cxgb4: Freelist starving threshold varies from adapter to adapter
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read = new_sync_read,
144 .write = new_sync_write,
145 .read_iter = sock_read_iter,
146 .write_iter = sock_write_iter,
147 .poll = sock_poll,
148 .unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 .compat_ioctl = compat_sock_ioctl,
151 #endif
152 .mmap = sock_mmap,
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
158 };
159
160 /*
161 * The protocol list. Each protocol is registered in here.
162 */
163
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166
167 /*
168 * Statistics counters of the socket lists
169 */
170
171 static DEFINE_PER_CPU(int, sockets_in_use);
172
173 /*
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
177 */
178
179 /**
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
184 *
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 */
189
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
199 }
200
201 /**
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
207 *
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
216 */
217
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
220 {
221 int err;
222 int len;
223
224 BUG_ON(klen > sizeof(struct sockaddr_storage));
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0)
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
237 }
238 /*
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
241 */
242 return __put_user(klen, ulen);
243 }
244
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 struct socket_alloc *ei;
250 struct socket_wq *wq;
251
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 if (!wq) {
257 kmem_cache_free(sock_inode_cachep, ei);
258 return NULL;
259 }
260 init_waitqueue_head(&wq->wait);
261 wq->fasync_list = NULL;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
263
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
269
270 return &ei->vfs_inode;
271 }
272
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
277
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
282 }
283
284 static void init_once(void *foo)
285 {
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
287
288 inode_init_once(&ei->vfs_inode);
289 }
290
291 static int init_inodecache(void)
292 {
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
295 0,
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
303 }
304
305 static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
309 };
310
311 /*
312 * sockfs_dname() is called from d_path().
313 */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 dentry->d_inode->i_ino);
318 }
319
320 static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
322 };
323
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 int flags, const char *dev_name, void *data)
326 {
327 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 &sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330
331 static struct vfsmount *sock_mnt __read_mostly;
332
333 static struct file_system_type sock_fs_type = {
334 .name = "sockfs",
335 .mount = sockfs_mount,
336 .kill_sb = kill_anon_super,
337 };
338
339 /*
340 * Obtains the first available file descriptor and sets it up for use.
341 *
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
349 *
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
354 */
355
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 struct qstr name = { .name = "" };
359 struct path path;
360 struct file *file;
361
362 if (dname) {
363 name.name = dname;
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
368 }
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry))
371 return ERR_PTR(-ENOMEM);
372 path.mnt = mntget(sock_mnt);
373
374 d_instantiate(path.dentry, SOCK_INODE(sock));
375
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (unlikely(IS_ERR(file))) {
379 /* drop dentry, keep inode */
380 ihold(path.dentry->d_inode);
381 path_put(&path);
382 return file;
383 }
384
385 sock->file = file;
386 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 file->private_data = sock;
388 return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 struct file *newfile;
395 int fd = get_unused_fd_flags(flags);
396 if (unlikely(fd < 0))
397 return fd;
398
399 newfile = sock_alloc_file(sock, flags, NULL);
400 if (likely(!IS_ERR(newfile))) {
401 fd_install(fd, newfile);
402 return fd;
403 }
404
405 put_unused_fd(fd);
406 return PTR_ERR(newfile);
407 }
408
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 if (file->f_op == &socket_file_ops)
412 return file->private_data; /* set in sock_map_fd */
413
414 *err = -ENOTSOCK;
415 return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418
419 /**
420 * sockfd_lookup - Go from a file number to its socket slot
421 * @fd: file handle
422 * @err: pointer to an error code return
423 *
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
428 *
429 * On a success the socket object pointer is returned.
430 */
431
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 struct file *file;
435 struct socket *sock;
436
437 file = fget(fd);
438 if (!file) {
439 *err = -EBADF;
440 return NULL;
441 }
442
443 sock = sock_from_file(file, err);
444 if (!sock)
445 fput(file);
446 return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 struct fd f = fdget(fd);
453 struct socket *sock;
454
455 *err = -EBADF;
456 if (f.file) {
457 sock = sock_from_file(f.file, err);
458 if (likely(sock)) {
459 *fput_needed = f.flags;
460 return sock;
461 }
462 fdput(f);
463 }
464 return NULL;
465 }
466
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 const char *name, void *value, size_t size)
472 {
473 const char *proto_name;
474 size_t proto_size;
475 int error;
476
477 error = -ENODATA;
478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 proto_name = dentry->d_name.name;
480 proto_size = strlen(proto_name);
481
482 if (value) {
483 error = -ERANGE;
484 if (proto_size + 1 > size)
485 goto out;
486
487 strncpy(value, proto_name, proto_size + 1);
488 }
489 error = proto_size + 1;
490 }
491
492 out:
493 return error;
494 }
495
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 size_t size)
498 {
499 ssize_t len;
500 ssize_t used = 0;
501
502 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 if (len < 0)
504 return len;
505 used += len;
506 if (buffer) {
507 if (size < used)
508 return -ERANGE;
509 buffer += len;
510 }
511
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 used += len;
514 if (buffer) {
515 if (size < used)
516 return -ERANGE;
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 buffer += len;
519 }
520
521 return used;
522 }
523
524 static const struct inode_operations sockfs_inode_ops = {
525 .getxattr = sockfs_getxattr,
526 .listxattr = sockfs_listxattr,
527 };
528
529 /**
530 * sock_alloc - allocate a socket
531 *
532 * Allocate a new inode and socket object. The two are bound together
533 * and initialised. The socket is then returned. If we are out of inodes
534 * NULL is returned.
535 */
536
537 static struct socket *sock_alloc(void)
538 {
539 struct inode *inode;
540 struct socket *sock;
541
542 inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 if (!inode)
544 return NULL;
545
546 sock = SOCKET_I(inode);
547
548 kmemcheck_annotate_bitfield(sock, type);
549 inode->i_ino = get_next_ino();
550 inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 inode->i_uid = current_fsuid();
552 inode->i_gid = current_fsgid();
553 inode->i_op = &sockfs_inode_ops;
554
555 this_cpu_add(sockets_in_use, 1);
556 return sock;
557 }
558
559 /**
560 * sock_release - close a socket
561 * @sock: socket to close
562 *
563 * The socket is released from the protocol stack if it has a release
564 * callback, and the inode is then released if the socket is bound to
565 * an inode not a file.
566 */
567
568 void sock_release(struct socket *sock)
569 {
570 if (sock->ops) {
571 struct module *owner = sock->ops->owner;
572
573 sock->ops->release(sock);
574 sock->ops = NULL;
575 module_put(owner);
576 }
577
578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 pr_err("%s: fasync list not empty!\n", __func__);
580
581 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
582 return;
583
584 this_cpu_sub(sockets_in_use, 1);
585 if (!sock->file) {
586 iput(SOCK_INODE(sock));
587 return;
588 }
589 sock->file = NULL;
590 }
591 EXPORT_SYMBOL(sock_release);
592
593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
594 {
595 u8 flags = *tx_flags;
596
597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
598 flags |= SKBTX_HW_TSTAMP;
599
600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
601 flags |= SKBTX_SW_TSTAMP;
602
603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
604 flags |= SKBTX_SCHED_TSTAMP;
605
606 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
607 flags |= SKBTX_ACK_TSTAMP;
608
609 *tx_flags = flags;
610 }
611 EXPORT_SYMBOL(__sock_tx_timestamp);
612
613 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
614 {
615 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
616 BUG_ON(ret == -EIOCBQUEUED);
617 return ret;
618 }
619
620 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
621 {
622 int err = security_socket_sendmsg(sock, msg,
623 msg_data_left(msg));
624
625 return err ?: sock_sendmsg_nosec(sock, msg);
626 }
627 EXPORT_SYMBOL(sock_sendmsg);
628
629 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
630 struct kvec *vec, size_t num, size_t size)
631 {
632 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
633 return sock_sendmsg(sock, msg);
634 }
635 EXPORT_SYMBOL(kernel_sendmsg);
636
637 /*
638 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
639 */
640 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
641 struct sk_buff *skb)
642 {
643 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
644 struct scm_timestamping tss;
645 int empty = 1;
646 struct skb_shared_hwtstamps *shhwtstamps =
647 skb_hwtstamps(skb);
648
649 /* Race occurred between timestamp enabling and packet
650 receiving. Fill in the current time for now. */
651 if (need_software_tstamp && skb->tstamp.tv64 == 0)
652 __net_timestamp(skb);
653
654 if (need_software_tstamp) {
655 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
656 struct timeval tv;
657 skb_get_timestamp(skb, &tv);
658 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
659 sizeof(tv), &tv);
660 } else {
661 struct timespec ts;
662 skb_get_timestampns(skb, &ts);
663 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
664 sizeof(ts), &ts);
665 }
666 }
667
668 memset(&tss, 0, sizeof(tss));
669 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
670 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
671 empty = 0;
672 if (shhwtstamps &&
673 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
674 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
675 empty = 0;
676 if (!empty)
677 put_cmsg(msg, SOL_SOCKET,
678 SCM_TIMESTAMPING, sizeof(tss), &tss);
679 }
680 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
681
682 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
683 struct sk_buff *skb)
684 {
685 int ack;
686
687 if (!sock_flag(sk, SOCK_WIFI_STATUS))
688 return;
689 if (!skb->wifi_acked_valid)
690 return;
691
692 ack = skb->wifi_acked;
693
694 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
695 }
696 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
697
698 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
699 struct sk_buff *skb)
700 {
701 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
702 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
703 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
704 }
705
706 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
707 struct sk_buff *skb)
708 {
709 sock_recv_timestamp(msg, sk, skb);
710 sock_recv_drops(msg, sk, skb);
711 }
712 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
713
714 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
715 size_t size, int flags)
716 {
717 return sock->ops->recvmsg(sock, msg, size, flags);
718 }
719
720 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
721 int flags)
722 {
723 int err = security_socket_recvmsg(sock, msg, size, flags);
724
725 return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
726 }
727 EXPORT_SYMBOL(sock_recvmsg);
728
729 /**
730 * kernel_recvmsg - Receive a message from a socket (kernel space)
731 * @sock: The socket to receive the message from
732 * @msg: Received message
733 * @vec: Input s/g array for message data
734 * @num: Size of input s/g array
735 * @size: Number of bytes to read
736 * @flags: Message flags (MSG_DONTWAIT, etc...)
