accept queue of the endpoint. A new socket
3134 * descriptor will be returned from accept() to represent the newly
3135 * formed association.
3136 */
3137 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3138 {
3139 struct sctp_sock *sp;
3140 struct sctp_endpoint *ep;
3141 struct sock *newsk = NULL;
3142 struct sctp_association *asoc;
3143 long timeo;
3144 int error = 0;
3145
3146 sctp_lock_sock(sk);
3147
3148 sp = sctp_sk(sk);
3149 ep = sp->ep;
3150
3151 if (!sctp_style(sk, TCP)) {
3152 error = -EOPNOTSUPP;
3153 goto out;
3154 }
3155
3156 if (!sctp_sstate(sk, LISTENING)) {
3157 error = -EINVAL;
3158 goto out;
3159 }
3160
3161 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3162
3163 error = sctp_wait_for_accept(sk, timeo);
3164 if (error)
3165 goto out;
3166
3167 /* We treat the list of associations on the endpoint as the accept
3168 * queue and pick the first association on the list.
3169 */
3170 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3171
3172 newsk = sp->pf->create_accept_sk(sk, asoc);
3173 if (!newsk) {
3174 error = -ENOMEM;
3175 goto out;
3176 }
3177
3178 /* Populate the fields of the newsk from the oldsk and migrate the
3179 * asoc to the newsk.
3180 */
3181 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3182
3183 out:
3184 sctp_release_sock(sk);
3185 *err = error;
3186 return newsk;
3187 }
3188
3189 /* The SCTP ioctl handler. */
3190 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3191 {
3192 return -ENOIOCTLCMD;
3193 }
3194
3195 /* This is the function which gets called during socket creation to
3196 * initialized the SCTP-specific portion of the sock.
3197 * The sock structure should already be zero-filled memory.
3198 */
3199 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3200 {
3201 struct sctp_endpoint *ep;
3202 struct sctp_sock *sp;
3203
3204 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3205
3206 sp = sctp_sk(sk);
3207
3208 /* Initialize the SCTP per socket area. */
3209 switch (sk->sk_type) {
3210 case SOCK_SEQPACKET:
3211 sp->type = SCTP_SOCKET_UDP;
3212 break;
3213 case SOCK_STREAM:
3214 sp->type = SCTP_SOCKET_TCP;
3215 break;
3216 default:
3217 return -ESOCKTNOSUPPORT;
3218 }
3219
3220 /* Initialize default send parameters. These parameters can be
3221 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3222 */
3223 sp->default_stream = 0;
3224 sp->default_ppid = 0;
3225 sp->default_flags = 0;
3226 sp->default_context = 0;
3227 sp->default_timetolive = 0;
3228
3229 sp->default_rcv_context = 0;
3230 sp->max_burst = sctp_max_burst;
3231
3232 /* Initialize default setup parameters. These parameters
3233 * can be modified with the SCTP_INITMSG socket option or
3234 * overridden by the SCTP_INIT CMSG.
3235 */
3236 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3237 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3238 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3239 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3240
3241 /* Initialize default RTO related parameters. These parameters can
3242 * be modified for with the SCTP_RTOINFO socket option.
3243 */
3244 sp->rtoinfo.srto_initial = sctp_rto_initial;
3245 sp->rtoinfo.srto_max = sctp_rto_max;
3246 sp->rtoinfo.srto_min = sctp_rto_min;
3247
3248 /* Initialize default association related parameters. These parameters
3249 * can be modified with the SCTP_ASSOCINFO socket option.
3250 */
3251 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3252 sp->assocparams.sasoc_number_peer_destinations = 0;
3253 sp->assocparams.sasoc_peer_rwnd = 0;
3254 sp->assocparams.sasoc_local_rwnd = 0;
3255 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3256
3257 /* Initialize default event subscriptions. By default, all the
3258 * options are off.
3259 */
3260 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3261
3262 /* Default Peer Address Parameters. These defaults can
3263 * be modified via SCTP_PEER_ADDR_PARAMS
3264 */
3265 sp->hbinterval = sctp_hb_interval;
3266 sp->pathmaxrxt = sctp_max_retrans_path;
3267 sp->pathmtu = 0; // allow default discovery
3268 sp->sackdelay = sctp_sack_timeout;
3269 sp->param_flags = SPP_HB_ENABLE |
3270 SPP_PMTUD_ENABLE |
3271 SPP_SACKDELAY_ENABLE;
3272
3273 /* If enabled no SCTP message fragmentation will be performed.
3274 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3275 */
3276 sp->disable_fragments = 0;
3277
3278 /* Enable Nagle algorithm by default. */
3279 sp->nodelay = 0;
3280
3281 /* Enable by default. */
3282 sp->v4mapped = 1;
3283
3284 /* Auto-close idle associations after the configured
3285 * number of seconds. A value of 0 disables this
3286 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3287 * for UDP-style sockets only.
3288 */
3289 sp->autoclose = 0;
3290
3291 /* User specified fragmentation limit. */
3292 sp->user_frag = 0;
3293
3294 sp->adaptation_ind = 0;
3295
3296 sp->pf = sctp_get_pf_specific(sk->sk_family);
3297
3298 /* Control variables for partial data delivery. */
3299 atomic_set(&sp->pd_mode, 0);
3300 skb_queue_head_init(&sp->pd_lobby);
3301 sp->frag_interleave = 0;
3302
3303 /* Create a per socket endpoint structure. Even if we
3304 * change the data structure relationships, this may still
3305 * be useful for storing pre-connect address information.
3306 */
3307 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3308 if (!ep)
3309 return -ENOMEM;
3310
3311 sp->ep = ep;
3312 sp->hmac = NULL;
3313
3314 SCTP_DBG_OBJCNT_INC(sock);
3315 return 0;
3316 }
3317
3318 /* Cleanup any SCTP per socket resources. */
3319 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3320 {
3321 struct sctp_endpoint *ep;
3322
3323 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3324
3325 /* Release our hold on the endpoint. */
3326 ep = sctp_sk(sk)->ep;
3327 sctp_endpoint_free(ep);
3328
3329 return 0;
3330 }
3331
3332 /* API 4.1.7 shutdown() - TCP Style Syntax
3333 * int shutdown(int socket, int how);
3334 *
3335 * sd - the socket descriptor of the association to be closed.
3336 * how - Specifies the type of shutdown. The values are
3337 * as follows:
3338 * SHUT_RD
3339 * Disables further receive operations. No SCTP
3340 * protocol action is taken.
3341 * SHUT_WR
3342 * Disables further send operations, and initiates
3343 * the SCTP shutdown sequence.
3344 * SHUT_RDWR
3345 * Disables further send and receive operations
3346 * and initiates the SCTP shutdown sequence.
3347 */
3348 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3349 {
3350 struct sctp_endpoint *ep;
3351 struct sctp_association *asoc;
3352
3353 if (!sctp_style(sk, TCP))
3354 return;
3355
3356 if (how & SEND_SHUTDOWN) {
3357 ep = sctp_sk(sk)->ep;
3358 if (!list_empty(&ep->asocs)) {
3359 asoc = list_entry(ep->asocs.next,
3360 struct sctp_association, asocs);
3361 sctp_primitive_SHUTDOWN(asoc, NULL);
3362 }
3363 }
3364 }
3365
3366 /* 7.2.1 Association Status (SCTP_STATUS)
3367
3368 * Applications can retrieve current status information about an
3369 * association, including association state, peer receiver window size,
3370 * number of unacked data chunks, and number of data chunks pending
3371 * receipt. This information is read-only.
3372 */
3373 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3374 char __user *optval,
3375 int __user *optlen)
3376 {
3377 struct sctp_status status;
3378 struct sctp_association *asoc = NULL;
3379 struct sctp_transport *transport;
3380 sctp_assoc_t associd;
3381 int retval = 0;
3382
3383 if (len < sizeof(status)) {
3384 retval = -EINVAL;
3385 goto out;
3386 }
3387
3388 len = sizeof(status);
3389 if (copy_from_user(&status, optval, len)) {
3390 retval = -EFAULT;
3391 goto out;
3392 }
3393
3394 associd = status.sstat_assoc_id;
3395 asoc = sctp_id2assoc(sk, associd);
3396 if (!asoc) {
3397 retval = -EINVAL;
3398 goto out;
3399 }
3400
3401 transport = asoc->peer.primary_path;
3402
3403 status.sstat_assoc_id = sctp_assoc2id(asoc);
3404 status.sstat_state = asoc->state;
3405 status.sstat_rwnd = asoc->peer.rwnd;
3406 status.sstat_unackdata = asoc->unack_data;
3407
3408 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3409 status.sstat_instrms = asoc->c.sinit_max_instreams;
3410 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3411 status.sstat_fragmentation_point = asoc->frag_point;
3412 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3413 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3414 transport->af_specific->sockaddr_len);
3415 /* Map ipv4 address into v4-mapped-on-v6 address. */
3416 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3417 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3418 status.sstat_primary.spinfo_state = transport->state;
3419 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3420 status.sstat_primary.spinfo_srtt = transport->srtt;
3421 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3422 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3423
3424 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3425 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3426
3427 if (put_user(len, optlen)) {
3428 retval = -EFAULT;
3429 goto out;
3430 }
3431
3432 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3433 len, status.sstat_state, status.sstat_rwnd,
3434 status.sstat_assoc_id);
3435
3436 if (copy_to_user(optval, &status, len)) {
3437 retval = -EFAULT;
3438 goto out;
3439 }
3440
3441 out:
3442 return (retval);
3443 }
3444
3445
3446 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3447 *
3448 * Applications can retrieve information about a specific peer address
3449 * of an association, including its reachability state, congestion
3450 * window, and retransmission timer values. This information is
3451 * read-only.
3452 */
3453 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3454 char __user *optval,
3455 int __user *optlen)
3456 {
3457 struct sctp_paddrinfo pinfo;
3458 struct sctp_transport *transport;
3459 int retval = 0;
3460
3461 if (len < sizeof(pinfo)) {
3462 retval = -EINVAL;
3463 goto out;
3464 }
3465
3466 len = sizeof(pinfo);
3467 if (copy_from_user(&pinfo, optval, len)) {
3468 retval = -EFAULT;
3469 goto out;
3470 }
3471
3472 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3473 pinfo.spinfo_assoc_id);
3474 if (!transport)
3475 return -EINVAL;
3476
3477 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3478 pinfo.spinfo_state = transport->state;
3479 pinfo.spinfo_cwnd = transport->cwnd;
3480 pinfo.spinfo_srtt = transport->srtt;
3481 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3482 pinfo.spinfo_mtu = transport->pathmtu;
3483
3484 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3485 pinfo.spinfo_state = SCTP_ACTIVE;
3486
3487 if (put_user(len, optlen)) {
3488 retval = -EFAULT;
3489 goto out;
3490 }
3491
3492 if (copy_to_user(optval, &pinfo, len)) {
3493 retval = -EFAULT;
3494 goto out;
3495 }
3496
3497 out:
3498 return (retval);
3499 }
3500
3501 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3502 *
3503 * This option is a on/off flag. If enabled no SCTP message
3504 * fragmentation will be performed. Instead if a message being sent
3505 * exceeds the current PMTU size, the message will NOT be sent and
3506 * instead a error will be indicated to the user.
3507 */
3508 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3509 char __user *optval, int __user *optlen)
3510 {
3511 int val;
3512
3513 if (len < sizeof(int))
3514 return -EINVAL;
3515
3516 len = sizeof(int);
3517 val = (sctp_sk(sk)->disable_fragments == 1);
3518 if (put_user(len, optlen))
3519 return -EFAULT;
3520 if (copy_to_user(optval, &val, len))
3521 return -EFAULT;
3522 return 0;
3523 }
3524
3525 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3526 *
3527 * This socket option is used to specify various notifications and
3528 * ancillary data the user wishes to receive.
