d32dae78a4868439646dbe3b6d418a90ae5b4305
[deliverable/linux.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67
68 #include <net/ip.h>
69 #include <net/icmp.h>
70 #include <net/route.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73
74 #include <linux/socket.h> /* for sa_family_t */
75 #include <linux/export.h>
76 #include <net/sock.h>
77 #include <net/sctp/sctp.h>
78 #include <net/sctp/sm.h>
79
80 /* Forward declarations for internal helper functions. */
81 static int sctp_writeable(struct sock *sk);
82 static void sctp_wfree(struct sk_buff *skb);
83 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
84 size_t msg_len);
85 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
86 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
87 static int sctp_wait_for_accept(struct sock *sk, long timeo);
88 static void sctp_wait_for_close(struct sock *sk, long timeo);
89 static void sctp_destruct_sock(struct sock *sk);
90 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
91 union sctp_addr *addr, int len);
92 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
93 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
94 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
95 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf(struct sctp_association *asoc,
97 struct sctp_chunk *chunk);
98 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
99 static int sctp_autobind(struct sock *sk);
100 static void sctp_sock_migrate(struct sock *, struct sock *,
101 struct sctp_association *, sctp_socket_type_t);
102
103 extern struct kmem_cache *sctp_bucket_cachep;
104 extern long sysctl_sctp_mem[3];
105 extern int sysctl_sctp_rmem[3];
106 extern int sysctl_sctp_wmem[3];
107
108 static int sctp_memory_pressure;
109 static atomic_long_t sctp_memory_allocated;
110 struct percpu_counter sctp_sockets_allocated;
111
112 static void sctp_enter_memory_pressure(struct sock *sk)
113 {
114 sctp_memory_pressure = 1;
115 }
116
117
118 /* Get the sndbuf space available at the time on the association. */
119 static inline int sctp_wspace(struct sctp_association *asoc)
120 {
121 int amt;
122
123 if (asoc->ep->sndbuf_policy)
124 amt = asoc->sndbuf_used;
125 else
126 amt = sk_wmem_alloc_get(asoc->base.sk);
127
128 if (amt >= asoc->base.sk->sk_sndbuf) {
129 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
130 amt = 0;
131 else {
132 amt = sk_stream_wspace(asoc->base.sk);
133 if (amt < 0)
134 amt = 0;
135 }
136 } else {
137 amt = asoc->base.sk->sk_sndbuf - amt;
138 }
139 return amt;
140 }
141
142 /* Increment the used sndbuf space count of the corresponding association by
143 * the size of the outgoing data chunk.
144 * Also, set the skb destructor for sndbuf accounting later.
145 *
146 * Since it is always 1-1 between chunk and skb, and also a new skb is always
147 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
148 * destructor in the data chunk skb for the purpose of the sndbuf space
149 * tracking.
150 */
151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
152 {
153 struct sctp_association *asoc = chunk->asoc;
154 struct sock *sk = asoc->base.sk;
155
156 /* The sndbuf space is tracked per association. */
157 sctp_association_hold(asoc);
158
159 skb_set_owner_w(chunk->skb, sk);
160
161 chunk->skb->destructor = sctp_wfree;
162 /* Save the chunk pointer in skb for sctp_wfree to use later. */
163 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
164
165 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
166 sizeof(struct sk_buff) +
167 sizeof(struct sctp_chunk);
168
169 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
170 sk->sk_wmem_queued += chunk->skb->truesize;
171 sk_mem_charge(sk, chunk->skb->truesize);
172 }
173
174 /* Verify that this is a valid address. */
175 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
176 int len)
177 {
178 struct sctp_af *af;
179
180 /* Verify basic sockaddr. */
181 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
182 if (!af)
183 return -EINVAL;
184
185 /* Is this a valid SCTP address? */
186 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
187 return -EINVAL;
188
189 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
190 return -EINVAL;
191
192 return 0;
193 }
194
195 /* Look up the association by its id. If this is not a UDP-style
196 * socket, the ID field is always ignored.
197 */
198 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
199 {
200 struct sctp_association *asoc = NULL;
201
202 /* If this is not a UDP-style socket, assoc id should be ignored. */
203 if (!sctp_style(sk, UDP)) {
204 /* Return NULL if the socket state is not ESTABLISHED. It
205 * could be a TCP-style listening socket or a socket which
206 * hasn't yet called connect() to establish an association.
207 */
208 if (!sctp_sstate(sk, ESTABLISHED))
209 return NULL;
210
211 /* Get the first and the only association from the list. */
212 if (!list_empty(&sctp_sk(sk)->ep->asocs))
213 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
214 struct sctp_association, asocs);
215 return asoc;
216 }
217
218 /* Otherwise this is a UDP-style socket. */
219 if (!id || (id == (sctp_assoc_t)-1))
220 return NULL;
221
222 spin_lock_bh(&sctp_assocs_id_lock);
223 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
224 spin_unlock_bh(&sctp_assocs_id_lock);
225
226 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
227 return NULL;
228
229 return asoc;
230 }
231
232 /* Look up the transport from an address and an assoc id. If both address and
233 * id are specified, the associations matching the address and the id should be
234 * the same.
235 */
236 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
237 struct sockaddr_storage *addr,
238 sctp_assoc_t id)
239 {
240 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
241 struct sctp_transport *transport;
242 union sctp_addr *laddr = (union sctp_addr *)addr;
243
244 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
245 laddr,
246 &transport);
247
248 if (!addr_asoc)
249 return NULL;
250
251 id_asoc = sctp_id2assoc(sk, id);
252 if (id_asoc && (id_asoc != addr_asoc))
253 return NULL;
254
255 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
256 (union sctp_addr *)addr);
257
258 return transport;
259 }
260
261 /* API 3.1.2 bind() - UDP Style Syntax
262 * The syntax of bind() is,
263 *
264 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
265 *
266 * sd - the socket descriptor returned by socket().
267 * addr - the address structure (struct sockaddr_in or struct
268 * sockaddr_in6 [RFC 2553]),
269 * addr_len - the size of the address structure.
270 */
271 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
272 {
273 int retval = 0;
274
275 sctp_lock_sock(sk);
276
277 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
278 addr, addr_len);
279
280 /* Disallow binding twice. */
281 if (!sctp_sk(sk)->ep->base.bind_addr.port)
282 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
283 addr_len);
284 else
285 retval = -EINVAL;
286
287 sctp_release_sock(sk);
288
289 return retval;
290 }
291
292 static long sctp_get_port_local(struct sock *, union sctp_addr *);
293
294 /* Verify this is a valid sockaddr. */
295 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
296 union sctp_addr *addr, int len)
297 {
298 struct sctp_af *af;
299
300 /* Check minimum size. */
301 if (len < sizeof (struct sockaddr))
302 return NULL;
303
304 /* V4 mapped address are really of AF_INET family */
305 if (addr->sa.sa_family == AF_INET6 &&
306 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
307 if (!opt->pf->af_supported(AF_INET, opt))
308 return NULL;
309 } else {
310 /* Does this PF support this AF? */
311 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
312 return NULL;
313 }
314
315 /* If we get this far, af is valid. */
316 af = sctp_get_af_specific(addr->sa.sa_family);
317
318 if (len < af->sockaddr_len)
319 return NULL;
320
321 return af;
322 }
323
324 /* Bind a local address either to an endpoint or to an association. */
325 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
326 {
327 struct net *net = sock_net(sk);
328 struct sctp_sock *sp = sctp_sk(sk);
329 struct sctp_endpoint *ep = sp->ep;
330 struct sctp_bind_addr *bp = &ep->base.bind_addr;
331 struct sctp_af *af;
332 unsigned short snum;
333 int ret = 0;
334
335 /* Common sockaddr verification. */
336 af = sctp_sockaddr_af(sp, addr, len);
337 if (!af) {
338 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
339 __func__, sk, addr, len);
340 return -EINVAL;
341 }
342
343 snum = ntohs(addr->v4.sin_port);
344
345 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
346 __func__, sk, &addr->sa, bp->port, snum, len);
347
348 /* PF specific bind() address verification. */
349 if (!sp->pf->bind_verify(sp, addr))
350 return -EADDRNOTAVAIL;
351
352 /* We must either be unbound, or bind to the same port.
353 * It's OK to allow 0 ports if we are already bound.
354 * We'll just inhert an already bound port in this case
355 */
356 if (bp->port) {
357 if (!snum)
358 snum = bp->port;
359 else if (snum != bp->port) {
360 pr_debug("%s: new port %d doesn't match existing port "
361 "%d\n", __func__, snum, bp->port);
362 return -EINVAL;
363 }
364 }
365
366 if (snum && snum < PROT_SOCK &&
367 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
368 return -EACCES;
369
370 /* See if the address matches any of the addresses we may have
371 * already bound before checking against other endpoints.
372 */
373 if (sctp_bind_addr_match(bp, addr, sp))
374 return -EINVAL;
375
376 /* Make sure we are allowed to bind here.
377 * The function sctp_get_port_local() does duplicate address
378 * detection.
379 */
380 addr->v4.sin_port = htons(snum);
381 if ((ret = sctp_get_port_local(sk, addr))) {
382 return -EADDRINUSE;
383 }
384
385 /* Refresh ephemeral port. */
386 if (!bp->port)
387 bp->port = inet_sk(sk)->inet_num;
388
389 /* Add the address to the bind address list.
390 * Use GFP_ATOMIC since BHs will be disabled.
391 */
392 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
393
394 /* Copy back into socket for getsockname() use. */
395 if (!ret) {
396 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
397 af->to_sk_saddr(addr, sk);
398 }
399
400 return ret;
401 }
402
403 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
404 *
405 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
406 * at any one time. If a sender, after sending an ASCONF chunk, decides
407 * it needs to transfer another ASCONF Chunk, it MUST wait until the
408 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
409 * subsequent ASCONF. Note this restriction binds each side, so at any
410 * time two ASCONF may be in-transit on any given association (one sent
411 * from each endpoint).
412 */
413 static int sctp_send_asconf(struct sctp_association *asoc,
414 struct sctp_chunk *chunk)
415 {
416 struct net *net = sock_net(asoc->base.sk);
417 int retval = 0;
418
419 /* If there is an outstanding ASCONF chunk, queue it for later
420 * transmission.
421 */
422 if (asoc->addip_last_asconf) {
423 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
424 goto out;
425 }
426
427 /* Hold the chunk until an ASCONF_ACK is received. */
428 sctp_chunk_hold(chunk);
429 retval = sctp_primitive_ASCONF(net, asoc, chunk);
430 if (retval)
431 sctp_chunk_free(chunk);
432 else
433 asoc->addip_last_asconf = chunk;
434
435 out:
436 return retval;
437 }
438
439 /* Add a list of addresses as bind addresses to local endpoint or
440 * association.
441 *
442 * Basically run through each address specified in the addrs/addrcnt
443 * array/length pair, determine if it is IPv6 or IPv4 and call
444 * sctp_do_bind() on it.
445 *
446 * If any of them fails, then the operation will be reversed and the
447 * ones that were added will be removed.
448 *
449 * Only sctp_setsockopt_bindx() is supposed to call this function.
450 */
451 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
452 {
453 int cnt;
454 int retval = 0;
455 void *addr_buf;
456 struct sockaddr *sa_addr;
457 struct sctp_af *af;
458
459 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
460 addrs, addrcnt);
461
462 addr_buf = addrs;
463 for (cnt = 0; cnt < addrcnt; cnt++) {
464 /* The list may contain either IPv4 or IPv6 address;
465 * determine the address length for walking thru the list.
466 */
467 sa_addr = addr_buf;
468 af = sctp_get_af_specific(sa_addr->sa_family);
469 if (!af) {
470 retval = -EINVAL;
471 goto err_bindx_add;
472 }
473
474 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
475 af->sockaddr_len);
476
477 addr_buf += af->sockaddr_len;
478
479 err_bindx_add:
480 if (retval < 0) {
481 /* Failed. Cleanup the ones that have been added */
482 if (cnt > 0)
483 sctp_bindx_rem(sk, addrs, cnt);
484 return retval;
485 }
486 }
487
488 return retval;
489 }
490
491 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
492 * associations that are part of the endpoint indicating that a list of local
493 * addresses are added to the endpoint.
494 *
495 * If any of the addresses is already in the bind address list of the
496 * association, we do not send the chunk for that association. But it will not
497 * affect other associations.
498 *
499 * Only sctp_setsockopt_bindx() is supposed to call this function.
500 */
501 static int sctp_send_asconf_add_ip(struct sock *sk,
502 struct sockaddr *addrs,
503 int addrcnt)
504 {
505 struct net *net = sock_net(sk);
506 struct sctp_sock *sp;
507 struct sctp_endpoint *ep;
508 struct sctp_association *asoc;
509 struct sctp_bind_addr *bp;
510 struct sctp_chunk *chunk;
511 struct sctp_sockaddr_entry *laddr;
512 union sctp_addr *addr;
513 union sctp_addr saveaddr;
514 void *addr_buf;
515 struct sctp_af *af;
516 struct list_head *p;
517 int i;
518 int retval = 0;
519
520 if (!net->sctp.addip_enable)
521 return retval;
522
523 sp = sctp_sk(sk);
524 ep = sp->ep;
525
526 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
527 __func__, sk, addrs, addrcnt);
528
529 list_for_each_entry(asoc, &ep->asocs, asocs) {
530 if (!asoc->peer.asconf_capable)
531 continue;
532
533 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
534 continue;
535
536 if (!sctp_state(asoc, ESTABLISHED))
537 continue;
538
539 /* Check if any address in the packed array of addresses is
540 * in the bind address list of the association. If so,
541 * do not send the asconf chunk to its peer, but continue with
542 * other associations.
543 */
544 addr_buf = addrs;
545 for (i = 0; i < addrcnt; i++) {
546 addr = addr_buf;
547 af = sctp_get_af_specific(addr->v4.sin_family);
548 if (!af) {
549 retval = -EINVAL;
550 goto out;
551 }
552
553 if (sctp_assoc_lookup_laddr(asoc, addr))
554 break;
555
556 addr_buf += af->sockaddr_len;
557 }
558 if (i < addrcnt)
559 continue;
560
561 /* Use the first valid address in bind addr list of
562 * association as Address Parameter of ASCONF CHUNK.
563 */
564 bp = &asoc->base.bind_addr;
565 p = bp->address_list.next;
566 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
567 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
568 addrcnt, SCTP_PARAM_ADD_IP);
569 if (!chunk) {
570 retval = -ENOMEM;
571 goto out;
572 }
573
574 /* Add the new addresses to the bind address list with
575 * use_as_src set to 0.
576 */
577 addr_buf = addrs;
578 for (i = 0; i < addrcnt; i++) {
579 addr = addr_buf;
580 af = sctp_get_af_specific(addr->v4.sin_family);
581 memcpy(&saveaddr, addr, af->sockaddr_len);
582 retval = sctp_add_bind_addr(bp, &saveaddr,
583 SCTP_ADDR_NEW, GFP_ATOMIC);
584 addr_buf += af->sockaddr_len;
585 }
586 if (asoc->src_out_of_asoc_ok) {
587 struct sctp_transport *trans;
588
589 list_for_each_entry(trans,
590 &asoc->peer.transport_addr_list, transports) {
591 /* Clear the source and route cache */
592 dst_release(trans->dst);
593 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
594 2*asoc->pathmtu, 4380));
595 trans->ssthresh = asoc->peer.i.a_rwnd;
596 trans->rto = asoc->rto_initial;
597 sctp_max_rto(asoc, trans);
598 trans->rtt = trans->srtt = trans->rttvar = 0;
599 sctp_transport_route(trans, NULL,
600 sctp_sk(asoc->base.sk));
601 }
602 }
603 retval = sctp_send_asconf(asoc, chunk);
604 }
605
606 out:
607 return retval;
608 }
609
610 /* Remove a list of addresses from bind addresses list. Do not remove the
611 * last address.
612 *
613 * Basically run through each address specified in the addrs/addrcnt
614 * array/length pair, determine if it is IPv6 or IPv4 and call
615 * sctp_del_bind() on it.
616 *
617 * If any of them fails, then the operation will be reversed and the
618 * ones that were removed will be added back.
619 *
620 * At least one address has to be left; if only one address is
621 * available, the operation will return -EBUSY.
622 *
623 * Only sctp_setsockopt_bindx() is supposed to call this function.
624 */
625 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
626 {
627 struct sctp_sock *sp = sctp_sk(sk);
628 struct sctp_endpoint *ep = sp->ep;
629 int cnt;
630 struct sctp_bind_addr *bp = &ep->base.bind_addr;
631 int retval = 0;
632 void *addr_buf;
633 union sctp_addr *sa_addr;
634 struct sctp_af *af;
635
636 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
637 __func__, sk, addrs, addrcnt);
638
639 addr_buf = addrs;
640 for (cnt = 0; cnt < addrcnt; cnt++) {
641 /* If the bind address list is empty or if there is only one
642 * bind address, there is nothing more to be removed (we need
643 * at least one address here).
644 */
645 if (list_empty(&bp->address_list) ||
646 (sctp_list_single_entry(&bp->address_list))) {
647 retval = -EBUSY;
648 goto err_bindx_rem;
649 }
650
651 sa_addr = addr_buf;
652 af = sctp_get_af_specific(sa_addr->sa.sa_family);
653 if (!af) {
654 retval = -EINVAL;
655 goto err_bindx_rem;
656 }
657
658 if (!af->addr_valid(sa_addr, sp, NULL)) {
659 retval = -EADDRNOTAVAIL;
660 goto err_bindx_rem;
661 }
662
663 if (sa_addr->v4.sin_port &&
664 sa_addr->v4.sin_port != htons(bp->port)) {
665 retval = -EINVAL;
666 goto err_bindx_rem;
667 }
668
669 if (!sa_addr->v4.sin_port)
670 sa_addr->v4.sin_port = htons(bp->port);
671
672 /* FIXME - There is probably a need to check if sk->sk_saddr and
673 * sk->sk_rcv_addr are currently set to one of the addresses to
674 * be removed. This is something which needs to be looked into
675 * when we are fixing the outstanding issues with multi-homing
676 * socket routing and failover schemes. Refer to comments in
677 * sctp_do_bind(). -daisy
678 */
679 retval = sctp_del_bind_addr(bp, sa_addr);
680
681 addr_buf += af->sockaddr_len;
682 err_bindx_rem:
683 if (retval < 0) {
684 /* Failed. Add the ones that has been removed back */
685 if (cnt > 0)
686 sctp_bindx_add(sk, addrs, cnt);
687 return retval;
688 }
689 }
690
691 return retval;
692 }
693
694 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
695 * the associations that are part of the endpoint indicating that a list of
696 * local addresses are removed from the endpoint.
697 *
698 * If any of the addresses is already in the bind address list of the
699 * association, we do not send the chunk for that association. But it will not
700 * affect other associations.
701 *
702 * Only sctp_setsockopt_bindx() is supposed to call this function.
703 */
704 static int sctp_send_asconf_del_ip(struct sock *sk,
705 struct sockaddr *addrs,
706 int addrcnt)
707 {
708 struct net *net = sock_net(sk);
709 struct sctp_sock *sp;
710 struct sctp_endpoint *ep;
711 struct sctp_association *asoc;
712 struct sctp_transport *transport;
713 struct sctp_bind_addr *bp;
714 struct sctp_chunk *chunk;
715 union sctp_addr *laddr;
716 void *addr_buf;
717 struct sctp_af *af;
718 struct sctp_sockaddr_entry *saddr;
719 int i;
720 int retval = 0;
721 int stored = 0;
722
723 chunk = NULL;
724 if (!net->sctp.addip_enable)
725 return retval;
726
727 sp = sctp_sk(sk);
728 ep = sp->ep;
729
730 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
731 __func__, sk, addrs, addrcnt);
732
733 list_for_each_entry(asoc, &ep->asocs, asocs) {
734
735 if (!asoc->peer.asconf_capable)
736 continue;
737
738 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
739 continue;
740
741 if (!sctp_state(asoc, ESTABLISHED))
742 continue;
743
744 /* Check if any address in the packed array of addresses is
745 * not present in the bind address list of the association.
746 * If so, do not send the asconf chunk to its peer, but
747 * continue with other associations.
748 */
749 addr_buf = addrs;
750 for (i = 0; i < addrcnt; i++) {
751 laddr = addr_buf;
752 af = sctp_get_af_specific(laddr->v4.sin_family);
753 if (!af) {
754 retval = -EINVAL;
755 goto out;
756 }
757
758 if (!sctp_assoc_lookup_laddr(asoc, laddr))
759 break;
760
761 addr_buf += af->sockaddr_len;
762 }
763 if (i < addrcnt)
764 continue;
765
766 /* Find one address in the association's bind address list
767 * that is not in the packed array of addresses. This is to
768 * make sure that we do not delete all the addresses in the
769 * association.
770 */
771 bp = &asoc->base.bind_addr;
772 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
773 addrcnt, sp);
774 if ((laddr == NULL) && (addrcnt == 1)) {
775 if (asoc->asconf_addr_del_pending)
776 continue;
777 asoc->asconf_addr_del_pending =
778 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
779 if (asoc->asconf_addr_del_pending == NULL) {
780 retval = -ENOMEM;
781 goto out;
782 }
783 asoc->asconf_addr_del_pending->sa.sa_family =
784 addrs->sa_family;
785 asoc->asconf_addr_del_pending->v4.sin_port =
786 htons(bp->port);
787 if (addrs->sa_family == AF_INET) {
788 struct sockaddr_in *sin;
789
790 sin = (struct sockaddr_in *)addrs;
791 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
792 } else if (addrs->sa_family == AF_INET6) {
793 struct sockaddr_in6 *sin6;
794
795 sin6 = (struct sockaddr_in6 *)addrs;
796 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
797 }
798
799 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
800 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
801 asoc->asconf_addr_del_pending);
802
803 asoc->src_out_of_asoc_ok = 1;
804 stored = 1;
805 goto skip_mkasconf;
806 }
807
808 if (laddr == NULL)
809 return -EINVAL;
810
811 /* We do not need RCU protection throughout this loop
812 * because this is done under a socket lock from the
813 * setsockopt call.
814 */
815 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
816 SCTP_PARAM_DEL_IP);
817 if (!chunk) {
818 retval = -ENOMEM;
819 goto out;
820 }
821
822 skip_mkasconf:
823 /* Reset use_as_src flag for the addresses in the bind address
824 * list that are to be deleted.
825 */
826 addr_buf = addrs;
827 for (i = 0; i < addrcnt; i++) {
828 laddr = addr_buf;
829 af = sctp_get_af_specific(laddr->v4.sin_family);
830 list_for_each_entry(saddr, &bp->address_list, list) {
831 if (sctp_cmp_addr_exact(&saddr->a, laddr))
832 saddr->state = SCTP_ADDR_DEL;
833 }
834 addr_buf += af->sockaddr_len;
835 }
836
837 /* Update the route and saddr entries for all the transports
838 * as some of the addresses in the bind address list are
839 * about to be deleted and cannot be used as source addresses.
840 */
841 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
842 transports) {
843 dst_release(transport->dst);
844 sctp_transport_route(transport, NULL,
845 sctp_sk(asoc->base.sk));
846 }
847
848 if (stored)
849 /* We don't need to transmit ASCONF */
850 continue;
851 retval = sctp_send_asconf(asoc, chunk);
852 }
853 out:
854 return retval;
855 }
856
857 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
858 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
859 {
860 struct sock *sk = sctp_opt2sk(sp);
861 union sctp_addr *addr;
862 struct sctp_af *af;
863
864 /* It is safe to write port space in caller. */
865 addr = &addrw->a;
866 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
867 af = sctp_get_af_specific(addr->sa.sa_family);
868 if (!af)
869 return -EINVAL;
870 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
871 return -EINVAL;
872
873 if (addrw->state == SCTP_ADDR_NEW)
874 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
875 else
876 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
877 }
878
879 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
880 *
881 * API 8.1
882 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
883 * int flags);
884 *
885 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
886 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
887 * or IPv6 addresses.
888 *
889 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
890 * Section 3.1.2 for this usage.
891 *
892 * addrs is a pointer to an array of one or more socket addresses. Each
893 * address is contained in its appropriate structure (i.e. struct
894 * sockaddr_in or struct sockaddr_in6) the family of the address type
895 * must be used to distinguish the address length (note that this
896 * representation is termed a "packed array" of addresses). The caller
897 * specifies the number of addresses in the array with addrcnt.
898 *
899 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
900 * -1, and sets errno to the appropriate error code.
901 *
902 * For SCTP, the port given in each socket address must be the same, or
903 * sctp_bindx() will fail, setting errno to EINVAL.
904 *
905 * The flags parameter is formed from the bitwise OR of zero or more of
906 * the following currently defined flags:
907 *
908 * SCTP_BINDX_ADD_ADDR
909 *
910 * SCTP_BINDX_REM_ADDR
911 *
912 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
913 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
914 * addresses from the association. The two flags are mutually exclusive;
915 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
916 * not remove all addresses from an association; sctp_bindx() will
917 * reject such an attempt with EINVAL.
918 *
919 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
920 * additional addresses with an endpoint after calling bind(). Or use
921 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
922 * socket is associated with so that no new association accepted will be
923 * associated with those addresses. If the endpoint supports dynamic
924 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
925 * endpoint to send the appropriate message to the peer to change the
926 * peers address lists.
927 *
928 * Adding and removing addresses from a connected association is
929 * optional functionality. Implementations that do not support this
930 * functionality should return EOPNOTSUPP.
931 *
932 * Basically do nothing but copying the addresses from user to kernel
933 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
934 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
935 * from userspace.
936 *
937 * We don't use copy_from_user() for optimization: we first do the
938 * sanity checks (buffer size -fast- and access check-healthy
939 * pointer); if all of those succeed, then we can alloc the memory
940 * (expensive operation) needed to copy the data to kernel. Then we do
941 * the copying without checking the user space area
942 * (__copy_from_user()).
943 *
944 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
945 * it.
946 *
947 * sk The sk of the socket
948 * addrs The pointer to the addresses in user land
949 * addrssize Size of the addrs buffer
950 * op Operation to perform (add or remove, see the flags of
951 * sctp_bindx)
952 *
953 * Returns 0 if ok, <0 errno code on error.
