SCTP: Pick the correct port when binding to 0.
[deliverable/linux.git] / net / sctp / socket.c
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel reference Implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * The SCTP reference implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * The SCTP reference implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
85 */
86
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109
110 /* Get the sndbuf space available at the time on the association. */
111 static inline int sctp_wspace(struct sctp_association *asoc)
112 {
113 struct sock *sk = asoc->base.sk;
114 int amt = 0;
115
116 if (asoc->ep->sndbuf_policy) {
117 /* make sure that no association uses more than sk_sndbuf */
118 amt = sk->sk_sndbuf - asoc->sndbuf_used;
119 } else {
120 /* do socket level accounting */
121 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
122 }
123
124 if (amt < 0)
125 amt = 0;
126
127 return amt;
128 }
129
130 /* Increment the used sndbuf space count of the corresponding association by
131 * the size of the outgoing data chunk.
132 * Also, set the skb destructor for sndbuf accounting later.
133 *
134 * Since it is always 1-1 between chunk and skb, and also a new skb is always
135 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
136 * destructor in the data chunk skb for the purpose of the sndbuf space
137 * tracking.
138 */
139 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
140 {
141 struct sctp_association *asoc = chunk->asoc;
142 struct sock *sk = asoc->base.sk;
143
144 /* The sndbuf space is tracked per association. */
145 sctp_association_hold(asoc);
146
147 skb_set_owner_w(chunk->skb, sk);
148
149 chunk->skb->destructor = sctp_wfree;
150 /* Save the chunk pointer in skb for sctp_wfree to use later. */
151 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
152
153 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
154 sizeof(struct sk_buff) +
155 sizeof(struct sctp_chunk);
156
157 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
158 }
159
160 /* Verify that this is a valid address. */
161 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
162 int len)
163 {
164 struct sctp_af *af;
165
166 /* Verify basic sockaddr. */
167 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
168 if (!af)
169 return -EINVAL;
170
171 /* Is this a valid SCTP address? */
172 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
173 return -EINVAL;
174
175 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
176 return -EINVAL;
177
178 return 0;
179 }
180
181 /* Look up the association by its id. If this is not a UDP-style
182 * socket, the ID field is always ignored.
183 */
184 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
185 {
186 struct sctp_association *asoc = NULL;
187
188 /* If this is not a UDP-style socket, assoc id should be ignored. */
189 if (!sctp_style(sk, UDP)) {
190 /* Return NULL if the socket state is not ESTABLISHED. It
191 * could be a TCP-style listening socket or a socket which
192 * hasn't yet called connect() to establish an association.
193 */
194 if (!sctp_sstate(sk, ESTABLISHED))
195 return NULL;
196
197 /* Get the first and the only association from the list. */
198 if (!list_empty(&sctp_sk(sk)->ep->asocs))
199 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
200 struct sctp_association, asocs);
201 return asoc;
202 }
203
204 /* Otherwise this is a UDP-style socket. */
205 if (!id || (id == (sctp_assoc_t)-1))
206 return NULL;
207
208 spin_lock_bh(&sctp_assocs_id_lock);
209 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
210 spin_unlock_bh(&sctp_assocs_id_lock);
211
212 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
213 return NULL;
214
215 return asoc;
216 }
217
218 /* Look up the transport from an address and an assoc id. If both address and
219 * id are specified, the associations matching the address and the id should be
220 * the same.
221 */
222 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
223 struct sockaddr_storage *addr,
224 sctp_assoc_t id)
225 {
226 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
227 struct sctp_transport *transport;
228 union sctp_addr *laddr = (union sctp_addr *)addr;
229
230 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
231 laddr,
232 &transport);
233
234 if (!addr_asoc)
235 return NULL;
236
237 id_asoc = sctp_id2assoc(sk, id);
238 if (id_asoc && (id_asoc != addr_asoc))
239 return NULL;
240
241 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
242 (union sctp_addr *)addr);
243
244 return transport;
245 }
246
247 /* API 3.1.2 bind() - UDP Style Syntax
248 * The syntax of bind() is,
249 *
250 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
251 *
252 * sd - the socket descriptor returned by socket().
253 * addr - the address structure (struct sockaddr_in or struct
254 * sockaddr_in6 [RFC 2553]),
255 * addr_len - the size of the address structure.
256 */
257 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
258 {
259 int retval = 0;
260
261 sctp_lock_sock(sk);
262
263 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
264 sk, addr, addr_len);
265
266 /* Disallow binding twice. */
267 if (!sctp_sk(sk)->ep->base.bind_addr.port)
268 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
269 addr_len);
270 else
271 retval = -EINVAL;
272
273 sctp_release_sock(sk);
274
275 return retval;
276 }
277
278 static long sctp_get_port_local(struct sock *, union sctp_addr *);
279
280 /* Verify this is a valid sockaddr. */
281 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
282 union sctp_addr *addr, int len)
283 {
284 struct sctp_af *af;
285
286 /* Check minimum size. */
287 if (len < sizeof (struct sockaddr))
288 return NULL;
289
290 /* Does this PF support this AF? */
291 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
292 return NULL;
293
294 /* If we get this far, af is valid. */
295 af = sctp_get_af_specific(addr->sa.sa_family);
296
297 if (len < af->sockaddr_len)
298 return NULL;
299
300 return af;
301 }
302
303 /* Bind a local address either to an endpoint or to an association. */
304 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
305 {
306 struct sctp_sock *sp = sctp_sk(sk);
307 struct sctp_endpoint *ep = sp->ep;
308 struct sctp_bind_addr *bp = &ep->base.bind_addr;
309 struct sctp_af *af;
310 unsigned short snum;
311 int ret = 0;
312
313 /* Common sockaddr verification. */
314 af = sctp_sockaddr_af(sp, addr, len);
315 if (!af) {
316 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
317 sk, addr, len);
318 return -EINVAL;
319 }
320
321 snum = ntohs(addr->v4.sin_port);
322
323 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
324 ", port: %d, new port: %d, len: %d)\n",
325 sk,
326 addr,
327 bp->port, snum,
328 len);
329
330 /* PF specific bind() address verification. */
331 if (!sp->pf->bind_verify(sp, addr))
332 return -EADDRNOTAVAIL;
333
334 /* We must either be unbound, or bind to the same port.
335 * It's OK to allow 0 ports if we are already bound.
336 * We'll just inhert an already bound port in this case
337 */
338 if (bp->port) {
339 if (!snum)
340 snum = bp->port;
341 else if (snum != bp->port) {
342 SCTP_DEBUG_PRINTK("sctp_do_bind:"
343 " New port %d does not match existing port "
344 "%d.\n", snum, bp->port);
345 return -EINVAL;
346 }
347 }
348
349 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
350 return -EACCES;
351
352 /* Make sure we are allowed to bind here.
353 * The function sctp_get_port_local() does duplicate address
354 * detection.
355 */
356 addr->v4.sin_port = htons(snum);
357 if ((ret = sctp_get_port_local(sk, addr))) {
358 if (ret == (long) sk) {
359 /* This endpoint has a conflicting address. */
360 return -EINVAL;
361 } else {
362 return -EADDRINUSE;
363 }
364 }
365
366 /* Refresh ephemeral port. */
367 if (!bp->port)
368 bp->port = inet_sk(sk)->num;
369
370 /* Add the address to the bind address list. */
371 sctp_local_bh_disable();
372 sctp_write_lock(&ep->base.addr_lock);
373
374 /* Use GFP_ATOMIC since BHs are disabled. */
375 ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
376 sctp_write_unlock(&ep->base.addr_lock);
377 sctp_local_bh_enable();
378
379 /* Copy back into socket for getsockname() use. */
380 if (!ret) {
381 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
382 af->to_sk_saddr(addr, sk);
383 }
384
385 return ret;
386 }
387
388 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
389 *
390 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
391 * at any one time. If a sender, after sending an ASCONF chunk, decides
392 * it needs to transfer another ASCONF Chunk, it MUST wait until the
393 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
394 * subsequent ASCONF. Note this restriction binds each side, so at any
395 * time two ASCONF may be in-transit on any given association (one sent
396 * from each endpoint).
397 */
398 static int sctp_send_asconf(struct sctp_association *asoc,
399 struct sctp_chunk *chunk)
400 {
401 int retval = 0;
402
403 /* If there is an outstanding ASCONF chunk, queue it for later
404 * transmission.
405 */
406 if (asoc->addip_last_asconf) {
407 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
408 goto out;
409 }
410
411 /* Hold the chunk until an ASCONF_ACK is received. */
412 sctp_chunk_hold(chunk);
413 retval = sctp_primitive_ASCONF(asoc, chunk);
414 if (retval)
415 sctp_chunk_free(chunk);
416 else
417 asoc->addip_last_asconf = chunk;
418
419 out:
420 return retval;
421 }
422
423 /* Add a list of addresses as bind addresses to local endpoint or
424 * association.
425 *
426 * Basically run through each address specified in the addrs/addrcnt
427 * array/length pair, determine if it is IPv6 or IPv4 and call
428 * sctp_do_bind() on it.
429 *
430 * If any of them fails, then the operation will be reversed and the
431 * ones that were added will be removed.
432 *
433 * Only sctp_setsockopt_bindx() is supposed to call this function.
434 */
435 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
436 {
437 int cnt;
438 int retval = 0;
439 void *addr_buf;
440 struct sockaddr *sa_addr;
441 struct sctp_af *af;
442
443 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
444 sk, addrs, addrcnt);
445
446 addr_buf = addrs;
447 for (cnt = 0; cnt < addrcnt; cnt++) {
448 /* The list may contain either IPv4 or IPv6 address;
449 * determine the address length for walking thru the list.
450 */
451 sa_addr = (struct sockaddr *)addr_buf;
452 af = sctp_get_af_specific(sa_addr->sa_family);
453 if (!af) {
454 retval = -EINVAL;
455 goto err_bindx_add;
456 }
457
458 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
459 af->sockaddr_len);
460
461 addr_buf += af->sockaddr_len;
462
463 err_bindx_add:
464 if (retval < 0) {
465 /* Failed. Cleanup the ones that have been added */
466 if (cnt > 0)
467 sctp_bindx_rem(sk, addrs, cnt);
468 return retval;
469 }
470 }
471
472 return retval;
473 }
474
475 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
476 * associations that are part of the endpoint indicating that a list of local
477 * addresses are added to the endpoint.
478 *
479 * If any of the addresses is already in the bind address list of the
480 * association, we do not send the chunk for that association. But it will not
481 * affect other associations.
482 *
483 * Only sctp_setsockopt_bindx() is supposed to call this function.
484 */
485 static int sctp_send_asconf_add_ip(struct sock *sk,
486 struct sockaddr *addrs,
487 int addrcnt)
488 {
489 struct sctp_sock *sp;
490 struct sctp_endpoint *ep;
491 struct sctp_association *asoc;
492 struct sctp_bind_addr *bp;
493 struct sctp_chunk *chunk;
494 struct sctp_sockaddr_entry *laddr;
495 union sctp_addr *addr;
496 union sctp_addr saveaddr;
497 void *addr_buf;
498 struct sctp_af *af;
499 struct list_head *pos;
500 struct list_head *p;
501 int i;
502 int retval = 0;
503
504 if (!sctp_addip_enable)
505 return retval;
506
507 sp = sctp_sk(sk);
508 ep = sp->ep;
509
510 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
511 __FUNCTION__, sk, addrs, addrcnt);
512
513 list_for_each(pos, &ep->asocs) {
514 asoc = list_entry(pos, struct sctp_association, asocs);
515
516 if (!asoc->peer.asconf_capable)
517 continue;
518
519 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
520 continue;
521
522 if (!sctp_state(asoc, ESTABLISHED))
523 continue;
524
525 /* Check if any address in the packed array of addresses is
526 * in the bind address list of the association. If so,
527 * do not send the asconf chunk to its peer, but continue with
528 * other associations.
529 */
530 addr_buf = addrs;
531 for (i = 0; i < addrcnt; i++) {
532 addr = (union sctp_addr *)addr_buf;
533 af = sctp_get_af_specific(addr->v4.sin_family);
534 if (!af) {
535 retval = -EINVAL;
536 goto out;
537 }
538
539 if (sctp_assoc_lookup_laddr(asoc, addr))
540 break;
541
542 addr_buf += af->sockaddr_len;
543 }
544 if (i < addrcnt)
545 continue;
546
547 /* Use the first address in bind addr list of association as
548 * Address Parameter of ASCONF CHUNK.
549 */
550 sctp_read_lock(&asoc->base.addr_lock);
551 bp = &asoc->base.bind_addr;
552 p = bp->address_list.next;
553 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
554 sctp_read_unlock(&asoc->base.addr_lock);
555
556 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
557 addrcnt, SCTP_PARAM_ADD_IP);
558 if (!chunk) {
559 retval = -ENOMEM;
560 goto out;
561 }
562
563 retval = sctp_send_asconf(asoc, chunk);
564 if (retval)
565 goto out;
566
567 /* Add the new addresses to the bind address list with
568 * use_as_src set to 0.
569 */
570 sctp_local_bh_disable();
571 sctp_write_lock(&asoc->base.addr_lock);
572 addr_buf = addrs;
573 for (i = 0; i < addrcnt; i++) {
574 addr = (union sctp_addr *)addr_buf;
575 af = sctp_get_af_specific(addr->v4.sin_family);
576 memcpy(&saveaddr, addr, af->sockaddr_len);
577 retval = sctp_add_bind_addr(bp, &saveaddr, 0,
578 GFP_ATOMIC);
579 addr_buf += af->sockaddr_len;
580 }
581 sctp_write_unlock(&asoc->base.addr_lock);
582 sctp_local_bh_enable();
583 }
584
585 out:
586 return retval;
587 }
588
589 /* Remove a list of addresses from bind addresses list. Do not remove the
590 * last address.
591 *
592 * Basically run through each address specified in the addrs/addrcnt
593 * array/length pair, determine if it is IPv6 or IPv4 and call
594 * sctp_del_bind() on it.
595 *
596 * If any of them fails, then the operation will be reversed and the
597 * ones that were removed will be added back.
598 *
599 * At least one address has to be left; if only one address is
600 * available, the operation will return -EBUSY.
601 *
602 * Only sctp_setsockopt_bindx() is supposed to call this function.
603 */
604 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
605 {
606 struct sctp_sock *sp = sctp_sk(sk);
607 struct sctp_endpoint *ep = sp->ep;
608 int cnt;
609 struct sctp_bind_addr *bp = &ep->base.bind_addr;
610 int retval = 0;
611 void *addr_buf;
612 union sctp_addr *sa_addr;
613 struct sctp_af *af;
614
615 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
616 sk, addrs, addrcnt);
617
618 addr_buf = addrs;
619 for (cnt = 0; cnt < addrcnt; cnt++) {
620 /* If the bind address list is empty or if there is only one
621 * bind address, there is nothing more to be removed (we need
622 * at least one address here).
623 */
624 if (list_empty(&bp->address_list) ||
625 (sctp_list_single_entry(&bp->address_list))) {
626 retval = -EBUSY;
627 goto err_bindx_rem;
628 }
629
630 sa_addr = (union sctp_addr *)addr_buf;
631 af = sctp_get_af_specific(sa_addr->sa.sa_family);
632 if (!af) {
633 retval = -EINVAL;
634 goto err_bindx_rem;
635 }
636
637 if (!af->addr_valid(sa_addr, sp, NULL)) {
638 retval = -EADDRNOTAVAIL;
639 goto err_bindx_rem;
640 }
641
642 if (sa_addr->v4.sin_port != htons(bp->port)) {
643 retval = -EINVAL;
644 goto err_bindx_rem;
645 }
646
647 /* FIXME - There is probably a need to check if sk->sk_saddr and
648 * sk->sk_rcv_addr are currently set to one of the addresses to
649 * be removed. This is something which needs to be looked into
650 * when we are fixing the outstanding issues with multi-homing
651 * socket routing and failover schemes. Refer to comments in
652 * sctp_do_bind(). -daisy
653 */
654 sctp_local_bh_disable();
655 sctp_write_lock(&ep->base.addr_lock);
656
657 retval = sctp_del_bind_addr(bp, sa_addr);
658
659 sctp_write_unlock(&ep->base.addr_lock);
660 sctp_local_bh_enable();
661
662 addr_buf += af->sockaddr_len;
663 err_bindx_rem:
664 if (retval < 0) {
665 /* Failed. Add the ones that has been removed back */
666 if (cnt > 0)
667 sctp_bindx_add(sk, addrs, cnt);
668 return retval;
669 }
670 }
671
672 return retval;
673 }
674
675 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
676 * the associations that are part of the endpoint indicating that a list of
677 * local addresses are removed from the endpoint.
678 *
679 * If any of the addresses is already in the bind address list of the
680 * association, we do not send the chunk for that association. But it will not
681 * affect other associations.
682 *
683 * Only sctp_setsockopt_bindx() is supposed to call this function.
684 */
685 static int sctp_send_asconf_del_ip(struct sock *sk,
686 struct sockaddr *addrs,
687 int addrcnt)
688 {
689 struct sctp_sock *sp;
690 struct sctp_endpoint *ep;
691 struct sctp_association *asoc;
692 struct sctp_transport *transport;
693 struct sctp_bind_addr *bp;
694 struct sctp_chunk *chunk;
695 union sctp_addr *laddr;
696 void *addr_buf;
697 struct sctp_af *af;
698 struct list_head *pos, *pos1;
699 struct sctp_sockaddr_entry *saddr;
700 int i;
701 int retval = 0;
702
703 if (!sctp_addip_enable)
704 return retval;
705
706 sp = sctp_sk(sk);
707 ep = sp->ep;
708
709 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
710 __FUNCTION__, sk, addrs, addrcnt);
711
712 list_for_each(pos, &ep->asocs) {
713 asoc = list_entry(pos, struct sctp_association, asocs);
714
715 if (!asoc->peer.asconf_capable)
716 continue;
717
718 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
719 continue;
720
721 if (!sctp_state(asoc, ESTABLISHED))
722 continue;
723
724 /* Check if any address in the packed array of addresses is
725 * not present in the bind address list of the association.
726 * If so, do not send the asconf chunk to its peer, but
727 * continue with other associations.
728 */
729 addr_buf = addrs;
730 for (i = 0; i < addrcnt; i++) {
731 laddr = (union sctp_addr *)addr_buf;
732 af = sctp_get_af_specific(laddr->v4.sin_family);
733 if (!af) {
734 retval = -EINVAL;
735 goto out;
736 }
737
738 if (!sctp_assoc_lookup_laddr(asoc, laddr))
739 break;
740
741 addr_buf += af->sockaddr_len;
742 }
743 if (i < addrcnt)
744 continue;
745
746 /* Find one address in the association's bind address list
747 * that is not in the packed array of addresses. This is to
748 * make sure that we do not delete all the addresses in the
749 * association.
750 */
751 sctp_read_lock(&asoc->base.addr_lock);
752 bp = &asoc->base.bind_addr;
753 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
754 addrcnt, sp);
755 sctp_read_unlock(&asoc->base.addr_lock);
756 if (!laddr)
757 continue;
758
759 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
760 SCTP_PARAM_DEL_IP);
761 if (!chunk) {
762 retval = -ENOMEM;
763 goto out;
764 }
765
766 /* Reset use_as_src flag for the addresses in the bind address
767 * list that are to be deleted.
768 */
769 sctp_local_bh_disable();
770 sctp_write_lock(&asoc->base.addr_lock);
771 addr_buf = addrs;
772 for (i = 0; i < addrcnt; i++) {
773 laddr = (union sctp_addr *)addr_buf;
774 af = sctp_get_af_specific(laddr->v4.sin_family);
775 list_for_each(pos1, &bp->address_list) {
776 saddr = list_entry(pos1,
777 struct sctp_sockaddr_entry,
778 list);
779 if (sctp_cmp_addr_exact(&saddr->a, laddr))
780 saddr->use_as_src = 0;
781 }
782 addr_buf += af->sockaddr_len;
783 }
784 sctp_write_unlock(&asoc->base.addr_lock);
785 sctp_local_bh_enable();
786
787 /* Update the route and saddr entries for all the transports
788 * as some of the addresses in the bind address list are
789 * about to be deleted and cannot be used as source addresses.
790 */
791 list_for_each(pos1, &asoc->peer.transport_addr_list) {
792 transport = list_entry(pos1, struct sctp_transport,
793 transports);
794 dst_release(transport->dst);
795 sctp_transport_route(transport, NULL,
796 sctp_sk(asoc->base.sk));
797 }
798
799 retval = sctp_send_asconf(asoc, chunk);
800 }
801 out:
802 return retval;
803 }
804
805 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
806 *
807 * API 8.1
808 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
809 * int flags);
810 *
811 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
812 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
813 * or IPv6 addresses.
814 *
815 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
816 * Section 3.1.2 for this usage.
817 *
818 * addrs is a pointer to an array of one or more socket addresses. Each
819 * address is contained in its appropriate structure (i.e. struct
820 * sockaddr_in or struct sockaddr_in6) the family of the address type
821 * must be used to distinguish the address length (note that this
822 * representation is termed a "packed array" of addresses). The caller
823 * specifies the number of addresses in the array with addrcnt.
824 *
825 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
826 * -1, and sets errno to the appropriate error code.
827 *
828 * For SCTP, the port given in each socket address must be the same, or
829 * sctp_bindx() will fail, setting errno to EINVAL.
830 *
831 * The flags parameter is formed from the bitwise OR of zero or more of
832 * the following currently defined flags:
833 *
834 * SCTP_BINDX_ADD_ADDR
835 *
836 * SCTP_BINDX_REM_ADDR
837 *
838 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
839 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
840 * addresses from the association. The two flags are mutually exclusive;
841 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
842 * not remove all addresses from an association; sctp_bindx() will
843 * reject such an attempt with EINVAL.
844 *
845 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
846 * additional addresses with an endpoint after calling bind(). Or use
847 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
848 * socket is associated with so that no new association accepted will be
849 * associated with those addresses. If the endpoint supports dynamic
850 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
851 * endpoint to send the appropriate message to the peer to change the
852 * peers address lists.
853 *
854 * Adding and removing addresses from a connected association is
855 * optional functionality. Implementations that do not support this
856 * functionality should return EOPNOTSUPP.
857 *
858 * Basically do nothing but copying the addresses from user to kernel
859 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
860 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
861 * from userspace.
862 *
863 * We don't use copy_from_user() for optimization: we first do the
864 * sanity checks (buffer size -fast- and access check-healthy
865 * pointer); if all of those succeed, then we can alloc the memory
866 * (expensive operation) needed to copy the data to kernel. Then we do
867 * the copying without checking the user space area
868 * (__copy_from_user()).
869 *
870 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
871 * it.
872 *
873 * sk The sk of the socket
874 * addrs The pointer to the addresses in user land
875 * addrssize Size of the addrs buffer
876 * op Operation to perform (add or remove, see the flags of
877 * sctp_bindx)
878 *
879 * Returns 0 if ok, <0 errno code on error.
