8021q: fix mac_len recomputation in vlan_untag()
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108
109 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
110 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
111 unsigned long nr_segs, loff_t pos);
112 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
113 unsigned long nr_segs, loff_t pos);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115
116 static int sock_close(struct inode *inode, struct file *file);
117 static unsigned int sock_poll(struct file *file,
118 struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 struct pipe_inode_info *pipe, size_t len,
129 unsigned int flags);
130
131 /*
132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133 * in the operation structures but are done directly via the socketcall() multiplexor.
134 */
135
136 static const struct file_operations socket_file_ops = {
137 .owner = THIS_MODULE,
138 .llseek = no_llseek,
139 .aio_read = sock_aio_read,
140 .aio_write = sock_aio_write,
141 .poll = sock_poll,
142 .unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 .compat_ioctl = compat_sock_ioctl,
145 #endif
146 .mmap = sock_mmap,
147 .open = sock_no_open, /* special open code to disallow open via /proc */
148 .release = sock_close,
149 .fasync = sock_fasync,
150 .sendpage = sock_sendpage,
151 .splice_write = generic_splice_sendpage,
152 .splice_read = sock_splice_read,
153 };
154
155 /*
156 * The protocol list. Each protocol is registered in here.
157 */
158
159 static DEFINE_SPINLOCK(net_family_lock);
160 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
161
162 /*
163 * Statistics counters of the socket lists
164 */
165
166 static DEFINE_PER_CPU(int, sockets_in_use);
167
168 /*
169 * Support routines.
170 * Move socket addresses back and forth across the kernel/user
171 * divide and look after the messy bits.
172 */
173
174 /**
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
179 *
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
183 */
184
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 {
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 return -EINVAL;
189 if (ulen == 0)
190 return 0;
191 if (copy_from_user(kaddr, uaddr, ulen))
192 return -EFAULT;
193 return audit_sockaddr(ulen, kaddr);
194 }
195
196 /**
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
202 *
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
207 * accessible.
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
211 */
212
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 void __user *uaddr, int __user *ulen)
215 {
216 int err;
217 int len;
218
219 err = get_user(len, ulen);
220 if (err)
221 return err;
222 if (len > klen)
223 len = klen;
224 if (len < 0 || len > sizeof(struct sockaddr_storage))
225 return -EINVAL;
226 if (len) {
227 if (audit_sockaddr(klen, kaddr))
228 return -ENOMEM;
229 if (copy_to_user(uaddr, kaddr, len))
230 return -EFAULT;
231 }
232 /*
233 * "fromlen shall refer to the value before truncation.."
234 * 1003.1g
235 */
236 return __put_user(klen, ulen);
237 }
238
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
240
241 static struct inode *sock_alloc_inode(struct super_block *sb)
242 {
243 struct socket_alloc *ei;
244 struct socket_wq *wq;
245
246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 if (!ei)
248 return NULL;
249 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
250 if (!wq) {
251 kmem_cache_free(sock_inode_cachep, ei);
252 return NULL;
253 }
254 init_waitqueue_head(&wq->wait);
255 wq->fasync_list = NULL;
256 RCU_INIT_POINTER(ei->socket.wq, wq);
257
258 ei->socket.state = SS_UNCONNECTED;
259 ei->socket.flags = 0;
260 ei->socket.ops = NULL;
261 ei->socket.sk = NULL;
262 ei->socket.file = NULL;
263
264 return &ei->vfs_inode;
265 }
266
267 static void sock_destroy_inode(struct inode *inode)
268 {
269 struct socket_alloc *ei;
270 struct socket_wq *wq;
271
272 ei = container_of(inode, struct socket_alloc, vfs_inode);
273 wq = rcu_dereference_protected(ei->socket.wq, 1);
274 kfree_rcu(wq, rcu);
275 kmem_cache_free(sock_inode_cachep, ei);
276 }
277
278 static void init_once(void *foo)
279 {
280 struct socket_alloc *ei = (struct socket_alloc *)foo;
281
282 inode_init_once(&ei->vfs_inode);
283 }
284
285 static int init_inodecache(void)
286 {
287 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
288 sizeof(struct socket_alloc),
289 0,
290 (SLAB_HWCACHE_ALIGN |
291 SLAB_RECLAIM_ACCOUNT |
292 SLAB_MEM_SPREAD),
293 init_once);
294 if (sock_inode_cachep == NULL)
295 return -ENOMEM;
296 return 0;
297 }
298
299 static const struct super_operations sockfs_ops = {
300 .alloc_inode = sock_alloc_inode,
301 .destroy_inode = sock_destroy_inode,
302 .statfs = simple_statfs,
303 };
304
305 /*
306 * sockfs_dname() is called from d_path().
307 */
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 {
310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 dentry->d_inode->i_ino);
312 }
313
314 static const struct dentry_operations sockfs_dentry_operations = {
315 .d_dname = sockfs_dname,
316 };
317
318 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
319 int flags, const char *dev_name, void *data)
320 {
321 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
322 &sockfs_dentry_operations, SOCKFS_MAGIC);
323 }
324
325 static struct vfsmount *sock_mnt __read_mostly;
326
327 static struct file_system_type sock_fs_type = {
328 .name = "sockfs",
329 .mount = sockfs_mount,
330 .kill_sb = kill_anon_super,
331 };
332
333 /*
334 * Obtains the first available file descriptor and sets it up for use.
335 *
336 * These functions create file structures and maps them to fd space
337 * of the current process. On success it returns file descriptor
338 * and file struct implicitly stored in sock->file.
339 * Note that another thread may close file descriptor before we return
340 * from this function. We use the fact that now we do not refer
341 * to socket after mapping. If one day we will need it, this
342 * function will increment ref. count on file by 1.
343 *
344 * In any case returned fd MAY BE not valid!
345 * This race condition is unavoidable
346 * with shared fd spaces, we cannot solve it inside kernel,
347 * but we take care of internal coherence yet.
348 */
349
350 static int sock_alloc_file(struct socket *sock, struct file **f, int flags,
351 const char *dname)
352 {
353 struct qstr name = { .name = "" };
354 struct path path;
355 struct file *file;
356 int fd;
357
358 fd = get_unused_fd_flags(flags);
359 if (unlikely(fd < 0))
360 return fd;
361
362 if (dname) {
363 name.name = dname;
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
368 }
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry)) {
371 put_unused_fd(fd);
372 return -ENOMEM;
373 }
374 path.mnt = mntget(sock_mnt);
375
376 d_instantiate(path.dentry, SOCK_INODE(sock));
377 SOCK_INODE(sock)->i_fop = &socket_file_ops;
378
379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 &socket_file_ops);
381 if (unlikely(!file)) {
382 /* drop dentry, keep inode */
383 ihold(path.dentry->d_inode);
384 path_put(&path);
385 put_unused_fd(fd);
386 return -ENFILE;
387 }
388
389 sock->file = file;
390 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
391 file->f_pos = 0;
392 file->private_data = sock;
393
394 *f = file;
395 return fd;
396 }
397
398 int sock_map_fd(struct socket *sock, int flags)
399 {
400 struct file *newfile;
401 int fd = sock_alloc_file(sock, &newfile, flags, NULL);
402
403 if (likely(fd >= 0))
404 fd_install(fd, newfile);
405
406 return fd;
407 }
408 EXPORT_SYMBOL(sock_map_fd);
409
410 struct socket *sock_from_file(struct file *file, int *err)
411 {
412 if (file->f_op == &socket_file_ops)
413 return file->private_data; /* set in sock_map_fd */
414
415 *err = -ENOTSOCK;
416 return NULL;
417 }
418 EXPORT_SYMBOL(sock_from_file);
419
420 /**
421 * sockfd_lookup - Go from a file number to its socket slot
422 * @fd: file handle
423 * @err: pointer to an error code return
424 *
425 * The file handle passed in is locked and the socket it is bound
426 * too is returned. If an error occurs the err pointer is overwritten
427 * with a negative errno code and NULL is returned. The function checks
428 * for both invalid handles and passing a handle which is not a socket.
429 *
430 * On a success the socket object pointer is returned.
431 */
432
433 struct socket *sockfd_lookup(int fd, int *err)
434 {
435 struct file *file;
436 struct socket *sock;
437
438 file = fget(fd);
439 if (!file) {
440 *err = -EBADF;
441 return NULL;
442 }
443
444 sock = sock_from_file(file, err);
445 if (!sock)
446 fput(file);
447 return sock;
448 }
449 EXPORT_SYMBOL(sockfd_lookup);
450
451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
452 {
453 struct file *file;
454 struct socket *sock;
455
456 *err = -EBADF;
457 file = fget_light(fd, fput_needed);
458 if (file) {
459 sock = sock_from_file(file, err);
460 if (sock)
461 return sock;
462 fput_light(file, *fput_needed);
463 }
464 return NULL;
465 }
466
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 const char *name, void *value, size_t size)
472 {
473 const char *proto_name;
474 size_t proto_size;
475 int error;
476
477 error = -ENODATA;
478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 proto_name = dentry->d_name.name;
480 proto_size = strlen(proto_name);
481
482 if (value) {
483 error = -ERANGE;
484 if (proto_size + 1 > size)
485 goto out;
486
487 strncpy(value, proto_name, proto_size + 1);
488 }
489 error = proto_size + 1;
490 }
491
492 out:
493 return error;
494 }
495
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 size_t size)
498 {
499 ssize_t len;
500 ssize_t used = 0;
501
502 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 if (len < 0)
504 return len;
505 used += len;
506 if (buffer) {
507 if (size < used)
508 return -ERANGE;
509 buffer += len;
510 }
511
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 used += len;
514 if (buffer) {
515 if (size < used)
516 return -ERANGE;
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 buffer += len;
519 }
520
521 return used;
522 }
523
524 static const struct inode_operations sockfs_inode_ops = {
525 .getxattr = sockfs_getxattr,
526 .listxattr = sockfs_listxattr,
527 };
528
529 /**
530 * sock_alloc - allocate a socket
531 *
532 * Allocate a new inode and socket object. The two are bound together
533 * and initialised. The socket is then returned. If we are out of inodes
534 * NULL is returned.
535 */
536
537 static struct socket *sock_alloc(void)
538 {
539 struct inode *inode;
540 struct socket *sock;
541
542 inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 if (!inode)
544 return NULL;
545
546 sock = SOCKET_I(inode);
547
548 kmemcheck_annotate_bitfield(sock, type);
549 inode->i_ino = get_next_ino();
550 inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 inode->i_uid = current_fsuid();
552 inode->i_gid = current_fsgid();
553 inode->i_op = &sockfs_inode_ops;
554
555 this_cpu_add(sockets_in_use, 1);
556 return sock;
557 }
558
559 /*
560 * In theory you can't get an open on this inode, but /proc provides
561 * a back door. Remember to keep it shut otherwise you'll let the
562 * creepy crawlies in.
563 */
564
565 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
566 {
567 return -ENXIO;
568 }
569
570 const struct file_operations bad_sock_fops = {
571 .owner = THIS_MODULE,
572 .open = sock_no_open,
573 .llseek = noop_llseek,
574 };
575
576 /**
577 * sock_release - close a socket
578 * @sock: socket to close
579 *
580 * The socket is released from the protocol stack if it has a release
581 * callback, and the inode is then released if the socket is bound to
582 * an inode not a file.