954 */
955 static int sctp_setsockopt_bindx(struct sock *sk,
956 struct sockaddr __user *addrs,
957 int addrs_size, int op)
958 {
959 struct sockaddr *kaddrs;
960 int err;
961 int addrcnt = 0;
962 int walk_size = 0;
963 struct sockaddr *sa_addr;
964 void *addr_buf;
965 struct sctp_af *af;
966
967 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
968 __func__, sk, addrs, addrs_size, op);
969
970 if (unlikely(addrs_size <= 0))
971 return -EINVAL;
972
973 /* Check the user passed a healthy pointer. */
974 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
975 return -EFAULT;
976
977 /* Alloc space for the address array in kernel memory. */
978 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
979 if (unlikely(!kaddrs))
980 return -ENOMEM;
981
982 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
983 kfree(kaddrs);
984 return -EFAULT;
985 }
986
987 /* Walk through the addrs buffer and count the number of addresses. */
988 addr_buf = kaddrs;
989 while (walk_size < addrs_size) {
990 if (walk_size + sizeof(sa_family_t) > addrs_size) {
991 kfree(kaddrs);
992 return -EINVAL;
993 }
994
995 sa_addr = addr_buf;
996 af = sctp_get_af_specific(sa_addr->sa_family);
997
998 /* If the address family is not supported or if this address
999 * causes the address buffer to overflow return EINVAL.
1000 */
1001 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1002 kfree(kaddrs);
1003 return -EINVAL;
1004 }
1005 addrcnt++;
1006 addr_buf += af->sockaddr_len;
1007 walk_size += af->sockaddr_len;
1008 }
1009
1010 /* Do the work. */
1011 switch (op) {
1012 case SCTP_BINDX_ADD_ADDR:
1013 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1014 if (err)
1015 goto out;
1016 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1017 break;
1018
1019 case SCTP_BINDX_REM_ADDR:
1020 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1021 if (err)
1022 goto out;
1023 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1024 break;
1025
1026 default:
1027 err = -EINVAL;
1028 break;
1029 }
1030
1031 out:
1032 kfree(kaddrs);
1033
1034 return err;
1035 }
1036
1037 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1038 *
1039 * Common routine for handling connect() and sctp_connectx().
1040 * Connect will come in with just a single address.
1041 */
1042 static int __sctp_connect(struct sock *sk,
1043 struct sockaddr *kaddrs,
1044 int addrs_size,
1045 sctp_assoc_t *assoc_id)
1046 {
1047 struct net *net = sock_net(sk);
1048 struct sctp_sock *sp;
1049 struct sctp_endpoint *ep;
1050 struct sctp_association *asoc = NULL;
1051 struct sctp_association *asoc2;
1052 struct sctp_transport *transport;
1053 union sctp_addr to;
1054 struct sctp_af *af;
1055 sctp_scope_t scope;
1056 long timeo;
1057 int err = 0;
1058 int addrcnt = 0;
1059 int walk_size = 0;
1060 union sctp_addr *sa_addr = NULL;
1061 void *addr_buf;
1062 unsigned short port;
1063 unsigned int f_flags = 0;
1064
1065 sp = sctp_sk(sk);
1066 ep = sp->ep;
1067
1068 /* connect() cannot be done on a socket that is already in ESTABLISHED
1069 * state - UDP-style peeled off socket or a TCP-style socket that
1070 * is already connected.
1071 * It cannot be done even on a TCP-style listening socket.
1072 */
1073 if (sctp_sstate(sk, ESTABLISHED) ||
1074 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1075 err = -EISCONN;
1076 goto out_free;
1077 }
1078
1079 /* Walk through the addrs buffer and count the number of addresses. */
1080 addr_buf = kaddrs;
1081 while (walk_size < addrs_size) {
1082 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1083 err = -EINVAL;
1084 goto out_free;
1085 }
1086
1087 sa_addr = addr_buf;
1088 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1089
1090 /* If the address family is not supported or if this address
1091 * causes the address buffer to overflow return EINVAL.
1092 */
1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1094 err = -EINVAL;
1095 goto out_free;
1096 }
1097
1098 port = ntohs(sa_addr->v4.sin_port);
1099
1100 /* Save current address so we can work with it */
1101 memcpy(&to, sa_addr, af->sockaddr_len);
1102
1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1104 if (err)
1105 goto out_free;
1106
1107 /* Make sure the destination port is correctly set
1108 * in all addresses.
1109 */
1110 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1111 err = -EINVAL;
1112 goto out_free;
1113 }
1114
1115 /* Check if there already is a matching association on the
1116 * endpoint (other than the one created here).
1117 */
1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1119 if (asoc2 && asoc2 != asoc) {
1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1121 err = -EISCONN;
1122 else
1123 err = -EALREADY;
1124 goto out_free;
1125 }
1126
1127 /* If we could not find a matching association on the endpoint,
1128 * make sure that there is no peeled-off association matching
1129 * the peer address even on another socket.
1130 */
1131 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1132 err = -EADDRNOTAVAIL;
1133 goto out_free;
1134 }
1135
1136 if (!asoc) {
1137 /* If a bind() or sctp_bindx() is not called prior to
1138 * an sctp_connectx() call, the system picks an
1139 * ephemeral port and will choose an address set
1140 * equivalent to binding with a wildcard address.
1141 */
1142 if (!ep->base.bind_addr.port) {
1143 if (sctp_autobind(sk)) {
1144 err = -EAGAIN;
1145 goto out_free;
1146 }
1147 } else {
1148 /*
1149 * If an unprivileged user inherits a 1-many
1150 * style socket with open associations on a
1151 * privileged port, it MAY be permitted to
1152 * accept new associations, but it SHOULD NOT
1153 * be permitted to open new associations.
1154 */
1155 if (ep->base.bind_addr.port < PROT_SOCK &&
1156 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1157 err = -EACCES;
1158 goto out_free;
1159 }
1160 }
1161
1162 scope = sctp_scope(&to);
1163 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1164 if (!asoc) {
1165 err = -ENOMEM;
1166 goto out_free;
1167 }
1168
1169 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1170 GFP_KERNEL);
1171 if (err < 0) {
1172 goto out_free;
1173 }
1174
1175 }
1176
1177 /* Prime the peer's transport structures. */
1178 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1179 SCTP_UNKNOWN);
1180 if (!transport) {
1181 err = -ENOMEM;
1182 goto out_free;
1183 }
1184
1185 addrcnt++;
1186 addr_buf += af->sockaddr_len;
1187 walk_size += af->sockaddr_len;
1188 }
1189
1190 /* In case the user of sctp_connectx() wants an association
1191 * id back, assign one now.
1192 */
1193 if (assoc_id) {
1194 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1195 if (err < 0)
1196 goto out_free;
1197 }
1198
1199 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1200 if (err < 0) {
1201 goto out_free;
1202 }
1203
1204 /* Initialize sk's dport and daddr for getpeername() */
1205 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1206 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1207 af->to_sk_daddr(sa_addr, sk);
1208 sk->sk_err = 0;
1209
1210 /* in-kernel sockets don't generally have a file allocated to them
1211 * if all they do is call sock_create_kern().
1212 */
1213 if (sk->sk_socket->file)
1214 f_flags = sk->sk_socket->file->f_flags;
1215
1216 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1217
1218 err = sctp_wait_for_connect(asoc, &timeo);
1219 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1220 *assoc_id = asoc->assoc_id;
1221
1222 /* Don't free association on exit. */
1223 asoc = NULL;
1224
1225 out_free:
1226 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1227 __func__, asoc, kaddrs, err);
1228
1229 if (asoc) {
1230 /* sctp_primitive_ASSOCIATE may have added this association
1231 * To the hash table, try to unhash it, just in case, its a noop
1232 * if it wasn't hashed so we're safe
1233 */
1234 sctp_unhash_established(asoc);
1235 sctp_association_free(asoc);
1236 }
1237 return err;
1238 }
1239
1240 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1241 *
1242 * API 8.9
1243 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1244 * sctp_assoc_t *asoc);
1245 *
1246 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1247 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1248 * or IPv6 addresses.
1249 *
1250 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1251 * Section 3.1.2 for this usage.
1252 *
1253 * addrs is a pointer to an array of one or more socket addresses. Each
1254 * address is contained in its appropriate structure (i.e. struct
1255 * sockaddr_in or struct sockaddr_in6) the family of the address type
1256 * must be used to distengish the address length (note that this
1257 * representation is termed a "packed array" of addresses). The caller
1258 * specifies the number of addresses in the array with addrcnt.
1259 *
1260 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1261 * the association id of the new association. On failure, sctp_connectx()
1262 * returns -1, and sets errno to the appropriate error code. The assoc_id
1263 * is not touched by the kernel.
1264 *
1265 * For SCTP, the port given in each socket address must be the same, or
1266 * sctp_connectx() will fail, setting errno to EINVAL.
1267 *
1268 * An application can use sctp_connectx to initiate an association with
1269 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1270 * allows a caller to specify multiple addresses at which a peer can be
1271 * reached. The way the SCTP stack uses the list of addresses to set up
1272 * the association is implementation dependent. This function only
1273 * specifies that the stack will try to make use of all the addresses in
1274 * the list when needed.
1275 *
1276 * Note that the list of addresses passed in is only used for setting up
1277 * the association. It does not necessarily equal the set of addresses
1278 * the peer uses for the resulting association. If the caller wants to
1279 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1280 * retrieve them after the association has been set up.
1281 *
1282 * Basically do nothing but copying the addresses from user to kernel
1283 * land and invoking either sctp_connectx(). This is used for tunneling
1284 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1285 *
1286 * We don't use copy_from_user() for optimization: we first do the
1287 * sanity checks (buffer size -fast- and access check-healthy
1288 * pointer); if all of those succeed, then we can alloc the memory
1289 * (expensive operation) needed to copy the data to kernel. Then we do
1290 * the copying without checking the user space area
1291 * (__copy_from_user()).
1292 *
1293 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1294 * it.
1295 *
1296 * sk The sk of the socket
1297 * addrs The pointer to the addresses in user land
1298 * addrssize Size of the addrs buffer
1299 *
1300 * Returns >=0 if ok, <0 errno code on error.
1301 */
1302 static int __sctp_setsockopt_connectx(struct sock *sk,
1303 struct sockaddr __user *addrs,
1304 int addrs_size,
1305 sctp_assoc_t *assoc_id)
1306 {
1307 int err = 0;
1308 struct sockaddr *kaddrs;
1309
1310 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1311 __func__, sk, addrs, addrs_size);
1312
1313 if (unlikely(addrs_size <= 0))
1314 return -EINVAL;
1315
1316 /* Check the user passed a healthy pointer. */
1317 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1318 return -EFAULT;
1319
1320 /* Alloc space for the address array in kernel memory. */
1321 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1322 if (unlikely(!kaddrs))
1323 return -ENOMEM;
1324
1325 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1326 err = -EFAULT;
1327 } else {
1328 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1329 }
1330
1331 kfree(kaddrs);
1332
1333 return err;
1334 }
1335
1336 /*
1337 * This is an older interface. It's kept for backward compatibility
1338 * to the option that doesn't provide association id.
1339 */
1340 static int sctp_setsockopt_connectx_old(struct sock *sk,
1341 struct sockaddr __user *addrs,
1342 int addrs_size)
1343 {
1344 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1345 }
1346
1347 /*
1348 * New interface for the API. The since the API is done with a socket
1349 * option, to make it simple we feed back the association id is as a return
1350 * indication to the call. Error is always negative and association id is
1351 * always positive.
1352 */
1353 static int sctp_setsockopt_connectx(struct sock *sk,
1354 struct sockaddr __user *addrs,
1355 int addrs_size)
1356 {
1357 sctp_assoc_t assoc_id = 0;
1358 int err = 0;
1359
1360 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1361
1362 if (err)
1363 return err;
1364 else
1365 return assoc_id;
1366 }
1367
1368 /*
1369 * New (hopefully final) interface for the API.
1370 * We use the sctp_getaddrs_old structure so that use-space library
1371 * can avoid any unnecessary allocations. The only defferent part
1372 * is that we store the actual length of the address buffer into the
1373 * addrs_num structure member. That way we can re-use the existing
1374 * code.
1375 */
1376 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1377 char __user *optval,
1378 int __user *optlen)
1379 {
1380 struct sctp_getaddrs_old param;
1381 sctp_assoc_t assoc_id = 0;
1382 int err = 0;
1383
1384 if (len < sizeof(param))
1385 return -EINVAL;
1386
1387 if (copy_from_user(&param, optval, sizeof(param)))
1388 return -EFAULT;
1389
1390 err = __sctp_setsockopt_connectx(sk,
1391 (struct sockaddr __user *)param.addrs,
1392 param.addr_num, &assoc_id);
1393
1394 if (err == 0 || err == -EINPROGRESS) {
1395 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1396 return -EFAULT;
1397 if (put_user(sizeof(assoc_id), optlen))
1398 return -EFAULT;
1399 }
1400
1401 return err;
1402 }
1403
1404 /* API 3.1.4 close() - UDP Style Syntax
1405 * Applications use close() to perform graceful shutdown (as described in
1406 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1407 * by a UDP-style socket.
1408 *
1409 * The syntax is
1410 *
1411 * ret = close(int sd);
1412 *
1413 * sd - the socket descriptor of the associations to be closed.
1414 *
1415 * To gracefully shutdown a specific association represented by the
1416 * UDP-style socket, an application should use the sendmsg() call,
1417 * passing no user data, but including the appropriate flag in the
1418 * ancillary data (see Section xxxx).
1419 *
1420 * If sd in the close() call is a branched-off socket representing only
1421 * one association, the shutdown is performed on that association only.
1422 *
1423 * 4.1.6 close() - TCP Style Syntax
1424 *
1425 * Applications use close() to gracefully close down an association.
1426 *
1427 * The syntax is:
1428 *
1429 * int close(int sd);
1430 *
1431 * sd - the socket descriptor of the association to be closed.
1432 *
1433 * After an application calls close() on a socket descriptor, no further
1434 * socket operations will succeed on that descriptor.
1435 *
1436 * API 7.1.4 SO_LINGER
1437 *
1438 * An application using the TCP-style socket can use this option to
1439 * perform the SCTP ABORT primitive. The linger option structure is:
1440 *
1441 * struct linger {
1442 * int l_onoff; // option on/off
1443 * int l_linger; // linger time
1444 * };
1445 *
1446 * To enable the option, set l_onoff to 1. If the l_linger value is set
1447 * to 0, calling close() is the same as the ABORT primitive. If the
1448 * value is set to a negative value, the setsockopt() call will return
1449 * an error. If the value is set to a positive value linger_time, the
1450 * close() can be blocked for at most linger_time ms. If the graceful
1451 * shutdown phase does not finish during this period, close() will
1452 * return but the graceful shutdown phase continues in the system.
1453 */
1454 static void sctp_close(struct sock *sk, long timeout)
1455 {
1456 struct net *net = sock_net(sk);
1457 struct sctp_endpoint *ep;
1458 struct sctp_association *asoc;
1459 struct list_head *pos, *temp;
1460 unsigned int data_was_unread;
1461
1462 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1463
1464 sctp_lock_sock(sk);
1465 sk->sk_shutdown = SHUTDOWN_MASK;
1466 sk->sk_state = SCTP_SS_CLOSING;
1467
1468 ep = sctp_sk(sk)->ep;
1469
1470 /* Clean up any skbs sitting on the receive queue. */
1471 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1472 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1473
1474 /* Walk all associations on an endpoint. */
1475 list_for_each_safe(pos, temp, &ep->asocs) {
1476 asoc = list_entry(pos, struct sctp_association, asocs);
1477
1478 if (sctp_style(sk, TCP)) {
1479 /* A closed association can still be in the list if
1480 * it belongs to a TCP-style listening socket that is
1481 * not yet accepted. If so, free it. If not, send an
1482 * ABORT or SHUTDOWN based on the linger options.
1483 */
1484 if (sctp_state(asoc, CLOSED)) {
1485 sctp_unhash_established(asoc);
1486 sctp_association_free(asoc);
1487 continue;
1488 }
1489 }
1490
1491 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1492 !skb_queue_empty(&asoc->ulpq.reasm) ||
1493 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1494 struct sctp_chunk *chunk;
1495
1496 chunk = sctp_make_abort_user(asoc, NULL, 0);
1497 if (chunk)
1498 sctp_primitive_ABORT(net, asoc, chunk);
1499 } else
1500 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1501 }
1502
1503 /* On a TCP-style socket, block for at most linger_time if set. */
1504 if (sctp_style(sk, TCP) && timeout)
1505 sctp_wait_for_close(sk, timeout);
1506
1507 /* This will run the backlog queue. */
1508 sctp_release_sock(sk);
1509
1510 /* Supposedly, no process has access to the socket, but
1511 * the net layers still may.
1512 */
1513 sctp_local_bh_disable();
1514 sctp_bh_lock_sock(sk);
1515
1516 /* Hold the sock, since sk_common_release() will put sock_put()
1517 * and we have just a little more cleanup.
1518 */
1519 sock_hold(sk);
1520 sk_common_release(sk);
1521
1522 sctp_bh_unlock_sock(sk);
1523 sctp_local_bh_enable();
1524
1525 sock_put(sk);
1526
1527 SCTP_DBG_OBJCNT_DEC(sock);
1528 }
1529
1530 /* Handle EPIPE error. */
1531 static int sctp_error(struct sock *sk, int flags, int err)
1532 {
1533 if (err == -EPIPE)
1534 err = sock_error(sk) ? : -EPIPE;
1535 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1536 send_sig(SIGPIPE, current, 0);
1537 return err;
1538 }
1539
1540 /* API 3.1.3 sendmsg() - UDP Style Syntax
1541 *
1542 * An application uses sendmsg() and recvmsg() calls to transmit data to
1543 * and receive data from its peer.
1544 *
1545 * ssize_t sendmsg(int socket, const struct msghdr *message,
1546 * int flags);
1547 *
1548 * socket - the socket descriptor of the endpoint.
1549 * message - pointer to the msghdr structure which contains a single
1550 * user message and possibly some ancillary data.
1551 *
1552 * See Section 5 for complete description of the data
1553 * structures.
1554 *
1555 * flags - flags sent or received with the user message, see Section
1556 * 5 for complete description of the flags.
1557 *
1558 * Note: This function could use a rewrite especially when explicit
1559 * connect support comes in.
1560 */
1561 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1562
1563 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1564
1565 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1566 struct msghdr *msg, size_t msg_len)
1567 {
1568 struct net *net = sock_net(sk);
1569 struct sctp_sock *sp;
1570 struct sctp_endpoint *ep;
1571 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1572 struct sctp_transport *transport, *chunk_tp;
1573 struct sctp_chunk *chunk;
1574 union sctp_addr to;
1575 struct sockaddr *msg_name = NULL;
1576 struct sctp_sndrcvinfo default_sinfo;
1577 struct sctp_sndrcvinfo *sinfo;
1578 struct sctp_initmsg *sinit;
1579 sctp_assoc_t associd = 0;
1580 sctp_cmsgs_t cmsgs = { NULL };
1581 int err;
1582 sctp_scope_t scope;
1583 long timeo;
1584 __u16 sinfo_flags = 0;
1585 struct sctp_datamsg *datamsg;
1586 int msg_flags = msg->msg_flags;
1587
1588 err = 0;
1589 sp = sctp_sk(sk);
1590 ep = sp->ep;
1591
1592 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1593 msg, msg_len, ep);
1594
1595 /* We cannot send a message over a TCP-style listening socket. */
1596 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1597 err = -EPIPE;
1598 goto out_nounlock;
1599 }
1600
1601 /* Parse out the SCTP CMSGs. */
1602 err = sctp_msghdr_parse(msg, &cmsgs);
1603 if (err) {
1604 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1605 goto out_nounlock;
1606 }
1607
1608 /* Fetch the destination address for this packet. This
1609 * address only selects the association--it is not necessarily
1610 * the address we will send to.
1611 * For a peeled-off socket, msg_name is ignored.
1612 */
1613 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1614 int msg_namelen = msg->msg_namelen;
1615
1616 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1617 msg_namelen);
1618 if (err)
1619 return err;
1620
1621 if (msg_namelen > sizeof(to))
1622 msg_namelen = sizeof(to);
1623 memcpy(&to, msg->msg_name, msg_namelen);
1624 msg_name = msg->msg_name;
1625 }
1626
1627 sinfo = cmsgs.info;
1628 sinit = cmsgs.init;
1629
1630 /* Did the user specify SNDRCVINFO? */
1631 if (sinfo) {
1632 sinfo_flags = sinfo->sinfo_flags;
1633 associd = sinfo->sinfo_assoc_id;
1634 }
1635
1636 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1637 msg_len, sinfo_flags);
1638
1639 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1640 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1641 err = -EINVAL;
1642 goto out_nounlock;
1643 }
1644
1645 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1646 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1647 * If SCTP_ABORT is set, the message length could be non zero with
1648 * the msg_iov set to the user abort reason.
1649 */
1650 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1651 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1652 err = -EINVAL;
1653 goto out_nounlock;
1654 }
1655
1656 /* If SCTP_ADDR_OVER is set, there must be an address
1657 * specified in msg_name.
1658 */
1659 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1660 err = -EINVAL;
1661 goto out_nounlock;
1662 }
1663
1664 transport = NULL;
1665
1666 pr_debug("%s: about to look up association\n", __func__);
1667
1668 sctp_lock_sock(sk);
1669
1670 /* If a msg_name has been specified, assume this is to be used. */
1671 if (msg_name) {
1672 /* Look for a matching association on the endpoint. */
1673 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1674 if (!asoc) {
1675 /* If we could not find a matching association on the
1676 * endpoint, make sure that it is not a TCP-style
1677 * socket that already has an association or there is
1678 * no peeled-off association on another socket.
1679 */
1680 if ((sctp_style(sk, TCP) &&
1681 sctp_sstate(sk, ESTABLISHED)) ||
1682 sctp_endpoint_is_peeled_off(ep, &to)) {
1683 err = -EADDRNOTAVAIL;
1684 goto out_unlock;
1685 }
1686 }
1687 } else {
1688 asoc = sctp_id2assoc(sk, associd);
1689 if (!asoc) {
1690 err = -EPIPE;
1691 goto out_unlock;
1692 }
1693 }
1694
1695 if (asoc) {
1696 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1697
1698 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1699 * socket that has an association in CLOSED state. This can
1700 * happen when an accepted socket has an association that is
1701 * already CLOSED.
1702 */
1703 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1704 err = -EPIPE;
1705 goto out_unlock;
1706 }
1707
1708 if (sinfo_flags & SCTP_EOF) {
1709 pr_debug("%s: shutting down association:%p\n",
1710 __func__, asoc);
1711
1712 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1713 err = 0;
1714 goto out_unlock;
1715 }
1716 if (sinfo_flags & SCTP_ABORT) {
1717
1718 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1719 if (!chunk) {
1720 err = -ENOMEM;
1721 goto out_unlock;
1722 }
1723
1724 pr_debug("%s: aborting association:%p\n",
1725 __func__, asoc);
1726
1727 sctp_primitive_ABORT(net, asoc, chunk);
1728 err = 0;
1729 goto out_unlock;
1730 }
1731 }
1732
1733 /* Do we need to create the association? */
1734 if (!asoc) {
1735 pr_debug("%s: there is no association yet\n", __func__);
1736
1737 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1738 err = -EINVAL;
1739 goto out_unlock;
1740 }
1741
1742 /* Check for invalid stream against the stream counts,
1743 * either the default or the user specified stream counts.
1744 */
1745 if (sinfo) {
1746 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1747 /* Check against the defaults. */
1748 if (sinfo->sinfo_stream >=
1749 sp->initmsg.sinit_num_ostreams) {
1750 err = -EINVAL;
1751 goto out_unlock;
1752 }
1753 } else {
1754 /* Check against the requested. */
1755 if (sinfo->sinfo_stream >=
1756 sinit->sinit_num_ostreams) {
1757 err = -EINVAL;
1758 goto out_unlock;
1759 }
1760 }
1761 }
1762
1763 /*
1764 * API 3.1.2 bind() - UDP Style Syntax
1765 * If a bind() or sctp_bindx() is not called prior to a
1766 * sendmsg() call that initiates a new association, the
1767 * system picks an ephemeral port and will choose an address
1768 * set equivalent to binding with a wildcard address.
1769 */
1770 if (!ep->base.bind_addr.port) {
1771 if (sctp_autobind(sk)) {
1772 err = -EAGAIN;
1773 goto out_unlock;
1774 }
1775 } else {
1776 /*
1777 * If an unprivileged user inherits a one-to-many
1778 * style socket with open associations on a privileged
1779 * port, it MAY be permitted to accept new associations,
1780 * but it SHOULD NOT be permitted to open new
1781 * associations.
1782 */
1783 if (ep->base.bind_addr.port < PROT_SOCK &&
1784 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1785 err = -EACCES;
1786 goto out_unlock;
1787 }
1788 }
1789
1790 scope = sctp_scope(&to);
1791 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1792 if (!new_asoc) {
1793 err = -ENOMEM;
1794 goto out_unlock;
1795 }
1796 asoc = new_asoc;
1797 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1798 if (err < 0) {
1799 err = -ENOMEM;
1800 goto out_free;
1801 }
1802
1803 /* If the SCTP_INIT ancillary data is specified, set all
1804 * the association init values accordingly.
1805 */
1806 if (sinit) {
1807 if (sinit->sinit_num_ostreams) {
1808 asoc->c.sinit_num_ostreams =
1809 sinit->sinit_num_ostreams;
1810 }
1811 if (sinit->sinit_max_instreams) {
1812 asoc->c.sinit_max_instreams =
1813 sinit->sinit_max_instreams;
1814 }
1815 if (sinit->sinit_max_attempts) {
1816 asoc->max_init_attempts
1817 = sinit->sinit_max_attempts;
1818 }
1819 if (sinit->sinit_max_init_timeo) {
1820 asoc->max_init_timeo =
1821 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1822 }
1823 }
1824
1825 /* Prime the peer's transport structures. */
1826 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1827 if (!transport) {
1828 err = -ENOMEM;
1829 goto out_free;
1830 }
1831 }
1832
1833 /* ASSERT: we have a valid association at this point. */
1834 pr_debug("%s: we have a valid association\n", __func__);
1835
1836 if (!sinfo) {
1837 /* If the user didn't specify SNDRCVINFO, make up one with
1838 * some defaults.
1839 */
1840 memset(&default_sinfo, 0, sizeof(default_sinfo));
1841 default_sinfo.sinfo_stream = asoc->default_stream;
1842 default_sinfo.sinfo_flags = asoc->default_flags;
1843 default_sinfo.sinfo_ppid = asoc->default_ppid;
1844 default_sinfo.sinfo_context = asoc->default_context;
1845 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1846 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1847 sinfo = &default_sinfo;
1848 }
1849
1850 /* API 7.1.7, the sndbuf size per association bounds the
1851 * maximum size of data that can be sent in a single send call.
1852 */
1853 if (msg_len > sk->sk_sndbuf) {
1854 err = -EMSGSIZE;
1855 goto out_free;
1856 }
1857
1858 if (asoc->pmtu_pending)
1859 sctp_assoc_pending_pmtu(sk, asoc);
1860
1861 /* If fragmentation is disabled and the message length exceeds the
1862 * association fragmentation point, return EMSGSIZE. The I-D
1863 * does not specify what this error is, but this looks like
1864 * a great fit.
