Merge remote-tracking branches 'asoc/topic/fsl-easi', 'asoc/topic/fsl-sai', 'asoc...
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 struct pipe_inode_info *pipe, size_t len,
136 unsigned int flags);
137
138 /*
139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140 * in the operation structures but are done directly via the socketcall() multiplexor.
141 */
142
143 static const struct file_operations socket_file_ops = {
144 .owner = THIS_MODULE,
145 .llseek = no_llseek,
146 .aio_read = sock_aio_read,
147 .aio_write = sock_aio_write,
148 .poll = sock_poll,
149 .unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 .compat_ioctl = compat_sock_ioctl,
152 #endif
153 .mmap = sock_mmap,
154 .open = sock_no_open, /* special open code to disallow open via /proc */
155 .release = sock_close,
156 .fasync = sock_fasync,
157 .sendpage = sock_sendpage,
158 .splice_write = generic_splice_sendpage,
159 .splice_read = sock_splice_read,
160 };
161
162 /*
163 * The protocol list. Each protocol is registered in here.
164 */
165
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168
169 /*
170 * Statistics counters of the socket lists
171 */
172
173 static DEFINE_PER_CPU(int, sockets_in_use);
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252 struct socket_wq *wq;
253
254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 if (!ei)
256 return NULL;
257 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 if (!wq) {
259 kmem_cache_free(sock_inode_cachep, ei);
260 return NULL;
261 }
262 init_waitqueue_head(&wq->wait);
263 wq->fasync_list = NULL;
264 RCU_INIT_POINTER(ei->socket.wq, wq);
265
266 ei->socket.state = SS_UNCONNECTED;
267 ei->socket.flags = 0;
268 ei->socket.ops = NULL;
269 ei->socket.sk = NULL;
270 ei->socket.file = NULL;
271
272 return &ei->vfs_inode;
273 }
274
275 static void sock_destroy_inode(struct inode *inode)
276 {
277 struct socket_alloc *ei;
278 struct socket_wq *wq;
279
280 ei = container_of(inode, struct socket_alloc, vfs_inode);
281 wq = rcu_dereference_protected(ei->socket.wq, 1);
282 kfree_rcu(wq, rcu);
283 kmem_cache_free(sock_inode_cachep, ei);
284 }
285
286 static void init_once(void *foo)
287 {
288 struct socket_alloc *ei = (struct socket_alloc *)foo;
289
290 inode_init_once(&ei->vfs_inode);
291 }
292
293 static int init_inodecache(void)
294 {
295 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 sizeof(struct socket_alloc),
297 0,
298 (SLAB_HWCACHE_ALIGN |
299 SLAB_RECLAIM_ACCOUNT |
300 SLAB_MEM_SPREAD),
301 init_once);
302 if (sock_inode_cachep == NULL)
303 return -ENOMEM;
304 return 0;
305 }
306
307 static const struct super_operations sockfs_ops = {
308 .alloc_inode = sock_alloc_inode,
309 .destroy_inode = sock_destroy_inode,
310 .statfs = simple_statfs,
311 };
312
313 /*
314 * sockfs_dname() is called from d_path().
315 */
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 dentry->d_inode->i_ino);
320 }
321
322 static const struct dentry_operations sockfs_dentry_operations = {
323 .d_dname = sockfs_dname,
324 };
325
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 int flags, const char *dev_name, void *data)
328 {
329 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 &sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332
333 static struct vfsmount *sock_mnt __read_mostly;
334
335 static struct file_system_type sock_fs_type = {
336 .name = "sockfs",
337 .mount = sockfs_mount,
338 .kill_sb = kill_anon_super,
339 };
340
341 /*
342 * Obtains the first available file descriptor and sets it up for use.
343 *
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
351 *
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
356 */
357
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359 {
360 struct qstr name = { .name = "" };
361 struct path path;
362 struct file *file;
363
364 if (dname) {
365 name.name = dname;
366 name.len = strlen(name.name);
367 } else if (sock->sk) {
368 name.name = sock->sk->sk_prot_creator->name;
369 name.len = strlen(name.name);
370 }
371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 if (unlikely(!path.dentry))
373 return ERR_PTR(-ENOMEM);
374 path.mnt = mntget(sock_mnt);
375
376 d_instantiate(path.dentry, SOCK_INODE(sock));
377 SOCK_INODE(sock)->i_fop = &socket_file_ops;
378
379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 &socket_file_ops);
381 if (unlikely(IS_ERR(file))) {
382 /* drop dentry, keep inode */
383 ihold(path.dentry->d_inode);
384 path_put(&path);
385 return file;
386 }
387
388 sock->file = file;
389 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 file->private_data = sock;
391 return file;
392 }
393 EXPORT_SYMBOL(sock_alloc_file);
394
395 static int sock_map_fd(struct socket *sock, int flags)
396 {
397 struct file *newfile;
398 int fd = get_unused_fd_flags(flags);
399 if (unlikely(fd < 0))
400 return fd;
401
402 newfile = sock_alloc_file(sock, flags, NULL);
403 if (likely(!IS_ERR(newfile))) {
404 fd_install(fd, newfile);
405 return fd;
406 }
407
408 put_unused_fd(fd);
409 return PTR_ERR(newfile);
410 }
411
412 struct socket *sock_from_file(struct file *file, int *err)
413 {
414 if (file->f_op == &socket_file_ops)
415 return file->private_data; /* set in sock_map_fd */
416
417 *err = -ENOTSOCK;
418 return NULL;
419 }
420 EXPORT_SYMBOL(sock_from_file);
421
422 /**
423 * sockfd_lookup - Go from a file number to its socket slot
424 * @fd: file handle
425 * @err: pointer to an error code return
426 *
427 * The file handle passed in is locked and the socket it is bound
428 * too is returned. If an error occurs the err pointer is overwritten
429 * with a negative errno code and NULL is returned. The function checks
430 * for both invalid handles and passing a handle which is not a socket.
431 *
432 * On a success the socket object pointer is returned.
433 */
434
435 struct socket *sockfd_lookup(int fd, int *err)
436 {
437 struct file *file;
438 struct socket *sock;
439
440 file = fget(fd);
441 if (!file) {
442 *err = -EBADF;
443 return NULL;
444 }
445
446 sock = sock_from_file(file, err);
447 if (!sock)
448 fput(file);
449 return sock;
450 }
451 EXPORT_SYMBOL(sockfd_lookup);
452
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 struct fd f = fdget(fd);
456 struct socket *sock;
457
458 *err = -EBADF;
459 if (f.file) {
460 sock = sock_from_file(f.file, err);
461 if (likely(sock)) {
462 *fput_needed = f.flags;
463 return sock;
464 }
465 fdput(f);
466 }
467 return NULL;
468 }
469
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 const char *name, void *value, size_t size)
475 {
476 const char *proto_name;
477 size_t proto_size;
478 int error;
479
480 error = -ENODATA;
481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 proto_name = dentry->d_name.name;
483 proto_size = strlen(proto_name);
484
485 if (value) {
486 error = -ERANGE;
487 if (proto_size + 1 > size)
488 goto out;
489
490 strncpy(value, proto_name, proto_size + 1);
491 }
492 error = proto_size + 1;
493 }
494
495 out:
496 return error;
497 }
498
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 size_t size)
501 {
502 ssize_t len;
503 ssize_t used = 0;
504
505 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 if (len < 0)
507 return len;
508 used += len;
509 if (buffer) {
510 if (size < used)
511 return -ERANGE;
512 buffer += len;
513 }
514
515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 used += len;
517 if (buffer) {
518 if (size < used)
519 return -ERANGE;
520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 buffer += len;
522 }
523
524 return used;
525 }
526
527 static const struct inode_operations sockfs_inode_ops = {
528 .getxattr = sockfs_getxattr,
529 .listxattr = sockfs_listxattr,
530 };
531
532 /**
533 * sock_alloc - allocate a socket
534 *
535 * Allocate a new inode and socket object. The two are bound together
536 * and initialised. The socket is then returned. If we are out of inodes
537 * NULL is returned.
538 */
539
540 static struct socket *sock_alloc(void)
541 {
542 struct inode *inode;
543 struct socket *sock;
544
545 inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 if (!inode)
547 return NULL;
548
549 sock = SOCKET_I(inode);
550
551 kmemcheck_annotate_bitfield(sock, type);
552 inode->i_ino = get_next_ino();
553 inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 inode->i_uid = current_fsuid();
555 inode->i_gid = current_fsgid();
556 inode->i_op = &sockfs_inode_ops;
557
558 this_cpu_add(sockets_in_use, 1);
559 return sock;
560 }
561
562 /*
563 * In theory you can't get an open on this inode, but /proc provides
564 * a back door. Remember to keep it shut otherwise you'll let the
565 * creepy crawlies in.
566 */
567
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569 {
570 return -ENXIO;
571 }
572
573 const struct file_operations bad_sock_fops = {
574 .owner = THIS_MODULE,
575 .open = sock_no_open,
576 .llseek = noop_llseek,
577 };
578
579 /**
580 * sock_release - close a socket
581 * @sock: socket to close
582 *
583 * The socket is released from the protocol stack if it has a release
584 * callback, and the inode is then released if the socket is bound to
585 * an inode not a file.