583 */
584
585 void sock_release(struct socket *sock)
586 {
587 if (sock->ops) {
588 struct module *owner = sock->ops->owner;
589
590 sock->ops->release(sock);
591 sock->ops = NULL;
592 module_put(owner);
593 }
594
595 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
596 printk(KERN_ERR "sock_release: fasync list not empty!\n");
597
598 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
599 return;
600
601 this_cpu_sub(sockets_in_use, 1);
602 if (!sock->file) {
603 iput(SOCK_INODE(sock));
604 return;
605 }
606 sock->file = NULL;
607 }
608 EXPORT_SYMBOL(sock_release);
609
610 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
611 {
612 *tx_flags = 0;
613 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
614 *tx_flags |= SKBTX_HW_TSTAMP;
615 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
616 *tx_flags |= SKBTX_SW_TSTAMP;
617 if (sock_flag(sk, SOCK_WIFI_STATUS))
618 *tx_flags |= SKBTX_WIFI_STATUS;
619 return 0;
620 }
621 EXPORT_SYMBOL(sock_tx_timestamp);
622
623 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
624 struct msghdr *msg, size_t size)
625 {
626 struct sock_iocb *si = kiocb_to_siocb(iocb);
627
628 sock_update_classid(sock->sk);
629
630 si->sock = sock;
631 si->scm = NULL;
632 si->msg = msg;
633 si->size = size;
634
635 return sock->ops->sendmsg(iocb, sock, msg, size);
636 }
637
638 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
639 struct msghdr *msg, size_t size)
640 {
641 int err = security_socket_sendmsg(sock, msg, size);
642
643 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
644 }
645
646 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
647 {
648 struct kiocb iocb;
649 struct sock_iocb siocb;
650 int ret;
651
652 init_sync_kiocb(&iocb, NULL);
653 iocb.private = &siocb;
654 ret = __sock_sendmsg(&iocb, sock, msg, size);
655 if (-EIOCBQUEUED == ret)
656 ret = wait_on_sync_kiocb(&iocb);
657 return ret;
658 }
659 EXPORT_SYMBOL(sock_sendmsg);
660
661 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
662 {
663 struct kiocb iocb;
664 struct sock_iocb siocb;
665 int ret;
666
667 init_sync_kiocb(&iocb, NULL);
668 iocb.private = &siocb;
669 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
670 if (-EIOCBQUEUED == ret)
671 ret = wait_on_sync_kiocb(&iocb);
672 return ret;
673 }
674
675 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
676 struct kvec *vec, size_t num, size_t size)
677 {
678 mm_segment_t oldfs = get_fs();
679 int result;
680
681 set_fs(KERNEL_DS);
682 /*
683 * the following is safe, since for compiler definitions of kvec and
684 * iovec are identical, yielding the same in-core layout and alignment
685 */
686 msg->msg_iov = (struct iovec *)vec;
687 msg->msg_iovlen = num;
688 result = sock_sendmsg(sock, msg, size);
689 set_fs(oldfs);
690 return result;
691 }
692 EXPORT_SYMBOL(kernel_sendmsg);
693
694 static int ktime2ts(ktime_t kt, struct timespec *ts)
695 {
696 if (kt.tv64) {
697 *ts = ktime_to_timespec(kt);
698 return 1;
699 } else {
700 return 0;
701 }
702 }
703
704 /*
705 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
706 */
707 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
708 struct sk_buff *skb)
709 {
710 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
711 struct timespec ts[3];
712 int empty = 1;
713 struct skb_shared_hwtstamps *shhwtstamps =
714 skb_hwtstamps(skb);
715
716 /* Race occurred between timestamp enabling and packet
717 receiving. Fill in the current time for now. */
718 if (need_software_tstamp && skb->tstamp.tv64 == 0)
719 __net_timestamp(skb);
720
721 if (need_software_tstamp) {
722 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
723 struct timeval tv;
724 skb_get_timestamp(skb, &tv);
725 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
726 sizeof(tv), &tv);
727 } else {
728 skb_get_timestampns(skb, &ts[0]);
729 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
730 sizeof(ts[0]), &ts[0]);
731 }
732 }
733
734
735 memset(ts, 0, sizeof(ts));
736 if (skb->tstamp.tv64 &&
737 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
738 skb_get_timestampns(skb, ts + 0);
739 empty = 0;
740 }
741 if (shhwtstamps) {
742 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
743 ktime2ts(shhwtstamps->syststamp, ts + 1))
744 empty = 0;
745 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
746 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
747 empty = 0;
748 }
749 if (!empty)
750 put_cmsg(msg, SOL_SOCKET,
751 SCM_TIMESTAMPING, sizeof(ts), &ts);
752 }
753 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
754
755 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
756 struct sk_buff *skb)
757 {
758 int ack;
759
760 if (!sock_flag(sk, SOCK_WIFI_STATUS))
761 return;
762 if (!skb->wifi_acked_valid)
763 return;
764
765 ack = skb->wifi_acked;
766
767 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
768 }
769 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
770
771 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
772 struct sk_buff *skb)
773 {
774 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
775 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
776 sizeof(__u32), &skb->dropcount);
777 }
778
779 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
780 struct sk_buff *skb)
781 {
782 sock_recv_timestamp(msg, sk, skb);
783 sock_recv_drops(msg, sk, skb);
784 }
785 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
786
787 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
788 struct msghdr *msg, size_t size, int flags)
789 {
790 struct sock_iocb *si = kiocb_to_siocb(iocb);
791
792 sock_update_classid(sock->sk);
793
794 si->sock = sock;
795 si->scm = NULL;
796 si->msg = msg;
797 si->size = size;
798 si->flags = flags;
799
800 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
801 }
802
803 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
804 struct msghdr *msg, size_t size, int flags)
805 {
806 int err = security_socket_recvmsg(sock, msg, size, flags);
807
808 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
809 }
810
811 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
812 size_t size, int flags)
813 {
814 struct kiocb iocb;
815 struct sock_iocb siocb;
816 int ret;
817
818 init_sync_kiocb(&iocb, NULL);
819 iocb.private = &siocb;
820 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
821 if (-EIOCBQUEUED == ret)
822 ret = wait_on_sync_kiocb(&iocb);
823 return ret;
824 }
825 EXPORT_SYMBOL(sock_recvmsg);
826
827 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
828 size_t size, int flags)
829 {
830 struct kiocb iocb;
831 struct sock_iocb siocb;
832 int ret;
833
834 init_sync_kiocb(&iocb, NULL);
835 iocb.private = &siocb;
836 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
837 if (-EIOCBQUEUED == ret)
838 ret = wait_on_sync_kiocb(&iocb);
839 return ret;
840 }
841
842 /**
843 * kernel_recvmsg - Receive a message from a socket (kernel space)
844 * @sock: The socket to receive the message from
845 * @msg: Received message
846 * @vec: Input s/g array for message data
847 * @num: Size of input s/g array
848 * @size: Number of bytes to read
849 * @flags: Message flags (MSG_DONTWAIT, etc...)
850 *
851 * On return the msg structure contains the scatter/gather array passed in the
852 * vec argument. The array is modified so that it consists of the unfilled
853 * portion of the original array.
854 *
855 * The returned value is the total number of bytes received, or an error.
856 */
857 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
858 struct kvec *vec, size_t num, size_t size, int flags)
859 {
860 mm_segment_t oldfs = get_fs();
861 int result;
862
863 set_fs(KERNEL_DS);
864 /*
865 * the following is safe, since for compiler definitions of kvec and
866 * iovec are identical, yielding the same in-core layout and alignment
867 */
868 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
869 result = sock_recvmsg(sock, msg, size, flags);
870 set_fs(oldfs);
871 return result;
872 }
873 EXPORT_SYMBOL(kernel_recvmsg);
874
875 static void sock_aio_dtor(struct kiocb *iocb)
876 {
877 kfree(iocb->private);
878 }
879
880 static ssize_t sock_sendpage(struct file *file, struct page *page,
881 int offset, size_t size, loff_t *ppos, int more)
882 {
883 struct socket *sock;
884 int flags;
885
886 sock = file->private_data;
887
888 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
889 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
890 flags |= more;
891
892 return kernel_sendpage(sock, page, offset, size, flags);
893 }
894
895 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
896 struct pipe_inode_info *pipe, size_t len,
897 unsigned int flags)
898 {
899 struct socket *sock = file->private_data;
900
901 if (unlikely(!sock->ops->splice_read))
902 return -EINVAL;
903
904 sock_update_classid(sock->sk);
905
906 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
907 }
908
909 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
910 struct sock_iocb *siocb)
911 {
912 if (!is_sync_kiocb(iocb)) {
913 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
914 if (!siocb)
915 return NULL;
916 iocb->ki_dtor = sock_aio_dtor;
917 }
918
919 siocb->kiocb = iocb;
920 iocb->private = siocb;
921 return siocb;
922 }
923
924 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
925 struct file *file, const struct iovec *iov,
926 unsigned long nr_segs)
927 {
928 struct socket *sock = file->private_data;
929 size_t size = 0;
930 int i;
931
932 for (i = 0; i < nr_segs; i++)
933 size += iov[i].iov_len;
934
935 msg->msg_name = NULL;
936 msg->msg_namelen = 0;
937 msg->msg_control = NULL;
938 msg->msg_controllen = 0;
939 msg->msg_iov = (struct iovec *)iov;
940 msg->msg_iovlen = nr_segs;
941 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
942
943 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
944 }
945
946 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
947 unsigned long nr_segs, loff_t pos)
948 {
949 struct sock_iocb siocb, *x;
950
951 if (pos != 0)
952 return -ESPIPE;
953
954 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
955 return 0;
956
957
958 x = alloc_sock_iocb(iocb, &siocb);
959 if (!x)
960 return -ENOMEM;
961 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
962 }
963
964 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
965 struct file *file, const struct iovec *iov,
966 unsigned long nr_segs)
967 {
968 struct socket *sock = file->private_data;
969 size_t size = 0;
970 int i;
971
972 for (i = 0; i < nr_segs; i++)
973 size += iov[i].iov_len;
974
975 msg->msg_name = NULL;
976 msg->msg_namelen = 0;
977 msg->msg_control = NULL;
978 msg->msg_controllen = 0;
979 msg->msg_iov = (struct iovec *)iov;
980 msg->msg_iovlen = nr_segs;
981 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
982 if (sock->type == SOCK_SEQPACKET)
983 msg->msg_flags |= MSG_EOR;
984
985 return __sock_sendmsg(iocb, sock, msg, size);
986 }
987
988 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
989 unsigned long nr_segs, loff_t pos)
990 {
991 struct sock_iocb siocb, *x;
992
993 if (pos != 0)
994 return -ESPIPE;
995
996 x = alloc_sock_iocb(iocb, &siocb);
997 if (!x)
998 return -ENOMEM;
999
1000 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
1001 }
1002
1003 /*
1004 * Atomic setting of ioctl hooks to avoid race
1005 * with module unload.