3529 */
3530 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3531 int __user *optlen)
3532 {
3533 if (len < sizeof(struct sctp_event_subscribe))
3534 return -EINVAL;
3535 len = sizeof(struct sctp_event_subscribe);
3536 if (put_user(len, optlen))
3537 return -EFAULT;
3538 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3539 return -EFAULT;
3540 return 0;
3541 }
3542
3543 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3544 *
3545 * This socket option is applicable to the UDP-style socket only. When
3546 * set it will cause associations that are idle for more than the
3547 * specified number of seconds to automatically close. An association
3548 * being idle is defined an association that has NOT sent or received
3549 * user data. The special value of '0' indicates that no automatic
3550 * close of any associations should be performed. The option expects an
3551 * integer defining the number of seconds of idle time before an
3552 * association is closed.
3553 */
3554 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3555 {
3556 /* Applicable to UDP-style socket only */
3557 if (sctp_style(sk, TCP))
3558 return -EOPNOTSUPP;
3559 if (len < sizeof(int))
3560 return -EINVAL;
3561 len = sizeof(int);
3562 if (put_user(len, optlen))
3563 return -EFAULT;
3564 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3565 return -EFAULT;
3566 return 0;
3567 }
3568
3569 /* Helper routine to branch off an association to a new socket. */
3570 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3571 struct socket **sockp)
3572 {
3573 struct sock *sk = asoc->base.sk;
3574 struct socket *sock;
3575 struct inet_sock *inetsk;
3576 struct sctp_af *af;
3577 int err = 0;
3578
3579 /* An association cannot be branched off from an already peeled-off
3580 * socket, nor is this supported for tcp style sockets.
3581 */
3582 if (!sctp_style(sk, UDP))
3583 return -EINVAL;
3584
3585 /* Create a new socket. */
3586 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3587 if (err < 0)
3588 return err;
3589
3590 /* Populate the fields of the newsk from the oldsk and migrate the
3591 * asoc to the newsk.
3592 */
3593 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3594
3595 /* Make peeled-off sockets more like 1-1 accepted sockets.
3596 * Set the daddr and initialize id to something more random
3597 */
3598 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3599 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3600 inetsk = inet_sk(sock->sk);
3601 inetsk->id = asoc->next_tsn ^ jiffies;
3602
3603 *sockp = sock;
3604
3605 return err;
3606 }
3607
3608 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3609 {
3610 sctp_peeloff_arg_t peeloff;
3611 struct socket *newsock;
3612 int retval = 0;
3613 struct sctp_association *asoc;
3614
3615 if (len < sizeof(sctp_peeloff_arg_t))
3616 return -EINVAL;
3617 len = sizeof(sctp_peeloff_arg_t);
3618 if (copy_from_user(&peeloff, optval, len))
3619 return -EFAULT;
3620
3621 asoc = sctp_id2assoc(sk, peeloff.associd);
3622 if (!asoc) {
3623 retval = -EINVAL;
3624 goto out;
3625 }
3626
3627 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3628
3629 retval = sctp_do_peeloff(asoc, &newsock);
3630 if (retval < 0)
3631 goto out;
3632
3633 /* Map the socket to an unused fd that can be returned to the user. */
3634 retval = sock_map_fd(newsock);
3635 if (retval < 0) {
3636 sock_release(newsock);
3637 goto out;
3638 }
3639
3640 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3641 __FUNCTION__, sk, asoc, newsock->sk, retval);
3642
3643 /* Return the fd mapped to the new socket. */
3644 peeloff.sd = retval;
3645 if (put_user(len, optlen))
3646 return -EFAULT;
3647 if (copy_to_user(optval, &peeloff, len))
3648 retval = -EFAULT;
3649
3650 out:
3651 return retval;
3652 }
3653
3654 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3655 *
3656 * Applications can enable or disable heartbeats for any peer address of
3657 * an association, modify an address's heartbeat interval, force a
3658 * heartbeat to be sent immediately, and adjust the address's maximum
3659 * number of retransmissions sent before an address is considered
3660 * unreachable. The following structure is used to access and modify an
3661 * address's parameters:
3662 *
3663 * struct sctp_paddrparams {
3664 * sctp_assoc_t spp_assoc_id;
3665 * struct sockaddr_storage spp_address;
3666 * uint32_t spp_hbinterval;
3667 * uint16_t spp_pathmaxrxt;
3668 * uint32_t spp_pathmtu;
3669 * uint32_t spp_sackdelay;
3670 * uint32_t spp_flags;
3671 * };
3672 *
3673 * spp_assoc_id - (one-to-many style socket) This is filled in the
3674 * application, and identifies the association for
3675 * this query.
3676 * spp_address - This specifies which address is of interest.
3677 * spp_hbinterval - This contains the value of the heartbeat interval,
3678 * in milliseconds. If a value of zero
3679 * is present in this field then no changes are to
3680 * be made to this parameter.
3681 * spp_pathmaxrxt - This contains the maximum number of
3682 * retransmissions before this address shall be
3683 * considered unreachable. If a value of zero
3684 * is present in this field then no changes are to
3685 * be made to this parameter.
3686 * spp_pathmtu - When Path MTU discovery is disabled the value
3687 * specified here will be the "fixed" path mtu.
3688 * Note that if the spp_address field is empty
3689 * then all associations on this address will
3690 * have this fixed path mtu set upon them.
3691 *
3692 * spp_sackdelay - When delayed sack is enabled, this value specifies
3693 * the number of milliseconds that sacks will be delayed
3694 * for. This value will apply to all addresses of an
3695 * association if the spp_address field is empty. Note
3696 * also, that if delayed sack is enabled and this
3697 * value is set to 0, no change is made to the last
3698 * recorded delayed sack timer value.
3699 *
3700 * spp_flags - These flags are used to control various features
3701 * on an association. The flag field may contain
3702 * zero or more of the following options.
3703 *
3704 * SPP_HB_ENABLE - Enable heartbeats on the
3705 * specified address. Note that if the address
3706 * field is empty all addresses for the association
3707 * have heartbeats enabled upon them.
3708 *
3709 * SPP_HB_DISABLE - Disable heartbeats on the
3710 * speicifed address. Note that if the address
3711 * field is empty all addresses for the association
3712 * will have their heartbeats disabled. Note also
3713 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
3714 * mutually exclusive, only one of these two should
3715 * be specified. Enabling both fields will have
3716 * undetermined results.
3717 *
3718 * SPP_HB_DEMAND - Request a user initiated heartbeat
3719 * to be made immediately.
3720 *
3721 * SPP_PMTUD_ENABLE - This field will enable PMTU
3722 * discovery upon the specified address. Note that
3723 * if the address feild is empty then all addresses
3724 * on the association are effected.
3725 *
3726 * SPP_PMTUD_DISABLE - This field will disable PMTU
3727 * discovery upon the specified address. Note that
3728 * if the address feild is empty then all addresses
3729 * on the association are effected. Not also that
3730 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3731 * exclusive. Enabling both will have undetermined
3732 * results.
3733 *
3734 * SPP_SACKDELAY_ENABLE - Setting this flag turns
3735 * on delayed sack. The time specified in spp_sackdelay
3736 * is used to specify the sack delay for this address. Note
3737 * that if spp_address is empty then all addresses will
3738 * enable delayed sack and take on the sack delay
3739 * value specified in spp_sackdelay.
3740 * SPP_SACKDELAY_DISABLE - Setting this flag turns
3741 * off delayed sack. If the spp_address field is blank then
3742 * delayed sack is disabled for the entire association. Note
3743 * also that this field is mutually exclusive to
3744 * SPP_SACKDELAY_ENABLE, setting both will have undefined
3745 * results.
3746 */
3747 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3748 char __user *optval, int __user *optlen)
3749 {
3750 struct sctp_paddrparams params;
3751 struct sctp_transport *trans = NULL;
3752 struct sctp_association *asoc = NULL;
3753 struct sctp_sock *sp = sctp_sk(sk);
3754
3755 if (len < sizeof(struct sctp_paddrparams))
3756 return -EINVAL;
3757 len = sizeof(struct sctp_paddrparams);
3758 if (copy_from_user(&params, optval, len))
3759 return -EFAULT;
3760
3761 /* If an address other than INADDR_ANY is specified, and
3762 * no transport is found, then the request is invalid.
3763 */
3764 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3765 trans = sctp_addr_id2transport(sk, &params.spp_address,
3766 params.spp_assoc_id);
3767 if (!trans) {
3768 SCTP_DEBUG_PRINTK("Failed no transport\n");
3769 return -EINVAL;
3770 }
3771 }
3772
3773 /* Get association, if assoc_id != 0 and the socket is a one
3774 * to many style socket, and an association was not found, then
3775 * the id was invalid.
3776 */
3777 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3778 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3779 SCTP_DEBUG_PRINTK("Failed no association\n");
3780 return -EINVAL;
3781 }
3782
3783 if (trans) {
3784 /* Fetch transport values. */
3785 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3786 params.spp_pathmtu = trans->pathmtu;
3787 params.spp_pathmaxrxt = trans->pathmaxrxt;
3788 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
3789
3790 /*draft-11 doesn't say what to return in spp_flags*/
3791 params.spp_flags = trans->param_flags;
3792 } else if (asoc) {
3793 /* Fetch association values. */
3794 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3795 params.spp_pathmtu = asoc->pathmtu;
3796 params.spp_pathmaxrxt = asoc->pathmaxrxt;
3797 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
3798
3799 /*draft-11 doesn't say what to return in spp_flags*/
3800 params.spp_flags = asoc->param_flags;
3801 } else {
3802 /* Fetch socket values. */
3803 params.spp_hbinterval = sp->hbinterval;
3804 params.spp_pathmtu = sp->pathmtu;
3805 params.spp_sackdelay = sp->sackdelay;
3806 params.spp_pathmaxrxt = sp->pathmaxrxt;
3807
3808 /*draft-11 doesn't say what to return in spp_flags*/
3809 params.spp_flags = sp->param_flags;
3810 }
3811
3812 if (copy_to_user(optval, &params, len))
3813 return -EFAULT;
3814
3815 if (put_user(len, optlen))
3816 return -EFAULT;
3817
3818 return 0;
3819 }
3820
3821 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3822 *
3823 * This options will get or set the delayed ack timer. The time is set
3824 * in milliseconds. If the assoc_id is 0, then this sets or gets the
3825 * endpoints default delayed ack timer value. If the assoc_id field is
3826 * non-zero, then the set or get effects the specified association.
3827 *
3828 * struct sctp_assoc_value {
3829 * sctp_assoc_t assoc_id;
3830 * uint32_t assoc_value;
3831 * };
3832 *
3833 * assoc_id - This parameter, indicates which association the
3834 * user is preforming an action upon. Note that if
3835 * this field's value is zero then the endpoints
3836 * default value is changed (effecting future
3837 * associations only).
3838 *
3839 * assoc_value - This parameter contains the number of milliseconds
3840 * that the user is requesting the delayed ACK timer
3841 * be set to. Note that this value is defined in
3842 * the standard to be between 200 and 500 milliseconds.
3843 *
3844 * Note: a value of zero will leave the value alone,
3845 * but disable SACK delay. A non-zero value will also
3846 * enable SACK delay.
3847 */
3848 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3849 char __user *optval,
3850 int __user *optlen)
3851 {
3852 struct sctp_assoc_value params;
3853 struct sctp_association *asoc = NULL;
3854 struct sctp_sock *sp = sctp_sk(sk);
3855
3856 if (len < sizeof(struct sctp_assoc_value))
3857 return - EINVAL;
3858
3859 len = sizeof(struct sctp_assoc_value);
3860
3861 if (copy_from_user(&params, optval, len))
3862 return -EFAULT;
3863
3864 /* Get association, if assoc_id != 0 and the socket is a one
3865 * to many style socket, and an association was not found, then
3866 * the id was invalid.