880 */
881 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
882 struct sockaddr __user *addrs,
883 int addrs_size, int op)
884 {
885 struct sockaddr *kaddrs;
886 int err;
887 int addrcnt = 0;
888 int walk_size = 0;
889 struct sockaddr *sa_addr;
890 void *addr_buf;
891 struct sctp_af *af;
892
893 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
894 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
895
896 if (unlikely(addrs_size <= 0))
897 return -EINVAL;
898
899 /* Check the user passed a healthy pointer. */
900 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
901 return -EFAULT;
902
903 /* Alloc space for the address array in kernel memory. */
904 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
905 if (unlikely(!kaddrs))
906 return -ENOMEM;
907
908 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
909 kfree(kaddrs);
910 return -EFAULT;
911 }
912
913 /* Walk through the addrs buffer and count the number of addresses. */
914 addr_buf = kaddrs;
915 while (walk_size < addrs_size) {
916 sa_addr = (struct sockaddr *)addr_buf;
917 af = sctp_get_af_specific(sa_addr->sa_family);
918
919 /* If the address family is not supported or if this address
920 * causes the address buffer to overflow return EINVAL.
921 */
922 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
923 kfree(kaddrs);
924 return -EINVAL;
925 }
926 addrcnt++;
927 addr_buf += af->sockaddr_len;
928 walk_size += af->sockaddr_len;
929 }
930
931 /* Do the work. */
932 switch (op) {
933 case SCTP_BINDX_ADD_ADDR:
934 err = sctp_bindx_add(sk, kaddrs, addrcnt);
935 if (err)
936 goto out;
937 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
938 break;
939
940 case SCTP_BINDX_REM_ADDR:
941 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
942 if (err)
943 goto out;
944 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
945 break;
946
947 default:
948 err = -EINVAL;
949 break;
950 }
951
952 out:
953 kfree(kaddrs);
954
955 return err;
956 }
957
958 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
959 *
960 * Common routine for handling connect() and sctp_connectx().
961 * Connect will come in with just a single address.
962 */
963 static int __sctp_connect(struct sock* sk,
964 struct sockaddr *kaddrs,
965 int addrs_size)
966 {
967 struct sctp_sock *sp;
968 struct sctp_endpoint *ep;
969 struct sctp_association *asoc = NULL;
970 struct sctp_association *asoc2;
971 struct sctp_transport *transport;
972 union sctp_addr to;
973 struct sctp_af *af;
974 sctp_scope_t scope;
975 long timeo;
976 int err = 0;
977 int addrcnt = 0;
978 int walk_size = 0;
979 union sctp_addr *sa_addr = NULL;
980 void *addr_buf;
981 unsigned short port;
982 unsigned int f_flags = 0;
983
984 sp = sctp_sk(sk);
985 ep = sp->ep;
986
987 /* connect() cannot be done on a socket that is already in ESTABLISHED
988 * state - UDP-style peeled off socket or a TCP-style socket that
989 * is already connected.
990 * It cannot be done even on a TCP-style listening socket.
991 */
992 if (sctp_sstate(sk, ESTABLISHED) ||
993 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
994 err = -EISCONN;
995 goto out_free;
996 }
997
998 /* Walk through the addrs buffer and count the number of addresses. */
999 addr_buf = kaddrs;
1000 while (walk_size < addrs_size) {
1001 sa_addr = (union sctp_addr *)addr_buf;
1002 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1003 port = ntohs(sa_addr->v4.sin_port);
1004
1005 /* If the address family is not supported or if this address
1006 * causes the address buffer to overflow return EINVAL.
1007 */
1008 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1009 err = -EINVAL;
1010 goto out_free;
1011 }
1012
1013 /* Save current address so we can work with it */
1014 memcpy(&to, sa_addr, af->sockaddr_len);
1015
1016 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1017 if (err)
1018 goto out_free;
1019
1020 /* Make sure the destination port is correctly set
1021 * in all addresses.
1022 */
1023 if (asoc && asoc->peer.port && asoc->peer.port != port)
1024 goto out_free;
1025
1026
1027 /* Check if there already is a matching association on the
1028 * endpoint (other than the one created here).
1029 */
1030 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1031 if (asoc2 && asoc2 != asoc) {
1032 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1033 err = -EISCONN;
1034 else
1035 err = -EALREADY;
1036 goto out_free;
1037 }
1038
1039 /* If we could not find a matching association on the endpoint,
1040 * make sure that there is no peeled-off association matching
1041 * the peer address even on another socket.
1042 */
1043 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1044 err = -EADDRNOTAVAIL;
1045 goto out_free;
1046 }
1047
1048 if (!asoc) {
1049 /* If a bind() or sctp_bindx() is not called prior to
1050 * an sctp_connectx() call, the system picks an
1051 * ephemeral port and will choose an address set
1052 * equivalent to binding with a wildcard address.
1053 */
1054 if (!ep->base.bind_addr.port) {
1055 if (sctp_autobind(sk)) {
1056 err = -EAGAIN;
1057 goto out_free;
1058 }
1059 } else {
1060 /*
1061 * If an unprivileged user inherits a 1-many
1062 * style socket with open associations on a
1063 * privileged port, it MAY be permitted to
1064 * accept new associations, but it SHOULD NOT
1065 * be permitted to open new associations.
1066 */
1067 if (ep->base.bind_addr.port < PROT_SOCK &&
1068 !capable(CAP_NET_BIND_SERVICE)) {
1069 err = -EACCES;
1070 goto out_free;
1071 }
1072 }
1073
1074 scope = sctp_scope(&to);
1075 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1076 if (!asoc) {
1077 err = -ENOMEM;
1078 goto out_free;
1079 }
1080 }
1081
1082 /* Prime the peer's transport structures. */
1083 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1084 SCTP_UNKNOWN);
1085 if (!transport) {
1086 err = -ENOMEM;
1087 goto out_free;
1088 }
1089
1090 addrcnt++;
1091 addr_buf += af->sockaddr_len;
1092 walk_size += af->sockaddr_len;
1093 }
1094
1095 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1096 if (err < 0) {
1097 goto out_free;
1098 }
1099
1100 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1101 if (err < 0) {
1102 goto out_free;
1103 }
1104
1105 /* Initialize sk's dport and daddr for getpeername() */
1106 inet_sk(sk)->dport = htons(asoc->peer.port);
1107 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1108 af->to_sk_daddr(sa_addr, sk);
1109 sk->sk_err = 0;
1110
1111 /* in-kernel sockets don't generally have a file allocated to them
1112 * if all they do is call sock_create_kern().
1113 */
1114 if (sk->sk_socket->file)
1115 f_flags = sk->sk_socket->file->f_flags;
1116
1117 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1118
1119 err = sctp_wait_for_connect(asoc, &timeo);
1120
1121 /* Don't free association on exit. */
1122 asoc = NULL;
1123
1124 out_free:
1125
1126 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1127 " kaddrs: %p err: %d\n",
1128 asoc, kaddrs, err);
1129 if (asoc)
1130 sctp_association_free(asoc);
1131 return err;
1132 }
1133
1134 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1135 *
1136 * API 8.9
1137 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1138 *
1139 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1140 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1141 * or IPv6 addresses.
1142 *
1143 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1144 * Section 3.1.2 for this usage.
1145 *
1146 * addrs is a pointer to an array of one or more socket addresses. Each
1147 * address is contained in its appropriate structure (i.e. struct
1148 * sockaddr_in or struct sockaddr_in6) the family of the address type
1149 * must be used to distengish the address length (note that this
1150 * representation is termed a "packed array" of addresses). The caller
1151 * specifies the number of addresses in the array with addrcnt.
1152 *
1153 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1154 * -1, and sets errno to the appropriate error code.
1155 *
1156 * For SCTP, the port given in each socket address must be the same, or
1157 * sctp_connectx() will fail, setting errno to EINVAL.
1158 *
1159 * An application can use sctp_connectx to initiate an association with
1160 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1161 * allows a caller to specify multiple addresses at which a peer can be
1162 * reached. The way the SCTP stack uses the list of addresses to set up
1163 * the association is implementation dependant. This function only
1164 * specifies that the stack will try to make use of all the addresses in
1165 * the list when needed.
1166 *
1167 * Note that the list of addresses passed in is only used for setting up
1168 * the association. It does not necessarily equal the set of addresses
1169 * the peer uses for the resulting association. If the caller wants to
1170 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1171 * retrieve them after the association has been set up.
1172 *
1173 * Basically do nothing but copying the addresses from user to kernel
1174 * land and invoking either sctp_connectx(). This is used for tunneling
1175 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1176 *
1177 * We don't use copy_from_user() for optimization: we first do the
1178 * sanity checks (buffer size -fast- and access check-healthy
1179 * pointer); if all of those succeed, then we can alloc the memory
1180 * (expensive operation) needed to copy the data to kernel. Then we do
1181 * the copying without checking the user space area
1182 * (__copy_from_user()).
1183 *
1184 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1185 * it.
1186 *
1187 * sk The sk of the socket
1188 * addrs The pointer to the addresses in user land
1189 * addrssize Size of the addrs buffer
1190 *
1191 * Returns 0 if ok, <0 errno code on error.
1192 */
1193 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1194 struct sockaddr __user *addrs,
1195 int addrs_size)
1196 {
1197 int err = 0;
1198 struct sockaddr *kaddrs;
1199
1200 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1201 __FUNCTION__, sk, addrs, addrs_size);
1202
1203 if (unlikely(addrs_size <= 0))
1204 return -EINVAL;
1205
1206 /* Check the user passed a healthy pointer. */
1207 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1208 return -EFAULT;
1209
1210 /* Alloc space for the address array in kernel memory. */
1211 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1212 if (unlikely(!kaddrs))
1213 return -ENOMEM;
1214
1215 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1216 err = -EFAULT;
1217 } else {
1218 err = __sctp_connect(sk, kaddrs, addrs_size);
1219 }
1220
1221 kfree(kaddrs);
1222 return err;
1223 }
1224
1225 /* API 3.1.4 close() - UDP Style Syntax
1226 * Applications use close() to perform graceful shutdown (as described in
1227 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1228 * by a UDP-style socket.
1229 *
1230 * The syntax is
1231 *
1232 * ret = close(int sd);
1233 *
1234 * sd - the socket descriptor of the associations to be closed.
1235 *
1236 * To gracefully shutdown a specific association represented by the
1237 * UDP-style socket, an application should use the sendmsg() call,
1238 * passing no user data, but including the appropriate flag in the
1239 * ancillary data (see Section xxxx).
1240 *
1241 * If sd in the close() call is a branched-off socket representing only
1242 * one association, the shutdown is performed on that association only.
1243 *
1244 * 4.1.6 close() - TCP Style Syntax
1245 *
1246 * Applications use close() to gracefully close down an association.
1247 *
1248 * The syntax is:
1249 *
1250 * int close(int sd);
1251 *
1252 * sd - the socket descriptor of the association to be closed.
1253 *
1254 * After an application calls close() on a socket descriptor, no further
1255 * socket operations will succeed on that descriptor.
1256 *
1257 * API 7.1.4 SO_LINGER
1258 *
1259 * An application using the TCP-style socket can use this option to
1260 * perform the SCTP ABORT primitive. The linger option structure is:
1261 *
1262 * struct linger {
1263 * int l_onoff; // option on/off
1264 * int l_linger; // linger time
1265 * };
1266 *
1267 * To enable the option, set l_onoff to 1. If the l_linger value is set
1268 * to 0, calling close() is the same as the ABORT primitive. If the
1269 * value is set to a negative value, the setsockopt() call will return
1270 * an error. If the value is set to a positive value linger_time, the
1271 * close() can be blocked for at most linger_time ms. If the graceful
1272 * shutdown phase does not finish during this period, close() will
1273 * return but the graceful shutdown phase continues in the system.
1274 */
1275 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1276 {
1277 struct sctp_endpoint *ep;
1278 struct sctp_association *asoc;
1279 struct list_head *pos, *temp;
1280
1281 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1282
1283 sctp_lock_sock(sk);
1284 sk->sk_shutdown = SHUTDOWN_MASK;
1285
1286 ep = sctp_sk(sk)->ep;
1287
1288 /* Walk all associations on an endpoint. */
1289 list_for_each_safe(pos, temp, &ep->asocs) {
1290 asoc = list_entry(pos, struct sctp_association, asocs);
1291
1292 if (sctp_style(sk, TCP)) {
1293 /* A closed association can still be in the list if
1294 * it belongs to a TCP-style listening socket that is
1295 * not yet accepted. If so, free it. If not, send an
1296 * ABORT or SHUTDOWN based on the linger options.
1297 */
1298 if (sctp_state(asoc, CLOSED)) {
1299 sctp_unhash_established(asoc);
1300 sctp_association_free(asoc);
1301 continue;
1302 }
1303 }
1304
1305 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1306 struct sctp_chunk *chunk;
1307
1308 chunk = sctp_make_abort_user(asoc, NULL, 0);
1309 if (chunk)
1310 sctp_primitive_ABORT(asoc, chunk);
1311 } else
1312 sctp_primitive_SHUTDOWN(asoc, NULL);
1313 }
1314
1315 /* Clean up any skbs sitting on the receive queue. */
1316 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1317 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1318
1319 /* On a TCP-style socket, block for at most linger_time if set. */
1320 if (sctp_style(sk, TCP) && timeout)
1321 sctp_wait_for_close(sk, timeout);
1322
1323 /* This will run the backlog queue. */
1324 sctp_release_sock(sk);
1325
1326 /* Supposedly, no process has access to the socket, but
1327 * the net layers still may.
1328 */
1329 sctp_local_bh_disable();
1330 sctp_bh_lock_sock(sk);
1331
1332 /* Hold the sock, since sk_common_release() will put sock_put()
1333 * and we have just a little more cleanup.
1334 */
1335 sock_hold(sk);
1336 sk_common_release(sk);
1337
1338 sctp_bh_unlock_sock(sk);
1339 sctp_local_bh_enable();
1340
1341 sock_put(sk);
1342
1343 SCTP_DBG_OBJCNT_DEC(sock);
1344 }
1345
1346 /* Handle EPIPE error. */
1347 static int sctp_error(struct sock *sk, int flags, int err)
1348 {
1349 if (err == -EPIPE)
1350 err = sock_error(sk) ? : -EPIPE;
1351 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1352 send_sig(SIGPIPE, current, 0);
1353 return err;
1354 }
1355
1356 /* API 3.1.3 sendmsg() - UDP Style Syntax
1357 *
1358 * An application uses sendmsg() and recvmsg() calls to transmit data to
1359 * and receive data from its peer.
1360 *
1361 * ssize_t sendmsg(int socket, const struct msghdr *message,
1362 * int flags);
1363 *
1364 * socket - the socket descriptor of the endpoint.
1365 * message - pointer to the msghdr structure which contains a single
1366 * user message and possibly some ancillary data.
1367 *
1368 * See Section 5 for complete description of the data
1369 * structures.
1370 *
1371 * flags - flags sent or received with the user message, see Section
1372 * 5 for complete description of the flags.
1373 *
1374 * Note: This function could use a rewrite especially when explicit
1375 * connect support comes in.
1376 */
1377 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1378
1379 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1380
1381 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1382 struct msghdr *msg, size_t msg_len)
1383 {
1384 struct sctp_sock *sp;
1385 struct sctp_endpoint *ep;
1386 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1387 struct sctp_transport *transport, *chunk_tp;
1388 struct sctp_chunk *chunk;
1389 union sctp_addr to;
1390 struct sockaddr *msg_name = NULL;
1391 struct sctp_sndrcvinfo default_sinfo = { 0 };
1392 struct sctp_sndrcvinfo *sinfo;
1393 struct sctp_initmsg *sinit;
1394 sctp_assoc_t associd = 0;
1395 sctp_cmsgs_t cmsgs = { NULL };
1396 int err;
1397 sctp_scope_t scope;
1398 long timeo;
1399 __u16 sinfo_flags = 0;
1400 struct sctp_datamsg *datamsg;
1401 struct list_head *pos;
1402 int msg_flags = msg->msg_flags;
1403
1404 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1405 sk, msg, msg_len);
1406
1407 err = 0;
1408 sp = sctp_sk(sk);
1409 ep = sp->ep;
1410
1411 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1412
1413 /* We cannot send a message over a TCP-style listening socket. */
1414 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1415 err = -EPIPE;
1416 goto out_nounlock;
1417 }
1418
1419 /* Parse out the SCTP CMSGs. */
1420 err = sctp_msghdr_parse(msg, &cmsgs);
1421
1422 if (err) {
1423 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1424 goto out_nounlock;
1425 }
1426
1427 /* Fetch the destination address for this packet. This
1428 * address only selects the association--it is not necessarily
1429 * the address we will send to.
1430 * For a peeled-off socket, msg_name is ignored.
1431 */
1432 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1433 int msg_namelen = msg->msg_namelen;
1434
1435 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1436 msg_namelen);
1437 if (err)
1438 return err;
1439
1440 if (msg_namelen > sizeof(to))
1441 msg_namelen = sizeof(to);
1442 memcpy(&to, msg->msg_name, msg_namelen);
1443 msg_name = msg->msg_name;
1444 }
1445
1446 sinfo = cmsgs.info;
1447 sinit = cmsgs.init;
1448
1449 /* Did the user specify SNDRCVINFO? */
1450 if (sinfo) {
1451 sinfo_flags = sinfo->sinfo_flags;
1452 associd = sinfo->sinfo_assoc_id;
1453 }
1454
1455 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1456 msg_len, sinfo_flags);
1457
1458 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1459 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1460 err = -EINVAL;
1461 goto out_nounlock;
1462 }
1463
1464 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1465 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1466 * If SCTP_ABORT is set, the message length could be non zero with
1467 * the msg_iov set to the user abort reason.
1468 */
1469 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1470 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1471 err = -EINVAL;
1472 goto out_nounlock;
1473 }
1474
1475 /* If SCTP_ADDR_OVER is set, there must be an address
1476 * specified in msg_name.
1477 */
1478 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1479 err = -EINVAL;
1480 goto out_nounlock;
1481 }
1482
1483 transport = NULL;
1484
1485 SCTP_DEBUG_PRINTK("About to look up association.\n");
1486
1487 sctp_lock_sock(sk);
1488
1489 /* If a msg_name has been specified, assume this is to be used. */
1490 if (msg_name) {
1491 /* Look for a matching association on the endpoint. */
1492 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1493 if (!asoc) {
1494 /* If we could not find a matching association on the
1495 * endpoint, make sure that it is not a TCP-style
1496 * socket that already has an association or there is
1497 * no peeled-off association on another socket.
1498 */
1499 if ((sctp_style(sk, TCP) &&
1500 sctp_sstate(sk, ESTABLISHED)) ||
1501 sctp_endpoint_is_peeled_off(ep, &to)) {
1502 err = -EADDRNOTAVAIL;
1503 goto out_unlock;
1504 }
1505 }
1506 } else {
1507 asoc = sctp_id2assoc(sk, associd);
1508 if (!asoc) {
1509 err = -EPIPE;
1510 goto out_unlock;
1511 }
1512 }
1513
1514 if (asoc) {
1515 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1516
1517 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1518 * socket that has an association in CLOSED state. This can
1519 * happen when an accepted socket has an association that is
1520 * already CLOSED.
1521 */
1522 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1523 err = -EPIPE;
1524 goto out_unlock;
1525 }
1526
1527 if (sinfo_flags & SCTP_EOF) {
1528 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1529 asoc);
1530 sctp_primitive_SHUTDOWN(asoc, NULL);
1531 err = 0;
1532 goto out_unlock;
1533 }
1534 if (sinfo_flags & SCTP_ABORT) {
1535
1536 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1537 if (!chunk) {
1538 err = -ENOMEM;
1539 goto out_unlock;
1540 }
1541
1542 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1543 sctp_primitive_ABORT(asoc, chunk);
1544 err = 0;
1545 goto out_unlock;
1546 }
1547 }
1548
1549 /* Do we need to create the association? */
1550 if (!asoc) {
1551 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1552
1553 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1554 err = -EINVAL;
1555 goto out_unlock;
1556 }
1557
1558 /* Check for invalid stream against the stream counts,
1559 * either the default or the user specified stream counts.
1560 */
1561 if (sinfo) {
1562 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1563 /* Check against the defaults. */
1564 if (sinfo->sinfo_stream >=
1565 sp->initmsg.sinit_num_ostreams) {
1566 err = -EINVAL;
1567 goto out_unlock;
1568 }
1569 } else {
1570 /* Check against the requested. */
1571 if (sinfo->sinfo_stream >=
1572 sinit->sinit_num_ostreams) {
1573 err = -EINVAL;
1574 goto out_unlock;
1575 }
1576 }
1577 }
1578
1579 /*
1580 * API 3.1.2 bind() - UDP Style Syntax
1581 * If a bind() or sctp_bindx() is not called prior to a
1582 * sendmsg() call that initiates a new association, the
1583 * system picks an ephemeral port and will choose an address
1584 * set equivalent to binding with a wildcard address.
1585 */
1586 if (!ep->base.bind_addr.port) {
1587 if (sctp_autobind(sk)) {
1588 err = -EAGAIN;
1589 goto out_unlock;
1590 }
1591 } else {
1592 /*
1593 * If an unprivileged user inherits a one-to-many
1594 * style socket with open associations on a privileged
1595 * port, it MAY be permitted to accept new associations,
1596 * but it SHOULD NOT be permitted to open new
1597 * associations.
1598 */
1599 if (ep->base.bind_addr.port < PROT_SOCK &&
1600 !capable(CAP_NET_BIND_SERVICE)) {
1601 err = -EACCES;
1602 goto out_unlock;
1603 }
1604 }
1605
1606 scope = sctp_scope(&to);
1607 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1608 if (!new_asoc) {
1609 err = -ENOMEM;
1610 goto out_unlock;
1611 }
1612 asoc = new_asoc;
1613
1614 /* If the SCTP_INIT ancillary data is specified, set all
1615 * the association init values accordingly.
1616 */
1617 if (sinit) {
1618 if (sinit->sinit_num_ostreams) {
1619 asoc->c.sinit_num_ostreams =
1620 sinit->sinit_num_ostreams;
1621 }
1622 if (sinit->sinit_max_instreams) {
1623 asoc->c.sinit_max_instreams =
1624 sinit->sinit_max_instreams;
1625 }
1626 if (sinit->sinit_max_attempts) {
1627 asoc->max_init_attempts
1628 = sinit->sinit_max_attempts;
1629 }
1630 if (sinit->sinit_max_init_timeo) {
1631 asoc->max_init_timeo =
1632 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1633 }
1634 }
1635
1636 /* Prime the peer's transport structures. */
1637 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1638 if (!transport) {
1639 err = -ENOMEM;
1640 goto out_free;
1641 }
1642 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1643 if (err < 0) {
1644 err = -ENOMEM;
1645 goto out_free;
1646 }
1647 }
1648
1649 /* ASSERT: we have a valid association at this point. */
1650 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1651
1652 if (!sinfo) {
1653 /* If the user didn't specify SNDRCVINFO, make up one with
1654 * some defaults.
1655 */
1656 default_sinfo.sinfo_stream = asoc->default_stream;
1657 default_sinfo.sinfo_flags = asoc->default_flags;
1658 default_sinfo.sinfo_ppid = asoc->default_ppid;
1659 default_sinfo.sinfo_context = asoc->default_context;
1660 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1661 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1662 sinfo = &default_sinfo;
1663 }
1664
1665 /* API 7.1.7, the sndbuf size per association bounds the
1666 * maximum size of data that can be sent in a single send call.