1006 */
1007
1008 static DEFINE_MUTEX(br_ioctl_mutex);
1009 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1010
1011 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1012 {
1013 mutex_lock(&br_ioctl_mutex);
1014 br_ioctl_hook = hook;
1015 mutex_unlock(&br_ioctl_mutex);
1016 }
1017 EXPORT_SYMBOL(brioctl_set);
1018
1019 static DEFINE_MUTEX(vlan_ioctl_mutex);
1020 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1021
1022 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1023 {
1024 mutex_lock(&vlan_ioctl_mutex);
1025 vlan_ioctl_hook = hook;
1026 mutex_unlock(&vlan_ioctl_mutex);
1027 }
1028 EXPORT_SYMBOL(vlan_ioctl_set);
1029
1030 static DEFINE_MUTEX(dlci_ioctl_mutex);
1031 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1032
1033 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1034 {
1035 mutex_lock(&dlci_ioctl_mutex);
1036 dlci_ioctl_hook = hook;
1037 mutex_unlock(&dlci_ioctl_mutex);
1038 }
1039 EXPORT_SYMBOL(dlci_ioctl_set);
1040
1041 static long sock_do_ioctl(struct net *net, struct socket *sock,
1042 unsigned int cmd, unsigned long arg)
1043 {
1044 int err;
1045 void __user *argp = (void __user *)arg;
1046
1047 err = sock->ops->ioctl(sock, cmd, arg);
1048
1049 /*
1050 * If this ioctl is unknown try to hand it down
1051 * to the NIC driver.
1052 */
1053 if (err == -ENOIOCTLCMD)
1054 err = dev_ioctl(net, cmd, argp);
1055
1056 return err;
1057 }
1058
1059 /*
1060 * With an ioctl, arg may well be a user mode pointer, but we don't know
1061 * what to do with it - that's up to the protocol still.
1062 */
1063
1064 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1065 {
1066 struct socket *sock;
1067 struct sock *sk;
1068 void __user *argp = (void __user *)arg;
1069 int pid, err;
1070 struct net *net;
1071
1072 sock = file->private_data;
1073 sk = sock->sk;
1074 net = sock_net(sk);
1075 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1076 err = dev_ioctl(net, cmd, argp);
1077 } else
1078 #ifdef CONFIG_WEXT_CORE
1079 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1080 err = dev_ioctl(net, cmd, argp);
1081 } else
1082 #endif
1083 switch (cmd) {
1084 case FIOSETOWN:
1085 case SIOCSPGRP:
1086 err = -EFAULT;
1087 if (get_user(pid, (int __user *)argp))
1088 break;
1089 err = f_setown(sock->file, pid, 1);
1090 break;
1091 case FIOGETOWN:
1092 case SIOCGPGRP:
1093 err = put_user(f_getown(sock->file),
1094 (int __user *)argp);
1095 break;
1096 case SIOCGIFBR:
1097 case SIOCSIFBR:
1098 case SIOCBRADDBR:
1099 case SIOCBRDELBR:
1100 err = -ENOPKG;
1101 if (!br_ioctl_hook)
1102 request_module("bridge");
1103
1104 mutex_lock(&br_ioctl_mutex);
1105 if (br_ioctl_hook)
1106 err = br_ioctl_hook(net, cmd, argp);
1107 mutex_unlock(&br_ioctl_mutex);
1108 break;
1109 case SIOCGIFVLAN:
1110 case SIOCSIFVLAN:
1111 err = -ENOPKG;
1112 if (!vlan_ioctl_hook)
1113 request_module("8021q");
1114
1115 mutex_lock(&vlan_ioctl_mutex);
1116 if (vlan_ioctl_hook)
1117 err = vlan_ioctl_hook(net, argp);
1118 mutex_unlock(&vlan_ioctl_mutex);
1119 break;
1120 case SIOCADDDLCI:
1121 case SIOCDELDLCI:
1122 err = -ENOPKG;
1123 if (!dlci_ioctl_hook)
1124 request_module("dlci");
1125
1126 mutex_lock(&dlci_ioctl_mutex);
1127 if (dlci_ioctl_hook)
1128 err = dlci_ioctl_hook(cmd, argp);
1129 mutex_unlock(&dlci_ioctl_mutex);
1130 break;
1131 default:
1132 err = sock_do_ioctl(net, sock, cmd, arg);
1133 break;
1134 }
1135 return err;
1136 }
1137
1138 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1139 {
1140 int err;
1141 struct socket *sock = NULL;
1142
1143 err = security_socket_create(family, type, protocol, 1);
1144 if (err)
1145 goto out;
1146
1147 sock = sock_alloc();
1148 if (!sock) {
1149 err = -ENOMEM;
1150 goto out;
1151 }
1152
1153 sock->type = type;
1154 err = security_socket_post_create(sock, family, type, protocol, 1);
1155 if (err)
1156 goto out_release;
1157
1158 out:
1159 *res = sock;
1160 return err;
1161 out_release:
1162 sock_release(sock);
1163 sock = NULL;
1164 goto out;
1165 }
1166 EXPORT_SYMBOL(sock_create_lite);
1167
1168 /* No kernel lock held - perfect */
1169 static unsigned int sock_poll(struct file *file, poll_table *wait)
1170 {
1171 struct socket *sock;
1172
1173 /*
1174 * We can't return errors to poll, so it's either yes or no.
1175 */
1176 sock = file->private_data;
1177 return sock->ops->poll(file, sock, wait);
1178 }
1179
1180 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1181 {
1182 struct socket *sock = file->private_data;
1183
1184 return sock->ops->mmap(file, sock, vma);
1185 }
1186
1187 static int sock_close(struct inode *inode, struct file *filp)
1188 {
1189 /*
1190 * It was possible the inode is NULL we were
1191 * closing an unfinished socket.
1192 */
1193
1194 if (!inode) {
1195 printk(KERN_DEBUG "sock_close: NULL inode\n");
1196 return 0;
1197 }
1198 sock_release(SOCKET_I(inode));
1199 return 0;
1200 }
1201
1202 /*
1203 * Update the socket async list
1204 *
1205 * Fasync_list locking strategy.
1206 *
1207 * 1. fasync_list is modified only under process context socket lock
1208 * i.e. under semaphore.
1209 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1210 * or under socket lock
1211 */
1212
1213 static int sock_fasync(int fd, struct file *filp, int on)
1214 {
1215 struct socket *sock = filp->private_data;
1216 struct sock *sk = sock->sk;
1217 struct socket_wq *wq;
1218
1219 if (sk == NULL)
1220 return -EINVAL;
1221
1222 lock_sock(sk);
1223 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1224 fasync_helper(fd, filp, on, &wq->fasync_list);
1225
1226 if (!wq->fasync_list)
1227 sock_reset_flag(sk, SOCK_FASYNC);
1228 else
1229 sock_set_flag(sk, SOCK_FASYNC);
1230
1231 release_sock(sk);
1232 return 0;
1233 }
1234
1235 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1236
1237 int sock_wake_async(struct socket *sock, int how, int band)
1238 {
1239 struct socket_wq *wq;
1240
1241 if (!sock)
1242 return -1;
1243 rcu_read_lock();
1244 wq = rcu_dereference(sock->wq);
1245 if (!wq || !wq->fasync_list) {
1246 rcu_read_unlock();
1247 return -1;
1248 }
1249 switch (how) {
1250 case SOCK_WAKE_WAITD:
1251 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1252 break;
1253 goto call_kill;
1254 case SOCK_WAKE_SPACE:
1255 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1256 break;
1257 /* fall through */
1258 case SOCK_WAKE_IO:
1259 call_kill:
1260 kill_fasync(&wq->fasync_list, SIGIO, band);
1261 break;
1262 case SOCK_WAKE_URG:
1263 kill_fasync(&wq->fasync_list, SIGURG, band);
1264 }
1265 rcu_read_unlock();
1266 return 0;
1267 }
1268 EXPORT_SYMBOL(sock_wake_async);
1269
1270 int __sock_create(struct net *net, int family, int type, int protocol,
1271 struct socket **res, int kern)
1272 {
1273 int err;
1274 struct socket *sock;
1275 const struct net_proto_family *pf;
1276
1277 /*
1278 * Check protocol is in range
1279 */
1280 if (family < 0 || family >= NPROTO)
1281 return -EAFNOSUPPORT;
1282 if (type < 0 || type >= SOCK_MAX)
1283 return -EINVAL;
1284
1285 /* Compatibility.
1286
1287 This uglymoron is moved from INET layer to here to avoid
1288 deadlock in module load.
1289 */
1290 if (family == PF_INET && type == SOCK_PACKET) {
1291 static int warned;
1292 if (!warned) {
1293 warned = 1;
1294 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1295 current->comm);
1296 }
1297 family = PF_PACKET;
1298 }
1299
1300 err = security_socket_create(family, type, protocol, kern);
1301 if (err)
1302 return err;
1303
1304 /*
1305 * Allocate the socket and allow the family to set things up. if
1306 * the protocol is 0, the family is instructed to select an appropriate
1307 * default.
1308 */
1309 sock = sock_alloc();
1310 if (!sock) {
1311 net_warn_ratelimited("socket: no more sockets\n");
1312 return -ENFILE; /* Not exactly a match, but its the
1313 closest posix thing */
1314 }
1315
1316 sock->type = type;
1317
1318 #ifdef CONFIG_MODULES
1319 /* Attempt to load a protocol module if the find failed.
1320 *
1321 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1322 * requested real, full-featured networking support upon configuration.
1323 * Otherwise module support will break!
1324 */
1325 if (rcu_access_pointer(net_families[family]) == NULL)
1326 request_module("net-pf-%d", family);
1327 #endif
1328
1329 rcu_read_lock();
1330 pf = rcu_dereference(net_families[family]);
1331 err = -EAFNOSUPPORT;
1332 if (!pf)
1333 goto out_release;
1334
1335 /*
1336 * We will call the ->create function, that possibly is in a loadable
1337 * module, so we have to bump that loadable module refcnt first.
1338 */
1339 if (!try_module_get(pf->owner))
1340 goto out_release;
1341
1342 /* Now protected by module ref count */
1343 rcu_read_unlock();
1344
1345 err = pf->create(net, sock, protocol, kern);
1346 if (err < 0)
1347 goto out_module_put;
1348
1349 /*
1350 * Now to bump the refcnt of the [loadable] module that owns this
1351 * socket at sock_release time we decrement its refcnt.
1352 */
1353 if (!try_module_get(sock->ops->owner))
1354 goto out_module_busy;
1355
1356 /*
1357 * Now that we're done with the ->create function, the [loadable]
1358 * module can have its refcnt decremented
1359 */
1360 module_put(pf->owner);
1361 err = security_socket_post_create(sock, family, type, protocol, kern);
1362 if (err)
1363 goto out_sock_release;
1364 *res = sock;
1365
1366 return 0;
1367
1368 out_module_busy:
1369 err = -EAFNOSUPPORT;
1370 out_module_put:
1371 sock->ops = NULL;
1372 module_put(pf->owner);
1373 out_sock_release:
1374 sock_release(sock);
1375 return err;
1376
1377 out_release:
1378 rcu_read_unlock();
1379 goto out_sock_release;
1380 }
1381 EXPORT_SYMBOL(__sock_create);
1382
1383 int sock_create(int family, int type, int protocol, struct socket **res)
1384 {
1385 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1386 }
1387 EXPORT_SYMBOL(sock_create);
1388
1389 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1390 {
1391 return __sock_create(&init_net, family, type, protocol, res, 1);
1392 }
1393 EXPORT_SYMBOL(sock_create_kern);
1394
1395 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1396 {
1397 int retval;
1398 struct socket *sock;
1399 int flags;
1400
1401 /* Check the SOCK_* constants for consistency. */
1402 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1403 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1404 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1405 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1406
1407 flags = type & ~SOCK_TYPE_MASK;
1408 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1409 return -EINVAL;
1410 type &= SOCK_TYPE_MASK;
1411
1412 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1413 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1414
1415 retval = sock_create(family, type, protocol, &sock);
1416 if (retval < 0)
1417 goto out;
1418
1419 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1420 if (retval < 0)
1421 goto out_release;
1422
1423 out:
1424 /* It may be already another descriptor 8) Not kernel problem. */
1425 return retval;
1426
1427 out_release:
1428 sock_release(sock);
1429 return retval;
1430 }
1431
1432 /*
1433 * Create a pair of connected sockets.