3867 */
3868 asoc = sctp_id2assoc(sk, params.assoc_id);
3869 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3870 return -EINVAL;
3871
3872 if (asoc) {
3873 /* Fetch association values. */
3874 if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3875 params.assoc_value = jiffies_to_msecs(
3876 asoc->sackdelay);
3877 else
3878 params.assoc_value = 0;
3879 } else {
3880 /* Fetch socket values. */
3881 if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3882 params.assoc_value = sp->sackdelay;
3883 else
3884 params.assoc_value = 0;
3885 }
3886
3887 if (copy_to_user(optval, &params, len))
3888 return -EFAULT;
3889
3890 if (put_user(len, optlen))
3891 return -EFAULT;
3892
3893 return 0;
3894 }
3895
3896 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3897 *
3898 * Applications can specify protocol parameters for the default association
3899 * initialization. The option name argument to setsockopt() and getsockopt()
3900 * is SCTP_INITMSG.
3901 *
3902 * Setting initialization parameters is effective only on an unconnected
3903 * socket (for UDP-style sockets only future associations are effected
3904 * by the change). With TCP-style sockets, this option is inherited by
3905 * sockets derived from a listener socket.
3906 */
3907 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3908 {
3909 if (len < sizeof(struct sctp_initmsg))
3910 return -EINVAL;
3911 len = sizeof(struct sctp_initmsg);
3912 if (put_user(len, optlen))
3913 return -EFAULT;
3914 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3915 return -EFAULT;
3916 return 0;
3917 }
3918
3919 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3920 char __user *optval,
3921 int __user *optlen)
3922 {
3923 sctp_assoc_t id;
3924 struct sctp_association *asoc;
3925 struct list_head *pos;
3926 int cnt = 0;
3927
3928 if (len < sizeof(sctp_assoc_t))
3929 return -EINVAL;
3930
3931 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3932 return -EFAULT;
3933
3934 /* For UDP-style sockets, id specifies the association to query. */
3935 asoc = sctp_id2assoc(sk, id);
3936 if (!asoc)
3937 return -EINVAL;
3938
3939 list_for_each(pos, &asoc->peer.transport_addr_list) {
3940 cnt ++;
3941 }
3942
3943 return cnt;
3944 }
3945
3946 /*
3947 * Old API for getting list of peer addresses. Does not work for 32-bit
3948 * programs running on a 64-bit kernel
3949 */
3950 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3951 char __user *optval,
3952 int __user *optlen)
3953 {
3954 struct sctp_association *asoc;
3955 struct list_head *pos;
3956 int cnt = 0;
3957 struct sctp_getaddrs_old getaddrs;
3958 struct sctp_transport *from;
3959 void __user *to;
3960 union sctp_addr temp;
3961 struct sctp_sock *sp = sctp_sk(sk);
3962 int addrlen;
3963
3964 if (len < sizeof(struct sctp_getaddrs_old))
3965 return -EINVAL;
3966
3967 len = sizeof(struct sctp_getaddrs_old);
3968
3969 if (copy_from_user(&getaddrs, optval, len))
3970 return -EFAULT;
3971
3972 if (getaddrs.addr_num <= 0) return -EINVAL;
3973
3974 /* For UDP-style sockets, id specifies the association to query. */
3975 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3976 if (!asoc)
3977 return -EINVAL;
3978
3979 to = (void __user *)getaddrs.addrs;
3980 list_for_each(pos, &asoc->peer.transport_addr_list) {
3981 from = list_entry(pos, struct sctp_transport, transports);
3982 memcpy(&temp, &from->ipaddr, sizeof(temp));
3983 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3984 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3985 if (copy_to_user(to, &temp, addrlen))
3986 return -EFAULT;
3987 to += addrlen ;
3988 cnt ++;
3989 if (cnt >= getaddrs.addr_num) break;
3990 }
3991 getaddrs.addr_num = cnt;
3992 if (put_user(len, optlen))
3993 return -EFAULT;
3994 if (copy_to_user(optval, &getaddrs, len))
3995 return -EFAULT;
3996
3997 return 0;
3998 }
3999
4000 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4001 char __user *optval, int __user *optlen)
4002 {
4003 struct sctp_association *asoc;
4004 struct list_head *pos;
4005 int cnt = 0;
4006 struct sctp_getaddrs getaddrs;
4007 struct sctp_transport *from;
4008 void __user *to;
4009 union sctp_addr temp;
4010 struct sctp_sock *sp = sctp_sk(sk);
4011 int addrlen;
4012 size_t space_left;
4013 int bytes_copied;
4014
4015 if (len < sizeof(struct sctp_getaddrs))
4016 return -EINVAL;
4017
4018 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4019 return -EFAULT;
4020
4021 /* For UDP-style sockets, id specifies the association to query. */
4022 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4023 if (!asoc)
4024 return -EINVAL;
4025
4026 to = optval + offsetof(struct sctp_getaddrs,addrs);
4027 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4028
4029 list_for_each(pos, &asoc->peer.transport_addr_list) {
4030 from = list_entry(pos, struct sctp_transport, transports);
4031 memcpy(&temp, &from->ipaddr, sizeof(temp));
4032 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4033 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4034 if (space_left < addrlen)
4035 return -ENOMEM;
4036 if (copy_to_user(to, &temp, addrlen))
4037 return -EFAULT;
4038 to += addrlen;
4039 cnt++;
4040 space_left -= addrlen;
4041 }
4042
4043 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4044 return -EFAULT;
4045 bytes_copied = ((char __user *)to) - optval;
4046 if (put_user(bytes_copied, optlen))
4047 return -EFAULT;
4048
4049 return 0;
4050 }
4051
4052 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4053 char __user *optval,
4054 int __user *optlen)
4055 {
4056 sctp_assoc_t id;
4057 struct sctp_bind_addr *bp;
4058 struct sctp_association *asoc;
4059 struct list_head *pos, *temp;
4060 struct sctp_sockaddr_entry *addr;
4061 rwlock_t *addr_lock;
4062 int cnt = 0;
4063
4064 if (len < sizeof(sctp_assoc_t))
4065 return -EINVAL;
4066
4067 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4068 return -EFAULT;
4069
4070 /*
4071 * For UDP-style sockets, id specifies the association to query.
4072 * If the id field is set to the value '0' then the locally bound
4073 * addresses are returned without regard to any particular
4074 * association.
4075 */
4076 if (0 == id) {
4077 bp = &sctp_sk(sk)->ep->base.bind_addr;
4078 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4079 } else {
4080 asoc = sctp_id2assoc(sk, id);
4081 if (!asoc)
4082 return -EINVAL;
4083 bp = &asoc->base.bind_addr;
4084 addr_lock = &asoc->base.addr_lock;
4085 }
4086
4087 sctp_read_lock(addr_lock);
4088
4089 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4090 * addresses from the global local address list.
4091 */
4092 if (sctp_list_single_entry(&bp->address_list)) {
4093 addr = list_entry(bp->address_list.next,
4094 struct sctp_sockaddr_entry, list);
4095 if (sctp_is_any(&addr->a)) {
4096 list_for_each_safe(pos, temp, &sctp_local_addr_list) {
4097 addr = list_entry(pos,
4098 struct sctp_sockaddr_entry,
4099 list);
4100 if ((PF_INET == sk->sk_family) &&
4101 (AF_INET6 == addr->a.sa.sa_family))
4102 continue;
4103 cnt++;
4104 }
4105 } else {
4106 cnt = 1;
4107 }
4108 goto done;
4109 }
4110
4111 list_for_each(pos, &bp->address_list) {
4112 cnt ++;
4113 }
4114
4115 done:
4116 sctp_read_unlock(addr_lock);
4117 return cnt;
4118 }
4119
4120 /* Helper function that copies local addresses to user and returns the number
4121 * of addresses copied.
4122 */
4123 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4124 int max_addrs, void *to,
4125 int *bytes_copied)
4126 {
4127 struct list_head *pos, *next;
4128 struct sctp_sockaddr_entry *addr;
4129 union sctp_addr temp;
4130 int cnt = 0;
4131 int addrlen;
4132
4133 list_for_each_safe(pos, next, &sctp_local_addr_list) {
4134 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4135 if ((PF_INET == sk->sk_family) &&
4136 (AF_INET6 == addr->a.sa.sa_family))
4137 continue;
4138 memcpy(&temp, &addr->a, sizeof(temp));
4139 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4140 &temp);
4141 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4142 memcpy(to, &temp, addrlen);
4143
4144 to += addrlen;
4145 *bytes_copied += addrlen;
4146 cnt ++;
4147 if (cnt >= max_addrs) break;
4148 }
4149
4150 return cnt;
4151 }
4152
4153 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4154 size_t space_left, int *bytes_copied)
4155 {
4156 struct list_head *pos, *next;
4157 struct sctp_sockaddr_entry *addr;
4158 union sctp_addr temp;
4159 int cnt = 0;
4160 int addrlen;
4161
4162 list_for_each_safe(pos, next, &sctp_local_addr_list) {
4163 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4164 if ((PF_INET == sk->sk_family) &&
4165 (AF_INET6 == addr->a.sa.sa_family))
4166 continue;
4167 memcpy(&temp, &addr->a, sizeof(temp));
4168 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4169 &temp);
4170 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4171 if (space_left < addrlen)
4172 return -ENOMEM;
4173 memcpy(to, &temp, addrlen);
4174
4175 to += addrlen;
4176 cnt ++;
4177 space_left -= addrlen;
4178 *bytes_copied += addrlen;
4179 }
4180
4181 return cnt;
4182 }
4183
4184 /* Old API for getting list of local addresses. Does not work for 32-bit
4185 * programs running on a 64-bit kernel
4186 */
4187 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4188 char __user *optval, int __user *optlen)
4189 {
4190 struct sctp_bind_addr *bp;
4191 struct sctp_association *asoc;
4192 struct list_head *pos;
4193 int cnt = 0;
4194 struct sctp_getaddrs_old getaddrs;
4195 struct sctp_sockaddr_entry *addr;
4196 void __user *to;
4197 union sctp_addr temp;
4198 struct sctp_sock *sp = sctp_sk(sk);
4199 int addrlen;
4200 rwlock_t *addr_lock;
4201 int err = 0;
4202 void *addrs;
4203 void *buf;
4204 int bytes_copied = 0;
4205
4206 if (len < sizeof(struct sctp_getaddrs_old))
4207 return -EINVAL;
4208
4209 len = sizeof(struct sctp_getaddrs_old);
4210 if (copy_from_user(&getaddrs, optval, len))
4211 return -EFAULT;
4212
4213 if (getaddrs.addr_num <= 0) return -EINVAL;
4214 /*
4215 * For UDP-style sockets, id specifies the association to query.
4216 * If the id field is set to the value '0' then the locally bound
4217 * addresses are returned without regard to any particular
4218 * association.
4219 */
4220 if (0 == getaddrs.assoc_id) {
4221 bp = &sctp_sk(sk)->ep->base.bind_addr;
4222 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4223 } else {
4224 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4225 if (!asoc)
4226 return -EINVAL;
4227 bp = &asoc->base.bind_addr;
4228 addr_lock = &asoc->base.addr_lock;
4229 }
4230
4231 to = getaddrs.addrs;
4232
4233 /* Allocate space for a local instance of packed array to hold all
4234 * the data. We store addresses here first and then put write them
4235 * to the user in one shot.
4236 */
4237 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4238 GFP_KERNEL);
4239 if (!addrs)
4240 return -ENOMEM;
4241
4242 sctp_read_lock(addr_lock);
4243
4244 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4245 * addresses from the global local address list.