586 */
587
588 void sock_release(struct socket *sock)
589 {
590 if (sock->ops) {
591 struct module *owner = sock->ops->owner;
592
593 sock->ops->release(sock);
594 sock->ops = NULL;
595 module_put(owner);
596 }
597
598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 pr_err("%s: fasync list not empty!\n", __func__);
600
601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602 return;
603
604 this_cpu_sub(sockets_in_use, 1);
605 if (!sock->file) {
606 iput(SOCK_INODE(sock));
607 return;
608 }
609 sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612
613 void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
614 {
615 u8 flags = *tx_flags;
616
617 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618 flags |= SKBTX_HW_TSTAMP;
619
620 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621 flags |= SKBTX_SW_TSTAMP;
622
623 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
624 flags |= SKBTX_SCHED_TSTAMP;
625
626 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
627 flags |= SKBTX_ACK_TSTAMP;
628
629 if (sock_flag(sk, SOCK_WIFI_STATUS))
630 flags |= SKBTX_WIFI_STATUS;
631
632 *tx_flags = flags;
633 }
634 EXPORT_SYMBOL(sock_tx_timestamp);
635
636 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
637 struct msghdr *msg, size_t size)
638 {
639 struct sock_iocb *si = kiocb_to_siocb(iocb);
640
641 si->sock = sock;
642 si->scm = NULL;
643 si->msg = msg;
644 si->size = size;
645
646 return sock->ops->sendmsg(iocb, sock, msg, size);
647 }
648
649 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
650 struct msghdr *msg, size_t size)
651 {
652 int err = security_socket_sendmsg(sock, msg, size);
653
654 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
655 }
656
657 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
658 {
659 struct kiocb iocb;
660 struct sock_iocb siocb;
661 int ret;
662
663 init_sync_kiocb(&iocb, NULL);
664 iocb.private = &siocb;
665 ret = __sock_sendmsg(&iocb, sock, msg, size);
666 if (-EIOCBQUEUED == ret)
667 ret = wait_on_sync_kiocb(&iocb);
668 return ret;
669 }
670 EXPORT_SYMBOL(sock_sendmsg);
671
672 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
673 {
674 struct kiocb iocb;
675 struct sock_iocb siocb;
676 int ret;
677
678 init_sync_kiocb(&iocb, NULL);
679 iocb.private = &siocb;
680 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
681 if (-EIOCBQUEUED == ret)
682 ret = wait_on_sync_kiocb(&iocb);
683 return ret;
684 }
685
686 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
687 struct kvec *vec, size_t num, size_t size)
688 {
689 mm_segment_t oldfs = get_fs();
690 int result;
691
692 set_fs(KERNEL_DS);
693 /*
694 * the following is safe, since for compiler definitions of kvec and
695 * iovec are identical, yielding the same in-core layout and alignment
696 */
697 msg->msg_iov = (struct iovec *)vec;
698 msg->msg_iovlen = num;
699 result = sock_sendmsg(sock, msg, size);
700 set_fs(oldfs);
701 return result;
702 }
703 EXPORT_SYMBOL(kernel_sendmsg);
704
705 /*
706 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
707 */
708 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
709 struct sk_buff *skb)
710 {
711 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
712 struct scm_timestamping tss;
713 int empty = 1;
714 struct skb_shared_hwtstamps *shhwtstamps =
715 skb_hwtstamps(skb);
716
717 /* Race occurred between timestamp enabling and packet
718 receiving. Fill in the current time for now. */
719 if (need_software_tstamp && skb->tstamp.tv64 == 0)
720 __net_timestamp(skb);
721
722 if (need_software_tstamp) {
723 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
724 struct timeval tv;
725 skb_get_timestamp(skb, &tv);
726 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
727 sizeof(tv), &tv);
728 } else {
729 struct timespec ts;
730 skb_get_timestampns(skb, &ts);
731 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
732 sizeof(ts), &ts);
733 }
734 }
735
736 memset(&tss, 0, sizeof(tss));
737 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
738 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
739 empty = 0;
740 if (shhwtstamps &&
741 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
742 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
743 empty = 0;
744 if (!empty)
745 put_cmsg(msg, SOL_SOCKET,
746 SCM_TIMESTAMPING, sizeof(tss), &tss);
747 }
748 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
749
750 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
751 struct sk_buff *skb)
752 {
753 int ack;
754
755 if (!sock_flag(sk, SOCK_WIFI_STATUS))
756 return;
757 if (!skb->wifi_acked_valid)
758 return;
759
760 ack = skb->wifi_acked;
761
762 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
763 }
764 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
765
766 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
767 struct sk_buff *skb)
768 {
769 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
770 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
771 sizeof(__u32), &skb->dropcount);
772 }
773
774 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
775 struct sk_buff *skb)
776 {
777 sock_recv_timestamp(msg, sk, skb);
778 sock_recv_drops(msg, sk, skb);
779 }
780 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
781
782 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
783 struct msghdr *msg, size_t size, int flags)
784 {
785 struct sock_iocb *si = kiocb_to_siocb(iocb);
786
787 si->sock = sock;
788 si->scm = NULL;
789 si->msg = msg;
790 si->size = size;
791 si->flags = flags;
792
793 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
794 }
795
796 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
797 struct msghdr *msg, size_t size, int flags)
798 {
799 int err = security_socket_recvmsg(sock, msg, size, flags);
800
801 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
802 }
803
804 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
805 size_t size, int flags)
806 {
807 struct kiocb iocb;
808 struct sock_iocb siocb;
809 int ret;
810
811 init_sync_kiocb(&iocb, NULL);
812 iocb.private = &siocb;
813 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
814 if (-EIOCBQUEUED == ret)
815 ret = wait_on_sync_kiocb(&iocb);
816 return ret;
817 }
818 EXPORT_SYMBOL(sock_recvmsg);
819
820 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
821 size_t size, int flags)
822 {
823 struct kiocb iocb;
824 struct sock_iocb siocb;
825 int ret;
826
827 init_sync_kiocb(&iocb, NULL);
828 iocb.private = &siocb;
829 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
830 if (-EIOCBQUEUED == ret)
831 ret = wait_on_sync_kiocb(&iocb);
832 return ret;
833 }
834
835 /**
836 * kernel_recvmsg - Receive a message from a socket (kernel space)
837 * @sock: The socket to receive the message from
838 * @msg: Received message
839 * @vec: Input s/g array for message data
840 * @num: Size of input s/g array
841 * @size: Number of bytes to read
842 * @flags: Message flags (MSG_DONTWAIT, etc...)
843 *
844 * On return the msg structure contains the scatter/gather array passed in the
845 * vec argument. The array is modified so that it consists of the unfilled
846 * portion of the original array.
847 *
848 * The returned value is the total number of bytes received, or an error.
849 */
850 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
851 struct kvec *vec, size_t num, size_t size, int flags)
852 {
853 mm_segment_t oldfs = get_fs();
854 int result;
855
856 set_fs(KERNEL_DS);
857 /*
858 * the following is safe, since for compiler definitions of kvec and
859 * iovec are identical, yielding the same in-core layout and alignment
860 */
861 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
862 result = sock_recvmsg(sock, msg, size, flags);
863 set_fs(oldfs);
864 return result;
865 }
866 EXPORT_SYMBOL(kernel_recvmsg);
867
868 static ssize_t sock_sendpage(struct file *file, struct page *page,
869 int offset, size_t size, loff_t *ppos, int more)
870 {
871 struct socket *sock;
872 int flags;
873
874 sock = file->private_data;
875
876 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
877 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
878 flags |= more;
879
880 return kernel_sendpage(sock, page, offset, size, flags);
881 }
882
883 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
884 struct pipe_inode_info *pipe, size_t len,
885 unsigned int flags)
886 {
887 struct socket *sock = file->private_data;
888
889 if (unlikely(!sock->ops->splice_read))
890 return -EINVAL;
891
892 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
893 }
894
895 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
896 struct sock_iocb *siocb)
897 {
898 if (!is_sync_kiocb(iocb))
899 BUG();
900
901 siocb->kiocb = iocb;
902 iocb->private = siocb;
903 return siocb;
904 }
905
906 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
907 struct file *file, const struct iovec *iov,
908 unsigned long nr_segs)
909 {
910 struct socket *sock = file->private_data;
911 size_t size = 0;
912 int i;
913
914 for (i = 0; i < nr_segs; i++)
915 size += iov[i].iov_len;
916
917 msg->msg_name = NULL;
918 msg->msg_namelen = 0;
919 msg->msg_control = NULL;
920 msg->msg_controllen = 0;
921 msg->msg_iov = (struct iovec *)iov;
922 msg->msg_iovlen = nr_segs;
923 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
924
925 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
926 }
927
928 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
929 unsigned long nr_segs, loff_t pos)
930 {
931 struct sock_iocb siocb, *x;
932
933 if (pos != 0)
934 return -ESPIPE;
935
936 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
937 return 0;
938
939
940 x = alloc_sock_iocb(iocb, &siocb);
941 if (!x)
942 return -ENOMEM;
943 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
944 }
945
946 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
947 struct file *file, const struct iovec *iov,
948 unsigned long nr_segs)
949 {
950 struct socket *sock = file->private_data;
951 size_t size = 0;
952 int i;
953
954 for (i = 0; i < nr_segs; i++)
955 size += iov[i].iov_len;
956
957 msg->msg_name = NULL;
958 msg->msg_namelen = 0;
959 msg->msg_control = NULL;
960 msg->msg_controllen = 0;
961 msg->msg_iov = (struct iovec *)iov;
962 msg->msg_iovlen = nr_segs;
963 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
964 if (sock->type == SOCK_SEQPACKET)
965 msg->msg_flags |= MSG_EOR;
966
967 return __sock_sendmsg(iocb, sock, msg, size);
968 }
969
970 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
971 unsigned long nr_segs, loff_t pos)
972 {
973 struct sock_iocb siocb, *x;
974
975 if (pos != 0)
976 return -ESPIPE;
977
978 x = alloc_sock_iocb(iocb, &siocb);
979 if (!x)
980 return -ENOMEM;
981
982 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
983 }
984
985 /*
986 * Atomic setting of ioctl hooks to avoid race
987 * with module unload.
988 */
989
990 static DEFINE_MUTEX(br_ioctl_mutex);
991 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
992
993 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
994 {
995 mutex_lock(&br_ioctl_mutex);
996 br_ioctl_hook = hook;
997 mutex_unlock(&br_ioctl_mutex);
998 }
999 EXPORT_SYMBOL(brioctl_set);
1000
1001 static DEFINE_MUTEX(vlan_ioctl_mutex);
1002 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1003
1004 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1005 {
1006 mutex_lock(&vlan_ioctl_mutex);
1007 vlan_ioctl_hook = hook;
1008 mutex_unlock(&vlan_ioctl_mutex);
1009 }
1010 EXPORT_SYMBOL(vlan_ioctl_set);
1011
1012 static DEFINE_MUTEX(dlci_ioctl_mutex);
1013 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1014
1015 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1016 {
1017 mutex_lock(&dlci_ioctl_mutex);
1018 dlci_ioctl_hook = hook;
1019 mutex_unlock(&dlci_ioctl_mutex);
1020 }
1021 EXPORT_SYMBOL(dlci_ioctl_set);
1022
1023 static long sock_do_ioctl(struct net *net, struct socket *sock,
1024 unsigned int cmd, unsigned long arg)
1025 {
1026 int err;
1027 void __user *argp = (void __user *)arg;
1028
1029 err = sock->ops->ioctl(sock, cmd, arg);
1030
1031 /*
1032 * If this ioctl is unknown try to hand it down
1033 * to the NIC driver.
1034 */
1035 if (err == -ENOIOCTLCMD)
1036 err = dev_ioctl(net, cmd, argp);
1037
1038 return err;
1039 }
1040
1041 /*
1042 * With an ioctl, arg may well be a user mode pointer, but we don't know
1043 * what to do with it - that's up to the protocol still.