1434 */
1435
1436 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1437 int __user *, usockvec)
1438 {
1439 struct socket *sock1, *sock2;
1440 int fd1, fd2, err;
1441 struct file *newfile1, *newfile2;
1442 int flags;
1443
1444 flags = type & ~SOCK_TYPE_MASK;
1445 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1446 return -EINVAL;
1447 type &= SOCK_TYPE_MASK;
1448
1449 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1450 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1451
1452 /*
1453 * Obtain the first socket and check if the underlying protocol
1454 * supports the socketpair call.
1455 */
1456
1457 err = sock_create(family, type, protocol, &sock1);
1458 if (err < 0)
1459 goto out;
1460
1461 err = sock_create(family, type, protocol, &sock2);
1462 if (err < 0)
1463 goto out_release_1;
1464
1465 err = sock1->ops->socketpair(sock1, sock2);
1466 if (err < 0)
1467 goto out_release_both;
1468
1469 fd1 = sock_alloc_file(sock1, &newfile1, flags, NULL);
1470 if (unlikely(fd1 < 0)) {
1471 err = fd1;
1472 goto out_release_both;
1473 }
1474
1475 fd2 = sock_alloc_file(sock2, &newfile2, flags, NULL);
1476 if (unlikely(fd2 < 0)) {
1477 err = fd2;
1478 fput(newfile1);
1479 put_unused_fd(fd1);
1480 sock_release(sock2);
1481 goto out;
1482 }
1483
1484 audit_fd_pair(fd1, fd2);
1485 fd_install(fd1, newfile1);
1486 fd_install(fd2, newfile2);
1487 /* fd1 and fd2 may be already another descriptors.
1488 * Not kernel problem.
1489 */
1490
1491 err = put_user(fd1, &usockvec[0]);
1492 if (!err)
1493 err = put_user(fd2, &usockvec[1]);
1494 if (!err)
1495 return 0;
1496
1497 sys_close(fd2);
1498 sys_close(fd1);
1499 return err;
1500
1501 out_release_both:
1502 sock_release(sock2);
1503 out_release_1:
1504 sock_release(sock1);
1505 out:
1506 return err;
1507 }
1508
1509 /*
1510 * Bind a name to a socket. Nothing much to do here since it's
1511 * the protocol's responsibility to handle the local address.
1512 *
1513 * We move the socket address to kernel space before we call
1514 * the protocol layer (having also checked the address is ok).
1515 */
1516
1517 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1518 {
1519 struct socket *sock;
1520 struct sockaddr_storage address;
1521 int err, fput_needed;
1522
1523 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1524 if (sock) {
1525 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1526 if (err >= 0) {
1527 err = security_socket_bind(sock,
1528 (struct sockaddr *)&address,
1529 addrlen);
1530 if (!err)
1531 err = sock->ops->bind(sock,
1532 (struct sockaddr *)
1533 &address, addrlen);
1534 }
1535 fput_light(sock->file, fput_needed);
1536 }
1537 return err;
1538 }
1539
1540 /*
1541 * Perform a listen. Basically, we allow the protocol to do anything
1542 * necessary for a listen, and if that works, we mark the socket as
1543 * ready for listening.
1544 */
1545
1546 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1547 {
1548 struct socket *sock;
1549 int err, fput_needed;
1550 int somaxconn;
1551
1552 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1553 if (sock) {
1554 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1555 if ((unsigned int)backlog > somaxconn)
1556 backlog = somaxconn;
1557
1558 err = security_socket_listen(sock, backlog);
1559 if (!err)
1560 err = sock->ops->listen(sock, backlog);
1561
1562 fput_light(sock->file, fput_needed);
1563 }
1564 return err;
1565 }
1566
1567 /*
1568 * For accept, we attempt to create a new socket, set up the link
1569 * with the client, wake up the client, then return the new
1570 * connected fd. We collect the address of the connector in kernel
1571 * space and move it to user at the very end. This is unclean because
1572 * we open the socket then return an error.
1573 *
1574 * 1003.1g adds the ability to recvmsg() to query connection pending
1575 * status to recvmsg. We need to add that support in a way thats
1576 * clean when we restucture accept also.
1577 */
1578
1579 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1580 int __user *, upeer_addrlen, int, flags)
1581 {
1582 struct socket *sock, *newsock;
1583 struct file *newfile;
1584 int err, len, newfd, fput_needed;
1585 struct sockaddr_storage address;
1586
1587 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1588 return -EINVAL;
1589
1590 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1591 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1592
1593 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1594 if (!sock)
1595 goto out;
1596
1597 err = -ENFILE;
1598 newsock = sock_alloc();
1599 if (!newsock)
1600 goto out_put;
1601
1602 newsock->type = sock->type;
1603 newsock->ops = sock->ops;
1604
1605 /*
1606 * We don't need try_module_get here, as the listening socket (sock)
1607 * has the protocol module (sock->ops->owner) held.
1608 */
1609 __module_get(newsock->ops->owner);
1610
1611 newfd = sock_alloc_file(newsock, &newfile, flags,
1612 sock->sk->sk_prot_creator->name);
1613 if (unlikely(newfd < 0)) {
1614 err = newfd;
1615 sock_release(newsock);
1616 goto out_put;
1617 }
1618
1619 err = security_socket_accept(sock, newsock);
1620 if (err)
1621 goto out_fd;
1622
1623 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1624 if (err < 0)
1625 goto out_fd;
1626
1627 if (upeer_sockaddr) {
1628 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1629 &len, 2) < 0) {
1630 err = -ECONNABORTED;
1631 goto out_fd;
1632 }
1633 err = move_addr_to_user(&address,
1634 len, upeer_sockaddr, upeer_addrlen);
1635 if (err < 0)
1636 goto out_fd;
1637 }
1638
1639 /* File flags are not inherited via accept() unlike another OSes. */
1640
1641 fd_install(newfd, newfile);
1642 err = newfd;
1643
1644 out_put:
1645 fput_light(sock->file, fput_needed);
1646 out:
1647 return err;
1648 out_fd:
1649 fput(newfile);
1650 put_unused_fd(newfd);
1651 goto out_put;
1652 }
1653
1654 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1655 int __user *, upeer_addrlen)
1656 {
1657 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1658 }
1659
1660 /*
1661 * Attempt to connect to a socket with the server address. The address
1662 * is in user space so we verify it is OK and move it to kernel space.
1663 *
1664 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1665 * break bindings
1666 *
1667 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1668 * other SEQPACKET protocols that take time to connect() as it doesn't
1669 * include the -EINPROGRESS status for such sockets.
1670 */
1671
1672 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1673 int, addrlen)
1674 {
1675 struct socket *sock;
1676 struct sockaddr_storage address;
1677 int err, fput_needed;
1678
1679 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1680 if (!sock)
1681 goto out;
1682 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1683 if (err < 0)
1684 goto out_put;
1685
1686 err =
1687 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1688 if (err)
1689 goto out_put;
1690
1691 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1692 sock->file->f_flags);
1693 out_put:
1694 fput_light(sock->file, fput_needed);
1695 out:
1696 return err;
1697 }
1698
1699 /*
1700 * Get the local address ('name') of a socket object. Move the obtained
1701 * name to user space.
1702 */
1703
1704 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1705 int __user *, usockaddr_len)
1706 {
1707 struct socket *sock;
1708 struct sockaddr_storage address;
1709 int len, err, fput_needed;
1710
1711 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1712 if (!sock)
1713 goto out;
1714
1715 err = security_socket_getsockname(sock);
1716 if (err)
1717 goto out_put;
1718
1719 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1720 if (err)
1721 goto out_put;
1722 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1723
1724 out_put:
1725 fput_light(sock->file, fput_needed);
1726 out:
1727 return err;
1728 }
1729
1730 /*
1731 * Get the remote address ('name') of a socket object. Move the obtained
1732 * name to user space.
1733 */
1734
1735 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1736 int __user *, usockaddr_len)
1737 {
1738 struct socket *sock;
1739 struct sockaddr_storage address;
1740 int len, err, fput_needed;
1741
1742 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1743 if (sock != NULL) {
1744 err = security_socket_getpeername(sock);
1745 if (err) {
1746 fput_light(sock->file, fput_needed);
1747 return err;
1748 }
1749
1750 err =
1751 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1752 1);
1753 if (!err)
1754 err = move_addr_to_user(&address, len, usockaddr,
1755 usockaddr_len);
1756 fput_light(sock->file, fput_needed);
1757 }
1758 return err;
1759 }
1760
1761 /*
1762 * Send a datagram to a given address. We move the address into kernel
1763 * space and check the user space data area is readable before invoking
1764 * the protocol.
1765 */
1766
1767 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1768 unsigned int, flags, struct sockaddr __user *, addr,
1769 int, addr_len)
1770 {
1771 struct socket *sock;
1772 struct sockaddr_storage address;
1773 int err;
1774 struct msghdr msg;
1775 struct iovec iov;
1776 int fput_needed;
1777
1778 if (len > INT_MAX)
1779 len = INT_MAX;
1780 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1781 if (!sock)
1782 goto out;
1783
1784 iov.iov_base = buff;
1785 iov.iov_len = len;
1786 msg.msg_name = NULL;
1787 msg.msg_iov = &iov;
1788 msg.msg_iovlen = 1;
1789 msg.msg_control = NULL;
1790 msg.msg_controllen = 0;
1791 msg.msg_namelen = 0;
1792 if (addr) {
1793 err = move_addr_to_kernel(addr, addr_len, &address);
1794 if (err < 0)
1795 goto out_put;
1796 msg.msg_name = (struct sockaddr *)&address;
1797 msg.msg_namelen = addr_len;
1798 }
1799 if (sock->file->f_flags & O_NONBLOCK)
1800 flags |= MSG_DONTWAIT;
1801 msg.msg_flags = flags;
1802 err = sock_sendmsg(sock, &msg, len);
1803
1804 out_put:
1805 fput_light(sock->file, fput_needed);
1806 out:
1807 return err;
1808 }
1809
1810 /*
1811 * Send a datagram down a socket.
1812 */
1813
1814 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1815 unsigned int, flags)
1816 {
1817 return sys_sendto(fd, buff, len, flags, NULL, 0);
1818 }
1819
1820 /*
1821 * Receive a frame from the socket and optionally record the address of the
1822 * sender. We verify the buffers are writable and if needed move the
1823 * sender address from kernel to user space.