4246 */
4247 if (sctp_list_single_entry(&bp->address_list)) {
4248 addr = list_entry(bp->address_list.next,
4249 struct sctp_sockaddr_entry, list);
4250 if (sctp_is_any(&addr->a)) {
4251 cnt = sctp_copy_laddrs_old(sk, bp->port,
4252 getaddrs.addr_num,
4253 addrs, &bytes_copied);
4254 goto copy_getaddrs;
4255 }
4256 }
4257
4258 buf = addrs;
4259 list_for_each(pos, &bp->address_list) {
4260 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4261 memcpy(&temp, &addr->a, sizeof(temp));
4262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4263 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4264 memcpy(buf, &temp, addrlen);
4265 buf += addrlen;
4266 bytes_copied += addrlen;
4267 cnt ++;
4268 if (cnt >= getaddrs.addr_num) break;
4269 }
4270
4271 copy_getaddrs:
4272 sctp_read_unlock(addr_lock);
4273
4274 /* copy the entire address list into the user provided space */
4275 if (copy_to_user(to, addrs, bytes_copied)) {
4276 err = -EFAULT;
4277 goto error;
4278 }
4279
4280 /* copy the leading structure back to user */
4281 getaddrs.addr_num = cnt;
4282 if (copy_to_user(optval, &getaddrs, len))
4283 err = -EFAULT;
4284
4285 error:
4286 kfree(addrs);
4287 return err;
4288 }
4289
4290 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4291 char __user *optval, int __user *optlen)
4292 {
4293 struct sctp_bind_addr *bp;
4294 struct sctp_association *asoc;
4295 struct list_head *pos;
4296 int cnt = 0;
4297 struct sctp_getaddrs getaddrs;
4298 struct sctp_sockaddr_entry *addr;
4299 void __user *to;
4300 union sctp_addr temp;
4301 struct sctp_sock *sp = sctp_sk(sk);
4302 int addrlen;
4303 rwlock_t *addr_lock;
4304 int err = 0;
4305 size_t space_left;
4306 int bytes_copied = 0;
4307 void *addrs;
4308 void *buf;
4309
4310 if (len < sizeof(struct sctp_getaddrs))
4311 return -EINVAL;
4312
4313 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4314 return -EFAULT;
4315
4316 /*
4317 * For UDP-style sockets, id specifies the association to query.
4318 * If the id field is set to the value '0' then the locally bound
4319 * addresses are returned without regard to any particular
4320 * association.
4321 */
4322 if (0 == getaddrs.assoc_id) {
4323 bp = &sctp_sk(sk)->ep->base.bind_addr;
4324 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4325 } else {
4326 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4327 if (!asoc)
4328 return -EINVAL;
4329 bp = &asoc->base.bind_addr;
4330 addr_lock = &asoc->base.addr_lock;
4331 }
4332
4333 to = optval + offsetof(struct sctp_getaddrs,addrs);
4334 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4335
4336 addrs = kmalloc(space_left, GFP_KERNEL);
4337 if (!addrs)
4338 return -ENOMEM;
4339
4340 sctp_read_lock(addr_lock);
4341
4342 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4343 * addresses from the global local address list.
4344 */
4345 if (sctp_list_single_entry(&bp->address_list)) {
4346 addr = list_entry(bp->address_list.next,
4347 struct sctp_sockaddr_entry, list);
4348 if (sctp_is_any(&addr->a)) {
4349 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4350 space_left, &bytes_copied);
4351 if (cnt < 0) {
4352 err = cnt;
4353 goto error_lock;
4354 }
4355 goto copy_getaddrs;
4356 }
4357 }
4358
4359 buf = addrs;
4360 list_for_each(pos, &bp->address_list) {
4361 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4362 memcpy(&temp, &addr->a, sizeof(temp));
4363 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4364 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4365 if (space_left < addrlen) {
4366 err = -ENOMEM; /*fixme: right error?*/
4367 goto error_lock;
4368 }
4369 memcpy(buf, &temp, addrlen);
4370 buf += addrlen;
4371 bytes_copied += addrlen;
4372 cnt ++;
4373 space_left -= addrlen;
4374 }
4375
4376 copy_getaddrs:
4377 sctp_read_unlock(addr_lock);
4378
4379 if (copy_to_user(to, addrs, bytes_copied)) {
4380 err = -EFAULT;
4381 goto out;
4382 }
4383 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4384 err = -EFAULT;
4385 goto out;
4386 }
4387 if (put_user(bytes_copied, optlen))
4388 err = -EFAULT;
4389
4390 goto out;
4391
4392 error_lock:
4393 sctp_read_unlock(addr_lock);
4394
4395 out:
4396 kfree(addrs);
4397 return err;
4398 }
4399
4400 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4401 *
4402 * Requests that the local SCTP stack use the enclosed peer address as
4403 * the association primary. The enclosed address must be one of the
4404 * association peer's addresses.
4405 */
4406 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4407 char __user *optval, int __user *optlen)
4408 {
4409 struct sctp_prim prim;
4410 struct sctp_association *asoc;
4411 struct sctp_sock *sp = sctp_sk(sk);
4412
4413 if (len < sizeof(struct sctp_prim))
4414 return -EINVAL;
4415
4416 len = sizeof(struct sctp_prim);
4417
4418 if (copy_from_user(&prim, optval, len))
4419 return -EFAULT;
4420
4421 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4422 if (!asoc)
4423 return -EINVAL;
4424
4425 if (!asoc->peer.primary_path)
4426 return -ENOTCONN;
4427
4428 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4429 asoc->peer.primary_path->af_specific->sockaddr_len);
4430
4431 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4432 (union sctp_addr *)&prim.ssp_addr);
4433
4434 if (put_user(len, optlen))
4435 return -EFAULT;
4436 if (copy_to_user(optval, &prim, len))
4437 return -EFAULT;
4438
4439 return 0;
4440 }
4441
4442 /*
4443 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4444 *
4445 * Requests that the local endpoint set the specified Adaptation Layer
4446 * Indication parameter for all future INIT and INIT-ACK exchanges.
4447 */
4448 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4449 char __user *optval, int __user *optlen)
4450 {
4451 struct sctp_setadaptation adaptation;
4452
4453 if (len < sizeof(struct sctp_setadaptation))
4454 return -EINVAL;
4455
4456 len = sizeof(struct sctp_setadaptation);
4457
4458 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4459
4460 if (put_user(len, optlen))
4461 return -EFAULT;
4462 if (copy_to_user(optval, &adaptation, len))
4463 return -EFAULT;
4464
4465 return 0;
4466 }
4467
4468 /*
4469 *
4470 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4471 *
4472 * Applications that wish to use the sendto() system call may wish to
4473 * specify a default set of parameters that would normally be supplied
4474 * through the inclusion of ancillary data. This socket option allows
4475 * such an application to set the default sctp_sndrcvinfo structure.
4476
4477
4478 * The application that wishes to use this socket option simply passes
4479 * in to this call the sctp_sndrcvinfo structure defined in Section
4480 * 5.2.2) The input parameters accepted by this call include
4481 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4482 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4483 * to this call if the caller is using the UDP model.
4484 *
4485 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4486 */
4487 static int sctp_getsockopt_default_send_param(struct sock *sk,
4488 int len, char __user *optval,
4489 int __user *optlen)
4490 {
4491 struct sctp_sndrcvinfo info;
4492 struct sctp_association *asoc;
4493 struct sctp_sock *sp = sctp_sk(sk);
4494
4495 if (len < sizeof(struct sctp_sndrcvinfo))
4496 return -EINVAL;
4497
4498 len = sizeof(struct sctp_sndrcvinfo);
4499
4500 if (copy_from_user(&info, optval, len))
4501 return -EFAULT;
4502
4503 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4504 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4505 return -EINVAL;
4506
4507 if (asoc) {
4508 info.sinfo_stream = asoc->default_stream;
4509 info.sinfo_flags = asoc->default_flags;
4510 info.sinfo_ppid = asoc->default_ppid;
4511 info.sinfo_context = asoc->default_context;
4512 info.sinfo_timetolive = asoc->default_timetolive;
4513 } else {
4514 info.sinfo_stream = sp->default_stream;
4515 info.sinfo_flags = sp->default_flags;
4516 info.sinfo_ppid = sp->default_ppid;
4517 info.sinfo_context = sp->default_context;
4518 info.sinfo_timetolive = sp->default_timetolive;
4519 }
4520
4521 if (put_user(len, optlen))
4522 return -EFAULT;
4523 if (copy_to_user(optval, &info, len))
4524 return -EFAULT;
4525
4526 return 0;
4527 }
4528
4529 /*
4530 *
4531 * 7.1.5 SCTP_NODELAY
4532 *
4533 * Turn on/off any Nagle-like algorithm. This means that packets are
4534 * generally sent as soon as possible and no unnecessary delays are
4535 * introduced, at the cost of more packets in the network. Expects an
4536 * integer boolean flag.
4537 */
4538
4539 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4540 char __user *optval, int __user *optlen)
4541 {
4542 int val;
4543
4544 if (len < sizeof(int))
4545 return -EINVAL;
4546
4547 len = sizeof(int);
4548 val = (sctp_sk(sk)->nodelay == 1);
4549 if (put_user(len, optlen))
4550 return -EFAULT;
4551 if (copy_to_user(optval, &val, len))
4552 return -EFAULT;
4553 return 0;
4554 }
4555
4556 /*
4557 *
4558 * 7.1.1 SCTP_RTOINFO
4559 *
4560 * The protocol parameters used to initialize and bound retransmission
4561 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4562 * and modify these parameters.
4563 * All parameters are time values, in milliseconds. A value of 0, when
4564 * modifying the parameters, indicates that the current value should not
4565 * be changed.
4566 *
4567 */
4568 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4569 char __user *optval,
4570 int __user *optlen) {
4571 struct sctp_rtoinfo rtoinfo;
4572 struct sctp_association *asoc;
4573
4574 if (len < sizeof (struct sctp_rtoinfo))
4575 return -EINVAL;
4576
4577 len = sizeof(struct sctp_rtoinfo);
4578
4579 if (copy_from_user(&rtoinfo, optval, len))
4580 return -EFAULT;
4581
4582 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4583
4584 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4585 return -EINVAL;
4586
4587 /* Values corresponding to the specific association. */
4588 if (asoc) {
4589 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4590 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4591 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4592 } else {
4593 /* Values corresponding to the endpoint. */
4594 struct sctp_sock *sp = sctp_sk(sk);
4595
4596 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4597 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4598 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4599 }
4600
4601 if (put_user(len, optlen))
4602 return -EFAULT;
4603
4604 if (copy_to_user(optval, &rtoinfo, len))
4605 return -EFAULT;
4606
4607 return 0;
4608 }
4609
4610 /*
4611 *
4612 * 7.1.2 SCTP_ASSOCINFO
4613 *
4614 * This option is used to tune the maximum retransmission attempts
4615 * of the association.
4616 * Returns an error if the new association retransmission value is
4617 * greater than the sum of the retransmission value of the peer.
4618 * See [SCTP] for more information.
4619 *
4620 */
4621 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4622 char __user *optval,
4623 int __user *optlen)
4624 {
4625
4626 struct sctp_assocparams assocparams;
4627 struct sctp_association *asoc;
4628 struct list_head *pos;
4629 int cnt = 0;
4630
4631 if (len < sizeof (struct sctp_assocparams))
4632 return -EINVAL;
4633
4634 len = sizeof(struct sctp_assocparams);
4635
4636 if (copy_from_user(&assocparams, optval, len))
4637 return -EFAULT;
4638
4639 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4640
4641 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4642 return -EINVAL;
4643
4644 /* Values correspoinding to the specific association */
4645 if (asoc) {
4646 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4647 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4648 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4649 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4650 * 1000) +
4651 (asoc->cookie_life.tv_usec
4652 / 1000);
4653
4654 list_for_each(pos, &asoc->peer.transport_addr_list) {
4655 cnt ++;
4656 }
4657
4658 assocparams.sasoc_number_peer_destinations = cnt;
4659 } else {
4660 /* Values corresponding to the endpoint */
4661 struct sctp_sock *sp = sctp_sk(sk);
4662
4663 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4664 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4665 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4666 assocparams.sasoc_cookie_life =
4667 sp->assocparams.sasoc_cookie_life;
4668 assocparams.sasoc_number_peer_destinations =
4669 sp->assocparams.