1865 */
1866 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1867 err = -EMSGSIZE;
1868 goto out_free;
1869 }
1870
1871 /* Check for invalid stream. */
1872 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1873 err = -EINVAL;
1874 goto out_free;
1875 }
1876
1877 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1878 if (!sctp_wspace(asoc)) {
1879 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1880 if (err)
1881 goto out_free;
1882 }
1883
1884 /* If an address is passed with the sendto/sendmsg call, it is used
1885 * to override the primary destination address in the TCP model, or
1886 * when SCTP_ADDR_OVER flag is set in the UDP model.
1887 */
1888 if ((sctp_style(sk, TCP) && msg_name) ||
1889 (sinfo_flags & SCTP_ADDR_OVER)) {
1890 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1891 if (!chunk_tp) {
1892 err = -EINVAL;
1893 goto out_free;
1894 }
1895 } else
1896 chunk_tp = NULL;
1897
1898 /* Auto-connect, if we aren't connected already. */
1899 if (sctp_state(asoc, CLOSED)) {
1900 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1901 if (err < 0)
1902 goto out_free;
1903
1904 pr_debug("%s: we associated primitively\n", __func__);
1905 }
1906
1907 /* Break the message into multiple chunks of maximum size. */
1908 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1909 if (IS_ERR(datamsg)) {
1910 err = PTR_ERR(datamsg);
1911 goto out_free;
1912 }
1913
1914 /* Now send the (possibly) fragmented message. */
1915 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1916 sctp_chunk_hold(chunk);
1917
1918 /* Do accounting for the write space. */
1919 sctp_set_owner_w(chunk);
1920
1921 chunk->transport = chunk_tp;
1922 }
1923
1924 /* Send it to the lower layers. Note: all chunks
1925 * must either fail or succeed. The lower layer
1926 * works that way today. Keep it that way or this
1927 * breaks.
1928 */
1929 err = sctp_primitive_SEND(net, asoc, datamsg);
1930 /* Did the lower layer accept the chunk? */
1931 if (err) {
1932 sctp_datamsg_free(datamsg);
1933 goto out_free;
1934 }
1935
1936 pr_debug("%s: we sent primitively\n", __func__);
1937
1938 sctp_datamsg_put(datamsg);
1939 err = msg_len;
1940
1941 /* If we are already past ASSOCIATE, the lower
1942 * layers are responsible for association cleanup.
1943 */
1944 goto out_unlock;
1945
1946 out_free:
1947 if (new_asoc) {
1948 sctp_unhash_established(asoc);
1949 sctp_association_free(asoc);
1950 }
1951 out_unlock:
1952 sctp_release_sock(sk);
1953
1954 out_nounlock:
1955 return sctp_error(sk, msg_flags, err);
1956
1957 #if 0
1958 do_sock_err:
1959 if (msg_len)
1960 err = msg_len;
1961 else
1962 err = sock_error(sk);
1963 goto out;
1964
1965 do_interrupted:
1966 if (msg_len)
1967 err = msg_len;
1968 goto out;
1969 #endif /* 0 */
1970 }
1971
1972 /* This is an extended version of skb_pull() that removes the data from the
1973 * start of a skb even when data is spread across the list of skb's in the
1974 * frag_list. len specifies the total amount of data that needs to be removed.
1975 * when 'len' bytes could be removed from the skb, it returns 0.
1976 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1977 * could not be removed.
1978 */
1979 static int sctp_skb_pull(struct sk_buff *skb, int len)
1980 {
1981 struct sk_buff *list;
1982 int skb_len = skb_headlen(skb);
1983 int rlen;
1984
1985 if (len <= skb_len) {
1986 __skb_pull(skb, len);
1987 return 0;
1988 }
1989 len -= skb_len;
1990 __skb_pull(skb, skb_len);
1991
1992 skb_walk_frags(skb, list) {
1993 rlen = sctp_skb_pull(list, len);
1994 skb->len -= (len-rlen);
1995 skb->data_len -= (len-rlen);
1996
1997 if (!rlen)
1998 return 0;
1999
2000 len = rlen;
2001 }
2002
2003 return len;
2004 }
2005
2006 /* API 3.1.3 recvmsg() - UDP Style Syntax
2007 *
2008 * ssize_t recvmsg(int socket, struct msghdr *message,
2009 * int flags);
2010 *
2011 * socket - the socket descriptor of the endpoint.
2012 * message - pointer to the msghdr structure which contains a single
2013 * user message and possibly some ancillary data.
2014 *
2015 * See Section 5 for complete description of the data
2016 * structures.
2017 *
2018 * flags - flags sent or received with the user message, see Section
2019 * 5 for complete description of the flags.
2020 */
2021 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2022
2023 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2024 struct msghdr *msg, size_t len, int noblock,
2025 int flags, int *addr_len)
2026 {
2027 struct sctp_ulpevent *event = NULL;
2028 struct sctp_sock *sp = sctp_sk(sk);
2029 struct sk_buff *skb;
2030 int copied;
2031 int err = 0;
2032 int skb_len;
2033
2034 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2035 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2036 addr_len);
2037
2038 sctp_lock_sock(sk);
2039
2040 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2041 err = -ENOTCONN;
2042 goto out;
2043 }
2044
2045 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2046 if (!skb)
2047 goto out;
2048
2049 /* Get the total length of the skb including any skb's in the
2050 * frag_list.
2051 */
2052 skb_len = skb->len;
2053
2054 copied = skb_len;
2055 if (copied > len)
2056 copied = len;
2057
2058 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2059
2060 event = sctp_skb2event(skb);
2061
2062 if (err)
2063 goto out_free;
2064
2065 sock_recv_ts_and_drops(msg, sk, skb);
2066 if (sctp_ulpevent_is_notification(event)) {
2067 msg->msg_flags |= MSG_NOTIFICATION;
2068 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2069 } else {
2070 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2071 }
2072
2073 /* Check if we allow SCTP_SNDRCVINFO. */
2074 if (sp->subscribe.sctp_data_io_event)
2075 sctp_ulpevent_read_sndrcvinfo(event, msg);
2076 #if 0
2077 /* FIXME: we should be calling IP/IPv6 layers. */
2078 if (sk->sk_protinfo.af_inet.cmsg_flags)
2079 ip_cmsg_recv(msg, skb);
2080 #endif
2081
2082 err = copied;
2083
2084 /* If skb's length exceeds the user's buffer, update the skb and
2085 * push it back to the receive_queue so that the next call to
2086 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2087 */
2088 if (skb_len > copied) {
2089 msg->msg_flags &= ~MSG_EOR;
2090 if (flags & MSG_PEEK)
2091 goto out_free;
2092 sctp_skb_pull(skb, copied);
2093 skb_queue_head(&sk->sk_receive_queue, skb);
2094
2095 /* When only partial message is copied to the user, increase
2096 * rwnd by that amount. If all the data in the skb is read,
2097 * rwnd is updated when the event is freed.
2098 */
2099 if (!sctp_ulpevent_is_notification(event))
2100 sctp_assoc_rwnd_increase(event->asoc, copied);
2101 goto out;
2102 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2103 (event->msg_flags & MSG_EOR))
2104 msg->msg_flags |= MSG_EOR;
2105 else
2106 msg->msg_flags &= ~MSG_EOR;
2107
2108 out_free:
2109 if (flags & MSG_PEEK) {
2110 /* Release the skb reference acquired after peeking the skb in
2111 * sctp_skb_recv_datagram().
2112 */
2113 kfree_skb(skb);
2114 } else {
2115 /* Free the event which includes releasing the reference to
2116 * the owner of the skb, freeing the skb and updating the
2117 * rwnd.
2118 */
2119 sctp_ulpevent_free(event);
2120 }
2121 out:
2122 sctp_release_sock(sk);
2123 return err;
2124 }
2125
2126 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2127 *
2128 * This option is a on/off flag. If enabled no SCTP message
2129 * fragmentation will be performed. Instead if a message being sent
2130 * exceeds the current PMTU size, the message will NOT be sent and
2131 * instead a error will be indicated to the user.
2132 */
2133 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2134 char __user *optval,
2135 unsigned int optlen)
2136 {
2137 int val;
2138
2139 if (optlen < sizeof(int))
2140 return -EINVAL;
2141
2142 if (get_user(val, (int __user *)optval))
2143 return -EFAULT;
2144
2145 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2146
2147 return 0;
2148 }
2149
2150 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2151 unsigned int optlen)
2152 {
2153 struct sctp_association *asoc;
2154 struct sctp_ulpevent *event;
2155
2156 if (optlen > sizeof(struct sctp_event_subscribe))
2157 return -EINVAL;
2158 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2159 return -EFAULT;
2160
2161 /*
2162 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2163 * if there is no data to be sent or retransmit, the stack will
2164 * immediately send up this notification.
2165 */
2166 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2167 &sctp_sk(sk)->subscribe)) {
2168 asoc = sctp_id2assoc(sk, 0);
2169
2170 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2171 event = sctp_ulpevent_make_sender_dry_event(asoc,
2172 GFP_ATOMIC);
2173 if (!event)
2174 return -ENOMEM;
2175
2176 sctp_ulpq_tail_event(&asoc->ulpq, event);
2177 }
2178 }
2179
2180 return 0;
2181 }
2182
2183 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2184 *
2185 * This socket option is applicable to the UDP-style socket only. When
2186 * set it will cause associations that are idle for more than the
2187 * specified number of seconds to automatically close. An association
2188 * being idle is defined an association that has NOT sent or received
2189 * user data. The special value of '0' indicates that no automatic
2190 * close of any associations should be performed. The option expects an
2191 * integer defining the number of seconds of idle time before an
2192 * association is closed.
2193 */
2194 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2195 unsigned int optlen)
2196 {
2197 struct sctp_sock *sp = sctp_sk(sk);
2198 struct net *net = sock_net(sk);
2199
2200 /* Applicable to UDP-style socket only */
2201 if (sctp_style(sk, TCP))
2202 return -EOPNOTSUPP;
2203 if (optlen != sizeof(int))
2204 return -EINVAL;
2205 if (copy_from_user(&sp->autoclose, optval, optlen))
2206 return -EFAULT;
2207
2208 if (sp->autoclose > net->sctp.max_autoclose)
2209 sp->autoclose = net->sctp.max_autoclose;
2210
2211 return 0;
2212 }
2213
2214 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2215 *
2216 * Applications can enable or disable heartbeats for any peer address of
2217 * an association, modify an address's heartbeat interval, force a
2218 * heartbeat to be sent immediately, and adjust the address's maximum
2219 * number of retransmissions sent before an address is considered
2220 * unreachable. The following structure is used to access and modify an
2221 * address's parameters:
2222 *
2223 * struct sctp_paddrparams {
2224 * sctp_assoc_t spp_assoc_id;
2225 * struct sockaddr_storage spp_address;
2226 * uint32_t spp_hbinterval;
2227 * uint16_t spp_pathmaxrxt;
2228 * uint32_t spp_pathmtu;
2229 * uint32_t spp_sackdelay;
2230 * uint32_t spp_flags;
2231 * };
2232 *
2233 * spp_assoc_id - (one-to-many style socket) This is filled in the
2234 * application, and identifies the association for
2235 * this query.
2236 * spp_address - This specifies which address is of interest.
2237 * spp_hbinterval - This contains the value of the heartbeat interval,
2238 * in milliseconds. If a value of zero
2239 * is present in this field then no changes are to
2240 * be made to this parameter.
2241 * spp_pathmaxrxt - This contains the maximum number of
2242 * retransmissions before this address shall be
2243 * considered unreachable. If a value of zero
2244 * is present in this field then no changes are to
2245 * be made to this parameter.
2246 * spp_pathmtu - When Path MTU discovery is disabled the value
2247 * specified here will be the "fixed" path mtu.
2248 * Note that if the spp_address field is empty
2249 * then all associations on this address will
2250 * have this fixed path mtu set upon them.
2251 *
2252 * spp_sackdelay - When delayed sack is enabled, this value specifies
2253 * the number of milliseconds that sacks will be delayed
2254 * for. This value will apply to all addresses of an
2255 * association if the spp_address field is empty. Note
2256 * also, that if delayed sack is enabled and this
2257 * value is set to 0, no change is made to the last
2258 * recorded delayed sack timer value.
2259 *
2260 * spp_flags - These flags are used to control various features
2261 * on an association. The flag field may contain
2262 * zero or more of the following options.
2263 *
2264 * SPP_HB_ENABLE - Enable heartbeats on the
2265 * specified address. Note that if the address
2266 * field is empty all addresses for the association
2267 * have heartbeats enabled upon them.
2268 *
2269 * SPP_HB_DISABLE - Disable heartbeats on the
2270 * speicifed address. Note that if the address
2271 * field is empty all addresses for the association
2272 * will have their heartbeats disabled. Note also
2273 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2274 * mutually exclusive, only one of these two should
2275 * be specified. Enabling both fields will have
2276 * undetermined results.
2277 *
2278 * SPP_HB_DEMAND - Request a user initiated heartbeat
2279 * to be made immediately.
2280 *
2281 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2282 * heartbeat delayis to be set to the value of 0
2283 * milliseconds.
2284 *
2285 * SPP_PMTUD_ENABLE - This field will enable PMTU
2286 * discovery upon the specified address. Note that
2287 * if the address feild is empty then all addresses
2288 * on the association are effected.
2289 *
2290 * SPP_PMTUD_DISABLE - This field will disable PMTU
2291 * discovery upon the specified address. Note that
2292 * if the address feild is empty then all addresses
2293 * on the association are effected. Not also that
2294 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2295 * exclusive. Enabling both will have undetermined
2296 * results.
2297 *
2298 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2299 * on delayed sack. The time specified in spp_sackdelay
2300 * is used to specify the sack delay for this address. Note
2301 * that if spp_address is empty then all addresses will
2302 * enable delayed sack and take on the sack delay
2303 * value specified in spp_sackdelay.
2304 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2305 * off delayed sack. If the spp_address field is blank then
2306 * delayed sack is disabled for the entire association. Note
2307 * also that this field is mutually exclusive to
2308 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2309 * results.
2310 */
2311 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2312 struct sctp_transport *trans,
2313 struct sctp_association *asoc,
2314 struct sctp_sock *sp,
2315 int hb_change,
2316 int pmtud_change,
2317 int sackdelay_change)
2318 {
2319 int error;
2320
2321 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2322 struct net *net = sock_net(trans->asoc->base.sk);
2323
2324 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2325 if (error)
2326 return error;
2327 }
2328
2329 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2330 * this field is ignored. Note also that a value of zero indicates
2331 * the current setting should be left unchanged.
2332 */
2333 if (params->spp_flags & SPP_HB_ENABLE) {
2334
2335 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2336 * set. This lets us use 0 value when this flag
2337 * is set.
2338 */
2339 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2340 params->spp_hbinterval = 0;
2341
2342 if (params->spp_hbinterval ||
2343 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2344 if (trans) {
2345 trans->hbinterval =
2346 msecs_to_jiffies(params->spp_hbinterval);
2347 } else if (asoc) {
2348 asoc->hbinterval =
2349 msecs_to_jiffies(params->spp_hbinterval);
2350 } else {
2351 sp->hbinterval = params->spp_hbinterval;
2352 }
2353 }
2354 }
2355
2356 if (hb_change) {
2357 if (trans) {
2358 trans->param_flags =
2359 (trans->param_flags & ~SPP_HB) | hb_change;
2360 } else if (asoc) {
2361 asoc->param_flags =
2362 (asoc->param_flags & ~SPP_HB) | hb_change;
2363 } else {
2364 sp->param_flags =
2365 (sp->param_flags & ~SPP_HB) | hb_change;
2366 }
2367 }
2368
2369 /* When Path MTU discovery is disabled the value specified here will
2370 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2371 * include the flag SPP_PMTUD_DISABLE for this field to have any
2372 * effect).
2373 */
2374 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2375 if (trans) {
2376 trans->pathmtu = params->spp_pathmtu;
2377 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2378 } else if (asoc) {
2379 asoc->pathmtu = params->spp_pathmtu;
2380 sctp_frag_point(asoc, params->spp_pathmtu);
2381 } else {
2382 sp->pathmtu = params->spp_pathmtu;
2383 }
2384 }
2385
2386 if (pmtud_change) {
2387 if (trans) {
2388 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2389 (params->spp_flags & SPP_PMTUD_ENABLE);
2390 trans->param_flags =
2391 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2392 if (update) {
2393 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2394 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2395 }
2396 } else if (asoc) {
2397 asoc->param_flags =
2398 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2399 } else {
2400 sp->param_flags =
2401 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2402 }
2403 }
2404
2405 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2406 * value of this field is ignored. Note also that a value of zero
2407 * indicates the current setting should be left unchanged.
2408 */
2409 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2410 if (trans) {
2411 trans->sackdelay =
2412 msecs_to_jiffies(params->spp_sackdelay);
2413 } else if (asoc) {
2414 asoc->sackdelay =
2415 msecs_to_jiffies(params->spp_sackdelay);
2416 } else {
2417 sp->sackdelay = params->spp_sackdelay;
2418 }
2419 }
2420
2421 if (sackdelay_change) {
2422 if (trans) {
2423 trans->param_flags =
2424 (trans->param_flags & ~SPP_SACKDELAY) |
2425 sackdelay_change;
2426 } else if (asoc) {
2427 asoc->param_flags =
2428 (asoc->param_flags & ~SPP_SACKDELAY) |
2429 sackdelay_change;
2430 } else {
2431 sp->param_flags =
2432 (sp->param_flags & ~SPP_SACKDELAY) |
2433 sackdelay_change;
2434 }
2435 }
2436
2437 /* Note that a value of zero indicates the current setting should be
2438 left unchanged.
2439 */
2440 if (params->spp_pathmaxrxt) {
2441 if (trans) {
2442 trans->pathmaxrxt = params->spp_pathmaxrxt;
2443 } else if (asoc) {
2444 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2445 } else {
2446 sp->pathmaxrxt = params->spp_pathmaxrxt;
2447 }
2448 }
2449
2450 return 0;
2451 }
2452
2453 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2454 char __user *optval,
2455 unsigned int optlen)
2456 {
2457 struct sctp_paddrparams params;
2458 struct sctp_transport *trans = NULL;
2459 struct sctp_association *asoc = NULL;
2460 struct sctp_sock *sp = sctp_sk(sk);
2461 int error;
2462 int hb_change, pmtud_change, sackdelay_change;
2463
2464 if (optlen != sizeof(struct sctp_paddrparams))
2465 return -EINVAL;
2466
2467 if (copy_from_user(&params, optval, optlen))
2468 return -EFAULT;
2469
2470 /* Validate flags and value parameters. */
2471 hb_change = params.spp_flags & SPP_HB;
2472 pmtud_change = params.spp_flags & SPP_PMTUD;
2473 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2474
2475 if (hb_change == SPP_HB ||
2476 pmtud_change == SPP_PMTUD ||
2477 sackdelay_change == SPP_SACKDELAY ||
2478 params.spp_sackdelay > 500 ||
2479 (params.spp_pathmtu &&
2480 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2481 return -EINVAL;
2482
2483 /* If an address other than INADDR_ANY is specified, and
2484 * no transport is found, then the request is invalid.
2485 */
2486 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2487 trans = sctp_addr_id2transport(sk, &params.spp_address,
2488 params.spp_assoc_id);
2489 if (!trans)
2490 return -EINVAL;
2491 }
2492
2493 /* Get association, if assoc_id != 0 and the socket is a one
2494 * to many style socket, and an association was not found, then
2495 * the id was invalid.
2496 */
2497 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2498 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2499 return -EINVAL;
2500
2501 /* Heartbeat demand can only be sent on a transport or
2502 * association, but not a socket.
2503 */
2504 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2505 return -EINVAL;
2506
2507 /* Process parameters. */
2508 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2509 hb_change, pmtud_change,
2510 sackdelay_change);
2511
2512 if (error)
2513 return error;
2514
2515 /* If changes are for association, also apply parameters to each
2516 * transport.
2517 */
2518 if (!trans && asoc) {
2519 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2520 transports) {
2521 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2522 hb_change, pmtud_change,
2523 sackdelay_change);
2524 }
2525 }
2526
2527 return 0;
2528 }
2529
2530 /*
2531 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2532 *
2533 * This option will effect the way delayed acks are performed. This
2534 * option allows you to get or set the delayed ack time, in
2535 * milliseconds. It also allows changing the delayed ack frequency.
2536 * Changing the frequency to 1 disables the delayed sack algorithm. If
2537 * the assoc_id is 0, then this sets or gets the endpoints default
2538 * values. If the assoc_id field is non-zero, then the set or get
2539 * effects the specified association for the one to many model (the
2540 * assoc_id field is ignored by the one to one model). Note that if
2541 * sack_delay or sack_freq are 0 when setting this option, then the
2542 * current values will remain unchanged.
2543 *
2544 * struct sctp_sack_info {
2545 * sctp_assoc_t sack_assoc_id;
2546 * uint32_t sack_delay;
2547 * uint32_t sack_freq;
2548 * };
2549 *
2550 * sack_assoc_id - This parameter, indicates which association the user
2551 * is performing an action upon. Note that if this field's value is
2552 * zero then the endpoints default value is changed (effecting future
2553 * associations only).
2554 *
2555 * sack_delay - This parameter contains the number of milliseconds that
2556 * the user is requesting the delayed ACK timer be set to. Note that
2557 * this value is defined in the standard to be between 200 and 500
2558 * milliseconds.
2559 *
2560 * sack_freq - This parameter contains the number of packets that must
2561 * be received before a sack is sent without waiting for the delay
2562 * timer to expire. The default value for this is 2, setting this
2563 * value to 1 will disable the delayed sack algorithm.
2564 */
2565
2566 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2567 char __user *optval, unsigned int optlen)
2568 {
2569 struct sctp_sack_info params;
2570 struct sctp_transport *trans = NULL;
2571 struct sctp_association *asoc = NULL;
2572 struct sctp_sock *sp = sctp_sk(sk);
2573
2574 if (optlen == sizeof(struct sctp_sack_info)) {
2575 if (copy_from_user(&params, optval, optlen))
2576 return -EFAULT;
2577
2578 if (params.sack_delay == 0 && params.sack_freq == 0)
2579 return 0;
2580 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2581 pr_warn_ratelimited(DEPRECATED
2582 "%s (pid %d) "
2583 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2584 "Use struct sctp_sack_info instead\n",
2585 current->comm, task_pid_nr(current));
2586 if (copy_from_user(&params, optval, optlen))
2587 return -EFAULT;
2588
2589 if (params.sack_delay == 0)
2590 params.sack_freq = 1;
2591 else
2592 params.sack_freq = 0;
2593 } else
2594 return -EINVAL;
2595
2596 /* Validate value parameter. */
2597 if (params.sack_delay > 500)
2598 return -EINVAL;
2599
2600 /* Get association, if sack_assoc_id != 0 and the socket is a one
2601 * to many style socket, and an association was not found, then
2602 * the id was invalid.
2603 */
2604 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2605 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2606 return -EINVAL;
2607
2608 if (params.sack_delay) {
2609 if (asoc) {
2610 asoc->sackdelay =
2611 msecs_to_jiffies(params.sack_delay);
2612 asoc->param_flags =
2613 (asoc->param_flags & ~SPP_SACKDELAY) |
2614 SPP_SACKDELAY_ENABLE;
2615 } else {
2616 sp->sackdelay = params.sack_delay;
2617 sp->param_flags =
2618 (sp->param_flags & ~SPP_SACKDELAY) |
2619 SPP_SACKDELAY_ENABLE;
2620 }
2621 }
2622
2623 if (params.sack_freq == 1) {
2624 if (asoc) {
2625 asoc->param_flags =
2626 (asoc->param_flags & ~SPP_SACKDELAY) |
2627 SPP_SACKDELAY_DISABLE;
2628 } else {
2629 sp->param_flags =
2630 (sp->param_flags & ~SPP_SACKDELAY) |
2631 SPP_SACKDELAY_DISABLE;
2632 }
2633 } else if (params.sack_freq > 1) {
2634 if (asoc) {
2635 asoc->sackfreq = params.sack_freq;
2636 asoc->param_flags =
2637 (asoc->param_flags & ~SPP_SACKDELAY) |
2638 SPP_SACKDELAY_ENABLE;
2639 } else {
2640 sp->sackfreq = params.sack_freq;
2641 sp->param_flags =
2642 (sp->param_flags & ~SPP_SACKDELAY) |
2643 SPP_SACKDELAY_ENABLE;
2644 }
2645 }
2646
2647 /* If change is for association, also apply to each transport. */
2648 if (asoc) {
2649 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2650 transports) {
2651 if (params.sack_delay) {
2652 trans->sackdelay =
2653 msecs_to_jiffies(params.sack_delay);
2654 trans->param_flags =
2655 (trans->param_flags & ~SPP_SACKDELAY) |
2656 SPP_SACKDELAY_ENABLE;
2657 }
2658 if (params.sack_freq == 1) {
2659 trans->param_flags =
2660 (trans->param_flags & ~SPP_SACKDELAY) |
2661 SPP_SACKDELAY_DISABLE;
2662 } else if (params.sack_freq > 1) {
2663 trans->sackfreq = params.sack_freq;
2664 trans->param_flags =
2665 (trans->param_flags & ~SPP_SACKDELAY) |
2666 SPP_SACKDELAY_ENABLE;
2667 }
2668 }
2669 }
2670
2671 return 0;
2672 }
2673
2674 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2675 *
2676 * Applications can specify protocol parameters for the default association
2677 * initialization. The option name argument to setsockopt() and getsockopt()
2678 * is SCTP_INITMSG.
2679 *
2680 * Setting initialization parameters is effective only on an unconnected
2681 * socket (for UDP-style sockets only future associations are effected
2682 * by the change). With TCP-style sockets, this option is inherited by
2683 * sockets derived from a listener socket.
2684 */
2685 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2686 {
2687 struct sctp_initmsg sinit;
2688 struct sctp_sock *sp = sctp_sk(sk);
2689
2690 if (optlen != sizeof(struct sctp_initmsg))
2691 return -EINVAL;
2692 if (copy_from_user(&sinit, optval, optlen))
2693 return -EFAULT;
2694
2695 if (sinit.sinit_num_ostreams)
2696 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2697 if (sinit.sinit_max_instreams)
2698 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2699 if (sinit.sinit_max_attempts)
2700 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2701 if (sinit.sinit_max_init_timeo)
2702 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2703
2704 return 0;
2705 }
2706
2707 /*
2708 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2709 *
2710 * Applications that wish to use the sendto() system call may wish to
2711 * specify a default set of parameters that would normally be supplied
2712 * through the inclusion of ancillary data. This socket option allows
2713 * such an application to set the default sctp_sndrcvinfo structure.
