mwifiex: remove_bss_prio_lock
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read = new_sync_read,
144 .write = new_sync_write,
145 .read_iter = sock_read_iter,
146 .write_iter = sock_write_iter,
147 .poll = sock_poll,
148 .unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 .compat_ioctl = compat_sock_ioctl,
151 #endif
152 .mmap = sock_mmap,
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
158 };
159
160 /*
161 * The protocol list. Each protocol is registered in here.
162 */
163
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166
167 /*
168 * Statistics counters of the socket lists
169 */
170
171 static DEFINE_PER_CPU(int, sockets_in_use);
172
173 /*
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
177 */
178
179 /**
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
184 *
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 */
189
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
199 }
200
201 /**
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
207 *
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
216 */
217
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
220 {
221 int err;
222 int len;
223
224 BUG_ON(klen > sizeof(struct sockaddr_storage));
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0)
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
237 }
238 /*
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
241 */
242 return __put_user(klen, ulen);
243 }
244
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 struct socket_alloc *ei;
250 struct socket_wq *wq;
251
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 if (!wq) {
257 kmem_cache_free(sock_inode_cachep, ei);
258 return NULL;
259 }
260 init_waitqueue_head(&wq->wait);
261 wq->fasync_list = NULL;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
263
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
269
270 return &ei->vfs_inode;
271 }
272
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
277
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
282 }
283
284 static void init_once(void *foo)
285 {
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
287
288 inode_init_once(&ei->vfs_inode);
289 }
290
291 static int init_inodecache(void)
292 {
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
295 0,
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
303 }
304
305 static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
309 };
310
311 /*
312 * sockfs_dname() is called from d_path().
313 */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 dentry->d_inode->i_ino);
318 }
319
320 static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
322 };
323
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 int flags, const char *dev_name, void *data)
326 {
327 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 &sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330
331 static struct vfsmount *sock_mnt __read_mostly;
332
333 static struct file_system_type sock_fs_type = {
334 .name = "sockfs",
335 .mount = sockfs_mount,
336 .kill_sb = kill_anon_super,
337 };
338
339 /*
340 * Obtains the first available file descriptor and sets it up for use.
341 *
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
349 *
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
354 */
355
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 struct qstr name = { .name = "" };
359 struct path path;
360 struct file *file;
361
362 if (dname) {
363 name.name = dname;
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
368 }
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry))
371 return ERR_PTR(-ENOMEM);
372 path.mnt = mntget(sock_mnt);
373
374 d_instantiate(path.dentry, SOCK_INODE(sock));
375
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (unlikely(IS_ERR(file))) {
379 /* drop dentry, keep inode */
380 ihold(path.dentry->d_inode);
381 path_put(&path);
382 return file;
383 }
384
385 sock->file = file;
386 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 file->private_data = sock;
388 return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 struct file *newfile;
395 int fd = get_unused_fd_flags(flags);
396 if (unlikely(fd < 0))
397 return fd;
398
399 newfile = sock_alloc_file(sock, flags, NULL);
400 if (likely(!IS_ERR(newfile))) {
401 fd_install(fd, newfile);
402 return fd;
403 }
404
405 put_unused_fd(fd);
406 return PTR_ERR(newfile);
407 }
408
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 if (file->f_op == &socket_file_ops)
412 return file->private_data; /* set in sock_map_fd */
413
414 *err = -ENOTSOCK;
415 return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418
419 /**
420 * sockfd_lookup - Go from a file number to its socket slot
421 * @fd: file handle
422 * @err: pointer to an error code return
423 *
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
428 *
429 * On a success the socket object pointer is returned.
430 */
431
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 struct file *file;
435 struct socket *sock;
436
437 file = fget(fd);
438 if (!file) {
439 *err = -EBADF;
440 return NULL;
441 }
442
443 sock = sock_from_file(file, err);
444 if (!sock)
445 fput(file);
446 return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 struct fd f = fdget(fd);
453 struct socket *sock;
454
455 *err = -EBADF;
456 if (f.file) {
457 sock = sock_from_file(f.file, err);
458 if (likely(sock)) {
459 *fput_needed = f.flags;
460 return sock;
461 }
462 fdput(f);
463 }
464 return NULL;
465 }
466
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 const char *name, void *value, size_t size)
472 {
473 const char *proto_name;
474 size_t proto_size;
475 int error;
476
477 error = -ENODATA;
478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 proto_name = dentry->d_name.name;
480 proto_size = strlen(proto_name);
481
482 if (value) {
483 error = -ERANGE;
484 if (proto_size + 1 > size)
485 goto out;
486
487 strncpy(value, proto_name, proto_size + 1);
488 }
489 error = proto_size + 1;
490 }
491
492 out:
493 return error;
494 }
495
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 size_t size)
498 {
499 ssize_t len;
500 ssize_t used = 0;
501
502 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 if (len < 0)
504 return len;
505 used += len;
506 if (buffer) {
507 if (size < used)
508 return -ERANGE;
509 buffer += len;
510 }
511
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 used += len;
514 if (buffer) {
515 if (size < used)
516 return -ERANGE;
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 buffer += len;
519 }
520
521 return used;
522 }
523
524 static const struct inode_operations sockfs_inode_ops = {
525 .getxattr = sockfs_getxattr,
526 .listxattr = sockfs_listxattr,
527 };
528
529 /**
530 * sock_alloc - allocate a socket
531 *
532 * Allocate a new inode and socket object. The two are bound together
533 * and initialised. The socket is then returned. If we are out of inodes
534 * NULL is returned.