4670 sasoc_number_peer_destinations;
4671 }
4672
4673 if (put_user(len, optlen))
4674 return -EFAULT;
4675
4676 if (copy_to_user(optval, &assocparams, len))
4677 return -EFAULT;
4678
4679 return 0;
4680 }
4681
4682 /*
4683 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4684 *
4685 * This socket option is a boolean flag which turns on or off mapped V4
4686 * addresses. If this option is turned on and the socket is type
4687 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4688 * If this option is turned off, then no mapping will be done of V4
4689 * addresses and a user will receive both PF_INET6 and PF_INET type
4690 * addresses on the socket.
4691 */
4692 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4693 char __user *optval, int __user *optlen)
4694 {
4695 int val;
4696 struct sctp_sock *sp = sctp_sk(sk);
4697
4698 if (len < sizeof(int))
4699 return -EINVAL;
4700
4701 len = sizeof(int);
4702 val = sp->v4mapped;
4703 if (put_user(len, optlen))
4704 return -EFAULT;
4705 if (copy_to_user(optval, &val, len))
4706 return -EFAULT;
4707
4708 return 0;
4709 }
4710
4711 /*
4712 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
4713 * (chapter and verse is quoted at sctp_setsockopt_context())
4714 */
4715 static int sctp_getsockopt_context(struct sock *sk, int len,
4716 char __user *optval, int __user *optlen)
4717 {
4718 struct sctp_assoc_value params;
4719 struct sctp_sock *sp;
4720 struct sctp_association *asoc;
4721
4722 if (len < sizeof(struct sctp_assoc_value))
4723 return -EINVAL;
4724
4725 len = sizeof(struct sctp_assoc_value);
4726
4727 if (copy_from_user(&params, optval, len))
4728 return -EFAULT;
4729
4730 sp = sctp_sk(sk);
4731
4732 if (params.assoc_id != 0) {
4733 asoc = sctp_id2assoc(sk, params.assoc_id);
4734 if (!asoc)
4735 return -EINVAL;
4736 params.assoc_value = asoc->default_rcv_context;
4737 } else {
4738 params.assoc_value = sp->default_rcv_context;
4739 }
4740
4741 if (put_user(len, optlen))
4742 return -EFAULT;
4743 if (copy_to_user(optval, &params, len))
4744 return -EFAULT;
4745
4746 return 0;
4747 }
4748
4749 /*
4750 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4751 *
4752 * This socket option specifies the maximum size to put in any outgoing
4753 * SCTP chunk. If a message is larger than this size it will be
4754 * fragmented by SCTP into the specified size. Note that the underlying
4755 * SCTP implementation may fragment into smaller sized chunks when the
4756 * PMTU of the underlying association is smaller than the value set by
4757 * the user.
4758 */
4759 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4760 char __user *optval, int __user *optlen)
4761 {
4762 int val;
4763
4764 if (len < sizeof(int))
4765 return -EINVAL;
4766
4767 len = sizeof(int);
4768
4769 val = sctp_sk(sk)->user_frag;
4770 if (put_user(len, optlen))
4771 return -EFAULT;
4772 if (copy_to_user(optval, &val, len))
4773 return -EFAULT;
4774
4775 return 0;
4776 }
4777
4778 /*
4779 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
4780 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
4781 */
4782 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
4783 char __user *optval, int __user *optlen)
4784 {
4785 int val;
4786
4787 if (len < sizeof(int))
4788 return -EINVAL;
4789
4790 len = sizeof(int);
4791
4792 val = sctp_sk(sk)->frag_interleave;
4793 if (put_user(len, optlen))
4794 return -EFAULT;
4795 if (copy_to_user(optval, &val, len))
4796 return -EFAULT;
4797
4798 return 0;
4799 }
4800
4801 /*
4802 * 7.1.25. Set or Get the sctp partial delivery point
4803 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
4804 */
4805 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
4806 char __user *optval,
4807 int __user *optlen)
4808 {
4809 u32 val;
4810
4811 if (len < sizeof(u32))
4812 return -EINVAL;
4813
4814 len = sizeof(u32);
4815
4816 val = sctp_sk(sk)->pd_point;
4817 if (put_user(len, optlen))
4818 return -EFAULT;
4819 if (copy_to_user(optval, &val, len))
4820 return -EFAULT;
4821
4822 return -ENOTSUPP;
4823 }
4824
4825 /*
4826 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
4827 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
4828 */
4829 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
4830 char __user *optval,
4831 int __user *optlen)
4832 {
4833 int val;
4834
4835 if (len < sizeof(int))
4836 return -EINVAL;
4837
4838 len = sizeof(int);
4839
4840 val = sctp_sk(sk)->max_burst;
4841 if (put_user(len, optlen))
4842 return -EFAULT;
4843 if (copy_to_user(optval, &val, len))
4844 return -EFAULT;
4845
4846 return -ENOTSUPP;
4847 }
4848
4849 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4850 char __user *optval, int __user *optlen)
4851 {
4852 int retval = 0;
4853 int len;
4854
4855 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4856 sk, optname);
4857
4858 /* I can hardly begin to describe how wrong this is. This is
4859 * so broken as to be worse than useless. The API draft
4860 * REALLY is NOT helpful here... I am not convinced that the
4861 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4862 * are at all well-founded.
4863 */
4864 if (level != SOL_SCTP) {
4865 struct sctp_af *af = sctp_sk(sk)->pf->af;
4866
4867 retval = af->getsockopt(sk, level, optname, optval, optlen);
4868 return retval;
4869 }
4870
4871 if (get_user(len, optlen))
4872 return -EFAULT;
4873
4874 sctp_lock_sock(sk);
4875
4876 switch (optname) {
4877 case SCTP_STATUS:
4878 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4879 break;
4880 case SCTP_DISABLE_FRAGMENTS:
4881 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4882 optlen);
4883 break;
4884 case SCTP_EVENTS:
4885 retval = sctp_getsockopt_events(sk, len, optval, optlen);
4886 break;
4887 case SCTP_AUTOCLOSE:
4888 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4889 break;
4890 case SCTP_SOCKOPT_PEELOFF:
4891 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4892 break;
4893 case SCTP_PEER_ADDR_PARAMS:
4894 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4895 optlen);
4896 break;
4897 case SCTP_DELAYED_ACK_TIME:
4898 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4899 optlen);
4900 break;
4901 case SCTP_INITMSG:
4902 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4903 break;
4904 case SCTP_GET_PEER_ADDRS_NUM_OLD:
4905 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4906 optlen);
4907 break;
4908 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4909 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4910 optlen);
4911 break;
4912 case SCTP_GET_PEER_ADDRS_OLD:
4913 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4914 optlen);
4915 break;
4916 case SCTP_GET_LOCAL_ADDRS_OLD:
4917 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4918 optlen);
4919 break;
4920 case SCTP_GET_PEER_ADDRS:
4921 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4922 optlen);
4923 break;
4924 case SCTP_GET_LOCAL_ADDRS:
4925 retval = sctp_getsockopt_local_addrs(sk, len, optval,
4926 optlen);
4927 break;
4928 case SCTP_DEFAULT_SEND_PARAM:
4929 retval = sctp_getsockopt_default_send_param(sk, len,
4930 optval, optlen);
4931 break;
4932 case SCTP_PRIMARY_ADDR:
4933 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4934 break;
4935 case SCTP_NODELAY:
4936 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4937 break;
4938 case SCTP_RTOINFO:
4939 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4940 break;
4941 case SCTP_ASSOCINFO:
4942 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4943 break;
4944 case SCTP_I_WANT_MAPPED_V4_ADDR:
4945 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4946 break;
4947 case SCTP_MAXSEG:
4948 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4949 break;
4950 case SCTP_GET_PEER_ADDR_INFO:
4951 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4952 optlen);
4953 break;
4954 case SCTP_ADAPTATION_LAYER:
4955 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
4956 optlen);
4957 break;
4958 case SCTP_CONTEXT:
4959 retval = sctp_getsockopt_context(sk, len, optval, optlen);
4960 break;
4961 case SCTP_FRAGMENT_INTERLEAVE:
4962 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
4963 optlen);
4964 break;
4965 case SCTP_PARTIAL_DELIVERY_POINT:
4966 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
4967 optlen);
4968 break;
4969 case SCTP_MAX_BURST:
4970 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
4971 break;
4972 default:
4973 retval = -ENOPROTOOPT;
4974 break;
4975 }
4976
4977 sctp_release_sock(sk);
4978 return retval;
4979 }
4980
4981 static void sctp_hash(struct sock *sk)
4982 {
4983 /* STUB */
4984 }
4985
4986 static void sctp_unhash(struct sock *sk)
4987 {
4988 /* STUB */
4989 }
4990
4991 /* Check if port is acceptable. Possibly find first available port.
4992 *
4993 * The port hash table (contained in the 'global' SCTP protocol storage
4994 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4995 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4996 * list (the list number is the port number hashed out, so as you
4997 * would expect from a hash function, all the ports in a given list have
4998 * such a number that hashes out to the same list number; you were
4999 * expecting that, right?); so each list has a set of ports, with a
5000 * link to the socket (struct sock) that uses it, the port number and
5001 * a fastreuse flag (FIXME: NPI ipg).
5002 */
5003 static struct sctp_bind_bucket *sctp_bucket_create(
5004 struct sctp_bind_hashbucket *head, unsigned short snum);
5005
5006 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5007 {
5008 struct sctp_bind_hashbucket *head; /* hash list */
5009 struct sctp_bind_bucket *pp; /* hash list port iterator */
5010 unsigned short snum;
5011 int ret;
5012
5013 snum = ntohs(addr->v4.sin_port);
5014
5015 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5016 sctp_local_bh_disable();
5017
5018 if (snum == 0) {
5019 /* Search for an available port.
5020 *
5021 * 'sctp_port_rover' was the last port assigned, so
5022 * we start to search from 'sctp_port_rover +
5023 * 1'. What we do is first check if port 'rover' is
5024 * already in the hash table; if not, we use that; if
5025 * it is, we try next.
5026 */
5027 int low = sysctl_local_port_range[0];
5028 int high = sysctl_local_port_range[1];
5029 int remaining = (high - low) + 1;
5030 int rover;
5031 int index;
5032
5033 sctp_spin_lock(&sctp_port_alloc_lock);
5034 rover = sctp_port_rover;
5035 do {
5036 rover++;
5037 if ((rover < low) || (rover > high))
5038 rover = low;
5039 index = sctp_phashfn(rover);
5040 head = &sctp_port_hashtable[index];
5041 sctp_spin_lock(&head->lock);
5042 for (pp = head->chain; pp; pp = pp->next)
5043 if (pp->port == rover)
5044 goto next;
5045 break;
5046 next:
5047 sctp_spin_unlock(&head->lock);
5048 } while (--remaining > 0);
5049 sctp_port_rover = rover;
5050 sctp_spin_unlock(&sctp_port_alloc_lock);
5051
5052 /* Exhausted local port range during search? */
5053 ret = 1;
5054 if (remaining <= 0)
5055 goto fail;
5056
5057 /* OK, here is the one we will use. HEAD (the port
5058 * hash table list entry) is non-NULL and we hold it's
5059 * mutex.
5060 */
5061 snum = rover;
5062 } else {
5063 /* We are given an specific port number; we verify
5064 * that it is not being used. If it is used, we will
5065 * exahust the search in the hash list corresponding
5066 * to the port number (snum) - we detect that with the
5067 * port iterator, pp being NULL.
5068 */
5069 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5070 sctp_spin_lock(&head->lock);
5071 for (pp = head->chain; pp; pp = pp->next) {
5072 if (pp->port == snum)
5073 goto pp_found;
5074 }
5075 }
5076 pp = NULL;
5077 goto pp_not_found;
5078 pp_found:
5079 if (!hlist_empty(&pp->owner)) {
5080 /* We had a port hash table hit - there is an
5081 * available port (pp != NULL) and it is being
5082 * used by other socket (pp->owner not empty); that other
5083 * socket is going to be sk2.