1044 */
1045
1046 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1047 {
1048 struct socket *sock;
1049 struct sock *sk;
1050 void __user *argp = (void __user *)arg;
1051 int pid, err;
1052 struct net *net;
1053
1054 sock = file->private_data;
1055 sk = sock->sk;
1056 net = sock_net(sk);
1057 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1058 err = dev_ioctl(net, cmd, argp);
1059 } else
1060 #ifdef CONFIG_WEXT_CORE
1061 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1062 err = dev_ioctl(net, cmd, argp);
1063 } else
1064 #endif
1065 switch (cmd) {
1066 case FIOSETOWN:
1067 case SIOCSPGRP:
1068 err = -EFAULT;
1069 if (get_user(pid, (int __user *)argp))
1070 break;
1071 err = f_setown(sock->file, pid, 1);
1072 break;
1073 case FIOGETOWN:
1074 case SIOCGPGRP:
1075 err = put_user(f_getown(sock->file),
1076 (int __user *)argp);
1077 break;
1078 case SIOCGIFBR:
1079 case SIOCSIFBR:
1080 case SIOCBRADDBR:
1081 case SIOCBRDELBR:
1082 err = -ENOPKG;
1083 if (!br_ioctl_hook)
1084 request_module("bridge");
1085
1086 mutex_lock(&br_ioctl_mutex);
1087 if (br_ioctl_hook)
1088 err = br_ioctl_hook(net, cmd, argp);
1089 mutex_unlock(&br_ioctl_mutex);
1090 break;
1091 case SIOCGIFVLAN:
1092 case SIOCSIFVLAN:
1093 err = -ENOPKG;
1094 if (!vlan_ioctl_hook)
1095 request_module("8021q");
1096
1097 mutex_lock(&vlan_ioctl_mutex);
1098 if (vlan_ioctl_hook)
1099 err = vlan_ioctl_hook(net, argp);
1100 mutex_unlock(&vlan_ioctl_mutex);
1101 break;
1102 case SIOCADDDLCI:
1103 case SIOCDELDLCI:
1104 err = -ENOPKG;
1105 if (!dlci_ioctl_hook)
1106 request_module("dlci");
1107
1108 mutex_lock(&dlci_ioctl_mutex);
1109 if (dlci_ioctl_hook)
1110 err = dlci_ioctl_hook(cmd, argp);
1111 mutex_unlock(&dlci_ioctl_mutex);
1112 break;
1113 default:
1114 err = sock_do_ioctl(net, sock, cmd, arg);
1115 break;
1116 }
1117 return err;
1118 }
1119
1120 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1121 {
1122 int err;
1123 struct socket *sock = NULL;
1124
1125 err = security_socket_create(family, type, protocol, 1);
1126 if (err)
1127 goto out;
1128
1129 sock = sock_alloc();
1130 if (!sock) {
1131 err = -ENOMEM;
1132 goto out;
1133 }
1134
1135 sock->type = type;
1136 err = security_socket_post_create(sock, family, type, protocol, 1);
1137 if (err)
1138 goto out_release;
1139
1140 out:
1141 *res = sock;
1142 return err;
1143 out_release:
1144 sock_release(sock);
1145 sock = NULL;
1146 goto out;
1147 }
1148 EXPORT_SYMBOL(sock_create_lite);
1149
1150 /* No kernel lock held - perfect */
1151 static unsigned int sock_poll(struct file *file, poll_table *wait)
1152 {
1153 unsigned int busy_flag = 0;
1154 struct socket *sock;
1155
1156 /*
1157 * We can't return errors to poll, so it's either yes or no.
1158 */
1159 sock = file->private_data;
1160
1161 if (sk_can_busy_loop(sock->sk)) {
1162 /* this socket can poll_ll so tell the system call */
1163 busy_flag = POLL_BUSY_LOOP;
1164
1165 /* once, only if requested by syscall */
1166 if (wait && (wait->_key & POLL_BUSY_LOOP))
1167 sk_busy_loop(sock->sk, 1);
1168 }
1169
1170 return busy_flag | sock->ops->poll(file, sock, wait);
1171 }
1172
1173 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1174 {
1175 struct socket *sock = file->private_data;
1176
1177 return sock->ops->mmap(file, sock, vma);
1178 }
1179
1180 static int sock_close(struct inode *inode, struct file *filp)
1181 {
1182 sock_release(SOCKET_I(inode));
1183 return 0;
1184 }
1185
1186 /*
1187 * Update the socket async list
1188 *
1189 * Fasync_list locking strategy.
1190 *
1191 * 1. fasync_list is modified only under process context socket lock
1192 * i.e. under semaphore.
1193 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1194 * or under socket lock
1195 */
1196
1197 static int sock_fasync(int fd, struct file *filp, int on)
1198 {
1199 struct socket *sock = filp->private_data;
1200 struct sock *sk = sock->sk;
1201 struct socket_wq *wq;
1202
1203 if (sk == NULL)
1204 return -EINVAL;
1205
1206 lock_sock(sk);
1207 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1208 fasync_helper(fd, filp, on, &wq->fasync_list);
1209
1210 if (!wq->fasync_list)
1211 sock_reset_flag(sk, SOCK_FASYNC);
1212 else
1213 sock_set_flag(sk, SOCK_FASYNC);
1214
1215 release_sock(sk);
1216 return 0;
1217 }
1218
1219 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1220
1221 int sock_wake_async(struct socket *sock, int how, int band)
1222 {
1223 struct socket_wq *wq;
1224
1225 if (!sock)
1226 return -1;
1227 rcu_read_lock();
1228 wq = rcu_dereference(sock->wq);
1229 if (!wq || !wq->fasync_list) {
1230 rcu_read_unlock();
1231 return -1;
1232 }
1233 switch (how) {
1234 case SOCK_WAKE_WAITD:
1235 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1236 break;
1237 goto call_kill;
1238 case SOCK_WAKE_SPACE:
1239 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1240 break;
1241 /* fall through */
1242 case SOCK_WAKE_IO:
1243 call_kill:
1244 kill_fasync(&wq->fasync_list, SIGIO, band);
1245 break;
1246 case SOCK_WAKE_URG:
1247 kill_fasync(&wq->fasync_list, SIGURG, band);
1248 }
1249 rcu_read_unlock();
1250 return 0;
1251 }
1252 EXPORT_SYMBOL(sock_wake_async);
1253
1254 int __sock_create(struct net *net, int family, int type, int protocol,
1255 struct socket **res, int kern)
1256 {
1257 int err;
1258 struct socket *sock;
1259 const struct net_proto_family *pf;
1260
1261 /*
1262 * Check protocol is in range
1263 */
1264 if (family < 0 || family >= NPROTO)
1265 return -EAFNOSUPPORT;
1266 if (type < 0 || type >= SOCK_MAX)
1267 return -EINVAL;
1268
1269 /* Compatibility.
1270
1271 This uglymoron is moved from INET layer to here to avoid
1272 deadlock in module load.
1273 */
1274 if (family == PF_INET && type == SOCK_PACKET) {
1275 static int warned;
1276 if (!warned) {
1277 warned = 1;
1278 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1279 current->comm);
1280 }
1281 family = PF_PACKET;
1282 }
1283
1284 err = security_socket_create(family, type, protocol, kern);
1285 if (err)
1286 return err;
1287
1288 /*
1289 * Allocate the socket and allow the family to set things up. if
1290 * the protocol is 0, the family is instructed to select an appropriate
1291 * default.
1292 */
1293 sock = sock_alloc();
1294 if (!sock) {
1295 net_warn_ratelimited("socket: no more sockets\n");
1296 return -ENFILE; /* Not exactly a match, but its the
1297 closest posix thing */
1298 }
1299
1300 sock->type = type;
1301
1302 #ifdef CONFIG_MODULES
1303 /* Attempt to load a protocol module if the find failed.
1304 *
1305 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1306 * requested real, full-featured networking support upon configuration.
1307 * Otherwise module support will break!
1308 */
1309 if (rcu_access_pointer(net_families[family]) == NULL)
1310 request_module("net-pf-%d", family);
1311 #endif
1312
1313 rcu_read_lock();
1314 pf = rcu_dereference(net_families[family]);
1315 err = -EAFNOSUPPORT;
1316 if (!pf)
1317 goto out_release;
1318
1319 /*
1320 * We will call the ->create function, that possibly is in a loadable
1321 * module, so we have to bump that loadable module refcnt first.
1322 */
1323 if (!try_module_get(pf->owner))
1324 goto out_release;
1325
1326 /* Now protected by module ref count */
1327 rcu_read_unlock();
1328
1329 err = pf->create(net, sock, protocol, kern);
1330 if (err < 0)
1331 goto out_module_put;
1332
1333 /*
1334 * Now to bump the refcnt of the [loadable] module that owns this
1335 * socket at sock_release time we decrement its refcnt.
1336 */
1337 if (!try_module_get(sock->ops->owner))
1338 goto out_module_busy;
1339
1340 /*
1341 * Now that we're done with the ->create function, the [loadable]
1342 * module can have its refcnt decremented
1343 */
1344 module_put(pf->owner);
1345 err = security_socket_post_create(sock, family, type, protocol, kern);
1346 if (err)
1347 goto out_sock_release;
1348 *res = sock;
1349
1350 return 0;
1351
1352 out_module_busy:
1353 err = -EAFNOSUPPORT;
1354 out_module_put:
1355 sock->ops = NULL;
1356 module_put(pf->owner);
1357 out_sock_release:
1358 sock_release(sock);
1359 return err;
1360
1361 out_release:
1362 rcu_read_unlock();
1363 goto out_sock_release;
1364 }
1365 EXPORT_SYMBOL(__sock_create);
1366
1367 int sock_create(int family, int type, int protocol, struct socket **res)
1368 {
1369 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1370 }
1371 EXPORT_SYMBOL(sock_create);
1372
1373 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1374 {
1375 return __sock_create(&init_net, family, type, protocol, res, 1);
1376 }
1377 EXPORT_SYMBOL(sock_create_kern);
1378
1379 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1380 {
1381 int retval;
1382 struct socket *sock;
1383 int flags;
1384
1385 /* Check the SOCK_* constants for consistency. */
1386 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1387 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1388 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1389 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1390
1391 flags = type & ~SOCK_TYPE_MASK;
1392 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1393 return -EINVAL;
1394 type &= SOCK_TYPE_MASK;
1395
1396 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1397 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1398
1399 retval = sock_create(family, type, protocol, &sock);
1400 if (retval < 0)
1401 goto out;
1402
1403 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1404 if (retval < 0)
1405 goto out_release;
1406
1407 out:
1408 /* It may be already another descriptor 8) Not kernel problem. */
1409 return retval;
1410
1411 out_release:
1412 sock_release(sock);
1413 return retval;
1414 }
1415
1416 /*
1417 * Create a pair of connected sockets.
1418 */
1419
1420 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1421 int __user *, usockvec)
1422 {
1423 struct socket *sock1, *sock2;
1424 int fd1, fd2, err;
1425 struct file *newfile1, *newfile2;
1426 int flags;
1427
1428 flags = type & ~SOCK_TYPE_MASK;
1429 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1430 return -EINVAL;
1431 type &= SOCK_TYPE_MASK;
1432
1433 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1434 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1435
1436 /*
1437 * Obtain the first socket and check if the underlying protocol
1438 * supports the socketpair call.
1439 */
1440
1441 err = sock_create(family, type, protocol, &sock1);
1442 if (err < 0)
1443 goto out;
1444
1445 err = sock_create(family, type, protocol, &sock2);
1446 if (err < 0)
1447 goto out_release_1;
1448
1449 err = sock1->ops->socketpair(sock1, sock2);
1450 if (err < 0)
1451 goto out_release_both;
1452
1453 fd1 = get_unused_fd_flags(flags);
1454 if (unlikely(fd1 < 0)) {
1455 err = fd1;
1456 goto out_release_both;
1457 }
1458
1459 fd2 = get_unused_fd_flags(flags);
1460 if (unlikely(fd2 < 0)) {
1461 err = fd2;
1462 goto out_put_unused_1;
1463 }
1464
1465 newfile1 = sock_alloc_file(sock1, flags, NULL);
1466 if (unlikely(IS_ERR(newfile1))) {
1467 err = PTR_ERR(newfile1);
1468 goto out_put_unused_both;
1469 }
1470
1471 newfile2 = sock_alloc_file(sock2, flags, NULL);
1472 if (IS_ERR(newfile2)) {
1473 err = PTR_ERR(newfile2);
1474 goto out_fput_1;
1475 }
1476
1477 err = put_user(fd1, &usockvec[0]);
1478 if (err)
1479 goto out_fput_both;
1480
1481 err = put_user(fd2, &usockvec[1]);
1482 if (err)
1483 goto out_fput_both;
1484
1485 audit_fd_pair(fd1, fd2);
1486
1487 fd_install(fd1, newfile1);
1488 fd_install(fd2, newfile2);
1489 /* fd1 and fd2 may be already another descriptors.