1667 */
1668 if (msg_len > sk->sk_sndbuf) {
1669 err = -EMSGSIZE;
1670 goto out_free;
1671 }
1672
1673 if (asoc->pmtu_pending)
1674 sctp_assoc_pending_pmtu(asoc);
1675
1676 /* If fragmentation is disabled and the message length exceeds the
1677 * association fragmentation point, return EMSGSIZE. The I-D
1678 * does not specify what this error is, but this looks like
1679 * a great fit.
1680 */
1681 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1682 err = -EMSGSIZE;
1683 goto out_free;
1684 }
1685
1686 if (sinfo) {
1687 /* Check for invalid stream. */
1688 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1689 err = -EINVAL;
1690 goto out_free;
1691 }
1692 }
1693
1694 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1695 if (!sctp_wspace(asoc)) {
1696 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1697 if (err)
1698 goto out_free;
1699 }
1700
1701 /* If an address is passed with the sendto/sendmsg call, it is used
1702 * to override the primary destination address in the TCP model, or
1703 * when SCTP_ADDR_OVER flag is set in the UDP model.
1704 */
1705 if ((sctp_style(sk, TCP) && msg_name) ||
1706 (sinfo_flags & SCTP_ADDR_OVER)) {
1707 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1708 if (!chunk_tp) {
1709 err = -EINVAL;
1710 goto out_free;
1711 }
1712 } else
1713 chunk_tp = NULL;
1714
1715 /* Auto-connect, if we aren't connected already. */
1716 if (sctp_state(asoc, CLOSED)) {
1717 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1718 if (err < 0)
1719 goto out_free;
1720 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1721 }
1722
1723 /* Break the message into multiple chunks of maximum size. */
1724 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1725 if (!datamsg) {
1726 err = -ENOMEM;
1727 goto out_free;
1728 }
1729
1730 /* Now send the (possibly) fragmented message. */
1731 list_for_each(pos, &datamsg->chunks) {
1732 chunk = list_entry(pos, struct sctp_chunk, frag_list);
1733 sctp_datamsg_track(chunk);
1734
1735 /* Do accounting for the write space. */
1736 sctp_set_owner_w(chunk);
1737
1738 chunk->transport = chunk_tp;
1739
1740 /* Send it to the lower layers. Note: all chunks
1741 * must either fail or succeed. The lower layer
1742 * works that way today. Keep it that way or this
1743 * breaks.
1744 */
1745 err = sctp_primitive_SEND(asoc, chunk);
1746 /* Did the lower layer accept the chunk? */
1747 if (err)
1748 sctp_chunk_free(chunk);
1749 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1750 }
1751
1752 sctp_datamsg_free(datamsg);
1753 if (err)
1754 goto out_free;
1755 else
1756 err = msg_len;
1757
1758 /* If we are already past ASSOCIATE, the lower
1759 * layers are responsible for association cleanup.
1760 */
1761 goto out_unlock;
1762
1763 out_free:
1764 if (new_asoc)
1765 sctp_association_free(asoc);
1766 out_unlock:
1767 sctp_release_sock(sk);
1768
1769 out_nounlock:
1770 return sctp_error(sk, msg_flags, err);
1771
1772 #if 0
1773 do_sock_err:
1774 if (msg_len)
1775 err = msg_len;
1776 else
1777 err = sock_error(sk);
1778 goto out;
1779
1780 do_interrupted:
1781 if (msg_len)
1782 err = msg_len;
1783 goto out;
1784 #endif /* 0 */
1785 }
1786
1787 /* This is an extended version of skb_pull() that removes the data from the
1788 * start of a skb even when data is spread across the list of skb's in the
1789 * frag_list. len specifies the total amount of data that needs to be removed.
1790 * when 'len' bytes could be removed from the skb, it returns 0.
1791 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1792 * could not be removed.
1793 */
1794 static int sctp_skb_pull(struct sk_buff *skb, int len)
1795 {
1796 struct sk_buff *list;
1797 int skb_len = skb_headlen(skb);
1798 int rlen;
1799
1800 if (len <= skb_len) {
1801 __skb_pull(skb, len);
1802 return 0;
1803 }
1804 len -= skb_len;
1805 __skb_pull(skb, skb_len);
1806
1807 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1808 rlen = sctp_skb_pull(list, len);
1809 skb->len -= (len-rlen);
1810 skb->data_len -= (len-rlen);
1811
1812 if (!rlen)
1813 return 0;
1814
1815 len = rlen;
1816 }
1817
1818 return len;
1819 }
1820
1821 /* API 3.1.3 recvmsg() - UDP Style Syntax
1822 *
1823 * ssize_t recvmsg(int socket, struct msghdr *message,
1824 * int flags);
1825 *
1826 * socket - the socket descriptor of the endpoint.
1827 * message - pointer to the msghdr structure which contains a single
1828 * user message and possibly some ancillary data.
1829 *
1830 * See Section 5 for complete description of the data
1831 * structures.
1832 *
1833 * flags - flags sent or received with the user message, see Section
1834 * 5 for complete description of the flags.
1835 */
1836 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1837
1838 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1839 struct msghdr *msg, size_t len, int noblock,
1840 int flags, int *addr_len)
1841 {
1842 struct sctp_ulpevent *event = NULL;
1843 struct sctp_sock *sp = sctp_sk(sk);
1844 struct sk_buff *skb;
1845 int copied;
1846 int err = 0;
1847 int skb_len;
1848
1849 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1850 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1851 "len", len, "knoblauch", noblock,
1852 "flags", flags, "addr_len", addr_len);
1853
1854 sctp_lock_sock(sk);
1855
1856 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1857 err = -ENOTCONN;
1858 goto out;
1859 }
1860
1861 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1862 if (!skb)
1863 goto out;
1864
1865 /* Get the total length of the skb including any skb's in the
1866 * frag_list.
1867 */
1868 skb_len = skb->len;
1869
1870 copied = skb_len;
1871 if (copied > len)
1872 copied = len;
1873
1874 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1875
1876 event = sctp_skb2event(skb);
1877
1878 if (err)
1879 goto out_free;
1880
1881 sock_recv_timestamp(msg, sk, skb);
1882 if (sctp_ulpevent_is_notification(event)) {
1883 msg->msg_flags |= MSG_NOTIFICATION;
1884 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1885 } else {
1886 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1887 }
1888
1889 /* Check if we allow SCTP_SNDRCVINFO. */
1890 if (sp->subscribe.sctp_data_io_event)
1891 sctp_ulpevent_read_sndrcvinfo(event, msg);
1892 #if 0
1893 /* FIXME: we should be calling IP/IPv6 layers. */
1894 if (sk->sk_protinfo.af_inet.cmsg_flags)
1895 ip_cmsg_recv(msg, skb);
1896 #endif
1897
1898 err = copied;
1899
1900 /* If skb's length exceeds the user's buffer, update the skb and
1901 * push it back to the receive_queue so that the next call to
1902 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1903 */
1904 if (skb_len > copied) {
1905 msg->msg_flags &= ~MSG_EOR;
1906 if (flags & MSG_PEEK)
1907 goto out_free;
1908 sctp_skb_pull(skb, copied);
1909 skb_queue_head(&sk->sk_receive_queue, skb);
1910
1911 /* When only partial message is copied to the user, increase
1912 * rwnd by that amount. If all the data in the skb is read,
1913 * rwnd is updated when the event is freed.
1914 */
1915 sctp_assoc_rwnd_increase(event->asoc, copied);
1916 goto out;
1917 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1918 (event->msg_flags & MSG_EOR))
1919 msg->msg_flags |= MSG_EOR;
1920 else
1921 msg->msg_flags &= ~MSG_EOR;
1922
1923 out_free:
1924 if (flags & MSG_PEEK) {
1925 /* Release the skb reference acquired after peeking the skb in
1926 * sctp_skb_recv_datagram().
1927 */
1928 kfree_skb(skb);
1929 } else {
1930 /* Free the event which includes releasing the reference to
1931 * the owner of the skb, freeing the skb and updating the
1932 * rwnd.
1933 */
1934 sctp_ulpevent_free(event);
1935 }
1936 out:
1937 sctp_release_sock(sk);
1938 return err;
1939 }
1940
1941 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1942 *
1943 * This option is a on/off flag. If enabled no SCTP message
1944 * fragmentation will be performed. Instead if a message being sent
1945 * exceeds the current PMTU size, the message will NOT be sent and
1946 * instead a error will be indicated to the user.
1947 */
1948 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1949 char __user *optval, int optlen)
1950 {
1951 int val;
1952
1953 if (optlen < sizeof(int))
1954 return -EINVAL;
1955
1956 if (get_user(val, (int __user *)optval))
1957 return -EFAULT;
1958
1959 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1960
1961 return 0;
1962 }
1963
1964 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1965 int optlen)
1966 {
1967 if (optlen != sizeof(struct sctp_event_subscribe))
1968 return -EINVAL;
1969 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1970 return -EFAULT;
1971 return 0;
1972 }
1973
1974 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1975 *
1976 * This socket option is applicable to the UDP-style socket only. When
1977 * set it will cause associations that are idle for more than the
1978 * specified number of seconds to automatically close. An association
1979 * being idle is defined an association that has NOT sent or received
1980 * user data. The special value of '0' indicates that no automatic
1981 * close of any associations should be performed. The option expects an
1982 * integer defining the number of seconds of idle time before an
1983 * association is closed.
1984 */
1985 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1986 int optlen)
1987 {
1988 struct sctp_sock *sp = sctp_sk(sk);
1989
1990 /* Applicable to UDP-style socket only */
1991 if (sctp_style(sk, TCP))
1992 return -EOPNOTSUPP;
1993 if (optlen != sizeof(int))
1994 return -EINVAL;
1995 if (copy_from_user(&sp->autoclose, optval, optlen))
1996 return -EFAULT;
1997
1998 return 0;
1999 }
2000
2001 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2002 *
2003 * Applications can enable or disable heartbeats for any peer address of
2004 * an association, modify an address's heartbeat interval, force a
2005 * heartbeat to be sent immediately, and adjust the address's maximum
2006 * number of retransmissions sent before an address is considered
2007 * unreachable. The following structure is used to access and modify an
2008 * address's parameters:
2009 *
2010 * struct sctp_paddrparams {
2011 * sctp_assoc_t spp_assoc_id;
2012 * struct sockaddr_storage spp_address;
2013 * uint32_t spp_hbinterval;
2014 * uint16_t spp_pathmaxrxt;
2015 * uint32_t spp_pathmtu;
2016 * uint32_t spp_sackdelay;
2017 * uint32_t spp_flags;
2018 * };
2019 *
2020 * spp_assoc_id - (one-to-many style socket) This is filled in the
2021 * application, and identifies the association for
2022 * this query.
2023 * spp_address - This specifies which address is of interest.
2024 * spp_hbinterval - This contains the value of the heartbeat interval,
2025 * in milliseconds. If a value of zero
2026 * is present in this field then no changes are to
2027 * be made to this parameter.
2028 * spp_pathmaxrxt - This contains the maximum number of
2029 * retransmissions before this address shall be
2030 * considered unreachable. If a value of zero
2031 * is present in this field then no changes are to
2032 * be made to this parameter.
2033 * spp_pathmtu - When Path MTU discovery is disabled the value
2034 * specified here will be the "fixed" path mtu.
2035 * Note that if the spp_address field is empty
2036 * then all associations on this address will
2037 * have this fixed path mtu set upon them.
2038 *
2039 * spp_sackdelay - When delayed sack is enabled, this value specifies
2040 * the number of milliseconds that sacks will be delayed
2041 * for. This value will apply to all addresses of an
2042 * association if the spp_address field is empty. Note
2043 * also, that if delayed sack is enabled and this
2044 * value is set to 0, no change is made to the last
2045 * recorded delayed sack timer value.
2046 *
2047 * spp_flags - These flags are used to control various features
2048 * on an association. The flag field may contain
2049 * zero or more of the following options.
2050 *
2051 * SPP_HB_ENABLE - Enable heartbeats on the
2052 * specified address. Note that if the address
2053 * field is empty all addresses for the association
2054 * have heartbeats enabled upon them.
2055 *
2056 * SPP_HB_DISABLE - Disable heartbeats on the
2057 * speicifed address. Note that if the address
2058 * field is empty all addresses for the association
2059 * will have their heartbeats disabled. Note also
2060 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2061 * mutually exclusive, only one of these two should
2062 * be specified. Enabling both fields will have
2063 * undetermined results.
2064 *
2065 * SPP_HB_DEMAND - Request a user initiated heartbeat
2066 * to be made immediately.
2067 *
2068 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2069 * heartbeat delayis to be set to the value of 0
2070 * milliseconds.
2071 *
2072 * SPP_PMTUD_ENABLE - This field will enable PMTU
2073 * discovery upon the specified address. Note that
2074 * if the address feild is empty then all addresses
2075 * on the association are effected.
2076 *
2077 * SPP_PMTUD_DISABLE - This field will disable PMTU
2078 * discovery upon the specified address. Note that
2079 * if the address feild is empty then all addresses
2080 * on the association are effected. Not also that
2081 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2082 * exclusive. Enabling both will have undetermined
2083 * results.
2084 *
2085 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2086 * on delayed sack. The time specified in spp_sackdelay
2087 * is used to specify the sack delay for this address. Note
2088 * that if spp_address is empty then all addresses will
2089 * enable delayed sack and take on the sack delay
2090 * value specified in spp_sackdelay.
2091 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2092 * off delayed sack. If the spp_address field is blank then
2093 * delayed sack is disabled for the entire association. Note
2094 * also that this field is mutually exclusive to
2095 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2096 * results.
2097 */
2098 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2099 struct sctp_transport *trans,
2100 struct sctp_association *asoc,
2101 struct sctp_sock *sp,
2102 int hb_change,
2103 int pmtud_change,
2104 int sackdelay_change)
2105 {
2106 int error;
2107
2108 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2109 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2110 if (error)
2111 return error;
2112 }
2113
2114 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2115 * this field is ignored. Note also that a value of zero indicates
2116 * the current setting should be left unchanged.
2117 */
2118 if (params->spp_flags & SPP_HB_ENABLE) {
2119
2120 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2121 * set. This lets us use 0 value when this flag
2122 * is set.
2123 */
2124 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2125 params->spp_hbinterval = 0;
2126
2127 if (params->spp_hbinterval ||
2128 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2129 if (trans) {
2130 trans->hbinterval =
2131 msecs_to_jiffies(params->spp_hbinterval);
2132 } else if (asoc) {
2133 asoc->hbinterval =
2134 msecs_to_jiffies(params->spp_hbinterval);
2135 } else {
2136 sp->hbinterval = params->spp_hbinterval;
2137 }
2138 }
2139 }
2140
2141 if (hb_change) {
2142 if (trans) {
2143 trans->param_flags =
2144 (trans->param_flags & ~SPP_HB) | hb_change;
2145 } else if (asoc) {
2146 asoc->param_flags =
2147 (asoc->param_flags & ~SPP_HB) | hb_change;
2148 } else {
2149 sp->param_flags =
2150 (sp->param_flags & ~SPP_HB) | hb_change;
2151 }
2152 }
2153
2154 /* When Path MTU discovery is disabled the value specified here will
2155 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2156 * include the flag SPP_PMTUD_DISABLE for this field to have any
2157 * effect).
2158 */
2159 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2160 if (trans) {
2161 trans->pathmtu = params->spp_pathmtu;
2162 sctp_assoc_sync_pmtu(asoc);
2163 } else if (asoc) {
2164 asoc->pathmtu = params->spp_pathmtu;
2165 sctp_frag_point(sp, params->spp_pathmtu);
2166 } else {
2167 sp->pathmtu = params->spp_pathmtu;
2168 }
2169 }
2170
2171 if (pmtud_change) {
2172 if (trans) {
2173 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2174 (params->spp_flags & SPP_PMTUD_ENABLE);
2175 trans->param_flags =
2176 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2177 if (update) {
2178 sctp_transport_pmtu(trans);
2179 sctp_assoc_sync_pmtu(asoc);
2180 }
2181 } else if (asoc) {
2182 asoc->param_flags =
2183 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2184 } else {
2185 sp->param_flags =
2186 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2187 }
2188 }
2189
2190 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2191 * value of this field is ignored. Note also that a value of zero
2192 * indicates the current setting should be left unchanged.
2193 */
2194 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2195 if (trans) {
2196 trans->sackdelay =
2197 msecs_to_jiffies(params->spp_sackdelay);
2198 } else if (asoc) {
2199 asoc->sackdelay =
2200 msecs_to_jiffies(params->spp_sackdelay);
2201 } else {
2202 sp->sackdelay = params->spp_sackdelay;
2203 }
2204 }
2205
2206 if (sackdelay_change) {
2207 if (trans) {
2208 trans->param_flags =
2209 (trans->param_flags & ~SPP_SACKDELAY) |
2210 sackdelay_change;
2211 } else if (asoc) {
2212 asoc->param_flags =
2213 (asoc->param_flags & ~SPP_SACKDELAY) |
2214 sackdelay_change;
2215 } else {
2216 sp->param_flags =
2217 (sp->param_flags & ~SPP_SACKDELAY) |
2218 sackdelay_change;
2219 }
2220 }
2221
2222 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2223 * of this field is ignored. Note also that a value of zero
2224 * indicates the current setting should be left unchanged.
2225 */
2226 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2227 if (trans) {
2228 trans->pathmaxrxt = params->spp_pathmaxrxt;
2229 } else if (asoc) {
2230 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2231 } else {
2232 sp->pathmaxrxt = params->spp_pathmaxrxt;
2233 }
2234 }
2235
2236 return 0;
2237 }
2238
2239 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2240 char __user *optval, int optlen)
2241 {
2242 struct sctp_paddrparams params;
2243 struct sctp_transport *trans = NULL;
2244 struct sctp_association *asoc = NULL;
2245 struct sctp_sock *sp = sctp_sk(sk);
2246 int error;
2247 int hb_change, pmtud_change, sackdelay_change;
2248
2249 if (optlen != sizeof(struct sctp_paddrparams))
2250 return - EINVAL;
2251
2252 if (copy_from_user(&params, optval, optlen))
2253 return -EFAULT;
2254
2255 /* Validate flags and value parameters. */
2256 hb_change = params.spp_flags & SPP_HB;
2257 pmtud_change = params.spp_flags & SPP_PMTUD;
2258 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2259
2260 if (hb_change == SPP_HB ||
2261 pmtud_change == SPP_PMTUD ||
2262 sackdelay_change == SPP_SACKDELAY ||
2263 params.spp_sackdelay > 500 ||
2264 (params.spp_pathmtu
2265 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2266 return -EINVAL;
2267
2268 /* If an address other than INADDR_ANY is specified, and
2269 * no transport is found, then the request is invalid.
2270 */
2271 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2272 trans = sctp_addr_id2transport(sk, &params.spp_address,
2273 params.spp_assoc_id);
2274 if (!trans)
2275 return -EINVAL;
2276 }
2277
2278 /* Get association, if assoc_id != 0 and the socket is a one
2279 * to many style socket, and an association was not found, then
2280 * the id was invalid.
2281 */
2282 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2283 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2284 return -EINVAL;
2285
2286 /* Heartbeat demand can only be sent on a transport or
2287 * association, but not a socket.
2288 */
2289 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2290 return -EINVAL;
2291
2292 /* Process parameters. */
2293 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2294 hb_change, pmtud_change,
2295 sackdelay_change);
2296
2297 if (error)
2298 return error;
2299
2300 /* If changes are for association, also apply parameters to each
2301 * transport.
2302 */
2303 if (!trans && asoc) {
2304 struct list_head *pos;
2305
2306 list_for_each(pos, &asoc->peer.transport_addr_list) {
2307 trans = list_entry(pos, struct sctp_transport,
2308 transports);
2309 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2310 hb_change, pmtud_change,
2311 sackdelay_change);
2312 }
2313 }
2314
2315 return 0;
2316 }
2317
2318 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2319 *
2320 * This options will get or set the delayed ack timer. The time is set
2321 * in milliseconds. If the assoc_id is 0, then this sets or gets the
2322 * endpoints default delayed ack timer value. If the assoc_id field is
2323 * non-zero, then the set or get effects the specified association.
2324 *
2325 * struct sctp_assoc_value {
2326 * sctp_assoc_t assoc_id;
2327 * uint32_t assoc_value;
2328 * };
2329 *
2330 * assoc_id - This parameter, indicates which association the
2331 * user is preforming an action upon. Note that if
2332 * this field's value is zero then the endpoints
2333 * default value is changed (effecting future
2334 * associations only).
2335 *
2336 * assoc_value - This parameter contains the number of milliseconds
2337 * that the user is requesting the delayed ACK timer
2338 * be set to. Note that this value is defined in
2339 * the standard to be between 200 and 500 milliseconds.
2340 *
2341 * Note: a value of zero will leave the value alone,
2342 * but disable SACK delay. A non-zero value will also
2343 * enable SACK delay.
2344 */
2345
2346 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2347 char __user *optval, int optlen)
2348 {
2349 struct sctp_assoc_value params;
2350 struct sctp_transport *trans = NULL;
2351 struct sctp_association *asoc = NULL;
2352 struct sctp_sock *sp = sctp_sk(sk);
2353
2354 if (optlen != sizeof(struct sctp_assoc_value))
2355 return - EINVAL;
2356
2357 if (copy_from_user(&params, optval, optlen))
2358 return -EFAULT;
2359
2360 /* Validate value parameter. */
2361 if (params.assoc_value > 500)
2362 return -EINVAL;
2363
2364 /* Get association, if assoc_id != 0 and the socket is a one
2365 * to many style socket, and an association was not found, then
2366 * the id was invalid.
2367 */
2368 asoc = sctp_id2assoc(sk, params.assoc_id);
2369 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2370 return -EINVAL;
2371
2372 if (params.assoc_value) {
2373 if (asoc) {
2374 asoc->sackdelay =
2375 msecs_to_jiffies(params.assoc_value);
2376 asoc->param_flags =
2377 (asoc->param_flags & ~SPP_SACKDELAY) |
2378 SPP_SACKDELAY_ENABLE;
2379 } else {
2380 sp->sackdelay = params.assoc_value;
2381 sp->param_flags =
2382 (sp->param_flags & ~SPP_SACKDELAY) |
2383 SPP_SACKDELAY_ENABLE;
2384 }
2385 } else {
2386 if (asoc) {
2387 asoc->param_flags =
2388 (asoc->param_flags & ~SPP_SACKDELAY) |
2389 SPP_SACKDELAY_DISABLE;
2390 } else {
2391 sp->param_flags =
2392 (sp->param_flags & ~SPP_SACKDELAY) |
2393 SPP_SACKDELAY_DISABLE;
2394 }
2395 }
2396
2397 /* If change is for association, also apply to each transport. */
2398 if (asoc) {
2399 struct list_head *pos;
2400
2401 list_for_each(pos, &asoc->peer.transport_addr_list) {
2402 trans = list_entry(pos, struct sctp_transport,
2403 transports);
2404 if (params.assoc_value) {
2405 trans->sackdelay =
2406 msecs_to_jiffies(params.assoc_value);
2407 trans->param_flags =
2408 (trans->param_flags & ~SPP_SACKDELAY) |
2409 SPP_SACKDELAY_ENABLE;
2410 } else {
2411 trans->param_flags =
2412 (trans->param_flags & ~SPP_SACKDELAY) |
2413 SPP_SACKDELAY_DISABLE;
2414 }
2415 }
2416 }
2417
2418 return 0;
2419 }
2420
2421 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2422 *
2423 * Applications can specify protocol parameters for the default association
2424 * initialization. The option name argument to setsockopt() and getsockopt()
2425 * is SCTP_INITMSG.