2714 * The application that wishes to use this socket option simply passes
2715 * in to this call the sctp_sndrcvinfo structure defined in Section
2716 * 5.2.2) The input parameters accepted by this call include
2717 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2718 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2719 * to this call if the caller is using the UDP model.
2720 */
2721 static int sctp_setsockopt_default_send_param(struct sock *sk,
2722 char __user *optval,
2723 unsigned int optlen)
2724 {
2725 struct sctp_sndrcvinfo info;
2726 struct sctp_association *asoc;
2727 struct sctp_sock *sp = sctp_sk(sk);
2728
2729 if (optlen != sizeof(struct sctp_sndrcvinfo))
2730 return -EINVAL;
2731 if (copy_from_user(&info, optval, optlen))
2732 return -EFAULT;
2733
2734 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2735 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2736 return -EINVAL;
2737
2738 if (asoc) {
2739 asoc->default_stream = info.sinfo_stream;
2740 asoc->default_flags = info.sinfo_flags;
2741 asoc->default_ppid = info.sinfo_ppid;
2742 asoc->default_context = info.sinfo_context;
2743 asoc->default_timetolive = info.sinfo_timetolive;
2744 } else {
2745 sp->default_stream = info.sinfo_stream;
2746 sp->default_flags = info.sinfo_flags;
2747 sp->default_ppid = info.sinfo_ppid;
2748 sp->default_context = info.sinfo_context;
2749 sp->default_timetolive = info.sinfo_timetolive;
2750 }
2751
2752 return 0;
2753 }
2754
2755 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2756 *
2757 * Requests that the local SCTP stack use the enclosed peer address as
2758 * the association primary. The enclosed address must be one of the
2759 * association peer's addresses.
2760 */
2761 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2762 unsigned int optlen)
2763 {
2764 struct sctp_prim prim;
2765 struct sctp_transport *trans;
2766
2767 if (optlen != sizeof(struct sctp_prim))
2768 return -EINVAL;
2769
2770 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2771 return -EFAULT;
2772
2773 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2774 if (!trans)
2775 return -EINVAL;
2776
2777 sctp_assoc_set_primary(trans->asoc, trans);
2778
2779 return 0;
2780 }
2781
2782 /*
2783 * 7.1.5 SCTP_NODELAY
2784 *
2785 * Turn on/off any Nagle-like algorithm. This means that packets are
2786 * generally sent as soon as possible and no unnecessary delays are
2787 * introduced, at the cost of more packets in the network. Expects an
2788 * integer boolean flag.
2789 */
2790 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2791 unsigned int optlen)
2792 {
2793 int val;
2794
2795 if (optlen < sizeof(int))
2796 return -EINVAL;
2797 if (get_user(val, (int __user *)optval))
2798 return -EFAULT;
2799
2800 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2801 return 0;
2802 }
2803
2804 /*
2805 *
2806 * 7.1.1 SCTP_RTOINFO
2807 *
2808 * The protocol parameters used to initialize and bound retransmission
2809 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2810 * and modify these parameters.
2811 * All parameters are time values, in milliseconds. A value of 0, when
2812 * modifying the parameters, indicates that the current value should not
2813 * be changed.
2814 *
2815 */
2816 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2817 {
2818 struct sctp_rtoinfo rtoinfo;
2819 struct sctp_association *asoc;
2820 unsigned long rto_min, rto_max;
2821 struct sctp_sock *sp = sctp_sk(sk);
2822
2823 if (optlen != sizeof (struct sctp_rtoinfo))
2824 return -EINVAL;
2825
2826 if (copy_from_user(&rtoinfo, optval, optlen))
2827 return -EFAULT;
2828
2829 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2830
2831 /* Set the values to the specific association */
2832 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2833 return -EINVAL;
2834
2835 rto_max = rtoinfo.srto_max;
2836 rto_min = rtoinfo.srto_min;
2837
2838 if (rto_max)
2839 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2840 else
2841 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2842
2843 if (rto_min)
2844 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2845 else
2846 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2847
2848 if (rto_min > rto_max)
2849 return -EINVAL;
2850
2851 if (asoc) {
2852 if (rtoinfo.srto_initial != 0)
2853 asoc->rto_initial =
2854 msecs_to_jiffies(rtoinfo.srto_initial);
2855 asoc->rto_max = rto_max;
2856 asoc->rto_min = rto_min;
2857 } else {
2858 /* If there is no association or the association-id = 0
2859 * set the values to the endpoint.
2860 */
2861 if (rtoinfo.srto_initial != 0)
2862 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2863 sp->rtoinfo.srto_max = rto_max;
2864 sp->rtoinfo.srto_min = rto_min;
2865 }
2866
2867 return 0;
2868 }
2869
2870 /*
2871 *
2872 * 7.1.2 SCTP_ASSOCINFO
2873 *
2874 * This option is used to tune the maximum retransmission attempts
2875 * of the association.
2876 * Returns an error if the new association retransmission value is
2877 * greater than the sum of the retransmission value of the peer.
2878 * See [SCTP] for more information.
2879 *
2880 */
2881 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2882 {
2883
2884 struct sctp_assocparams assocparams;
2885 struct sctp_association *asoc;
2886
2887 if (optlen != sizeof(struct sctp_assocparams))
2888 return -EINVAL;
2889 if (copy_from_user(&assocparams, optval, optlen))
2890 return -EFAULT;
2891
2892 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2893
2894 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2895 return -EINVAL;
2896
2897 /* Set the values to the specific association */
2898 if (asoc) {
2899 if (assocparams.sasoc_asocmaxrxt != 0) {
2900 __u32 path_sum = 0;
2901 int paths = 0;
2902 struct sctp_transport *peer_addr;
2903
2904 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2905 transports) {
2906 path_sum += peer_addr->pathmaxrxt;
2907 paths++;
2908 }
2909
2910 /* Only validate asocmaxrxt if we have more than
2911 * one path/transport. We do this because path
2912 * retransmissions are only counted when we have more
2913 * then one path.
2914 */
2915 if (paths > 1 &&
2916 assocparams.sasoc_asocmaxrxt > path_sum)
2917 return -EINVAL;
2918
2919 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2920 }
2921
2922 if (assocparams.sasoc_cookie_life != 0)
2923 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
2924 } else {
2925 /* Set the values to the endpoint */
2926 struct sctp_sock *sp = sctp_sk(sk);
2927
2928 if (assocparams.sasoc_asocmaxrxt != 0)
2929 sp->assocparams.sasoc_asocmaxrxt =
2930 assocparams.sasoc_asocmaxrxt;
2931 if (assocparams.sasoc_cookie_life != 0)
2932 sp->assocparams.sasoc_cookie_life =
2933 assocparams.sasoc_cookie_life;
2934 }
2935 return 0;
2936 }
2937
2938 /*
2939 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2940 *
2941 * This socket option is a boolean flag which turns on or off mapped V4
2942 * addresses. If this option is turned on and the socket is type
2943 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2944 * If this option is turned off, then no mapping will be done of V4
2945 * addresses and a user will receive both PF_INET6 and PF_INET type
2946 * addresses on the socket.
2947 */
2948 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2949 {
2950 int val;
2951 struct sctp_sock *sp = sctp_sk(sk);
2952
2953 if (optlen < sizeof(int))
2954 return -EINVAL;
2955 if (get_user(val, (int __user *)optval))
2956 return -EFAULT;
2957 if (val)
2958 sp->v4mapped = 1;
2959 else
2960 sp->v4mapped = 0;
2961
2962 return 0;
2963 }
2964
2965 /*
2966 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2967 * This option will get or set the maximum size to put in any outgoing
2968 * SCTP DATA chunk. If a message is larger than this size it will be
2969 * fragmented by SCTP into the specified size. Note that the underlying
2970 * SCTP implementation may fragment into smaller sized chunks when the
2971 * PMTU of the underlying association is smaller than the value set by
2972 * the user. The default value for this option is '0' which indicates
2973 * the user is NOT limiting fragmentation and only the PMTU will effect
2974 * SCTP's choice of DATA chunk size. Note also that values set larger
2975 * than the maximum size of an IP datagram will effectively let SCTP
2976 * control fragmentation (i.e. the same as setting this option to 0).
2977 *
2978 * The following structure is used to access and modify this parameter:
2979 *
2980 * struct sctp_assoc_value {
2981 * sctp_assoc_t assoc_id;
2982 * uint32_t assoc_value;
2983 * };
2984 *
2985 * assoc_id: This parameter is ignored for one-to-one style sockets.
2986 * For one-to-many style sockets this parameter indicates which
2987 * association the user is performing an action upon. Note that if
2988 * this field's value is zero then the endpoints default value is
2989 * changed (effecting future associations only).
2990 * assoc_value: This parameter specifies the maximum size in bytes.
2991 */
2992 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2993 {
2994 struct sctp_assoc_value params;
2995 struct sctp_association *asoc;
2996 struct sctp_sock *sp = sctp_sk(sk);
2997 int val;
2998
2999 if (optlen == sizeof(int)) {
3000 pr_warn_ratelimited(DEPRECATED
3001 "%s (pid %d) "
3002 "Use of int in maxseg socket option.\n"
3003 "Use struct sctp_assoc_value instead\n",
3004 current->comm, task_pid_nr(current));
3005 if (copy_from_user(&val, optval, optlen))
3006 return -EFAULT;
3007 params.assoc_id = 0;
3008 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3009 if (copy_from_user(&params, optval, optlen))
3010 return -EFAULT;
3011 val = params.assoc_value;
3012 } else
3013 return -EINVAL;
3014
3015 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3016 return -EINVAL;
3017
3018 asoc = sctp_id2assoc(sk, params.assoc_id);
3019 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3020 return -EINVAL;
3021
3022 if (asoc) {
3023 if (val == 0) {
3024 val = asoc->pathmtu;
3025 val -= sp->pf->af->net_header_len;
3026 val -= sizeof(struct sctphdr) +
3027 sizeof(struct sctp_data_chunk);
3028 }
3029 asoc->user_frag = val;
3030 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3031 } else {
3032 sp->user_frag = val;
3033 }
3034
3035 return 0;
3036 }
3037
3038
3039 /*
3040 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3041 *
3042 * Requests that the peer mark the enclosed address as the association
3043 * primary. The enclosed address must be one of the association's
3044 * locally bound addresses. The following structure is used to make a
3045 * set primary request:
3046 */
3047 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3048 unsigned int optlen)
3049 {
3050 struct net *net = sock_net(sk);
3051 struct sctp_sock *sp;
3052 struct sctp_association *asoc = NULL;
3053 struct sctp_setpeerprim prim;
3054 struct sctp_chunk *chunk;
3055 struct sctp_af *af;
3056 int err;
3057
3058 sp = sctp_sk(sk);
3059
3060 if (!net->sctp.addip_enable)
3061 return -EPERM;
3062
3063 if (optlen != sizeof(struct sctp_setpeerprim))
3064 return -EINVAL;
3065
3066 if (copy_from_user(&prim, optval, optlen))
3067 return -EFAULT;
3068
3069 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3070 if (!asoc)
3071 return -EINVAL;
3072
3073 if (!asoc->peer.asconf_capable)
3074 return -EPERM;
3075
3076 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3077 return -EPERM;
3078
3079 if (!sctp_state(asoc, ESTABLISHED))
3080 return -ENOTCONN;
3081
3082 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3083 if (!af)
3084 return -EINVAL;
3085
3086 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3087 return -EADDRNOTAVAIL;
3088
3089 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3090 return -EADDRNOTAVAIL;
3091
3092 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3093 chunk = sctp_make_asconf_set_prim(asoc,
3094 (union sctp_addr *)&prim.sspp_addr);
3095 if (!chunk)
3096 return -ENOMEM;
3097
3098 err = sctp_send_asconf(asoc, chunk);
3099
3100 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3101
3102 return err;
3103 }
3104
3105 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3106 unsigned int optlen)
3107 {
3108 struct sctp_setadaptation adaptation;
3109
3110 if (optlen != sizeof(struct sctp_setadaptation))
3111 return -EINVAL;
3112 if (copy_from_user(&adaptation, optval, optlen))
3113 return -EFAULT;
3114
3115 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3116
3117 return 0;
3118 }
3119
3120 /*
3121 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3122 *
3123 * The context field in the sctp_sndrcvinfo structure is normally only
3124 * used when a failed message is retrieved holding the value that was
3125 * sent down on the actual send call. This option allows the setting of
3126 * a default context on an association basis that will be received on
3127 * reading messages from the peer. This is especially helpful in the
3128 * one-2-many model for an application to keep some reference to an
3129 * internal state machine that is processing messages on the
3130 * association. Note that the setting of this value only effects
3131 * received messages from the peer and does not effect the value that is
3132 * saved with outbound messages.
3133 */
3134 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3135 unsigned int optlen)
3136 {
3137 struct sctp_assoc_value params;
3138 struct sctp_sock *sp;
3139 struct sctp_association *asoc;
3140
3141 if (optlen != sizeof(struct sctp_assoc_value))
3142 return -EINVAL;
3143 if (copy_from_user(&params, optval, optlen))
3144 return -EFAULT;
3145
3146 sp = sctp_sk(sk);
3147
3148 if (params.assoc_id != 0) {
3149 asoc = sctp_id2assoc(sk, params.assoc_id);
3150 if (!asoc)
3151 return -EINVAL;
3152 asoc->default_rcv_context = params.assoc_value;
3153 } else {
3154 sp->default_rcv_context = params.assoc_value;
3155 }
3156
3157 return 0;
3158 }
3159
3160 /*
3161 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3162 *
3163 * This options will at a minimum specify if the implementation is doing
3164 * fragmented interleave. Fragmented interleave, for a one to many
3165 * socket, is when subsequent calls to receive a message may return
3166 * parts of messages from different associations. Some implementations
3167 * may allow you to turn this value on or off. If so, when turned off,
3168 * no fragment interleave will occur (which will cause a head of line
3169 * blocking amongst multiple associations sharing the same one to many
3170 * socket). When this option is turned on, then each receive call may
3171 * come from a different association (thus the user must receive data
3172 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3173 * association each receive belongs to.
3174 *
3175 * This option takes a boolean value. A non-zero value indicates that
3176 * fragmented interleave is on. A value of zero indicates that
3177 * fragmented interleave is off.
3178 *
3179 * Note that it is important that an implementation that allows this
3180 * option to be turned on, have it off by default. Otherwise an unaware
3181 * application using the one to many model may become confused and act
3182 * incorrectly.
3183 */
3184 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3185 char __user *optval,
3186 unsigned int optlen)
3187 {
3188 int val;
3189
3190 if (optlen != sizeof(int))
3191 return -EINVAL;
3192 if (get_user(val, (int __user *)optval))
3193 return -EFAULT;
3194
3195 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3196
3197 return 0;
3198 }
3199
3200 /*
3201 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3202 * (SCTP_PARTIAL_DELIVERY_POINT)
3203 *
3204 * This option will set or get the SCTP partial delivery point. This
3205 * point is the size of a message where the partial delivery API will be
3206 * invoked to help free up rwnd space for the peer. Setting this to a
3207 * lower value will cause partial deliveries to happen more often. The
3208 * calls argument is an integer that sets or gets the partial delivery
3209 * point. Note also that the call will fail if the user attempts to set
3210 * this value larger than the socket receive buffer size.
3211 *
3212 * Note that any single message having a length smaller than or equal to
3213 * the SCTP partial delivery point will be delivered in one single read
3214 * call as long as the user provided buffer is large enough to hold the
3215 * message.
3216 */
3217 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3218 char __user *optval,
3219 unsigned int optlen)
3220 {
3221 u32 val;
3222
3223 if (optlen != sizeof(u32))
3224 return -EINVAL;
3225 if (get_user(val, (int __user *)optval))
3226 return -EFAULT;
3227
3228 /* Note: We double the receive buffer from what the user sets
3229 * it to be, also initial rwnd is based on rcvbuf/2.
3230 */
3231 if (val > (sk->sk_rcvbuf >> 1))
3232 return -EINVAL;
3233
3234 sctp_sk(sk)->pd_point = val;
3235
3236 return 0; /* is this the right error code? */
3237 }
3238
3239 /*
3240 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3241 *
3242 * This option will allow a user to change the maximum burst of packets
3243 * that can be emitted by this association. Note that the default value
3244 * is 4, and some implementations may restrict this setting so that it
3245 * can only be lowered.
3246 *
3247 * NOTE: This text doesn't seem right. Do this on a socket basis with
3248 * future associations inheriting the socket value.
3249 */
3250 static int sctp_setsockopt_maxburst(struct sock *sk,
3251 char __user *optval,
3252 unsigned int optlen)
3253 {
3254 struct sctp_assoc_value params;
3255 struct sctp_sock *sp;
3256 struct sctp_association *asoc;
3257 int val;
3258 int assoc_id = 0;
3259
3260 if (optlen == sizeof(int)) {
3261 pr_warn_ratelimited(DEPRECATED
3262 "%s (pid %d) "
3263 "Use of int in max_burst socket option deprecated.\n"
3264 "Use struct sctp_assoc_value instead\n",
3265 current->comm, task_pid_nr(current));
3266 if (copy_from_user(&val, optval, optlen))
3267 return -EFAULT;
3268 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3269 if (copy_from_user(&params, optval, optlen))
3270 return -EFAULT;
3271 val = params.assoc_value;
3272 assoc_id = params.assoc_id;
3273 } else
3274 return -EINVAL;
3275
3276 sp = sctp_sk(sk);
3277
3278 if (assoc_id != 0) {
3279 asoc = sctp_id2assoc(sk, assoc_id);
3280 if (!asoc)
3281 return -EINVAL;
3282 asoc->max_burst = val;
3283 } else
3284 sp->max_burst = val;
3285
3286 return 0;
3287 }
3288
3289 /*
3290 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3291 *
3292 * This set option adds a chunk type that the user is requesting to be
3293 * received only in an authenticated way. Changes to the list of chunks
3294 * will only effect future associations on the socket.
3295 */
3296 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3297 char __user *optval,
3298 unsigned int optlen)
3299 {
3300 struct net *net = sock_net(sk);
3301 struct sctp_authchunk val;
3302
3303 if (!net->sctp.auth_enable)
3304 return -EACCES;
3305
3306 if (optlen != sizeof(struct sctp_authchunk))
3307 return -EINVAL;
3308 if (copy_from_user(&val, optval, optlen))
3309 return -EFAULT;
3310
3311 switch (val.sauth_chunk) {
3312 case SCTP_CID_INIT:
3313 case SCTP_CID_INIT_ACK:
3314 case SCTP_CID_SHUTDOWN_COMPLETE:
3315 case SCTP_CID_AUTH:
3316 return -EINVAL;
3317 }
3318
3319 /* add this chunk id to the endpoint */
3320 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3321 }
3322
3323 /*
3324 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3325 *
3326 * This option gets or sets the list of HMAC algorithms that the local
3327 * endpoint requires the peer to use.
3328 */
3329 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3330 char __user *optval,
3331 unsigned int optlen)
3332 {
3333 struct net *net = sock_net(sk);
3334 struct sctp_hmacalgo *hmacs;
3335 u32 idents;
3336 int err;
3337
3338 if (!net->sctp.auth_enable)
3339 return -EACCES;
3340
3341 if (optlen < sizeof(struct sctp_hmacalgo))
3342 return -EINVAL;
3343
3344 hmacs = memdup_user(optval, optlen);
3345 if (IS_ERR(hmacs))
3346 return PTR_ERR(hmacs);
3347
3348 idents = hmacs->shmac_num_idents;
3349 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3350 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3351 err = -EINVAL;
3352 goto out;
3353 }
3354
3355 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3356 out:
3357 kfree(hmacs);
3358 return err;
3359 }
3360
3361 /*
3362 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3363 *
3364 * This option will set a shared secret key which is used to build an
3365 * association shared key.
3366 */
3367 static int sctp_setsockopt_auth_key(struct sock *sk,
3368 char __user *optval,
3369 unsigned int optlen)
3370 {
3371 struct net *net = sock_net(sk);
3372 struct sctp_authkey *authkey;
3373 struct sctp_association *asoc;
3374 int ret;
3375
3376 if (!net->sctp.auth_enable)
3377 return -EACCES;
3378
3379 if (optlen <= sizeof(struct sctp_authkey))
3380 return -EINVAL;
3381
3382 authkey = memdup_user(optval, optlen);
3383 if (IS_ERR(authkey))
3384 return PTR_ERR(authkey);
3385
3386 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3387 ret = -EINVAL;
3388 goto out;
3389 }
3390
3391 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3392 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3393 ret = -EINVAL;
3394 goto out;
3395 }
3396
3397 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3398 out:
3399 kzfree(authkey);
3400 return ret;
3401 }
3402
3403 /*
3404 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3405 *
3406 * This option will get or set the active shared key to be used to build
3407 * the association shared key.
3408 */
3409 static int sctp_setsockopt_active_key(struct sock *sk,
3410 char __user *optval,
3411 unsigned int optlen)
3412 {
3413 struct net *net = sock_net(sk);
3414 struct sctp_authkeyid val;
3415 struct sctp_association *asoc;
3416
3417 if (!net->sctp.auth_enable)
3418 return -EACCES;
3419
3420 if (optlen != sizeof(struct sctp_authkeyid))
3421 return -EINVAL;
3422 if (copy_from_user(&val, optval, optlen))
3423 return -EFAULT;
3424
3425 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3426 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3427 return -EINVAL;
3428
3429 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3430 val.scact_keynumber);
3431 }
3432
3433 /*
3434 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3435 *
3436 * This set option will delete a shared secret key from use.
3437 */
3438 static int sctp_setsockopt_del_key(struct sock *sk,
3439 char __user *optval,
3440 unsigned int optlen)
3441 {
3442 struct net *net = sock_net(sk);
3443 struct sctp_authkeyid val;
3444 struct sctp_association *asoc;
3445
3446 if (!net->sctp.auth_enable)
3447 return -EACCES;
3448
3449 if (optlen != sizeof(struct sctp_authkeyid))
3450 return -EINVAL;
3451 if (copy_from_user(&val, optval, optlen))
3452 return -EFAULT;
3453
3454 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3455 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3456 return -EINVAL;
3457
3458 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3459 val.scact_keynumber);
3460
3461 }
3462
3463 /*
3464 * 8.1.23 SCTP_AUTO_ASCONF
3465 *
3466 * This option will enable or disable the use of the automatic generation of
3467 * ASCONF chunks to add and delete addresses to an existing association. Note
3468 * that this option has two caveats namely: a) it only affects sockets that
3469 * are bound to all addresses available to the SCTP stack, and b) the system
3470 * administrator may have an overriding control that turns the ASCONF feature
3471 * off no matter what setting the socket option may have.
3472 * This option expects an integer boolean flag, where a non-zero value turns on
3473 * the option, and a zero value turns off the option.
3474 * Note. In this implementation, socket operation overrides default parameter
3475 * being set by sysctl as well as FreeBSD implementation
3476 */
3477 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3478 unsigned int optlen)
3479 {
3480 int val;
3481 struct sctp_sock *sp = sctp_sk(sk);
3482
3483 if (optlen < sizeof(int))
3484 return -EINVAL;
3485 if (get_user(val, (int __user *)optval))
3486 return -EFAULT;
3487 if (!sctp_is_ep_boundall(sk) && val)
3488 return -EINVAL;
3489 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3490 return 0;
3491
3492 if (val == 0 && sp->do_auto_asconf) {
3493 list_del(&sp->auto_asconf_list);
3494 sp->do_auto_asconf = 0;
3495 } else if (val && !sp->do_auto_asconf) {
3496 list_add_tail(&sp->auto_asconf_list,
3497 &sock_net(sk)->sctp.auto_asconf_splist);
3498 sp->do_auto_asconf = 1;
3499 }
3500 return 0;
3501 }
3502
3503
3504 /*
3505 * SCTP_PEER_ADDR_THLDS
3506 *
3507 * This option allows us to alter the partially failed threshold for one or all
3508 * transports in an association. See Section 6.1 of:
3509 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3510 */
3511 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3512 char __user *optval,
3513 unsigned int optlen)
3514 {
3515 struct sctp_paddrthlds val;
3516 struct sctp_transport *trans;
3517 struct sctp_association *asoc;
3518
3519 if (optlen < sizeof(struct sctp_paddrthlds))
3520 return -EINVAL;
3521 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3522 sizeof(struct sctp_paddrthlds)))
3523 return -EFAULT;
3524
3525
3526 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3527 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3528 if (!asoc)
3529 return -ENOENT;
3530 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3531 transports) {
3532 if (val.spt_pathmaxrxt)
3533 trans->pathmaxrxt = val.spt_pathmaxrxt;
3534 trans->pf_retrans = val.spt_pathpfthld;
3535 }
3536
3537 if (val.spt_pathmaxrxt)
3538 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3539 asoc->pf_retrans = val.spt_pathpfthld;
3540 } else {
3541 trans = sctp_addr_id2transport(sk, &val.spt_address,
3542 val.spt_assoc_id);
3543 if (!trans)
3544 return -ENOENT;
3545
3546 if (val.spt_pathmaxrxt)
3547 trans->pathmaxrxt = val.spt_pathmaxrxt;
3548 trans->pf_retrans = val.spt_pathpfthld;
3549 }
3550
3551 return 0;
3552 }
3553
3554 /* API 6.2 setsockopt(), getsockopt()
3555 *
3556 * Applications use setsockopt() and getsockopt() to set or retrieve
3557 * socket options. Socket options are used to change the default
3558 * behavior of sockets calls. They are described in Section 7.
3559 *
3560 * The syntax is:
3561 *
3562 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3563 * int __user *optlen);
3564 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3565 * int optlen);
3566 *
3567 * sd - the socket descript.
3568 * level - set to IPPROTO_SCTP for all SCTP options.
3569 * optname - the option name.
3570 * optval - the buffer to store the value of the option.
3571 * optlen - the size of the buffer.
3572 */
3573 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3574 char __user *optval, unsigned int optlen)
3575 {
3576 int retval = 0;
3577
3578 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3579
3580 /* I can hardly begin to describe how wrong this is. This is
3581 * so broken as to be worse than useless. The API draft
3582 * REALLY is NOT helpful here... I am not convinced that the
3583 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3584 * are at all well-founded.