1824 */
1825
1826 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1827 unsigned int, flags, struct sockaddr __user *, addr,
1828 int __user *, addr_len)
1829 {
1830 struct socket *sock;
1831 struct iovec iov;
1832 struct msghdr msg;
1833 struct sockaddr_storage address;
1834 int err, err2;
1835 int fput_needed;
1836
1837 if (size > INT_MAX)
1838 size = INT_MAX;
1839 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1840 if (!sock)
1841 goto out;
1842
1843 msg.msg_control = NULL;
1844 msg.msg_controllen = 0;
1845 msg.msg_iovlen = 1;
1846 msg.msg_iov = &iov;
1847 iov.iov_len = size;
1848 iov.iov_base = ubuf;
1849 msg.msg_name = (struct sockaddr *)&address;
1850 msg.msg_namelen = sizeof(address);
1851 if (sock->file->f_flags & O_NONBLOCK)
1852 flags |= MSG_DONTWAIT;
1853 err = sock_recvmsg(sock, &msg, size, flags);
1854
1855 if (err >= 0 && addr != NULL) {
1856 err2 = move_addr_to_user(&address,
1857 msg.msg_namelen, addr, addr_len);
1858 if (err2 < 0)
1859 err = err2;
1860 }
1861
1862 fput_light(sock->file, fput_needed);
1863 out:
1864 return err;
1865 }
1866
1867 /*
1868 * Receive a datagram from a socket.
1869 */
1870
1871 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1872 unsigned int flags)
1873 {
1874 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1875 }
1876
1877 /*
1878 * Set a socket option. Because we don't know the option lengths we have
1879 * to pass the user mode parameter for the protocols to sort out.
1880 */
1881
1882 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1883 char __user *, optval, int, optlen)
1884 {
1885 int err, fput_needed;
1886 struct socket *sock;
1887
1888 if (optlen < 0)
1889 return -EINVAL;
1890
1891 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1892 if (sock != NULL) {
1893 err = security_socket_setsockopt(sock, level, optname);
1894 if (err)
1895 goto out_put;
1896
1897 if (level == SOL_SOCKET)
1898 err =
1899 sock_setsockopt(sock, level, optname, optval,
1900 optlen);
1901 else
1902 err =
1903 sock->ops->setsockopt(sock, level, optname, optval,
1904 optlen);
1905 out_put:
1906 fput_light(sock->file, fput_needed);
1907 }
1908 return err;
1909 }
1910
1911 /*
1912 * Get a socket option. Because we don't know the option lengths we have
1913 * to pass a user mode parameter for the protocols to sort out.
1914 */
1915
1916 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1917 char __user *, optval, int __user *, optlen)
1918 {
1919 int err, fput_needed;
1920 struct socket *sock;
1921
1922 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1923 if (sock != NULL) {
1924 err = security_socket_getsockopt(sock, level, optname);
1925 if (err)
1926 goto out_put;
1927
1928 if (level == SOL_SOCKET)
1929 err =
1930 sock_getsockopt(sock, level, optname, optval,
1931 optlen);
1932 else
1933 err =
1934 sock->ops->getsockopt(sock, level, optname, optval,
1935 optlen);
1936 out_put:
1937 fput_light(sock->file, fput_needed);
1938 }
1939 return err;
1940 }
1941
1942 /*
1943 * Shutdown a socket.
1944 */
1945
1946 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1947 {
1948 int err, fput_needed;
1949 struct socket *sock;
1950
1951 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1952 if (sock != NULL) {
1953 err = security_socket_shutdown(sock, how);
1954 if (!err)
1955 err = sock->ops->shutdown(sock, how);
1956 fput_light(sock->file, fput_needed);
1957 }
1958 return err;
1959 }
1960
1961 /* A couple of helpful macros for getting the address of the 32/64 bit
1962 * fields which are the same type (int / unsigned) on our platforms.
1963 */
1964 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1965 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1966 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1967
1968 struct used_address {
1969 struct sockaddr_storage name;
1970 unsigned int name_len;
1971 };
1972
1973 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1974 struct msghdr *msg_sys, unsigned int flags,
1975 struct used_address *used_address)
1976 {
1977 struct compat_msghdr __user *msg_compat =
1978 (struct compat_msghdr __user *)msg;
1979 struct sockaddr_storage address;
1980 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1981 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1982 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1983 /* 20 is size of ipv6_pktinfo */
1984 unsigned char *ctl_buf = ctl;
1985 int err, ctl_len, total_len;
1986
1987 err = -EFAULT;
1988 if (MSG_CMSG_COMPAT & flags) {
1989 if (get_compat_msghdr(msg_sys, msg_compat))
1990 return -EFAULT;
1991 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1992 return -EFAULT;
1993
1994 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1995 err = -EMSGSIZE;
1996 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1997 goto out;
1998 err = -ENOMEM;
1999 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2000 GFP_KERNEL);
2001 if (!iov)
2002 goto out;
2003 }
2004
2005 /* This will also move the address data into kernel space */
2006 if (MSG_CMSG_COMPAT & flags) {
2007 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2008 } else
2009 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2010 if (err < 0)
2011 goto out_freeiov;
2012 total_len = err;
2013
2014 err = -ENOBUFS;
2015
2016 if (msg_sys->msg_controllen > INT_MAX)
2017 goto out_freeiov;
2018 ctl_len = msg_sys->msg_controllen;
2019 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2020 err =
2021 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2022 sizeof(ctl));
2023 if (err)
2024 goto out_freeiov;
2025 ctl_buf = msg_sys->msg_control;
2026 ctl_len = msg_sys->msg_controllen;
2027 } else if (ctl_len) {
2028 if (ctl_len > sizeof(ctl)) {
2029 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2030 if (ctl_buf == NULL)
2031 goto out_freeiov;
2032 }
2033 err = -EFAULT;
2034 /*
2035 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2036 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2037 * checking falls down on this.
2038 */
2039 if (copy_from_user(ctl_buf,
2040 (void __user __force *)msg_sys->msg_control,
2041 ctl_len))
2042 goto out_freectl;
2043 msg_sys->msg_control = ctl_buf;
2044 }
2045 msg_sys->msg_flags = flags;
2046
2047 if (sock->file->f_flags & O_NONBLOCK)
2048 msg_sys->msg_flags |= MSG_DONTWAIT;
2049 /*
2050 * If this is sendmmsg() and current destination address is same as
2051 * previously succeeded address, omit asking LSM's decision.
2052 * used_address->name_len is initialized to UINT_MAX so that the first
2053 * destination address never matches.
2054 */
2055 if (used_address && msg_sys->msg_name &&
2056 used_address->name_len == msg_sys->msg_namelen &&
2057 !memcmp(&used_address->name, msg_sys->msg_name,
2058 used_address->name_len)) {
2059 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2060 goto out_freectl;
2061 }
2062 err = sock_sendmsg(sock, msg_sys, total_len);
2063 /*
2064 * If this is sendmmsg() and sending to current destination address was
2065 * successful, remember it.
2066 */
2067 if (used_address && err >= 0) {
2068 used_address->name_len = msg_sys->msg_namelen;
2069 if (msg_sys->msg_name)
2070 memcpy(&used_address->name, msg_sys->msg_name,
2071 used_address->name_len);
2072 }
2073
2074 out_freectl:
2075 if (ctl_buf != ctl)
2076 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2077 out_freeiov:
2078 if (iov != iovstack)
2079 kfree(iov);
2080 out:
2081 return err;
2082 }
2083
2084 /*
2085 * BSD sendmsg interface
2086 */
2087
2088 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2089 {
2090 int fput_needed, err;
2091 struct msghdr msg_sys;
2092 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2093
2094 if (!sock)
2095 goto out;
2096
2097 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2098
2099 fput_light(sock->file, fput_needed);
2100 out:
2101 return err;
2102 }
2103
2104 /*
2105 * Linux sendmmsg interface
2106 */
2107
2108 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2109 unsigned int flags)
2110 {
2111 int fput_needed, err, datagrams;
2112 struct socket *sock;
2113 struct mmsghdr __user *entry;
2114 struct compat_mmsghdr __user *compat_entry;
2115 struct msghdr msg_sys;
2116 struct used_address used_address;
2117
2118 if (vlen > UIO_MAXIOV)
2119 vlen = UIO_MAXIOV;
2120
2121 datagrams = 0;
2122
2123 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2124 if (!sock)
2125 return err;
2126
2127 used_address.name_len = UINT_MAX;
2128 entry = mmsg;
2129 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2130 err = 0;
2131
2132 while (datagrams < vlen) {
2133 if (MSG_CMSG_COMPAT & flags) {
2134 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2135 &msg_sys, flags, &used_address);
2136 if (err < 0)
2137 break;
2138 err = __put_user(err, &compat_entry->msg_len);
2139 ++compat_entry;
2140 } else {
2141 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2142 &msg_sys, flags, &used_address);
2143 if (err < 0)
2144 break;
2145 err = put_user(err, &entry->msg_len);
2146 ++entry;
2147 }
2148
2149 if (err)
2150 break;
2151 ++datagrams;
2152 }
2153
2154 fput_light(sock->file, fput_needed);
2155
2156 /* We only return an error if no datagrams were able to be sent */
2157 if (datagrams != 0)
2158 return datagrams;
2159
2160 return err;
2161 }
2162
2163 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2164 unsigned int, vlen, unsigned int, flags)
2165 {
2166 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2167 }
2168
2169 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2170 struct msghdr *msg_sys, unsigned int flags, int nosec)
2171 {
2172 struct compat_msghdr __user *msg_compat =
2173 (struct compat_msghdr __user *)msg;
2174 struct iovec iovstack[UIO_FASTIOV];
2175 struct iovec *iov = iovstack;
2176 unsigned long cmsg_ptr;
2177 int err, total_len, len;
2178
2179 /* kernel mode address */
2180 struct sockaddr_storage addr;
2181
2182 /* user mode address pointers */
2183 struct sockaddr __user *uaddr;
2184 int __user *uaddr_len;
2185
2186 if (MSG_CMSG_COMPAT & flags) {
2187 if (get_compat_msghdr(msg_sys, msg_compat))
2188 return -EFAULT;
2189 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2190 return -EFAULT;
2191
2192 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2193 err = -EMSGSIZE;
2194 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2195 goto out;
2196 err = -ENOMEM;
2197 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2198 GFP_KERNEL);
2199 if (!iov)
2200 goto out;
2201 }
2202
2203 /*
2204 * Save the user-mode address (verify_iovec will change the
2205 * kernel msghdr to use the kernel address space)
2206 */
2207
2208 uaddr = (__force void __user *)msg_sys->msg_name;
2209 uaddr_len = COMPAT_NAMELEN(msg);
2210 if (MSG_CMSG_COMPAT & flags) {
2211 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2212 } else
2213 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2214 if (err < 0)
2215 goto out_freeiov;
2216 total_len = err;
2217
2218 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2219 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2220
2221 if (sock->file->f_flags & O_NONBLOCK)
2222 flags |= MSG_DONTWAIT;
2223 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2224 total_len, flags);
2225 if (err < 0)
2226 goto out_freeiov;
2227 len = err;
2228
2229 if (uaddr != NULL) {
2230 err = move_addr_to_user(&addr,
2231 msg_sys->msg_namelen, uaddr,
2232 uaddr_len);
2233 if (err < 0)
2234 goto out_freeiov;
2235 }
2236 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2237 COMPAT_FLAGS(msg));
2238 if (err)
2239 goto out_freeiov;
2240 if (MSG_CMSG_COMPAT & flags)
2241 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2242 &msg_compat->msg_controllen);
2243 else
2244 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2245 &msg->msg_controllen);
2246 if (err)
2247 goto out_freeiov;
2248 err = len;
2249
2250 out_freeiov:
2251 if (iov != iovstack)
2252 kfree(iov);
2253 out:
2254 return err;
2255 }
2256
2257 /*
2258 * BSD recvmsg interface
2259 */
2260
2261 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2262 unsigned int, flags)
2263 {
2264 int fput_needed, err;
2265 struct msghdr msg_sys;
2266 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2267
2268 if (!sock)
2269 goto out;
2270
2271 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2272
2273 fput_light(sock->file, fput_needed);
2274 out:
2275 return err;
2276 }
2277
2278 /*
2279 * Linux recvmmsg interface
2280 */
2281
2282 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2283 unsigned int flags, struct timespec *timeout)
2284 {
2285 int fput_needed, err, datagrams;
2286 struct socket *sock;
2287 struct mmsghdr __user *entry;
2288 struct compat_mmsghdr __user *compat_entry;
2289 struct msghdr msg_sys;
2290 struct timespec end_time;
2291
2292 if (timeout &&
2293 poll_select_set_timeout(&end_time, timeout->tv_sec,
2294 timeout->tv_nsec))
2295 return -EINVAL;
2296
2297 datagrams = 0;
2298
2299 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2300 if (!sock)
2301 return err;
2302
2303 err = sock_error(sock->sk);
2304 if (err)
2305 goto out_put;
2306
2307 entry = mmsg;
2308 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2309
2310 while (datagrams < vlen) {
2311 /*
2312 * No need to ask LSM for more than the first datagram.