535 */
536
537 static struct socket *sock_alloc(void)
538 {
539 struct inode *inode;
540 struct socket *sock;
541
542 inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 if (!inode)
544 return NULL;
545
546 sock = SOCKET_I(inode);
547
548 kmemcheck_annotate_bitfield(sock, type);
549 inode->i_ino = get_next_ino();
550 inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 inode->i_uid = current_fsuid();
552 inode->i_gid = current_fsgid();
553 inode->i_op = &sockfs_inode_ops;
554
555 this_cpu_add(sockets_in_use, 1);
556 return sock;
557 }
558
559 /**
560 * sock_release - close a socket
561 * @sock: socket to close
562 *
563 * The socket is released from the protocol stack if it has a release
564 * callback, and the inode is then released if the socket is bound to
565 * an inode not a file.
566 */
567
568 void sock_release(struct socket *sock)
569 {
570 if (sock->ops) {
571 struct module *owner = sock->ops->owner;
572
573 sock->ops->release(sock);
574 sock->ops = NULL;
575 module_put(owner);
576 }
577
578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 pr_err("%s: fasync list not empty!\n", __func__);
580
581 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
582 return;
583
584 this_cpu_sub(sockets_in_use, 1);
585 if (!sock->file) {
586 iput(SOCK_INODE(sock));
587 return;
588 }
589 sock->file = NULL;
590 }
591 EXPORT_SYMBOL(sock_release);
592
593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
594 {
595 u8 flags = *tx_flags;
596
597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
598 flags |= SKBTX_HW_TSTAMP;
599
600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
601 flags |= SKBTX_SW_TSTAMP;
602
603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
604 flags |= SKBTX_SCHED_TSTAMP;
605
606 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
607 flags |= SKBTX_ACK_TSTAMP;
608
609 *tx_flags = flags;
610 }
611 EXPORT_SYMBOL(__sock_tx_timestamp);
612
613 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg,
614 size_t size)
615 {
616 return sock->ops->sendmsg(sock, msg, size);
617 }
618
619 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
620 {
621 int err = security_socket_sendmsg(sock, msg, size);
622
623 return err ?: sock_sendmsg_nosec(sock, msg, size);
624 }
625 EXPORT_SYMBOL(sock_sendmsg);
626
627 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
628 struct kvec *vec, size_t num, size_t size)
629 {
630 mm_segment_t oldfs = get_fs();
631 int result;
632
633 set_fs(KERNEL_DS);
634 /*
635 * the following is safe, since for compiler definitions of kvec and
636 * iovec are identical, yielding the same in-core layout and alignment
637 */
638 iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
639 result = sock_sendmsg(sock, msg, size);
640 set_fs(oldfs);
641 return result;
642 }
643 EXPORT_SYMBOL(kernel_sendmsg);
644
645 /*
646 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
647 */
648 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
649 struct sk_buff *skb)
650 {
651 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
652 struct scm_timestamping tss;
653 int empty = 1;
654 struct skb_shared_hwtstamps *shhwtstamps =
655 skb_hwtstamps(skb);
656
657 /* Race occurred between timestamp enabling and packet
658 receiving. Fill in the current time for now. */
659 if (need_software_tstamp && skb->tstamp.tv64 == 0)
660 __net_timestamp(skb);
661
662 if (need_software_tstamp) {
663 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
664 struct timeval tv;
665 skb_get_timestamp(skb, &tv);
666 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
667 sizeof(tv), &tv);
668 } else {
669 struct timespec ts;
670 skb_get_timestampns(skb, &ts);
671 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
672 sizeof(ts), &ts);
673 }
674 }
675
676 memset(&tss, 0, sizeof(tss));
677 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
678 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
679 empty = 0;
680 if (shhwtstamps &&
681 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
682 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
683 empty = 0;
684 if (!empty)
685 put_cmsg(msg, SOL_SOCKET,
686 SCM_TIMESTAMPING, sizeof(tss), &tss);
687 }
688 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
689
690 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
691 struct sk_buff *skb)
692 {
693 int ack;
694
695 if (!sock_flag(sk, SOCK_WIFI_STATUS))
696 return;
697 if (!skb->wifi_acked_valid)
698 return;
699
700 ack = skb->wifi_acked;
701
702 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
703 }
704 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
705
706 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
707 struct sk_buff *skb)
708 {
709 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
710 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
711 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
712 }
713
714 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
715 struct sk_buff *skb)
716 {
717 sock_recv_timestamp(msg, sk, skb);
718 sock_recv_drops(msg, sk, skb);
719 }
720 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
721
722 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
723 size_t size, int flags)
724 {
725 return sock->ops->recvmsg(sock, msg, size, flags);
726 }
727
728 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
729 int flags)
730 {
731 int err = security_socket_recvmsg(sock, msg, size, flags);
732
733 return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
734 }
735 EXPORT_SYMBOL(sock_recvmsg);
736
737 /**
738 * kernel_recvmsg - Receive a message from a socket (kernel space)
739 * @sock: The socket to receive the message from
740 * @msg: Received message
741 * @vec: Input s/g array for message data
742 * @num: Size of input s/g array
743 * @size: Number of bytes to read
744 * @flags: Message flags (MSG_DONTWAIT, etc...)