737 *
738 * On return the msg structure contains the scatter/gather array passed in the
739 * vec argument. The array is modified so that it consists of the unfilled
740 * portion of the original array.
741 *
742 * The returned value is the total number of bytes received, or an error.
743 */
744 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
745 struct kvec *vec, size_t num, size_t size, int flags)
746 {
747 mm_segment_t oldfs = get_fs();
748 int result;
749
750 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
751 set_fs(KERNEL_DS);
752 result = sock_recvmsg(sock, msg, size, flags);
753 set_fs(oldfs);
754 return result;
755 }
756 EXPORT_SYMBOL(kernel_recvmsg);
757
758 static ssize_t sock_sendpage(struct file *file, struct page *page,
759 int offset, size_t size, loff_t *ppos, int more)
760 {
761 struct socket *sock;
762 int flags;
763
764 sock = file->private_data;
765
766 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
767 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
768 flags |= more;
769
770 return kernel_sendpage(sock, page, offset, size, flags);
771 }
772
773 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
774 struct pipe_inode_info *pipe, size_t len,
775 unsigned int flags)
776 {
777 struct socket *sock = file->private_data;
778
779 if (unlikely(!sock->ops->splice_read))
780 return -EINVAL;
781
782 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
783 }
784
785 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
786 {
787 struct file *file = iocb->ki_filp;
788 struct socket *sock = file->private_data;
789 struct msghdr msg = {.msg_iter = *to,
790 .msg_iocb = iocb};
791 ssize_t res;
792
793 if (file->f_flags & O_NONBLOCK)
794 msg.msg_flags = MSG_DONTWAIT;
795
796 if (iocb->ki_pos != 0)
797 return -ESPIPE;
798
799 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
800 return 0;
801
802 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
803 *to = msg.msg_iter;
804 return res;
805 }
806
807 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
808 {
809 struct file *file = iocb->ki_filp;
810 struct socket *sock = file->private_data;
811 struct msghdr msg = {.msg_iter = *from,
812 .msg_iocb = iocb};
813 ssize_t res;
814
815 if (iocb->ki_pos != 0)
816 return -ESPIPE;
817
818 if (file->f_flags & O_NONBLOCK)
819 msg.msg_flags = MSG_DONTWAIT;
820
821 if (sock->type == SOCK_SEQPACKET)
822 msg.msg_flags |= MSG_EOR;
823
824 res = sock_sendmsg(sock, &msg);
825 *from = msg.msg_iter;
826 return res;
827 }
828
829 /*
830 * Atomic setting of ioctl hooks to avoid race
831 * with module unload.
832 */
833
834 static DEFINE_MUTEX(br_ioctl_mutex);
835 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
836
837 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
838 {
839 mutex_lock(&br_ioctl_mutex);
840 br_ioctl_hook = hook;
841 mutex_unlock(&br_ioctl_mutex);
842 }
843 EXPORT_SYMBOL(brioctl_set);
844
845 static DEFINE_MUTEX(vlan_ioctl_mutex);
846 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
847
848 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
849 {
850 mutex_lock(&vlan_ioctl_mutex);
851 vlan_ioctl_hook = hook;
852 mutex_unlock(&vlan_ioctl_mutex);
853 }
854 EXPORT_SYMBOL(vlan_ioctl_set);
855
856 static DEFINE_MUTEX(dlci_ioctl_mutex);
857 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
858
859 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
860 {
861 mutex_lock(&dlci_ioctl_mutex);
862 dlci_ioctl_hook = hook;
863 mutex_unlock(&dlci_ioctl_mutex);
864 }
865 EXPORT_SYMBOL(dlci_ioctl_set);
866
867 static long sock_do_ioctl(struct net *net, struct socket *sock,
868 unsigned int cmd, unsigned long arg)
869 {
870 int err;
871 void __user *argp = (void __user *)arg;
872
873 err = sock->ops->ioctl(sock, cmd, arg);
874
875 /*
876 * If this ioctl is unknown try to hand it down
877 * to the NIC driver.
878 */
879 if (err == -ENOIOCTLCMD)
880 err = dev_ioctl(net, cmd, argp);
881
882 return err;
883 }
884
885 /*
886 * With an ioctl, arg may well be a user mode pointer, but we don't know
887 * what to do with it - that's up to the protocol still.
888 */
889
890 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
891 {
892 struct socket *sock;
893 struct sock *sk;
894 void __user *argp = (void __user *)arg;
895 int pid, err;
896 struct net *net;
897
898 sock = file->private_data;
899 sk = sock->sk;
900 net = sock_net(sk);
901 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
902 err = dev_ioctl(net, cmd, argp);
903 } else
904 #ifdef CONFIG_WEXT_CORE
905 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
906 err = dev_ioctl(net, cmd, argp);
907 } else
908 #endif
909 switch (cmd) {
910 case FIOSETOWN:
911 case SIOCSPGRP:
912 err = -EFAULT;
913 if (get_user(pid, (int __user *)argp))
914 break;
915 f_setown(sock->file, pid, 1);
916 err = 0;
917 break;
918 case FIOGETOWN:
919 case SIOCGPGRP:
920 err = put_user(f_getown(sock->file),
921 (int __user *)argp);
922 break;
923 case SIOCGIFBR:
924 case SIOCSIFBR:
925 case SIOCBRADDBR:
926 case SIOCBRDELBR:
927 err = -ENOPKG;
928 if (!br_ioctl_hook)
929 request_module("bridge");
930
931 mutex_lock(&br_ioctl_mutex);
932 if (br_ioctl_hook)
933 err = br_ioctl_hook(net, cmd, argp);
934 mutex_unlock(&br_ioctl_mutex);
935 break;
936 case SIOCGIFVLAN:
937 case SIOCSIFVLAN:
938 err = -ENOPKG;
939 if (!vlan_ioctl_hook)
940 request_module("8021q");
941
942 mutex_lock(&vlan_ioctl_mutex);
943 if (vlan_ioctl_hook)
944 err = vlan_ioctl_hook(net, argp);
945 mutex_unlock(&vlan_ioctl_mutex);
946 break;
947 case SIOCADDDLCI:
948 case SIOCDELDLCI:
949 err = -ENOPKG;
950 if (!dlci_ioctl_hook)
951 request_module("dlci");
952
953 mutex_lock(&dlci_ioctl_mutex);
954 if (dlci_ioctl_hook)
955 err = dlci_ioctl_hook(cmd, argp);
956 mutex_unlock(&dlci_ioctl_mutex);
957 break;
958 default:
959 err = sock_do_ioctl(net, sock, cmd, arg);
960 break;
961 }
962 return err;
963 }
964
965 int sock_create_lite(int family, int type, int protocol, struct socket **res)
966 {
967 int err;
968 struct socket *sock = NULL;
969
970 err = security_socket_create(family, type, protocol, 1);
971 if (err)
972 goto out;
973
974 sock = sock_alloc();
975 if (!sock) {
976 err = -ENOMEM;
977 goto out;
978 }
979
980 sock->type = type;
981 err = security_socket_post_create(sock, family, type, protocol, 1);
982 if (err)
983 goto out_release;
984
985 out:
986 *res = sock;
987 return err;
988 out_release:
989 sock_release(sock);
990 sock = NULL;
991 goto out;
992 }
993 EXPORT_SYMBOL(sock_create_lite);
994
995 /* No kernel lock held - perfect */
996 static unsigned int sock_poll(struct file *file, poll_table *wait)
997 {
998 unsigned int busy_flag = 0;
999 struct socket *sock;
1000
1001 /*
1002 * We can't return errors to poll, so it's either yes or no.
1003 */
1004 sock = file->private_data;
1005
1006 if (sk_can_busy_loop(sock->sk)) {
1007 /* this socket can poll_ll so tell the system call */
1008 busy_flag = POLL_BUSY_LOOP;
1009
1010 /* once, only if requested by syscall */
1011 if (wait && (wait->_key & POLL_BUSY_LOOP))
1012 sk_busy_loop(sock->sk, 1);
1013 }
1014
1015 return busy_flag | sock->ops->poll(file, sock, wait);
1016 }
1017
1018 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1019 {
1020 struct socket *sock = file->private_data;
1021
1022 return sock->ops->mmap(file, sock, vma);
1023 }
1024
1025 static int sock_close(struct inode *inode, struct file *filp)
1026 {
1027 sock_release(SOCKET_I(inode));
1028 return 0;
1029 }
1030
1031 /*
1032 * Update the socket async list
1033 *
1034 * Fasync_list locking strategy.
1035 *
1036 * 1. fasync_list is modified only under process context socket lock
1037 * i.e. under semaphore.
1038 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1039 * or under socket lock
1040 */
1041
1042 static int sock_fasync(int fd, struct file *filp, int on)
1043 {
1044 struct socket *sock = filp->private_data;
1045 struct sock *sk = sock->sk;
1046 struct socket_wq *wq;
1047
1048 if (sk == NULL)
1049 return -EINVAL;
1050
1051 lock_sock(sk);
1052 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1053 fasync_helper(fd, filp, on, &wq->fasync_list);
1054
1055 if (!wq->fasync_list)
1056 sock_reset_flag(sk, SOCK_FASYNC);
1057 else
1058 sock_set_flag(sk, SOCK_FASYNC);
1059
1060 release_sock(sk);
1061 return 0;
1062 }
1063
1064 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1065
1066 int sock_wake_async(struct socket *sock, int how, int band)
1067 {
1068 struct socket_wq *wq;
1069
1070 if (!sock)
1071 return -1;
1072 rcu_read_lock();
1073 wq = rcu_dereference(sock->wq);
1074 if (!wq || !wq->fasync_list) {
1075 rcu_read_unlock();
1076 return -1;
1077 }
1078 switch (how) {
1079 case SOCK_WAKE_WAITD:
1080 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1081 break;
1082 goto call_kill;
1083 case SOCK_WAKE_SPACE:
1084 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1085 break;
1086 /* fall through */
1087 case SOCK_WAKE_IO:
1088 call_kill:
1089 kill_fasync(&wq->fasync_list, SIGIO, band);
1090 break;
1091 case SOCK_WAKE_URG:
1092 kill_fasync(&wq->fasync_list, SIGURG, band);
1093 }
1094 rcu_read_unlock();
1095 return 0;
1096 }
1097 EXPORT_SYMBOL(sock_wake_async);
1098
1099 int __sock_create(struct net *net, int family, int type, int protocol,
1100 struct socket **res, int kern)
1101 {
1102 int err;
1103 struct socket *sock;
1104 const struct net_proto_family *pf;
1105
1106 /*
1107 * Check protocol is in range
1108 */
1109 if (family < 0 || family >= NPROTO)
1110 return -EAFNOSUPPORT;
1111 if (type < 0 || type >= SOCK_MAX)
1112 return -EINVAL;
1113
1114 /* Compatibility.