2313 */
2314 if (MSG_CMSG_COMPAT & flags) {
2315 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2316 &msg_sys, flags & ~MSG_WAITFORONE,
2317 datagrams);
2318 if (err < 0)
2319 break;
2320 err = __put_user(err, &compat_entry->msg_len);
2321 ++compat_entry;
2322 } else {
2323 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2324 &msg_sys, flags & ~MSG_WAITFORONE,
2325 datagrams);
2326 if (err < 0)
2327 break;
2328 err = put_user(err, &entry->msg_len);
2329 ++entry;
2330 }
2331
2332 if (err)
2333 break;
2334 ++datagrams;
2335
2336 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2337 if (flags & MSG_WAITFORONE)
2338 flags |= MSG_DONTWAIT;
2339
2340 if (timeout) {
2341 ktime_get_ts(timeout);
2342 *timeout = timespec_sub(end_time, *timeout);
2343 if (timeout->tv_sec < 0) {
2344 timeout->tv_sec = timeout->tv_nsec = 0;
2345 break;
2346 }
2347
2348 /* Timeout, return less than vlen datagrams */
2349 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2350 break;
2351 }
2352
2353 /* Out of band data, return right away */
2354 if (msg_sys.msg_flags & MSG_OOB)
2355 break;
2356 }
2357
2358 out_put:
2359 fput_light(sock->file, fput_needed);
2360
2361 if (err == 0)
2362 return datagrams;
2363
2364 if (datagrams != 0) {
2365 /*
2366 * We may return less entries than requested (vlen) if the
2367 * sock is non block and there aren't enough datagrams...
2368 */
2369 if (err != -EAGAIN) {
2370 /*
2371 * ... or if recvmsg returns an error after we
2372 * received some datagrams, where we record the
2373 * error to return on the next call or if the
2374 * app asks about it using getsockopt(SO_ERROR).
2375 */
2376 sock->sk->sk_err = -err;
2377 }
2378
2379 return datagrams;
2380 }
2381
2382 return err;
2383 }
2384
2385 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2386 unsigned int, vlen, unsigned int, flags,
2387 struct timespec __user *, timeout)
2388 {
2389 int datagrams;
2390 struct timespec timeout_sys;
2391
2392 if (!timeout)
2393 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2394
2395 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2396 return -EFAULT;
2397
2398 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2399
2400 if (datagrams > 0 &&
2401 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2402 datagrams = -EFAULT;
2403
2404 return datagrams;
2405 }
2406
2407 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2408 /* Argument list sizes for sys_socketcall */
2409 #define AL(x) ((x) * sizeof(unsigned long))
2410 static const unsigned char nargs[21] = {
2411 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2412 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2413 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2414 AL(4), AL(5), AL(4)
2415 };
2416
2417 #undef AL
2418
2419 /*
2420 * System call vectors.
2421 *
2422 * Argument checking cleaned up. Saved 20% in size.
2423 * This function doesn't need to set the kernel lock because
2424 * it is set by the callees.
2425 */
2426
2427 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2428 {
2429 unsigned long a[6];
2430 unsigned long a0, a1;
2431 int err;
2432 unsigned int len;
2433
2434 if (call < 1 || call > SYS_SENDMMSG)
2435 return -EINVAL;
2436
2437 len = nargs[call];
2438 if (len > sizeof(a))
2439 return -EINVAL;
2440
2441 /* copy_from_user should be SMP safe. */
2442 if (copy_from_user(a, args, len))
2443 return -EFAULT;
2444
2445 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2446
2447 a0 = a[0];
2448 a1 = a[1];
2449
2450 switch (call) {
2451 case SYS_SOCKET:
2452 err = sys_socket(a0, a1, a[2]);
2453 break;
2454 case SYS_BIND:
2455 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2456 break;
2457 case SYS_CONNECT:
2458 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2459 break;
2460 case SYS_LISTEN:
2461 err = sys_listen(a0, a1);
2462 break;
2463 case SYS_ACCEPT:
2464 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2465 (int __user *)a[2], 0);
2466 break;
2467 case SYS_GETSOCKNAME:
2468 err =
2469 sys_getsockname(a0, (struct sockaddr __user *)a1,
2470 (int __user *)a[2]);
2471 break;
2472 case SYS_GETPEERNAME:
2473 err =
2474 sys_getpeername(a0, (struct sockaddr __user *)a1,
2475 (int __user *)a[2]);
2476 break;
2477 case SYS_SOCKETPAIR:
2478 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2479 break;
2480 case SYS_SEND:
2481 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2482 break;
2483 case SYS_SENDTO:
2484 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2485 (struct sockaddr __user *)a[4], a[5]);
2486 break;
2487 case SYS_RECV:
2488 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2489 break;
2490 case SYS_RECVFROM:
2491 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2492 (struct sockaddr __user *)a[4],
2493 (int __user *)a[5]);
2494 break;
2495 case SYS_SHUTDOWN:
2496 err = sys_shutdown(a0, a1);
2497 break;
2498 case SYS_SETSOCKOPT:
2499 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2500 break;
2501 case SYS_GETSOCKOPT:
2502 err =
2503 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2504 (int __user *)a[4]);
2505 break;
2506 case SYS_SENDMSG:
2507 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2508 break;
2509 case SYS_SENDMMSG:
2510 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2511 break;
2512 case SYS_RECVMSG:
2513 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2514 break;
2515 case SYS_RECVMMSG:
2516 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2517 (struct timespec __user *)a[4]);
2518 break;
2519 case SYS_ACCEPT4:
2520 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2521 (int __user *)a[2], a[3]);
2522 break;
2523 default:
2524 err = -EINVAL;
2525 break;
2526 }
2527 return err;
2528 }
2529
2530 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2531
2532 /**
2533 * sock_register - add a socket protocol handler
2534 * @ops: description of protocol
2535 *
2536 * This function is called by a protocol handler that wants to
2537 * advertise its address family, and have it linked into the
2538 * socket interface. The value ops->family coresponds to the
2539 * socket system call protocol family.
2540 */
2541 int sock_register(const struct net_proto_family *ops)
2542 {
2543 int err;
2544
2545 if (ops->family >= NPROTO) {
2546 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2547 NPROTO);
2548 return -ENOBUFS;
2549 }
2550
2551 spin_lock(&net_family_lock);
2552 if (rcu_dereference_protected(net_families[ops->family],
2553 lockdep_is_held(&net_family_lock)))
2554 err = -EEXIST;
2555 else {
2556 rcu_assign_pointer(net_families[ops->family], ops);
2557 err = 0;
2558 }
2559 spin_unlock(&net_family_lock);
2560
2561 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2562 return err;
2563 }
2564 EXPORT_SYMBOL(sock_register);
2565
2566 /**
2567 * sock_unregister - remove a protocol handler
2568 * @family: protocol family to remove
2569 *
2570 * This function is called by a protocol handler that wants to
2571 * remove its address family, and have it unlinked from the
2572 * new socket creation.
2573 *
2574 * If protocol handler is a module, then it can use module reference
2575 * counts to protect against new references. If protocol handler is not
2576 * a module then it needs to provide its own protection in
2577 * the ops->create routine.
2578 */
2579 void sock_unregister(int family)
2580 {
2581 BUG_ON(family < 0 || family >= NPROTO);
2582
2583 spin_lock(&net_family_lock);
2584 RCU_INIT_POINTER(net_families[family], NULL);
2585 spin_unlock(&net_family_lock);
2586
2587 synchronize_rcu();
2588
2589 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2590 }
2591 EXPORT_SYMBOL(sock_unregister);
2592
2593 static int __init sock_init(void)
2594 {
2595 int err;
2596 /*
2597 * Initialize the network sysctl infrastructure.
2598 */
2599 err = net_sysctl_init();
2600 if (err)
2601 goto out;
2602
2603 /*
2604 * Initialize skbuff SLAB cache
2605 */
2606 skb_init();
2607
2608 /*
2609 * Initialize the protocols module.
2610 */
2611
2612 init_inodecache();
2613
2614 err = register_filesystem(&sock_fs_type);
2615 if (err)
2616 goto out_fs;
2617 sock_mnt = kern_mount(&sock_fs_type);
2618 if (IS_ERR(sock_mnt)) {
2619 err = PTR_ERR(sock_mnt);
2620 goto out_mount;
2621 }
2622
2623 /* The real protocol initialization is performed in later initcalls.