1490 * Not kernel problem.
1491 */
1492
1493 return 0;
1494
1495 out_fput_both:
1496 fput(newfile2);
1497 fput(newfile1);
1498 put_unused_fd(fd2);
1499 put_unused_fd(fd1);
1500 goto out;
1501
1502 out_fput_1:
1503 fput(newfile1);
1504 put_unused_fd(fd2);
1505 put_unused_fd(fd1);
1506 sock_release(sock2);
1507 goto out;
1508
1509 out_put_unused_both:
1510 put_unused_fd(fd2);
1511 out_put_unused_1:
1512 put_unused_fd(fd1);
1513 out_release_both:
1514 sock_release(sock2);
1515 out_release_1:
1516 sock_release(sock1);
1517 out:
1518 return err;
1519 }
1520
1521 /*
1522 * Bind a name to a socket. Nothing much to do here since it's
1523 * the protocol's responsibility to handle the local address.
1524 *
1525 * We move the socket address to kernel space before we call
1526 * the protocol layer (having also checked the address is ok).
1527 */
1528
1529 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1530 {
1531 struct socket *sock;
1532 struct sockaddr_storage address;
1533 int err, fput_needed;
1534
1535 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1536 if (sock) {
1537 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1538 if (err >= 0) {
1539 err = security_socket_bind(sock,
1540 (struct sockaddr *)&address,
1541 addrlen);
1542 if (!err)
1543 err = sock->ops->bind(sock,
1544 (struct sockaddr *)
1545 &address, addrlen);
1546 }
1547 fput_light(sock->file, fput_needed);
1548 }
1549 return err;
1550 }
1551
1552 /*
1553 * Perform a listen. Basically, we allow the protocol to do anything
1554 * necessary for a listen, and if that works, we mark the socket as
1555 * ready for listening.
1556 */
1557
1558 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1559 {
1560 struct socket *sock;
1561 int err, fput_needed;
1562 int somaxconn;
1563
1564 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1565 if (sock) {
1566 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1567 if ((unsigned int)backlog > somaxconn)
1568 backlog = somaxconn;
1569
1570 err = security_socket_listen(sock, backlog);
1571 if (!err)
1572 err = sock->ops->listen(sock, backlog);
1573
1574 fput_light(sock->file, fput_needed);
1575 }
1576 return err;
1577 }
1578
1579 /*
1580 * For accept, we attempt to create a new socket, set up the link
1581 * with the client, wake up the client, then return the new
1582 * connected fd. We collect the address of the connector in kernel
1583 * space and move it to user at the very end. This is unclean because
1584 * we open the socket then return an error.
1585 *
1586 * 1003.1g adds the ability to recvmsg() to query connection pending
1587 * status to recvmsg. We need to add that support in a way thats
1588 * clean when we restucture accept also.
1589 */
1590
1591 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1592 int __user *, upeer_addrlen, int, flags)
1593 {
1594 struct socket *sock, *newsock;
1595 struct file *newfile;
1596 int err, len, newfd, fput_needed;
1597 struct sockaddr_storage address;
1598
1599 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1600 return -EINVAL;
1601
1602 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1603 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1604
1605 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1606 if (!sock)
1607 goto out;
1608
1609 err = -ENFILE;
1610 newsock = sock_alloc();
1611 if (!newsock)
1612 goto out_put;
1613
1614 newsock->type = sock->type;
1615 newsock->ops = sock->ops;
1616
1617 /*
1618 * We don't need try_module_get here, as the listening socket (sock)
1619 * has the protocol module (sock->ops->owner) held.
1620 */
1621 __module_get(newsock->ops->owner);
1622
1623 newfd = get_unused_fd_flags(flags);
1624 if (unlikely(newfd < 0)) {
1625 err = newfd;
1626 sock_release(newsock);
1627 goto out_put;
1628 }
1629 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1630 if (unlikely(IS_ERR(newfile))) {
1631 err = PTR_ERR(newfile);
1632 put_unused_fd(newfd);
1633 sock_release(newsock);
1634 goto out_put;
1635 }
1636
1637 err = security_socket_accept(sock, newsock);
1638 if (err)
1639 goto out_fd;
1640
1641 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1642 if (err < 0)
1643 goto out_fd;
1644
1645 if (upeer_sockaddr) {
1646 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1647 &len, 2) < 0) {
1648 err = -ECONNABORTED;
1649 goto out_fd;
1650 }
1651 err = move_addr_to_user(&address,
1652 len, upeer_sockaddr, upeer_addrlen);
1653 if (err < 0)
1654 goto out_fd;
1655 }
1656
1657 /* File flags are not inherited via accept() unlike another OSes. */
1658
1659 fd_install(newfd, newfile);
1660 err = newfd;
1661
1662 out_put:
1663 fput_light(sock->file, fput_needed);
1664 out:
1665 return err;
1666 out_fd:
1667 fput(newfile);
1668 put_unused_fd(newfd);
1669 goto out_put;
1670 }
1671
1672 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1673 int __user *, upeer_addrlen)
1674 {
1675 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1676 }
1677
1678 /*
1679 * Attempt to connect to a socket with the server address. The address
1680 * is in user space so we verify it is OK and move it to kernel space.
1681 *
1682 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1683 * break bindings
1684 *
1685 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1686 * other SEQPACKET protocols that take time to connect() as it doesn't
1687 * include the -EINPROGRESS status for such sockets.
1688 */
1689
1690 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1691 int, addrlen)
1692 {
1693 struct socket *sock;
1694 struct sockaddr_storage address;
1695 int err, fput_needed;
1696
1697 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1698 if (!sock)
1699 goto out;
1700 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1701 if (err < 0)
1702 goto out_put;
1703
1704 err =
1705 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1706 if (err)
1707 goto out_put;
1708
1709 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1710 sock->file->f_flags);
1711 out_put:
1712 fput_light(sock->file, fput_needed);
1713 out:
1714 return err;
1715 }
1716
1717 /*
1718 * Get the local address ('name') of a socket object. Move the obtained
1719 * name to user space.
1720 */
1721
1722 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1723 int __user *, usockaddr_len)
1724 {
1725 struct socket *sock;
1726 struct sockaddr_storage address;
1727 int len, err, fput_needed;
1728
1729 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730 if (!sock)
1731 goto out;
1732
1733 err = security_socket_getsockname(sock);
1734 if (err)
1735 goto out_put;
1736
1737 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1738 if (err)
1739 goto out_put;
1740 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1741
1742 out_put:
1743 fput_light(sock->file, fput_needed);
1744 out:
1745 return err;
1746 }
1747
1748 /*
1749 * Get the remote address ('name') of a socket object. Move the obtained
1750 * name to user space.
1751 */
1752
1753 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1754 int __user *, usockaddr_len)
1755 {
1756 struct socket *sock;
1757 struct sockaddr_storage address;
1758 int len, err, fput_needed;
1759
1760 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1761 if (sock != NULL) {
1762 err = security_socket_getpeername(sock);
1763 if (err) {
1764 fput_light(sock->file, fput_needed);
1765 return err;
1766 }
1767
1768 err =
1769 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1770 1);
1771 if (!err)
1772 err = move_addr_to_user(&address, len, usockaddr,
1773 usockaddr_len);
1774 fput_light(sock->file, fput_needed);
1775 }
1776 return err;
1777 }
1778
1779 /*
1780 * Send a datagram to a given address. We move the address into kernel
1781 * space and check the user space data area is readable before invoking
1782 * the protocol.
1783 */
1784
1785 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1786 unsigned int, flags, struct sockaddr __user *, addr,
1787 int, addr_len)
1788 {
1789 struct socket *sock;
1790 struct sockaddr_storage address;
1791 int err;
1792 struct msghdr msg;
1793 struct iovec iov;
1794 int fput_needed;
1795
1796 if (len > INT_MAX)
1797 len = INT_MAX;
1798 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1799 if (!sock)
1800 goto out;
1801
1802 iov.iov_base = buff;
1803 iov.iov_len = len;
1804 msg.msg_name = NULL;
1805 msg.msg_iov = &iov;
1806 msg.msg_iovlen = 1;
1807 msg.msg_control = NULL;
1808 msg.msg_controllen = 0;
1809 msg.msg_namelen = 0;
1810 if (addr) {
1811 err = move_addr_to_kernel(addr, addr_len, &address);
1812 if (err < 0)
1813 goto out_put;
1814 msg.msg_name = (struct sockaddr *)&address;
1815 msg.msg_namelen = addr_len;
1816 }
1817 if (sock->file->f_flags & O_NONBLOCK)
1818 flags |= MSG_DONTWAIT;
1819 msg.msg_flags = flags;
1820 err = sock_sendmsg(sock, &msg, len);
1821
1822 out_put:
1823 fput_light(sock->file, fput_needed);
1824 out:
1825 return err;
1826 }
1827
1828 /*
1829 * Send a datagram down a socket.
1830 */
1831
1832 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1833 unsigned int, flags)
1834 {
1835 return sys_sendto(fd, buff, len, flags, NULL, 0);
1836 }
1837
1838 /*
1839 * Receive a frame from the socket and optionally record the address of the
1840 * sender. We verify the buffers are writable and if needed move the
1841 * sender address from kernel to user space.
1842 */
1843
1844 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1845 unsigned int, flags, struct sockaddr __user *, addr,
1846 int __user *, addr_len)
1847 {
1848 struct socket *sock;
1849 struct iovec iov;
1850 struct msghdr msg;
1851 struct sockaddr_storage address;
1852 int err, err2;
1853 int fput_needed;
1854
1855 if (size > INT_MAX)
1856 size = INT_MAX;
1857 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858 if (!sock)
1859 goto out;
1860
1861 msg.msg_control = NULL;
1862 msg.msg_controllen = 0;
1863 msg.msg_iovlen = 1;
1864 msg.msg_iov = &iov;
1865 iov.iov_len = size;
1866 iov.iov_base = ubuf;
1867 /* Save some cycles and don't copy the address if not needed */
1868 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1869 /* We assume all kernel code knows the size of sockaddr_storage */
1870 msg.msg_namelen = 0;
1871 if (sock->file->f_flags & O_NONBLOCK)
1872 flags |= MSG_DONTWAIT;
1873 err = sock_recvmsg(sock, &msg, size, flags);
1874
1875 if (err >= 0 && addr != NULL) {
1876 err2 = move_addr_to_user(&address,
1877 msg.msg_namelen, addr, addr_len);
1878 if (err2 < 0)
1879 err = err2;
1880 }
1881
1882 fput_light(sock->file, fput_needed);
1883 out:
1884 return err;
1885 }
1886
1887 /*
1888 * Receive a datagram from a socket.