1115
1116 This uglymoron is moved from INET layer to here to avoid
1117 deadlock in module load.
1118 */
1119 if (family == PF_INET && type == SOCK_PACKET) {
1120 static int warned;
1121 if (!warned) {
1122 warned = 1;
1123 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1124 current->comm);
1125 }
1126 family = PF_PACKET;
1127 }
1128
1129 err = security_socket_create(family, type, protocol, kern);
1130 if (err)
1131 return err;
1132
1133 /*
1134 * Allocate the socket and allow the family to set things up. if
1135 * the protocol is 0, the family is instructed to select an appropriate
1136 * default.
1137 */
1138 sock = sock_alloc();
1139 if (!sock) {
1140 net_warn_ratelimited("socket: no more sockets\n");
1141 return -ENFILE; /* Not exactly a match, but its the
1142 closest posix thing */
1143 }
1144
1145 sock->type = type;
1146
1147 #ifdef CONFIG_MODULES
1148 /* Attempt to load a protocol module if the find failed.
1149 *
1150 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1151 * requested real, full-featured networking support upon configuration.
1152 * Otherwise module support will break!
1153 */
1154 if (rcu_access_pointer(net_families[family]) == NULL)
1155 request_module("net-pf-%d", family);
1156 #endif
1157
1158 rcu_read_lock();
1159 pf = rcu_dereference(net_families[family]);
1160 err = -EAFNOSUPPORT;
1161 if (!pf)
1162 goto out_release;
1163
1164 /*
1165 * We will call the ->create function, that possibly is in a loadable
1166 * module, so we have to bump that loadable module refcnt first.
1167 */
1168 if (!try_module_get(pf->owner))
1169 goto out_release;
1170
1171 /* Now protected by module ref count */
1172 rcu_read_unlock();
1173
1174 err = pf->create(net, sock, protocol, kern);
1175 if (err < 0)
1176 goto out_module_put;
1177
1178 /*
1179 * Now to bump the refcnt of the [loadable] module that owns this
1180 * socket at sock_release time we decrement its refcnt.
1181 */
1182 if (!try_module_get(sock->ops->owner))
1183 goto out_module_busy;
1184
1185 /*
1186 * Now that we're done with the ->create function, the [loadable]
1187 * module can have its refcnt decremented
1188 */
1189 module_put(pf->owner);
1190 err = security_socket_post_create(sock, family, type, protocol, kern);
1191 if (err)
1192 goto out_sock_release;
1193 *res = sock;
1194
1195 return 0;
1196
1197 out_module_busy:
1198 err = -EAFNOSUPPORT;
1199 out_module_put:
1200 sock->ops = NULL;
1201 module_put(pf->owner);
1202 out_sock_release:
1203 sock_release(sock);
1204 return err;
1205
1206 out_release:
1207 rcu_read_unlock();
1208 goto out_sock_release;
1209 }
1210 EXPORT_SYMBOL(__sock_create);
1211
1212 int sock_create(int family, int type, int protocol, struct socket **res)
1213 {
1214 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1215 }
1216 EXPORT_SYMBOL(sock_create);
1217
1218 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1219 {
1220 return __sock_create(&init_net, family, type, protocol, res, 1);
1221 }
1222 EXPORT_SYMBOL(sock_create_kern);
1223
1224 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1225 {
1226 int retval;
1227 struct socket *sock;
1228 int flags;
1229
1230 /* Check the SOCK_* constants for consistency. */
1231 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1232 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1233 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1234 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1235
1236 flags = type & ~SOCK_TYPE_MASK;
1237 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1238 return -EINVAL;
1239 type &= SOCK_TYPE_MASK;
1240
1241 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1242 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1243
1244 retval = sock_create(family, type, protocol, &sock);
1245 if (retval < 0)
1246 goto out;
1247
1248 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1249 if (retval < 0)
1250 goto out_release;
1251
1252 out:
1253 /* It may be already another descriptor 8) Not kernel problem. */
1254 return retval;
1255
1256 out_release:
1257 sock_release(sock);
1258 return retval;
1259 }
1260
1261 /*
1262 * Create a pair of connected sockets.
1263 */
1264
1265 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1266 int __user *, usockvec)
1267 {
1268 struct socket *sock1, *sock2;
1269 int fd1, fd2, err;
1270 struct file *newfile1, *newfile2;
1271 int flags;
1272
1273 flags = type & ~SOCK_TYPE_MASK;
1274 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1275 return -EINVAL;
1276 type &= SOCK_TYPE_MASK;
1277
1278 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1279 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1280
1281 /*
1282 * Obtain the first socket and check if the underlying protocol
1283 * supports the socketpair call.
1284 */
1285
1286 err = sock_create(family, type, protocol, &sock1);
1287 if (err < 0)
1288 goto out;
1289
1290 err = sock_create(family, type, protocol, &sock2);
1291 if (err < 0)
1292 goto out_release_1;
1293
1294 err = sock1->ops->socketpair(sock1, sock2);
1295 if (err < 0)
1296 goto out_release_both;
1297
1298 fd1 = get_unused_fd_flags(flags);
1299 if (unlikely(fd1 < 0)) {
1300 err = fd1;
1301 goto out_release_both;
1302 }
1303
1304 fd2 = get_unused_fd_flags(flags);
1305 if (unlikely(fd2 < 0)) {
1306 err = fd2;
1307 goto out_put_unused_1;
1308 }
1309
1310 newfile1 = sock_alloc_file(sock1, flags, NULL);
1311 if (unlikely(IS_ERR(newfile1))) {
1312 err = PTR_ERR(newfile1);
1313 goto out_put_unused_both;
1314 }
1315
1316 newfile2 = sock_alloc_file(sock2, flags, NULL);
1317 if (IS_ERR(newfile2)) {
1318 err = PTR_ERR(newfile2);
1319 goto out_fput_1;
1320 }
1321
1322 err = put_user(fd1, &usockvec[0]);
1323 if (err)
1324 goto out_fput_both;
1325
1326 err = put_user(fd2, &usockvec[1]);
1327 if (err)
1328 goto out_fput_both;
1329
1330 audit_fd_pair(fd1, fd2);
1331
1332 fd_install(fd1, newfile1);
1333 fd_install(fd2, newfile2);
1334 /* fd1 and fd2 may be already another descriptors.
1335 * Not kernel problem.
1336 */
1337
1338 return 0;
1339
1340 out_fput_both:
1341 fput(newfile2);
1342 fput(newfile1);
1343 put_unused_fd(fd2);
1344 put_unused_fd(fd1);
1345 goto out;
1346
1347 out_fput_1:
1348 fput(newfile1);
1349 put_unused_fd(fd2);
1350 put_unused_fd(fd1);
1351 sock_release(sock2);
1352 goto out;
1353
1354 out_put_unused_both:
1355 put_unused_fd(fd2);
1356 out_put_unused_1:
1357 put_unused_fd(fd1);
1358 out_release_both:
1359 sock_release(sock2);
1360 out_release_1:
1361 sock_release(sock1);
1362 out:
1363 return err;
1364 }
1365
1366 /*
1367 * Bind a name to a socket. Nothing much to do here since it's
1368 * the protocol's responsibility to handle the local address.
1369 *
1370 * We move the socket address to kernel space before we call
1371 * the protocol layer (having also checked the address is ok).
1372 */
1373
1374 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1375 {
1376 struct socket *sock;
1377 struct sockaddr_storage address;
1378 int err, fput_needed;
1379
1380 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1381 if (sock) {
1382 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1383 if (err >= 0) {
1384 err = security_socket_bind(sock,
1385 (struct sockaddr *)&address,
1386 addrlen);
1387 if (!err)
1388 err = sock->ops->bind(sock,
1389 (struct sockaddr *)
1390 &address, addrlen);
1391 }
1392 fput_light(sock->file, fput_needed);
1393 }
1394 return err;
1395 }
1396
1397 /*
1398 * Perform a listen. Basically, we allow the protocol to do anything
1399 * necessary for a listen, and if that works, we mark the socket as
1400 * ready for listening.
1401 */
1402
1403 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1404 {
1405 struct socket *sock;
1406 int err, fput_needed;
1407 int somaxconn;
1408
1409 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1410 if (sock) {
1411 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1412 if ((unsigned int)backlog > somaxconn)
1413 backlog = somaxconn;
1414
1415 err = security_socket_listen(sock, backlog);
1416 if (!err)
1417 err = sock->ops->listen(sock, backlog);
1418
1419 fput_light(sock->file, fput_needed);
1420 }
1421 return err;
1422 }
1423
1424 /*
1425 * For accept, we attempt to create a new socket, set up the link
1426 * with the client, wake up the client, then return the new
1427 * connected fd. We collect the address of the connector in kernel
1428 * space and move it to user at the very end. This is unclean because
1429 * we open the socket then return an error.
1430 *
1431 * 1003.1g adds the ability to recvmsg() to query connection pending
1432 * status to recvmsg. We need to add that support in a way thats
1433 * clean when we restucture accept also.
1434 */
1435
1436 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1437 int __user *, upeer_addrlen, int, flags)
1438 {
1439 struct socket *sock, *newsock;
1440 struct file *newfile;
1441 int err, len, newfd, fput_needed;
1442 struct sockaddr_storage address;
1443
1444 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1445 return -EINVAL;
1446
1447 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1448 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1449
1450 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1451 if (!sock)
1452 goto out;
1453
1454 err = -ENFILE;
1455 newsock = sock_alloc();
1456 if (!newsock)
1457 goto out_put;
1458
1459 newsock->type = sock->type;
1460 newsock->ops = sock->ops;
1461
1462 /*
1463 * We don't need try_module_get here, as the listening socket (sock)
1464 * has the protocol module (sock->ops->owner) held.