2624 */
2625
2626 #ifdef CONFIG_NETFILTER
2627 netfilter_init();
2628 #endif
2629
2630 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2631 skb_timestamping_init();
2632 #endif
2633
2634 out:
2635 return err;
2636
2637 out_mount:
2638 unregister_filesystem(&sock_fs_type);
2639 out_fs:
2640 goto out;
2641 }
2642
2643 core_initcall(sock_init); /* early initcall */
2644
2645 #ifdef CONFIG_PROC_FS
2646 void socket_seq_show(struct seq_file *seq)
2647 {
2648 int cpu;
2649 int counter = 0;
2650
2651 for_each_possible_cpu(cpu)
2652 counter += per_cpu(sockets_in_use, cpu);
2653
2654 /* It can be negative, by the way. 8) */
2655 if (counter < 0)
2656 counter = 0;
2657
2658 seq_printf(seq, "sockets: used %d\n", counter);
2659 }
2660 #endif /* CONFIG_PROC_FS */
2661
2662 #ifdef CONFIG_COMPAT
2663 static int do_siocgstamp(struct net *net, struct socket *sock,
2664 unsigned int cmd, void __user *up)
2665 {
2666 mm_segment_t old_fs = get_fs();
2667 struct timeval ktv;
2668 int err;
2669
2670 set_fs(KERNEL_DS);
2671 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2672 set_fs(old_fs);
2673 if (!err)
2674 err = compat_put_timeval(&ktv, up);
2675
2676 return err;
2677 }
2678
2679 static int do_siocgstampns(struct net *net, struct socket *sock,
2680 unsigned int cmd, void __user *up)
2681 {
2682 mm_segment_t old_fs = get_fs();
2683 struct timespec kts;
2684 int err;
2685
2686 set_fs(KERNEL_DS);
2687 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2688 set_fs(old_fs);
2689 if (!err)
2690 err = compat_put_timespec(&kts, up);
2691
2692 return err;
2693 }
2694
2695 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2696 {
2697 struct ifreq __user *uifr;
2698 int err;
2699
2700 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2701 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2702 return -EFAULT;
2703
2704 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2705 if (err)
2706 return err;
2707
2708 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2709 return -EFAULT;
2710
2711 return 0;
2712 }
2713
2714 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2715 {
2716 struct compat_ifconf ifc32;
2717 struct ifconf ifc;
2718 struct ifconf __user *uifc;
2719 struct compat_ifreq __user *ifr32;
2720 struct ifreq __user *ifr;
2721 unsigned int i, j;
2722 int err;
2723
2724 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2725 return -EFAULT;
2726
2727 memset(&ifc, 0, sizeof(ifc));
2728 if (ifc32.ifcbuf == 0) {
2729 ifc32.ifc_len = 0;
2730 ifc.ifc_len = 0;
2731 ifc.ifc_req = NULL;
2732 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2733 } else {
2734 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2735 sizeof(struct ifreq);
2736 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2737 ifc.ifc_len = len;
2738 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2739 ifr32 = compat_ptr(ifc32.ifcbuf);
2740 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2741 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2742 return -EFAULT;
2743 ifr++;
2744 ifr32++;
2745 }
2746 }
2747 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2748 return -EFAULT;
2749
2750 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2751 if (err)
2752 return err;
2753
2754 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2755 return -EFAULT;
2756
2757 ifr = ifc.ifc_req;
2758 ifr32 = compat_ptr(ifc32.ifcbuf);
2759 for (i = 0, j = 0;
2760 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2761 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2762 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2763 return -EFAULT;
2764 ifr32++;
2765 ifr++;
2766 }
2767
2768 if (ifc32.ifcbuf == 0) {
2769 /* Translate from 64-bit structure multiple to
2770 * a 32-bit one.
2771 */
2772 i = ifc.ifc_len;
2773 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2774 ifc32.ifc_len = i;
2775 } else {
2776 ifc32.ifc_len = i;
2777 }
2778 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2779 return -EFAULT;
2780
2781 return 0;
2782 }
2783
2784 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2785 {
2786 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2787 bool convert_in = false, convert_out = false;
2788 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2789 struct ethtool_rxnfc __user *rxnfc;
2790 struct ifreq __user *ifr;
2791 u32 rule_cnt = 0, actual_rule_cnt;
2792 u32 ethcmd;
2793 u32 data;
2794 int ret;
2795
2796 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2797 return -EFAULT;
2798
2799 compat_rxnfc = compat_ptr(data);
2800
2801 if (get_user(ethcmd, &compat_rxnfc->cmd))
2802 return -EFAULT;
2803
2804 /* Most ethtool structures are defined without padding.
2805 * Unfortunately struct ethtool_rxnfc is an exception.
2806 */
2807 switch (ethcmd) {
2808 default:
2809 break;
2810 case ETHTOOL_GRXCLSRLALL:
2811 /* Buffer size is variable */
2812 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2813 return -EFAULT;
2814 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2815 return -ENOMEM;
2816 buf_size += rule_cnt * sizeof(u32);
2817 /* fall through */
2818 case ETHTOOL_GRXRINGS:
2819 case ETHTOOL_GRXCLSRLCNT:
2820 case ETHTOOL_GRXCLSRULE:
2821 case ETHTOOL_SRXCLSRLINS:
2822 convert_out = true;
2823 /* fall through */
2824 case ETHTOOL_SRXCLSRLDEL:
2825 buf_size += sizeof(struct ethtool_rxnfc);
2826 convert_in = true;
2827 break;
2828 }
2829
2830 ifr = compat_alloc_user_space(buf_size);
2831 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2832
2833 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2834 return -EFAULT;
2835
2836 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2837 &ifr->ifr_ifru.ifru_data))
2838 return -EFAULT;
2839
2840 if (convert_in) {
2841 /* We expect there to be holes between fs.m_ext and
2842 * fs.ring_cookie and at the end of fs, but nowhere else.
2843 */
2844 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2845 sizeof(compat_rxnfc->fs.m_ext) !=
2846 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2847 sizeof(rxnfc->fs.m_ext));
2848 BUILD_BUG_ON(
2849 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2850 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2851 offsetof(struct ethtool_rxnfc, fs.location) -
2852 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2853
2854 if (copy_in_user(rxnfc, compat_rxnfc,
2855 (void *)(&rxnfc->fs.m_ext + 1) -
2856 (void *)rxnfc) ||
2857 copy_in_user(&rxnfc->fs.ring_cookie,
2858 &compat_rxnfc->fs.ring_cookie,
2859 (void *)(&rxnfc->fs.location + 1) -
2860 (void *)&rxnfc->fs.ring_cookie) ||
2861 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2862 sizeof(rxnfc->rule_cnt)))
2863 return -EFAULT;
2864 }
2865
2866 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2867 if (ret)
2868 return ret;
2869
2870 if (convert_out) {
2871 if (copy_in_user(compat_rxnfc, rxnfc,
2872 (const void *)(&rxnfc->fs.m_ext + 1) -
2873 (const void *)rxnfc) ||
2874 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2875 &rxnfc->fs.ring_cookie,
2876 (const void *)(&rxnfc->fs.location + 1) -
2877 (const void *)&rxnfc->fs.ring_cookie) ||
2878 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2879 sizeof(rxnfc->rule_cnt)))
2880 return -EFAULT;
2881
2882 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2883 /* As an optimisation, we only copy the actual
2884 * number of rules that the underlying
2885 * function returned. Since Mallory might
2886 * change the rule count in user memory, we
2887 * check that it is less than the rule count
2888 * originally given (as the user buffer size),
2889 * which has been range-checked.
2890 */
2891 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2892 return -EFAULT;
2893 if (actual_rule_cnt < rule_cnt)
2894 rule_cnt = actual_rule_cnt;
2895 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2896 &rxnfc->rule_locs[0],
2897 rule_cnt * sizeof(u32)))
2898 return -EFAULT;
2899 }
2900 }
2901
2902 return 0;
2903 }
2904
2905 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2906 {
2907 void __user *uptr;
2908 compat_uptr_t uptr32;
2909 struct ifreq __user *uifr;
2910
2911 uifr = compat_alloc_user_space(sizeof(*uifr));
2912 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2913 return -EFAULT;
2914
2915 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2916 return -EFAULT;
2917
2918 uptr = compat_ptr(uptr32);
2919
2920 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2921 return -EFAULT;
2922
2923 return dev_ioctl(net, SIOCWANDEV, uifr);
2924 }
2925
2926 static int bond_ioctl(struct net *net, unsigned int cmd,
2927 struct compat_ifreq __user *ifr32)
2928 {
2929 struct ifreq kifr;
2930 struct ifreq __user *uifr;
2931 mm_segment_t old_fs;
2932 int err;
2933 u32 data;
2934 void __user *datap;
2935
2936 switch (cmd) {
2937 case SIOCBONDENSLAVE:
2938 case SIOCBONDRELEASE:
2939 case SIOCBONDSETHWADDR:
2940 case SIOCBONDCHANGEACTIVE:
2941 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2942 return -EFAULT;
2943
2944 old_fs = get_fs();
2945 set_fs(KERNEL_DS);
2946 err = dev_ioctl(net, cmd,
2947 (struct ifreq __user __force *) &kifr);
2948 set_fs(old_fs);
2949
2950 return err;
2951 case SIOCBONDSLAVEINFOQUERY:
2952 case SIOCBONDINFOQUERY:
2953 uifr = compat_alloc_user_space(sizeof(*uifr));
2954 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2955 return -EFAULT;
2956
2957 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2958 return -EFAULT;
2959
2960 datap = compat_ptr(data);
2961 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2962 return -EFAULT;
2963
2964 return dev_ioctl(net, cmd, uifr);
2965 default:
2966 return -ENOIOCTLCMD;
2967 }
2968 }
2969
2970 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2971 struct compat_ifreq __user *u_ifreq32)
2972 {
2973 struct ifreq __user *u_ifreq64;
2974 char tmp_buf[IFNAMSIZ];
2975 void __user *data64;
2976 u32 data32;
2977
2978 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2979 IFNAMSIZ))
2980 return -EFAULT;
2981 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2982 return -EFAULT;
2983 data64 = compat_ptr(data32);
2984
2985 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2986
2987 /* Don't check these user accesses, just let that get trapped
2988 * in the ioctl handler instead.