1889 */
1890
1891 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1892 unsigned int, flags)
1893 {
1894 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1895 }
1896
1897 /*
1898 * Set a socket option. Because we don't know the option lengths we have
1899 * to pass the user mode parameter for the protocols to sort out.
1900 */
1901
1902 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1903 char __user *, optval, int, optlen)
1904 {
1905 int err, fput_needed;
1906 struct socket *sock;
1907
1908 if (optlen < 0)
1909 return -EINVAL;
1910
1911 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1912 if (sock != NULL) {
1913 err = security_socket_setsockopt(sock, level, optname);
1914 if (err)
1915 goto out_put;
1916
1917 if (level == SOL_SOCKET)
1918 err =
1919 sock_setsockopt(sock, level, optname, optval,
1920 optlen);
1921 else
1922 err =
1923 sock->ops->setsockopt(sock, level, optname, optval,
1924 optlen);
1925 out_put:
1926 fput_light(sock->file, fput_needed);
1927 }
1928 return err;
1929 }
1930
1931 /*
1932 * Get a socket option. Because we don't know the option lengths we have
1933 * to pass a user mode parameter for the protocols to sort out.
1934 */
1935
1936 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1937 char __user *, optval, int __user *, optlen)
1938 {
1939 int err, fput_needed;
1940 struct socket *sock;
1941
1942 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1943 if (sock != NULL) {
1944 err = security_socket_getsockopt(sock, level, optname);
1945 if (err)
1946 goto out_put;
1947
1948 if (level == SOL_SOCKET)
1949 err =
1950 sock_getsockopt(sock, level, optname, optval,
1951 optlen);
1952 else
1953 err =
1954 sock->ops->getsockopt(sock, level, optname, optval,
1955 optlen);
1956 out_put:
1957 fput_light(sock->file, fput_needed);
1958 }
1959 return err;
1960 }
1961
1962 /*
1963 * Shutdown a socket.
1964 */
1965
1966 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1967 {
1968 int err, fput_needed;
1969 struct socket *sock;
1970
1971 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1972 if (sock != NULL) {
1973 err = security_socket_shutdown(sock, how);
1974 if (!err)
1975 err = sock->ops->shutdown(sock, how);
1976 fput_light(sock->file, fput_needed);
1977 }
1978 return err;
1979 }
1980
1981 /* A couple of helpful macros for getting the address of the 32/64 bit
1982 * fields which are the same type (int / unsigned) on our platforms.
1983 */
1984 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1985 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1986 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1987
1988 struct used_address {
1989 struct sockaddr_storage name;
1990 unsigned int name_len;
1991 };
1992
1993 static int copy_msghdr_from_user(struct msghdr *kmsg,
1994 struct msghdr __user *umsg)
1995 {
1996 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1997 return -EFAULT;
1998
1999 if (kmsg->msg_name == NULL)
2000 kmsg->msg_namelen = 0;
2001
2002 if (kmsg->msg_namelen < 0)
2003 return -EINVAL;
2004
2005 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2006 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2007 return 0;
2008 }
2009
2010 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2011 struct msghdr *msg_sys, unsigned int flags,
2012 struct used_address *used_address)
2013 {
2014 struct compat_msghdr __user *msg_compat =
2015 (struct compat_msghdr __user *)msg;
2016 struct sockaddr_storage address;
2017 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2018 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2019 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2020 /* 20 is size of ipv6_pktinfo */
2021 unsigned char *ctl_buf = ctl;
2022 int err, ctl_len, total_len;
2023
2024 err = -EFAULT;
2025 if (MSG_CMSG_COMPAT & flags) {
2026 if (get_compat_msghdr(msg_sys, msg_compat))
2027 return -EFAULT;
2028 } else {
2029 err = copy_msghdr_from_user(msg_sys, msg);
2030 if (err)
2031 return err;
2032 }
2033
2034 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2035 err = -EMSGSIZE;
2036 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2037 goto out;
2038 err = -ENOMEM;
2039 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2040 GFP_KERNEL);
2041 if (!iov)
2042 goto out;
2043 }
2044
2045 /* This will also move the address data into kernel space */
2046 if (MSG_CMSG_COMPAT & flags) {
2047 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2048 } else
2049 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2050 if (err < 0)
2051 goto out_freeiov;
2052 total_len = err;
2053
2054 err = -ENOBUFS;
2055
2056 if (msg_sys->msg_controllen > INT_MAX)
2057 goto out_freeiov;
2058 ctl_len = msg_sys->msg_controllen;
2059 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2060 err =
2061 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2062 sizeof(ctl));
2063 if (err)
2064 goto out_freeiov;
2065 ctl_buf = msg_sys->msg_control;
2066 ctl_len = msg_sys->msg_controllen;
2067 } else if (ctl_len) {
2068 if (ctl_len > sizeof(ctl)) {
2069 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2070 if (ctl_buf == NULL)
2071 goto out_freeiov;
2072 }
2073 err = -EFAULT;
2074 /*
2075 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2076 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2077 * checking falls down on this.
2078 */
2079 if (copy_from_user(ctl_buf,
2080 (void __user __force *)msg_sys->msg_control,
2081 ctl_len))
2082 goto out_freectl;
2083 msg_sys->msg_control = ctl_buf;
2084 }
2085 msg_sys->msg_flags = flags;
2086
2087 if (sock->file->f_flags & O_NONBLOCK)
2088 msg_sys->msg_flags |= MSG_DONTWAIT;
2089 /*
2090 * If this is sendmmsg() and current destination address is same as
2091 * previously succeeded address, omit asking LSM's decision.
2092 * used_address->name_len is initialized to UINT_MAX so that the first
2093 * destination address never matches.
2094 */
2095 if (used_address && msg_sys->msg_name &&
2096 used_address->name_len == msg_sys->msg_namelen &&
2097 !memcmp(&used_address->name, msg_sys->msg_name,
2098 used_address->name_len)) {
2099 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2100 goto out_freectl;
2101 }
2102 err = sock_sendmsg(sock, msg_sys, total_len);
2103 /*
2104 * If this is sendmmsg() and sending to current destination address was
2105 * successful, remember it.
2106 */
2107 if (used_address && err >= 0) {
2108 used_address->name_len = msg_sys->msg_namelen;
2109 if (msg_sys->msg_name)
2110 memcpy(&used_address->name, msg_sys->msg_name,
2111 used_address->name_len);
2112 }
2113
2114 out_freectl:
2115 if (ctl_buf != ctl)
2116 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2117 out_freeiov:
2118 if (iov != iovstack)
2119 kfree(iov);
2120 out:
2121 return err;
2122 }
2123
2124 /*
2125 * BSD sendmsg interface
2126 */
2127
2128 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2129 {
2130 int fput_needed, err;
2131 struct msghdr msg_sys;
2132 struct socket *sock;
2133
2134 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2135 if (!sock)
2136 goto out;
2137
2138 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2139
2140 fput_light(sock->file, fput_needed);
2141 out:
2142 return err;
2143 }
2144
2145 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2146 {
2147 if (flags & MSG_CMSG_COMPAT)
2148 return -EINVAL;
2149 return __sys_sendmsg(fd, msg, flags);
2150 }
2151
2152 /*
2153 * Linux sendmmsg interface
2154 */
2155
2156 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2157 unsigned int flags)
2158 {
2159 int fput_needed, err, datagrams;
2160 struct socket *sock;
2161 struct mmsghdr __user *entry;
2162 struct compat_mmsghdr __user *compat_entry;
2163 struct msghdr msg_sys;
2164 struct used_address used_address;
2165
2166 if (vlen > UIO_MAXIOV)
2167 vlen = UIO_MAXIOV;
2168
2169 datagrams = 0;
2170
2171 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2172 if (!sock)
2173 return err;
2174
2175 used_address.name_len = UINT_MAX;
2176 entry = mmsg;
2177 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2178 err = 0;
2179
2180 while (datagrams < vlen) {
2181 if (MSG_CMSG_COMPAT & flags) {
2182 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2183 &msg_sys, flags, &used_address);
2184 if (err < 0)
2185 break;
2186 err = __put_user(err, &compat_entry->msg_len);
2187 ++compat_entry;
2188 } else {
2189 err = ___sys_sendmsg(sock,
2190 (struct msghdr __user *)entry,
2191 &msg_sys, flags, &used_address);
2192 if (err < 0)
2193 break;
2194 err = put_user(err, &entry->msg_len);
2195 ++entry;
2196 }
2197
2198 if (err)
2199 break;
2200 ++datagrams;
2201 }
2202
2203 fput_light(sock->file, fput_needed);
2204
2205 /* We only return an error if no datagrams were able to be sent */
2206 if (datagrams != 0)
2207 return datagrams;
2208
2209 return err;
2210 }
2211
2212 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2213 unsigned int, vlen, unsigned int, flags)
2214 {
2215 if (flags & MSG_CMSG_COMPAT)
2216 return -EINVAL;
2217 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2218 }
2219
2220 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2221 struct msghdr *msg_sys, unsigned int flags, int nosec)
2222 {
2223 struct compat_msghdr __user *msg_compat =
2224 (struct compat_msghdr __user *)msg;
2225 struct iovec iovstack[UIO_FASTIOV];
2226 struct iovec *iov = iovstack;
2227 unsigned long cmsg_ptr;
2228 int err, total_len, len;
2229
2230 /* kernel mode address */
2231 struct sockaddr_storage addr;
2232
2233 /* user mode address pointers */
2234 struct sockaddr __user *uaddr;
2235 int __user *uaddr_len;
2236
2237 if (MSG_CMSG_COMPAT & flags) {
2238 if (get_compat_msghdr(msg_sys, msg_compat))
2239 return -EFAULT;
2240 } else {
2241 err = copy_msghdr_from_user(msg_sys, msg);
2242 if (err)
2243 return err;
2244 }
2245
2246 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2247 err = -EMSGSIZE;
2248 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2249 goto out;
2250 err = -ENOMEM;
2251 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2252 GFP_KERNEL);
2253 if (!iov)
2254 goto out;
2255 }
2256
2257 /* Save the user-mode address (verify_iovec will change the
2258 * kernel msghdr to use the kernel address space)
2259 */
2260 uaddr = (__force void __user *)msg_sys->msg_name;
2261 uaddr_len = COMPAT_NAMELEN(msg);
2262 if (MSG_CMSG_COMPAT & flags)
2263 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2264 else
2265 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2266 if (err < 0)
2267 goto out_freeiov;
2268 total_len = err;
2269
2270 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2271 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2272
2273 /* We assume all kernel code knows the size of sockaddr_storage */
2274 msg_sys->msg_namelen = 0;
2275
2276 if (sock->file->f_flags & O_NONBLOCK)
2277 flags |= MSG_DONTWAIT;
2278 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2279 total_len, flags);
2280 if (err < 0)
2281 goto out_freeiov;
2282 len = err;
2283
2284 if (uaddr != NULL) {
2285 err = move_addr_to_user(&addr,
2286 msg_sys->msg_namelen, uaddr,
2287 uaddr_len);
2288 if (err < 0)
2289 goto out_freeiov;
2290 }
2291 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2292 COMPAT_FLAGS(msg));
2293 if (err)
2294 goto out_freeiov;
2295 if (MSG_CMSG_COMPAT & flags)
2296 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2297 &msg_compat->msg_controllen);
2298 else
2299 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2300 &msg->msg_controllen);
2301 if (err)
2302 goto out_freeiov;
2303 err = len;
2304
2305 out_freeiov:
2306 if (iov != iovstack)
2307 kfree(iov);
2308 out:
2309 return err;
2310 }
2311
2312 /*
2313 * BSD recvmsg interface
2314 */
2315
2316 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2317 {
2318 int fput_needed, err;
2319 struct msghdr msg_sys;
2320 struct socket *sock;
2321
2322 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2323 if (!sock)
2324 goto out;
2325
2326 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2327
2328 fput_light(sock->file, fput_needed);
2329 out:
2330 return err;
2331 }
2332
2333 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2334 unsigned int, flags)
2335 {
2336 if (flags & MSG_CMSG_COMPAT)
2337 return -EINVAL;
2338 return __sys_recvmsg(fd, msg, flags);
2339 }
2340
2341 /*
2342 * Linux recvmmsg interface
2343 */
2344
2345 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2346 unsigned int flags, struct timespec *timeout)
2347 {
2348 int fput_needed, err, datagrams;
2349 struct socket *sock;
2350 struct mmsghdr __user *entry;
2351 struct compat_mmsghdr __user *compat_entry;
2352 struct msghdr msg_sys;
2353 struct timespec end_time;
2354
2355 if (timeout &&
2356 poll_select_set_timeout(&end_time, timeout->tv_sec,
2357 timeout->tv_nsec))
2358 return -EINVAL;
2359
2360 datagrams = 0;
2361
2362 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2363 if (!sock)
2364 return err;
2365
2366 err = sock_error(sock->sk);
2367 if (err)
2368 goto out_put;
2369
2370 entry = mmsg;
2371 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2372
2373 while (datagrams < vlen) {
2374 /*
2375 * No need to ask LSM for more than the first datagram.