1465 */
1466 __module_get(newsock->ops->owner);
1467
1468 newfd = get_unused_fd_flags(flags);
1469 if (unlikely(newfd < 0)) {
1470 err = newfd;
1471 sock_release(newsock);
1472 goto out_put;
1473 }
1474 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1475 if (unlikely(IS_ERR(newfile))) {
1476 err = PTR_ERR(newfile);
1477 put_unused_fd(newfd);
1478 sock_release(newsock);
1479 goto out_put;
1480 }
1481
1482 err = security_socket_accept(sock, newsock);
1483 if (err)
1484 goto out_fd;
1485
1486 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1487 if (err < 0)
1488 goto out_fd;
1489
1490 if (upeer_sockaddr) {
1491 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1492 &len, 2) < 0) {
1493 err = -ECONNABORTED;
1494 goto out_fd;
1495 }
1496 err = move_addr_to_user(&address,
1497 len, upeer_sockaddr, upeer_addrlen);
1498 if (err < 0)
1499 goto out_fd;
1500 }
1501
1502 /* File flags are not inherited via accept() unlike another OSes. */
1503
1504 fd_install(newfd, newfile);
1505 err = newfd;
1506
1507 out_put:
1508 fput_light(sock->file, fput_needed);
1509 out:
1510 return err;
1511 out_fd:
1512 fput(newfile);
1513 put_unused_fd(newfd);
1514 goto out_put;
1515 }
1516
1517 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1518 int __user *, upeer_addrlen)
1519 {
1520 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1521 }
1522
1523 /*
1524 * Attempt to connect to a socket with the server address. The address
1525 * is in user space so we verify it is OK and move it to kernel space.
1526 *
1527 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1528 * break bindings
1529 *
1530 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1531 * other SEQPACKET protocols that take time to connect() as it doesn't
1532 * include the -EINPROGRESS status for such sockets.
1533 */
1534
1535 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1536 int, addrlen)
1537 {
1538 struct socket *sock;
1539 struct sockaddr_storage address;
1540 int err, fput_needed;
1541
1542 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1543 if (!sock)
1544 goto out;
1545 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1546 if (err < 0)
1547 goto out_put;
1548
1549 err =
1550 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1551 if (err)
1552 goto out_put;
1553
1554 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1555 sock->file->f_flags);
1556 out_put:
1557 fput_light(sock->file, fput_needed);
1558 out:
1559 return err;
1560 }
1561
1562 /*
1563 * Get the local address ('name') of a socket object. Move the obtained
1564 * name to user space.
1565 */
1566
1567 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1568 int __user *, usockaddr_len)
1569 {
1570 struct socket *sock;
1571 struct sockaddr_storage address;
1572 int len, err, fput_needed;
1573
1574 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1575 if (!sock)
1576 goto out;
1577
1578 err = security_socket_getsockname(sock);
1579 if (err)
1580 goto out_put;
1581
1582 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1583 if (err)
1584 goto out_put;
1585 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1586
1587 out_put:
1588 fput_light(sock->file, fput_needed);
1589 out:
1590 return err;
1591 }
1592
1593 /*
1594 * Get the remote address ('name') of a socket object. Move the obtained
1595 * name to user space.
1596 */
1597
1598 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1599 int __user *, usockaddr_len)
1600 {
1601 struct socket *sock;
1602 struct sockaddr_storage address;
1603 int len, err, fput_needed;
1604
1605 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1606 if (sock != NULL) {
1607 err = security_socket_getpeername(sock);
1608 if (err) {
1609 fput_light(sock->file, fput_needed);
1610 return err;
1611 }
1612
1613 err =
1614 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1615 1);
1616 if (!err)
1617 err = move_addr_to_user(&address, len, usockaddr,
1618 usockaddr_len);
1619 fput_light(sock->file, fput_needed);
1620 }
1621 return err;
1622 }
1623
1624 /*
1625 * Send a datagram to a given address. We move the address into kernel
1626 * space and check the user space data area is readable before invoking
1627 * the protocol.
1628 */
1629
1630 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1631 unsigned int, flags, struct sockaddr __user *, addr,
1632 int, addr_len)
1633 {
1634 struct socket *sock;
1635 struct sockaddr_storage address;
1636 int err;
1637 struct msghdr msg;
1638 struct iovec iov;
1639 int fput_needed;
1640
1641 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1642 if (unlikely(err))
1643 return err;
1644 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1645 if (!sock)
1646 goto out;
1647
1648 msg.msg_name = NULL;
1649 msg.msg_control = NULL;
1650 msg.msg_controllen = 0;
1651 msg.msg_namelen = 0;
1652 if (addr) {
1653 err = move_addr_to_kernel(addr, addr_len, &address);
1654 if (err < 0)
1655 goto out_put;
1656 msg.msg_name = (struct sockaddr *)&address;
1657 msg.msg_namelen = addr_len;
1658 }
1659 if (sock->file->f_flags & O_NONBLOCK)
1660 flags |= MSG_DONTWAIT;
1661 msg.msg_flags = flags;
1662 err = sock_sendmsg(sock, &msg);
1663
1664 out_put:
1665 fput_light(sock->file, fput_needed);
1666 out:
1667 return err;
1668 }
1669
1670 /*
1671 * Send a datagram down a socket.
1672 */
1673
1674 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1675 unsigned int, flags)
1676 {
1677 return sys_sendto(fd, buff, len, flags, NULL, 0);
1678 }
1679
1680 /*
1681 * Receive a frame from the socket and optionally record the address of the
1682 * sender. We verify the buffers are writable and if needed move the
1683 * sender address from kernel to user space.
1684 */
1685
1686 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1687 unsigned int, flags, struct sockaddr __user *, addr,
1688 int __user *, addr_len)
1689 {
1690 struct socket *sock;
1691 struct iovec iov;
1692 struct msghdr msg;
1693 struct sockaddr_storage address;
1694 int err, err2;
1695 int fput_needed;
1696
1697 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1698 if (unlikely(err))
1699 return err;
1700 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1701 if (!sock)
1702 goto out;
1703
1704 msg.msg_control = NULL;
1705 msg.msg_controllen = 0;
1706 /* Save some cycles and don't copy the address if not needed */
1707 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1708 /* We assume all kernel code knows the size of sockaddr_storage */
1709 msg.msg_namelen = 0;
1710 if (sock->file->f_flags & O_NONBLOCK)
1711 flags |= MSG_DONTWAIT;
1712 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1713
1714 if (err >= 0 && addr != NULL) {
1715 err2 = move_addr_to_user(&address,
1716 msg.msg_namelen, addr, addr_len);
1717 if (err2 < 0)
1718 err = err2;
1719 }
1720
1721 fput_light(sock->file, fput_needed);
1722 out:
1723 return err;
1724 }
1725
1726 /*
1727 * Receive a datagram from a socket.
1728 */
1729
1730 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1731 unsigned int, flags)
1732 {
1733 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1734 }
1735
1736 /*
1737 * Set a socket option. Because we don't know the option lengths we have
1738 * to pass the user mode parameter for the protocols to sort out.
1739 */
1740
1741 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1742 char __user *, optval, int, optlen)
1743 {
1744 int err, fput_needed;
1745 struct socket *sock;
1746
1747 if (optlen < 0)
1748 return -EINVAL;
1749
1750 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1751 if (sock != NULL) {
1752 err = security_socket_setsockopt(sock, level, optname);
1753 if (err)
1754 goto out_put;
1755
1756 if (level == SOL_SOCKET)
1757 err =
1758 sock_setsockopt(sock, level, optname, optval,
1759 optlen);
1760 else
1761 err =
1762 sock->ops->setsockopt(sock, level, optname, optval,
1763 optlen);
1764 out_put:
1765 fput_light(sock->file, fput_needed);
1766 }
1767 return err;
1768 }
1769
1770 /*
1771 * Get a socket option. Because we don't know the option lengths we have
1772 * to pass a user mode parameter for the protocols to sort out.
1773 */
1774
1775 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1776 char __user *, optval, int __user *, optlen)
1777 {
1778 int err, fput_needed;
1779 struct socket *sock;
1780
1781 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1782 if (sock != NULL) {
1783 err = security_socket_getsockopt(sock, level, optname);
1784 if (err)
1785 goto out_put;
1786
1787 if (level == SOL_SOCKET)
1788 err =
1789 sock_getsockopt(sock, level, optname, optval,
1790 optlen);
1791 else
1792 err =
1793 sock->ops->getsockopt(sock, level, optname, optval,
1794 optlen);
1795 out_put:
1796 fput_light(sock->file, fput_needed);
1797 }
1798 return err;
1799 }
1800
1801 /*
1802 * Shutdown a socket.
1803 */
1804
1805 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1806 {
1807 int err, fput_needed;
1808 struct socket *sock;
1809
1810 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1811 if (sock != NULL) {
1812 err = security_socket_shutdown(sock, how);
1813 if (!err)
1814 err = sock->ops->shutdown(sock, how);
1815 fput_light(sock->file, fput_needed);
1816 }
1817 return err;
1818 }
1819
1820 /* A couple of helpful macros for getting the address of the 32/64 bit
1821 * fields which are the same type (int / unsigned) on our platforms.