5084 */
5085 int reuse = sk->sk_reuse;
5086 struct sock *sk2;
5087 struct hlist_node *node;
5088
5089 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5090 if (pp->fastreuse && sk->sk_reuse &&
5091 sk->sk_state != SCTP_SS_LISTENING)
5092 goto success;
5093
5094 /* Run through the list of sockets bound to the port
5095 * (pp->port) [via the pointers bind_next and
5096 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5097 * we get the endpoint they describe and run through
5098 * the endpoint's list of IP (v4 or v6) addresses,
5099 * comparing each of the addresses with the address of
5100 * the socket sk. If we find a match, then that means
5101 * that this port/socket (sk) combination are already
5102 * in an endpoint.
5103 */
5104 sk_for_each_bound(sk2, node, &pp->owner) {
5105 struct sctp_endpoint *ep2;
5106 ep2 = sctp_sk(sk2)->ep;
5107
5108 if (reuse && sk2->sk_reuse &&
5109 sk2->sk_state != SCTP_SS_LISTENING)
5110 continue;
5111
5112 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
5113 sctp_sk(sk))) {
5114 ret = (long)sk2;
5115 goto fail_unlock;
5116 }
5117 }
5118 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5119 }
5120 pp_not_found:
5121 /* If there was a hash table miss, create a new port. */
5122 ret = 1;
5123 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5124 goto fail_unlock;
5125
5126 /* In either case (hit or miss), make sure fastreuse is 1 only
5127 * if sk->sk_reuse is too (that is, if the caller requested
5128 * SO_REUSEADDR on this socket -sk-).
5129 */
5130 if (hlist_empty(&pp->owner)) {
5131 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5132 pp->fastreuse = 1;
5133 else
5134 pp->fastreuse = 0;
5135 } else if (pp->fastreuse &&
5136 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5137 pp->fastreuse = 0;
5138
5139 /* We are set, so fill up all the data in the hash table
5140 * entry, tie the socket list information with the rest of the
5141 * sockets FIXME: Blurry, NPI (ipg).
5142 */
5143 success:
5144 if (!sctp_sk(sk)->bind_hash) {
5145 inet_sk(sk)->num = snum;
5146 sk_add_bind_node(sk, &pp->owner);
5147 sctp_sk(sk)->bind_hash = pp;
5148 }
5149 ret = 0;
5150
5151 fail_unlock:
5152 sctp_spin_unlock(&head->lock);
5153
5154 fail:
5155 sctp_local_bh_enable();
5156 return ret;
5157 }
5158
5159 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5160 * port is requested.
5161 */
5162 static int sctp_get_port(struct sock *sk, unsigned short snum)
5163 {
5164 long ret;
5165 union sctp_addr addr;
5166 struct sctp_af *af = sctp_sk(sk)->pf->af;
5167
5168 /* Set up a dummy address struct from the sk. */
5169 af->from_sk(&addr, sk);
5170 addr.v4.sin_port = htons(snum);
5171
5172 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5173 ret = sctp_get_port_local(sk, &addr);
5174
5175 return (ret ? 1 : 0);
5176 }
5177
5178 /*
5179 * 3.1.3 listen() - UDP Style Syntax
5180 *
5181 * By default, new associations are not accepted for UDP style sockets.
5182 * An application uses listen() to mark a socket as being able to
5183 * accept new associations.
5184 */
5185 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5186 {
5187 struct sctp_sock *sp = sctp_sk(sk);
5188 struct sctp_endpoint *ep = sp->ep;
5189
5190 /* Only UDP style sockets that are not peeled off are allowed to
5191 * listen().
5192 */
5193 if (!sctp_style(sk, UDP))
5194 return -EINVAL;
5195
5196 /* If backlog is zero, disable listening. */
5197 if (!backlog) {
5198 if (sctp_sstate(sk, CLOSED))
5199 return 0;
5200
5201 sctp_unhash_endpoint(ep);
5202 sk->sk_state = SCTP_SS_CLOSED;
5203 }
5204
5205 /* Return if we are already listening. */
5206 if (sctp_sstate(sk, LISTENING))
5207 return 0;
5208
5209 /*
5210 * If a bind() or sctp_bindx() is not called prior to a listen()
5211 * call that allows new associations to be accepted, the system
5212 * picks an ephemeral port and will choose an address set equivalent
5213 * to binding with a wildcard address.
5214 *
5215 * This is not currently spelled out in the SCTP sockets
5216 * extensions draft, but follows the practice as seen in TCP
5217 * sockets.
5218 *
5219 * Additionally, turn off fastreuse flag since we are not listening
5220 */
5221 sk->sk_state = SCTP_SS_LISTENING;
5222 if (!ep->base.bind_addr.port) {
5223 if (sctp_autobind(sk))
5224 return -EAGAIN;
5225 } else
5226 sctp_sk(sk)->bind_hash->fastreuse = 0;
5227
5228 sctp_hash_endpoint(ep);
5229 return 0;
5230 }
5231
5232 /*
5233 * 4.1.3 listen() - TCP Style Syntax
5234 *
5235 * Applications uses listen() to ready the SCTP endpoint for accepting
5236 * inbound associations.
5237 */
5238 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5239 {
5240 struct sctp_sock *sp = sctp_sk(sk);
5241 struct sctp_endpoint *ep = sp->ep;
5242
5243 /* If backlog is zero, disable listening. */
5244 if (!backlog) {
5245 if (sctp_sstate(sk, CLOSED))
5246 return 0;
5247
5248 sctp_unhash_endpoint(ep);
5249 sk->sk_state = SCTP_SS_CLOSED;
5250 }
5251
5252 if (sctp_sstate(sk, LISTENING))
5253 return 0;
5254
5255 /*
5256 * If a bind() or sctp_bindx() is not called prior to a listen()
5257 * call that allows new associations to be accepted, the system
5258 * picks an ephemeral port and will choose an address set equivalent
5259 * to binding with a wildcard address.
5260 *
5261 * This is not currently spelled out in the SCTP sockets
5262 * extensions draft, but follows the practice as seen in TCP
5263 * sockets.
5264 */
5265 sk->sk_state = SCTP_SS_LISTENING;
5266 if (!ep->base.bind_addr.port) {
5267 if (sctp_autobind(sk))
5268 return -EAGAIN;
5269 } else
5270 sctp_sk(sk)->bind_hash->fastreuse = 0;
5271
5272 sk->sk_max_ack_backlog = backlog;
5273 sctp_hash_endpoint(ep);
5274 return 0;
5275 }
5276
5277 /*
5278 * Move a socket to LISTENING state.
5279 */
5280 int sctp_inet_listen(struct socket *sock, int backlog)
5281 {
5282 struct sock *sk = sock->sk;
5283 struct crypto_hash *tfm = NULL;
5284 int err = -EINVAL;
5285
5286 if (unlikely(backlog < 0))
5287 goto out;
5288
5289 sctp_lock_sock(sk);
5290
5291 if (sock->state != SS_UNCONNECTED)
5292 goto out;
5293
5294 /* Allocate HMAC for generating cookie. */
5295 if (sctp_hmac_alg) {
5296 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5297 if (IS_ERR(tfm)) {
5298 if (net_ratelimit()) {
5299 printk(KERN_INFO
5300 "SCTP: failed to load transform for %s: %ld\n",
5301 sctp_hmac_alg, PTR_ERR(tfm));
5302 }
5303 err = -ENOSYS;
5304 goto out;
5305 }
5306 }
5307
5308 switch (sock->type) {
5309 case SOCK_SEQPACKET:
5310 err = sctp_seqpacket_listen(sk, backlog);
5311 break;
5312 case SOCK_STREAM:
5313 err = sctp_stream_listen(sk, backlog);
5314 break;
5315 default:
5316 break;
5317 }
5318
5319 if (err)
5320 goto cleanup;
5321
5322 /* Store away the transform reference. */
5323 sctp_sk(sk)->hmac = tfm;
5324 out:
5325 sctp_release_sock(sk);
5326 return err;
5327 cleanup:
5328 crypto_free_hash(tfm);
5329 goto out;
5330 }
5331
5332 /*
5333 * This function is done by modeling the current datagram_poll() and the
5334 * tcp_poll(). Note that, based on these implementations, we don't
5335 * lock the socket in this function, even though it seems that,
5336 * ideally, locking or some other mechanisms can be used to ensure
5337 * the integrity of the counters (sndbuf and wmem_alloc) used
5338 * in this place. We assume that we don't need locks either until proven
5339 * otherwise.
5340 *
5341 * Another thing to note is that we include the Async I/O support
5342 * here, again, by modeling the current TCP/UDP code. We don't have
5343 * a good way to test with it yet.
5344 */
5345 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5346 {
5347 struct sock *sk = sock->sk;
5348 struct sctp_sock *sp = sctp_sk(sk);
5349 unsigned int mask;
5350
5351 poll_wait(file, sk->sk_sleep, wait);
5352
5353 /* A TCP-style listening socket becomes readable when the accept queue
5354 * is not empty.
5355 */
5356 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5357 return (!list_empty(&sp->ep->asocs)) ?
5358 (POLLIN | POLLRDNORM) : 0;
5359
5360 mask = 0;
5361
5362 /* Is there any exceptional events? */
5363 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5364 mask |= POLLERR;
5365 if (sk->sk_shutdown & RCV_SHUTDOWN)
5366 mask |= POLLRDHUP;
5367 if (sk->sk_shutdown == SHUTDOWN_MASK)
5368 mask |= POLLHUP;
5369
5370 /* Is it readable? Reconsider this code with TCP-style support. */
5371 if (!skb_queue_empty(&sk->sk_receive_queue) ||
5372 (sk->sk_shutdown & RCV_SHUTDOWN))
5373 mask |= POLLIN | POLLRDNORM;
5374
5375 /* The association is either gone or not ready. */
5376 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5377 return mask;
5378
5379 /* Is it writable? */
5380 if (sctp_writeable(sk)) {
5381 mask |= POLLOUT | POLLWRNORM;
5382 } else {
5383 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5384 /*
5385 * Since the socket is not locked, the buffer
5386 * might be made available after the writeable check and
5387 * before the bit is set. This could cause a lost I/O
5388 * signal. tcp_poll() has a race breaker for this race
5389 * condition. Based on their implementation, we put
5390 * in the following code to cover it as well.
5391 */
5392 if (sctp_writeable(sk))
5393 mask |= POLLOUT | POLLWRNORM;
5394 }
5395 return mask;
5396 }
5397
5398 /********************************************************************
5399 * 2nd Level Abstractions
5400 ********************************************************************/
5401
5402 static struct sctp_bind_bucket *sctp_bucket_create(
5403 struct sctp_bind_hashbucket *head, unsigned short snum)
5404 {
5405 struct sctp_bind_bucket *pp;
5406
5407 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5408 SCTP_DBG_OBJCNT_INC(bind_bucket);
5409 if (pp) {
5410 pp->port = snum;
5411 pp->fastreuse = 0;
5412 INIT_HLIST_HEAD(&pp->owner);
5413 if ((pp->next = head->chain) != NULL)
5414 pp->next->pprev = &pp->next;
5415 head->chain = pp;
5416 pp->pprev = &head->chain;
5417 }
5418 return pp;
5419 }
5420
5421 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5422 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5423 {
5424 if (pp && hlist_empty(&pp->owner)) {
5425 if (pp->next)
5426 pp->next->pprev = pp->pprev;
5427 *(pp->pprev) = pp->next;
5428 kmem_cache_free(sctp_bucket_cachep, pp);
5429 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5430 }
5431 }
5432
5433 /* Release this socket's reference to a local port. */
5434 static inline void __sctp_put_port(struct sock *sk)
5435 {
5436 struct sctp_bind_hashbucket *head =
5437 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5438 struct sctp_bind_bucket *pp;
5439
5440 sctp_spin_lock(&head->lock);
5441 pp = sctp_sk(sk)->bind_hash;
5442 __sk_del_bind_node(sk);
5443 sctp_sk(sk)->bind_hash = NULL;
5444 inet_sk(sk)->num = 0;
5445 sctp_bucket_destroy(pp);
5446 sctp_spin_unlock(&head->lock);
5447 }
5448
5449 void sctp_put_port(struct sock *sk)
5450 {
5451 sctp_local_bh_disable();
5452 __sctp_put_port(sk);
5453 sctp_local_bh_enable();
5454 }
5455
5456 /*
5457 * The system picks an ephemeral port and choose an address set equivalent
5458 * to binding with a wildcard address.