2426 *
2427 * Setting initialization parameters is effective only on an unconnected
2428 * socket (for UDP-style sockets only future associations are effected
2429 * by the change). With TCP-style sockets, this option is inherited by
2430 * sockets derived from a listener socket.
2431 */
2432 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2433 {
2434 struct sctp_initmsg sinit;
2435 struct sctp_sock *sp = sctp_sk(sk);
2436
2437 if (optlen != sizeof(struct sctp_initmsg))
2438 return -EINVAL;
2439 if (copy_from_user(&sinit, optval, optlen))
2440 return -EFAULT;
2441
2442 if (sinit.sinit_num_ostreams)
2443 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2444 if (sinit.sinit_max_instreams)
2445 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2446 if (sinit.sinit_max_attempts)
2447 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2448 if (sinit.sinit_max_init_timeo)
2449 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2450
2451 return 0;
2452 }
2453
2454 /*
2455 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2456 *
2457 * Applications that wish to use the sendto() system call may wish to
2458 * specify a default set of parameters that would normally be supplied
2459 * through the inclusion of ancillary data. This socket option allows
2460 * such an application to set the default sctp_sndrcvinfo structure.
2461 * The application that wishes to use this socket option simply passes
2462 * in to this call the sctp_sndrcvinfo structure defined in Section
2463 * 5.2.2) The input parameters accepted by this call include
2464 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2465 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2466 * to this call if the caller is using the UDP model.
2467 */
2468 static int sctp_setsockopt_default_send_param(struct sock *sk,
2469 char __user *optval, int optlen)
2470 {
2471 struct sctp_sndrcvinfo info;
2472 struct sctp_association *asoc;
2473 struct sctp_sock *sp = sctp_sk(sk);
2474
2475 if (optlen != sizeof(struct sctp_sndrcvinfo))
2476 return -EINVAL;
2477 if (copy_from_user(&info, optval, optlen))
2478 return -EFAULT;
2479
2480 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2481 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2482 return -EINVAL;
2483
2484 if (asoc) {
2485 asoc->default_stream = info.sinfo_stream;
2486 asoc->default_flags = info.sinfo_flags;
2487 asoc->default_ppid = info.sinfo_ppid;
2488 asoc->default_context = info.sinfo_context;
2489 asoc->default_timetolive = info.sinfo_timetolive;
2490 } else {
2491 sp->default_stream = info.sinfo_stream;
2492 sp->default_flags = info.sinfo_flags;
2493 sp->default_ppid = info.sinfo_ppid;
2494 sp->default_context = info.sinfo_context;
2495 sp->default_timetolive = info.sinfo_timetolive;
2496 }
2497
2498 return 0;
2499 }
2500
2501 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2502 *
2503 * Requests that the local SCTP stack use the enclosed peer address as
2504 * the association primary. The enclosed address must be one of the
2505 * association peer's addresses.
2506 */
2507 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2508 int optlen)
2509 {
2510 struct sctp_prim prim;
2511 struct sctp_transport *trans;
2512
2513 if (optlen != sizeof(struct sctp_prim))
2514 return -EINVAL;
2515
2516 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2517 return -EFAULT;
2518
2519 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2520 if (!trans)
2521 return -EINVAL;
2522
2523 sctp_assoc_set_primary(trans->asoc, trans);
2524
2525 return 0;
2526 }
2527
2528 /*
2529 * 7.1.5 SCTP_NODELAY
2530 *
2531 * Turn on/off any Nagle-like algorithm. This means that packets are
2532 * generally sent as soon as possible and no unnecessary delays are
2533 * introduced, at the cost of more packets in the network. Expects an
2534 * integer boolean flag.
2535 */
2536 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2537 int optlen)
2538 {
2539 int val;
2540
2541 if (optlen < sizeof(int))
2542 return -EINVAL;
2543 if (get_user(val, (int __user *)optval))
2544 return -EFAULT;
2545
2546 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2547 return 0;
2548 }
2549
2550 /*
2551 *
2552 * 7.1.1 SCTP_RTOINFO
2553 *
2554 * The protocol parameters used to initialize and bound retransmission
2555 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2556 * and modify these parameters.
2557 * All parameters are time values, in milliseconds. A value of 0, when
2558 * modifying the parameters, indicates that the current value should not
2559 * be changed.
2560 *
2561 */
2562 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2563 struct sctp_rtoinfo rtoinfo;
2564 struct sctp_association *asoc;
2565
2566 if (optlen != sizeof (struct sctp_rtoinfo))
2567 return -EINVAL;
2568
2569 if (copy_from_user(&rtoinfo, optval, optlen))
2570 return -EFAULT;
2571
2572 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2573
2574 /* Set the values to the specific association */
2575 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2576 return -EINVAL;
2577
2578 if (asoc) {
2579 if (rtoinfo.srto_initial != 0)
2580 asoc->rto_initial =
2581 msecs_to_jiffies(rtoinfo.srto_initial);
2582 if (rtoinfo.srto_max != 0)
2583 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2584 if (rtoinfo.srto_min != 0)
2585 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2586 } else {
2587 /* If there is no association or the association-id = 0
2588 * set the values to the endpoint.
2589 */
2590 struct sctp_sock *sp = sctp_sk(sk);
2591
2592 if (rtoinfo.srto_initial != 0)
2593 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2594 if (rtoinfo.srto_max != 0)
2595 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2596 if (rtoinfo.srto_min != 0)
2597 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2598 }
2599
2600 return 0;
2601 }
2602
2603 /*
2604 *
2605 * 7.1.2 SCTP_ASSOCINFO
2606 *
2607 * This option is used to tune the maximum retransmission attempts
2608 * of the association.
2609 * Returns an error if the new association retransmission value is
2610 * greater than the sum of the retransmission value of the peer.
2611 * See [SCTP] for more information.
2612 *
2613 */
2614 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2615 {
2616
2617 struct sctp_assocparams assocparams;
2618 struct sctp_association *asoc;
2619
2620 if (optlen != sizeof(struct sctp_assocparams))
2621 return -EINVAL;
2622 if (copy_from_user(&assocparams, optval, optlen))
2623 return -EFAULT;
2624
2625 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2626
2627 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2628 return -EINVAL;
2629
2630 /* Set the values to the specific association */
2631 if (asoc) {
2632 if (assocparams.sasoc_asocmaxrxt != 0) {
2633 __u32 path_sum = 0;
2634 int paths = 0;
2635 struct list_head *pos;
2636 struct sctp_transport *peer_addr;
2637
2638 list_for_each(pos, &asoc->peer.transport_addr_list) {
2639 peer_addr = list_entry(pos,
2640 struct sctp_transport,
2641 transports);
2642 path_sum += peer_addr->pathmaxrxt;
2643 paths++;
2644 }
2645
2646 /* Only validate asocmaxrxt if we have more then
2647 * one path/transport. We do this because path
2648 * retransmissions are only counted when we have more
2649 * then one path.
2650 */
2651 if (paths > 1 &&
2652 assocparams.sasoc_asocmaxrxt > path_sum)
2653 return -EINVAL;
2654
2655 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2656 }
2657
2658 if (assocparams.sasoc_cookie_life != 0) {
2659 asoc->cookie_life.tv_sec =
2660 assocparams.sasoc_cookie_life / 1000;
2661 asoc->cookie_life.tv_usec =
2662 (assocparams.sasoc_cookie_life % 1000)
2663 * 1000;
2664 }
2665 } else {
2666 /* Set the values to the endpoint */
2667 struct sctp_sock *sp = sctp_sk(sk);
2668
2669 if (assocparams.sasoc_asocmaxrxt != 0)
2670 sp->assocparams.sasoc_asocmaxrxt =
2671 assocparams.sasoc_asocmaxrxt;
2672 if (assocparams.sasoc_cookie_life != 0)
2673 sp->assocparams.sasoc_cookie_life =
2674 assocparams.sasoc_cookie_life;
2675 }
2676 return 0;
2677 }
2678
2679 /*
2680 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2681 *
2682 * This socket option is a boolean flag which turns on or off mapped V4
2683 * addresses. If this option is turned on and the socket is type
2684 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2685 * If this option is turned off, then no mapping will be done of V4
2686 * addresses and a user will receive both PF_INET6 and PF_INET type
2687 * addresses on the socket.
2688 */
2689 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2690 {
2691 int val;
2692 struct sctp_sock *sp = sctp_sk(sk);
2693
2694 if (optlen < sizeof(int))
2695 return -EINVAL;
2696 if (get_user(val, (int __user *)optval))
2697 return -EFAULT;
2698 if (val)
2699 sp->v4mapped = 1;
2700 else
2701 sp->v4mapped = 0;
2702
2703 return 0;
2704 }
2705
2706 /*
2707 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2708 *
2709 * This socket option specifies the maximum size to put in any outgoing
2710 * SCTP chunk. If a message is larger than this size it will be
2711 * fragmented by SCTP into the specified size. Note that the underlying
2712 * SCTP implementation may fragment into smaller sized chunks when the
2713 * PMTU of the underlying association is smaller than the value set by
2714 * the user.
2715 */
2716 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2717 {
2718 struct sctp_association *asoc;
2719 struct list_head *pos;
2720 struct sctp_sock *sp = sctp_sk(sk);
2721 int val;
2722
2723 if (optlen < sizeof(int))
2724 return -EINVAL;
2725 if (get_user(val, (int __user *)optval))
2726 return -EFAULT;
2727 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2728 return -EINVAL;
2729 sp->user_frag = val;
2730
2731 /* Update the frag_point of the existing associations. */
2732 list_for_each(pos, &(sp->ep->asocs)) {
2733 asoc = list_entry(pos, struct sctp_association, asocs);
2734 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2735 }
2736
2737 return 0;
2738 }
2739
2740
2741 /*
2742 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2743 *
2744 * Requests that the peer mark the enclosed address as the association
2745 * primary. The enclosed address must be one of the association's
2746 * locally bound addresses. The following structure is used to make a
2747 * set primary request:
2748 */
2749 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2750 int optlen)
2751 {
2752 struct sctp_sock *sp;
2753 struct sctp_endpoint *ep;
2754 struct sctp_association *asoc = NULL;
2755 struct sctp_setpeerprim prim;
2756 struct sctp_chunk *chunk;
2757 int err;
2758
2759 sp = sctp_sk(sk);
2760 ep = sp->ep;
2761
2762 if (!sctp_addip_enable)
2763 return -EPERM;
2764
2765 if (optlen != sizeof(struct sctp_setpeerprim))
2766 return -EINVAL;
2767
2768 if (copy_from_user(&prim, optval, optlen))
2769 return -EFAULT;
2770
2771 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2772 if (!asoc)
2773 return -EINVAL;
2774
2775 if (!asoc->peer.asconf_capable)
2776 return -EPERM;
2777
2778 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2779 return -EPERM;
2780
2781 if (!sctp_state(asoc, ESTABLISHED))
2782 return -ENOTCONN;
2783
2784 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2785 return -EADDRNOTAVAIL;
2786
2787 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2788 chunk = sctp_make_asconf_set_prim(asoc,
2789 (union sctp_addr *)&prim.sspp_addr);
2790 if (!chunk)
2791 return -ENOMEM;
2792
2793 err = sctp_send_asconf(asoc, chunk);
2794
2795 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2796
2797 return err;
2798 }
2799
2800 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2801 int optlen)
2802 {
2803 struct sctp_setadaptation adaptation;
2804
2805 if (optlen != sizeof(struct sctp_setadaptation))
2806 return -EINVAL;
2807 if (copy_from_user(&adaptation, optval, optlen))
2808 return -EFAULT;
2809
2810 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2811
2812 return 0;
2813 }
2814
2815 /*
2816 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
2817 *
2818 * The context field in the sctp_sndrcvinfo structure is normally only
2819 * used when a failed message is retrieved holding the value that was
2820 * sent down on the actual send call. This option allows the setting of
2821 * a default context on an association basis that will be received on
2822 * reading messages from the peer. This is especially helpful in the
2823 * one-2-many model for an application to keep some reference to an
2824 * internal state machine that is processing messages on the
2825 * association. Note that the setting of this value only effects
2826 * received messages from the peer and does not effect the value that is
2827 * saved with outbound messages.
2828 */
2829 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2830 int optlen)
2831 {
2832 struct sctp_assoc_value params;
2833 struct sctp_sock *sp;
2834 struct sctp_association *asoc;
2835
2836 if (optlen != sizeof(struct sctp_assoc_value))
2837 return -EINVAL;
2838 if (copy_from_user(&params, optval, optlen))
2839 return -EFAULT;
2840
2841 sp = sctp_sk(sk);
2842
2843 if (params.assoc_id != 0) {
2844 asoc = sctp_id2assoc(sk, params.assoc_id);
2845 if (!asoc)
2846 return -EINVAL;
2847 asoc->default_rcv_context = params.assoc_value;
2848 } else {
2849 sp->default_rcv_context = params.assoc_value;
2850 }
2851
2852 return 0;
2853 }
2854
2855 /*
2856 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2857 *
2858 * This options will at a minimum specify if the implementation is doing
2859 * fragmented interleave. Fragmented interleave, for a one to many
2860 * socket, is when subsequent calls to receive a message may return
2861 * parts of messages from different associations. Some implementations
2862 * may allow you to turn this value on or off. If so, when turned off,
2863 * no fragment interleave will occur (which will cause a head of line
2864 * blocking amongst multiple associations sharing the same one to many
2865 * socket). When this option is turned on, then each receive call may
2866 * come from a different association (thus the user must receive data
2867 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2868 * association each receive belongs to.
2869 *
2870 * This option takes a boolean value. A non-zero value indicates that
2871 * fragmented interleave is on. A value of zero indicates that
2872 * fragmented interleave is off.
2873 *
2874 * Note that it is important that an implementation that allows this
2875 * option to be turned on, have it off by default. Otherwise an unaware
2876 * application using the one to many model may become confused and act
2877 * incorrectly.
2878 */
2879 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2880 char __user *optval,
2881 int optlen)
2882 {
2883 int val;
2884
2885 if (optlen != sizeof(int))
2886 return -EINVAL;
2887 if (get_user(val, (int __user *)optval))
2888 return -EFAULT;
2889
2890 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2891
2892 return 0;
2893 }
2894
2895 /*
2896 * 7.1.25. Set or Get the sctp partial delivery point
2897 * (SCTP_PARTIAL_DELIVERY_POINT)
2898 * This option will set or get the SCTP partial delivery point. This
2899 * point is the size of a message where the partial delivery API will be
2900 * invoked to help free up rwnd space for the peer. Setting this to a
2901 * lower value will cause partial delivery's to happen more often. The
2902 * calls argument is an integer that sets or gets the partial delivery
2903 * point.
2904 */
2905 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2906 char __user *optval,
2907 int optlen)
2908 {
2909 u32 val;
2910
2911 if (optlen != sizeof(u32))
2912 return -EINVAL;
2913 if (get_user(val, (int __user *)optval))
2914 return -EFAULT;
2915
2916 sctp_sk(sk)->pd_point = val;
2917
2918 return 0; /* is this the right error code? */
2919 }
2920
2921 /*
2922 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
2923 *
2924 * This option will allow a user to change the maximum burst of packets
2925 * that can be emitted by this association. Note that the default value
2926 * is 4, and some implementations may restrict this setting so that it
2927 * can only be lowered.
2928 *
2929 * NOTE: This text doesn't seem right. Do this on a socket basis with
2930 * future associations inheriting the socket value.
2931 */
2932 static int sctp_setsockopt_maxburst(struct sock *sk,
2933 char __user *optval,
2934 int optlen)
2935 {
2936 int val;
2937
2938 if (optlen != sizeof(int))
2939 return -EINVAL;
2940 if (get_user(val, (int __user *)optval))
2941 return -EFAULT;
2942
2943 if (val < 0)
2944 return -EINVAL;
2945
2946 sctp_sk(sk)->max_burst = val;
2947
2948 return 0;
2949 }
2950
2951 /* API 6.2 setsockopt(), getsockopt()
2952 *
2953 * Applications use setsockopt() and getsockopt() to set or retrieve
2954 * socket options. Socket options are used to change the default
2955 * behavior of sockets calls. They are described in Section 7.
2956 *
2957 * The syntax is:
2958 *
2959 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
2960 * int __user *optlen);
2961 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2962 * int optlen);
2963 *
2964 * sd - the socket descript.
2965 * level - set to IPPROTO_SCTP for all SCTP options.
2966 * optname - the option name.
2967 * optval - the buffer to store the value of the option.
2968 * optlen - the size of the buffer.
2969 */
2970 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2971 char __user *optval, int optlen)
2972 {
2973 int retval = 0;
2974
2975 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2976 sk, optname);
2977
2978 /* I can hardly begin to describe how wrong this is. This is
2979 * so broken as to be worse than useless. The API draft
2980 * REALLY is NOT helpful here... I am not convinced that the
2981 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2982 * are at all well-founded.
2983 */
2984 if (level != SOL_SCTP) {
2985 struct sctp_af *af = sctp_sk(sk)->pf->af;
2986 retval = af->setsockopt(sk, level, optname, optval, optlen);
2987 goto out_nounlock;
2988 }
2989
2990 sctp_lock_sock(sk);
2991
2992 switch (optname) {
2993 case SCTP_SOCKOPT_BINDX_ADD:
2994 /* 'optlen' is the size of the addresses buffer. */
2995 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2996 optlen, SCTP_BINDX_ADD_ADDR);
2997 break;
2998
2999 case SCTP_SOCKOPT_BINDX_REM:
3000 /* 'optlen' is the size of the addresses buffer. */
3001 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3002 optlen, SCTP_BINDX_REM_ADDR);
3003 break;
3004
3005 case SCTP_SOCKOPT_CONNECTX:
3006 /* 'optlen' is the size of the addresses buffer. */
3007 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
3008 optlen);
3009 break;
3010
3011 case SCTP_DISABLE_FRAGMENTS:
3012 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3013 break;
3014
3015 case SCTP_EVENTS:
3016 retval = sctp_setsockopt_events(sk, optval, optlen);
3017 break;
3018
3019 case SCTP_AUTOCLOSE:
3020 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3021 break;
3022
3023 case SCTP_PEER_ADDR_PARAMS:
3024 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3025 break;
3026
3027 case SCTP_DELAYED_ACK_TIME:
3028 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
3029 break;
3030 case SCTP_PARTIAL_DELIVERY_POINT:
3031 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3032 break;
3033
3034 case SCTP_INITMSG:
3035 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3036 break;
3037 case SCTP_DEFAULT_SEND_PARAM:
3038 retval = sctp_setsockopt_default_send_param(sk, optval,
3039 optlen);
3040 break;
3041 case SCTP_PRIMARY_ADDR:
3042 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3043 break;
3044 case SCTP_SET_PEER_PRIMARY_ADDR:
3045 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3046 break;
3047 case SCTP_NODELAY:
3048 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3049 break;
3050 case SCTP_RTOINFO:
3051 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3052 break;
3053 case SCTP_ASSOCINFO:
3054 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3055 break;
3056 case SCTP_I_WANT_MAPPED_V4_ADDR:
3057 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3058 break;
3059 case SCTP_MAXSEG:
3060 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3061 break;
3062 case SCTP_ADAPTATION_LAYER:
3063 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3064 break;
3065 case SCTP_CONTEXT:
3066 retval = sctp_setsockopt_context(sk, optval, optlen);
3067 break;
3068 case SCTP_FRAGMENT_INTERLEAVE:
3069 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3070 break;
3071 case SCTP_MAX_BURST:
3072 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3073 break;
3074 default:
3075 retval = -ENOPROTOOPT;
3076 break;
3077 }
3078
3079 sctp_release_sock(sk);
3080
3081 out_nounlock:
3082 return retval;
3083 }
3084
3085 /* API 3.1.6 connect() - UDP Style Syntax
3086 *
3087 * An application may use the connect() call in the UDP model to initiate an
3088 * association without sending data.
3089 *
3090 * The syntax is:
3091 *
3092 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3093 *
3094 * sd: the socket descriptor to have a new association added to.
3095 *
3096 * nam: the address structure (either struct sockaddr_in or struct
3097 * sockaddr_in6 defined in RFC2553 [7]).
3098 *
3099 * len: the size of the address.
3100 */
3101 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3102 int addr_len)
3103 {
3104 int err = 0;
3105 struct sctp_af *af;
3106
3107 sctp_lock_sock(sk);
3108
3109 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3110 __FUNCTION__, sk, addr, addr_len);
3111
3112 /* Validate addr_len before calling common connect/connectx routine. */
3113 af = sctp_get_af_specific(addr->sa_family);
3114 if (!af || addr_len < af->sockaddr_len) {
3115 err = -EINVAL;
3116 } else {
3117 /* Pass correct addr len to common routine (so it knows there
3118 * is only one address being passed.
3119 */
3120 err = __sctp_connect(sk, addr, af->sockaddr_len);
3121 }
3122
3123 sctp_release_sock(sk);
3124 return err;
3125 }
3126
3127 /* FIXME: Write comments. */
3128 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3129 {
3130 return -EOPNOTSUPP; /* STUB */
3131 }
3132
3133 /* 4.1.4 accept() - TCP Style Syntax
3134 *
3135 * Applications use accept() call to remove an established SCTP
3136 * association from the accept queue of the endpoint. A new socket
3137 * descriptor will be returned from accept() to represent the newly
3138 * formed association.
3139 */
3140 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3141 {
3142 struct sctp_sock *sp;
3143 struct sctp_endpoint *ep;
3144 struct sock *newsk = NULL;
3145 struct sctp_association *asoc;
3146 long timeo;
3147 int error = 0;
3148
3149 sctp_lock_sock(sk);
3150
3151 sp = sctp_sk(sk);
3152 ep = sp->ep;
3153
3154 if (!sctp_style(sk, TCP)) {
3155 error = -EOPNOTSUPP;
3156 goto out;
3157 }
3158
3159 if (!sctp_sstate(sk, LISTENING)) {
3160 error = -EINVAL;
3161 goto out;
3162 }
3163
3164 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3165
3166 error = sctp_wait_for_accept(sk, timeo);
3167 if (error)
3168 goto out;
3169
3170 /* We treat the list of associations on the endpoint as the accept
3171 * queue and pick the first association on the list.
3172 */
3173 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3174
3175 newsk = sp->pf->create_accept_sk(sk, asoc);
3176 if (!newsk) {
3177 error = -ENOMEM;
3178 goto out;
3179 }
3180
3181 /* Populate the fields of the newsk from the oldsk and migrate the
3182 * asoc to the newsk.