1822 */
1823 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1824 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1825 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1826
1827 struct used_address {
1828 struct sockaddr_storage name;
1829 unsigned int name_len;
1830 };
1831
1832 static int copy_msghdr_from_user(struct msghdr *kmsg,
1833 struct user_msghdr __user *umsg,
1834 struct sockaddr __user **save_addr,
1835 struct iovec **iov)
1836 {
1837 struct sockaddr __user *uaddr;
1838 struct iovec __user *uiov;
1839 size_t nr_segs;
1840 ssize_t err;
1841
1842 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1843 __get_user(uaddr, &umsg->msg_name) ||
1844 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1845 __get_user(uiov, &umsg->msg_iov) ||
1846 __get_user(nr_segs, &umsg->msg_iovlen) ||
1847 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1848 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1849 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1850 return -EFAULT;
1851
1852 if (!uaddr)
1853 kmsg->msg_namelen = 0;
1854
1855 if (kmsg->msg_namelen < 0)
1856 return -EINVAL;
1857
1858 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1859 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1860
1861 if (save_addr)
1862 *save_addr = uaddr;
1863
1864 if (uaddr && kmsg->msg_namelen) {
1865 if (!save_addr) {
1866 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1867 kmsg->msg_name);
1868 if (err < 0)
1869 return err;
1870 }
1871 } else {
1872 kmsg->msg_name = NULL;
1873 kmsg->msg_namelen = 0;
1874 }
1875
1876 if (nr_segs > UIO_MAXIOV)
1877 return -EMSGSIZE;
1878
1879 kmsg->msg_iocb = NULL;
1880
1881 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1882 UIO_FASTIOV, iov, &kmsg->msg_iter);
1883 }
1884
1885 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1886 struct msghdr *msg_sys, unsigned int flags,
1887 struct used_address *used_address)
1888 {
1889 struct compat_msghdr __user *msg_compat =
1890 (struct compat_msghdr __user *)msg;
1891 struct sockaddr_storage address;
1892 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1893 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1894 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1895 /* 20 is size of ipv6_pktinfo */
1896 unsigned char *ctl_buf = ctl;
1897 int ctl_len;
1898 ssize_t err;
1899
1900 msg_sys->msg_name = &address;
1901
1902 if (MSG_CMSG_COMPAT & flags)
1903 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1904 else
1905 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1906 if (err < 0)
1907 return err;
1908
1909 err = -ENOBUFS;
1910
1911 if (msg_sys->msg_controllen > INT_MAX)
1912 goto out_freeiov;
1913 ctl_len = msg_sys->msg_controllen;
1914 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1915 err =
1916 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1917 sizeof(ctl));
1918 if (err)
1919 goto out_freeiov;
1920 ctl_buf = msg_sys->msg_control;
1921 ctl_len = msg_sys->msg_controllen;
1922 } else if (ctl_len) {
1923 if (ctl_len > sizeof(ctl)) {
1924 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1925 if (ctl_buf == NULL)
1926 goto out_freeiov;
1927 }
1928 err = -EFAULT;
1929 /*
1930 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1931 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1932 * checking falls down on this.
1933 */
1934 if (copy_from_user(ctl_buf,
1935 (void __user __force *)msg_sys->msg_control,
1936 ctl_len))
1937 goto out_freectl;
1938 msg_sys->msg_control = ctl_buf;
1939 }
1940 msg_sys->msg_flags = flags;
1941
1942 if (sock->file->f_flags & O_NONBLOCK)
1943 msg_sys->msg_flags |= MSG_DONTWAIT;
1944 /*
1945 * If this is sendmmsg() and current destination address is same as
1946 * previously succeeded address, omit asking LSM's decision.
1947 * used_address->name_len is initialized to UINT_MAX so that the first
1948 * destination address never matches.
1949 */
1950 if (used_address && msg_sys->msg_name &&
1951 used_address->name_len == msg_sys->msg_namelen &&
1952 !memcmp(&used_address->name, msg_sys->msg_name,
1953 used_address->name_len)) {
1954 err = sock_sendmsg_nosec(sock, msg_sys);
1955 goto out_freectl;
1956 }
1957 err = sock_sendmsg(sock, msg_sys);
1958 /*
1959 * If this is sendmmsg() and sending to current destination address was
1960 * successful, remember it.
1961 */
1962 if (used_address && err >= 0) {
1963 used_address->name_len = msg_sys->msg_namelen;
1964 if (msg_sys->msg_name)
1965 memcpy(&used_address->name, msg_sys->msg_name,
1966 used_address->name_len);
1967 }
1968
1969 out_freectl:
1970 if (ctl_buf != ctl)
1971 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1972 out_freeiov:
1973 kfree(iov);
1974 return err;
1975 }
1976
1977 /*
1978 * BSD sendmsg interface
1979 */
1980
1981 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1982 {
1983 int fput_needed, err;
1984 struct msghdr msg_sys;
1985 struct socket *sock;
1986
1987 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1988 if (!sock)
1989 goto out;
1990
1991 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1992
1993 fput_light(sock->file, fput_needed);
1994 out:
1995 return err;
1996 }
1997
1998 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1999 {
2000 if (flags & MSG_CMSG_COMPAT)
2001 return -EINVAL;
2002 return __sys_sendmsg(fd, msg, flags);
2003 }
2004
2005 /*
2006 * Linux sendmmsg interface
2007 */
2008
2009 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2010 unsigned int flags)
2011 {
2012 int fput_needed, err, datagrams;
2013 struct socket *sock;
2014 struct mmsghdr __user *entry;
2015 struct compat_mmsghdr __user *compat_entry;
2016 struct msghdr msg_sys;
2017 struct used_address used_address;
2018
2019 if (vlen > UIO_MAXIOV)
2020 vlen = UIO_MAXIOV;
2021
2022 datagrams = 0;
2023
2024 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2025 if (!sock)
2026 return err;
2027
2028 used_address.name_len = UINT_MAX;
2029 entry = mmsg;
2030 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2031 err = 0;
2032
2033 while (datagrams < vlen) {
2034 if (MSG_CMSG_COMPAT & flags) {
2035 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2036 &msg_sys, flags, &used_address);
2037 if (err < 0)
2038 break;
2039 err = __put_user(err, &compat_entry->msg_len);
2040 ++compat_entry;
2041 } else {
2042 err = ___sys_sendmsg(sock,
2043 (struct user_msghdr __user *)entry,
2044 &msg_sys, flags, &used_address);
2045 if (err < 0)
2046 break;
2047 err = put_user(err, &entry->msg_len);
2048 ++entry;
2049 }
2050
2051 if (err)
2052 break;
2053 ++datagrams;
2054 }
2055
2056 fput_light(sock->file, fput_needed);
2057
2058 /* We only return an error if no datagrams were able to be sent */
2059 if (datagrams != 0)
2060 return datagrams;
2061
2062 return err;
2063 }
2064
2065 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2066 unsigned int, vlen, unsigned int, flags)
2067 {
2068 if (flags & MSG_CMSG_COMPAT)
2069 return -EINVAL;
2070 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2071 }
2072
2073 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2074 struct msghdr *msg_sys, unsigned int flags, int nosec)
2075 {
2076 struct compat_msghdr __user *msg_compat =
2077 (struct compat_msghdr __user *)msg;
2078 struct iovec iovstack[UIO_FASTIOV];
2079 struct iovec *iov = iovstack;
2080 unsigned long cmsg_ptr;
2081 int total_len, len;
2082 ssize_t err;
2083
2084 /* kernel mode address */
2085 struct sockaddr_storage addr;
2086
2087 /* user mode address pointers */
2088 struct sockaddr __user *uaddr;
2089 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2090
2091 msg_sys->msg_name = &addr;
2092
2093 if (MSG_CMSG_COMPAT & flags)
2094 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2095 else
2096 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2097 if (err < 0)
2098 return err;
2099 total_len = iov_iter_count(&msg_sys->msg_iter);
2100
2101 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2102 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2103
2104 /* We assume all kernel code knows the size of sockaddr_storage */
2105 msg_sys->msg_namelen = 0;
2106
2107 if (sock->file->f_flags & O_NONBLOCK)
2108 flags |= MSG_DONTWAIT;
2109 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2110 total_len, flags);
2111 if (err < 0)
2112 goto out_freeiov;
2113 len = err;
2114
2115 if (uaddr != NULL) {
2116 err = move_addr_to_user(&addr,
2117 msg_sys->msg_namelen, uaddr,
2118 uaddr_len);
2119 if (err < 0)
2120 goto out_freeiov;
2121 }
2122 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2123 COMPAT_FLAGS(msg));
2124 if (err)
2125 goto out_freeiov;
2126 if (MSG_CMSG_COMPAT & flags)
2127 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2128 &msg_compat->msg_controllen);
2129 else
2130 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2131 &msg->msg_controllen);
2132 if (err)
2133 goto out_freeiov;
2134 err = len;
2135
2136 out_freeiov:
2137 kfree(iov);
2138 return err;
2139 }
2140
2141 /*
2142 * BSD recvmsg interface
2143 */
2144
2145 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2146 {
2147 int fput_needed, err;
2148 struct msghdr msg_sys;
2149 struct socket *sock;
2150
2151 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2152 if (!sock)
2153 goto out;
2154
2155 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2156
2157 fput_light(sock->file, fput_needed);
2158 out:
2159 return err;
2160 }
2161
2162 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2163 unsigned int, flags)
2164 {
2165 if (flags & MSG_CMSG_COMPAT)
2166 return -EINVAL;
2167 return __sys_recvmsg(fd, msg, flags);
2168 }
2169
2170 /*
2171 * Linux recvmmsg interface
2172 */
2173
2174 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2175 unsigned int flags, struct timespec *timeout)
2176 {
2177 int fput_needed, err, datagrams;
2178 struct socket *sock;
2179 struct mmsghdr __user *entry;
2180 struct compat_mmsghdr __user *compat_entry;
2181 struct msghdr msg_sys;
2182 struct timespec end_time;
2183
2184 if (timeout &&
2185 poll_select_set_timeout(&end_time, timeout->tv_sec,
2186 timeout->tv_nsec))
2187 return -EINVAL;
2188
2189 datagrams = 0;
2190
2191 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2192 if (!sock)
2193 return err;
2194
2195 err = sock_error(sock->sk);
2196 if (err)
2197 goto out_put;
2198
2199 entry = mmsg;
2200 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2201
2202 while (datagrams < vlen) {
2203 /*
2204 * No need to ask LSM for more than the first datagram.
2205 */
2206 if (MSG_CMSG_COMPAT & flags) {
2207 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2208 &msg_sys, flags & ~MSG_WAITFORONE,
2209 datagrams);
2210 if (err < 0)
2211 break;
2212 err = __put_user(err, &compat_entry->msg_len);
2213 ++compat_entry;
2214 } else {
2215 err = ___sys_recvmsg(sock,
2216 (struct user_msghdr __user *)entry,
2217 &msg_sys, flags & ~MSG_WAITFORONE,
2218 datagrams);
2219 if (err < 0)
2220 break;
2221 err = put_user(err, &entry->msg_len);
2222 ++entry;
2223 }
2224
2225 if (err)
2226 break;
2227 ++datagrams;
2228
2229 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2230 if (flags & MSG_WAITFORONE)
2231 flags |= MSG_DONTWAIT;
2232
2233 if (timeout) {
2234 ktime_get_ts(timeout);
2235 *timeout = timespec_sub(end_time, *timeout);
2236 if (timeout->tv_sec < 0) {
2237 timeout->tv_sec = timeout->tv_nsec = 0;
2238 break;
2239 }
2240
2241 /* Timeout, return less than vlen datagrams */
2242 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2243 break;
2244 }
2245
2246 /* Out of band data, return right away */
2247 if (msg_sys.msg_flags & MSG_OOB)
2248 break;
2249 }
2250
2251 out_put:
2252 fput_light(sock->file, fput_needed);
2253
2254 if (err == 0)
2255 return datagrams;
2256
2257 if (datagrams != 0) {
2258 /*
2259 * We may return less entries than requested (vlen) if the
2260 * sock is non block and there aren't enough datagrams...