3585 */
3586 if (level != SOL_SCTP) {
3587 struct sctp_af *af = sctp_sk(sk)->pf->af;
3588 retval = af->setsockopt(sk, level, optname, optval, optlen);
3589 goto out_nounlock;
3590 }
3591
3592 sctp_lock_sock(sk);
3593
3594 switch (optname) {
3595 case SCTP_SOCKOPT_BINDX_ADD:
3596 /* 'optlen' is the size of the addresses buffer. */
3597 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3598 optlen, SCTP_BINDX_ADD_ADDR);
3599 break;
3600
3601 case SCTP_SOCKOPT_BINDX_REM:
3602 /* 'optlen' is the size of the addresses buffer. */
3603 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3604 optlen, SCTP_BINDX_REM_ADDR);
3605 break;
3606
3607 case SCTP_SOCKOPT_CONNECTX_OLD:
3608 /* 'optlen' is the size of the addresses buffer. */
3609 retval = sctp_setsockopt_connectx_old(sk,
3610 (struct sockaddr __user *)optval,
3611 optlen);
3612 break;
3613
3614 case SCTP_SOCKOPT_CONNECTX:
3615 /* 'optlen' is the size of the addresses buffer. */
3616 retval = sctp_setsockopt_connectx(sk,
3617 (struct sockaddr __user *)optval,
3618 optlen);
3619 break;
3620
3621 case SCTP_DISABLE_FRAGMENTS:
3622 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3623 break;
3624
3625 case SCTP_EVENTS:
3626 retval = sctp_setsockopt_events(sk, optval, optlen);
3627 break;
3628
3629 case SCTP_AUTOCLOSE:
3630 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3631 break;
3632
3633 case SCTP_PEER_ADDR_PARAMS:
3634 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3635 break;
3636
3637 case SCTP_DELAYED_SACK:
3638 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3639 break;
3640 case SCTP_PARTIAL_DELIVERY_POINT:
3641 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3642 break;
3643
3644 case SCTP_INITMSG:
3645 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3646 break;
3647 case SCTP_DEFAULT_SEND_PARAM:
3648 retval = sctp_setsockopt_default_send_param(sk, optval,
3649 optlen);
3650 break;
3651 case SCTP_PRIMARY_ADDR:
3652 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3653 break;
3654 case SCTP_SET_PEER_PRIMARY_ADDR:
3655 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3656 break;
3657 case SCTP_NODELAY:
3658 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3659 break;
3660 case SCTP_RTOINFO:
3661 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3662 break;
3663 case SCTP_ASSOCINFO:
3664 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3665 break;
3666 case SCTP_I_WANT_MAPPED_V4_ADDR:
3667 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3668 break;
3669 case SCTP_MAXSEG:
3670 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3671 break;
3672 case SCTP_ADAPTATION_LAYER:
3673 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3674 break;
3675 case SCTP_CONTEXT:
3676 retval = sctp_setsockopt_context(sk, optval, optlen);
3677 break;
3678 case SCTP_FRAGMENT_INTERLEAVE:
3679 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3680 break;
3681 case SCTP_MAX_BURST:
3682 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3683 break;
3684 case SCTP_AUTH_CHUNK:
3685 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3686 break;
3687 case SCTP_HMAC_IDENT:
3688 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3689 break;
3690 case SCTP_AUTH_KEY:
3691 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3692 break;
3693 case SCTP_AUTH_ACTIVE_KEY:
3694 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3695 break;
3696 case SCTP_AUTH_DELETE_KEY:
3697 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3698 break;
3699 case SCTP_AUTO_ASCONF:
3700 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3701 break;
3702 case SCTP_PEER_ADDR_THLDS:
3703 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3704 break;
3705 default:
3706 retval = -ENOPROTOOPT;
3707 break;
3708 }
3709
3710 sctp_release_sock(sk);
3711
3712 out_nounlock:
3713 return retval;
3714 }
3715
3716 /* API 3.1.6 connect() - UDP Style Syntax
3717 *
3718 * An application may use the connect() call in the UDP model to initiate an
3719 * association without sending data.
3720 *
3721 * The syntax is:
3722 *
3723 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3724 *
3725 * sd: the socket descriptor to have a new association added to.
3726 *
3727 * nam: the address structure (either struct sockaddr_in or struct
3728 * sockaddr_in6 defined in RFC2553 [7]).
3729 *
3730 * len: the size of the address.
3731 */
3732 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3733 int addr_len)
3734 {
3735 int err = 0;
3736 struct sctp_af *af;
3737
3738 sctp_lock_sock(sk);
3739
3740 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3741 addr, addr_len);
3742
3743 /* Validate addr_len before calling common connect/connectx routine. */
3744 af = sctp_get_af_specific(addr->sa_family);
3745 if (!af || addr_len < af->sockaddr_len) {
3746 err = -EINVAL;
3747 } else {
3748 /* Pass correct addr len to common routine (so it knows there
3749 * is only one address being passed.
3750 */
3751 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3752 }
3753
3754 sctp_release_sock(sk);
3755 return err;
3756 }
3757
3758 /* FIXME: Write comments. */
3759 static int sctp_disconnect(struct sock *sk, int flags)
3760 {
3761 return -EOPNOTSUPP; /* STUB */
3762 }
3763
3764 /* 4.1.4 accept() - TCP Style Syntax
3765 *
3766 * Applications use accept() call to remove an established SCTP
3767 * association from the accept queue of the endpoint. A new socket
3768 * descriptor will be returned from accept() to represent the newly
3769 * formed association.
3770 */
3771 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3772 {
3773 struct sctp_sock *sp;
3774 struct sctp_endpoint *ep;
3775 struct sock *newsk = NULL;
3776 struct sctp_association *asoc;
3777 long timeo;
3778 int error = 0;
3779
3780 sctp_lock_sock(sk);
3781
3782 sp = sctp_sk(sk);
3783 ep = sp->ep;
3784
3785 if (!sctp_style(sk, TCP)) {
3786 error = -EOPNOTSUPP;
3787 goto out;
3788 }
3789
3790 if (!sctp_sstate(sk, LISTENING)) {
3791 error = -EINVAL;
3792 goto out;
3793 }
3794
3795 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3796
3797 error = sctp_wait_for_accept(sk, timeo);
3798 if (error)
3799 goto out;
3800
3801 /* We treat the list of associations on the endpoint as the accept
3802 * queue and pick the first association on the list.
3803 */
3804 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3805
3806 newsk = sp->pf->create_accept_sk(sk, asoc);
3807 if (!newsk) {
3808 error = -ENOMEM;
3809 goto out;
3810 }
3811
3812 /* Populate the fields of the newsk from the oldsk and migrate the
3813 * asoc to the newsk.
3814 */
3815 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3816
3817 out:
3818 sctp_release_sock(sk);
3819 *err = error;
3820 return newsk;
3821 }
3822
3823 /* The SCTP ioctl handler. */
3824 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3825 {
3826 int rc = -ENOTCONN;
3827
3828 sctp_lock_sock(sk);
3829
3830 /*
3831 * SEQPACKET-style sockets in LISTENING state are valid, for
3832 * SCTP, so only discard TCP-style sockets in LISTENING state.
3833 */
3834 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3835 goto out;
3836
3837 switch (cmd) {
3838 case SIOCINQ: {
3839 struct sk_buff *skb;
3840 unsigned int amount = 0;
3841
3842 skb = skb_peek(&sk->sk_receive_queue);
3843 if (skb != NULL) {
3844 /*
3845 * We will only return the amount of this packet since
3846 * that is all that will be read.
3847 */
3848 amount = skb->len;
3849 }
3850 rc = put_user(amount, (int __user *)arg);
3851 break;
3852 }
3853 default:
3854 rc = -ENOIOCTLCMD;
3855 break;
3856 }
3857 out:
3858 sctp_release_sock(sk);
3859 return rc;
3860 }
3861
3862 /* This is the function which gets called during socket creation to
3863 * initialized the SCTP-specific portion of the sock.
3864 * The sock structure should already be zero-filled memory.
3865 */
3866 static int sctp_init_sock(struct sock *sk)
3867 {
3868 struct net *net = sock_net(sk);
3869 struct sctp_sock *sp;
3870
3871 pr_debug("%s: sk:%p\n", __func__, sk);
3872
3873 sp = sctp_sk(sk);
3874
3875 /* Initialize the SCTP per socket area. */
3876 switch (sk->sk_type) {
3877 case SOCK_SEQPACKET:
3878 sp->type = SCTP_SOCKET_UDP;
3879 break;
3880 case SOCK_STREAM:
3881 sp->type = SCTP_SOCKET_TCP;
3882 break;
3883 default:
3884 return -ESOCKTNOSUPPORT;
3885 }
3886
3887 /* Initialize default send parameters. These parameters can be
3888 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3889 */
3890 sp->default_stream = 0;
3891 sp->default_ppid = 0;
3892 sp->default_flags = 0;
3893 sp->default_context = 0;
3894 sp->default_timetolive = 0;
3895
3896 sp->default_rcv_context = 0;
3897 sp->max_burst = net->sctp.max_burst;
3898
3899 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3900
3901 /* Initialize default setup parameters. These parameters
3902 * can be modified with the SCTP_INITMSG socket option or
3903 * overridden by the SCTP_INIT CMSG.
3904 */
3905 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3906 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3907 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
3908 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3909
3910 /* Initialize default RTO related parameters. These parameters can
3911 * be modified for with the SCTP_RTOINFO socket option.
3912 */
3913 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3914 sp->rtoinfo.srto_max = net->sctp.rto_max;
3915 sp->rtoinfo.srto_min = net->sctp.rto_min;
3916
3917 /* Initialize default association related parameters. These parameters
3918 * can be modified with the SCTP_ASSOCINFO socket option.
3919 */
3920 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3921 sp->assocparams.sasoc_number_peer_destinations = 0;
3922 sp->assocparams.sasoc_peer_rwnd = 0;
3923 sp->assocparams.sasoc_local_rwnd = 0;
3924 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3925
3926 /* Initialize default event subscriptions. By default, all the
3927 * options are off.
3928 */
3929 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3930
3931 /* Default Peer Address Parameters. These defaults can
3932 * be modified via SCTP_PEER_ADDR_PARAMS
3933 */
3934 sp->hbinterval = net->sctp.hb_interval;
3935 sp->pathmaxrxt = net->sctp.max_retrans_path;
3936 sp->pathmtu = 0; /* allow default discovery */
3937 sp->sackdelay = net->sctp.sack_timeout;
3938 sp->sackfreq = 2;
3939 sp->param_flags = SPP_HB_ENABLE |
3940 SPP_PMTUD_ENABLE |
3941 SPP_SACKDELAY_ENABLE;
3942
3943 /* If enabled no SCTP message fragmentation will be performed.
3944 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3945 */
3946 sp->disable_fragments = 0;
3947
3948 /* Enable Nagle algorithm by default. */
3949 sp->nodelay = 0;
3950
3951 /* Enable by default. */
3952 sp->v4mapped = 1;
3953
3954 /* Auto-close idle associations after the configured
3955 * number of seconds. A value of 0 disables this
3956 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3957 * for UDP-style sockets only.
3958 */
3959 sp->autoclose = 0;
3960
3961 /* User specified fragmentation limit. */
3962 sp->user_frag = 0;
3963
3964 sp->adaptation_ind = 0;
3965
3966 sp->pf = sctp_get_pf_specific(sk->sk_family);
3967
3968 /* Control variables for partial data delivery. */
3969 atomic_set(&sp->pd_mode, 0);
3970 skb_queue_head_init(&sp->pd_lobby);
3971 sp->frag_interleave = 0;
3972
3973 /* Create a per socket endpoint structure. Even if we
3974 * change the data structure relationships, this may still
3975 * be useful for storing pre-connect address information.
3976 */
3977 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
3978 if (!sp->ep)
3979 return -ENOMEM;
3980
3981 sp->hmac = NULL;
3982
3983 sk->sk_destruct = sctp_destruct_sock;
3984
3985 SCTP_DBG_OBJCNT_INC(sock);
3986
3987 local_bh_disable();
3988 percpu_counter_inc(&sctp_sockets_allocated);
3989 sock_prot_inuse_add(net, sk->sk_prot, 1);
3990 if (net->sctp.default_auto_asconf) {
3991 list_add_tail(&sp->auto_asconf_list,
3992 &net->sctp.auto_asconf_splist);
3993 sp->do_auto_asconf = 1;
3994 } else
3995 sp->do_auto_asconf = 0;
3996 local_bh_enable();
3997
3998 return 0;
3999 }
4000
4001 /* Cleanup any SCTP per socket resources. */
4002 static void sctp_destroy_sock(struct sock *sk)
4003 {
4004 struct sctp_sock *sp;
4005
4006 pr_debug("%s: sk:%p\n", __func__, sk);
4007
4008 /* Release our hold on the endpoint. */
4009 sp = sctp_sk(sk);
4010 /* This could happen during socket init, thus we bail out
4011 * early, since the rest of the below is not setup either.
4012 */
4013 if (sp->ep == NULL)
4014 return;
4015
4016 if (sp->do_auto_asconf) {
4017 sp->do_auto_asconf = 0;
4018 list_del(&sp->auto_asconf_list);
4019 }
4020 sctp_endpoint_free(sp->ep);
4021 local_bh_disable();
4022 percpu_counter_dec(&sctp_sockets_allocated);
4023 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4024 local_bh_enable();
4025 }
4026
4027 /* Triggered when there are no references on the socket anymore */
4028 static void sctp_destruct_sock(struct sock *sk)
4029 {
4030 struct sctp_sock *sp = sctp_sk(sk);
4031
4032 /* Free up the HMAC transform. */
4033 crypto_free_hash(sp->hmac);
4034
4035 inet_sock_destruct(sk);
4036 }
4037
4038 /* API 4.1.7 shutdown() - TCP Style Syntax
4039 * int shutdown(int socket, int how);
4040 *
4041 * sd - the socket descriptor of the association to be closed.
4042 * how - Specifies the type of shutdown. The values are
4043 * as follows:
4044 * SHUT_RD
4045 * Disables further receive operations. No SCTP
4046 * protocol action is taken.
4047 * SHUT_WR
4048 * Disables further send operations, and initiates
4049 * the SCTP shutdown sequence.
4050 * SHUT_RDWR
4051 * Disables further send and receive operations
4052 * and initiates the SCTP shutdown sequence.
4053 */
4054 static void sctp_shutdown(struct sock *sk, int how)
4055 {
4056 struct net *net = sock_net(sk);
4057 struct sctp_endpoint *ep;
4058 struct sctp_association *asoc;
4059
4060 if (!sctp_style(sk, TCP))
4061 return;
4062
4063 if (how & SEND_SHUTDOWN) {
4064 ep = sctp_sk(sk)->ep;
4065 if (!list_empty(&ep->asocs)) {
4066 asoc = list_entry(ep->asocs.next,
4067 struct sctp_association, asocs);
4068 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4069 }
4070 }
4071 }
4072
4073 /* 7.2.1 Association Status (SCTP_STATUS)
4074
4075 * Applications can retrieve current status information about an
4076 * association, including association state, peer receiver window size,
4077 * number of unacked data chunks, and number of data chunks pending
4078 * receipt. This information is read-only.
4079 */
4080 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4081 char __user *optval,
4082 int __user *optlen)
4083 {
4084 struct sctp_status status;
4085 struct sctp_association *asoc = NULL;
4086 struct sctp_transport *transport;
4087 sctp_assoc_t associd;
4088 int retval = 0;
4089
4090 if (len < sizeof(status)) {
4091 retval = -EINVAL;
4092 goto out;
4093 }
4094
4095 len = sizeof(status);
4096 if (copy_from_user(&status, optval, len)) {
4097 retval = -EFAULT;
4098 goto out;
4099 }
4100
4101 associd = status.sstat_assoc_id;
4102 asoc = sctp_id2assoc(sk, associd);
4103 if (!asoc) {
4104 retval = -EINVAL;
4105 goto out;
4106 }
4107
4108 transport = asoc->peer.primary_path;
4109
4110 status.sstat_assoc_id = sctp_assoc2id(asoc);
4111 status.sstat_state = asoc->state;
4112 status.sstat_rwnd = asoc->peer.rwnd;
4113 status.sstat_unackdata = asoc->unack_data;
4114
4115 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4116 status.sstat_instrms = asoc->c.sinit_max_instreams;
4117 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4118 status.sstat_fragmentation_point = asoc->frag_point;
4119 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4120 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4121 transport->af_specific->sockaddr_len);
4122 /* Map ipv4 address into v4-mapped-on-v6 address. */
4123 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4124 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4125 status.sstat_primary.spinfo_state = transport->state;
4126 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4127 status.sstat_primary.spinfo_srtt = transport->srtt;
4128 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4129 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4130
4131 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4132 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4133
4134 if (put_user(len, optlen)) {
4135 retval = -EFAULT;
4136 goto out;
4137 }
4138
4139 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4140 __func__, len, status.sstat_state, status.sstat_rwnd,
4141 status.sstat_assoc_id);
4142
4143 if (copy_to_user(optval, &status, len)) {
4144 retval = -EFAULT;
4145 goto out;
4146 }
4147
4148 out:
4149 return retval;
4150 }
4151
4152
4153 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4154 *
4155 * Applications can retrieve information about a specific peer address
4156 * of an association, including its reachability state, congestion
4157 * window, and retransmission timer values. This information is
4158 * read-only.
4159 */
4160 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4161 char __user *optval,
4162 int __user *optlen)
4163 {
4164 struct sctp_paddrinfo pinfo;
4165 struct sctp_transport *transport;
4166 int retval = 0;
4167
4168 if (len < sizeof(pinfo)) {
4169 retval = -EINVAL;
4170 goto out;
4171 }
4172
4173 len = sizeof(pinfo);
4174 if (copy_from_user(&pinfo, optval, len)) {
4175 retval = -EFAULT;
4176 goto out;
4177 }
4178
4179 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4180 pinfo.spinfo_assoc_id);
4181 if (!transport)
4182 return -EINVAL;
4183
4184 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4185 pinfo.spinfo_state = transport->state;
4186 pinfo.spinfo_cwnd = transport->cwnd;
4187 pinfo.spinfo_srtt = transport->srtt;
4188 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4189 pinfo.spinfo_mtu = transport->pathmtu;
4190
4191 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4192 pinfo.spinfo_state = SCTP_ACTIVE;
4193
4194 if (put_user(len, optlen)) {
4195 retval = -EFAULT;
4196 goto out;
4197 }
4198
4199 if (copy_to_user(optval, &pinfo, len)) {
4200 retval = -EFAULT;
4201 goto out;
4202 }
4203
4204 out:
4205 return retval;
4206 }
4207
4208 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4209 *
4210 * This option is a on/off flag. If enabled no SCTP message
4211 * fragmentation will be performed. Instead if a message being sent
4212 * exceeds the current PMTU size, the message will NOT be sent and
4213 * instead a error will be indicated to the user.
4214 */
4215 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4216 char __user *optval, int __user *optlen)
4217 {
4218 int val;
4219
4220 if (len < sizeof(int))
4221 return -EINVAL;
4222
4223 len = sizeof(int);
4224 val = (sctp_sk(sk)->disable_fragments == 1);
4225 if (put_user(len, optlen))
4226 return -EFAULT;
4227 if (copy_to_user(optval, &val, len))
4228 return -EFAULT;
4229 return 0;
4230 }
4231
4232 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4233 *
4234 * This socket option is used to specify various notifications and
4235 * ancillary data the user wishes to receive.
4236 */
4237 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4238 int __user *optlen)
4239 {
4240 if (len <= 0)
4241 return -EINVAL;
4242 if (len > sizeof(struct sctp_event_subscribe))
4243 len = sizeof(struct sctp_event_subscribe);
4244 if (put_user(len, optlen))
4245 return -EFAULT;
4246 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4247 return -EFAULT;
4248 return 0;
4249 }
4250
4251 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4252 *
4253 * This socket option is applicable to the UDP-style socket only. When
4254 * set it will cause associations that are idle for more than the
4255 * specified number of seconds to automatically close. An association
4256 * being idle is defined an association that has NOT sent or received
4257 * user data. The special value of '0' indicates that no automatic
4258 * close of any associations should be performed. The option expects an
4259 * integer defining the number of seconds of idle time before an
4260 * association is closed.
4261 */
4262 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4263 {
4264 /* Applicable to UDP-style socket only */
4265 if (sctp_style(sk, TCP))
4266 return -EOPNOTSUPP;
4267 if (len < sizeof(int))
4268 return -EINVAL;
4269 len = sizeof(int);
4270 if (put_user(len, optlen))
4271 return -EFAULT;
4272 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4273 return -EFAULT;
4274 return 0;
4275 }
4276
4277 /* Helper routine to branch off an association to a new socket. */
4278 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4279 {
4280 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4281 struct socket *sock;
4282 struct sctp_af *af;
4283 int err = 0;
4284
4285 if (!asoc)
4286 return -EINVAL;
4287
4288 /* An association cannot be branched off from an already peeled-off
4289 * socket, nor is this supported for tcp style sockets.
4290 */
4291 if (!sctp_style(sk, UDP))
4292 return -EINVAL;
4293
4294 /* Create a new socket. */
4295 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4296 if (err < 0)
4297 return err;
4298
4299 sctp_copy_sock(sock->sk, sk, asoc);
4300
4301 /* Make peeled-off sockets more like 1-1 accepted sockets.
4302 * Set the daddr and initialize id to something more random
4303 */
4304 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4305 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4306
4307 /* Populate the fields of the newsk from the oldsk and migrate the
4308 * asoc to the newsk.
4309 */
4310 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4311
4312 *sockp = sock;
4313
4314 return err;
4315 }
4316 EXPORT_SYMBOL(sctp_do_peeloff);
4317
4318 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4319 {
4320 sctp_peeloff_arg_t peeloff;
4321 struct socket *newsock;
4322 struct file *newfile;
4323 int retval = 0;
4324
4325 if (len < sizeof(sctp_peeloff_arg_t))
4326 return -EINVAL;
4327 len = sizeof(sctp_peeloff_arg_t);
4328 if (copy_from_user(&peeloff, optval, len))
4329 return -EFAULT;
4330
4331 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4332 if (retval < 0)
4333 goto out;
4334
4335 /* Map the socket to an unused fd that can be returned to the user. */
4336 retval = get_unused_fd_flags(0);
4337 if (retval < 0) {
4338 sock_release(newsock);
4339 goto out;
4340 }
4341
4342 newfile = sock_alloc_file(newsock, 0, NULL);
4343 if (unlikely(IS_ERR(newfile))) {
4344 put_unused_fd(retval);
4345 sock_release(newsock);
4346 return PTR_ERR(newfile);
4347 }
4348
4349 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4350 retval);
4351
4352 /* Return the fd mapped to the new socket. */
4353 if (put_user(len, optlen)) {
4354 fput(newfile);
4355 put_unused_fd(retval);
4356 return -EFAULT;
4357 }
4358 peeloff.sd = retval;
4359 if (copy_to_user(optval, &peeloff, len)) {
4360 fput(newfile);
4361 put_unused_fd(retval);
4362 return -EFAULT;
4363 }
4364 fd_install(retval, newfile);
4365 out:
4366 return retval;
4367 }
4368
4369 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4370 *
4371 * Applications can enable or disable heartbeats for any peer address of
4372 * an association, modify an address's heartbeat interval, force a
4373 * heartbeat to be sent immediately, and adjust the address's maximum
4374 * number of retransmissions sent before an address is considered
4375 * unreachable. The following structure is used to access and modify an
4376 * address's parameters:
4377 *
4378 * struct sctp_paddrparams {
4379 * sctp_assoc_t spp_assoc_id;
4380 * struct sockaddr_storage spp_address;
4381 * uint32_t spp_hbinterval;
4382 * uint16_t spp_pathmaxrxt;
4383 * uint32_t spp_pathmtu;
4384 * uint32_t spp_sackdelay;
4385 * uint32_t spp_flags;
4386 * };
4387 *
4388 * spp_assoc_id - (one-to-many style socket) This is filled in the
4389 * application, and identifies the association for
4390 * this query.
4391 * spp_address - This specifies which address is of interest.
4392 * spp_hbinterval - This contains the value of the heartbeat interval,
4393 * in milliseconds. If a value of zero
4394 * is present in this field then no changes are to
4395 * be made to this parameter.
4396 * spp_pathmaxrxt - This contains the maximum number of
4397 * retransmissions before this address shall be
4398 * considered unreachable. If a value of zero
4399 * is present in this field then no changes are to
4400 * be made to this parameter.
4401 * spp_pathmtu - When Path MTU discovery is disabled the value
4402 * specified here will be the "fixed" path mtu.
4403 * Note that if the spp_address field is empty
4404 * then all associations on this address will
4405 * have this fixed path mtu set upon them.
4406 *
4407 * spp_sackdelay - When delayed sack is enabled, this value specifies
4408 * the number of milliseconds that sacks will be delayed
4409 * for. This value will apply to all addresses of an
4410 * association if the spp_address field is empty. Note
4411 * also, that if delayed sack is enabled and this
4412 * value is set to 0, no change is made to the last
4413 * recorded delayed sack timer value.
4414 *
4415 * spp_flags - These flags are used to control various features
4416 * on an association. The flag field may contain
4417 * zero or more of the following options.
4418 *
4419 * SPP_HB_ENABLE - Enable heartbeats on the
4420 * specified address. Note that if the address
4421 * field is empty all addresses for the association
4422 * have heartbeats enabled upon them.
4423 *
4424 * SPP_HB_DISABLE - Disable heartbeats on the
4425 * speicifed address. Note that if the address
4426 * field is empty all addresses for the association
4427 * will have their heartbeats disabled. Note also
4428 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4429 * mutually exclusive, only one of these two should
4430 * be specified. Enabling both fields will have
4431 * undetermined results.
4432 *
4433 * SPP_HB_DEMAND - Request a user initiated heartbeat
4434 * to be made immediately.
4435 *
4436 * SPP_PMTUD_ENABLE - This field will enable PMTU
4437 * discovery upon the specified address. Note that
4438 * if the address feild is empty then all addresses
4439 * on the association are effected.
4440 *
4441 * SPP_PMTUD_DISABLE - This field will disable PMTU
4442 * discovery upon the specified address. Note that
4443 * if the address feild is empty then all addresses
4444 * on the association are effected. Not also that
4445 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4446 * exclusive. Enabling both will have undetermined
4447 * results.
4448 *
4449 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4450 * on delayed sack. The time specified in spp_sackdelay
4451 * is used to specify the sack delay for this address. Note
4452 * that if spp_address is empty then all addresses will
4453 * enable delayed sack and take on the sack delay
4454 * value specified in spp_sackdelay.
4455 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4456 * off delayed sack. If the spp_address field is blank then
4457 * delayed sack is disabled for the entire association. Note
4458 * also that this field is mutually exclusive to
4459 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4460 * results.
4461 */
4462 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4463 char __user *optval, int __user *optlen)
4464 {
4465 struct sctp_paddrparams params;
4466 struct sctp_transport *trans = NULL;
4467 struct sctp_association *asoc = NULL;
4468 struct sctp_sock *sp = sctp_sk(sk);
4469
4470 if (len < sizeof(struct sctp_paddrparams))
4471 return -EINVAL;
4472 len = sizeof(struct sctp_paddrparams);
4473 if (copy_from_user(&params, optval, len))
4474 return -EFAULT;
4475
4476 /* If an address other than INADDR_ANY is specified, and
4477 * no transport is found, then the request is invalid.