745 *
746 * On return the msg structure contains the scatter/gather array passed in the
747 * vec argument. The array is modified so that it consists of the unfilled
748 * portion of the original array.
749 *
750 * The returned value is the total number of bytes received, or an error.
751 */
752 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
753 struct kvec *vec, size_t num, size_t size, int flags)
754 {
755 mm_segment_t oldfs = get_fs();
756 int result;
757
758 set_fs(KERNEL_DS);
759 /*
760 * the following is safe, since for compiler definitions of kvec and
761 * iovec are identical, yielding the same in-core layout and alignment
762 */
763 iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
764 result = sock_recvmsg(sock, msg, size, flags);
765 set_fs(oldfs);
766 return result;
767 }
768 EXPORT_SYMBOL(kernel_recvmsg);
769
770 static ssize_t sock_sendpage(struct file *file, struct page *page,
771 int offset, size_t size, loff_t *ppos, int more)
772 {
773 struct socket *sock;
774 int flags;
775
776 sock = file->private_data;
777
778 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
779 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
780 flags |= more;
781
782 return kernel_sendpage(sock, page, offset, size, flags);
783 }
784
785 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
786 struct pipe_inode_info *pipe, size_t len,
787 unsigned int flags)
788 {
789 struct socket *sock = file->private_data;
790
791 if (unlikely(!sock->ops->splice_read))
792 return -EINVAL;
793
794 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
795 }
796
797 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
798 {
799 struct file *file = iocb->ki_filp;
800 struct socket *sock = file->private_data;
801 struct msghdr msg = {.msg_iter = *to};
802 ssize_t res;
803
804 if (file->f_flags & O_NONBLOCK)
805 msg.msg_flags = MSG_DONTWAIT;
806
807 if (iocb->ki_pos != 0)
808 return -ESPIPE;
809
810 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
811 return 0;
812
813 res = sock_recvmsg(sock, &msg, iocb->ki_nbytes, msg.msg_flags);
814 *to = msg.msg_iter;
815 return res;
816 }
817
818 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
819 {
820 struct file *file = iocb->ki_filp;
821 struct socket *sock = file->private_data;
822 struct msghdr msg = {.msg_iter = *from};
823 ssize_t res;
824
825 if (iocb->ki_pos != 0)
826 return -ESPIPE;
827
828 if (file->f_flags & O_NONBLOCK)
829 msg.msg_flags = MSG_DONTWAIT;
830
831 if (sock->type == SOCK_SEQPACKET)
832 msg.msg_flags |= MSG_EOR;
833
834 res = sock_sendmsg(sock, &msg, iocb->ki_nbytes);
835 *from = msg.msg_iter;
836 return res;
837 }
838
839 /*
840 * Atomic setting of ioctl hooks to avoid race
841 * with module unload.
842 */
843
844 static DEFINE_MUTEX(br_ioctl_mutex);
845 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
846
847 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
848 {
849 mutex_lock(&br_ioctl_mutex);
850 br_ioctl_hook = hook;
851 mutex_unlock(&br_ioctl_mutex);
852 }
853 EXPORT_SYMBOL(brioctl_set);
854
855 static DEFINE_MUTEX(vlan_ioctl_mutex);
856 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
857
858 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
859 {
860 mutex_lock(&vlan_ioctl_mutex);
861 vlan_ioctl_hook = hook;
862 mutex_unlock(&vlan_ioctl_mutex);
863 }
864 EXPORT_SYMBOL(vlan_ioctl_set);
865
866 static DEFINE_MUTEX(dlci_ioctl_mutex);
867 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
868
869 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
870 {
871 mutex_lock(&dlci_ioctl_mutex);
872 dlci_ioctl_hook = hook;
873 mutex_unlock(&dlci_ioctl_mutex);
874 }
875 EXPORT_SYMBOL(dlci_ioctl_set);
876
877 static long sock_do_ioctl(struct net *net, struct socket *sock,
878 unsigned int cmd, unsigned long arg)
879 {
880 int err;
881 void __user *argp = (void __user *)arg;
882
883 err = sock->ops->ioctl(sock, cmd, arg);
884
885 /*
886 * If this ioctl is unknown try to hand it down
887 * to the NIC driver.