2261 */
2262 if (err != -EAGAIN) {
2263 /*
2264 * ... or if recvmsg returns an error after we
2265 * received some datagrams, where we record the
2266 * error to return on the next call or if the
2267 * app asks about it using getsockopt(SO_ERROR).
2268 */
2269 sock->sk->sk_err = -err;
2270 }
2271
2272 return datagrams;
2273 }
2274
2275 return err;
2276 }
2277
2278 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2279 unsigned int, vlen, unsigned int, flags,
2280 struct timespec __user *, timeout)
2281 {
2282 int datagrams;
2283 struct timespec timeout_sys;
2284
2285 if (flags & MSG_CMSG_COMPAT)
2286 return -EINVAL;
2287
2288 if (!timeout)
2289 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2290
2291 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2292 return -EFAULT;
2293
2294 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2295
2296 if (datagrams > 0 &&
2297 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2298 datagrams = -EFAULT;
2299
2300 return datagrams;
2301 }
2302
2303 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2304 /* Argument list sizes for sys_socketcall */
2305 #define AL(x) ((x) * sizeof(unsigned long))
2306 static const unsigned char nargs[21] = {
2307 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2308 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2309 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2310 AL(4), AL(5), AL(4)
2311 };
2312
2313 #undef AL
2314
2315 /*
2316 * System call vectors.
2317 *
2318 * Argument checking cleaned up. Saved 20% in size.
2319 * This function doesn't need to set the kernel lock because
2320 * it is set by the callees.
2321 */
2322
2323 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2324 {
2325 unsigned long a[AUDITSC_ARGS];
2326 unsigned long a0, a1;
2327 int err;
2328 unsigned int len;
2329
2330 if (call < 1 || call > SYS_SENDMMSG)
2331 return -EINVAL;
2332
2333 len = nargs[call];
2334 if (len > sizeof(a))
2335 return -EINVAL;
2336
2337 /* copy_from_user should be SMP safe. */
2338 if (copy_from_user(a, args, len))
2339 return -EFAULT;
2340
2341 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2342 if (err)
2343 return err;
2344
2345 a0 = a[0];
2346 a1 = a[1];
2347
2348 switch (call) {
2349 case SYS_SOCKET:
2350 err = sys_socket(a0, a1, a[2]);
2351 break;
2352 case SYS_BIND:
2353 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2354 break;
2355 case SYS_CONNECT:
2356 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2357 break;
2358 case SYS_LISTEN:
2359 err = sys_listen(a0, a1);
2360 break;
2361 case SYS_ACCEPT:
2362 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2363 (int __user *)a[2], 0);
2364 break;
2365 case SYS_GETSOCKNAME:
2366 err =
2367 sys_getsockname(a0, (struct sockaddr __user *)a1,
2368 (int __user *)a[2]);
2369 break;
2370 case SYS_GETPEERNAME:
2371 err =
2372 sys_getpeername(a0, (struct sockaddr __user *)a1,
2373 (int __user *)a[2]);
2374 break;
2375 case SYS_SOCKETPAIR:
2376 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2377 break;
2378 case SYS_SEND:
2379 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2380 break;
2381 case SYS_SENDTO:
2382 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2383 (struct sockaddr __user *)a[4], a[5]);
2384 break;
2385 case SYS_RECV:
2386 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2387 break;
2388 case SYS_RECVFROM:
2389 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2390 (struct sockaddr __user *)a[4],
2391 (int __user *)a[5]);
2392 break;
2393 case SYS_SHUTDOWN:
2394 err = sys_shutdown(a0, a1);
2395 break;
2396 case SYS_SETSOCKOPT:
2397 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2398 break;
2399 case SYS_GETSOCKOPT:
2400 err =
2401 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2402 (int __user *)a[4]);
2403 break;
2404 case SYS_SENDMSG:
2405 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2406 break;
2407 case SYS_SENDMMSG:
2408 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2409 break;
2410 case SYS_RECVMSG:
2411 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2412 break;
2413 case SYS_RECVMMSG:
2414 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2415 (struct timespec __user *)a[4]);
2416 break;
2417 case SYS_ACCEPT4:
2418 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2419 (int __user *)a[2], a[3]);
2420 break;
2421 default:
2422 err = -EINVAL;
2423 break;
2424 }
2425 return err;
2426 }
2427
2428 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2429
2430 /**
2431 * sock_register - add a socket protocol handler
2432 * @ops: description of protocol
2433 *
2434 * This function is called by a protocol handler that wants to
2435 * advertise its address family, and have it linked into the
2436 * socket interface. The value ops->family corresponds to the
2437 * socket system call protocol family.
2438 */
2439 int sock_register(const struct net_proto_family *ops)
2440 {
2441 int err;
2442
2443 if (ops->family >= NPROTO) {
2444 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2445 return -ENOBUFS;
2446 }
2447
2448 spin_lock(&net_family_lock);
2449 if (rcu_dereference_protected(net_families[ops->family],
2450 lockdep_is_held(&net_family_lock)))
2451 err = -EEXIST;
2452 else {
2453 rcu_assign_pointer(net_families[ops->family], ops);
2454 err = 0;
2455 }
2456 spin_unlock(&net_family_lock);
2457
2458 pr_info("NET: Registered protocol family %d\n", ops->family);
2459 return err;
2460 }
2461 EXPORT_SYMBOL(sock_register);
2462
2463 /**
2464 * sock_unregister - remove a protocol handler
2465 * @family: protocol family to remove
2466 *
2467 * This function is called by a protocol handler that wants to
2468 * remove its address family, and have it unlinked from the
2469 * new socket creation.
2470 *
2471 * If protocol handler is a module, then it can use module reference
2472 * counts to protect against new references. If protocol handler is not
2473 * a module then it needs to provide its own protection in
2474 * the ops->create routine.
2475 */
2476 void sock_unregister(int family)
2477 {
2478 BUG_ON(family < 0 || family >= NPROTO);
2479
2480 spin_lock(&net_family_lock);
2481 RCU_INIT_POINTER(net_families[family], NULL);
2482 spin_unlock(&net_family_lock);
2483
2484 synchronize_rcu();
2485
2486 pr_info("NET: Unregistered protocol family %d\n", family);
2487 }
2488 EXPORT_SYMBOL(sock_unregister);
2489
2490 static int __init sock_init(void)
2491 {
2492 int err;
2493 /*
2494 * Initialize the network sysctl infrastructure.
2495 */
2496 err = net_sysctl_init();
2497 if (err)
2498 goto out;
2499
2500 /*
2501 * Initialize skbuff SLAB cache
2502 */
2503 skb_init();
2504
2505 /*
2506 * Initialize the protocols module.
2507 */
2508
2509 init_inodecache();
2510
2511 err = register_filesystem(&sock_fs_type);
2512 if (err)
2513 goto out_fs;
2514 sock_mnt = kern_mount(&sock_fs_type);
2515 if (IS_ERR(sock_mnt)) {
2516 err = PTR_ERR(sock_mnt);
2517 goto out_mount;
2518 }
2519
2520 /* The real protocol initialization is performed in later initcalls.
2521 */
2522
2523 #ifdef CONFIG_NETFILTER
2524 err = netfilter_init();
2525 if (err)
2526 goto out;
2527 #endif
2528
2529 ptp_classifier_init();
2530
2531 out:
2532 return err;
2533
2534 out_mount:
2535 unregister_filesystem(&sock_fs_type);
2536 out_fs:
2537 goto out;
2538 }
2539
2540 core_initcall(sock_init); /* early initcall */
2541
2542 #ifdef CONFIG_PROC_FS
2543 void socket_seq_show(struct seq_file *seq)
2544 {
2545 int cpu;
2546 int counter = 0;
2547
2548 for_each_possible_cpu(cpu)
2549 counter += per_cpu(sockets_in_use, cpu);
2550
2551 /* It can be negative, by the way. 8) */
2552 if (counter < 0)
2553 counter = 0;
2554
2555 seq_printf(seq, "sockets: used %d\n", counter);
2556 }
2557 #endif /* CONFIG_PROC_FS */
2558
2559 #ifdef CONFIG_COMPAT
2560 static int do_siocgstamp(struct net *net, struct socket *sock,
2561 unsigned int cmd, void __user *up)
2562 {
2563 mm_segment_t old_fs = get_fs();
2564 struct timeval ktv;
2565 int err;
2566
2567 set_fs(KERNEL_DS);
2568 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2569 set_fs(old_fs);
2570 if (!err)
2571 err = compat_put_timeval(&ktv, up);
2572
2573 return err;
2574 }
2575
2576 static int do_siocgstampns(struct net *net, struct socket *sock,
2577 unsigned int cmd, void __user *up)
2578 {
2579 mm_segment_t old_fs = get_fs();
2580 struct timespec kts;
2581 int err;
2582
2583 set_fs(KERNEL_DS);
2584 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2585 set_fs(old_fs);
2586 if (!err)
2587 err = compat_put_timespec(&kts, up);
2588
2589 return err;
2590 }
2591
2592 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2593 {
2594 struct ifreq __user *uifr;
2595 int err;
2596
2597 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2598 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2599 return -EFAULT;
2600
2601 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2602 if (err)
2603 return err;
2604
2605 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2606 return -EFAULT;
2607
2608 return 0;
2609 }
2610
2611 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2612 {
2613 struct compat_ifconf ifc32;
2614 struct ifconf ifc;
2615 struct ifconf __user *uifc;
2616 struct compat_ifreq __user *ifr32;
2617 struct ifreq __user *ifr;
2618 unsigned int i, j;
2619 int err;
2620
2621 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2622 return -EFAULT;
2623
2624 memset(&ifc, 0, sizeof(ifc));
2625 if (ifc32.ifcbuf == 0) {
2626 ifc32.ifc_len = 0;
2627 ifc.ifc_len = 0;
2628 ifc.ifc_req = NULL;
2629 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2630 } else {
2631 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2632 sizeof(struct ifreq);
2633 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2634 ifc.ifc_len = len;
2635 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2636 ifr32 = compat_ptr(ifc32.ifcbuf);
2637 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2638 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2639 return -EFAULT;
2640 ifr++;
2641 ifr32++;
2642 }
2643 }
2644 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2645 return -EFAULT;
2646
2647 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2648 if (err)
2649 return err;
2650
2651 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2652 return -EFAULT;
2653
2654 ifr = ifc.ifc_req;
2655 ifr32 = compat_ptr(ifc32.ifcbuf);
2656 for (i = 0, j = 0;
2657 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2658 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2659 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2660 return -EFAULT;
2661 ifr32++;
2662 ifr++;
2663 }
2664
2665 if (ifc32.ifcbuf == 0) {
2666 /* Translate from 64-bit structure multiple to
2667 * a 32-bit one.