3183 */
3184 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3185
3186 out:
3187 sctp_release_sock(sk);
3188 *err = error;
3189 return newsk;
3190 }
3191
3192 /* The SCTP ioctl handler. */
3193 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3194 {
3195 return -ENOIOCTLCMD;
3196 }
3197
3198 /* This is the function which gets called during socket creation to
3199 * initialized the SCTP-specific portion of the sock.
3200 * The sock structure should already be zero-filled memory.
3201 */
3202 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3203 {
3204 struct sctp_endpoint *ep;
3205 struct sctp_sock *sp;
3206
3207 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3208
3209 sp = sctp_sk(sk);
3210
3211 /* Initialize the SCTP per socket area. */
3212 switch (sk->sk_type) {
3213 case SOCK_SEQPACKET:
3214 sp->type = SCTP_SOCKET_UDP;
3215 break;
3216 case SOCK_STREAM:
3217 sp->type = SCTP_SOCKET_TCP;
3218 break;
3219 default:
3220 return -ESOCKTNOSUPPORT;
3221 }
3222
3223 /* Initialize default send parameters. These parameters can be
3224 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3225 */
3226 sp->default_stream = 0;
3227 sp->default_ppid = 0;
3228 sp->default_flags = 0;
3229 sp->default_context = 0;
3230 sp->default_timetolive = 0;
3231
3232 sp->default_rcv_context = 0;
3233 sp->max_burst = sctp_max_burst;
3234
3235 /* Initialize default setup parameters. These parameters
3236 * can be modified with the SCTP_INITMSG socket option or
3237 * overridden by the SCTP_INIT CMSG.
3238 */
3239 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3240 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3241 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3242 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3243
3244 /* Initialize default RTO related parameters. These parameters can
3245 * be modified for with the SCTP_RTOINFO socket option.
3246 */
3247 sp->rtoinfo.srto_initial = sctp_rto_initial;
3248 sp->rtoinfo.srto_max = sctp_rto_max;
3249 sp->rtoinfo.srto_min = sctp_rto_min;
3250
3251 /* Initialize default association related parameters. These parameters
3252 * can be modified with the SCTP_ASSOCINFO socket option.
3253 */
3254 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3255 sp->assocparams.sasoc_number_peer_destinations = 0;
3256 sp->assocparams.sasoc_peer_rwnd = 0;
3257 sp->assocparams.sasoc_local_rwnd = 0;
3258 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3259
3260 /* Initialize default event subscriptions. By default, all the
3261 * options are off.
3262 */
3263 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3264
3265 /* Default Peer Address Parameters. These defaults can
3266 * be modified via SCTP_PEER_ADDR_PARAMS
3267 */
3268 sp->hbinterval = sctp_hb_interval;
3269 sp->pathmaxrxt = sctp_max_retrans_path;
3270 sp->pathmtu = 0; // allow default discovery
3271 sp->sackdelay = sctp_sack_timeout;
3272 sp->param_flags = SPP_HB_ENABLE |
3273 SPP_PMTUD_ENABLE |
3274 SPP_SACKDELAY_ENABLE;
3275
3276 /* If enabled no SCTP message fragmentation will be performed.
3277 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3278 */
3279 sp->disable_fragments = 0;
3280
3281 /* Enable Nagle algorithm by default. */
3282 sp->nodelay = 0;
3283
3284 /* Enable by default. */
3285 sp->v4mapped = 1;
3286
3287 /* Auto-close idle associations after the configured
3288 * number of seconds. A value of 0 disables this
3289 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3290 * for UDP-style sockets only.
3291 */
3292 sp->autoclose = 0;
3293
3294 /* User specified fragmentation limit. */
3295 sp->user_frag = 0;
3296
3297 sp->adaptation_ind = 0;
3298
3299 sp->pf = sctp_get_pf_specific(sk->sk_family);
3300
3301 /* Control variables for partial data delivery. */
3302 atomic_set(&sp->pd_mode, 0);
3303 skb_queue_head_init(&sp->pd_lobby);
3304 sp->frag_interleave = 0;
3305
3306 /* Create a per socket endpoint structure. Even if we
3307 * change the data structure relationships, this may still
3308 * be useful for storing pre-connect address information.
3309 */
3310 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3311 if (!ep)
3312 return -ENOMEM;
3313
3314 sp->ep = ep;
3315 sp->hmac = NULL;
3316
3317 SCTP_DBG_OBJCNT_INC(sock);
3318 return 0;
3319 }
3320
3321 /* Cleanup any SCTP per socket resources. */
3322 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3323 {
3324 struct sctp_endpoint *ep;
3325
3326 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3327
3328 /* Release our hold on the endpoint. */
3329 ep = sctp_sk(sk)->ep;
3330 sctp_endpoint_free(ep);
3331
3332 return 0;
3333 }
3334
3335 /* API 4.1.7 shutdown() - TCP Style Syntax
3336 * int shutdown(int socket, int how);
3337 *
3338 * sd - the socket descriptor of the association to be closed.
3339 * how - Specifies the type of shutdown. The values are
3340 * as follows:
3341 * SHUT_RD
3342 * Disables further receive operations. No SCTP
3343 * protocol action is taken.
3344 * SHUT_WR
3345 * Disables further send operations, and initiates
3346 * the SCTP shutdown sequence.
3347 * SHUT_RDWR
3348 * Disables further send and receive operations
3349 * and initiates the SCTP shutdown sequence.
3350 */
3351 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3352 {
3353 struct sctp_endpoint *ep;
3354 struct sctp_association *asoc;
3355
3356 if (!sctp_style(sk, TCP))
3357 return;
3358
3359 if (how & SEND_SHUTDOWN) {
3360 ep = sctp_sk(sk)->ep;
3361 if (!list_empty(&ep->asocs)) {
3362 asoc = list_entry(ep->asocs.next,
3363 struct sctp_association, asocs);
3364 sctp_primitive_SHUTDOWN(asoc, NULL);
3365 }
3366 }
3367 }
3368
3369 /* 7.2.1 Association Status (SCTP_STATUS)
3370
3371 * Applications can retrieve current status information about an
3372 * association, including association state, peer receiver window size,
3373 * number of unacked data chunks, and number of data chunks pending
3374 * receipt. This information is read-only.
3375 */
3376 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3377 char __user *optval,
3378 int __user *optlen)
3379 {
3380 struct sctp_status status;
3381 struct sctp_association *asoc = NULL;
3382 struct sctp_transport *transport;
3383 sctp_assoc_t associd;
3384 int retval = 0;
3385
3386 if (len < sizeof(status)) {
3387 retval = -EINVAL;
3388 goto out;
3389 }
3390
3391 len = sizeof(status);
3392 if (copy_from_user(&status, optval, len)) {
3393 retval = -EFAULT;
3394 goto out;
3395 }
3396
3397 associd = status.sstat_assoc_id;
3398 asoc = sctp_id2assoc(sk, associd);
3399 if (!asoc) {
3400 retval = -EINVAL;
3401 goto out;
3402 }
3403
3404 transport = asoc->peer.primary_path;
3405
3406 status.sstat_assoc_id = sctp_assoc2id(asoc);
3407 status.sstat_state = asoc->state;
3408 status.sstat_rwnd = asoc->peer.rwnd;
3409 status.sstat_unackdata = asoc->unack_data;
3410
3411 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3412 status.sstat_instrms = asoc->c.sinit_max_instreams;
3413 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3414 status.sstat_fragmentation_point = asoc->frag_point;
3415 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3416 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3417 transport->af_specific->sockaddr_len);
3418 /* Map ipv4 address into v4-mapped-on-v6 address. */
3419 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3420 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3421 status.sstat_primary.spinfo_state = transport->state;
3422 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3423 status.sstat_primary.spinfo_srtt = transport->srtt;
3424 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3425 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3426
3427 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3428 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3429
3430 if (put_user(len, optlen)) {
3431 retval = -EFAULT;
3432 goto out;
3433 }
3434
3435 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3436 len, status.sstat_state, status.sstat_rwnd,
3437 status.sstat_assoc_id);
3438
3439 if (copy_to_user(optval, &status, len)) {
3440 retval = -EFAULT;
3441 goto out;
3442 }
3443
3444 out:
3445 return (retval);
3446 }
3447
3448
3449 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3450 *
3451 * Applications can retrieve information about a specific peer address
3452 * of an association, including its reachability state, congestion
3453 * window, and retransmission timer values. This information is
3454 * read-only.
3455 */
3456 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3457 char __user *optval,
3458 int __user *optlen)
3459 {
3460 struct sctp_paddrinfo pinfo;
3461 struct sctp_transport *transport;
3462 int retval = 0;
3463
3464 if (len < sizeof(pinfo)) {
3465 retval = -EINVAL;
3466 goto out;
3467 }
3468
3469 len = sizeof(pinfo);
3470 if (copy_from_user(&pinfo, optval, len)) {
3471 retval = -EFAULT;
3472 goto out;
3473 }
3474
3475 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3476 pinfo.spinfo_assoc_id);
3477 if (!transport)
3478 return -EINVAL;
3479
3480 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3481 pinfo.spinfo_state = transport->state;
3482 pinfo.spinfo_cwnd = transport->cwnd;
3483 pinfo.spinfo_srtt = transport->srtt;
3484 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3485 pinfo.spinfo_mtu = transport->pathmtu;
3486
3487 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3488 pinfo.spinfo_state = SCTP_ACTIVE;
3489
3490 if (put_user(len, optlen)) {
3491 retval = -EFAULT;
3492 goto out;
3493 }
3494
3495 if (copy_to_user(optval, &pinfo, len)) {
3496 retval = -EFAULT;
3497 goto out;
3498 }
3499
3500 out:
3501 return (retval);
3502 }
3503
3504 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3505 *
3506 * This option is a on/off flag. If enabled no SCTP message
3507 * fragmentation will be performed. Instead if a message being sent
3508 * exceeds the current PMTU size, the message will NOT be sent and
3509 * instead a error will be indicated to the user.
3510 */
3511 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3512 char __user *optval, int __user *optlen)
3513 {
3514 int val;
3515
3516 if (len < sizeof(int))
3517 return -EINVAL;
3518
3519 len = sizeof(int);
3520 val = (sctp_sk(sk)->disable_fragments == 1);
3521 if (put_user(len, optlen))
3522 return -EFAULT;
3523 if (copy_to_user(optval, &val, len))
3524 return -EFAULT;
3525 return 0;
3526 }
3527
3528 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3529 *
3530 * This socket option is used to specify various notifications and
3531 * ancillary data the user wishes to receive.
3532 */
3533 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3534 int __user *optlen)
3535 {
3536 if (len < sizeof(struct sctp_event_subscribe))
3537 return -EINVAL;
3538 len = sizeof(struct sctp_event_subscribe);
3539 if (put_user(len, optlen))
3540 return -EFAULT;
3541 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3542 return -EFAULT;
3543 return 0;
3544 }
3545
3546 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3547 *
3548 * This socket option is applicable to the UDP-style socket only. When
3549 * set it will cause associations that are idle for more than the
3550 * specified number of seconds to automatically close. An association
3551 * being idle is defined an association that has NOT sent or received
3552 * user data. The special value of '0' indicates that no automatic
3553 * close of any associations should be performed. The option expects an
3554 * integer defining the number of seconds of idle time before an
3555 * association is closed.
3556 */
3557 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3558 {
3559 /* Applicable to UDP-style socket only */
3560 if (sctp_style(sk, TCP))
3561 return -EOPNOTSUPP;
3562 if (len < sizeof(int))
3563 return -EINVAL;
3564 len = sizeof(int);
3565 if (put_user(len, optlen))
3566 return -EFAULT;
3567 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3568 return -EFAULT;
3569 return 0;
3570 }
3571
3572 /* Helper routine to branch off an association to a new socket. */
3573 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3574 struct socket **sockp)
3575 {
3576 struct sock *sk = asoc->base.sk;
3577 struct socket *sock;
3578 struct inet_sock *inetsk;
3579 struct sctp_af *af;
3580 int err = 0;
3581
3582 /* An association cannot be branched off from an already peeled-off
3583 * socket, nor is this supported for tcp style sockets.
3584 */
3585 if (!sctp_style(sk, UDP))
3586 return -EINVAL;
3587
3588 /* Create a new socket. */
3589 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3590 if (err < 0)
3591 return err;
3592
3593 /* Populate the fields of the newsk from the oldsk and migrate the
3594 * asoc to the newsk.
3595 */
3596 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3597
3598 /* Make peeled-off sockets more like 1-1 accepted sockets.
3599 * Set the daddr and initialize id to something more random
3600 */
3601 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3602 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3603 inetsk = inet_sk(sock->sk);
3604 inetsk->id = asoc->next_tsn ^ jiffies;
3605
3606 *sockp = sock;
3607
3608 return err;
3609 }
3610
3611 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3612 {
3613 sctp_peeloff_arg_t peeloff;
3614 struct socket *newsock;
3615 int retval = 0;
3616 struct sctp_association *asoc;
3617
3618 if (len < sizeof(sctp_peeloff_arg_t))
3619 return -EINVAL;
3620 len = sizeof(sctp_peeloff_arg_t);
3621 if (copy_from_user(&peeloff, optval, len))
3622 return -EFAULT;
3623
3624 asoc = sctp_id2assoc(sk, peeloff.associd);
3625 if (!asoc) {
3626 retval = -EINVAL;
3627 goto out;
3628 }
3629
3630 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3631
3632 retval = sctp_do_peeloff(asoc, &newsock);
3633 if (retval < 0)
3634 goto out;
3635
3636 /* Map the socket to an unused fd that can be returned to the user. */
3637 retval = sock_map_fd(newsock);
3638 if (retval < 0) {
3639 sock_release(newsock);
3640 goto out;
3641 }
3642
3643 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3644 __FUNCTION__, sk, asoc, newsock->sk, retval);
3645
3646 /* Return the fd mapped to the new socket. */
3647 peeloff.sd = retval;
3648 if (put_user(len, optlen))
3649 return -EFAULT;
3650 if (copy_to_user(optval, &peeloff, len))
3651 retval = -EFAULT;
3652
3653 out:
3654 return retval;
3655 }
3656
3657 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3658 *
3659 * Applications can enable or disable heartbeats for any peer address of
3660 * an association, modify an address's heartbeat interval, force a
3661 * heartbeat to be sent immediately, and adjust the address's maximum
3662 * number of retransmissions sent before an address is considered
3663 * unreachable. The following structure is used to access and modify an
3664 * address's parameters:
3665 *
3666 * struct sctp_paddrparams {
3667 * sctp_assoc_t spp_assoc_id;
3668 * struct sockaddr_storage spp_address;
3669 * uint32_t spp_hbinterval;
3670 * uint16_t spp_pathmaxrxt;
3671 * uint32_t spp_pathmtu;
3672 * uint32_t spp_sackdelay;
3673 * uint32_t spp_flags;
3674 * };
3675 *
3676 * spp_assoc_id - (one-to-many style socket) This is filled in the
3677 * application, and identifies the association for
3678 * this query.
3679 * spp_address - This specifies which address is of interest.
3680 * spp_hbinterval - This contains the value of the heartbeat interval,
3681 * in milliseconds. If a value of zero
3682 * is present in this field then no changes are to
3683 * be made to this parameter.
3684 * spp_pathmaxrxt - This contains the maximum number of
3685 * retransmissions before this address shall be
3686 * considered unreachable. If a value of zero
3687 * is present in this field then no changes are to
3688 * be made to this parameter.
3689 * spp_pathmtu - When Path MTU discovery is disabled the value
3690 * specified here will be the "fixed" path mtu.
3691 * Note that if the spp_address field is empty
3692 * then all associations on this address will
3693 * have this fixed path mtu set upon them.
3694 *
3695 * spp_sackdelay - When delayed sack is enabled, this value specifies
3696 * the number of milliseconds that sacks will be delayed
3697 * for. This value will apply to all addresses of an
3698 * association if the spp_address field is empty. Note
3699 * also, that if delayed sack is enabled and this
3700 * value is set to 0, no change is made to the last
3701 * recorded delayed sack timer value.
3702 *
3703 * spp_flags - These flags are used to control various features
3704 * on an association. The flag field may contain
3705 * zero or more of the following options.
3706 *
3707 * SPP_HB_ENABLE - Enable heartbeats on the
3708 * specified address. Note that if the address
3709 * field is empty all addresses for the association
3710 * have heartbeats enabled upon them.
3711 *
3712 * SPP_HB_DISABLE - Disable heartbeats on the
3713 * speicifed address. Note that if the address
3714 * field is empty all addresses for the association
3715 * will have their heartbeats disabled. Note also
3716 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
3717 * mutually exclusive, only one of these two should
3718 * be specified. Enabling both fields will have
3719 * undetermined results.
3720 *
3721 * SPP_HB_DEMAND - Request a user initiated heartbeat
3722 * to be made immediately.
3723 *
3724 * SPP_PMTUD_ENABLE - This field will enable PMTU
3725 * discovery upon the specified address. Note that
3726 * if the address feild is empty then all addresses
3727 * on the association are effected.
3728 *
3729 * SPP_PMTUD_DISABLE - This field will disable PMTU
3730 * discovery upon the specified address. Note that
3731 * if the address feild is empty then all addresses
3732 * on the association are effected. Not also that
3733 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3734 * exclusive. Enabling both will have undetermined
3735 * results.
3736 *
3737 * SPP_SACKDELAY_ENABLE - Setting this flag turns
3738 * on delayed sack. The time specified in spp_sackdelay
3739 * is used to specify the sack delay for this address. Note
3740 * that if spp_address is empty then all addresses will
3741 * enable delayed sack and take on the sack delay
3742 * value specified in spp_sackdelay.
3743 * SPP_SACKDELAY_DISABLE - Setting this flag turns
3744 * off delayed sack. If the spp_address field is blank then
3745 * delayed sack is disabled for the entire association. Note
3746 * also that this field is mutually exclusive to
3747 * SPP_SACKDELAY_ENABLE, setting both will have undefined
3748 * results.
3749 */
3750 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3751 char __user *optval, int __user *optlen)
3752 {
3753 struct sctp_paddrparams params;
3754 struct sctp_transport *trans = NULL;
3755 struct sctp_association *asoc = NULL;
3756 struct sctp_sock *sp = sctp_sk(sk);
3757
3758 if (len < sizeof(struct sctp_paddrparams))
3759 return -EINVAL;
3760 len = sizeof(struct sctp_paddrparams);
3761 if (copy_from_user(&params, optval, len))
3762 return -EFAULT;
3763
3764 /* If an address other than INADDR_ANY is specified, and
3765 * no transport is found, then the request is invalid.
3766 */
3767 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3768 trans = sctp_addr_id2transport(sk, &params.spp_address,
3769 params.spp_assoc_id);
3770 if (!trans) {
3771 SCTP_DEBUG_PRINTK("Failed no transport\n");
3772 return -EINVAL;
3773 }
3774 }
3775
3776 /* Get association, if assoc_id != 0 and the socket is a one
3777 * to many style socket, and an association was not found, then
3778 * the id was invalid.
3779 */
3780 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3781 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3782 SCTP_DEBUG_PRINTK("Failed no association\n");
3783 return -EINVAL;
3784 }
3785
3786 if (trans) {
3787 /* Fetch transport values. */
3788 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3789 params.spp_pathmtu = trans->pathmtu;
3790 params.spp_pathmaxrxt = trans->pathmaxrxt;
3791 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
3792
3793 /*draft-11 doesn't say what to return in spp_flags*/
3794 params.spp_flags = trans->param_flags;
3795 } else if (asoc) {
3796 /* Fetch association values. */
3797 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3798 params.spp_pathmtu = asoc->pathmtu;
3799 params.spp_pathmaxrxt = asoc->pathmaxrxt;
3800 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
3801
3802 /*draft-11 doesn't say what to return in spp_flags*/
3803 params.spp_flags = asoc->param_flags;
3804 } else {
3805 /* Fetch socket values. */
3806 params.spp_hbinterval = sp->hbinterval;
3807 params.spp_pathmtu = sp->pathmtu;
3808 params.spp_sackdelay = sp->sackdelay;
3809 params.spp_pathmaxrxt = sp->pathmaxrxt;
3810
3811 /*draft-11 doesn't say what to return in spp_flags*/
3812 params.spp_flags = sp->param_flags;
3813 }
3814
3815 if (copy_to_user(optval, &params, len))
3816 return -EFAULT;
3817
3818 if (put_user(len, optlen))
3819 return -EFAULT;
3820
3821 return 0;
3822 }
3823
3824 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3825 *
3826 * This options will get or set the delayed ack timer. The time is set
3827 * in milliseconds. If the assoc_id is 0, then this sets or gets the
3828 * endpoints default delayed ack timer value. If the assoc_id field is
3829 * non-zero, then the set or get effects the specified association.
3830 *
3831 * struct sctp_assoc_value {
3832 * sctp_assoc_t assoc_id;
3833 * uint32_t assoc_value;
3834 * };
3835 *
3836 * assoc_id - This parameter, indicates which association the
3837 * user is preforming an action upon. Note that if
3838 * this field's value is zero then the endpoints
3839 * default value is changed (effecting future
3840 * associations only).
3841 *
3842 * assoc_value - This parameter contains the number of milliseconds
3843 * that the user is requesting the delayed ACK timer
3844 * be set to. Note that this value is defined in
3845 * the standard to be between 200 and 500 milliseconds.
3846 *
3847 * Note: a value of zero will leave the value alone,
3848 * but disable SACK delay. A non-zero value will also
3849 * enable SACK delay.
3850 */
3851 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3852 char __user *optval,
3853 int __user *optlen)
3854 {
3855 struct sctp_assoc_value params;
3856 struct sctp_association *asoc = NULL;
3857 struct sctp_sock *sp = sctp_sk(sk);
3858
3859 if (len < sizeof(struct sctp_assoc_value))
3860 return - EINVAL;
3861
3862 len = sizeof(struct sctp_assoc_value);
3863
3864 if (copy_from_user(&params, optval, len))
3865 return -EFAULT;
3866
3867 /* Get association, if assoc_id != 0 and the socket is a one
3868 * to many style socket, and an association was not found, then
3869 * the id was invalid.
3870 */
3871 asoc = sctp_id2assoc(sk, params.assoc_id);
3872 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3873 return -EINVAL;
3874
3875 if (asoc) {
3876 /* Fetch association values. */
3877 if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3878 params.assoc_value = jiffies_to_msecs(
3879 asoc->sackdelay);
3880 else
3881 params.assoc_value = 0;
3882 } else {
3883 /* Fetch socket values. */
3884 if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3885 params.assoc_value = sp->sackdelay;
3886 else
3887 params.assoc_value = 0;
3888 }
3889
3890 if (copy_to_user(optval, &params, len))
3891 return -EFAULT;
3892
3893 if (put_user(len, optlen))
3894 return -EFAULT;
3895
3896 return 0;
3897 }
3898
3899 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3900 *
3901 * Applications can specify protocol parameters for the default association
3902 * initialization. The option name argument to setsockopt() and getsockopt()
3903 * is SCTP_INITMSG.
3904 *
3905 * Setting initialization parameters is effective only on an unconnected
3906 * socket (for UDP-style sockets only future associations are effected
3907 * by the change). With TCP-style sockets, this option is inherited by
3908 * sockets derived from a listener socket.