888 */
889 if (err == -ENOIOCTLCMD)
890 err = dev_ioctl(net, cmd, argp);
891
892 return err;
893 }
894
895 /*
896 * With an ioctl, arg may well be a user mode pointer, but we don't know
897 * what to do with it - that's up to the protocol still.
898 */
899
900 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
901 {
902 struct socket *sock;
903 struct sock *sk;
904 void __user *argp = (void __user *)arg;
905 int pid, err;
906 struct net *net;
907
908 sock = file->private_data;
909 sk = sock->sk;
910 net = sock_net(sk);
911 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
912 err = dev_ioctl(net, cmd, argp);
913 } else
914 #ifdef CONFIG_WEXT_CORE
915 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
916 err = dev_ioctl(net, cmd, argp);
917 } else
918 #endif
919 switch (cmd) {
920 case FIOSETOWN:
921 case SIOCSPGRP:
922 err = -EFAULT;
923 if (get_user(pid, (int __user *)argp))
924 break;
925 f_setown(sock->file, pid, 1);
926 err = 0;
927 break;
928 case FIOGETOWN:
929 case SIOCGPGRP:
930 err = put_user(f_getown(sock->file),
931 (int __user *)argp);
932 break;
933 case SIOCGIFBR:
934 case SIOCSIFBR:
935 case SIOCBRADDBR:
936 case SIOCBRDELBR:
937 err = -ENOPKG;
938 if (!br_ioctl_hook)
939 request_module("bridge");
940
941 mutex_lock(&br_ioctl_mutex);
942 if (br_ioctl_hook)
943 err = br_ioctl_hook(net, cmd, argp);
944 mutex_unlock(&br_ioctl_mutex);
945 break;
946 case SIOCGIFVLAN:
947 case SIOCSIFVLAN:
948 err = -ENOPKG;
949 if (!vlan_ioctl_hook)
950 request_module("8021q");
951
952 mutex_lock(&vlan_ioctl_mutex);
953 if (vlan_ioctl_hook)
954 err = vlan_ioctl_hook(net, argp);
955 mutex_unlock(&vlan_ioctl_mutex);
956 break;
957 case SIOCADDDLCI:
958 case SIOCDELDLCI:
959 err = -ENOPKG;
960 if (!dlci_ioctl_hook)
961 request_module("dlci");
962
963 mutex_lock(&dlci_ioctl_mutex);
964 if (dlci_ioctl_hook)
965 err = dlci_ioctl_hook(cmd, argp);
966 mutex_unlock(&dlci_ioctl_mutex);
967 break;
968 default:
969 err = sock_do_ioctl(net, sock, cmd, arg);
970 break;
971 }
972 return err;
973 }
974
975 int sock_create_lite(int family, int type, int protocol, struct socket **res)
976 {
977 int err;
978 struct socket *sock = NULL;
979
980 err = security_socket_create(family, type, protocol, 1);
981 if (err)
982 goto out;
983
984 sock = sock_alloc();
985 if (!sock) {
986 err = -ENOMEM;
987 goto out;
988 }
989
990 sock->type = type;
991 err = security_socket_post_create(sock, family, type, protocol, 1);
992 if (err)
993 goto out_release;
994
995 out:
996 *res = sock;
997 return err;
998 out_release:
999 sock_release(sock);
1000 sock = NULL;
1001 goto out;
1002 }
1003 EXPORT_SYMBOL(sock_create_lite);
1004
1005 /* No kernel lock held - perfect */
1006 static unsigned int sock_poll(struct file *file, poll_table *wait)
1007 {
1008 unsigned int busy_flag = 0;
1009 struct socket *sock;
1010
1011 /*
1012 * We can't return errors to poll, so it's either yes or no.
1013 */
1014 sock = file->private_data;
1015
1016 if (sk_can_busy_loop(sock->sk)) {
1017 /* this socket can poll_ll so tell the system call */
1018 busy_flag = POLL_BUSY_LOOP;
1019
1020 /* once, only if requested by syscall */
1021 if (wait && (wait->_key & POLL_BUSY_LOOP))
1022 sk_busy_loop(sock->sk, 1);
1023 }
1024
1025 return busy_flag | sock->ops->poll(file, sock, wait);
1026 }
1027
1028 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1029 {
1030 struct socket *sock = file->private_data;
1031
1032 return sock->ops->mmap(file, sock, vma);
1033 }
1034
1035 static int sock_close(struct inode *inode, struct file *filp)
1036 {
1037 sock_release(SOCKET_I(inode));
1038 return 0;
1039 }
1040
1041 /*
1042 * Update the socket async list
1043 *
1044 * Fasync_list locking strategy.
1045 *
1046 * 1. fasync_list is modified only under process context socket lock
1047 * i.e. under semaphore.