5459 * One of those addresses will be the primary address for the association.
5460 * This automatically enables the multihoming capability of SCTP.
5461 */
5462 static int sctp_autobind(struct sock *sk)
5463 {
5464 union sctp_addr autoaddr;
5465 struct sctp_af *af;
5466 __be16 port;
5467
5468 /* Initialize a local sockaddr structure to INADDR_ANY. */
5469 af = sctp_sk(sk)->pf->af;
5470
5471 port = htons(inet_sk(sk)->num);
5472 af->inaddr_any(&autoaddr, port);
5473
5474 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5475 }
5476
5477 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5478 *
5479 * From RFC 2292
5480 * 4.2 The cmsghdr Structure *
5481 *
5482 * When ancillary data is sent or received, any number of ancillary data
5483 * objects can be specified by the msg_control and msg_controllen members of
5484 * the msghdr structure, because each object is preceded by
5485 * a cmsghdr structure defining the object's length (the cmsg_len member).
5486 * Historically Berkeley-derived implementations have passed only one object
5487 * at a time, but this API allows multiple objects to be
5488 * passed in a single call to sendmsg() or recvmsg(). The following example
5489 * shows two ancillary data objects in a control buffer.
5490 *
5491 * |<--------------------------- msg_controllen -------------------------->|
5492 * | |
5493 *
5494 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5495 *
5496 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5497 * | | |
5498 *
5499 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5500 *
5501 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5502 * | | | | |
5503 *
5504 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5505 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5506 *
5507 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5508 *
5509 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5510 * ^
5511 * |
5512 *
5513 * msg_control
5514 * points here
5515 */
5516 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5517 sctp_cmsgs_t *cmsgs)
5518 {
5519 struct cmsghdr *cmsg;
5520
5521 for (cmsg = CMSG_FIRSTHDR(msg);
5522 cmsg != NULL;
5523 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5524 if (!CMSG_OK(msg, cmsg))
5525 return -EINVAL;
5526
5527 /* Should we parse this header or ignore? */
5528 if (cmsg->cmsg_level != IPPROTO_SCTP)
5529 continue;
5530
5531 /* Strictly check lengths following example in SCM code. */
5532 switch (cmsg->cmsg_type) {
5533 case SCTP_INIT:
5534 /* SCTP Socket API Extension
5535 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5536 *
5537 * This cmsghdr structure provides information for
5538 * initializing new SCTP associations with sendmsg().
5539 * The SCTP_INITMSG socket option uses this same data
5540 * structure. This structure is not used for
5541 * recvmsg().
5542 *
5543 * cmsg_level cmsg_type cmsg_data[]
5544 * ------------ ------------ ----------------------
5545 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5546 */
5547 if (cmsg->cmsg_len !=
5548 CMSG_LEN(sizeof(struct sctp_initmsg)))
5549 return -EINVAL;
5550 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5551 break;
5552
5553 case SCTP_SNDRCV:
5554 /* SCTP Socket API Extension
5555 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5556 *
5557 * This cmsghdr structure specifies SCTP options for
5558 * sendmsg() and describes SCTP header information
5559 * about a received message through recvmsg().
5560 *
5561 * cmsg_level cmsg_type cmsg_data[]
5562 * ------------ ------------ ----------------------
5563 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
5564 */
5565 if (cmsg->cmsg_len !=
5566 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5567 return -EINVAL;
5568
5569 cmsgs->info =
5570 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5571
5572 /* Minimally, validate the sinfo_flags. */
5573 if (cmsgs->info->sinfo_flags &
5574 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5575 SCTP_ABORT | SCTP_EOF))
5576 return -EINVAL;
5577 break;
5578
5579 default:
5580 return -EINVAL;
5581 }
5582 }
5583 return 0;
5584 }
5585
5586 /*
5587 * Wait for a packet..
5588 * Note: This function is the same function as in core/datagram.c
5589 * with a few modifications to make lksctp work.
5590 */
5591 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5592 {
5593 int error;
5594 DEFINE_WAIT(wait);
5595
5596 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5597
5598 /* Socket errors? */
5599 error = sock_error(sk);
5600 if (error)
5601 goto out;
5602
5603 if (!skb_queue_empty(&sk->sk_receive_queue))
5604 goto ready;
5605
5606 /* Socket shut down? */
5607 if (sk->sk_shutdown & RCV_SHUTDOWN)
5608 goto out;
5609
5610 /* Sequenced packets can come disconnected. If so we report the
5611 * problem.
5612 */
5613 error = -ENOTCONN;
5614
5615 /* Is there a good reason to think that we may receive some data? */
5616 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5617 goto out;
5618
5619 /* Handle signals. */
5620 if (signal_pending(current))
5621 goto interrupted;
5622
5623 /* Let another process have a go. Since we are going to sleep
5624 * anyway. Note: This may cause odd behaviors if the message
5625 * does not fit in the user's buffer, but this seems to be the
5626 * only way to honor MSG_DONTWAIT realistically.
5627 */
5628 sctp_release_sock(sk);
5629 *timeo_p = schedule_timeout(*timeo_p);
5630 sctp_lock_sock(sk);
5631
5632 ready:
5633 finish_wait(sk->sk_sleep, &wait);
5634 return 0;
5635
5636 interrupted:
5637 error = sock_intr_errno(*timeo_p);
5638
5639 out:
5640 finish_wait(sk->sk_sleep, &wait);
5641 *err = error;
5642 return error;
5643 }
5644
5645 /* Receive a datagram.
5646 * Note: This is pretty much the same routine as in core/datagram.c
5647 * with a few changes to make lksctp work.
5648 */
5649 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5650 int noblock, int *err)
5651 {
5652 int error;
5653 struct sk_buff *skb;
5654 long timeo;
5655
5656 timeo = sock_rcvtimeo(sk, noblock);
5657
5658 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5659 timeo, MAX_SCHEDULE_TIMEOUT);
5660
5661 do {
5662 /* Again only user level code calls this function,
5663 * so nothing interrupt level
5664 * will suddenly eat the receive_queue.
5665 *
5666 * Look at current nfs client by the way...
5667 * However, this function was corrent in any case. 8)
5668 */
5669 if (flags & MSG_PEEK) {
5670 spin_lock_bh(&sk->sk_receive_queue.lock);
5671 skb = skb_peek(&sk->sk_receive_queue);
5672 if (skb)
5673 atomic_inc(&skb->users);
5674 spin_unlock_bh(&sk->sk_receive_queue.lock);
5675 } else {
5676 skb = skb_dequeue(&sk->sk_receive_queue);
5677 }
5678
5679 if (skb)
5680 return skb;
5681
5682 /* Caller is allowed not to check sk->sk_err before calling. */
5683 error = sock_error(sk);
5684 if (error)
5685 goto no_packet;
5686
5687 if (sk->sk_shutdown & RCV_SHUTDOWN)
5688 break;
5689
5690 /* User doesn't want to wait. */
5691 error = -EAGAIN;
5692 if (!timeo)
5693 goto no_packet;
5694 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5695
5696 return NULL;
5697
5698 no_packet:
5699 *err = error;
5700 return NULL;
5701 }
5702
5703 /* If sndbuf has changed, wake up per association sndbuf waiters. */
5704 static void __sctp_write_space(struct sctp_association *asoc)
5705 {
5706 struct sock *sk = asoc->base.sk;
5707 struct socket *sock = sk->sk_socket;
5708
5709 if ((sctp_wspace(asoc) > 0) && sock) {
5710 if (waitqueue_active(&asoc->wait))
5711 wake_up_interruptible(&asoc->wait);
5712
5713 if (sctp_writeable(sk)) {
5714 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5715 wake_up_interruptible(sk->sk_sleep);
5716
5717 /* Note that we try to include the Async I/O support
5718 * here by modeling from the current TCP/UDP code.
5719 * We have not tested with it yet.
5720 */
5721 if (sock->fasync_list &&
5722 !(sk->sk_shutdown & SEND_SHUTDOWN))
5723 sock_wake_async(sock, 2, POLL_OUT);
5724 }
5725 }
5726 }
5727
5728 /* Do accounting for the sndbuf space.
5729 * Decrement the used sndbuf space of the corresponding association by the
5730 * data size which was just transmitted(freed).
5731 */
5732 static void sctp_wfree(struct sk_buff *skb)
5733 {
5734 struct sctp_association *asoc;
5735 struct sctp_chunk *chunk;
5736 struct sock *sk;
5737
5738 /* Get the saved chunk pointer. */
5739 chunk = *((struct sctp_chunk **)(skb->cb));
5740 asoc = chunk->asoc;
5741 sk = asoc->base.sk;
5742 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5743 sizeof(struct sk_buff) +
5744 sizeof(struct sctp_chunk);
5745
5746 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5747
5748 sock_wfree(skb);
5749 __sctp_write_space(asoc);
5750
5751 sctp_association_put(asoc);
5752 }
5753
5754 /* Do accounting for the receive space on the socket.
5755 * Accounting for the association is done in ulpevent.c
5756 * We set this as a destructor for the cloned data skbs so that
5757 * accounting is done at the correct time.
5758 */
5759 void sctp_sock_rfree(struct sk_buff *skb)
5760 {
5761 struct sock *sk = skb->sk;
5762 struct sctp_ulpevent *event = sctp_skb2event(skb);
5763
5764 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
5765 }
5766
5767
5768 /* Helper function to wait for space in the sndbuf. */
5769 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5770 size_t msg_len)
5771 {
5772 struct sock *sk = asoc->base.sk;
5773 int err = 0;
5774 long current_timeo = *timeo_p;
5775 DEFINE_WAIT(wait);
5776
5777 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5778 asoc, (long)(*timeo_p), msg_len);
5779
5780 /* Increment the association's refcnt. */
5781 sctp_association_hold(asoc);
5782
5783 /* Wait on the association specific sndbuf space. */
5784 for (;;) {
5785 prepare_to_wait_exclusive(&asoc->wait, &wait,
5786 TASK_INTERRUPTIBLE);
5787 if (!*timeo_p)
5788 goto do_nonblock;
5789 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5790 asoc->base.dead)
5791 goto do_error;
5792 if (signal_pending(current))
5793 goto do_interrupted;
5794 if (msg_len <= sctp_wspace(asoc))
5795 break;
5796
5797 /* Let another process have a go. Since we are going
5798 * to sleep anyway.
5799 */
5800 sctp_release_sock(sk);
5801 current_timeo = schedule_timeout(current_timeo);
5802 BUG_ON(sk != asoc->base.sk);
5803 sctp_lock_sock(sk);
5804
5805 *timeo_p = current_timeo;
5806 }
5807
5808 out:
5809 finish_wait(&asoc->wait, &wait);
5810
5811 /* Release the association's refcnt. */
5812 sctp_association_put(asoc);
5813
5814 return err;
5815
5816 do_error:
5817 err = -EPIPE;
5818 goto out;
5819
5820 do_interrupted:
5821 err = sock_intr_errno(*timeo_p);
5822 goto out;
5823
5824 do_nonblock:
5825 err = -EAGAIN;
5826 goto out;
5827 }
5828
5829 /* If socket sndbuf has changed, wake up all per association waiters. */
5830 void sctp_write_space(struct sock *sk)
5831 {
5832 struct sctp_association *asoc;
5833 struct list_head *pos;
5834
5835 /* Wake up the tasks in each wait queue. */
5836 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5837 asoc = list_entry(pos, struct sctp_association, asocs);
5838 __sctp_write_space(asoc);
5839 }
5840 }
5841
5842 /* Is there any sndbuf space available on the socket?