2668 */
2669 i = ifc.ifc_len;
2670 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2671 ifc32.ifc_len = i;
2672 } else {
2673 ifc32.ifc_len = i;
2674 }
2675 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2676 return -EFAULT;
2677
2678 return 0;
2679 }
2680
2681 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2682 {
2683 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2684 bool convert_in = false, convert_out = false;
2685 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2686 struct ethtool_rxnfc __user *rxnfc;
2687 struct ifreq __user *ifr;
2688 u32 rule_cnt = 0, actual_rule_cnt;
2689 u32 ethcmd;
2690 u32 data;
2691 int ret;
2692
2693 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2694 return -EFAULT;
2695
2696 compat_rxnfc = compat_ptr(data);
2697
2698 if (get_user(ethcmd, &compat_rxnfc->cmd))
2699 return -EFAULT;
2700
2701 /* Most ethtool structures are defined without padding.
2702 * Unfortunately struct ethtool_rxnfc is an exception.
2703 */
2704 switch (ethcmd) {
2705 default:
2706 break;
2707 case ETHTOOL_GRXCLSRLALL:
2708 /* Buffer size is variable */
2709 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2710 return -EFAULT;
2711 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2712 return -ENOMEM;
2713 buf_size += rule_cnt * sizeof(u32);
2714 /* fall through */
2715 case ETHTOOL_GRXRINGS:
2716 case ETHTOOL_GRXCLSRLCNT:
2717 case ETHTOOL_GRXCLSRULE:
2718 case ETHTOOL_SRXCLSRLINS:
2719 convert_out = true;
2720 /* fall through */
2721 case ETHTOOL_SRXCLSRLDEL:
2722 buf_size += sizeof(struct ethtool_rxnfc);
2723 convert_in = true;
2724 break;
2725 }
2726
2727 ifr = compat_alloc_user_space(buf_size);
2728 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2729
2730 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2731 return -EFAULT;
2732
2733 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2734 &ifr->ifr_ifru.ifru_data))
2735 return -EFAULT;
2736
2737 if (convert_in) {
2738 /* We expect there to be holes between fs.m_ext and
2739 * fs.ring_cookie and at the end of fs, but nowhere else.
2740 */
2741 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2742 sizeof(compat_rxnfc->fs.m_ext) !=
2743 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2744 sizeof(rxnfc->fs.m_ext));
2745 BUILD_BUG_ON(
2746 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2747 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2748 offsetof(struct ethtool_rxnfc, fs.location) -
2749 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2750
2751 if (copy_in_user(rxnfc, compat_rxnfc,
2752 (void __user *)(&rxnfc->fs.m_ext + 1) -
2753 (void __user *)rxnfc) ||
2754 copy_in_user(&rxnfc->fs.ring_cookie,
2755 &compat_rxnfc->fs.ring_cookie,
2756 (void __user *)(&rxnfc->fs.location + 1) -
2757 (void __user *)&rxnfc->fs.ring_cookie) ||
2758 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2759 sizeof(rxnfc->rule_cnt)))
2760 return -EFAULT;
2761 }
2762
2763 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2764 if (ret)
2765 return ret;
2766
2767 if (convert_out) {
2768 if (copy_in_user(compat_rxnfc, rxnfc,
2769 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2770 (const void __user *)rxnfc) ||
2771 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2772 &rxnfc->fs.ring_cookie,
2773 (const void __user *)(&rxnfc->fs.location + 1) -
2774 (const void __user *)&rxnfc->fs.ring_cookie) ||
2775 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2776 sizeof(rxnfc->rule_cnt)))
2777 return -EFAULT;
2778
2779 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2780 /* As an optimisation, we only copy the actual
2781 * number of rules that the underlying
2782 * function returned. Since Mallory might
2783 * change the rule count in user memory, we
2784 * check that it is less than the rule count
2785 * originally given (as the user buffer size),
2786 * which has been range-checked.
2787 */
2788 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2789 return -EFAULT;
2790 if (actual_rule_cnt < rule_cnt)
2791 rule_cnt = actual_rule_cnt;
2792 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2793 &rxnfc->rule_locs[0],
2794 rule_cnt * sizeof(u32)))
2795 return -EFAULT;
2796 }
2797 }
2798
2799 return 0;
2800 }
2801
2802 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2803 {
2804 void __user *uptr;
2805 compat_uptr_t uptr32;
2806 struct ifreq __user *uifr;
2807
2808 uifr = compat_alloc_user_space(sizeof(*uifr));
2809 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2810 return -EFAULT;
2811
2812 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2813 return -EFAULT;
2814
2815 uptr = compat_ptr(uptr32);
2816
2817 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2818 return -EFAULT;
2819
2820 return dev_ioctl(net, SIOCWANDEV, uifr);
2821 }
2822
2823 static int bond_ioctl(struct net *net, unsigned int cmd,
2824 struct compat_ifreq __user *ifr32)
2825 {
2826 struct ifreq kifr;
2827 mm_segment_t old_fs;
2828 int err;
2829
2830 switch (cmd) {
2831 case SIOCBONDENSLAVE:
2832 case SIOCBONDRELEASE:
2833 case SIOCBONDSETHWADDR:
2834 case SIOCBONDCHANGEACTIVE:
2835 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2836 return -EFAULT;
2837
2838 old_fs = get_fs();
2839 set_fs(KERNEL_DS);
2840 err = dev_ioctl(net, cmd,
2841 (struct ifreq __user __force *) &kifr);
2842 set_fs(old_fs);
2843
2844 return err;
2845 default:
2846 return -ENOIOCTLCMD;
2847 }
2848 }
2849
2850 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2851 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2852 struct compat_ifreq __user *u_ifreq32)
2853 {
2854 struct ifreq __user *u_ifreq64;
2855 char tmp_buf[IFNAMSIZ];
2856 void __user *data64;
2857 u32 data32;
2858
2859 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2860 IFNAMSIZ))
2861 return -EFAULT;
2862 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2863 return -EFAULT;
2864 data64 = compat_ptr(data32);
2865
2866 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2867
2868 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2869 IFNAMSIZ))
2870 return -EFAULT;
2871 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2872 return -EFAULT;
2873
2874 return dev_ioctl(net, cmd, u_ifreq64);
2875 }
2876
2877 static int dev_ifsioc(struct net *net, struct socket *sock,
2878 unsigned int cmd, struct compat_ifreq __user *uifr32)
2879 {
2880 struct ifreq __user *uifr;
2881 int err;
2882
2883 uifr = compat_alloc_user_space(sizeof(*uifr));
2884 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2885 return -EFAULT;
2886
2887 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2888
2889 if (!err) {
2890 switch (cmd) {
2891 case SIOCGIFFLAGS:
2892 case SIOCGIFMETRIC:
2893 case SIOCGIFMTU:
2894 case SIOCGIFMEM:
2895 case SIOCGIFHWADDR:
2896 case SIOCGIFINDEX:
2897 case SIOCGIFADDR:
2898 case SIOCGIFBRDADDR:
2899 case SIOCGIFDSTADDR:
2900 case SIOCGIFNETMASK:
2901 case SIOCGIFPFLAGS:
2902 case SIOCGIFTXQLEN:
2903 case SIOCGMIIPHY:
2904 case SIOCGMIIREG:
2905 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2906 err = -EFAULT;
2907 break;
2908 }
2909 }
2910 return err;
2911 }
2912
2913 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2914 struct compat_ifreq __user *uifr32)
2915 {
2916 struct ifreq ifr;
2917 struct compat_ifmap __user *uifmap32;
2918 mm_segment_t old_fs;
2919 int err;
2920
2921 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2922 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2923 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2924 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2925 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2926 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2927 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2928 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2929 if (err)
2930 return -EFAULT;
2931
2932 old_fs = get_fs();
2933 set_fs(KERNEL_DS);
2934 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2935 set_fs(old_fs);
2936
2937 if (cmd == SIOCGIFMAP && !err) {
2938 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2939 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2940 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2941 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2942 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2943 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2944 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2945 if (err)
2946 err = -EFAULT;
2947 }
2948 return err;
2949 }
2950
2951 struct rtentry32 {
2952 u32 rt_pad1;
2953 struct sockaddr rt_dst; /* target address */
2954 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2955 struct sockaddr rt_genmask; /* target network mask (IP) */
2956 unsigned short rt_flags;
2957 short rt_pad2;
2958 u32 rt_pad3;
2959 unsigned char rt_tos;
2960 unsigned char rt_class;
2961 short rt_pad4;
2962 short rt_metric; /* +1 for binary compatibility! */
2963 /* char * */ u32 rt_dev; /* forcing the device at add */
2964 u32 rt_mtu; /* per route MTU/Window */
2965 u32 rt_window; /* Window clamping */
2966 unsigned short rt_irtt; /* Initial RTT */
2967 };
2968
2969 struct in6_rtmsg32 {
2970 struct in6_addr rtmsg_dst;