1048 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1049 * or under socket lock
1050 */
1051
1052 static int sock_fasync(int fd, struct file *filp, int on)
1053 {
1054 struct socket *sock = filp->private_data;
1055 struct sock *sk = sock->sk;
1056 struct socket_wq *wq;
1057
1058 if (sk == NULL)
1059 return -EINVAL;
1060
1061 lock_sock(sk);
1062 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1063 fasync_helper(fd, filp, on, &wq->fasync_list);
1064
1065 if (!wq->fasync_list)
1066 sock_reset_flag(sk, SOCK_FASYNC);
1067 else
1068 sock_set_flag(sk, SOCK_FASYNC);
1069
1070 release_sock(sk);
1071 return 0;
1072 }
1073
1074 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1075
1076 int sock_wake_async(struct socket *sock, int how, int band)
1077 {
1078 struct socket_wq *wq;
1079
1080 if (!sock)
1081 return -1;
1082 rcu_read_lock();
1083 wq = rcu_dereference(sock->wq);
1084 if (!wq || !wq->fasync_list) {
1085 rcu_read_unlock();
1086 return -1;
1087 }
1088 switch (how) {
1089 case SOCK_WAKE_WAITD:
1090 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1091 break;
1092 goto call_kill;
1093 case SOCK_WAKE_SPACE:
1094 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1095 break;
1096 /* fall through */
1097 case SOCK_WAKE_IO:
1098 call_kill:
1099 kill_fasync(&wq->fasync_list, SIGIO, band);
1100 break;
1101 case SOCK_WAKE_URG:
1102 kill_fasync(&wq->fasync_list, SIGURG, band);
1103 }
1104 rcu_read_unlock();
1105 return 0;
1106 }
1107 EXPORT_SYMBOL(sock_wake_async);
1108
1109 int __sock_create(struct net *net, int family, int type, int protocol,
1110 struct socket **res, int kern)
1111 {
1112 int err;
1113 struct socket *sock;
1114 const struct net_proto_family *pf;
1115
1116 /*
1117 * Check protocol is in range
1118 */
1119 if (family < 0 || family >= NPROTO)
1120 return -EAFNOSUPPORT;
1121 if (type < 0 || type >= SOCK_MAX)
1122 return -EINVAL;
1123
1124 /* Compatibility.
1125
1126 This uglymoron is moved from INET layer to here to avoid
1127 deadlock in module load.
1128 */
1129 if (family == PF_INET && type == SOCK_PACKET) {
1130 static int warned;
1131 if (!warned) {
1132 warned = 1;
1133 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1134 current->comm);
1135 }
1136 family = PF_PACKET;
1137 }
1138
1139 err = security_socket_create(family, type, protocol, kern);
1140 if (err)
1141 return err;
1142
1143 /*
1144 * Allocate the socket and allow the family to set things up. if
1145 * the protocol is 0, the family is instructed to select an appropriate
1146 * default.
1147 */
1148 sock = sock_alloc();
1149 if (!sock) {
1150 net_warn_ratelimited("socket: no more sockets\n");
1151 return -ENFILE; /* Not exactly a match, but its the
1152 closest posix thing */
1153 }
1154
1155 sock->type = type;
1156
1157 #ifdef CONFIG_MODULES
1158 /* Attempt to load a protocol module if the find failed.
1159 *
1160 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1161 * requested real, full-featured networking support upon configuration.
1162 * Otherwise module support will break!
1163 */
1164 if (rcu_access_pointer(net_families[family]) == NULL)
1165 request_module("net-pf-%d", family);
1166 #endif
1167
1168 rcu_read_lock();
1169 pf = rcu_dereference(net_families[family]);
1170 err = -EAFNOSUPPORT;
1171 if (!pf)
1172 goto out_release;
1173
1174 /*
1175 * We will call the ->create function, that possibly is in a loadable
1176 * module, so we have to bump that loadable module refcnt first.
1177 */
1178 if (!try_module_get(pf->owner))
1179 goto out_release;
1180
1181 /* Now protected by module ref count */
1182 rcu_read_unlock();
1183
1184 err = pf->create(net, sock, protocol, kern);
1185 if (err < 0)
1186 goto out_module_put;
1187
1188 /*
1189 * Now to bump the refcnt of the [loadable] module that owns this
1190 * socket at sock_release time we decrement its refcnt.