3909 */
3910 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3911 {
3912 if (len < sizeof(struct sctp_initmsg))
3913 return -EINVAL;
3914 len = sizeof(struct sctp_initmsg);
3915 if (put_user(len, optlen))
3916 return -EFAULT;
3917 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3918 return -EFAULT;
3919 return 0;
3920 }
3921
3922 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3923 char __user *optval,
3924 int __user *optlen)
3925 {
3926 sctp_assoc_t id;
3927 struct sctp_association *asoc;
3928 struct list_head *pos;
3929 int cnt = 0;
3930
3931 if (len < sizeof(sctp_assoc_t))
3932 return -EINVAL;
3933
3934 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3935 return -EFAULT;
3936
3937 /* For UDP-style sockets, id specifies the association to query. */
3938 asoc = sctp_id2assoc(sk, id);
3939 if (!asoc)
3940 return -EINVAL;
3941
3942 list_for_each(pos, &asoc->peer.transport_addr_list) {
3943 cnt ++;
3944 }
3945
3946 return cnt;
3947 }
3948
3949 /*
3950 * Old API for getting list of peer addresses. Does not work for 32-bit
3951 * programs running on a 64-bit kernel
3952 */
3953 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3954 char __user *optval,
3955 int __user *optlen)
3956 {
3957 struct sctp_association *asoc;
3958 struct list_head *pos;
3959 int cnt = 0;
3960 struct sctp_getaddrs_old getaddrs;
3961 struct sctp_transport *from;
3962 void __user *to;
3963 union sctp_addr temp;
3964 struct sctp_sock *sp = sctp_sk(sk);
3965 int addrlen;
3966
3967 if (len < sizeof(struct sctp_getaddrs_old))
3968 return -EINVAL;
3969
3970 len = sizeof(struct sctp_getaddrs_old);
3971
3972 if (copy_from_user(&getaddrs, optval, len))
3973 return -EFAULT;
3974
3975 if (getaddrs.addr_num <= 0) return -EINVAL;
3976
3977 /* For UDP-style sockets, id specifies the association to query. */
3978 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3979 if (!asoc)
3980 return -EINVAL;
3981
3982 to = (void __user *)getaddrs.addrs;
3983 list_for_each(pos, &asoc->peer.transport_addr_list) {
3984 from = list_entry(pos, struct sctp_transport, transports);
3985 memcpy(&temp, &from->ipaddr, sizeof(temp));
3986 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3987 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3988 if (copy_to_user(to, &temp, addrlen))
3989 return -EFAULT;
3990 to += addrlen ;
3991 cnt ++;
3992 if (cnt >= getaddrs.addr_num) break;
3993 }
3994 getaddrs.addr_num = cnt;
3995 if (put_user(len, optlen))
3996 return -EFAULT;
3997 if (copy_to_user(optval, &getaddrs, len))
3998 return -EFAULT;
3999
4000 return 0;
4001 }
4002
4003 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4004 char __user *optval, int __user *optlen)
4005 {
4006 struct sctp_association *asoc;
4007 struct list_head *pos;
4008 int cnt = 0;
4009 struct sctp_getaddrs getaddrs;
4010 struct sctp_transport *from;
4011 void __user *to;
4012 union sctp_addr temp;
4013 struct sctp_sock *sp = sctp_sk(sk);
4014 int addrlen;
4015 size_t space_left;
4016 int bytes_copied;
4017
4018 if (len < sizeof(struct sctp_getaddrs))
4019 return -EINVAL;
4020
4021 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4022 return -EFAULT;
4023
4024 /* For UDP-style sockets, id specifies the association to query. */
4025 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4026 if (!asoc)
4027 return -EINVAL;
4028
4029 to = optval + offsetof(struct sctp_getaddrs,addrs);
4030 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4031
4032 list_for_each(pos, &asoc->peer.transport_addr_list) {
4033 from = list_entry(pos, struct sctp_transport, transports);
4034 memcpy(&temp, &from->ipaddr, sizeof(temp));
4035 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4036 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4037 if (space_left < addrlen)
4038 return -ENOMEM;
4039 if (copy_to_user(to, &temp, addrlen))
4040 return -EFAULT;
4041 to += addrlen;
4042 cnt++;
4043 space_left -= addrlen;
4044 }
4045
4046 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4047 return -EFAULT;
4048 bytes_copied = ((char __user *)to) - optval;
4049 if (put_user(bytes_copied, optlen))
4050 return -EFAULT;
4051
4052 return 0;
4053 }
4054
4055 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4056 char __user *optval,
4057 int __user *optlen)
4058 {
4059 sctp_assoc_t id;
4060 struct sctp_bind_addr *bp;
4061 struct sctp_association *asoc;
4062 struct list_head *pos, *temp;
4063 struct sctp_sockaddr_entry *addr;
4064 rwlock_t *addr_lock;
4065 int cnt = 0;
4066
4067 if (len < sizeof(sctp_assoc_t))
4068 return -EINVAL;
4069
4070 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4071 return -EFAULT;
4072
4073 /*
4074 * For UDP-style sockets, id specifies the association to query.
4075 * If the id field is set to the value '0' then the locally bound
4076 * addresses are returned without regard to any particular
4077 * association.
4078 */
4079 if (0 == id) {
4080 bp = &sctp_sk(sk)->ep->base.bind_addr;
4081 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4082 } else {
4083 asoc = sctp_id2assoc(sk, id);
4084 if (!asoc)
4085 return -EINVAL;
4086 bp = &asoc->base.bind_addr;
4087 addr_lock = &asoc->base.addr_lock;
4088 }
4089
4090 sctp_read_lock(addr_lock);
4091
4092 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4093 * addresses from the global local address list.
4094 */
4095 if (sctp_list_single_entry(&bp->address_list)) {
4096 addr = list_entry(bp->address_list.next,
4097 struct sctp_sockaddr_entry, list);
4098 if (sctp_is_any(&addr->a)) {
4099 list_for_each_safe(pos, temp, &sctp_local_addr_list) {
4100 addr = list_entry(pos,
4101 struct sctp_sockaddr_entry,
4102 list);
4103 if ((PF_INET == sk->sk_family) &&
4104 (AF_INET6 == addr->a.sa.sa_family))
4105 continue;
4106 cnt++;
4107 }
4108 } else {
4109 cnt = 1;
4110 }
4111 goto done;
4112 }
4113
4114 list_for_each(pos, &bp->address_list) {
4115 cnt ++;
4116 }
4117
4118 done:
4119 sctp_read_unlock(addr_lock);
4120 return cnt;
4121 }
4122
4123 /* Helper function that copies local addresses to user and returns the number
4124 * of addresses copied.
4125 */
4126 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4127 int max_addrs, void *to,
4128 int *bytes_copied)
4129 {
4130 struct list_head *pos, *next;
4131 struct sctp_sockaddr_entry *addr;
4132 union sctp_addr temp;
4133 int cnt = 0;
4134 int addrlen;
4135
4136 list_for_each_safe(pos, next, &sctp_local_addr_list) {
4137 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4138 if ((PF_INET == sk->sk_family) &&
4139 (AF_INET6 == addr->a.sa.sa_family))
4140 continue;
4141 memcpy(&temp, &addr->a, sizeof(temp));
4142 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4143 &temp);
4144 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4145 memcpy(to, &temp, addrlen);
4146
4147 to += addrlen;
4148 *bytes_copied += addrlen;
4149 cnt ++;
4150 if (cnt >= max_addrs) break;
4151 }
4152
4153 return cnt;
4154 }
4155
4156 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4157 size_t space_left, int *bytes_copied)
4158 {
4159 struct list_head *pos, *next;
4160 struct sctp_sockaddr_entry *addr;
4161 union sctp_addr temp;
4162 int cnt = 0;
4163 int addrlen;
4164
4165 list_for_each_safe(pos, next, &sctp_local_addr_list) {
4166 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4167 if ((PF_INET == sk->sk_family) &&
4168 (AF_INET6 == addr->a.sa.sa_family))
4169 continue;
4170 memcpy(&temp, &addr->a, sizeof(temp));
4171 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4172 &temp);
4173 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4174 if (space_left < addrlen)
4175 return -ENOMEM;
4176 memcpy(to, &temp, addrlen);
4177
4178 to += addrlen;
4179 cnt ++;
4180 space_left -= addrlen;
4181 *bytes_copied += addrlen;
4182 }
4183
4184 return cnt;
4185 }
4186
4187 /* Old API for getting list of local addresses. Does not work for 32-bit
4188 * programs running on a 64-bit kernel
4189 */
4190 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4191 char __user *optval, int __user *optlen)
4192 {
4193 struct sctp_bind_addr *bp;
4194 struct sctp_association *asoc;
4195 struct list_head *pos;
4196 int cnt = 0;
4197 struct sctp_getaddrs_old getaddrs;
4198 struct sctp_sockaddr_entry *addr;
4199 void __user *to;
4200 union sctp_addr temp;
4201 struct sctp_sock *sp = sctp_sk(sk);
4202 int addrlen;
4203 rwlock_t *addr_lock;
4204 int err = 0;
4205 void *addrs;
4206 void *buf;
4207 int bytes_copied = 0;
4208
4209 if (len < sizeof(struct sctp_getaddrs_old))
4210 return -EINVAL;
4211
4212 len = sizeof(struct sctp_getaddrs_old);
4213 if (copy_from_user(&getaddrs, optval, len))
4214 return -EFAULT;
4215
4216 if (getaddrs.addr_num <= 0) return -EINVAL;
4217 /*
4218 * For UDP-style sockets, id specifies the association to query.
4219 * If the id field is set to the value '0' then the locally bound
4220 * addresses are returned without regard to any particular
4221 * association.
4222 */
4223 if (0 == getaddrs.assoc_id) {
4224 bp = &sctp_sk(sk)->ep->base.bind_addr;
4225 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4226 } else {
4227 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4228 if (!asoc)
4229 return -EINVAL;
4230 bp = &asoc->base.bind_addr;
4231 addr_lock = &asoc->base.addr_lock;
4232 }
4233
4234 to = getaddrs.addrs;
4235
4236 /* Allocate space for a local instance of packed array to hold all
4237 * the data. We store addresses here first and then put write them
4238 * to the user in one shot.
4239 */
4240 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4241 GFP_KERNEL);
4242 if (!addrs)
4243 return -ENOMEM;
4244
4245 sctp_read_lock(addr_lock);
4246
4247 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4248 * addresses from the global local address list.
4249 */
4250 if (sctp_list_single_entry(&bp->address_list)) {
4251 addr = list_entry(bp->address_list.next,
4252 struct sctp_sockaddr_entry, list);
4253 if (sctp_is_any(&addr->a)) {
4254 cnt = sctp_copy_laddrs_old(sk, bp->port,
4255 getaddrs.addr_num,
4256 addrs, &bytes_copied);
4257 goto copy_getaddrs;
4258 }
4259 }
4260
4261 buf = addrs;
4262 list_for_each(pos, &bp->address_list) {
4263 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4264 memcpy(&temp, &addr->a, sizeof(temp));
4265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4266 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4267 memcpy(buf, &temp, addrlen);
4268 buf += addrlen;
4269 bytes_copied += addrlen;
4270 cnt ++;
4271 if (cnt >= getaddrs.addr_num) break;
4272 }
4273
4274 copy_getaddrs:
4275 sctp_read_unlock(addr_lock);
4276
4277 /* copy the entire address list into the user provided space */
4278 if (copy_to_user(to, addrs, bytes_copied)) {
4279 err = -EFAULT;
4280 goto error;
4281 }
4282
4283 /* copy the leading structure back to user */
4284 getaddrs.addr_num = cnt;
4285 if (copy_to_user(optval, &getaddrs, len))
4286 err = -EFAULT;
4287
4288 error:
4289 kfree(addrs);
4290 return err;
4291 }
4292
4293 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4294 char __user *optval, int __user *optlen)
4295 {
4296 struct sctp_bind_addr *bp;
4297 struct sctp_association *asoc;
4298 struct list_head *pos;
4299 int cnt = 0;
4300 struct sctp_getaddrs getaddrs;
4301 struct sctp_sockaddr_entry *addr;
4302 void __user *to;
4303 union sctp_addr temp;
4304 struct sctp_sock *sp = sctp_sk(sk);
4305 int addrlen;
4306 rwlock_t *addr_lock;
4307 int err = 0;
4308 size_t space_left;
4309 int bytes_copied = 0;
4310 void *addrs;
4311 void *buf;
4312
4313 if (len < sizeof(struct sctp_getaddrs))
4314 return -EINVAL;
4315
4316 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4317 return -EFAULT;
4318
4319 /*
4320 * For UDP-style sockets, id specifies the association to query.
4321 * If the id field is set to the value '0' then the locally bound
4322 * addresses are returned without regard to any particular
4323 * association.
4324 */
4325 if (0 == getaddrs.assoc_id) {
4326 bp = &sctp_sk(sk)->ep->base.bind_addr;
4327 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4328 } else {
4329 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4330 if (!asoc)
4331 return -EINVAL;
4332 bp = &asoc->base.bind_addr;
4333 addr_lock = &asoc->base.addr_lock;
4334 }
4335
4336 to = optval + offsetof(struct sctp_getaddrs,addrs);
4337 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4338
4339 addrs = kmalloc(space_left, GFP_KERNEL);
4340 if (!addrs)
4341 return -ENOMEM;
4342
4343 sctp_read_lock(addr_lock);
4344
4345 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4346 * addresses from the global local address list.
4347 */
4348 if (sctp_list_single_entry(&bp->address_list)) {
4349 addr = list_entry(bp->address_list.next,
4350 struct sctp_sockaddr_entry, list);
4351 if (sctp_is_any(&addr->a)) {
4352 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4353 space_left, &bytes_copied);
4354 if (cnt < 0) {
4355 err = cnt;
4356 goto error_lock;
4357 }
4358 goto copy_getaddrs;
4359 }
4360 }
4361
4362 buf = addrs;
4363 list_for_each(pos, &bp->address_list) {
4364 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4365 memcpy(&temp, &addr->a, sizeof(temp));
4366 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4367 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4368 if (space_left < addrlen) {
4369 err = -ENOMEM; /*fixme: right error?*/
4370 goto error_lock;
4371 }
4372 memcpy(buf, &temp, addrlen);
4373 buf += addrlen;
4374 bytes_copied += addrlen;
4375 cnt ++;
4376 space_left -= addrlen;
4377 }
4378
4379 copy_getaddrs:
4380 sctp_read_unlock(addr_lock);
4381
4382 if (copy_to_user(to, addrs, bytes_copied)) {
4383 err = -EFAULT;
4384 goto out;
4385 }
4386 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4387 err = -EFAULT;
4388 goto out;
4389 }
4390 if (put_user(bytes_copied, optlen))
4391 err = -EFAULT;
4392
4393 goto out;
4394
4395 error_lock:
4396 sctp_read_unlock(addr_lock);
4397
4398 out:
4399 kfree(addrs);
4400 return err;
4401 }
4402
4403 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4404 *
4405 * Requests that the local SCTP stack use the enclosed peer address as
4406 * the association primary. The enclosed address must be one of the
4407 * association peer's addresses.
4408 */
4409 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4410 char __user *optval, int __user *optlen)
4411 {
4412 struct sctp_prim prim;
4413 struct sctp_association *asoc;
4414 struct sctp_sock *sp = sctp_sk(sk);
4415
4416 if (len < sizeof(struct sctp_prim))
4417 return -EINVAL;
4418
4419 len = sizeof(struct sctp_prim);
4420
4421 if (copy_from_user(&prim, optval, len))
4422 return -EFAULT;
4423
4424 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4425 if (!asoc)
4426 return -EINVAL;
4427
4428 if (!asoc->peer.primary_path)
4429 return -ENOTCONN;
4430
4431 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4432 asoc->peer.primary_path->af_specific->sockaddr_len);
4433
4434 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4435 (union sctp_addr *)&prim.ssp_addr);
4436
4437 if (put_user(len, optlen))
4438 return -EFAULT;
4439 if (copy_to_user(optval, &prim, len))
4440 return -EFAULT;
4441
4442 return 0;
4443 }
4444
4445 /*
4446 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4447 *
4448 * Requests that the local endpoint set the specified Adaptation Layer
4449 * Indication parameter for all future INIT and INIT-ACK exchanges.
4450 */
4451 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4452 char __user *optval, int __user *optlen)
4453 {
4454 struct sctp_setadaptation adaptation;
4455
4456 if (len < sizeof(struct sctp_setadaptation))
4457 return -EINVAL;
4458
4459 len = sizeof(struct sctp_setadaptation);
4460
4461 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4462
4463 if (put_user(len, optlen))
4464 return -EFAULT;
4465 if (copy_to_user(optval, &adaptation, len))
4466 return -EFAULT;
4467
4468 return 0;
4469 }
4470
4471 /*
4472 *
4473 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4474 *
4475 * Applications that wish to use the sendto() system call may wish to
4476 * specify a default set of parameters that would normally be supplied
4477 * through the inclusion of ancillary data. This socket option allows
4478 * such an application to set the default sctp_sndrcvinfo structure.
4479
4480
4481 * The application that wishes to use this socket option simply passes
4482 * in to this call the sctp_sndrcvinfo structure defined in Section
4483 * 5.2.2) The input parameters accepted by this call include
4484 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4485 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4486 * to this call if the caller is using the UDP model.
4487 *
4488 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4489 */
4490 static int sctp_getsockopt_default_send_param(struct sock *sk,
4491 int len, char __user *optval,
4492 int __user *optlen)
4493 {
4494 struct sctp_sndrcvinfo info;
4495 struct sctp_association *asoc;
4496 struct sctp_sock *sp = sctp_sk(sk);
4497
4498 if (len < sizeof(struct sctp_sndrcvinfo))
4499 return -EINVAL;
4500
4501 len = sizeof(struct sctp_sndrcvinfo);
4502
4503 if (copy_from_user(&info, optval, len))
4504 return -EFAULT;
4505
4506 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4507 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4508 return -EINVAL;
4509
4510 if (asoc) {
4511 info.sinfo_stream = asoc->default_stream;
4512 info.sinfo_flags = asoc->default_flags;
4513 info.sinfo_ppid = asoc->default_ppid;
4514 info.sinfo_context = asoc->default_context;
4515 info.sinfo_timetolive = asoc->default_timetolive;
4516 } else {
4517 info.sinfo_stream = sp->default_stream;
4518 info.sinfo_flags = sp->default_flags;
4519 info.sinfo_ppid = sp->default_ppid;
4520 info.sinfo_context = sp->default_context;
4521 info.sinfo_timetolive = sp->default_timetolive;
4522 }
4523
4524 if (put_user(len, optlen))
4525 return -EFAULT;
4526 if (copy_to_user(optval, &info, len))
4527 return -EFAULT;
4528
4529 return 0;
4530 }
4531
4532 /*
4533 *
4534 * 7.1.5 SCTP_NODELAY
4535 *
4536 * Turn on/off any Nagle-like algorithm. This means that packets are
4537 * generally sent as soon as possible and no unnecessary delays are
4538 * introduced, at the cost of more packets in the network. Expects an
4539 * integer boolean flag.
4540 */
4541
4542 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4543 char __user *optval, int __user *optlen)
4544 {
4545 int val;
4546
4547 if (len < sizeof(int))
4548 return -EINVAL;
4549
4550 len = sizeof(int);
4551 val = (sctp_sk(sk)->nodelay == 1);
4552 if (put_user(len, optlen))
4553 return -EFAULT;
4554 if (copy_to_user(optval, &val, len))
4555 return -EFAULT;
4556 return 0;
4557 }
4558
4559 /*
4560 *
4561 * 7.1.1 SCTP_RTOINFO
4562 *
4563 * The protocol parameters used to initialize and bound retransmission
4564 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4565 * and modify these parameters.
4566 * All parameters are time values, in milliseconds. A value of 0, when
4567 * modifying the parameters, indicates that the current value should not
4568 * be changed.
4569 *
4570 */
4571 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4572 char __user *optval,
4573 int __user *optlen) {
4574 struct sctp_rtoinfo rtoinfo;
4575 struct sctp_association *asoc;
4576
4577 if (len < sizeof (struct sctp_rtoinfo))
4578 return -EINVAL;
4579
4580 len = sizeof(struct sctp_rtoinfo);
4581
4582 if (copy_from_user(&rtoinfo, optval, len))
4583 return -EFAULT;
4584
4585 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4586
4587 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4588 return -EINVAL;
4589
4590 /* Values corresponding to the specific association. */
4591 if (asoc) {
4592 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4593 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4594 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4595 } else {
4596 /* Values corresponding to the endpoint. */
4597 struct sctp_sock *sp = sctp_sk(sk);
4598
4599 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4600 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4601 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4602 }
4603
4604 if (put_user(len, optlen))
4605 return -EFAULT;
4606
4607 if (copy_to_user(optval, &rtoinfo, len))
4608 return -EFAULT;
4609
4610 return 0;
4611 }
4612
4613 /*
4614 *
4615 * 7.1.2 SCTP_ASSOCINFO
4616 *
4617 * This option is used to tune the maximum retransmission attempts
4618 * of the association.
4619 * Returns an error if the new association retransmission value is
4620 * greater than the sum of the retransmission value of the peer.
4621 * See [SCTP] for more information.
4622 *
4623 */
4624 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4625 char __user *optval,
4626 int __user *optlen)
4627 {
4628
4629 struct sctp_assocparams assocparams;
4630 struct sctp_association *asoc;
4631 struct list_head *pos;
4632 int cnt = 0;
4633
4634 if (len < sizeof (struct sctp_assocparams))
4635 return -EINVAL;
4636
4637 len = sizeof(struct sctp_assocparams);
4638
4639 if (copy_from_user(&assocparams, optval, len))
4640 return -EFAULT;
4641
4642 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4643
4644 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4645 return -EINVAL;
4646
4647 /* Values correspoinding to the specific association */
4648 if (asoc) {
4649 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4650 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4651 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4652 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4653 * 1000) +
4654 (asoc->cookie_life.tv_usec
4655 / 1000);
4656
4657 list_for_each(pos, &asoc->peer.transport_addr_list) {
4658 cnt ++;
4659 }
4660
4661 assocparams.sasoc_number_peer_destinations = cnt;
4662 } else {
4663 /* Values corresponding to the endpoint */
4664 struct sctp_sock *sp = sctp_sk(sk);
4665
4666 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4667 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4668 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4669 assocparams.sasoc_cookie_life =
4670 sp->assocparams.sasoc_cookie_life;
4671 assocparams.sasoc_number_peer_destinations =
4672 sp->assocparams.
4673 sasoc_number_peer_destinations;
4674 }
4675
4676 if (put_user(len, optlen))
4677 return -EFAULT;
4678
4679 if (copy_to_user(optval, &assocparams, len))
4680 return -EFAULT;
4681
4682 return 0;
4683 }
4684
4685 /*
4686 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4687 *
4688 * This socket option is a boolean flag which turns on or off mapped V4
4689 * addresses. If this option is turned on and the socket is type
4690 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4691 * If this option is turned off, then no mapping will be done of V4
4692 * addresses and a user will receive both PF_INET6 and PF_INET type
4693 * addresses on the socket.