4478 */
4479 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4480 trans = sctp_addr_id2transport(sk, &params.spp_address,
4481 params.spp_assoc_id);
4482 if (!trans) {
4483 pr_debug("%s: failed no transport\n", __func__);
4484 return -EINVAL;
4485 }
4486 }
4487
4488 /* Get association, if assoc_id != 0 and the socket is a one
4489 * to many style socket, and an association was not found, then
4490 * the id was invalid.
4491 */
4492 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4493 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4494 pr_debug("%s: failed no association\n", __func__);
4495 return -EINVAL;
4496 }
4497
4498 if (trans) {
4499 /* Fetch transport values. */
4500 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4501 params.spp_pathmtu = trans->pathmtu;
4502 params.spp_pathmaxrxt = trans->pathmaxrxt;
4503 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4504
4505 /*draft-11 doesn't say what to return in spp_flags*/
4506 params.spp_flags = trans->param_flags;
4507 } else if (asoc) {
4508 /* Fetch association values. */
4509 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4510 params.spp_pathmtu = asoc->pathmtu;
4511 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4512 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4513
4514 /*draft-11 doesn't say what to return in spp_flags*/
4515 params.spp_flags = asoc->param_flags;
4516 } else {
4517 /* Fetch socket values. */
4518 params.spp_hbinterval = sp->hbinterval;
4519 params.spp_pathmtu = sp->pathmtu;
4520 params.spp_sackdelay = sp->sackdelay;
4521 params.spp_pathmaxrxt = sp->pathmaxrxt;
4522
4523 /*draft-11 doesn't say what to return in spp_flags*/
4524 params.spp_flags = sp->param_flags;
4525 }
4526
4527 if (copy_to_user(optval, &params, len))
4528 return -EFAULT;
4529
4530 if (put_user(len, optlen))
4531 return -EFAULT;
4532
4533 return 0;
4534 }
4535
4536 /*
4537 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4538 *
4539 * This option will effect the way delayed acks are performed. This
4540 * option allows you to get or set the delayed ack time, in
4541 * milliseconds. It also allows changing the delayed ack frequency.
4542 * Changing the frequency to 1 disables the delayed sack algorithm. If
4543 * the assoc_id is 0, then this sets or gets the endpoints default
4544 * values. If the assoc_id field is non-zero, then the set or get
4545 * effects the specified association for the one to many model (the
4546 * assoc_id field is ignored by the one to one model). Note that if
4547 * sack_delay or sack_freq are 0 when setting this option, then the
4548 * current values will remain unchanged.
4549 *
4550 * struct sctp_sack_info {
4551 * sctp_assoc_t sack_assoc_id;
4552 * uint32_t sack_delay;
4553 * uint32_t sack_freq;
4554 * };
4555 *
4556 * sack_assoc_id - This parameter, indicates which association the user
4557 * is performing an action upon. Note that if this field's value is
4558 * zero then the endpoints default value is changed (effecting future
4559 * associations only).
4560 *
4561 * sack_delay - This parameter contains the number of milliseconds that
4562 * the user is requesting the delayed ACK timer be set to. Note that
4563 * this value is defined in the standard to be between 200 and 500
4564 * milliseconds.
4565 *
4566 * sack_freq - This parameter contains the number of packets that must
4567 * be received before a sack is sent without waiting for the delay
4568 * timer to expire. The default value for this is 2, setting this
4569 * value to 1 will disable the delayed sack algorithm.
4570 */
4571 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4572 char __user *optval,
4573 int __user *optlen)
4574 {
4575 struct sctp_sack_info params;
4576 struct sctp_association *asoc = NULL;
4577 struct sctp_sock *sp = sctp_sk(sk);
4578
4579 if (len >= sizeof(struct sctp_sack_info)) {
4580 len = sizeof(struct sctp_sack_info);
4581
4582 if (copy_from_user(&params, optval, len))
4583 return -EFAULT;
4584 } else if (len == sizeof(struct sctp_assoc_value)) {
4585 pr_warn_ratelimited(DEPRECATED
4586 "%s (pid %d) "
4587 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4588 "Use struct sctp_sack_info instead\n",
4589 current->comm, task_pid_nr(current));
4590 if (copy_from_user(&params, optval, len))
4591 return -EFAULT;
4592 } else
4593 return -EINVAL;
4594
4595 /* Get association, if sack_assoc_id != 0 and the socket is a one
4596 * to many style socket, and an association was not found, then
4597 * the id was invalid.
4598 */
4599 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4600 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4601 return -EINVAL;
4602
4603 if (asoc) {
4604 /* Fetch association values. */
4605 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4606 params.sack_delay = jiffies_to_msecs(
4607 asoc->sackdelay);
4608 params.sack_freq = asoc->sackfreq;
4609
4610 } else {
4611 params.sack_delay = 0;
4612 params.sack_freq = 1;
4613 }
4614 } else {
4615 /* Fetch socket values. */
4616 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4617 params.sack_delay = sp->sackdelay;
4618 params.sack_freq = sp->sackfreq;
4619 } else {
4620 params.sack_delay = 0;
4621 params.sack_freq = 1;
4622 }
4623 }
4624
4625 if (copy_to_user(optval, &params, len))
4626 return -EFAULT;
4627
4628 if (put_user(len, optlen))
4629 return -EFAULT;
4630
4631 return 0;
4632 }
4633
4634 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4635 *
4636 * Applications can specify protocol parameters for the default association
4637 * initialization. The option name argument to setsockopt() and getsockopt()
4638 * is SCTP_INITMSG.
4639 *
4640 * Setting initialization parameters is effective only on an unconnected
4641 * socket (for UDP-style sockets only future associations are effected
4642 * by the change). With TCP-style sockets, this option is inherited by
4643 * sockets derived from a listener socket.
4644 */
4645 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4646 {
4647 if (len < sizeof(struct sctp_initmsg))
4648 return -EINVAL;
4649 len = sizeof(struct sctp_initmsg);
4650 if (put_user(len, optlen))
4651 return -EFAULT;
4652 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4653 return -EFAULT;
4654 return 0;
4655 }
4656
4657
4658 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4659 char __user *optval, int __user *optlen)
4660 {
4661 struct sctp_association *asoc;
4662 int cnt = 0;
4663 struct sctp_getaddrs getaddrs;
4664 struct sctp_transport *from;
4665 void __user *to;
4666 union sctp_addr temp;
4667 struct sctp_sock *sp = sctp_sk(sk);
4668 int addrlen;
4669 size_t space_left;
4670 int bytes_copied;
4671
4672 if (len < sizeof(struct sctp_getaddrs))
4673 return -EINVAL;
4674
4675 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4676 return -EFAULT;
4677
4678 /* For UDP-style sockets, id specifies the association to query. */
4679 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4680 if (!asoc)
4681 return -EINVAL;
4682
4683 to = optval + offsetof(struct sctp_getaddrs, addrs);
4684 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4685
4686 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4687 transports) {
4688 memcpy(&temp, &from->ipaddr, sizeof(temp));
4689 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4690 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4691 if (space_left < addrlen)
4692 return -ENOMEM;
4693 if (copy_to_user(to, &temp, addrlen))
4694 return -EFAULT;
4695 to += addrlen;
4696 cnt++;
4697 space_left -= addrlen;
4698 }
4699
4700 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4701 return -EFAULT;
4702 bytes_copied = ((char __user *)to) - optval;
4703 if (put_user(bytes_copied, optlen))
4704 return -EFAULT;
4705
4706 return 0;
4707 }
4708
4709 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4710 size_t space_left, int *bytes_copied)
4711 {
4712 struct sctp_sockaddr_entry *addr;
4713 union sctp_addr temp;
4714 int cnt = 0;
4715 int addrlen;
4716 struct net *net = sock_net(sk);
4717
4718 rcu_read_lock();
4719 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4720 if (!addr->valid)
4721 continue;
4722
4723 if ((PF_INET == sk->sk_family) &&
4724 (AF_INET6 == addr->a.sa.sa_family))
4725 continue;
4726 if ((PF_INET6 == sk->sk_family) &&
4727 inet_v6_ipv6only(sk) &&
4728 (AF_INET == addr->a.sa.sa_family))
4729 continue;
4730 memcpy(&temp, &addr->a, sizeof(temp));
4731 if (!temp.v4.sin_port)
4732 temp.v4.sin_port = htons(port);
4733
4734 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4735 &temp);
4736 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4737 if (space_left < addrlen) {
4738 cnt = -ENOMEM;
4739 break;
4740 }
4741 memcpy(to, &temp, addrlen);
4742
4743 to += addrlen;
4744 cnt++;
4745 space_left -= addrlen;
4746 *bytes_copied += addrlen;
4747 }
4748 rcu_read_unlock();
4749
4750 return cnt;
4751 }
4752
4753
4754 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4755 char __user *optval, int __user *optlen)
4756 {
4757 struct sctp_bind_addr *bp;
4758 struct sctp_association *asoc;
4759 int cnt = 0;
4760 struct sctp_getaddrs getaddrs;
4761 struct sctp_sockaddr_entry *addr;
4762 void __user *to;
4763 union sctp_addr temp;
4764 struct sctp_sock *sp = sctp_sk(sk);
4765 int addrlen;
4766 int err = 0;
4767 size_t space_left;
4768 int bytes_copied = 0;
4769 void *addrs;
4770 void *buf;
4771
4772 if (len < sizeof(struct sctp_getaddrs))
4773 return -EINVAL;
4774
4775 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4776 return -EFAULT;
4777
4778 /*
4779 * For UDP-style sockets, id specifies the association to query.
4780 * If the id field is set to the value '0' then the locally bound
4781 * addresses are returned without regard to any particular
4782 * association.
4783 */
4784 if (0 == getaddrs.assoc_id) {
4785 bp = &sctp_sk(sk)->ep->base.bind_addr;
4786 } else {
4787 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4788 if (!asoc)
4789 return -EINVAL;
4790 bp = &asoc->base.bind_addr;
4791 }
4792
4793 to = optval + offsetof(struct sctp_getaddrs, addrs);
4794 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4795
4796 addrs = kmalloc(space_left, GFP_KERNEL);
4797 if (!addrs)
4798 return -ENOMEM;
4799
4800 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4801 * addresses from the global local address list.
4802 */
4803 if (sctp_list_single_entry(&bp->address_list)) {
4804 addr = list_entry(bp->address_list.next,
4805 struct sctp_sockaddr_entry, list);
4806 if (sctp_is_any(sk, &addr->a)) {
4807 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4808 space_left, &bytes_copied);
4809 if (cnt < 0) {
4810 err = cnt;
4811 goto out;
4812 }
4813 goto copy_getaddrs;
4814 }
4815 }
4816
4817 buf = addrs;
4818 /* Protection on the bound address list is not needed since
4819 * in the socket option context we hold a socket lock and
4820 * thus the bound address list can't change.
4821 */
4822 list_for_each_entry(addr, &bp->address_list, list) {
4823 memcpy(&temp, &addr->a, sizeof(temp));
4824 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4825 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4826 if (space_left < addrlen) {
4827 err = -ENOMEM; /*fixme: right error?*/
4828 goto out;
4829 }
4830 memcpy(buf, &temp, addrlen);
4831 buf += addrlen;
4832 bytes_copied += addrlen;
4833 cnt++;
4834 space_left -= addrlen;
4835 }
4836
4837 copy_getaddrs:
4838 if (copy_to_user(to, addrs, bytes_copied)) {
4839 err = -EFAULT;
4840 goto out;
4841 }
4842 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4843 err = -EFAULT;
4844 goto out;
4845 }
4846 if (put_user(bytes_copied, optlen))
4847 err = -EFAULT;
4848 out:
4849 kfree(addrs);
4850 return err;
4851 }
4852
4853 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4854 *
4855 * Requests that the local SCTP stack use the enclosed peer address as
4856 * the association primary. The enclosed address must be one of the
4857 * association peer's addresses.
4858 */
4859 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4860 char __user *optval, int __user *optlen)
4861 {
4862 struct sctp_prim prim;
4863 struct sctp_association *asoc;
4864 struct sctp_sock *sp = sctp_sk(sk);
4865
4866 if (len < sizeof(struct sctp_prim))
4867 return -EINVAL;
4868
4869 len = sizeof(struct sctp_prim);
4870
4871 if (copy_from_user(&prim, optval, len))
4872 return -EFAULT;
4873
4874 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4875 if (!asoc)
4876 return -EINVAL;
4877
4878 if (!asoc->peer.primary_path)
4879 return -ENOTCONN;
4880
4881 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4882 asoc->peer.primary_path->af_specific->sockaddr_len);
4883
4884 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4885 (union sctp_addr *)&prim.ssp_addr);
4886
4887 if (put_user(len, optlen))
4888 return -EFAULT;
4889 if (copy_to_user(optval, &prim, len))
4890 return -EFAULT;
4891
4892 return 0;
4893 }
4894
4895 /*
4896 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4897 *
4898 * Requests that the local endpoint set the specified Adaptation Layer
4899 * Indication parameter for all future INIT and INIT-ACK exchanges.
4900 */
4901 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4902 char __user *optval, int __user *optlen)
4903 {
4904 struct sctp_setadaptation adaptation;
4905
4906 if (len < sizeof(struct sctp_setadaptation))
4907 return -EINVAL;
4908
4909 len = sizeof(struct sctp_setadaptation);
4910
4911 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4912
4913 if (put_user(len, optlen))
4914 return -EFAULT;
4915 if (copy_to_user(optval, &adaptation, len))
4916 return -EFAULT;
4917
4918 return 0;
4919 }
4920
4921 /*
4922 *
4923 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4924 *
4925 * Applications that wish to use the sendto() system call may wish to
4926 * specify a default set of parameters that would normally be supplied
4927 * through the inclusion of ancillary data. This socket option allows
4928 * such an application to set the default sctp_sndrcvinfo structure.
4929
4930
4931 * The application that wishes to use this socket option simply passes
4932 * in to this call the sctp_sndrcvinfo structure defined in Section
4933 * 5.2.2) The input parameters accepted by this call include
4934 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4935 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4936 * to this call if the caller is using the UDP model.
4937 *
4938 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4939 */
4940 static int sctp_getsockopt_default_send_param(struct sock *sk,
4941 int len, char __user *optval,
4942 int __user *optlen)
4943 {
4944 struct sctp_sndrcvinfo info;
4945 struct sctp_association *asoc;
4946 struct sctp_sock *sp = sctp_sk(sk);
4947
4948 if (len < sizeof(struct sctp_sndrcvinfo))
4949 return -EINVAL;
4950
4951 len = sizeof(struct sctp_sndrcvinfo);
4952
4953 if (copy_from_user(&info, optval, len))
4954 return -EFAULT;
4955
4956 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4957 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4958 return -EINVAL;
4959
4960 if (asoc) {
4961 info.sinfo_stream = asoc->default_stream;
4962 info.sinfo_flags = asoc->default_flags;
4963 info.sinfo_ppid = asoc->default_ppid;
4964 info.sinfo_context = asoc->default_context;
4965 info.sinfo_timetolive = asoc->default_timetolive;
4966 } else {
4967 info.sinfo_stream = sp->default_stream;
4968 info.sinfo_flags = sp->default_flags;
4969 info.sinfo_ppid = sp->default_ppid;
4970 info.sinfo_context = sp->default_context;
4971 info.sinfo_timetolive = sp->default_timetolive;
4972 }
4973
4974 if (put_user(len, optlen))
4975 return -EFAULT;
4976 if (copy_to_user(optval, &info, len))
4977 return -EFAULT;
4978
4979 return 0;
4980 }
4981
4982 /*
4983 *
4984 * 7.1.5 SCTP_NODELAY
4985 *
4986 * Turn on/off any Nagle-like algorithm. This means that packets are
4987 * generally sent as soon as possible and no unnecessary delays are
4988 * introduced, at the cost of more packets in the network. Expects an
4989 * integer boolean flag.
4990 */
4991
4992 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4993 char __user *optval, int __user *optlen)
4994 {
4995 int val;
4996
4997 if (len < sizeof(int))
4998 return -EINVAL;
4999
5000 len = sizeof(int);
5001 val = (sctp_sk(sk)->nodelay == 1);
5002 if (put_user(len, optlen))
5003 return -EFAULT;
5004 if (copy_to_user(optval, &val, len))
5005 return -EFAULT;
5006 return 0;
5007 }
5008
5009 /*
5010 *
5011 * 7.1.1 SCTP_RTOINFO
5012 *
5013 * The protocol parameters used to initialize and bound retransmission
5014 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5015 * and modify these parameters.
5016 * All parameters are time values, in milliseconds. A value of 0, when
5017 * modifying the parameters, indicates that the current value should not
5018 * be changed.
5019 *
5020 */
5021 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5022 char __user *optval,
5023 int __user *optlen) {
5024 struct sctp_rtoinfo rtoinfo;
5025 struct sctp_association *asoc;
5026
5027 if (len < sizeof (struct sctp_rtoinfo))
5028 return -EINVAL;
5029
5030 len = sizeof(struct sctp_rtoinfo);
5031
5032 if (copy_from_user(&rtoinfo, optval, len))
5033 return -EFAULT;
5034
5035 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5036
5037 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5038 return -EINVAL;
5039
5040 /* Values corresponding to the specific association. */
5041 if (asoc) {
5042 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5043 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5044 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5045 } else {
5046 /* Values corresponding to the endpoint. */
5047 struct sctp_sock *sp = sctp_sk(sk);
5048
5049 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5050 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5051 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5052 }
5053
5054 if (put_user(len, optlen))
5055 return -EFAULT;
5056
5057 if (copy_to_user(optval, &rtoinfo, len))
5058 return -EFAULT;
5059
5060 return 0;
5061 }
5062
5063 /*
5064 *
5065 * 7.1.2 SCTP_ASSOCINFO
5066 *
5067 * This option is used to tune the maximum retransmission attempts
5068 * of the association.
5069 * Returns an error if the new association retransmission value is
5070 * greater than the sum of the retransmission value of the peer.
5071 * See [SCTP] for more information.
5072 *
5073 */
5074 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5075 char __user *optval,
5076 int __user *optlen)
5077 {
5078
5079 struct sctp_assocparams assocparams;
5080 struct sctp_association *asoc;
5081 struct list_head *pos;
5082 int cnt = 0;
5083
5084 if (len < sizeof (struct sctp_assocparams))
5085 return -EINVAL;
5086
5087 len = sizeof(struct sctp_assocparams);
5088
5089 if (copy_from_user(&assocparams, optval, len))
5090 return -EFAULT;
5091
5092 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5093
5094 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5095 return -EINVAL;
5096
5097 /* Values correspoinding to the specific association */
5098 if (asoc) {
5099 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5100 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5101 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5102 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5103
5104 list_for_each(pos, &asoc->peer.transport_addr_list) {
5105 cnt++;
5106 }
5107
5108 assocparams.sasoc_number_peer_destinations = cnt;
5109 } else {
5110 /* Values corresponding to the endpoint */
5111 struct sctp_sock *sp = sctp_sk(sk);
5112
5113 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5114 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5115 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5116 assocparams.sasoc_cookie_life =
5117 sp->assocparams.sasoc_cookie_life;
5118 assocparams.sasoc_number_peer_destinations =
5119 sp->assocparams.
5120 sasoc_number_peer_destinations;
5121 }
5122
5123 if (put_user(len, optlen))
5124 return -EFAULT;
5125
5126 if (copy_to_user(optval, &assocparams, len))
5127 return -EFAULT;
5128
5129 return 0;
5130 }
5131
5132 /*
5133 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5134 *
5135 * This socket option is a boolean flag which turns on or off mapped V4
5136 * addresses. If this option is turned on and the socket is type
5137 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5138 * If this option is turned off, then no mapping will be done of V4
5139 * addresses and a user will receive both PF_INET6 and PF_INET type
5140 * addresses on the socket.
5141 */
5142 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5143 char __user *optval, int __user *optlen)
5144 {
5145 int val;
5146 struct sctp_sock *sp = sctp_sk(sk);
5147
5148 if (len < sizeof(int))
5149 return -EINVAL;
5150
5151 len = sizeof(int);
5152 val = sp->v4mapped;
5153 if (put_user(len, optlen))
5154 return -EFAULT;
5155 if (copy_to_user(optval, &val, len))
5156 return -EFAULT;
5157
5158 return 0;
5159 }
5160
5161 /*
5162 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5163 * (chapter and verse is quoted at sctp_setsockopt_context())
5164 */
5165 static int sctp_getsockopt_context(struct sock *sk, int len,
5166 char __user *optval, int __user *optlen)
5167 {
5168 struct sctp_assoc_value params;
5169 struct sctp_sock *sp;
5170 struct sctp_association *asoc;
5171
5172 if (len < sizeof(struct sctp_assoc_value))
5173 return -EINVAL;
5174
5175 len = sizeof(struct sctp_assoc_value);
5176
5177 if (copy_from_user(&params, optval, len))
5178 return -EFAULT;
5179
5180 sp = sctp_sk(sk);
5181
5182 if (params.assoc_id != 0) {
5183 asoc = sctp_id2assoc(sk, params.assoc_id);
5184 if (!asoc)
5185 return -EINVAL;
5186 params.assoc_value = asoc->default_rcv_context;
5187 } else {
5188 params.assoc_value = sp->default_rcv_context;
5189 }
5190
5191 if (put_user(len, optlen))
5192 return -EFAULT;
5193 if (copy_to_user(optval, &params, len))
5194 return -EFAULT;
5195
5196 return 0;
5197 }
5198
5199 /*
5200 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5201 * This option will get or set the maximum size to put in any outgoing
5202 * SCTP DATA chunk. If a message is larger than this size it will be
5203 * fragmented by SCTP into the specified size. Note that the underlying
5204 * SCTP implementation may fragment into smaller sized chunks when the
5205 * PMTU of the underlying association is smaller than the value set by
5206 * the user. The default value for this option is '0' which indicates
5207 * the user is NOT limiting fragmentation and only the PMTU will effect
5208 * SCTP's choice of DATA chunk size. Note also that values set larger
5209 * than the maximum size of an IP datagram will effectively let SCTP
5210 * control fragmentation (i.e. the same as setting this option to 0).
5211 *
5212 * The following structure is used to access and modify this parameter:
5213 *
5214 * struct sctp_assoc_value {
5215 * sctp_assoc_t assoc_id;
5216 * uint32_t assoc_value;
5217 * };
5218 *
5219 * assoc_id: This parameter is ignored for one-to-one style sockets.
5220 * For one-to-many style sockets this parameter indicates which
5221 * association the user is performing an action upon. Note that if
5222 * this field's value is zero then the endpoints default value is
5223 * changed (effecting future associations only).
5224 * assoc_value: This parameter specifies the maximum size in bytes.