2971 struct in6_addr rtmsg_src;
2972 struct in6_addr rtmsg_gateway;
2973 u32 rtmsg_type;
2974 u16 rtmsg_dst_len;
2975 u16 rtmsg_src_len;
2976 u32 rtmsg_metric;
2977 u32 rtmsg_info;
2978 u32 rtmsg_flags;
2979 s32 rtmsg_ifindex;
2980 };
2981
2982 static int routing_ioctl(struct net *net, struct socket *sock,
2983 unsigned int cmd, void __user *argp)
2984 {
2985 int ret;
2986 void *r = NULL;
2987 struct in6_rtmsg r6;
2988 struct rtentry r4;
2989 char devname[16];
2990 u32 rtdev;
2991 mm_segment_t old_fs = get_fs();
2992
2993 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2994 struct in6_rtmsg32 __user *ur6 = argp;
2995 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2996 3 * sizeof(struct in6_addr));
2997 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2998 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2999 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3000 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3001 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3002 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3003 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3004
3005 r = (void *) &r6;
3006 } else { /* ipv4 */
3007 struct rtentry32 __user *ur4 = argp;
3008 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3009 3 * sizeof(struct sockaddr));
3010 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3011 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3012 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3013 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3014 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3015 ret |= get_user(rtdev, &(ur4->rt_dev));
3016 if (rtdev) {
3017 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3018 r4.rt_dev = (char __user __force *)devname;
3019 devname[15] = 0;
3020 } else
3021 r4.rt_dev = NULL;
3022
3023 r = (void *) &r4;
3024 }
3025
3026 if (ret) {
3027 ret = -EFAULT;
3028 goto out;
3029 }
3030
3031 set_fs(KERNEL_DS);
3032 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3033 set_fs(old_fs);
3034
3035 out:
3036 return ret;
3037 }
3038
3039 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3040 * for some operations; this forces use of the newer bridge-utils that
3041 * use compatible ioctls
3042 */
3043 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3044 {
3045 compat_ulong_t tmp;
3046
3047 if (get_user(tmp, argp))
3048 return -EFAULT;
3049 if (tmp == BRCTL_GET_VERSION)
3050 return BRCTL_VERSION + 1;
3051 return -EINVAL;
3052 }
3053
3054 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3055 unsigned int cmd, unsigned long arg)
3056 {
3057 void __user *argp = compat_ptr(arg);
3058 struct sock *sk = sock->sk;
3059 struct net *net = sock_net(sk);
3060
3061 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3062 return compat_ifr_data_ioctl(net, cmd, argp);
3063
3064 switch (cmd) {
3065 case SIOCSIFBR:
3066 case SIOCGIFBR:
3067 return old_bridge_ioctl(argp);
3068 case SIOCGIFNAME:
3069 return dev_ifname32(net, argp);
3070 case SIOCGIFCONF:
3071 return dev_ifconf(net, argp);
3072 case SIOCETHTOOL:
3073 return ethtool_ioctl(net, argp);
3074 case SIOCWANDEV:
3075 return compat_siocwandev(net, argp);
3076 case SIOCGIFMAP:
3077 case SIOCSIFMAP:
3078 return compat_sioc_ifmap(net, cmd, argp);
3079 case SIOCBONDENSLAVE:
3080 case SIOCBONDRELEASE:
3081 case SIOCBONDSETHWADDR:
3082 case SIOCBONDCHANGEACTIVE:
3083 return bond_ioctl(net, cmd, argp);
3084 case SIOCADDRT:
3085 case SIOCDELRT:
3086 return routing_ioctl(net, sock, cmd, argp);
3087 case SIOCGSTAMP:
3088 return do_siocgstamp(net, sock, cmd, argp);
3089 case SIOCGSTAMPNS:
3090 return do_siocgstampns(net, sock, cmd, argp);
3091 case SIOCBONDSLAVEINFOQUERY:
3092 case SIOCBONDINFOQUERY:
3093 case SIOCSHWTSTAMP:
3094 case SIOCGHWTSTAMP:
3095 return compat_ifr_data_ioctl(net, cmd, argp);
3096
3097 case FIOSETOWN:
3098 case SIOCSPGRP:
3099 case FIOGETOWN:
3100 case SIOCGPGRP:
3101 case SIOCBRADDBR:
3102 case SIOCBRDELBR:
3103 case SIOCGIFVLAN:
3104 case SIOCSIFVLAN:
3105 case SIOCADDDLCI:
3106 case SIOCDELDLCI:
3107 return sock_ioctl(file, cmd, arg);
3108
3109 case SIOCGIFFLAGS:
3110 case SIOCSIFFLAGS:
3111 case SIOCGIFMETRIC:
3112 case SIOCSIFMETRIC:
3113 case SIOCGIFMTU:
3114 case SIOCSIFMTU:
3115 case SIOCGIFMEM:
3116 case SIOCSIFMEM:
3117 case SIOCGIFHWADDR:
3118 case SIOCSIFHWADDR:
3119 case SIOCADDMULTI:
3120 case SIOCDELMULTI:
3121 case SIOCGIFINDEX:
3122 case SIOCGIFADDR:
3123 case SIOCSIFADDR:
3124 case SIOCSIFHWBROADCAST:
3125 case SIOCDIFADDR:
3126 case SIOCGIFBRDADDR:
3127 case SIOCSIFBRDADDR:
3128 case SIOCGIFDSTADDR:
3129 case SIOCSIFDSTADDR:
3130 case SIOCGIFNETMASK:
3131 case SIOCSIFNETMASK:
3132 case SIOCSIFPFLAGS:
3133 case SIOCGIFPFLAGS:
3134 case SIOCGIFTXQLEN:
3135 case SIOCSIFTXQLEN:
3136 case SIOCBRADDIF:
3137 case SIOCBRDELIF:
3138 case SIOCSIFNAME:
3139 case SIOCGMIIPHY:
3140 case SIOCGMIIREG:
3141 case SIOCSMIIREG:
3142 return dev_ifsioc(net, sock, cmd, argp);
3143
3144 case SIOCSARP:
3145 case SIOCGARP:
3146 case SIOCDARP:
3147 case SIOCATMARK:
3148 return sock_do_ioctl(net, sock, cmd, arg);
3149 }
3150
3151 return -ENOIOCTLCMD;
3152 }
3153
3154 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3155 unsigned long arg)
3156 {
3157 struct socket *sock = file->private_data;
3158 int ret = -ENOIOCTLCMD;
3159 struct sock *sk;
3160 struct net *net;
3161
3162 sk = sock->sk;
3163 net = sock_net(sk);
3164
3165 if (sock->ops->compat_ioctl)
3166 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3167
3168 if (ret == -ENOIOCTLCMD &&
3169 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3170 ret = compat_wext_handle_ioctl(net, cmd, arg);
3171
3172 if (ret == -ENOIOCTLCMD)
3173 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3174
3175 return ret;
3176 }
3177 #endif
3178
3179 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3180 {
3181 return sock->ops->bind(sock, addr, addrlen);
3182 }
3183 EXPORT_SYMBOL(kernel_bind);
3184
3185 int kernel_listen(struct socket *sock, int backlog)
3186 {
3187 return sock->ops->listen(sock, backlog);
3188 }
3189 EXPORT_SYMBOL(kernel_listen);
3190
3191 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3192 {
3193 struct sock *sk = sock->sk;
3194 int err;
3195
3196 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3197 newsock);
3198 if (err < 0)
3199 goto done;
3200
3201 err = sock->ops->accept(sock, *newsock, flags);
3202 if (err < 0) {
3203 sock_release(*newsock);
3204 *newsock = NULL;
3205 goto done;
3206 }
3207
3208 (*newsock)->ops = sock->ops;
3209 __module_get((*newsock)->ops->owner);
3210
3211 done:
3212 return err;
3213 }
3214 EXPORT_SYMBOL(kernel_accept);
3215
3216 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3217 int flags)
3218 {
3219 return sock->ops->connect(sock, addr, addrlen, flags);
3220 }
3221 EXPORT_SYMBOL(kernel_connect);
3222
3223 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3224 int *addrlen)
3225 {
3226 return sock->ops->getname(sock, addr, addrlen, 0);
3227 }
3228 EXPORT_SYMBOL(kernel_getsockname);
3229
3230 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3231 int *addrlen)
3232 {
3233 return sock->ops->getname(sock, addr, addrlen, 1);
3234 }
3235 EXPORT_SYMBOL(kernel_getpeername);
3236
3237 int kernel_getsockopt(struct socket *sock, int level, int optname,
3238 char *optval, int *optlen)
3239 {
3240 mm_segment_t oldfs = get_fs();
3241 char __user *uoptval;
3242 int __user *uoptlen;
3243 int err;
3244
3245 uoptval = (char __user __force *) optval;
3246 uoptlen = (int __user __force *) optlen;
3247
3248 set_fs(KERNEL_DS);
3249 if (level == SOL_SOCKET)
3250 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3251 else
3252 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3253 uoptlen);
3254 set_fs(oldfs);
3255 return err;
3256 }
3257 EXPORT_SYMBOL(kernel_getsockopt);
3258
3259 int kernel_setsockopt(struct socket *sock, int level, int optname,
3260 char *optval, unsigned int optlen)
3261 {
3262 mm_segment_t oldfs = get_fs();
3263 char __user *uoptval;
3264 int err;
3265
3266 uoptval = (char __user __force *) optval;
3267
3268 set_fs(KERNEL_DS);
3269 if (level == SOL_SOCKET)
3270 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3271 else
3272 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3273 optlen);
3274 set_fs(oldfs);
3275 return err;
3276 }
3277 EXPORT_SYMBOL(kernel_setsockopt);
3278
3279 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3280 size_t size, int flags)
3281 {
3282 if (sock->ops->sendpage)
3283 return sock->ops->sendpage(sock, page, offset, size, flags);
3284
3285 return sock_no_sendpage(sock, page, offset, size, flags);
3286 }
3287 EXPORT_SYMBOL(kernel_sendpage);
3288
3289 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3290 {
3291 mm_segment_t oldfs = get_fs();
3292 int err;
3293
3294 set_fs(KERNEL_DS);
3295 err = sock->ops->ioctl(sock, cmd, arg);
3296 set_fs(oldfs);
3297
3298 return err;
3299 }
3300 EXPORT_SYMBOL(kernel_sock_ioctl);
3301
3302 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3303 {
3304 return sock->ops->shutdown(sock, how);
3305 }
3306 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.09912 seconds and 5 git commands to generate.