2376 */
2377 if (MSG_CMSG_COMPAT & flags) {
2378 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2379 &msg_sys, flags & ~MSG_WAITFORONE,
2380 datagrams);
2381 if (err < 0)
2382 break;
2383 err = __put_user(err, &compat_entry->msg_len);
2384 ++compat_entry;
2385 } else {
2386 err = ___sys_recvmsg(sock,
2387 (struct msghdr __user *)entry,
2388 &msg_sys, flags & ~MSG_WAITFORONE,
2389 datagrams);
2390 if (err < 0)
2391 break;
2392 err = put_user(err, &entry->msg_len);
2393 ++entry;
2394 }
2395
2396 if (err)
2397 break;
2398 ++datagrams;
2399
2400 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2401 if (flags & MSG_WAITFORONE)
2402 flags |= MSG_DONTWAIT;
2403
2404 if (timeout) {
2405 ktime_get_ts(timeout);
2406 *timeout = timespec_sub(end_time, *timeout);
2407 if (timeout->tv_sec < 0) {
2408 timeout->tv_sec = timeout->tv_nsec = 0;
2409 break;
2410 }
2411
2412 /* Timeout, return less than vlen datagrams */
2413 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2414 break;
2415 }
2416
2417 /* Out of band data, return right away */
2418 if (msg_sys.msg_flags & MSG_OOB)
2419 break;
2420 }
2421
2422 out_put:
2423 fput_light(sock->file, fput_needed);
2424
2425 if (err == 0)
2426 return datagrams;
2427
2428 if (datagrams != 0) {
2429 /*
2430 * We may return less entries than requested (vlen) if the
2431 * sock is non block and there aren't enough datagrams...
2432 */
2433 if (err != -EAGAIN) {
2434 /*
2435 * ... or if recvmsg returns an error after we
2436 * received some datagrams, where we record the
2437 * error to return on the next call or if the
2438 * app asks about it using getsockopt(SO_ERROR).
2439 */
2440 sock->sk->sk_err = -err;
2441 }
2442
2443 return datagrams;
2444 }
2445
2446 return err;
2447 }
2448
2449 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2450 unsigned int, vlen, unsigned int, flags,
2451 struct timespec __user *, timeout)
2452 {
2453 int datagrams;
2454 struct timespec timeout_sys;
2455
2456 if (flags & MSG_CMSG_COMPAT)
2457 return -EINVAL;
2458
2459 if (!timeout)
2460 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2461
2462 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2463 return -EFAULT;
2464
2465 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2466
2467 if (datagrams > 0 &&
2468 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2469 datagrams = -EFAULT;
2470
2471 return datagrams;
2472 }
2473
2474 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2475 /* Argument list sizes for sys_socketcall */
2476 #define AL(x) ((x) * sizeof(unsigned long))
2477 static const unsigned char nargs[21] = {
2478 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2479 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2480 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2481 AL(4), AL(5), AL(4)
2482 };
2483
2484 #undef AL
2485
2486 /*
2487 * System call vectors.
2488 *
2489 * Argument checking cleaned up. Saved 20% in size.
2490 * This function doesn't need to set the kernel lock because
2491 * it is set by the callees.
2492 */
2493
2494 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2495 {
2496 unsigned long a[AUDITSC_ARGS];
2497 unsigned long a0, a1;
2498 int err;
2499 unsigned int len;
2500
2501 if (call < 1 || call > SYS_SENDMMSG)
2502 return -EINVAL;
2503
2504 len = nargs[call];
2505 if (len > sizeof(a))
2506 return -EINVAL;
2507
2508 /* copy_from_user should be SMP safe. */
2509 if (copy_from_user(a, args, len))
2510 return -EFAULT;
2511
2512 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2513 if (err)
2514 return err;
2515
2516 a0 = a[0];
2517 a1 = a[1];
2518
2519 switch (call) {
2520 case SYS_SOCKET:
2521 err = sys_socket(a0, a1, a[2]);
2522 break;
2523 case SYS_BIND:
2524 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2525 break;
2526 case SYS_CONNECT:
2527 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2528 break;
2529 case SYS_LISTEN:
2530 err = sys_listen(a0, a1);
2531 break;
2532 case SYS_ACCEPT:
2533 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2534 (int __user *)a[2], 0);
2535 break;
2536 case SYS_GETSOCKNAME:
2537 err =
2538 sys_getsockname(a0, (struct sockaddr __user *)a1,
2539 (int __user *)a[2]);
2540 break;
2541 case SYS_GETPEERNAME:
2542 err =
2543 sys_getpeername(a0, (struct sockaddr __user *)a1,
2544 (int __user *)a[2]);
2545 break;
2546 case SYS_SOCKETPAIR:
2547 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2548 break;
2549 case SYS_SEND:
2550 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2551 break;
2552 case SYS_SENDTO:
2553 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2554 (struct sockaddr __user *)a[4], a[5]);
2555 break;
2556 case SYS_RECV:
2557 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2558 break;
2559 case SYS_RECVFROM:
2560 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2561 (struct sockaddr __user *)a[4],
2562 (int __user *)a[5]);
2563 break;
2564 case SYS_SHUTDOWN:
2565 err = sys_shutdown(a0, a1);
2566 break;
2567 case SYS_SETSOCKOPT:
2568 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2569 break;
2570 case SYS_GETSOCKOPT:
2571 err =
2572 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2573 (int __user *)a[4]);
2574 break;
2575 case SYS_SENDMSG:
2576 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2577 break;
2578 case SYS_SENDMMSG:
2579 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2580 break;
2581 case SYS_RECVMSG:
2582 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2583 break;
2584 case SYS_RECVMMSG:
2585 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2586 (struct timespec __user *)a[4]);
2587 break;
2588 case SYS_ACCEPT4:
2589 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2590 (int __user *)a[2], a[3]);
2591 break;
2592 default:
2593 err = -EINVAL;
2594 break;
2595 }
2596 return err;
2597 }
2598
2599 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2600
2601 /**
2602 * sock_register - add a socket protocol handler
2603 * @ops: description of protocol
2604 *
2605 * This function is called by a protocol handler that wants to
2606 * advertise its address family, and have it linked into the
2607 * socket interface. The value ops->family corresponds to the
2608 * socket system call protocol family.
2609 */
2610 int sock_register(const struct net_proto_family *ops)
2611 {
2612 int err;
2613
2614 if (ops->family >= NPROTO) {
2615 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2616 return -ENOBUFS;
2617 }
2618
2619 spin_lock(&net_family_lock);
2620 if (rcu_dereference_protected(net_families[ops->family],
2621 lockdep_is_held(&net_family_lock)))
2622 err = -EEXIST;
2623 else {
2624 rcu_assign_pointer(net_families[ops->family], ops);
2625 err = 0;
2626 }
2627 spin_unlock(&net_family_lock);
2628
2629 pr_info("NET: Registered protocol family %d\n", ops->family);
2630 return err;
2631 }
2632 EXPORT_SYMBOL(sock_register);
2633
2634 /**
2635 * sock_unregister - remove a protocol handler
2636 * @family: protocol family to remove
2637 *
2638 * This function is called by a protocol handler that wants to
2639 * remove its address family, and have it unlinked from the
2640 * new socket creation.
2641 *
2642 * If protocol handler is a module, then it can use module reference
2643 * counts to protect against new references. If protocol handler is not
2644 * a module then it needs to provide its own protection in
2645 * the ops->create routine.
2646 */
2647 void sock_unregister(int family)
2648 {
2649 BUG_ON(family < 0 || family >= NPROTO);
2650
2651 spin_lock(&net_family_lock);
2652 RCU_INIT_POINTER(net_families[family], NULL);
2653 spin_unlock(&net_family_lock);
2654
2655 synchronize_rcu();
2656
2657 pr_info("NET: Unregistered protocol family %d\n", family);
2658 }
2659 EXPORT_SYMBOL(sock_unregister);
2660
2661 static int __init sock_init(void)
2662 {
2663 int err;
2664 /*
2665 * Initialize the network sysctl infrastructure.
2666 */
2667 err = net_sysctl_init();
2668 if (err)
2669 goto out;
2670
2671 /*
2672 * Initialize skbuff SLAB cache
2673 */
2674 skb_init();
2675
2676 /*
2677 * Initialize the protocols module.
2678 */
2679
2680 init_inodecache();
2681
2682 err = register_filesystem(&sock_fs_type);
2683 if (err)
2684 goto out_fs;
2685 sock_mnt = kern_mount(&sock_fs_type);
2686 if (IS_ERR(sock_mnt)) {
2687 err = PTR_ERR(sock_mnt);
2688 goto out_mount;
2689 }
2690
2691 /* The real protocol initialization is performed in later initcalls.