4694 */
4695 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4696 char __user *optval, int __user *optlen)
4697 {
4698 int val;
4699 struct sctp_sock *sp = sctp_sk(sk);
4700
4701 if (len < sizeof(int))
4702 return -EINVAL;
4703
4704 len = sizeof(int);
4705 val = sp->v4mapped;
4706 if (put_user(len, optlen))
4707 return -EFAULT;
4708 if (copy_to_user(optval, &val, len))
4709 return -EFAULT;
4710
4711 return 0;
4712 }
4713
4714 /*
4715 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
4716 * (chapter and verse is quoted at sctp_setsockopt_context())
4717 */
4718 static int sctp_getsockopt_context(struct sock *sk, int len,
4719 char __user *optval, int __user *optlen)
4720 {
4721 struct sctp_assoc_value params;
4722 struct sctp_sock *sp;
4723 struct sctp_association *asoc;
4724
4725 if (len < sizeof(struct sctp_assoc_value))
4726 return -EINVAL;
4727
4728 len = sizeof(struct sctp_assoc_value);
4729
4730 if (copy_from_user(&params, optval, len))
4731 return -EFAULT;
4732
4733 sp = sctp_sk(sk);
4734
4735 if (params.assoc_id != 0) {
4736 asoc = sctp_id2assoc(sk, params.assoc_id);
4737 if (!asoc)
4738 return -EINVAL;
4739 params.assoc_value = asoc->default_rcv_context;
4740 } else {
4741 params.assoc_value = sp->default_rcv_context;
4742 }
4743
4744 if (put_user(len, optlen))
4745 return -EFAULT;
4746 if (copy_to_user(optval, &params, len))
4747 return -EFAULT;
4748
4749 return 0;
4750 }
4751
4752 /*
4753 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4754 *
4755 * This socket option specifies the maximum size to put in any outgoing
4756 * SCTP chunk. If a message is larger than this size it will be
4757 * fragmented by SCTP into the specified size. Note that the underlying
4758 * SCTP implementation may fragment into smaller sized chunks when the
4759 * PMTU of the underlying association is smaller than the value set by
4760 * the user.
4761 */
4762 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4763 char __user *optval, int __user *optlen)
4764 {
4765 int val;
4766
4767 if (len < sizeof(int))
4768 return -EINVAL;
4769
4770 len = sizeof(int);
4771
4772 val = sctp_sk(sk)->user_frag;
4773 if (put_user(len, optlen))
4774 return -EFAULT;
4775 if (copy_to_user(optval, &val, len))
4776 return -EFAULT;
4777
4778 return 0;
4779 }
4780
4781 /*
4782 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
4783 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
4784 */
4785 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
4786 char __user *optval, int __user *optlen)
4787 {
4788 int val;
4789
4790 if (len < sizeof(int))
4791 return -EINVAL;
4792
4793 len = sizeof(int);
4794
4795 val = sctp_sk(sk)->frag_interleave;
4796 if (put_user(len, optlen))
4797 return -EFAULT;
4798 if (copy_to_user(optval, &val, len))
4799 return -EFAULT;
4800
4801 return 0;
4802 }
4803
4804 /*
4805 * 7.1.25. Set or Get the sctp partial delivery point
4806 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
4807 */
4808 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
4809 char __user *optval,
4810 int __user *optlen)
4811 {
4812 u32 val;
4813
4814 if (len < sizeof(u32))
4815 return -EINVAL;
4816
4817 len = sizeof(u32);
4818
4819 val = sctp_sk(sk)->pd_point;
4820 if (put_user(len, optlen))
4821 return -EFAULT;
4822 if (copy_to_user(optval, &val, len))
4823 return -EFAULT;
4824
4825 return -ENOTSUPP;
4826 }
4827
4828 /*
4829 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
4830 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
4831 */
4832 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
4833 char __user *optval,
4834 int __user *optlen)
4835 {
4836 int val;
4837
4838 if (len < sizeof(int))
4839 return -EINVAL;
4840
4841 len = sizeof(int);
4842
4843 val = sctp_sk(sk)->max_burst;
4844 if (put_user(len, optlen))
4845 return -EFAULT;
4846 if (copy_to_user(optval, &val, len))
4847 return -EFAULT;
4848
4849 return -ENOTSUPP;
4850 }
4851
4852 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4853 char __user *optval, int __user *optlen)
4854 {
4855 int retval = 0;
4856 int len;
4857
4858 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4859 sk, optname);
4860
4861 /* I can hardly begin to describe how wrong this is. This is
4862 * so broken as to be worse than useless. The API draft
4863 * REALLY is NOT helpful here... I am not convinced that the
4864 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4865 * are at all well-founded.
4866 */
4867 if (level != SOL_SCTP) {
4868 struct sctp_af *af = sctp_sk(sk)->pf->af;
4869
4870 retval = af->getsockopt(sk, level, optname, optval, optlen);
4871 return retval;
4872 }
4873
4874 if (get_user(len, optlen))
4875 return -EFAULT;
4876
4877 sctp_lock_sock(sk);
4878
4879 switch (optname) {
4880 case SCTP_STATUS:
4881 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4882 break;
4883 case SCTP_DISABLE_FRAGMENTS:
4884 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4885 optlen);
4886 break;
4887 case SCTP_EVENTS:
4888 retval = sctp_getsockopt_events(sk, len, optval, optlen);
4889 break;
4890 case SCTP_AUTOCLOSE:
4891 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4892 break;
4893 case SCTP_SOCKOPT_PEELOFF:
4894 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4895 break;
4896 case SCTP_PEER_ADDR_PARAMS:
4897 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4898 optlen);
4899 break;
4900 case SCTP_DELAYED_ACK_TIME:
4901 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4902 optlen);
4903 break;
4904 case SCTP_INITMSG:
4905 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4906 break;
4907 case SCTP_GET_PEER_ADDRS_NUM_OLD:
4908 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4909 optlen);
4910 break;
4911 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4912 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4913 optlen);
4914 break;
4915 case SCTP_GET_PEER_ADDRS_OLD:
4916 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4917 optlen);
4918 break;
4919 case SCTP_GET_LOCAL_ADDRS_OLD:
4920 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4921 optlen);
4922 break;
4923 case SCTP_GET_PEER_ADDRS:
4924 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4925 optlen);
4926 break;
4927 case SCTP_GET_LOCAL_ADDRS:
4928 retval = sctp_getsockopt_local_addrs(sk, len, optval,
4929 optlen);
4930 break;
4931 case SCTP_DEFAULT_SEND_PARAM:
4932 retval = sctp_getsockopt_default_send_param(sk, len,
4933 optval, optlen);
4934 break;
4935 case SCTP_PRIMARY_ADDR:
4936 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4937 break;
4938 case SCTP_NODELAY:
4939 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4940 break;
4941 case SCTP_RTOINFO:
4942 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4943 break;
4944 case SCTP_ASSOCINFO:
4945 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4946 break;
4947 case SCTP_I_WANT_MAPPED_V4_ADDR:
4948 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4949 break;
4950 case SCTP_MAXSEG:
4951 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4952 break;
4953 case SCTP_GET_PEER_ADDR_INFO:
4954 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4955 optlen);
4956 break;
4957 case SCTP_ADAPTATION_LAYER:
4958 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
4959 optlen);
4960 break;
4961 case SCTP_CONTEXT:
4962 retval = sctp_getsockopt_context(sk, len, optval, optlen);
4963 break;
4964 case SCTP_FRAGMENT_INTERLEAVE:
4965 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
4966 optlen);
4967 break;
4968 case SCTP_PARTIAL_DELIVERY_POINT:
4969 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
4970 optlen);
4971 break;
4972 case SCTP_MAX_BURST:
4973 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
4974 break;
4975 default:
4976 retval = -ENOPROTOOPT;
4977 break;
4978 }
4979
4980 sctp_release_sock(sk);
4981 return retval;
4982 }
4983
4984 static void sctp_hash(struct sock *sk)
4985 {
4986 /* STUB */
4987 }
4988
4989 static void sctp_unhash(struct sock *sk)
4990 {
4991 /* STUB */
4992 }
4993
4994 /* Check if port is acceptable. Possibly find first available port.
4995 *
4996 * The port hash table (contained in the 'global' SCTP protocol storage
4997 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4998 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4999 * list (the list number is the port number hashed out, so as you
5000 * would expect from a hash function, all the ports in a given list have
5001 * such a number that hashes out to the same list number; you were
5002 * expecting that, right?); so each list has a set of ports, with a
5003 * link to the socket (struct sock) that uses it, the port number and
5004 * a fastreuse flag (FIXME: NPI ipg).
5005 */
5006 static struct sctp_bind_bucket *sctp_bucket_create(
5007 struct sctp_bind_hashbucket *head, unsigned short snum);
5008
5009 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5010 {
5011 struct sctp_bind_hashbucket *head; /* hash list */
5012 struct sctp_bind_bucket *pp; /* hash list port iterator */
5013 unsigned short snum;
5014 int ret;
5015
5016 snum = ntohs(addr->v4.sin_port);
5017
5018 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5019 sctp_local_bh_disable();
5020
5021 if (snum == 0) {
5022 /* Search for an available port.
5023 *
5024 * 'sctp_port_rover' was the last port assigned, so
5025 * we start to search from 'sctp_port_rover +
5026 * 1'. What we do is first check if port 'rover' is
5027 * already in the hash table; if not, we use that; if
5028 * it is, we try next.
5029 */
5030 int low = sysctl_local_port_range[0];
5031 int high = sysctl_local_port_range[1];
5032 int remaining = (high - low) + 1;
5033 int rover;
5034 int index;
5035
5036 sctp_spin_lock(&sctp_port_alloc_lock);
5037 rover = sctp_port_rover;
5038 do {
5039 rover++;
5040 if ((rover < low) || (rover > high))
5041 rover = low;
5042 index = sctp_phashfn(rover);
5043 head = &sctp_port_hashtable[index];
5044 sctp_spin_lock(&head->lock);
5045 for (pp = head->chain; pp; pp = pp->next)
5046 if (pp->port == rover)
5047 goto next;
5048 break;
5049 next:
5050 sctp_spin_unlock(&head->lock);
5051 } while (--remaining > 0);
5052 sctp_port_rover = rover;
5053 sctp_spin_unlock(&sctp_port_alloc_lock);
5054
5055 /* Exhausted local port range during search? */
5056 ret = 1;
5057 if (remaining <= 0)
5058 goto fail;
5059
5060 /* OK, here is the one we will use. HEAD (the port
5061 * hash table list entry) is non-NULL and we hold it's
5062 * mutex.
5063 */
5064 snum = rover;
5065 } else {
5066 /* We are given an specific port number; we verify
5067 * that it is not being used. If it is used, we will
5068 * exahust the search in the hash list corresponding
5069 * to the port number (snum) - we detect that with the
5070 * port iterator, pp being NULL.
5071 */
5072 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5073 sctp_spin_lock(&head->lock);
5074 for (pp = head->chain; pp; pp = pp->next) {
5075 if (pp->port == snum)
5076 goto pp_found;
5077 }
5078 }
5079 pp = NULL;
5080 goto pp_not_found;
5081 pp_found:
5082 if (!hlist_empty(&pp->owner)) {
5083 /* We had a port hash table hit - there is an
5084 * available port (pp != NULL) and it is being
5085 * used by other socket (pp->owner not empty); that other
5086 * socket is going to be sk2.
5087 */
5088 int reuse = sk->sk_reuse;
5089 struct sock *sk2;
5090 struct hlist_node *node;
5091
5092 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5093 if (pp->fastreuse && sk->sk_reuse &&
5094 sk->sk_state != SCTP_SS_LISTENING)
5095 goto success;
5096
5097 /* Run through the list of sockets bound to the port
5098 * (pp->port) [via the pointers bind_next and
5099 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5100 * we get the endpoint they describe and run through
5101 * the endpoint's list of IP (v4 or v6) addresses,
5102 * comparing each of the addresses with the address of
5103 * the socket sk. If we find a match, then that means
5104 * that this port/socket (sk) combination are already
5105 * in an endpoint.
5106 */
5107 sk_for_each_bound(sk2, node, &pp->owner) {
5108 struct sctp_endpoint *ep2;
5109 ep2 = sctp_sk(sk2)->ep;
5110
5111 if (reuse && sk2->sk_reuse &&
5112 sk2->sk_state != SCTP_SS_LISTENING)
5113 continue;
5114
5115 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
5116 sctp_sk(sk))) {
5117 ret = (long)sk2;
5118 goto fail_unlock;
5119 }
5120 }
5121 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5122 }
5123 pp_not_found:
5124 /* If there was a hash table miss, create a new port. */
5125 ret = 1;
5126 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5127 goto fail_unlock;
5128
5129 /* In either case (hit or miss), make sure fastreuse is 1 only
5130 * if sk->sk_reuse is too (that is, if the caller requested
5131 * SO_REUSEADDR on this socket -sk-).
5132 */
5133 if (hlist_empty(&pp->owner)) {
5134 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5135 pp->fastreuse = 1;
5136 else
5137 pp->fastreuse = 0;
5138 } else if (pp->fastreuse &&
5139 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5140 pp->fastreuse = 0;
5141
5142 /* We are set, so fill up all the data in the hash table
5143 * entry, tie the socket list information with the rest of the
5144 * sockets FIXME: Blurry, NPI (ipg).
5145 */
5146 success:
5147 if (!sctp_sk(sk)->bind_hash) {
5148 inet_sk(sk)->num = snum;
5149 sk_add_bind_node(sk, &pp->owner);
5150 sctp_sk(sk)->bind_hash = pp;
5151 }
5152 ret = 0;
5153
5154 fail_unlock:
5155 sctp_spin_unlock(&head->lock);
5156
5157 fail:
5158 sctp_local_bh_enable();
5159 return ret;
5160 }
5161
5162 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5163 * port is requested.
5164 */
5165 static int sctp_get_port(struct sock *sk, unsigned short snum)
5166 {
5167 long ret;
5168 union sctp_addr addr;
5169 struct sctp_af *af = sctp_sk(sk)->pf->af;
5170
5171 /* Set up a dummy address struct from the sk. */
5172 af->from_sk(&addr, sk);
5173 addr.v4.sin_port = htons(snum);
5174
5175 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5176 ret = sctp_get_port_local(sk, &addr);
5177
5178 return (ret ? 1 : 0);
5179 }
5180
5181 /*
5182 * 3.1.3 listen() - UDP Style Syntax
5183 *
5184 * By default, new associations are not accepted for UDP style sockets.
5185 * An application uses listen() to mark a socket as being able to
5186 * accept new associations.
5187 */
5188 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5189 {
5190 struct sctp_sock *sp = sctp_sk(sk);
5191 struct sctp_endpoint *ep = sp->ep;
5192
5193 /* Only UDP style sockets that are not peeled off are allowed to
5194 * listen().
5195 */
5196 if (!sctp_style(sk, UDP))
5197 return -EINVAL;
5198
5199 /* If backlog is zero, disable listening. */
5200 if (!backlog) {
5201 if (sctp_sstate(sk, CLOSED))
5202 return 0;
5203
5204 sctp_unhash_endpoint(ep);
5205 sk->sk_state = SCTP_SS_CLOSED;
5206 }
5207
5208 /* Return if we are already listening. */
5209 if (sctp_sstate(sk, LISTENING))
5210 return 0;
5211
5212 /*
5213 * If a bind() or sctp_bindx() is not called prior to a listen()
5214 * call that allows new associations to be accepted, the system
5215 * picks an ephemeral port and will choose an address set equivalent
5216 * to binding with a wildcard address.
5217 *
5218 * This is not currently spelled out in the SCTP sockets
5219 * extensions draft, but follows the practice as seen in TCP
5220 * sockets.
5221 *
5222 * Additionally, turn off fastreuse flag since we are not listening
5223 */
5224 sk->sk_state = SCTP_SS_LISTENING;
5225 if (!ep->base.bind_addr.port) {
5226 if (sctp_autobind(sk))
5227 return -EAGAIN;
5228 } else
5229 sctp_sk(sk)->bind_hash->fastreuse = 0;
5230
5231 sctp_hash_endpoint(ep);
5232 return 0;
5233 }
5234
5235 /*
5236 * 4.1.3 listen() - TCP Style Syntax
5237 *
5238 * Applications uses listen() to ready the SCTP endpoint for accepting
5239 * inbound associations.
5240 */
5241 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5242 {
5243 struct sctp_sock *sp = sctp_sk(sk);
5244 struct sctp_endpoint *ep = sp->ep;
5245
5246 /* If backlog is zero, disable listening. */
5247 if (!backlog) {
5248 if (sctp_sstate(sk, CLOSED))
5249 return 0;
5250
5251 sctp_unhash_endpoint(ep);
5252 sk->sk_state = SCTP_SS_CLOSED;
5253 }
5254
5255 if (sctp_sstate(sk, LISTENING))
5256 return 0;
5257
5258 /*
5259 * If a bind() or sctp_bindx() is not called prior to a listen()
5260 * call that allows new associations to be accepted, the system
5261 * picks an ephemeral port and will choose an address set equivalent
5262 * to binding with a wildcard address.
5263 *
5264 * This is not currently spelled out in the SCTP sockets
5265 * extensions draft, but follows the practice as seen in TCP
5266 * sockets.
5267 */
5268 sk->sk_state = SCTP_SS_LISTENING;
5269 if (!ep->base.bind_addr.port) {
5270 if (sctp_autobind(sk))
5271 return -EAGAIN;
5272 } else
5273 sctp_sk(sk)->bind_hash->fastreuse = 0;
5274
5275 sk->sk_max_ack_backlog = backlog;
5276 sctp_hash_endpoint(ep);
5277 return 0;
5278 }
5279
5280 /*
5281 * Move a socket to LISTENING state.
5282 */
5283 int sctp_inet_listen(struct socket *sock, int backlog)
5284 {
5285 struct sock *sk = sock->sk;
5286 struct crypto_hash *tfm = NULL;
5287 int err = -EINVAL;
5288
5289 if (unlikely(backlog < 0))
5290 goto out;
5291
5292 sctp_lock_sock(sk);
5293
5294 if (sock->state != SS_UNCONNECTED)
5295 goto out;
5296
5297 /* Allocate HMAC for generating cookie. */
5298 if (sctp_hmac_alg) {
5299 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5300 if (IS_ERR(tfm)) {
5301 if (net_ratelimit()) {
5302 printk(KERN_INFO
5303 "SCTP: failed to load transform for %s: %ld\n",
5304 sctp_hmac_alg, PTR_ERR(tfm));
5305 }
5306 err = -ENOSYS;
5307 goto out;
5308 }
5309 }
5310
5311 switch (sock->type) {
5312 case SOCK_SEQPACKET:
5313 err = sctp_seqpacket_listen(sk, backlog);
5314 break;
5315 case SOCK_STREAM:
5316 err = sctp_stream_listen(sk, backlog);
5317 break;
5318 default:
5319 break;
5320 }
5321
5322 if (err)
5323 goto cleanup;
5324
5325 /* Store away the transform reference. */
5326 sctp_sk(sk)->hmac = tfm;
5327 out:
5328 sctp_release_sock(sk);
5329 return err;
5330 cleanup:
5331 crypto_free_hash(tfm);
5332 goto out;
5333 }
5334
5335 /*
5336 * This function is done by modeling the current datagram_poll() and the
5337 * tcp_poll(). Note that, based on these implementations, we don't
5338 * lock the socket in this function, even though it seems that,
5339 * ideally, locking or some other mechanisms can be used to ensure
5340 * the integrity of the counters (sndbuf and wmem_alloc) used
5341 * in this place. We assume that we don't need locks either until proven
5342 * otherwise.
5343 *
5344 * Another thing to note is that we include the Async I/O support
5345 * here, again, by modeling the current TCP/UDP code. We don't have
5346 * a good way to test with it yet.
5347 */
5348 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5349 {
5350 struct sock *sk = sock->sk;
5351 struct sctp_sock *sp = sctp_sk(sk);
5352 unsigned int mask;
5353
5354 poll_wait(file, sk->sk_sleep, wait);
5355
5356 /* A TCP-style listening socket becomes readable when the accept queue
5357 * is not empty.
5358 */
5359 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5360 return (!list_empty(&sp->ep->asocs)) ?
5361 (POLLIN | POLLRDNORM) : 0;
5362
5363 mask = 0;
5364
5365 /* Is there any exceptional events? */
5366 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5367 mask |= POLLERR;
5368 if (sk->sk_shutdown & RCV_SHUTDOWN)
5369 mask |= POLLRDHUP;
5370 if (sk->sk_shutdown == SHUTDOWN_MASK)
5371 mask |= POLLHUP;
5372
5373 /* Is it readable? Reconsider this code with TCP-style support. */
5374 if (!skb_queue_empty(&sk->sk_receive_queue) ||
5375 (sk->sk_shutdown & RCV_SHUTDOWN))
5376 mask |= POLLIN | POLLRDNORM;
5377
5378 /* The association is either gone or not ready. */
5379 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5380 return mask;
5381
5382 /* Is it writable? */
5383 if (sctp_writeable(sk)) {
5384 mask |= POLLOUT | POLLWRNORM;
5385 } else {
5386 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5387 /*
5388 * Since the socket is not locked, the buffer
5389 * might be made available after the writeable check and
5390 * before the bit is set. This could cause a lost I/O
5391 * signal. tcp_poll() has a race breaker for this race
5392 * condition. Based on their implementation, we put
5393 * in the following code to cover it as well.
5394 */
5395 if (sctp_writeable(sk))
5396 mask |= POLLOUT | POLLWRNORM;
5397 }
5398 return mask;
5399 }
5400
5401 /********************************************************************
5402 * 2nd Level Abstractions
5403 ********************************************************************/
5404
5405 static struct sctp_bind_bucket *sctp_bucket_create(
5406 struct sctp_bind_hashbucket *head, unsigned short snum)
5407 {
5408 struct sctp_bind_bucket *pp;
5409
5410 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5411 SCTP_DBG_OBJCNT_INC(bind_bucket);
5412 if (pp) {
5413 pp->port = snum;
5414 pp->fastreuse = 0;
5415 INIT_HLIST_HEAD(&pp->owner);
5416 if ((pp->next = head->chain) != NULL)
5417 pp->next->pprev = &pp->next;
5418 head->chain = pp;
5419 pp->pprev = &head->chain;
5420 }
5421 return pp;
5422 }
5423
5424 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5425 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5426 {
5427 if (pp && hlist_empty(&pp->owner)) {
5428 if (pp->next)
5429 pp->next->pprev = pp->pprev;
5430 *(pp->pprev) = pp->next;
5431 kmem_cache_free(sctp_bucket_cachep, pp);
5432 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5433 }
5434 }
5435
5436 /* Release this socket's reference to a local port. */
5437 static inline void __sctp_put_port(struct sock *sk)
5438 {
5439 struct sctp_bind_hashbucket *head =
5440 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5441 struct sctp_bind_bucket *pp;
5442
5443 sctp_spin_lock(&head->lock);
5444 pp = sctp_sk(sk)->bind_hash;
5445 __sk_del_bind_node(sk);
5446 sctp_sk(sk)->bind_hash = NULL;
5447 inet_sk(sk)->num = 0;
5448 sctp_bucket_destroy(pp);
5449 sctp_spin_unlock(&head->lock);
5450 }
5451
5452 void sctp_put_port(struct sock *sk)
5453 {
5454 sctp_local_bh_disable();
5455 __sctp_put_port(sk);
5456 sctp_local_bh_enable();
5457 }
5458
5459 /*
5460 * The system picks an ephemeral port and choose an address set equivalent
5461 * to binding with a wildcard address.