5225 */
5226 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5227 char __user *optval, int __user *optlen)
5228 {
5229 struct sctp_assoc_value params;
5230 struct sctp_association *asoc;
5231
5232 if (len == sizeof(int)) {
5233 pr_warn_ratelimited(DEPRECATED
5234 "%s (pid %d) "
5235 "Use of int in maxseg socket option.\n"
5236 "Use struct sctp_assoc_value instead\n",
5237 current->comm, task_pid_nr(current));
5238 params.assoc_id = 0;
5239 } else if (len >= sizeof(struct sctp_assoc_value)) {
5240 len = sizeof(struct sctp_assoc_value);
5241 if (copy_from_user(&params, optval, sizeof(params)))
5242 return -EFAULT;
5243 } else
5244 return -EINVAL;
5245
5246 asoc = sctp_id2assoc(sk, params.assoc_id);
5247 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5248 return -EINVAL;
5249
5250 if (asoc)
5251 params.assoc_value = asoc->frag_point;
5252 else
5253 params.assoc_value = sctp_sk(sk)->user_frag;
5254
5255 if (put_user(len, optlen))
5256 return -EFAULT;
5257 if (len == sizeof(int)) {
5258 if (copy_to_user(optval, &params.assoc_value, len))
5259 return -EFAULT;
5260 } else {
5261 if (copy_to_user(optval, &params, len))
5262 return -EFAULT;
5263 }
5264
5265 return 0;
5266 }
5267
5268 /*
5269 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5270 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5271 */
5272 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5273 char __user *optval, int __user *optlen)
5274 {
5275 int val;
5276
5277 if (len < sizeof(int))
5278 return -EINVAL;
5279
5280 len = sizeof(int);
5281
5282 val = sctp_sk(sk)->frag_interleave;
5283 if (put_user(len, optlen))
5284 return -EFAULT;
5285 if (copy_to_user(optval, &val, len))
5286 return -EFAULT;
5287
5288 return 0;
5289 }
5290
5291 /*
5292 * 7.1.25. Set or Get the sctp partial delivery point
5293 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5294 */
5295 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5296 char __user *optval,
5297 int __user *optlen)
5298 {
5299 u32 val;
5300
5301 if (len < sizeof(u32))
5302 return -EINVAL;
5303
5304 len = sizeof(u32);
5305
5306 val = sctp_sk(sk)->pd_point;
5307 if (put_user(len, optlen))
5308 return -EFAULT;
5309 if (copy_to_user(optval, &val, len))
5310 return -EFAULT;
5311
5312 return 0;
5313 }
5314
5315 /*
5316 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5317 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5318 */
5319 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5320 char __user *optval,
5321 int __user *optlen)
5322 {
5323 struct sctp_assoc_value params;
5324 struct sctp_sock *sp;
5325 struct sctp_association *asoc;
5326
5327 if (len == sizeof(int)) {
5328 pr_warn_ratelimited(DEPRECATED
5329 "%s (pid %d) "
5330 "Use of int in max_burst socket option.\n"
5331 "Use struct sctp_assoc_value instead\n",
5332 current->comm, task_pid_nr(current));
5333 params.assoc_id = 0;
5334 } else if (len >= sizeof(struct sctp_assoc_value)) {
5335 len = sizeof(struct sctp_assoc_value);
5336 if (copy_from_user(&params, optval, len))
5337 return -EFAULT;
5338 } else
5339 return -EINVAL;
5340
5341 sp = sctp_sk(sk);
5342
5343 if (params.assoc_id != 0) {
5344 asoc = sctp_id2assoc(sk, params.assoc_id);
5345 if (!asoc)
5346 return -EINVAL;
5347 params.assoc_value = asoc->max_burst;
5348 } else
5349 params.assoc_value = sp->max_burst;
5350
5351 if (len == sizeof(int)) {
5352 if (copy_to_user(optval, &params.assoc_value, len))
5353 return -EFAULT;
5354 } else {
5355 if (copy_to_user(optval, &params, len))
5356 return -EFAULT;
5357 }
5358
5359 return 0;
5360
5361 }
5362
5363 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5364 char __user *optval, int __user *optlen)
5365 {
5366 struct net *net = sock_net(sk);
5367 struct sctp_hmacalgo __user *p = (void __user *)optval;
5368 struct sctp_hmac_algo_param *hmacs;
5369 __u16 data_len = 0;
5370 u32 num_idents;
5371
5372 if (!net->sctp.auth_enable)
5373 return -EACCES;
5374
5375 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5376 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5377
5378 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5379 return -EINVAL;
5380
5381 len = sizeof(struct sctp_hmacalgo) + data_len;
5382 num_idents = data_len / sizeof(u16);
5383
5384 if (put_user(len, optlen))
5385 return -EFAULT;
5386 if (put_user(num_idents, &p->shmac_num_idents))
5387 return -EFAULT;
5388 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5389 return -EFAULT;
5390 return 0;
5391 }
5392
5393 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5394 char __user *optval, int __user *optlen)
5395 {
5396 struct net *net = sock_net(sk);
5397 struct sctp_authkeyid val;
5398 struct sctp_association *asoc;
5399
5400 if (!net->sctp.auth_enable)
5401 return -EACCES;
5402
5403 if (len < sizeof(struct sctp_authkeyid))
5404 return -EINVAL;
5405 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5406 return -EFAULT;
5407
5408 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5409 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5410 return -EINVAL;
5411
5412 if (asoc)
5413 val.scact_keynumber = asoc->active_key_id;
5414 else
5415 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5416
5417 len = sizeof(struct sctp_authkeyid);
5418 if (put_user(len, optlen))
5419 return -EFAULT;
5420 if (copy_to_user(optval, &val, len))
5421 return -EFAULT;
5422
5423 return 0;
5424 }
5425
5426 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5427 char __user *optval, int __user *optlen)
5428 {
5429 struct net *net = sock_net(sk);
5430 struct sctp_authchunks __user *p = (void __user *)optval;
5431 struct sctp_authchunks val;
5432 struct sctp_association *asoc;
5433 struct sctp_chunks_param *ch;
5434 u32 num_chunks = 0;
5435 char __user *to;
5436
5437 if (!net->sctp.auth_enable)
5438 return -EACCES;
5439
5440 if (len < sizeof(struct sctp_authchunks))
5441 return -EINVAL;
5442
5443 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5444 return -EFAULT;
5445
5446 to = p->gauth_chunks;
5447 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5448 if (!asoc)
5449 return -EINVAL;
5450
5451 ch = asoc->peer.peer_chunks;
5452 if (!ch)
5453 goto num;
5454
5455 /* See if the user provided enough room for all the data */
5456 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5457 if (len < num_chunks)
5458 return -EINVAL;
5459
5460 if (copy_to_user(to, ch->chunks, num_chunks))
5461 return -EFAULT;
5462 num:
5463 len = sizeof(struct sctp_authchunks) + num_chunks;
5464 if (put_user(len, optlen))
5465 return -EFAULT;
5466 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5467 return -EFAULT;
5468 return 0;
5469 }
5470
5471 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5472 char __user *optval, int __user *optlen)
5473 {
5474 struct net *net = sock_net(sk);
5475 struct sctp_authchunks __user *p = (void __user *)optval;
5476 struct sctp_authchunks val;
5477 struct sctp_association *asoc;
5478 struct sctp_chunks_param *ch;
5479 u32 num_chunks = 0;
5480 char __user *to;
5481
5482 if (!net->sctp.auth_enable)
5483 return -EACCES;
5484
5485 if (len < sizeof(struct sctp_authchunks))
5486 return -EINVAL;
5487
5488 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5489 return -EFAULT;
5490
5491 to = p->gauth_chunks;
5492 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5493 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5494 return -EINVAL;
5495
5496 if (asoc)
5497 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5498 else
5499 ch = sctp_sk(sk)->ep->auth_chunk_list;
5500
5501 if (!ch)
5502 goto num;
5503
5504 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5505 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5506 return -EINVAL;
5507
5508 if (copy_to_user(to, ch->chunks, num_chunks))
5509 return -EFAULT;
5510 num:
5511 len = sizeof(struct sctp_authchunks) + num_chunks;
5512 if (put_user(len, optlen))
5513 return -EFAULT;
5514 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5515 return -EFAULT;
5516
5517 return 0;
5518 }
5519
5520 /*
5521 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5522 * This option gets the current number of associations that are attached
5523 * to a one-to-many style socket. The option value is an uint32_t.
5524 */
5525 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5526 char __user *optval, int __user *optlen)
5527 {
5528 struct sctp_sock *sp = sctp_sk(sk);
5529 struct sctp_association *asoc;
5530 u32 val = 0;
5531
5532 if (sctp_style(sk, TCP))
5533 return -EOPNOTSUPP;
5534
5535 if (len < sizeof(u32))
5536 return -EINVAL;
5537
5538 len = sizeof(u32);
5539
5540 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5541 val++;
5542 }
5543
5544 if (put_user(len, optlen))
5545 return -EFAULT;
5546 if (copy_to_user(optval, &val, len))
5547 return -EFAULT;
5548
5549 return 0;
5550 }
5551
5552 /*
5553 * 8.1.23 SCTP_AUTO_ASCONF
5554 * See the corresponding setsockopt entry as description
5555 */
5556 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5557 char __user *optval, int __user *optlen)
5558 {
5559 int val = 0;
5560
5561 if (len < sizeof(int))
5562 return -EINVAL;
5563
5564 len = sizeof(int);
5565 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5566 val = 1;
5567 if (put_user(len, optlen))
5568 return -EFAULT;
5569 if (copy_to_user(optval, &val, len))
5570 return -EFAULT;
5571 return 0;
5572 }
5573
5574 /*
5575 * 8.2.6. Get the Current Identifiers of Associations
5576 * (SCTP_GET_ASSOC_ID_LIST)
5577 *
5578 * This option gets the current list of SCTP association identifiers of
5579 * the SCTP associations handled by a one-to-many style socket.
5580 */
5581 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5582 char __user *optval, int __user *optlen)
5583 {
5584 struct sctp_sock *sp = sctp_sk(sk);
5585 struct sctp_association *asoc;
5586 struct sctp_assoc_ids *ids;
5587 u32 num = 0;
5588
5589 if (sctp_style(sk, TCP))
5590 return -EOPNOTSUPP;
5591
5592 if (len < sizeof(struct sctp_assoc_ids))
5593 return -EINVAL;
5594
5595 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5596 num++;
5597 }
5598
5599 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5600 return -EINVAL;
5601
5602 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5603
5604 ids = kmalloc(len, GFP_KERNEL);
5605 if (unlikely(!ids))
5606 return -ENOMEM;
5607
5608 ids->gaids_number_of_ids = num;
5609 num = 0;
5610 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5611 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5612 }
5613
5614 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5615 kfree(ids);
5616 return -EFAULT;
5617 }
5618
5619 kfree(ids);
5620 return 0;
5621 }
5622
5623 /*
5624 * SCTP_PEER_ADDR_THLDS
5625 *
5626 * This option allows us to fetch the partially failed threshold for one or all
5627 * transports in an association. See Section 6.1 of:
5628 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5629 */
5630 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5631 char __user *optval,
5632 int len,
5633 int __user *optlen)
5634 {
5635 struct sctp_paddrthlds val;
5636 struct sctp_transport *trans;
5637 struct sctp_association *asoc;
5638
5639 if (len < sizeof(struct sctp_paddrthlds))
5640 return -EINVAL;
5641 len = sizeof(struct sctp_paddrthlds);
5642 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5643 return -EFAULT;
5644
5645 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5646 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5647 if (!asoc)
5648 return -ENOENT;
5649
5650 val.spt_pathpfthld = asoc->pf_retrans;
5651 val.spt_pathmaxrxt = asoc->pathmaxrxt;
5652 } else {
5653 trans = sctp_addr_id2transport(sk, &val.spt_address,
5654 val.spt_assoc_id);
5655 if (!trans)
5656 return -ENOENT;
5657
5658 val.spt_pathmaxrxt = trans->pathmaxrxt;
5659 val.spt_pathpfthld = trans->pf_retrans;
5660 }
5661
5662 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5663 return -EFAULT;
5664
5665 return 0;
5666 }
5667
5668 /*
5669 * SCTP_GET_ASSOC_STATS
5670 *
5671 * This option retrieves local per endpoint statistics. It is modeled
5672 * after OpenSolaris' implementation
5673 */
5674 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5675 char __user *optval,
5676 int __user *optlen)
5677 {
5678 struct sctp_assoc_stats sas;
5679 struct sctp_association *asoc = NULL;
5680
5681 /* User must provide at least the assoc id */
5682 if (len < sizeof(sctp_assoc_t))
5683 return -EINVAL;
5684
5685 /* Allow the struct to grow and fill in as much as possible */
5686 len = min_t(size_t, len, sizeof(sas));
5687
5688 if (copy_from_user(&sas, optval, len))
5689 return -EFAULT;
5690
5691 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5692 if (!asoc)
5693 return -EINVAL;
5694
5695 sas.sas_rtxchunks = asoc->stats.rtxchunks;
5696 sas.sas_gapcnt = asoc->stats.gapcnt;
5697 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5698 sas.sas_osacks = asoc->stats.osacks;
5699 sas.sas_isacks = asoc->stats.isacks;
5700 sas.sas_octrlchunks = asoc->stats.octrlchunks;
5701 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5702 sas.sas_oodchunks = asoc->stats.oodchunks;
5703 sas.sas_iodchunks = asoc->stats.iodchunks;
5704 sas.sas_ouodchunks = asoc->stats.ouodchunks;
5705 sas.sas_iuodchunks = asoc->stats.iuodchunks;
5706 sas.sas_idupchunks = asoc->stats.idupchunks;
5707 sas.sas_opackets = asoc->stats.opackets;
5708 sas.sas_ipackets = asoc->stats.ipackets;
5709
5710 /* New high max rto observed, will return 0 if not a single
5711 * RTO update took place. obs_rto_ipaddr will be bogus
5712 * in such a case
5713 */
5714 sas.sas_maxrto = asoc->stats.max_obs_rto;
5715 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5716 sizeof(struct sockaddr_storage));
5717
5718 /* Mark beginning of a new observation period */
5719 asoc->stats.max_obs_rto = asoc->rto_min;
5720
5721 if (put_user(len, optlen))
5722 return -EFAULT;
5723
5724 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5725
5726 if (copy_to_user(optval, &sas, len))
5727 return -EFAULT;
5728
5729 return 0;
5730 }
5731
5732 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5733 char __user *optval, int __user *optlen)
5734 {
5735 int retval = 0;
5736 int len;
5737
5738 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5739
5740 /* I can hardly begin to describe how wrong this is. This is
5741 * so broken as to be worse than useless. The API draft
5742 * REALLY is NOT helpful here... I am not convinced that the
5743 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5744 * are at all well-founded.
5745 */
5746 if (level != SOL_SCTP) {
5747 struct sctp_af *af = sctp_sk(sk)->pf->af;
5748
5749 retval = af->getsockopt(sk, level, optname, optval, optlen);
5750 return retval;
5751 }
5752
5753 if (get_user(len, optlen))
5754 return -EFAULT;
5755
5756 sctp_lock_sock(sk);
5757
5758 switch (optname) {
5759 case SCTP_STATUS:
5760 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5761 break;
5762 case SCTP_DISABLE_FRAGMENTS:
5763 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5764 optlen);
5765 break;
5766 case SCTP_EVENTS:
5767 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5768 break;
5769 case SCTP_AUTOCLOSE:
5770 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5771 break;
5772 case SCTP_SOCKOPT_PEELOFF:
5773 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5774 break;
5775 case SCTP_PEER_ADDR_PARAMS:
5776 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5777 optlen);
5778 break;
5779 case SCTP_DELAYED_SACK:
5780 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5781 optlen);
5782 break;
5783 case SCTP_INITMSG:
5784 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5785 break;
5786 case SCTP_GET_PEER_ADDRS:
5787 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5788 optlen);
5789 break;
5790 case SCTP_GET_LOCAL_ADDRS:
5791 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5792 optlen);
5793 break;
5794 case SCTP_SOCKOPT_CONNECTX3:
5795 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5796 break;
5797 case SCTP_DEFAULT_SEND_PARAM:
5798 retval = sctp_getsockopt_default_send_param(sk, len,
5799 optval, optlen);
5800 break;
5801 case SCTP_PRIMARY_ADDR:
5802 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5803 break;
5804 case SCTP_NODELAY:
5805 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5806 break;
5807 case SCTP_RTOINFO:
5808 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5809 break;
5810 case SCTP_ASSOCINFO:
5811 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5812 break;
5813 case SCTP_I_WANT_MAPPED_V4_ADDR:
5814 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5815 break;
5816 case SCTP_MAXSEG:
5817 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5818 break;
5819 case SCTP_GET_PEER_ADDR_INFO:
5820 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5821 optlen);
5822 break;
5823 case SCTP_ADAPTATION_LAYER:
5824 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5825 optlen);
5826 break;
5827 case SCTP_CONTEXT:
5828 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5829 break;
5830 case SCTP_FRAGMENT_INTERLEAVE:
5831 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5832 optlen);
5833 break;
5834 case SCTP_PARTIAL_DELIVERY_POINT:
5835 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5836 optlen);
5837 break;
5838 case SCTP_MAX_BURST:
5839 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5840 break;
5841 case SCTP_AUTH_KEY:
5842 case SCTP_AUTH_CHUNK:
5843 case SCTP_AUTH_DELETE_KEY:
5844 retval = -EOPNOTSUPP;
5845 break;
5846 case SCTP_HMAC_IDENT:
5847 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5848 break;
5849 case SCTP_AUTH_ACTIVE_KEY:
5850 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5851 break;
5852 case SCTP_PEER_AUTH_CHUNKS:
5853 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5854 optlen);
5855 break;
5856 case SCTP_LOCAL_AUTH_CHUNKS:
5857 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5858 optlen);
5859 break;
5860 case SCTP_GET_ASSOC_NUMBER:
5861 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5862 break;
5863 case SCTP_GET_ASSOC_ID_LIST:
5864 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5865 break;
5866 case SCTP_AUTO_ASCONF:
5867 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5868 break;
5869 case SCTP_PEER_ADDR_THLDS:
5870 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5871 break;
5872 case SCTP_GET_ASSOC_STATS:
5873 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5874 break;
5875 default:
5876 retval = -ENOPROTOOPT;
5877 break;
5878 }
5879
5880 sctp_release_sock(sk);
5881 return retval;
5882 }
5883
5884 static void sctp_hash(struct sock *sk)
5885 {
5886 /* STUB */
5887 }
5888
5889 static void sctp_unhash(struct sock *sk)
5890 {
5891 /* STUB */
5892 }
5893
5894 /* Check if port is acceptable. Possibly find first available port.
5895 *
5896 * The port hash table (contained in the 'global' SCTP protocol storage
5897 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5898 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5899 * list (the list number is the port number hashed out, so as you
5900 * would expect from a hash function, all the ports in a given list have
5901 * such a number that hashes out to the same list number; you were
5902 * expecting that, right?); so each list has a set of ports, with a
5903 * link to the socket (struct sock) that uses it, the port number and
5904 * a fastreuse flag (FIXME: NPI ipg).
5905 */
5906 static struct sctp_bind_bucket *sctp_bucket_create(
5907 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5908
5909 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5910 {
5911 struct sctp_bind_hashbucket *head; /* hash list */
5912 struct sctp_bind_bucket *pp;
5913 unsigned short snum;
5914 int ret;
5915
5916 snum = ntohs(addr->v4.sin_port);
5917
5918 pr_debug("%s: begins, snum:%d\n", __func__, snum);
5919
5920 sctp_local_bh_disable();
5921
5922 if (snum == 0) {
5923 /* Search for an available port. */
5924 int low, high, remaining, index;
5925 unsigned int rover;
5926
5927 inet_get_local_port_range(sock_net(sk), &low, &high);
5928 remaining = (high - low) + 1;
5929 rover = net_random() % remaining + low;
5930
5931 do {
5932 rover++;
5933 if ((rover < low) || (rover > high))
5934 rover = low;
5935 if (inet_is_reserved_local_port(rover))
5936 continue;
5937 index = sctp_phashfn(sock_net(sk), rover);
5938 head = &sctp_port_hashtable[index];
5939 sctp_spin_lock(&head->lock);
5940 sctp_for_each_hentry(pp, &head->chain)
5941 if ((pp->port == rover) &&
5942 net_eq(sock_net(sk), pp->net))
5943 goto next;
5944 break;
5945 next:
5946 sctp_spin_unlock(&head->lock);
5947 } while (--remaining > 0);
5948
5949 /* Exhausted local port range during search? */
5950 ret = 1;
5951 if (remaining <= 0)
5952 goto fail;
5953
5954 /* OK, here is the one we will use. HEAD (the port
5955 * hash table list entry) is non-NULL and we hold it's
5956 * mutex.
5957 */
5958 snum = rover;
5959 } else {
5960 /* We are given an specific port number; we verify
5961 * that it is not being used. If it is used, we will
5962 * exahust the search in the hash list corresponding
5963 * to the port number (snum) - we detect that with the
5964 * port iterator, pp being NULL.
5965 */
5966 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5967 sctp_spin_lock(&head->lock);
5968 sctp_for_each_hentry(pp, &head->chain) {
5969 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5970 goto pp_found;
5971 }
5972 }
5973 pp = NULL;
5974 goto pp_not_found;
5975 pp_found:
5976 if (!hlist_empty(&pp->owner)) {
5977 /* We had a port hash table hit - there is an
5978 * available port (pp != NULL) and it is being
5979 * used by other socket (pp->owner not empty); that other
5980 * socket is going to be sk2.
5981 */
5982 int reuse = sk->sk_reuse;
5983 struct sock *sk2;
5984
5985 pr_debug("%s: found a possible match\n", __func__);
5986
5987 if (pp->fastreuse && sk->sk_reuse &&
5988 sk->sk_state != SCTP_SS_LISTENING)
5989 goto success;
5990
5991 /* Run through the list of sockets bound to the port
5992 * (pp->port) [via the pointers bind_next and
5993 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5994 * we get the endpoint they describe and run through
5995 * the endpoint's list of IP (v4 or v6) addresses,
5996 * comparing each of the addresses with the address of
5997 * the socket sk. If we find a match, then that means
5998 * that this port/socket (sk) combination are already
5999 * in an endpoint.
6000 */
6001 sk_for_each_bound(sk2, &pp->owner) {
6002 struct sctp_endpoint *ep2;
6003 ep2 = sctp_sk(sk2)->ep;
6004
6005 if (sk == sk2 ||
6006 (reuse && sk2->sk_reuse &&
6007 sk2->sk_state != SCTP_SS_LISTENING))
6008 continue;
6009
6010 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6011 sctp_sk(sk2), sctp_sk(sk))) {
6012 ret = (long)sk2;
6013 goto fail_unlock;
6014 }
6015 }
6016
6017 pr_debug("%s: found a match\n", __func__);
6018 }
6019 pp_not_found:
6020 /* If there was a hash table miss, create a new port. */
6021 ret = 1;
6022 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6023 goto fail_unlock;
6024
6025 /* In either case (hit or miss), make sure fastreuse is 1 only
6026 * if sk->sk_reuse is too (that is, if the caller requested
6027 * SO_REUSEADDR on this socket -sk-).
6028 */
6029 if (hlist_empty(&pp->owner)) {
6030 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6031 pp->fastreuse = 1;
6032 else
6033 pp->fastreuse = 0;
6034 } else if (pp->fastreuse &&
6035 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6036 pp->fastreuse = 0;
6037
6038 /* We are set, so fill up all the data in the hash table
6039 * entry, tie the socket list information with the rest of the
6040 * sockets FIXME: Blurry, NPI (ipg).
6041 */
6042 success:
6043 if (!sctp_sk(sk)->bind_hash) {
6044 inet_sk(sk)->inet_num = snum;
6045 sk_add_bind_node(sk, &pp->owner);
6046 sctp_sk(sk)->bind_hash = pp;
6047 }
6048 ret = 0;
6049
6050 fail_unlock:
6051 sctp_spin_unlock(&head->lock);
6052
6053 fail:
6054 sctp_local_bh_enable();
6055 return ret;
6056 }
6057
6058 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6059 * port is requested.
6060 */
6061 static int sctp_get_port(struct sock *sk, unsigned short snum)
6062 {
6063 union sctp_addr addr;
6064 struct sctp_af *af = sctp_sk(sk)->pf->af;
6065
6066 /* Set up a dummy address struct from the sk. */
6067 af->from_sk(&addr, sk);
6068 addr.v4.sin_port = htons(snum);
6069
6070 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6071 return !!sctp_get_port_local(sk, &addr);
6072 }
6073
6074 /*
6075 * Move a socket to LISTENING state.
6076 */
6077 static int sctp_listen_start(struct sock *sk, int backlog)
6078 {
6079 struct sctp_sock *sp = sctp_sk(sk);
6080 struct sctp_endpoint *ep = sp->ep;
6081 struct crypto_hash *tfm = NULL;
6082 char alg[32];
6083
6084 /* Allocate HMAC for generating cookie. */
6085 if (!sp->hmac && sp->sctp_hmac_alg) {
6086 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6087 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6088 if (IS_ERR(tfm)) {
6089 net_info_ratelimited("failed to load transform for %s: %ld\n",
6090 sp->sctp_hmac_alg, PTR_ERR(tfm));
6091 return -ENOSYS;
6092 }
6093 sctp_sk(sk)->hmac = tfm;
6094 }
6095
6096 /*
6097 * If a bind() or sctp_bindx() is not called prior to a listen()
6098 * call that allows new associations to be accepted, the system
6099 * picks an ephemeral port and will choose an address set equivalent
6100 * to binding with a wildcard address.
6101 *
6102 * This is not currently spelled out in the SCTP sockets
6103 * extensions draft, but follows the practice as seen in TCP
6104 * sockets.
6105 *
6106 */
6107 sk->sk_state = SCTP_SS_LISTENING;
6108 if (!ep->base.bind_addr.port) {
6109 if (sctp_autobind(sk))
6110 return -EAGAIN;
6111 } else {
6112 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6113 sk->sk_state = SCTP_SS_CLOSED;
6114 return -EADDRINUSE;
6115 }
6116 }
6117
6118 sk->sk_max_ack_backlog = backlog;
6119 sctp_hash_endpoint(ep);
6120 return 0;
6121 }
6122
6123 /*
6124 * 4.1.3 / 5.1.3 listen()
6125 *
6126 * By default, new associations are not accepted for UDP style sockets.
6127 * An application uses listen() to mark a socket as being able to
6128 * accept new associations.
6129 *
6130 * On TCP style sockets, applications use listen() to ready the SCTP
6131 * endpoint for accepting inbound associations.
6132 *
6133 * On both types of endpoints a backlog of '0' disables listening.
6134 *
6135 * Move a socket to LISTENING state.
6136 */
6137 int sctp_inet_listen(struct socket *sock, int backlog)
6138 {
6139 struct sock *sk = sock->sk;
6140 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6141 int err = -EINVAL;
6142
6143 if (unlikely(backlog < 0))
6144 return err;
6145
6146 sctp_lock_sock(sk);
6147
6148 /* Peeled-off sockets are not allowed to listen(). */
6149 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6150 goto out;
6151
6152 if (sock->state != SS_UNCONNECTED)
6153 goto out;
6154
6155 /* If backlog is zero, disable listening. */
6156 if (!backlog) {
6157 if (sctp_sstate(sk, CLOSED))
6158 goto out;
6159
6160 err = 0;
6161 sctp_unhash_endpoint(ep);
6162 sk->sk_state = SCTP_SS_CLOSED;
6163 if (sk->sk_reuse)
6164 sctp_sk(sk)->bind_hash->fastreuse = 1;
6165 goto out;
6166 }
6167
6168 /* If we are already listening, just update the backlog */
6169 if (sctp_sstate(sk, LISTENING))
6170 sk->sk_max_ack_backlog = backlog;
6171 else {
6172 err = sctp_listen_start(sk, backlog);
6173 if (err)
6174 goto out;
6175 }
6176
6177 err = 0;
6178 out:
6179 sctp_release_sock(sk);
6180 return err;
6181 }
6182
6183 /*
6184 * This function is done by modeling the current datagram_poll() and the
6185 * tcp_poll(). Note that, based on these implementations, we don't
6186 * lock the socket in this function, even though it seems that,
6187 * ideally, locking or some other mechanisms can be used to ensure
6188 * the integrity of the counters (sndbuf and wmem_alloc) used
6189 * in this place. We assume that we don't need locks either until proven
6190 * otherwise.
6191 *
6192 * Another thing to note is that we include the Async I/O support
6193 * here, again, by modeling the current TCP/UDP code. We don't have
6194 * a good way to test with it yet.
6195 */
6196 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6197 {
6198 struct sock *sk = sock->sk;
6199 struct sctp_sock *sp = sctp_sk(sk);
6200 unsigned int mask;
6201
6202 poll_wait(file, sk_sleep(sk), wait);
6203
6204 /* A TCP-style listening socket becomes readable when the accept queue
6205 * is not empty.
6206 */
6207 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6208 return (!list_empty(&sp->ep->asocs)) ?
6209 (POLLIN | POLLRDNORM) : 0;
6210
6211 mask = 0;
6212
6213 /* Is there any exceptional events? */
6214 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6215 mask |= POLLERR |
6216 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6217 if (sk->sk_shutdown & RCV_SHUTDOWN)
6218 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6219 if (sk->sk_shutdown == SHUTDOWN_MASK)
6220 mask |= POLLHUP;
6221
6222 /* Is it readable? Reconsider this code with TCP-style support. */
6223 if (!skb_queue_empty(&sk->sk_receive_queue))
6224 mask |= POLLIN | POLLRDNORM;
6225
6226 /* The association is either gone or not ready. */
6227 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6228 return mask;
6229
6230 /* Is it writable? */
6231 if (sctp_writeable(sk)) {
6232 mask |= POLLOUT | POLLWRNORM;
6233 } else {
6234 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6235 /*
6236 * Since the socket is not locked, the buffer
6237 * might be made available after the writeable check and
6238 * before the bit is set. This could cause a lost I/O
6239 * signal. tcp_poll() has a race breaker for this race
6240 * condition. Based on their implementation, we put
6241 * in the following code to cover it as well.