1191 */
1192 if (!try_module_get(sock->ops->owner))
1193 goto out_module_busy;
1194
1195 /*
1196 * Now that we're done with the ->create function, the [loadable]
1197 * module can have its refcnt decremented
1198 */
1199 module_put(pf->owner);
1200 err = security_socket_post_create(sock, family, type, protocol, kern);
1201 if (err)
1202 goto out_sock_release;
1203 *res = sock;
1204
1205 return 0;
1206
1207 out_module_busy:
1208 err = -EAFNOSUPPORT;
1209 out_module_put:
1210 sock->ops = NULL;
1211 module_put(pf->owner);
1212 out_sock_release:
1213 sock_release(sock);
1214 return err;
1215
1216 out_release:
1217 rcu_read_unlock();
1218 goto out_sock_release;
1219 }
1220 EXPORT_SYMBOL(__sock_create);
1221
1222 int sock_create(int family, int type, int protocol, struct socket **res)
1223 {
1224 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1225 }
1226 EXPORT_SYMBOL(sock_create);
1227
1228 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1229 {
1230 return __sock_create(&init_net, family, type, protocol, res, 1);
1231 }
1232 EXPORT_SYMBOL(sock_create_kern);
1233
1234 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1235 {
1236 int retval;
1237 struct socket *sock;
1238 int flags;
1239
1240 /* Check the SOCK_* constants for consistency. */
1241 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1242 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1243 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1244 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1245
1246 flags = type & ~SOCK_TYPE_MASK;
1247 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1248 return -EINVAL;
1249 type &= SOCK_TYPE_MASK;
1250
1251 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1252 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1253
1254 retval = sock_create(family, type, protocol, &sock);
1255 if (retval < 0)
1256 goto out;
1257
1258 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1259 if (retval < 0)
1260 goto out_release;
1261
1262 out:
1263 /* It may be already another descriptor 8) Not kernel problem. */
1264 return retval;
1265
1266 out_release:
1267 sock_release(sock);
1268 return retval;
1269 }
1270
1271 /*
1272 * Create a pair of connected sockets.
1273 */
1274
1275 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1276 int __user *, usockvec)
1277 {
1278 struct socket *sock1, *sock2;
1279 int fd1, fd2, err;
1280 struct file *newfile1, *newfile2;
1281 int flags;
1282
1283 flags = type & ~SOCK_TYPE_MASK;
1284 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1285 return -EINVAL;
1286 type &= SOCK_TYPE_MASK;
1287
1288 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1289 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1290
1291 /*
1292 * Obtain the first socket and check if the underlying protocol
1293 * supports the socketpair call.
1294 */
1295
1296 err = sock_create(family, type, protocol, &sock1);
1297 if (err < 0)
1298 goto out;
1299
1300 err = sock_create(family, type, protocol, &sock2);
1301 if (err < 0)
1302 goto out_release_1;
1303
1304 err = sock1->ops->socketpair(sock1, sock2);
1305 if (err < 0)
1306 goto out_release_both;
1307
1308 fd1 = get_unused_fd_flags(flags);
1309 if (unlikely(fd1 < 0)) {
1310 err = fd1;
1311 goto out_release_both;
1312 }
1313
1314 fd2 = get_unused_fd_flags(flags);
1315 if (unlikely(fd2 < 0)) {
1316 err = fd2;
1317 goto out_put_unused_1;
1318 }
1319
1320 newfile1 = sock_alloc_file(sock1, flags, NULL);
1321 if (unlikely(IS_ERR(newfile1))) {
1322 err = PTR_ERR(newfile1);
1323 goto out_put_unused_both;
1324 }
1325
1326 newfile2 = sock_alloc_file(sock2, flags, NULL);
1327 if (IS_ERR(newfile2)) {
1328 err = PTR_ERR(newfile2);
1329 goto out_fput_1;
1330 }
1331
1332 err = put_user(fd1, &usockvec[0]);
1333 if (err)
1334 goto out_fput_both;
1335
1336 err = put_user(fd2, &usockvec[1]);
1337 if (err)
1338 goto out_fput_both;
1339
1340 audit_fd_pair(fd1, fd2);
1341
1342 fd_install(fd1, newfile1);
1343 fd_install(fd2, newfile2);
1344 /* fd1 and fd2 may be already another descriptors.
1345 * Not kernel problem.
1346 */
1347
1348 return 0;
1349
1350 out_fput_both:
1351 fput(newfile2);
1352 fput(newfile1);
1353 put_unused_fd(fd2);
1354 put_unused_fd(fd1);
1355 goto out;
1356
1357 out_fput_1:
1358 fput(newfile1);
1359 put_unused_fd(fd2);
1360 put_unused_fd(fd1);
1361 sock_release(sock2);
1362 goto out;
1363
1364 out_put_unused_both:
1365 put_unused_fd(fd2);
1366 out_put_unused_1:
1367 put_unused_fd(fd1);
1368 out_release_both:
1369 sock_release(sock2);
1370 out_release_1:
1371 sock_release(sock1);
1372 out:
1373 return err;
1374 }
1375
1376 /*
1377 * Bind a name to a socket. Nothing much to do here since it's
1378 * the protocol's responsibility to handle the local address.
1379 *
1380 * We move the socket address to kernel space before we call
1381 * the protocol layer (having also checked the address is ok).