5462 * One of those addresses will be the primary address for the association.
5463 * This automatically enables the multihoming capability of SCTP.
5464 */
5465 static int sctp_autobind(struct sock *sk)
5466 {
5467 union sctp_addr autoaddr;
5468 struct sctp_af *af;
5469 __be16 port;
5470
5471 /* Initialize a local sockaddr structure to INADDR_ANY. */
5472 af = sctp_sk(sk)->pf->af;
5473
5474 port = htons(inet_sk(sk)->num);
5475 af->inaddr_any(&autoaddr, port);
5476
5477 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5478 }
5479
5480 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5481 *
5482 * From RFC 2292
5483 * 4.2 The cmsghdr Structure *
5484 *
5485 * When ancillary data is sent or received, any number of ancillary data
5486 * objects can be specified by the msg_control and msg_controllen members of
5487 * the msghdr structure, because each object is preceded by
5488 * a cmsghdr structure defining the object's length (the cmsg_len member).
5489 * Historically Berkeley-derived implementations have passed only one object
5490 * at a time, but this API allows multiple objects to be
5491 * passed in a single call to sendmsg() or recvmsg(). The following example
5492 * shows two ancillary data objects in a control buffer.
5493 *
5494 * |<--------------------------- msg_controllen -------------------------->|
5495 * | |
5496 *
5497 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5498 *
5499 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5500 * | | |
5501 *
5502 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5503 *
5504 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5505 * | | | | |
5506 *
5507 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5508 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5509 *
5510 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5511 *
5512 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5513 * ^
5514 * |
5515 *
5516 * msg_control
5517 * points here
5518 */
5519 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5520 sctp_cmsgs_t *cmsgs)
5521 {
5522 struct cmsghdr *cmsg;
5523
5524 for (cmsg = CMSG_FIRSTHDR(msg);
5525 cmsg != NULL;
5526 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5527 if (!CMSG_OK(msg, cmsg))
5528 return -EINVAL;
5529
5530 /* Should we parse this header or ignore? */
5531 if (cmsg->cmsg_level != IPPROTO_SCTP)
5532 continue;
5533
5534 /* Strictly check lengths following example in SCM code. */
5535 switch (cmsg->cmsg_type) {
5536 case SCTP_INIT:
5537 /* SCTP Socket API Extension
5538 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5539 *
5540 * This cmsghdr structure provides information for
5541 * initializing new SCTP associations with sendmsg().
5542 * The SCTP_INITMSG socket option uses this same data
5543 * structure. This structure is not used for
5544 * recvmsg().
5545 *
5546 * cmsg_level cmsg_type cmsg_data[]
5547 * ------------ ------------ ----------------------
5548 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5549 */
5550 if (cmsg->cmsg_len !=
5551 CMSG_LEN(sizeof(struct sctp_initmsg)))
5552 return -EINVAL;
5553 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5554 break;
5555
5556 case SCTP_SNDRCV:
5557 /* SCTP Socket API Extension
5558 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5559 *
5560 * This cmsghdr structure specifies SCTP options for
5561 * sendmsg() and describes SCTP header information
5562 * about a received message through recvmsg().
5563 *
5564 * cmsg_level cmsg_type cmsg_data[]
5565 * ------------ ------------ ----------------------
5566 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
5567 */
5568 if (cmsg->cmsg_len !=
5569 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5570 return -EINVAL;
5571
5572 cmsgs->info =
5573 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5574
5575 /* Minimally, validate the sinfo_flags. */
5576 if (cmsgs->info->sinfo_flags &
5577 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5578 SCTP_ABORT | SCTP_EOF))
5579 return -EINVAL;
5580 break;
5581
5582 default:
5583 return -EINVAL;
5584 }
5585 }
5586 return 0;
5587 }
5588
5589 /*
5590 * Wait for a packet..
5591 * Note: This function is the same function as in core/datagram.c
5592 * with a few modifications to make lksctp work.
5593 */
5594 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5595 {
5596 int error;
5597 DEFINE_WAIT(wait);
5598
5599 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5600
5601 /* Socket errors? */
5602 error = sock_error(sk);
5603 if (error)
5604 goto out;
5605
5606 if (!skb_queue_empty(&sk->sk_receive_queue))
5607 goto ready;
5608
5609 /* Socket shut down? */
5610 if (sk->sk_shutdown & RCV_SHUTDOWN)
5611 goto out;
5612
5613 /* Sequenced packets can come disconnected. If so we report the
5614 * problem.
5615 */
5616 error = -ENOTCONN;
5617
5618 /* Is there a good reason to think that we may receive some data? */
5619 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5620 goto out;
5621
5622 /* Handle signals. */
5623 if (signal_pending(current))
5624 goto interrupted;
5625
5626 /* Let another process have a go. Since we are going to sleep
5627 * anyway. Note: This may cause odd behaviors if the message
5628 * does not fit in the user's buffer, but this seems to be the
5629 * only way to honor MSG_DONTWAIT realistically.
5630 */
5631 sctp_release_sock(sk);
5632 *timeo_p = schedule_timeout(*timeo_p);
5633 sctp_lock_sock(sk);
5634
5635 ready:
5636 finish_wait(sk->sk_sleep, &wait);
5637 return 0;
5638
5639 interrupted:
5640 error = sock_intr_errno(*timeo_p);
5641
5642 out:
5643 finish_wait(sk->sk_sleep, &wait);
5644 *err = error;
5645 return error;
5646 }
5647
5648 /* Receive a datagram.
5649 * Note: This is pretty much the same routine as in core/datagram.c
5650 * with a few changes to make lksctp work.
5651 */
5652 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5653 int noblock, int *err)
5654 {
5655 int error;
5656 struct sk_buff *skb;
5657 long timeo;
5658
5659 timeo = sock_rcvtimeo(sk, noblock);
5660
5661 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5662 timeo, MAX_SCHEDULE_TIMEOUT);
5663
5664 do {
5665 /* Again only user level code calls this function,
5666 * so nothing interrupt level
5667 * will suddenly eat the receive_queue.
5668 *
5669 * Look at current nfs client by the way...
5670 * However, this function was corrent in any case. 8)
5671 */
5672 if (flags & MSG_PEEK) {
5673 spin_lock_bh(&sk->sk_receive_queue.lock);
5674 skb = skb_peek(&sk->sk_receive_queue);
5675 if (skb)
5676 atomic_inc(&skb->users);
5677 spin_unlock_bh(&sk->sk_receive_queue.lock);
5678 } else {
5679 skb = skb_dequeue(&sk->sk_receive_queue);
5680 }
5681
5682 if (skb)
5683 return skb;
5684
5685 /* Caller is allowed not to check sk->sk_err before calling. */
5686 error = sock_error(sk);
5687 if (error)
5688 goto no_packet;
5689
5690 if (sk->sk_shutdown & RCV_SHUTDOWN)
5691 break;
5692
5693 /* User doesn't want to wait. */
5694 error = -EAGAIN;
5695 if (!timeo)
5696 goto no_packet;
5697 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5698
5699 return NULL;
5700
5701 no_packet:
5702 *err = error;
5703 return NULL;
5704 }
5705
5706 /* If sndbuf has changed, wake up per association sndbuf waiters. */
5707 static void __sctp_write_space(struct sctp_association *asoc)
5708 {
5709 struct sock *sk = asoc->base.sk;
5710 struct socket *sock = sk->sk_socket;
5711
5712 if ((sctp_wspace(asoc) > 0) && sock) {
5713 if (waitqueue_active(&asoc->wait))
5714 wake_up_interruptible(&asoc->wait);
5715
5716 if (sctp_writeable(sk)) {
5717 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5718 wake_up_interruptible(sk->sk_sleep);
5719
5720 /* Note that we try to include the Async I/O support
5721 * here by modeling from the current TCP/UDP code.
5722 * We have not tested with it yet.
5723 */
5724 if (sock->fasync_list &&
5725 !(sk->sk_shutdown & SEND_SHUTDOWN))
5726 sock_wake_async(sock, 2, POLL_OUT);
5727 }
5728 }
5729 }
5730
5731 /* Do accounting for the sndbuf space.
5732 * Decrement the used sndbuf space of the corresponding association by the
5733 * data size which was just transmitted(freed).
5734 */
5735 static void sctp_wfree(struct sk_buff *skb)
5736 {
5737 struct sctp_association *asoc;
5738 struct sctp_chunk *chunk;
5739 struct sock *sk;
5740
5741 /* Get the saved chunk pointer. */
5742 chunk = *((struct sctp_chunk **)(skb->cb));
5743 asoc = chunk->asoc;
5744 sk = asoc->base.sk;
5745 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5746 sizeof(struct sk_buff) +
5747 sizeof(struct sctp_chunk);
5748
5749 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5750
5751 sock_wfree(skb);
5752 __sctp_write_space(asoc);
5753
5754 sctp_association_put(asoc);
5755 }
5756
5757 /* Do accounting for the receive space on the socket.
5758 * Accounting for the association is done in ulpevent.c
5759 * We set this as a destructor for the cloned data skbs so that
5760 * accounting is done at the correct time.
5761 */
5762 void sctp_sock_rfree(struct sk_buff *skb)
5763 {
5764 struct sock *sk = skb->sk;
5765 struct sctp_ulpevent *event = sctp_skb2event(skb);
5766
5767 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
5768 }
5769
5770
5771 /* Helper function to wait for space in the sndbuf. */
5772 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5773 size_t msg_len)
5774 {
5775 struct sock *sk = asoc->base.sk;
5776 int err = 0;
5777 long current_timeo = *timeo_p;
5778 DEFINE_WAIT(wait);
5779
5780 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5781 asoc, (long)(*timeo_p), msg_len);
5782
5783 /* Increment the association's refcnt. */
5784 sctp_association_hold(asoc);
5785
5786 /* Wait on the association specific sndbuf space. */
5787 for (;;) {
5788 prepare_to_wait_exclusive(&asoc->wait, &wait,
5789 TASK_INTERRUPTIBLE);
5790 if (!*timeo_p)
5791 goto do_nonblock;
5792 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5793 asoc->base.dead)
5794 goto do_error;
5795 if (signal_pending(current))
5796 goto do_interrupted;
5797 if (msg_len <= sctp_wspace(asoc))
5798 break;
5799
5800 /* Let another process have a go. Since we are going
5801 * to sleep anyway.
5802 */
5803 sctp_release_sock(sk);
5804 current_timeo = schedule_timeout(current_timeo);
5805 BUG_ON(sk != asoc->base.sk);
5806 sctp_lock_sock(sk);
5807
5808 *timeo_p = current_timeo;
5809 }
5810
5811 out:
5812 finish_wait(&asoc->wait, &wait);
5813
5814 /* Release the association's refcnt. */
5815 sctp_association_put(asoc);
5816
5817 return err;
5818
5819 do_error:
5820 err = -EPIPE;
5821 goto out;
5822
5823 do_interrupted:
5824 err = sock_intr_errno(*timeo_p);
5825 goto out;
5826
5827 do_nonblock:
5828 err = -EAGAIN;
5829 goto out;
5830 }
5831
5832 /* If socket sndbuf has changed, wake up all per association waiters. */
5833 void sctp_write_space(struct sock *sk)
5834 {
5835 struct sctp_association *asoc;
5836 struct list_head *pos;
5837
5838 /* Wake up the tasks in each wait queue. */
5839 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5840 asoc = list_entry(pos, struct sctp_association, asocs);
5841 __sctp_write_space(asoc);
5842 }
5843 }
5844
5845 /* Is there any sndbuf space available on the socket?
5846 *
5847 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5848 * associations on the same socket. For a UDP-style socket with
5849 * multiple associations, it is possible for it to be "unwriteable"
5850 * prematurely. I assume that this is acceptable because
5851 * a premature "unwriteable" is better than an accidental "writeable" which
5852 * would cause an unwanted block under certain circumstances. For the 1-1
5853 * UDP-style sockets or TCP-style sockets, this code should work.
5854 * - Daisy
5855 */
5856 static int sctp_writeable(struct sock *sk)
5857 {
5858 int amt = 0;
5859
5860 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5861 if (amt < 0)
5862 amt = 0;
5863 return amt;
5864 }
5865
5866 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5867 * returns immediately with EINPROGRESS.
5868 */
5869 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5870 {
5871 struct sock *sk = asoc->base.sk;
5872 int err = 0;
5873 long current_timeo = *timeo_p;
5874 DEFINE_WAIT(wait);
5875
5876 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5877 (long)(*timeo_p));
5878
5879 /* Increment the association's refcnt. */
5880 sctp_association_hold(asoc);
5881
5882 for (;;) {
5883 prepare_to_wait_exclusive(&asoc->wait, &wait,
5884 TASK_INTERRUPTIBLE);
5885 if (!*timeo_p)
5886 goto do_nonblock;
5887 if (sk->sk_shutdown & RCV_SHUTDOWN)
5888 break;
5889 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5890 asoc->base.dead)
5891 goto do_error;
5892 if (signal_pending(current))
5893 goto do_interrupted;
5894
5895 if (sctp_state(asoc, ESTABLISHED))
5896 break;
5897
5898 /* Let another process have a go. Since we are going
5899 * to sleep anyway.
5900 */
5901 sctp_release_sock(sk);
5902 current_timeo = schedule_timeout(current_timeo);
5903 sctp_lock_sock(sk);
5904
5905 *timeo_p = current_timeo;
5906 }
5907
5908 out:
5909 finish_wait(&asoc->wait, &wait);
5910
5911 /* Release the association's refcnt. */
5912 sctp_association_put(asoc);
5913
5914 return err;
5915
5916 do_error:
5917 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5918 err = -ETIMEDOUT;
5919 else
5920 err = -ECONNREFUSED;
5921 goto out;
5922
5923 do_interrupted:
5924 err = sock_intr_errno(*timeo_p);
5925 goto out;
5926
5927 do_nonblock:
5928 err = -EINPROGRESS;
5929 goto out;
5930 }
5931
5932 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5933 {
5934 struct sctp_endpoint *ep;
5935 int err = 0;
5936 DEFINE_WAIT(wait);
5937
5938 ep = sctp_sk(sk)->ep;
5939
5940
5941 for (;;) {
5942 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5943 TASK_INTERRUPTIBLE);
5944
5945 if (list_empty(&ep->asocs)) {
5946 sctp_release_sock(sk);
5947 timeo = schedule_timeout(timeo);
5948 sctp_lock_sock(sk);
5949 }
5950
5951 err = -EINVAL;
5952 if (!sctp_sstate(sk, LISTENING))
5953 break;
5954
5955 err = 0;
5956 if (!list_empty(&ep->asocs))
5957 break;
5958
5959 err = sock_intr_errno(timeo);
5960 if (signal_pending(current))
5961 break;
5962
5963 err = -EAGAIN;
5964 if (!timeo)
5965 break;
5966 }
5967
5968 finish_wait(sk->sk_sleep, &wait);
5969
5970 return err;
5971 }
5972
5973 static void sctp_wait_for_close(struct sock *sk, long timeout)
5974 {
5975 DEFINE_WAIT(wait);
5976
5977 do {
5978 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5979 if (list_empty(&sctp_sk(sk)->ep->asocs))
5980 break;
5981 sctp_release_sock(sk);
5982 timeout = schedule_timeout(timeout);
5983 sctp_lock_sock(sk);
5984 } while (!signal_pending(current) && timeout);
5985
5986 finish_wait(sk->sk_sleep, &wait);
5987 }
5988
5989 static void sctp_sock_rfree_frag(struct sk_buff *skb)
5990 {
5991 struct sk_buff *frag;
5992
5993 if (!skb->data_len)
5994 goto done;
5995
5996 /* Don't forget the fragments. */
5997 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
5998 sctp_sock_rfree_frag(frag);
5999
6000 done:
6001 sctp_sock_rfree(skb);
6002 }
6003
6004 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6005 {
6006 struct sk_buff *frag;
6007
6008 if (!skb->data_len)
6009 goto done;
6010
6011 /* Don't forget the fragments. */
6012 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6013 sctp_skb_set_owner_r_frag(frag, sk);
6014
6015 done:
6016 sctp_skb_set_owner_r(skb, sk);
6017 }
6018
6019 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6020 * and its messages to the newsk.
6021 */
6022 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6023 struct sctp_association *assoc,
6024 sctp_socket_type_t type)
6025 {
6026 struct sctp_sock *oldsp = sctp_sk(oldsk);
6027 struct sctp_sock *newsp = sctp_sk(newsk);
6028 struct sctp_bind_bucket *pp; /* hash list port iterator */
6029 struct sctp_endpoint *newep = newsp->ep;
6030 struct sk_buff *skb, *tmp;
6031 struct sctp_ulpevent *event;
6032 int flags = 0;
6033
6034 /* Migrate socket buffer sizes and all the socket level options to the
6035 * new socket.
6036 */
6037 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6038 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6039 /* Brute force copy old sctp opt. */
6040 inet_sk_copy_descendant(newsk, oldsk);
6041
6042 /* Restore the ep value that was overwritten with the above structure
6043 * copy.
6044 */
6045 newsp->ep = newep;
6046 newsp->hmac = NULL;
6047
6048 /* Hook this new socket in to the bind_hash list. */
6049 pp = sctp_sk(oldsk)->bind_hash;
6050 sk_add_bind_node(newsk, &pp->owner);
6051 sctp_sk(newsk)->bind_hash = pp;
6052 inet_sk(newsk)->num = inet_sk(oldsk)->num;
6053
6054 /* Copy the bind_addr list from the original endpoint to the new
6055 * endpoint so that we can handle restarts properly
6056 */
6057 if (PF_INET6 == assoc->base.sk->sk_family)
6058 flags = SCTP_ADDR6_ALLOWED;
6059 if (assoc->peer.ipv4_address)
6060 flags |= SCTP_ADDR4_PEERSUPP;
6061 if (assoc->peer.ipv6_address)
6062 flags |= SCTP_ADDR6_PEERSUPP;
6063 sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
6064 &oldsp->ep->base.bind_addr,
6065 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
6066
6067 /* Move any messages in the old socket's receive queue that are for the
6068 * peeled off association to the new socket's receive queue.
6069 */
6070 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6071 event = sctp_skb2event(skb);
6072 if (event->asoc == assoc) {
6073 sctp_sock_rfree_frag(skb);
6074 __skb_unlink(skb, &oldsk->sk_receive_queue);
6075 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6076 sctp_skb_set_owner_r_frag(skb, newsk);
6077 }
6078 }
6079
6080 /* Clean up any messages pending delivery due to partial
6081 * delivery. Three cases:
6082 * 1) No partial deliver; no work.
6083 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6084 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6085 */
6086 skb_queue_head_init(&newsp->pd_lobby);
6087 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6088
6089 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6090 struct sk_buff_head *queue;
6091
6092 /* Decide which queue to move pd_lobby skbs to. */
6093 if (assoc->ulpq.pd_mode) {
6094 queue = &newsp->pd_lobby;
6095 } else
6096 queue = &newsk->sk_receive_queue;
6097
6098 /* Walk through the pd_lobby, looking for skbs that
6099 * need moved to the new socket.
6100 */
6101 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6102 event = sctp_skb2event(skb);
6103 if (event->asoc == assoc) {
6104 sctp_sock_rfree_frag(skb);
6105 __skb_unlink(skb, &oldsp->pd_lobby);
6106 __skb_queue_tail(queue, skb);
6107 sctp_skb_set_owner_r_frag(skb, newsk);
6108 }
6109 }
6110
6111 /* Clear up any skbs waiting for the partial
6112 * delivery to finish.
6113 */
6114 if (assoc->ulpq.pd_mode)
6115 sctp_clear_pd(oldsk, NULL);
6116
6117 }
6118
6119 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6120 sctp_sock_rfree_frag(skb);
6121 sctp_skb_set_owner_r_frag(skb, newsk);
6122 }
6123
6124 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6125 sctp_sock_rfree_frag(skb);
6126 sctp_skb_set_owner_r_frag(skb, newsk);
6127 }
6128
6129 /* Set the type of socket to indicate that it is peeled off from the
6130 * original UDP-style socket or created with the accept() call on a
6131 * TCP-style socket..
6132 */
6133 newsp->type = type;
6134
6135 /* Mark the new socket "in-use" by the user so that any packets
6136 * that may arrive on the association after we've moved it are
6137 * queued to the backlog. This prevents a potential race between
6138 * backlog processing on the old socket and new-packet processing
6139 * on the new socket.
6140 *
6141 * The caller has just allocated newsk so we can guarantee that other
6142 * paths won't try to lock it and then oldsk.
6143 */
6144 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6145 sctp_assoc_migrate(assoc, newsk);
6146
6147 /* If the association on the newsk is already closed before accept()
6148 * is called, set RCV_SHUTDOWN flag.
6149 */
6150 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6151 newsk->sk_shutdown |= RCV_SHUTDOWN;
6152
6153 newsk->sk_state = SCTP_SS_ESTABLISHED;
6154 sctp_release_sock(newsk);
6155 }
6156
6157 /* This proto struct describes the ULP interface for SCTP. */
6158 struct proto sctp_prot = {
6159 .name = "SCTP",
6160 .owner = THIS_MODULE,
6161 .close = sctp_close,
6162 .connect = sctp_connect,
6163 .disconnect = sctp_disconnect,
6164 .accept = sctp_accept,
6165 .ioctl = sctp_ioctl,
6166 .init = sctp_init_sock,
6167 .destroy = sctp_destroy_sock,
6168 .shutdown = sctp_shutdown,
6169 .setsockopt = sctp_setsockopt,
6170 .getsockopt = sctp_getsockopt,
6171 .sendmsg = sctp_sendmsg,
6172 .recvmsg = sctp_recvmsg,
6173 .bind = sctp_bind,
6174 .backlog_rcv = sctp_backlog_rcv,
6175 .hash = sctp_hash,
6176 .unhash = sctp_unhash,
6177 .get_port = sctp_get_port,
6178 .obj_size = sizeof(struct sctp_sock),
6179 };
6180
6181 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6182 struct proto sctpv6_prot = {
6183 .name = "SCTPv6",
6184 .owner = THIS_MODULE,
6185 .close = sctp_close,
6186 .connect = sctp_connect,
6187 .disconnect = sctp_disconnect,
6188 .accept = sctp_accept,
6189 .ioctl = sctp_ioctl,
6190 .init = sctp_init_sock,
6191 .destroy = sctp_destroy_sock,
6192 .shutdown = sctp_shutdown,
6193 .setsockopt = sctp_setsockopt,
6194 .getsockopt = sctp_getsockopt,
6195 .sendmsg = sctp_sendmsg,
6196 .recvmsg = sctp_recvmsg,
6197 .bind = sctp_bind,
6198 .backlog_rcv = sctp_backlog_rcv,
6199 .hash = sctp_hash,
6200 .unhash = sctp_unhash,
6201 .get_port = sctp_get_port,
6202 .obj_size = sizeof(struct sctp6_sock),
6203 };
6204 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
This page took 0.185482 seconds and 6 git commands to generate.