6242 */
6243 if (sctp_writeable(sk))
6244 mask |= POLLOUT | POLLWRNORM;
6245 }
6246 return mask;
6247 }
6248
6249 /********************************************************************
6250 * 2nd Level Abstractions
6251 ********************************************************************/
6252
6253 static struct sctp_bind_bucket *sctp_bucket_create(
6254 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6255 {
6256 struct sctp_bind_bucket *pp;
6257
6258 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6259 if (pp) {
6260 SCTP_DBG_OBJCNT_INC(bind_bucket);
6261 pp->port = snum;
6262 pp->fastreuse = 0;
6263 INIT_HLIST_HEAD(&pp->owner);
6264 pp->net = net;
6265 hlist_add_head(&pp->node, &head->chain);
6266 }
6267 return pp;
6268 }
6269
6270 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6271 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6272 {
6273 if (pp && hlist_empty(&pp->owner)) {
6274 __hlist_del(&pp->node);
6275 kmem_cache_free(sctp_bucket_cachep, pp);
6276 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6277 }
6278 }
6279
6280 /* Release this socket's reference to a local port. */
6281 static inline void __sctp_put_port(struct sock *sk)
6282 {
6283 struct sctp_bind_hashbucket *head =
6284 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6285 inet_sk(sk)->inet_num)];
6286 struct sctp_bind_bucket *pp;
6287
6288 sctp_spin_lock(&head->lock);
6289 pp = sctp_sk(sk)->bind_hash;
6290 __sk_del_bind_node(sk);
6291 sctp_sk(sk)->bind_hash = NULL;
6292 inet_sk(sk)->inet_num = 0;
6293 sctp_bucket_destroy(pp);
6294 sctp_spin_unlock(&head->lock);
6295 }
6296
6297 void sctp_put_port(struct sock *sk)
6298 {
6299 sctp_local_bh_disable();
6300 __sctp_put_port(sk);
6301 sctp_local_bh_enable();
6302 }
6303
6304 /*
6305 * The system picks an ephemeral port and choose an address set equivalent
6306 * to binding with a wildcard address.
6307 * One of those addresses will be the primary address for the association.
6308 * This automatically enables the multihoming capability of SCTP.
6309 */
6310 static int sctp_autobind(struct sock *sk)
6311 {
6312 union sctp_addr autoaddr;
6313 struct sctp_af *af;
6314 __be16 port;
6315
6316 /* Initialize a local sockaddr structure to INADDR_ANY. */
6317 af = sctp_sk(sk)->pf->af;
6318
6319 port = htons(inet_sk(sk)->inet_num);
6320 af->inaddr_any(&autoaddr, port);
6321
6322 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6323 }
6324
6325 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6326 *
6327 * From RFC 2292
6328 * 4.2 The cmsghdr Structure *
6329 *
6330 * When ancillary data is sent or received, any number of ancillary data
6331 * objects can be specified by the msg_control and msg_controllen members of
6332 * the msghdr structure, because each object is preceded by
6333 * a cmsghdr structure defining the object's length (the cmsg_len member).
6334 * Historically Berkeley-derived implementations have passed only one object
6335 * at a time, but this API allows multiple objects to be
6336 * passed in a single call to sendmsg() or recvmsg(). The following example
6337 * shows two ancillary data objects in a control buffer.
6338 *
6339 * |<--------------------------- msg_controllen -------------------------->|
6340 * | |
6341 *
6342 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6343 *
6344 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6345 * | | |
6346 *
6347 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6348 *
6349 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6350 * | | | | |
6351 *
6352 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6353 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6354 *
6355 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6356 *
6357 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6358 * ^
6359 * |
6360 *
6361 * msg_control
6362 * points here
6363 */
6364 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6365 {
6366 struct cmsghdr *cmsg;
6367 struct msghdr *my_msg = (struct msghdr *)msg;
6368
6369 for (cmsg = CMSG_FIRSTHDR(msg);
6370 cmsg != NULL;
6371 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6372 if (!CMSG_OK(my_msg, cmsg))
6373 return -EINVAL;
6374
6375 /* Should we parse this header or ignore? */
6376 if (cmsg->cmsg_level != IPPROTO_SCTP)
6377 continue;
6378
6379 /* Strictly check lengths following example in SCM code. */
6380 switch (cmsg->cmsg_type) {
6381 case SCTP_INIT:
6382 /* SCTP Socket API Extension
6383 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6384 *
6385 * This cmsghdr structure provides information for
6386 * initializing new SCTP associations with sendmsg().
6387 * The SCTP_INITMSG socket option uses this same data
6388 * structure. This structure is not used for
6389 * recvmsg().
6390 *
6391 * cmsg_level cmsg_type cmsg_data[]
6392 * ------------ ------------ ----------------------
6393 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6394 */
6395 if (cmsg->cmsg_len !=
6396 CMSG_LEN(sizeof(struct sctp_initmsg)))
6397 return -EINVAL;
6398 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6399 break;
6400
6401 case SCTP_SNDRCV:
6402 /* SCTP Socket API Extension
6403 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6404 *
6405 * This cmsghdr structure specifies SCTP options for
6406 * sendmsg() and describes SCTP header information
6407 * about a received message through recvmsg().
6408 *
6409 * cmsg_level cmsg_type cmsg_data[]
6410 * ------------ ------------ ----------------------
6411 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6412 */
6413 if (cmsg->cmsg_len !=
6414 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6415 return -EINVAL;
6416
6417 cmsgs->info =
6418 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6419
6420 /* Minimally, validate the sinfo_flags. */
6421 if (cmsgs->info->sinfo_flags &
6422 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6423 SCTP_ABORT | SCTP_EOF))
6424 return -EINVAL;
6425 break;
6426
6427 default:
6428 return -EINVAL;
6429 }
6430 }
6431 return 0;
6432 }
6433
6434 /*
6435 * Wait for a packet..
6436 * Note: This function is the same function as in core/datagram.c
6437 * with a few modifications to make lksctp work.
6438 */
6439 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6440 {
6441 int error;
6442 DEFINE_WAIT(wait);
6443
6444 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6445
6446 /* Socket errors? */
6447 error = sock_error(sk);
6448 if (error)
6449 goto out;
6450
6451 if (!skb_queue_empty(&sk->sk_receive_queue))
6452 goto ready;
6453
6454 /* Socket shut down? */
6455 if (sk->sk_shutdown & RCV_SHUTDOWN)
6456 goto out;
6457
6458 /* Sequenced packets can come disconnected. If so we report the
6459 * problem.
6460 */
6461 error = -ENOTCONN;
6462
6463 /* Is there a good reason to think that we may receive some data? */
6464 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6465 goto out;
6466
6467 /* Handle signals. */
6468 if (signal_pending(current))
6469 goto interrupted;
6470
6471 /* Let another process have a go. Since we are going to sleep
6472 * anyway. Note: This may cause odd behaviors if the message
6473 * does not fit in the user's buffer, but this seems to be the
6474 * only way to honor MSG_DONTWAIT realistically.
6475 */
6476 sctp_release_sock(sk);
6477 *timeo_p = schedule_timeout(*timeo_p);
6478 sctp_lock_sock(sk);
6479
6480 ready:
6481 finish_wait(sk_sleep(sk), &wait);
6482 return 0;
6483
6484 interrupted:
6485 error = sock_intr_errno(*timeo_p);
6486
6487 out:
6488 finish_wait(sk_sleep(sk), &wait);
6489 *err = error;
6490 return error;
6491 }
6492
6493 /* Receive a datagram.
6494 * Note: This is pretty much the same routine as in core/datagram.c
6495 * with a few changes to make lksctp work.
6496 */
6497 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6498 int noblock, int *err)
6499 {
6500 int error;
6501 struct sk_buff *skb;
6502 long timeo;
6503
6504 timeo = sock_rcvtimeo(sk, noblock);
6505
6506 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6507 MAX_SCHEDULE_TIMEOUT);
6508
6509 do {
6510 /* Again only user level code calls this function,
6511 * so nothing interrupt level
6512 * will suddenly eat the receive_queue.
6513 *
6514 * Look at current nfs client by the way...
6515 * However, this function was correct in any case. 8)
6516 */
6517 if (flags & MSG_PEEK) {
6518 spin_lock_bh(&sk->sk_receive_queue.lock);
6519 skb = skb_peek(&sk->sk_receive_queue);
6520 if (skb)
6521 atomic_inc(&skb->users);
6522 spin_unlock_bh(&sk->sk_receive_queue.lock);
6523 } else {
6524 skb = skb_dequeue(&sk->sk_receive_queue);
6525 }
6526
6527 if (skb)
6528 return skb;
6529
6530 /* Caller is allowed not to check sk->sk_err before calling. */
6531 error = sock_error(sk);
6532 if (error)
6533 goto no_packet;
6534
6535 if (sk->sk_shutdown & RCV_SHUTDOWN)
6536 break;
6537
6538 /* User doesn't want to wait. */
6539 error = -EAGAIN;
6540 if (!timeo)
6541 goto no_packet;
6542 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6543
6544 return NULL;
6545
6546 no_packet:
6547 *err = error;
6548 return NULL;
6549 }
6550
6551 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6552 static void __sctp_write_space(struct sctp_association *asoc)
6553 {
6554 struct sock *sk = asoc->base.sk;
6555 struct socket *sock = sk->sk_socket;
6556
6557 if ((sctp_wspace(asoc) > 0) && sock) {
6558 if (waitqueue_active(&asoc->wait))
6559 wake_up_interruptible(&asoc->wait);
6560
6561 if (sctp_writeable(sk)) {
6562 wait_queue_head_t *wq = sk_sleep(sk);
6563
6564 if (wq && waitqueue_active(wq))
6565 wake_up_interruptible(wq);
6566
6567 /* Note that we try to include the Async I/O support
6568 * here by modeling from the current TCP/UDP code.
6569 * We have not tested with it yet.
6570 */
6571 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6572 sock_wake_async(sock,
6573 SOCK_WAKE_SPACE, POLL_OUT);
6574 }
6575 }
6576 }
6577
6578 /* Do accounting for the sndbuf space.
6579 * Decrement the used sndbuf space of the corresponding association by the
6580 * data size which was just transmitted(freed).
6581 */
6582 static void sctp_wfree(struct sk_buff *skb)
6583 {
6584 struct sctp_association *asoc;
6585 struct sctp_chunk *chunk;
6586 struct sock *sk;
6587
6588 /* Get the saved chunk pointer. */
6589 chunk = *((struct sctp_chunk **)(skb->cb));
6590 asoc = chunk->asoc;
6591 sk = asoc->base.sk;
6592 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6593 sizeof(struct sk_buff) +
6594 sizeof(struct sctp_chunk);
6595
6596 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6597
6598 /*
6599 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6600 */
6601 sk->sk_wmem_queued -= skb->truesize;
6602 sk_mem_uncharge(sk, skb->truesize);
6603
6604 sock_wfree(skb);
6605 __sctp_write_space(asoc);
6606
6607 sctp_association_put(asoc);
6608 }
6609
6610 /* Do accounting for the receive space on the socket.
6611 * Accounting for the association is done in ulpevent.c
6612 * We set this as a destructor for the cloned data skbs so that
6613 * accounting is done at the correct time.
6614 */
6615 void sctp_sock_rfree(struct sk_buff *skb)
6616 {
6617 struct sock *sk = skb->sk;
6618 struct sctp_ulpevent *event = sctp_skb2event(skb);
6619
6620 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6621
6622 /*
6623 * Mimic the behavior of sock_rfree
6624 */
6625 sk_mem_uncharge(sk, event->rmem_len);
6626 }
6627
6628
6629 /* Helper function to wait for space in the sndbuf. */
6630 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6631 size_t msg_len)
6632 {
6633 struct sock *sk = asoc->base.sk;
6634 int err = 0;
6635 long current_timeo = *timeo_p;
6636 DEFINE_WAIT(wait);
6637
6638 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6639 *timeo_p, msg_len);
6640
6641 /* Increment the association's refcnt. */
6642 sctp_association_hold(asoc);
6643
6644 /* Wait on the association specific sndbuf space. */
6645 for (;;) {
6646 prepare_to_wait_exclusive(&asoc->wait, &wait,
6647 TASK_INTERRUPTIBLE);
6648 if (!*timeo_p)
6649 goto do_nonblock;
6650 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6651 asoc->base.dead)
6652 goto do_error;
6653 if (signal_pending(current))
6654 goto do_interrupted;
6655 if (msg_len <= sctp_wspace(asoc))
6656 break;
6657
6658 /* Let another process have a go. Since we are going
6659 * to sleep anyway.
6660 */
6661 sctp_release_sock(sk);
6662 current_timeo = schedule_timeout(current_timeo);
6663 BUG_ON(sk != asoc->base.sk);
6664 sctp_lock_sock(sk);
6665
6666 *timeo_p = current_timeo;
6667 }
6668
6669 out:
6670 finish_wait(&asoc->wait, &wait);
6671
6672 /* Release the association's refcnt. */
6673 sctp_association_put(asoc);
6674
6675 return err;
6676
6677 do_error:
6678 err = -EPIPE;
6679 goto out;
6680
6681 do_interrupted:
6682 err = sock_intr_errno(*timeo_p);
6683 goto out;
6684
6685 do_nonblock:
6686 err = -EAGAIN;
6687 goto out;
6688 }
6689
6690 void sctp_data_ready(struct sock *sk, int len)
6691 {
6692 struct socket_wq *wq;
6693
6694 rcu_read_lock();
6695 wq = rcu_dereference(sk->sk_wq);
6696 if (wq_has_sleeper(wq))
6697 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6698 POLLRDNORM | POLLRDBAND);
6699 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6700 rcu_read_unlock();
6701 }
6702
6703 /* If socket sndbuf has changed, wake up all per association waiters. */
6704 void sctp_write_space(struct sock *sk)
6705 {
6706 struct sctp_association *asoc;
6707
6708 /* Wake up the tasks in each wait queue. */
6709 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6710 __sctp_write_space(asoc);
6711 }
6712 }
6713
6714 /* Is there any sndbuf space available on the socket?
6715 *
6716 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6717 * associations on the same socket. For a UDP-style socket with
6718 * multiple associations, it is possible for it to be "unwriteable"
6719 * prematurely. I assume that this is acceptable because
6720 * a premature "unwriteable" is better than an accidental "writeable" which
6721 * would cause an unwanted block under certain circumstances. For the 1-1
6722 * UDP-style sockets or TCP-style sockets, this code should work.
6723 * - Daisy
6724 */
6725 static int sctp_writeable(struct sock *sk)
6726 {
6727 int amt = 0;
6728
6729 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6730 if (amt < 0)
6731 amt = 0;
6732 return amt;
6733 }
6734
6735 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6736 * returns immediately with EINPROGRESS.
6737 */
6738 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6739 {
6740 struct sock *sk = asoc->base.sk;
6741 int err = 0;
6742 long current_timeo = *timeo_p;
6743 DEFINE_WAIT(wait);
6744
6745 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
6746
6747 /* Increment the association's refcnt. */
6748 sctp_association_hold(asoc);
6749
6750 for (;;) {
6751 prepare_to_wait_exclusive(&asoc->wait, &wait,
6752 TASK_INTERRUPTIBLE);
6753 if (!*timeo_p)
6754 goto do_nonblock;
6755 if (sk->sk_shutdown & RCV_SHUTDOWN)
6756 break;
6757 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6758 asoc->base.dead)
6759 goto do_error;
6760 if (signal_pending(current))
6761 goto do_interrupted;
6762
6763 if (sctp_state(asoc, ESTABLISHED))
6764 break;
6765
6766 /* Let another process have a go. Since we are going
6767 * to sleep anyway.
6768 */
6769 sctp_release_sock(sk);
6770 current_timeo = schedule_timeout(current_timeo);
6771 sctp_lock_sock(sk);
6772
6773 *timeo_p = current_timeo;
6774 }
6775
6776 out:
6777 finish_wait(&asoc->wait, &wait);
6778
6779 /* Release the association's refcnt. */
6780 sctp_association_put(asoc);
6781
6782 return err;
6783
6784 do_error:
6785 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6786 err = -ETIMEDOUT;
6787 else
6788 err = -ECONNREFUSED;
6789 goto out;
6790
6791 do_interrupted:
6792 err = sock_intr_errno(*timeo_p);
6793 goto out;
6794
6795 do_nonblock:
6796 err = -EINPROGRESS;
6797 goto out;
6798 }
6799
6800 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6801 {
6802 struct sctp_endpoint *ep;
6803 int err = 0;
6804 DEFINE_WAIT(wait);
6805
6806 ep = sctp_sk(sk)->ep;
6807
6808
6809 for (;;) {
6810 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6811 TASK_INTERRUPTIBLE);
6812
6813 if (list_empty(&ep->asocs)) {
6814 sctp_release_sock(sk);
6815 timeo = schedule_timeout(timeo);
6816 sctp_lock_sock(sk);
6817 }
6818
6819 err = -EINVAL;
6820 if (!sctp_sstate(sk, LISTENING))
6821 break;
6822
6823 err = 0;
6824 if (!list_empty(&ep->asocs))
6825 break;
6826
6827 err = sock_intr_errno(timeo);
6828 if (signal_pending(current))
6829 break;
6830
6831 err = -EAGAIN;
6832 if (!timeo)
6833 break;
6834 }
6835
6836 finish_wait(sk_sleep(sk), &wait);
6837
6838 return err;
6839 }
6840
6841 static void sctp_wait_for_close(struct sock *sk, long timeout)
6842 {
6843 DEFINE_WAIT(wait);
6844
6845 do {
6846 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6847 if (list_empty(&sctp_sk(sk)->ep->asocs))
6848 break;
6849 sctp_release_sock(sk);
6850 timeout = schedule_timeout(timeout);
6851 sctp_lock_sock(sk);
6852 } while (!signal_pending(current) && timeout);
6853
6854 finish_wait(sk_sleep(sk), &wait);
6855 }
6856
6857 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6858 {
6859 struct sk_buff *frag;
6860
6861 if (!skb->data_len)
6862 goto done;
6863
6864 /* Don't forget the fragments. */
6865 skb_walk_frags(skb, frag)
6866 sctp_skb_set_owner_r_frag(frag, sk);
6867
6868 done:
6869 sctp_skb_set_owner_r(skb, sk);
6870 }
6871
6872 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6873 struct sctp_association *asoc)
6874 {
6875 struct inet_sock *inet = inet_sk(sk);
6876 struct inet_sock *newinet;
6877
6878 newsk->sk_type = sk->sk_type;
6879 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6880 newsk->sk_flags = sk->sk_flags;
6881 newsk->sk_no_check = sk->sk_no_check;
6882 newsk->sk_reuse = sk->sk_reuse;
6883
6884 newsk->sk_shutdown = sk->sk_shutdown;
6885 newsk->sk_destruct = sctp_destruct_sock;
6886 newsk->sk_family = sk->sk_family;
6887 newsk->sk_protocol = IPPROTO_SCTP;
6888 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6889 newsk->sk_sndbuf = sk->sk_sndbuf;
6890 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6891 newsk->sk_lingertime = sk->sk_lingertime;
6892 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6893 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6894
6895 newinet = inet_sk(newsk);
6896
6897 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6898 * getsockname() and getpeername()
6899 */
6900 newinet->inet_sport = inet->inet_sport;
6901 newinet->inet_saddr = inet->inet_saddr;
6902 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6903 newinet->inet_dport = htons(asoc->peer.port);
6904 newinet->pmtudisc = inet->pmtudisc;
6905 newinet->inet_id = asoc->next_tsn ^ jiffies;
6906
6907 newinet->uc_ttl = inet->uc_ttl;
6908 newinet->mc_loop = 1;
6909 newinet->mc_ttl = 1;
6910 newinet->mc_index = 0;
6911 newinet->mc_list = NULL;
6912 }
6913
6914 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6915 * and its messages to the newsk.
6916 */
6917 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6918 struct sctp_association *assoc,
6919 sctp_socket_type_t type)
6920 {
6921 struct sctp_sock *oldsp = sctp_sk(oldsk);
6922 struct sctp_sock *newsp = sctp_sk(newsk);
6923 struct sctp_bind_bucket *pp; /* hash list port iterator */
6924 struct sctp_endpoint *newep = newsp->ep;
6925 struct sk_buff *skb, *tmp;
6926 struct sctp_ulpevent *event;
6927 struct sctp_bind_hashbucket *head;
6928 struct list_head tmplist;
6929
6930 /* Migrate socket buffer sizes and all the socket level options to the
6931 * new socket.
6932 */
6933 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6934 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6935 /* Brute force copy old sctp opt. */
6936 if (oldsp->do_auto_asconf) {
6937 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6938 inet_sk_copy_descendant(newsk, oldsk);
6939 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6940 } else
6941 inet_sk_copy_descendant(newsk, oldsk);
6942
6943 /* Restore the ep value that was overwritten with the above structure
6944 * copy.
6945 */
6946 newsp->ep = newep;
6947 newsp->hmac = NULL;
6948
6949 /* Hook this new socket in to the bind_hash list. */
6950 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
6951 inet_sk(oldsk)->inet_num)];
6952 sctp_local_bh_disable();
6953 sctp_spin_lock(&head->lock);
6954 pp = sctp_sk(oldsk)->bind_hash;
6955 sk_add_bind_node(newsk, &pp->owner);
6956 sctp_sk(newsk)->bind_hash = pp;
6957 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6958 sctp_spin_unlock(&head->lock);
6959 sctp_local_bh_enable();
6960
6961 /* Copy the bind_addr list from the original endpoint to the new
6962 * endpoint so that we can handle restarts properly
6963 */
6964 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6965 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6966
6967 /* Move any messages in the old socket's receive queue that are for the
6968 * peeled off association to the new socket's receive queue.
6969 */
6970 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6971 event = sctp_skb2event(skb);
6972 if (event->asoc == assoc) {
6973 __skb_unlink(skb, &oldsk->sk_receive_queue);
6974 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6975 sctp_skb_set_owner_r_frag(skb, newsk);
6976 }
6977 }
6978
6979 /* Clean up any messages pending delivery due to partial
6980 * delivery. Three cases:
6981 * 1) No partial deliver; no work.
6982 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6983 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6984 */
6985 skb_queue_head_init(&newsp->pd_lobby);
6986 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6987
6988 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6989 struct sk_buff_head *queue;
6990
6991 /* Decide which queue to move pd_lobby skbs to. */
6992 if (assoc->ulpq.pd_mode) {
6993 queue = &newsp->pd_lobby;
6994 } else
6995 queue = &newsk->sk_receive_queue;
6996
6997 /* Walk through the pd_lobby, looking for skbs that
6998 * need moved to the new socket.
6999 */
7000 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7001 event = sctp_skb2event(skb);
7002 if (event->asoc == assoc) {
7003 __skb_unlink(skb, &oldsp->pd_lobby);
7004 __skb_queue_tail(queue, skb);
7005 sctp_skb_set_owner_r_frag(skb, newsk);
7006 }
7007 }
7008
7009 /* Clear up any skbs waiting for the partial
7010 * delivery to finish.
7011 */
7012 if (assoc->ulpq.pd_mode)
7013 sctp_clear_pd(oldsk, NULL);
7014
7015 }
7016
7017 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7018 sctp_skb_set_owner_r_frag(skb, newsk);
7019
7020 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7021 sctp_skb_set_owner_r_frag(skb, newsk);
7022
7023 /* Set the type of socket to indicate that it is peeled off from the
7024 * original UDP-style socket or created with the accept() call on a
7025 * TCP-style socket..
7026 */
7027 newsp->type = type;
7028
7029 /* Mark the new socket "in-use" by the user so that any packets
7030 * that may arrive on the association after we've moved it are
7031 * queued to the backlog. This prevents a potential race between
7032 * backlog processing on the old socket and new-packet processing
7033 * on the new socket.
7034 *
7035 * The caller has just allocated newsk so we can guarantee that other
7036 * paths won't try to lock it and then oldsk.
7037 */
7038 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7039 sctp_assoc_migrate(assoc, newsk);
7040
7041 /* If the association on the newsk is already closed before accept()
7042 * is called, set RCV_SHUTDOWN flag.
7043 */
7044 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7045 newsk->sk_shutdown |= RCV_SHUTDOWN;
7046
7047 newsk->sk_state = SCTP_SS_ESTABLISHED;
7048 sctp_release_sock(newsk);
7049 }
7050
7051
7052 /* This proto struct describes the ULP interface for SCTP. */
7053 struct proto sctp_prot = {
7054 .name = "SCTP",
7055 .owner = THIS_MODULE,
7056 .close = sctp_close,
7057 .connect = sctp_connect,
7058 .disconnect = sctp_disconnect,
7059 .accept = sctp_accept,
7060 .ioctl = sctp_ioctl,
7061 .init = sctp_init_sock,
7062 .destroy = sctp_destroy_sock,
7063 .shutdown = sctp_shutdown,
7064 .setsockopt = sctp_setsockopt,
7065 .getsockopt = sctp_getsockopt,
7066 .sendmsg = sctp_sendmsg,
7067 .recvmsg = sctp_recvmsg,
7068 .bind = sctp_bind,
7069 .backlog_rcv = sctp_backlog_rcv,
7070 .hash = sctp_hash,
7071 .unhash = sctp_unhash,
7072 .get_port = sctp_get_port,
7073 .obj_size = sizeof(struct sctp_sock),
7074 .sysctl_mem = sysctl_sctp_mem,
7075 .sysctl_rmem = sysctl_sctp_rmem,
7076 .sysctl_wmem = sysctl_sctp_wmem,
7077 .memory_pressure = &sctp_memory_pressure,
7078 .enter_memory_pressure = sctp_enter_memory_pressure,
7079 .memory_allocated = &sctp_memory_allocated,
7080 .sockets_allocated = &sctp_sockets_allocated,
7081 };
7082
7083 #if IS_ENABLED(CONFIG_IPV6)
7084
7085 struct proto sctpv6_prot = {
7086 .name = "SCTPv6",
7087 .owner = THIS_MODULE,
7088 .close = sctp_close,
7089 .connect = sctp_connect,
7090 .disconnect = sctp_disconnect,
7091 .accept = sctp_accept,
7092 .ioctl = sctp_ioctl,
7093 .init = sctp_init_sock,
7094 .destroy = sctp_destroy_sock,
7095 .shutdown = sctp_shutdown,
7096 .setsockopt = sctp_setsockopt,
7097 .getsockopt = sctp_getsockopt,
7098 .sendmsg = sctp_sendmsg,
7099 .recvmsg = sctp_recvmsg,
7100 .bind = sctp_bind,
7101 .backlog_rcv = sctp_backlog_rcv,
7102 .hash = sctp_hash,
7103 .unhash = sctp_unhash,
7104 .get_port = sctp_get_port,
7105 .obj_size = sizeof(struct sctp6_sock),
7106 .sysctl_mem = sysctl_sctp_mem,
7107 .sysctl_rmem = sysctl_sctp_rmem,
7108 .sysctl_wmem = sysctl_sctp_wmem,
7109 .memory_pressure = &sctp_memory_pressure,
7110 .enter_memory_pressure = sctp_enter_memory_pressure,
7111 .memory_allocated = &sctp_memory_allocated,
7112 .sockets_allocated = &sctp_sockets_allocated,
7113 };
7114 #endif /* IS_ENABLED(CONFIG_IPV6) */
This page took 0.261138 seconds and 5 git commands to generate.