2692 */
2693
2694 #ifdef CONFIG_NETFILTER
2695 err = netfilter_init();
2696 if (err)
2697 goto out;
2698 #endif
2699
2700 ptp_classifier_init();
2701
2702 out:
2703 return err;
2704
2705 out_mount:
2706 unregister_filesystem(&sock_fs_type);
2707 out_fs:
2708 goto out;
2709 }
2710
2711 core_initcall(sock_init); /* early initcall */
2712
2713 #ifdef CONFIG_PROC_FS
2714 void socket_seq_show(struct seq_file *seq)
2715 {
2716 int cpu;
2717 int counter = 0;
2718
2719 for_each_possible_cpu(cpu)
2720 counter += per_cpu(sockets_in_use, cpu);
2721
2722 /* It can be negative, by the way. 8) */
2723 if (counter < 0)
2724 counter = 0;
2725
2726 seq_printf(seq, "sockets: used %d\n", counter);
2727 }
2728 #endif /* CONFIG_PROC_FS */
2729
2730 #ifdef CONFIG_COMPAT
2731 static int do_siocgstamp(struct net *net, struct socket *sock,
2732 unsigned int cmd, void __user *up)
2733 {
2734 mm_segment_t old_fs = get_fs();
2735 struct timeval ktv;
2736 int err;
2737
2738 set_fs(KERNEL_DS);
2739 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2740 set_fs(old_fs);
2741 if (!err)
2742 err = compat_put_timeval(&ktv, up);
2743
2744 return err;
2745 }
2746
2747 static int do_siocgstampns(struct net *net, struct socket *sock,
2748 unsigned int cmd, void __user *up)
2749 {
2750 mm_segment_t old_fs = get_fs();
2751 struct timespec kts;
2752 int err;
2753
2754 set_fs(KERNEL_DS);
2755 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2756 set_fs(old_fs);
2757 if (!err)
2758 err = compat_put_timespec(&kts, up);
2759
2760 return err;
2761 }
2762
2763 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2764 {
2765 struct ifreq __user *uifr;
2766 int err;
2767
2768 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2769 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2770 return -EFAULT;
2771
2772 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2773 if (err)
2774 return err;
2775
2776 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2777 return -EFAULT;
2778
2779 return 0;
2780 }
2781
2782 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2783 {
2784 struct compat_ifconf ifc32;
2785 struct ifconf ifc;
2786 struct ifconf __user *uifc;
2787 struct compat_ifreq __user *ifr32;
2788 struct ifreq __user *ifr;
2789 unsigned int i, j;
2790 int err;
2791
2792 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2793 return -EFAULT;
2794
2795 memset(&ifc, 0, sizeof(ifc));
2796 if (ifc32.ifcbuf == 0) {
2797 ifc32.ifc_len = 0;
2798 ifc.ifc_len = 0;
2799 ifc.ifc_req = NULL;
2800 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2801 } else {
2802 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2803 sizeof(struct ifreq);
2804 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2805 ifc.ifc_len = len;
2806 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2807 ifr32 = compat_ptr(ifc32.ifcbuf);
2808 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2809 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2810 return -EFAULT;
2811 ifr++;
2812 ifr32++;
2813 }
2814 }
2815 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2816 return -EFAULT;
2817
2818 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2819 if (err)
2820 return err;
2821
2822 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2823 return -EFAULT;
2824
2825 ifr = ifc.ifc_req;
2826 ifr32 = compat_ptr(ifc32.ifcbuf);
2827 for (i = 0, j = 0;
2828 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2829 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2830 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2831 return -EFAULT;
2832 ifr32++;
2833 ifr++;
2834 }
2835
2836 if (ifc32.ifcbuf == 0) {
2837 /* Translate from 64-bit structure multiple to
2838 * a 32-bit one.
2839 */
2840 i = ifc.ifc_len;
2841 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2842 ifc32.ifc_len = i;
2843 } else {
2844 ifc32.ifc_len = i;
2845 }
2846 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2847 return -EFAULT;
2848
2849 return 0;
2850 }
2851
2852 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2853 {
2854 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2855 bool convert_in = false, convert_out = false;
2856 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2857 struct ethtool_rxnfc __user *rxnfc;
2858 struct ifreq __user *ifr;
2859 u32 rule_cnt = 0, actual_rule_cnt;
2860 u32 ethcmd;
2861 u32 data;
2862 int ret;
2863
2864 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2865 return -EFAULT;
2866
2867 compat_rxnfc = compat_ptr(data);
2868
2869 if (get_user(ethcmd, &compat_rxnfc->cmd))
2870 return -EFAULT;
2871
2872 /* Most ethtool structures are defined without padding.
2873 * Unfortunately struct ethtool_rxnfc is an exception.
2874 */
2875 switch (ethcmd) {
2876 default:
2877 break;
2878 case ETHTOOL_GRXCLSRLALL:
2879 /* Buffer size is variable */
2880 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2881 return -EFAULT;
2882 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2883 return -ENOMEM;
2884 buf_size += rule_cnt * sizeof(u32);
2885 /* fall through */
2886 case ETHTOOL_GRXRINGS:
2887 case ETHTOOL_GRXCLSRLCNT:
2888 case ETHTOOL_GRXCLSRULE:
2889 case ETHTOOL_SRXCLSRLINS:
2890 convert_out = true;
2891 /* fall through */
2892 case ETHTOOL_SRXCLSRLDEL:
2893 buf_size += sizeof(struct ethtool_rxnfc);
2894 convert_in = true;
2895 break;
2896 }
2897
2898 ifr = compat_alloc_user_space(buf_size);
2899 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2900
2901 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2902 return -EFAULT;
2903
2904 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2905 &ifr->ifr_ifru.ifru_data))
2906 return -EFAULT;
2907
2908 if (convert_in) {
2909 /* We expect there to be holes between fs.m_ext and
2910 * fs.ring_cookie and at the end of fs, but nowhere else.
2911 */
2912 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2913 sizeof(compat_rxnfc->fs.m_ext) !=
2914 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2915 sizeof(rxnfc->fs.m_ext));
2916 BUILD_BUG_ON(
2917 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2918 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2919 offsetof(struct ethtool_rxnfc, fs.location) -
2920 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2921
2922 if (copy_in_user(rxnfc, compat_rxnfc,
2923 (void __user *)(&rxnfc->fs.m_ext + 1) -
2924 (void __user *)rxnfc) ||
2925 copy_in_user(&rxnfc->fs.ring_cookie,
2926 &compat_rxnfc->fs.ring_cookie,
2927 (void __user *)(&rxnfc->fs.location + 1) -
2928 (void __user *)&rxnfc->fs.ring_cookie) ||
2929 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2930 sizeof(rxnfc->rule_cnt)))
2931 return -EFAULT;
2932 }
2933
2934 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2935 if (ret)
2936 return ret;
2937
2938 if (convert_out) {
2939 if (copy_in_user(compat_rxnfc, rxnfc,
2940 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2941 (const void __user *)rxnfc) ||
2942 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2943 &rxnfc->fs.ring_cookie,
2944 (const void __user *)(&rxnfc->fs.location + 1) -
2945 (const void __user *)&rxnfc->fs.ring_cookie) ||
2946 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2947 sizeof(rxnfc->rule_cnt)))
2948 return -EFAULT;
2949
2950 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2951 /* As an optimisation, we only copy the actual
2952 * number of rules that the underlying
2953 * function returned. Since Mallory might
2954 * change the rule count in user memory, we
2955 * check that it is less than the rule count
2956 * originally given (as the user buffer size),
2957 * which has been range-checked.
2958 */
2959 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2960 return -EFAULT;
2961 if (actual_rule_cnt < rule_cnt)
2962 rule_cnt = actual_rule_cnt;
2963 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2964 &rxnfc->rule_locs[0],
2965 rule_cnt * sizeof(u32)))
2966 return -EFAULT;
2967 }
2968 }
2969
2970 return 0;
2971 }
2972
2973 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2974 {
2975 void __user *uptr;
2976 compat_uptr_t uptr32;
2977 struct ifreq __user *uifr;
2978
2979 uifr = compat_alloc_user_space(sizeof(*uifr));
2980 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2981 return -EFAULT;
2982
2983 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2984 return -EFAULT;
2985
2986 uptr = compat_ptr(uptr32);
2987
2988 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2989 return -EFAULT;
2990
2991 return dev_ioctl(net, SIOCWANDEV, uifr);
2992 }
2993
2994 static int bond_ioctl(struct net *net, unsigned int cmd,
2995 struct compat_ifreq __user *ifr32)
2996 {
2997 struct ifreq kifr;
2998 mm_segment_t old_fs;
2999 int err;
3000
3001 switch (cmd) {
3002 case SIOCBONDENSLAVE:
3003 case SIOCBONDRELEASE:
3004 case SIOCBONDSETHWADDR:
3005 case SIOCBONDCHANGEACTIVE:
3006 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
3007 return -EFAULT;
3008
3009 old_fs = get_fs();
3010 set_fs(KERNEL_DS);
3011 err = dev_ioctl(net, cmd,
3012 (struct ifreq __user __force *) &kifr);
3013 set_fs(old_fs);
3014
3015 return err;
3016 default:
3017 return -ENOIOCTLCMD;
3018 }
3019 }
3020
3021 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3022 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3023 struct compat_ifreq __user *u_ifreq32)
3024 {
3025 struct ifreq __user *u_ifreq64;
3026 char tmp_buf[IFNAMSIZ];
3027 void __user *data64;
3028 u32 data32;
3029
3030 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3031 IFNAMSIZ))
3032 return -EFAULT;
3033 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3034 return -EFAULT;
3035 data64 = compat_ptr(data32);
3036
3037 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3038
3039 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3040 IFNAMSIZ))
3041 return -EFAULT;
3042 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3043 return -EFAULT;
3044
3045 return dev_ioctl(net, cmd, u_ifreq64);
3046 }
3047
3048 static int dev_ifsioc(struct net *net, struct socket *sock,
3049 unsigned int cmd, struct compat_ifreq __user *uifr32)
3050 {
3051 struct ifreq __user *uifr;
3052 int err;
3053
3054 uifr = compat_alloc_user_space(sizeof(*uifr));
3055 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3056 return -EFAULT;
3057
3058 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3059
3060 if (!err) {
3061 switch (cmd) {
3062 case SIOCGIFFLAGS:
3063 case SIOCGIFMETRIC:
3064 case SIOCGIFMTU:
3065 case SIOCGIFMEM:
3066 case SIOCGIFHWADDR:
3067 case SIOCGIFINDEX:
3068 case SIOCGIFADDR:
3069 case SIOCGIFBRDADDR:
3070 case SIOCGIFDSTADDR:
3071 case SIOCGIFNETMASK:
3072 case SIOCGIFPFLAGS:
3073 case SIOCGIFTXQLEN:
3074 case SIOCGMIIPHY:
3075 case SIOCGMIIREG:
3076 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3077 err = -EFAULT;
3078 break;
3079 }
3080 }
3081 return err;
3082 }
3083
3084 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3085 struct compat_ifreq __user *uifr32)
3086 {
3087 struct ifreq ifr;
3088 struct compat_ifmap __user *uifmap32;
3089 mm_segment_t old_fs;
3090 int err;