5843 *
5844 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5845 * associations on the same socket. For a UDP-style socket with
5846 * multiple associations, it is possible for it to be "unwriteable"
5847 * prematurely. I assume that this is acceptable because
5848 * a premature "unwriteable" is better than an accidental "writeable" which
5849 * would cause an unwanted block under certain circumstances. For the 1-1
5850 * UDP-style sockets or TCP-style sockets, this code should work.
5851 * - Daisy
5852 */
5853 static int sctp_writeable(struct sock *sk)
5854 {
5855 int amt = 0;
5856
5857 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5858 if (amt < 0)
5859 amt = 0;
5860 return amt;
5861 }
5862
5863 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5864 * returns immediately with EINPROGRESS.
5865 */
5866 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5867 {
5868 struct sock *sk = asoc->base.sk;
5869 int err = 0;
5870 long current_timeo = *timeo_p;
5871 DEFINE_WAIT(wait);
5872
5873 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5874 (long)(*timeo_p));
5875
5876 /* Increment the association's refcnt. */
5877 sctp_association_hold(asoc);
5878
5879 for (;;) {
5880 prepare_to_wait_exclusive(&asoc->wait, &wait,
5881 TASK_INTERRUPTIBLE);
5882 if (!*timeo_p)
5883 goto do_nonblock;
5884 if (sk->sk_shutdown & RCV_SHUTDOWN)
5885 break;
5886 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5887 asoc->base.dead)
5888 goto do_error;
5889 if (signal_pending(current))
5890 goto do_interrupted;
5891
5892 if (sctp_state(asoc, ESTABLISHED))
5893 break;
5894
5895 /* Let another process have a go. Since we are going
5896 * to sleep anyway.
5897 */
5898 sctp_release_sock(sk);
5899 current_timeo = schedule_timeout(current_timeo);
5900 sctp_lock_sock(sk);
5901
5902 *timeo_p = current_timeo;
5903 }
5904
5905 out:
5906 finish_wait(&asoc->wait, &wait);
5907
5908 /* Release the association's refcnt. */
5909 sctp_association_put(asoc);
5910
5911 return err;
5912
5913 do_error:
5914 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5915 err = -ETIMEDOUT;
5916 else
5917 err = -ECONNREFUSED;
5918 goto out;
5919
5920 do_interrupted:
5921 err = sock_intr_errno(*timeo_p);
5922 goto out;
5923
5924 do_nonblock:
5925 err = -EINPROGRESS;
5926 goto out;
5927 }
5928
5929 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5930 {
5931 struct sctp_endpoint *ep;
5932 int err = 0;
5933 DEFINE_WAIT(wait);
5934
5935 ep = sctp_sk(sk)->ep;
5936
5937
5938 for (;;) {
5939 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5940 TASK_INTERRUPTIBLE);
5941
5942 if (list_empty(&ep->asocs)) {
5943 sctp_release_sock(sk);
5944 timeo = schedule_timeout(timeo);
5945 sctp_lock_sock(sk);
5946 }
5947
5948 err = -EINVAL;
5949 if (!sctp_sstate(sk, LISTENING))
5950 break;
5951
5952 err = 0;
5953 if (!list_empty(&ep->asocs))
5954 break;
5955
5956 err = sock_intr_errno(timeo);
5957 if (signal_pending(current))
5958 break;
5959
5960 err = -EAGAIN;
5961 if (!timeo)
5962 break;
5963 }
5964
5965 finish_wait(sk->sk_sleep, &wait);
5966
5967 return err;
5968 }
5969
5970 static void sctp_wait_for_close(struct sock *sk, long timeout)
5971 {
5972 DEFINE_WAIT(wait);
5973
5974 do {
5975 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5976 if (list_empty(&sctp_sk(sk)->ep->asocs))
5977 break;
5978 sctp_release_sock(sk);
5979 timeout = schedule_timeout(timeout);
5980 sctp_lock_sock(sk);
5981 } while (!signal_pending(current) && timeout);
5982
5983 finish_wait(sk->sk_sleep, &wait);
5984 }
5985
5986 static void sctp_sock_rfree_frag(struct sk_buff *skb)
5987 {
5988 struct sk_buff *frag;
5989
5990 if (!skb->data_len)
5991 goto done;
5992
5993 /* Don't forget the fragments. */
5994 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
5995 sctp_sock_rfree_frag(frag);
5996
5997 done:
5998 sctp_sock_rfree(skb);
5999 }
6000
6001 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6002 {
6003 struct sk_buff *frag;
6004
6005 if (!skb->data_len)
6006 goto done;
6007
6008 /* Don't forget the fragments. */
6009 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6010 sctp_skb_set_owner_r_frag(frag, sk);
6011
6012 done:
6013 sctp_skb_set_owner_r(skb, sk);
6014 }
6015
6016 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6017 * and its messages to the newsk.
6018 */
6019 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6020 struct sctp_association *assoc,
6021 sctp_socket_type_t type)
6022 {
6023 struct sctp_sock *oldsp = sctp_sk(oldsk);
6024 struct sctp_sock *newsp = sctp_sk(newsk);
6025 struct sctp_bind_bucket *pp; /* hash list port iterator */
6026 struct sctp_endpoint *newep = newsp->ep;
6027 struct sk_buff *skb, *tmp;
6028 struct sctp_ulpevent *event;
6029 int flags = 0;
6030
6031 /* Migrate socket buffer sizes and all the socket level options to the
6032 * new socket.
6033 */
6034 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6035 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6036 /* Brute force copy old sctp opt. */
6037 inet_sk_copy_descendant(newsk, oldsk);
6038
6039 /* Restore the ep value that was overwritten with the above structure
6040 * copy.
6041 */
6042 newsp->ep = newep;
6043 newsp->hmac = NULL;
6044
6045 /* Hook this new socket in to the bind_hash list. */
6046 pp = sctp_sk(oldsk)->bind_hash;
6047 sk_add_bind_node(newsk, &pp->owner);
6048 sctp_sk(newsk)->bind_hash = pp;
6049 inet_sk(newsk)->num = inet_sk(oldsk)->num;
6050
6051 /* Copy the bind_addr list from the original endpoint to the new
6052 * endpoint so that we can handle restarts properly
6053 */
6054 if (PF_INET6 == assoc->base.sk->sk_family)
6055 flags = SCTP_ADDR6_ALLOWED;
6056 if (assoc->peer.ipv4_address)
6057 flags |= SCTP_ADDR4_PEERSUPP;
6058 if (assoc->peer.ipv6_address)
6059 flags |= SCTP_ADDR6_PEERSUPP;
6060 sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
6061 &oldsp->ep->base.bind_addr,
6062 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
6063
6064 /* Move any messages in the old socket's receive queue that are for the
6065 * peeled off association to the new socket's receive queue.
6066 */
6067 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6068 event = sctp_skb2event(skb);
6069 if (event->asoc == assoc) {
6070 sctp_sock_rfree_frag(skb);
6071 __skb_unlink(skb, &oldsk->sk_receive_queue);
6072 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6073 sctp_skb_set_owner_r_frag(skb, newsk);
6074 }
6075 }
6076
6077 /* Clean up any messages pending delivery due to partial
6078 * delivery. Three cases:
6079 * 1) No partial deliver; no work.
6080 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6081 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6082 */
6083 skb_queue_head_init(&newsp->pd_lobby);
6084 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6085
6086 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6087 struct sk_buff_head *queue;
6088
6089 /* Decide which queue to move pd_lobby skbs to. */
6090 if (assoc->ulpq.pd_mode) {
6091 queue = &newsp->pd_lobby;
6092 } else
6093 queue = &newsk->sk_receive_queue;
6094
6095 /* Walk through the pd_lobby, looking for skbs that
6096 * need moved to the new socket.
6097 */
6098 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6099 event = sctp_skb2event(skb);
6100 if (event->asoc == assoc) {
6101 sctp_sock_rfree_frag(skb);
6102 __skb_unlink(skb, &oldsp->pd_lobby);
6103 __skb_queue_tail(queue, skb);
6104 sctp_skb_set_owner_r_frag(skb, newsk);
6105 }
6106 }
6107
6108 /* Clear up any skbs waiting for the partial
6109 * delivery to finish.
6110 */
6111 if (assoc->ulpq.pd_mode)
6112 sctp_clear_pd(oldsk, NULL);
6113
6114 }
6115
6116 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6117 sctp_sock_rfree_frag(skb);
6118 sctp_skb_set_owner_r_frag(skb, newsk);
6119 }
6120
6121 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6122 sctp_sock_rfree_frag(skb);
6123 sctp_skb_set_owner_r_frag(skb, newsk);
6124 }
6125
6126 /* Set the type of socket to indicate that it is peeled off from the
6127 * original UDP-style socket or created with the accept() call on a
6128 * TCP-style socket..
6129 */
6130 newsp->type = type;
6131
6132 /* Mark the new socket "in-use" by the user so that any packets
6133 * that may arrive on the association after we've moved it are
6134 * queued to the backlog. This prevents a potential race between
6135 * backlog processing on the old socket and new-packet processing
6136 * on the new socket.
6137 *
6138 * The caller has just allocated newsk so we can guarantee that other
6139 * paths won't try to lock it and then oldsk.
6140 */
6141 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6142 sctp_assoc_migrate(assoc, newsk);
6143
6144 /* If the association on the newsk is already closed before accept()
6145 * is called, set RCV_SHUTDOWN flag.
6146 */
6147 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6148 newsk->sk_shutdown |= RCV_SHUTDOWN;
6149
6150 newsk->sk_state = SCTP_SS_ESTABLISHED;
6151 sctp_release_sock(newsk);
6152 }
6153
6154 /* This proto struct describes the ULP interface for SCTP. */
6155 struct proto sctp_prot = {
6156 .name = "SCTP",
6157 .owner = THIS_MODULE,
6158 .close = sctp_close,
6159 .connect = sctp_connect,
6160 .disconnect = sctp_disconnect,
6161 .accept = sctp_accept,
6162 .ioctl = sctp_ioctl,
6163 .init = sctp_init_sock,
6164 .destroy = sctp_destroy_sock,
6165 .shutdown = sctp_shutdown,
6166 .setsockopt = sctp_setsockopt,
6167 .getsockopt = sctp_getsockopt,
6168 .sendmsg = sctp_sendmsg,
6169 .recvmsg = sctp_recvmsg,
6170 .bind = sctp_bind,
6171 .backlog_rcv = sctp_backlog_rcv,
6172 .hash = sctp_hash,
6173 .unhash = sctp_unhash,
6174 .get_port = sctp_get_port,
6175 .obj_size = sizeof(struct sctp_sock),
6176 };
6177
6178 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6179 struct proto sctpv6_prot = {
6180 .name = "SCTPv6",
6181 .owner = THIS_MODULE,
6182 .close = sctp_close,
6183 .connect = sctp_connect,
6184 .disconnect = sctp_disconnect,
6185 .accept = sctp_accept,
6186 .ioctl = sctp_ioctl,
6187 .init = sctp_init_sock,
6188 .destroy = sctp_destroy_sock,
6189 .shutdown = sctp_shutdown,
6190 .setsockopt = sctp_setsockopt,
6191 .getsockopt = sctp_getsockopt,
6192 .sendmsg = sctp_sendmsg,
6193 .recvmsg = sctp_recvmsg,
6194 .bind = sctp_bind,
6195 .backlog_rcv = sctp_backlog_rcv,
6196 .hash = sctp_hash,
6197 .unhash = sctp_unhash,
6198 .get_port = sctp_get_port,
6199 .obj_size = sizeof(struct sctp6_sock),
6200 };
6201 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
This page took 0.169789 seconds and 5 git commands to generate.