1382 */
1383
1384 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1385 {
1386 struct socket *sock;
1387 struct sockaddr_storage address;
1388 int err, fput_needed;
1389
1390 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1391 if (sock) {
1392 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1393 if (err >= 0) {
1394 err = security_socket_bind(sock,
1395 (struct sockaddr *)&address,
1396 addrlen);
1397 if (!err)
1398 err = sock->ops->bind(sock,
1399 (struct sockaddr *)
1400 &address, addrlen);
1401 }
1402 fput_light(sock->file, fput_needed);
1403 }
1404 return err;
1405 }
1406
1407 /*
1408 * Perform a listen. Basically, we allow the protocol to do anything
1409 * necessary for a listen, and if that works, we mark the socket as
1410 * ready for listening.
1411 */
1412
1413 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1414 {
1415 struct socket *sock;
1416 int err, fput_needed;
1417 int somaxconn;
1418
1419 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1420 if (sock) {
1421 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1422 if ((unsigned int)backlog > somaxconn)
1423 backlog = somaxconn;
1424
1425 err = security_socket_listen(sock, backlog);
1426 if (!err)
1427 err = sock->ops->listen(sock, backlog);
1428
1429 fput_light(sock->file, fput_needed);
1430 }
1431 return err;
1432 }
1433
1434 /*
1435 * For accept, we attempt to create a new socket, set up the link
1436 * with the client, wake up the client, then return the new
1437 * connected fd. We collect the address of the connector in kernel
1438 * space and move it to user at the very end. This is unclean because
1439 * we open the socket then return an error.
1440 *
1441 * 1003.1g adds the ability to recvmsg() to query connection pending
1442 * status to recvmsg. We need to add that support in a way thats
1443 * clean when we restucture accept also.
1444 */
1445
1446 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1447 int __user *, upeer_addrlen, int, flags)
1448 {
1449 struct socket *sock, *newsock;
1450 struct file *newfile;
1451 int err, len, newfd, fput_needed;
1452 struct sockaddr_storage address;
1453
1454 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1455 return -EINVAL;
1456
1457 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1458 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1459
1460 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1461 if (!sock)
1462 goto out;
1463
1464 err = -ENFILE;
1465 newsock = sock_alloc();
1466 if (!newsock)
1467 goto out_put;
1468
1469 newsock->type = sock->type;
1470 newsock->ops = sock->ops;
1471
1472 /*
1473 * We don't need try_module_get here, as the listening socket (sock)
1474 * has the protocol module (sock->ops->owner) held.
1475 */
1476 __module_get(newsock->ops->owner);
1477
1478 newfd = get_unused_fd_flags(flags);
1479 if (unlikely(newfd < 0)) {
1480 err = newfd;
1481 sock_release(newsock);
1482 goto out_put;
1483 }
1484 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1485 if (unlikely(IS_ERR(newfile))) {
1486 err = PTR_ERR(newfile);
1487 put_unused_fd(newfd);
1488 sock_release(newsock);
1489 goto out_put;
1490 }
1491
1492 err = security_socket_accept(sock, newsock);
1493 if (err)
1494 goto out_fd;
1495
1496 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1497 if (err < 0)
1498 goto out_fd;
1499
1500 if (upeer_sockaddr) {
1501 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1502 &len, 2) < 0) {
1503 err = -ECONNABORTED;
1504 goto out_fd;
1505 }
1506 err = move_addr_to_user(&address,
1507 len, upeer_sockaddr, upeer_addrlen);
1508 if (err < 0)
1509 goto out_fd;
1510 }
1511
1512 /* File flags are not inherited via accept() unlike another OSes. */
1513
1514 fd_install(newfd, newfile);
1515 err = newfd;
1516
1517 out_put:
1518 fput_light(sock->file, fput_needed);
1519 out:
1520 return err;
1521 out_fd:
1522 fput(newfile);
1523 put_unused_fd(newfd);
1524 goto out_put;
1525 }
1526
1527 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1528 int __user *, upeer_addrlen)
1529 {
1530 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1531 }
1532
1533 /*
1534 * Attempt to connect to a socket with the server address. The address
1535 * is in user space so we verify it is OK and move it to kernel space.
1536 *
1537 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1538 * break bindings
1539 *
1540 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1541 * other SEQPACKET protocols that take time to connect() as it doesn't
1542 * include the -EINPROGRESS status for such sockets.
1543 */
1544
1545 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1546 int, addrlen)
1547 {
1548 struct socket *sock;
1549 struct sockaddr_storage address;
1550 int err, fput_needed;
1551
1552 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1553 if (!sock)
1554 goto out;
1555 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1556 if (err < 0)
1557 goto out_put;
1558
1559 err =
1560 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1561 if (err)
1562 goto out_put;
1563
1564 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1565 sock->file->f_flags);
1566 out_put:
1567 fput_light(sock->file, fput_needed);
1568 out:
1569 return err;
1570 }
1571
1572 /*
1573 * Get the local address ('name') of a socket object. Move the obtained
1574 * name to user space.