3091
3092 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3093 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3094 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3095 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3096 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3097 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3098 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3099 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3100 if (err)
3101 return -EFAULT;
3102
3103 old_fs = get_fs();
3104 set_fs(KERNEL_DS);
3105 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3106 set_fs(old_fs);
3107
3108 if (cmd == SIOCGIFMAP && !err) {
3109 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3110 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3111 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3112 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3113 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3114 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3115 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3116 if (err)
3117 err = -EFAULT;
3118 }
3119 return err;
3120 }
3121
3122 struct rtentry32 {
3123 u32 rt_pad1;
3124 struct sockaddr rt_dst; /* target address */
3125 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3126 struct sockaddr rt_genmask; /* target network mask (IP) */
3127 unsigned short rt_flags;
3128 short rt_pad2;
3129 u32 rt_pad3;
3130 unsigned char rt_tos;
3131 unsigned char rt_class;
3132 short rt_pad4;
3133 short rt_metric; /* +1 for binary compatibility! */
3134 /* char * */ u32 rt_dev; /* forcing the device at add */
3135 u32 rt_mtu; /* per route MTU/Window */
3136 u32 rt_window; /* Window clamping */
3137 unsigned short rt_irtt; /* Initial RTT */
3138 };
3139
3140 struct in6_rtmsg32 {
3141 struct in6_addr rtmsg_dst;
3142 struct in6_addr rtmsg_src;
3143 struct in6_addr rtmsg_gateway;
3144 u32 rtmsg_type;
3145 u16 rtmsg_dst_len;
3146 u16 rtmsg_src_len;
3147 u32 rtmsg_metric;
3148 u32 rtmsg_info;
3149 u32 rtmsg_flags;
3150 s32 rtmsg_ifindex;
3151 };
3152
3153 static int routing_ioctl(struct net *net, struct socket *sock,
3154 unsigned int cmd, void __user *argp)
3155 {
3156 int ret;
3157 void *r = NULL;
3158 struct in6_rtmsg r6;
3159 struct rtentry r4;
3160 char devname[16];
3161 u32 rtdev;
3162 mm_segment_t old_fs = get_fs();
3163
3164 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3165 struct in6_rtmsg32 __user *ur6 = argp;
3166 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3167 3 * sizeof(struct in6_addr));
3168 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3169 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3170 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3171 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3172 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3173 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3174 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3175
3176 r = (void *) &r6;
3177 } else { /* ipv4 */
3178 struct rtentry32 __user *ur4 = argp;
3179 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3180 3 * sizeof(struct sockaddr));
3181 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3182 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3183 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3184 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3185 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3186 ret |= get_user(rtdev, &(ur4->rt_dev));
3187 if (rtdev) {
3188 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3189 r4.rt_dev = (char __user __force *)devname;
3190 devname[15] = 0;
3191 } else
3192 r4.rt_dev = NULL;
3193
3194 r = (void *) &r4;
3195 }
3196
3197 if (ret) {
3198 ret = -EFAULT;
3199 goto out;
3200 }
3201
3202 set_fs(KERNEL_DS);
3203 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3204 set_fs(old_fs);
3205
3206 out:
3207 return ret;
3208 }
3209
3210 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3211 * for some operations; this forces use of the newer bridge-utils that
3212 * use compatible ioctls
3213 */
3214 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3215 {
3216 compat_ulong_t tmp;
3217
3218 if (get_user(tmp, argp))
3219 return -EFAULT;
3220 if (tmp == BRCTL_GET_VERSION)
3221 return BRCTL_VERSION + 1;
3222 return -EINVAL;
3223 }
3224
3225 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3226 unsigned int cmd, unsigned long arg)
3227 {
3228 void __user *argp = compat_ptr(arg);
3229 struct sock *sk = sock->sk;
3230 struct net *net = sock_net(sk);
3231
3232 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3233 return compat_ifr_data_ioctl(net, cmd, argp);
3234
3235 switch (cmd) {
3236 case SIOCSIFBR:
3237 case SIOCGIFBR:
3238 return old_bridge_ioctl(argp);
3239 case SIOCGIFNAME:
3240 return dev_ifname32(net, argp);
3241 case SIOCGIFCONF:
3242 return dev_ifconf(net, argp);
3243 case SIOCETHTOOL:
3244 return ethtool_ioctl(net, argp);
3245 case SIOCWANDEV:
3246 return compat_siocwandev(net, argp);
3247 case SIOCGIFMAP:
3248 case SIOCSIFMAP:
3249 return compat_sioc_ifmap(net, cmd, argp);
3250 case SIOCBONDENSLAVE:
3251 case SIOCBONDRELEASE:
3252 case SIOCBONDSETHWADDR:
3253 case SIOCBONDCHANGEACTIVE:
3254 return bond_ioctl(net, cmd, argp);
3255 case SIOCADDRT:
3256 case SIOCDELRT:
3257 return routing_ioctl(net, sock, cmd, argp);
3258 case SIOCGSTAMP:
3259 return do_siocgstamp(net, sock, cmd, argp);
3260 case SIOCGSTAMPNS:
3261 return do_siocgstampns(net, sock, cmd, argp);
3262 case SIOCBONDSLAVEINFOQUERY:
3263 case SIOCBONDINFOQUERY:
3264 case SIOCSHWTSTAMP:
3265 case SIOCGHWTSTAMP:
3266 return compat_ifr_data_ioctl(net, cmd, argp);
3267
3268 case FIOSETOWN:
3269 case SIOCSPGRP:
3270 case FIOGETOWN:
3271 case SIOCGPGRP:
3272 case SIOCBRADDBR:
3273 case SIOCBRDELBR:
3274 case SIOCGIFVLAN:
3275 case SIOCSIFVLAN:
3276 case SIOCADDDLCI:
3277 case SIOCDELDLCI:
3278 return sock_ioctl(file, cmd, arg);
3279
3280 case SIOCGIFFLAGS:
3281 case SIOCSIFFLAGS:
3282 case SIOCGIFMETRIC:
3283 case SIOCSIFMETRIC:
3284 case SIOCGIFMTU:
3285 case SIOCSIFMTU:
3286 case SIOCGIFMEM:
3287 case SIOCSIFMEM:
3288 case SIOCGIFHWADDR:
3289 case SIOCSIFHWADDR:
3290 case SIOCADDMULTI:
3291 case SIOCDELMULTI:
3292 case SIOCGIFINDEX:
3293 case SIOCGIFADDR:
3294 case SIOCSIFADDR:
3295 case SIOCSIFHWBROADCAST:
3296 case SIOCDIFADDR:
3297 case SIOCGIFBRDADDR:
3298 case SIOCSIFBRDADDR:
3299 case SIOCGIFDSTADDR:
3300 case SIOCSIFDSTADDR:
3301 case SIOCGIFNETMASK:
3302 case SIOCSIFNETMASK:
3303 case SIOCSIFPFLAGS:
3304 case SIOCGIFPFLAGS:
3305 case SIOCGIFTXQLEN:
3306 case SIOCSIFTXQLEN:
3307 case SIOCBRADDIF:
3308 case SIOCBRDELIF:
3309 case SIOCSIFNAME:
3310 case SIOCGMIIPHY:
3311 case SIOCGMIIREG:
3312 case SIOCSMIIREG:
3313 return dev_ifsioc(net, sock, cmd, argp);
3314
3315 case SIOCSARP:
3316 case SIOCGARP:
3317 case SIOCDARP:
3318 case SIOCATMARK:
3319 return sock_do_ioctl(net, sock, cmd, arg);
3320 }
3321
3322 return -ENOIOCTLCMD;
3323 }
3324
3325 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3326 unsigned long arg)
3327 {
3328 struct socket *sock = file->private_data;
3329 int ret = -ENOIOCTLCMD;
3330 struct sock *sk;
3331 struct net *net;
3332
3333 sk = sock->sk;
3334 net = sock_net(sk);
3335
3336 if (sock->ops->compat_ioctl)
3337 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3338
3339 if (ret == -ENOIOCTLCMD &&
3340 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3341 ret = compat_wext_handle_ioctl(net, cmd, arg);
3342
3343 if (ret == -ENOIOCTLCMD)
3344 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3345
3346 return ret;
3347 }
3348 #endif
3349
3350 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3351 {
3352 return sock->ops->bind(sock, addr, addrlen);
3353 }
3354 EXPORT_SYMBOL(kernel_bind);
3355
3356 int kernel_listen(struct socket *sock, int backlog)
3357 {
3358 return sock->ops->listen(sock, backlog);
3359 }
3360 EXPORT_SYMBOL(kernel_listen);
3361
3362 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3363 {
3364 struct sock *sk = sock->sk;
3365 int err;
3366
3367 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3368 newsock);
3369 if (err < 0)
3370 goto done;
3371
3372 err = sock->ops->accept(sock, *newsock, flags);
3373 if (err < 0) {
3374 sock_release(*newsock);
3375 *newsock = NULL;
3376 goto done;
3377 }
3378
3379 (*newsock)->ops = sock->ops;
3380 __module_get((*newsock)->ops->owner);
3381
3382 done:
3383 return err;
3384 }
3385 EXPORT_SYMBOL(kernel_accept);
3386
3387 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3388 int flags)
3389 {
3390 return sock->ops->connect(sock, addr, addrlen, flags);
3391 }
3392 EXPORT_SYMBOL(kernel_connect);
3393
3394 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3395 int *addrlen)
3396 {
3397 return sock->ops->getname(sock, addr, addrlen, 0);
3398 }
3399 EXPORT_SYMBOL(kernel_getsockname);
3400
3401 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3402 int *addrlen)
3403 {
3404 return sock->ops->getname(sock, addr, addrlen, 1);
3405 }
3406 EXPORT_SYMBOL(kernel_getpeername);
3407
3408 int kernel_getsockopt(struct socket *sock, int level, int optname,
3409 char *optval, int *optlen)
3410 {
3411 mm_segment_t oldfs = get_fs();
3412 char __user *uoptval;
3413 int __user *uoptlen;
3414 int err;
3415
3416 uoptval = (char __user __force *) optval;
3417 uoptlen = (int __user __force *) optlen;
3418
3419 set_fs(KERNEL_DS);
3420 if (level == SOL_SOCKET)
3421 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3422 else
3423 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3424 uoptlen);
3425 set_fs(oldfs);
3426 return err;
3427 }
3428 EXPORT_SYMBOL(kernel_getsockopt);
3429
3430 int kernel_setsockopt(struct socket *sock, int level, int optname,
3431 char *optval, unsigned int optlen)
3432 {
3433 mm_segment_t oldfs = get_fs();
3434 char __user *uoptval;
3435 int err;
3436
3437 uoptval = (char __user __force *) optval;
3438
3439 set_fs(KERNEL_DS);
3440 if (level == SOL_SOCKET)
3441 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3442 else
3443 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3444 optlen);
3445 set_fs(oldfs);
3446 return err;
3447 }
3448 EXPORT_SYMBOL(kernel_setsockopt);
3449
3450 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3451 size_t size, int flags)
3452 {
3453 if (sock->ops->sendpage)
3454 return sock->ops->sendpage(sock, page, offset, size, flags);
3455
3456 return sock_no_sendpage(sock, page, offset, size, flags);
3457 }
3458 EXPORT_SYMBOL(kernel_sendpage);
3459
3460 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3461 {
3462 mm_segment_t oldfs = get_fs();
3463 int err;
3464
3465 set_fs(KERNEL_DS);
3466 err = sock->ops->ioctl(sock, cmd, arg);
3467 set_fs(oldfs);
3468
3469 return err;
3470 }
3471 EXPORT_SYMBOL(kernel_sock_ioctl);
3472
3473 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3474 {
3475 return sock->ops->shutdown(sock, how);
3476 }
3477 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.102249 seconds and 5 git commands to generate.