2989 */
2990 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2991 IFNAMSIZ))
2992 return -EFAULT;
2993 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2994 return -EFAULT;
2995
2996 return dev_ioctl(net, cmd, u_ifreq64);
2997 }
2998
2999 static int dev_ifsioc(struct net *net, struct socket *sock,
3000 unsigned int cmd, struct compat_ifreq __user *uifr32)
3001 {
3002 struct ifreq __user *uifr;
3003 int err;
3004
3005 uifr = compat_alloc_user_space(sizeof(*uifr));
3006 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3007 return -EFAULT;
3008
3009 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3010
3011 if (!err) {
3012 switch (cmd) {
3013 case SIOCGIFFLAGS:
3014 case SIOCGIFMETRIC:
3015 case SIOCGIFMTU:
3016 case SIOCGIFMEM:
3017 case SIOCGIFHWADDR:
3018 case SIOCGIFINDEX:
3019 case SIOCGIFADDR:
3020 case SIOCGIFBRDADDR:
3021 case SIOCGIFDSTADDR:
3022 case SIOCGIFNETMASK:
3023 case SIOCGIFPFLAGS:
3024 case SIOCGIFTXQLEN:
3025 case SIOCGMIIPHY:
3026 case SIOCGMIIREG:
3027 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3028 err = -EFAULT;
3029 break;
3030 }
3031 }
3032 return err;
3033 }
3034
3035 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3036 struct compat_ifreq __user *uifr32)
3037 {
3038 struct ifreq ifr;
3039 struct compat_ifmap __user *uifmap32;
3040 mm_segment_t old_fs;
3041 int err;
3042
3043 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3044 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3045 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3046 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3047 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3048 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3049 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3050 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3051 if (err)
3052 return -EFAULT;
3053
3054 old_fs = get_fs();
3055 set_fs(KERNEL_DS);
3056 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3057 set_fs(old_fs);
3058
3059 if (cmd == SIOCGIFMAP && !err) {
3060 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3061 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3062 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3063 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3064 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3065 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3066 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3067 if (err)
3068 err = -EFAULT;
3069 }
3070 return err;
3071 }
3072
3073 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3074 {
3075 void __user *uptr;
3076 compat_uptr_t uptr32;
3077 struct ifreq __user *uifr;
3078
3079 uifr = compat_alloc_user_space(sizeof(*uifr));
3080 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3081 return -EFAULT;
3082
3083 if (get_user(uptr32, &uifr32->ifr_data))
3084 return -EFAULT;
3085
3086 uptr = compat_ptr(uptr32);
3087
3088 if (put_user(uptr, &uifr->ifr_data))
3089 return -EFAULT;
3090
3091 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3092 }
3093
3094 struct rtentry32 {
3095 u32 rt_pad1;
3096 struct sockaddr rt_dst; /* target address */
3097 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3098 struct sockaddr rt_genmask; /* target network mask (IP) */
3099 unsigned short rt_flags;
3100 short rt_pad2;
3101 u32 rt_pad3;
3102 unsigned char rt_tos;
3103 unsigned char rt_class;
3104 short rt_pad4;
3105 short rt_metric; /* +1 for binary compatibility! */
3106 /* char * */ u32 rt_dev; /* forcing the device at add */
3107 u32 rt_mtu; /* per route MTU/Window */
3108 u32 rt_window; /* Window clamping */
3109 unsigned short rt_irtt; /* Initial RTT */
3110 };
3111
3112 struct in6_rtmsg32 {
3113 struct in6_addr rtmsg_dst;
3114 struct in6_addr rtmsg_src;
3115 struct in6_addr rtmsg_gateway;
3116 u32 rtmsg_type;
3117 u16 rtmsg_dst_len;
3118 u16 rtmsg_src_len;
3119 u32 rtmsg_metric;
3120 u32 rtmsg_info;
3121 u32 rtmsg_flags;
3122 s32 rtmsg_ifindex;
3123 };
3124
3125 static int routing_ioctl(struct net *net, struct socket *sock,
3126 unsigned int cmd, void __user *argp)
3127 {
3128 int ret;
3129 void *r = NULL;
3130 struct in6_rtmsg r6;
3131 struct rtentry r4;
3132 char devname[16];
3133 u32 rtdev;
3134 mm_segment_t old_fs = get_fs();
3135
3136 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3137 struct in6_rtmsg32 __user *ur6 = argp;
3138 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3139 3 * sizeof(struct in6_addr));
3140 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3141 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3142 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3143 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3144 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3145 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3146 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3147
3148 r = (void *) &r6;
3149 } else { /* ipv4 */
3150 struct rtentry32 __user *ur4 = argp;
3151 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3152 3 * sizeof(struct sockaddr));
3153 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3154 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3155 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3156 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3157 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3158 ret |= __get_user(rtdev, &(ur4->rt_dev));
3159 if (rtdev) {
3160 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3161 r4.rt_dev = (char __user __force *)devname;
3162 devname[15] = 0;
3163 } else
3164 r4.rt_dev = NULL;
3165
3166 r = (void *) &r4;
3167 }
3168
3169 if (ret) {
3170 ret = -EFAULT;
3171 goto out;
3172 }
3173
3174 set_fs(KERNEL_DS);
3175 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3176 set_fs(old_fs);
3177
3178 out:
3179 return ret;
3180 }
3181
3182 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3183 * for some operations; this forces use of the newer bridge-utils that
3184 * use compatible ioctls
3185 */
3186 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3187 {
3188 compat_ulong_t tmp;
3189
3190 if (get_user(tmp, argp))
3191 return -EFAULT;
3192 if (tmp == BRCTL_GET_VERSION)
3193 return BRCTL_VERSION + 1;
3194 return -EINVAL;
3195 }
3196
3197 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3198 unsigned int cmd, unsigned long arg)
3199 {
3200 void __user *argp = compat_ptr(arg);
3201 struct sock *sk = sock->sk;
3202 struct net *net = sock_net(sk);
3203
3204 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3205 return siocdevprivate_ioctl(net, cmd, argp);
3206
3207 switch (cmd) {
3208 case SIOCSIFBR:
3209 case SIOCGIFBR:
3210 return old_bridge_ioctl(argp);
3211 case SIOCGIFNAME:
3212 return dev_ifname32(net, argp);
3213 case SIOCGIFCONF:
3214 return dev_ifconf(net, argp);
3215 case SIOCETHTOOL:
3216 return ethtool_ioctl(net, argp);
3217 case SIOCWANDEV:
3218 return compat_siocwandev(net, argp);
3219 case SIOCGIFMAP:
3220 case SIOCSIFMAP:
3221 return compat_sioc_ifmap(net, cmd, argp);
3222 case SIOCBONDENSLAVE:
3223 case SIOCBONDRELEASE:
3224 case SIOCBONDSETHWADDR:
3225 case SIOCBONDSLAVEINFOQUERY:
3226 case SIOCBONDINFOQUERY:
3227 case SIOCBONDCHANGEACTIVE:
3228 return bond_ioctl(net, cmd, argp);
3229 case SIOCADDRT:
3230 case SIOCDELRT:
3231 return routing_ioctl(net, sock, cmd, argp);
3232 case SIOCGSTAMP:
3233 return do_siocgstamp(net, sock, cmd, argp);
3234 case SIOCGSTAMPNS:
3235 return do_siocgstampns(net, sock, cmd, argp);
3236 case SIOCSHWTSTAMP:
3237 return compat_siocshwtstamp(net, argp);
3238
3239 case FIOSETOWN:
3240 case SIOCSPGRP:
3241 case FIOGETOWN:
3242 case SIOCGPGRP:
3243 case SIOCBRADDBR:
3244 case SIOCBRDELBR:
3245 case SIOCGIFVLAN:
3246 case SIOCSIFVLAN:
3247 case SIOCADDDLCI:
3248 case SIOCDELDLCI:
3249 return sock_ioctl(file, cmd, arg);
3250
3251 case SIOCGIFFLAGS:
3252 case SIOCSIFFLAGS:
3253 case SIOCGIFMETRIC:
3254 case SIOCSIFMETRIC:
3255 case SIOCGIFMTU:
3256 case SIOCSIFMTU:
3257 case SIOCGIFMEM:
3258 case SIOCSIFMEM:
3259 case SIOCGIFHWADDR:
3260 case SIOCSIFHWADDR:
3261 case SIOCADDMULTI:
3262 case SIOCDELMULTI:
3263 case SIOCGIFINDEX:
3264 case SIOCGIFADDR:
3265 case SIOCSIFADDR:
3266 case SIOCSIFHWBROADCAST:
3267 case SIOCDIFADDR:
3268 case SIOCGIFBRDADDR:
3269 case SIOCSIFBRDADDR:
3270 case SIOCGIFDSTADDR:
3271 case SIOCSIFDSTADDR:
3272 case SIOCGIFNETMASK:
3273 case SIOCSIFNETMASK:
3274 case SIOCSIFPFLAGS:
3275 case SIOCGIFPFLAGS:
3276 case SIOCGIFTXQLEN:
3277 case SIOCSIFTXQLEN:
3278 case SIOCBRADDIF:
3279 case SIOCBRDELIF:
3280 case SIOCSIFNAME:
3281 case SIOCGMIIPHY:
3282 case SIOCGMIIREG:
3283 case SIOCSMIIREG:
3284 return dev_ifsioc(net, sock, cmd, argp);
3285
3286 case SIOCSARP:
3287 case SIOCGARP:
3288 case SIOCDARP:
3289 case SIOCATMARK:
3290 return sock_do_ioctl(net, sock, cmd, arg);
3291 }
3292
3293 return -ENOIOCTLCMD;
3294 }
3295
3296 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3297 unsigned long arg)
3298 {
3299 struct socket *sock = file->private_data;
3300 int ret = -ENOIOCTLCMD;
3301 struct sock *sk;
3302 struct net *net;
3303
3304 sk = sock->sk;
3305 net = sock_net(sk);
3306
3307 if (sock->ops->compat_ioctl)
3308 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3309
3310 if (ret == -ENOIOCTLCMD &&
3311 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3312 ret = compat_wext_handle_ioctl(net, cmd, arg);
3313
3314 if (ret == -ENOIOCTLCMD)
3315 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3316
3317 return ret;
3318 }
3319 #endif
3320
3321 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3322 {
3323 return sock->ops->bind(sock, addr, addrlen);
3324 }
3325 EXPORT_SYMBOL(kernel_bind);
3326
3327 int kernel_listen(struct socket *sock, int backlog)
3328 {
3329 return sock->ops->listen(sock, backlog);
3330 }
3331 EXPORT_SYMBOL(kernel_listen);
3332
3333 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3334 {
3335 struct sock *sk = sock->sk;
3336 int err;
3337
3338 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3339 newsock);
3340 if (err < 0)
3341 goto done;
3342
3343 err = sock->ops->accept(sock, *newsock, flags);
3344 if (err < 0) {
3345 sock_release(*newsock);
3346 *newsock = NULL;
3347 goto done;
3348 }
3349
3350 (*newsock)->ops = sock->ops;
3351 __module_get((*newsock)->ops->owner);
3352
3353 done:
3354 return err;
3355 }
3356 EXPORT_SYMBOL(kernel_accept);
3357
3358 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3359 int flags)
3360 {
3361 return sock->ops->connect(sock, addr, addrlen, flags);
3362 }
3363 EXPORT_SYMBOL(kernel_connect);
3364
3365 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3366 int *addrlen)
3367 {
3368 return sock->ops->getname(sock, addr, addrlen, 0);
3369 }
3370 EXPORT_SYMBOL(kernel_getsockname);
3371
3372 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3373 int *addrlen)
3374 {
3375 return sock->ops->getname(sock, addr, addrlen, 1);
3376 }
3377 EXPORT_SYMBOL(kernel_getpeername);
3378
3379 int kernel_getsockopt(struct socket *sock, int level, int optname,
3380 char *optval, int *optlen)
3381 {
3382 mm_segment_t oldfs = get_fs();
3383 char __user *uoptval;
3384 int __user *uoptlen;
3385 int err;
3386
3387 uoptval = (char __user __force *) optval;
3388 uoptlen = (int __user __force *) optlen;
3389
3390 set_fs(KERNEL_DS);
3391 if (level == SOL_SOCKET)
3392 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3393 else
3394 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3395 uoptlen);
3396 set_fs(oldfs);
3397 return err;
3398 }
3399 EXPORT_SYMBOL(kernel_getsockopt);
3400
3401 int kernel_setsockopt(struct socket *sock, int level, int optname,
3402 char *optval, unsigned int optlen)
3403 {
3404 mm_segment_t oldfs = get_fs();
3405 char __user *uoptval;
3406 int err;
3407
3408 uoptval = (char __user __force *) optval;
3409
3410 set_fs(KERNEL_DS);
3411 if (level == SOL_SOCKET)
3412 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3413 else
3414 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3415 optlen);
3416 set_fs(oldfs);
3417 return err;
3418 }
3419 EXPORT_SYMBOL(kernel_setsockopt);
3420
3421 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3422 size_t size, int flags)
3423 {
3424 sock_update_classid(sock->sk);
3425
3426 if (sock->ops->sendpage)
3427 return sock->ops->sendpage(sock, page, offset, size, flags);
3428
3429 return sock_no_sendpage(sock, page, offset, size, flags);
3430 }
3431 EXPORT_SYMBOL(kernel_sendpage);
3432
3433 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3434 {
3435 mm_segment_t oldfs = get_fs();
3436 int err;
3437
3438 set_fs(KERNEL_DS);
3439 err = sock->ops->ioctl(sock, cmd, arg);
3440 set_fs(oldfs);
3441
3442 return err;
3443 }
3444 EXPORT_SYMBOL(kernel_sock_ioctl);
3445
3446 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3447 {
3448 return sock->ops->shutdown(sock, how);
3449 }
3450 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.101599 seconds and 5 git commands to generate.