1575 */
1576
1577 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1578 int __user *, usockaddr_len)
1579 {
1580 struct socket *sock;
1581 struct sockaddr_storage address;
1582 int len, err, fput_needed;
1583
1584 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1585 if (!sock)
1586 goto out;
1587
1588 err = security_socket_getsockname(sock);
1589 if (err)
1590 goto out_put;
1591
1592 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1593 if (err)
1594 goto out_put;
1595 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1596
1597 out_put:
1598 fput_light(sock->file, fput_needed);
1599 out:
1600 return err;
1601 }
1602
1603 /*
1604 * Get the remote address ('name') of a socket object. Move the obtained
1605 * name to user space.
1606 */
1607
1608 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1609 int __user *, usockaddr_len)
1610 {
1611 struct socket *sock;
1612 struct sockaddr_storage address;
1613 int len, err, fput_needed;
1614
1615 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1616 if (sock != NULL) {
1617 err = security_socket_getpeername(sock);
1618 if (err) {
1619 fput_light(sock->file, fput_needed);
1620 return err;
1621 }
1622
1623 err =
1624 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1625 1);
1626 if (!err)
1627 err = move_addr_to_user(&address, len, usockaddr,
1628 usockaddr_len);
1629 fput_light(sock->file, fput_needed);
1630 }
1631 return err;
1632 }
1633
1634 /*
1635 * Send a datagram to a given address. We move the address into kernel
1636 * space and check the user space data area is readable before invoking
1637 * the protocol.
1638 */
1639
1640 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1641 unsigned int, flags, struct sockaddr __user *, addr,
1642 int, addr_len)
1643 {
1644 struct socket *sock;
1645 struct sockaddr_storage address;
1646 int err;
1647 struct msghdr msg;
1648 struct iovec iov;
1649 int fput_needed;
1650
1651 if (len > INT_MAX)
1652 len = INT_MAX;
1653 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654 if (!sock)
1655 goto out;
1656
1657 iov.iov_base = buff;
1658 iov.iov_len = len;
1659 msg.msg_name = NULL;
1660 iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1661 msg.msg_control = NULL;
1662 msg.msg_controllen = 0;
1663 msg.msg_namelen = 0;
1664 if (addr) {
1665 err = move_addr_to_kernel(addr, addr_len, &address);
1666 if (err < 0)
1667 goto out_put;
1668 msg.msg_name = (struct sockaddr *)&address;
1669 msg.msg_namelen = addr_len;
1670 }
1671 if (sock->file->f_flags & O_NONBLOCK)
1672 flags |= MSG_DONTWAIT;
1673 msg.msg_flags = flags;
1674 err = sock_sendmsg(sock, &msg, len);
1675
1676 out_put:
1677 fput_light(sock->file, fput_needed);
1678 out:
1679 return err;
1680 }
1681
1682 /*
1683 * Send a datagram down a socket.
1684 */
1685
1686 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1687 unsigned int, flags)
1688 {
1689 return sys_sendto(fd, buff, len, flags, NULL, 0);
1690 }
1691
1692 /*
1693 * Receive a frame from the socket and optionally record the address of the
1694 * sender. We verify the buffers are writable and if needed move the
1695 * sender address from kernel to user space.
1696 */
1697
1698 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1699 unsigned int, flags, struct sockaddr __user *, addr,
1700 int __user *, addr_len)
1701 {
1702 struct socket *sock;
1703 struct iovec iov;
1704 struct msghdr msg;
1705 struct sockaddr_storage address;
1706 int err, err2;
1707 int fput_needed;
1708
1709 if (size > INT_MAX)
1710 size = INT_MAX;
1711 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1712 if (!sock)
1713 goto out;
1714
1715 msg.msg_control = NULL;
1716 msg.msg_controllen = 0;
1717 iov.iov_len = size;
1718 iov.iov_base = ubuf;
1719 iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1720 /* Save some cycles and don't copy the address if not needed */
1721 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1722 /* We assume all kernel code knows the size of sockaddr_storage */
1723 msg.msg_namelen = 0;
1724 if (sock->file->f_flags & O_NONBLOCK)
1725 flags |= MSG_DONTWAIT;
1726 err = sock_recvmsg(sock, &msg, size, flags);
1727
1728 if (err >= 0 && addr != NULL) {
1729 err2 = move_addr_to_user(&address,
1730 msg.msg_namelen, addr, addr_len);
1731 if (err2 < 0)
1732 err = err2;
1733 }
1734
1735 fput_light(sock->file, fput_needed);
1736 out:
1737 return err;
1738 }
1739
1740 /*
1741 * Receive a datagram from a socket.
1742 */
1743
1744 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1745 unsigned int, flags)
1746 {
1747 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1748 }
1749
1750 /*
1751 * Set a socket option. Because we don't know the option lengths we have
1752 * to pass the user mode parameter for the protocols to sort out.
1753 */
1754
1755 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1756 char __user *, optval, int, optlen)
1757 {
1758 int err, fput_needed;
1759 struct socket *sock;
1760
1761 if (optlen < 0)
1762 return -EINVAL;
1763
1764 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1765 if (sock != NULL) {
1766 err = security_socket_setsockopt(sock, level, optname);
1767 if (err)
1768 goto out_put;
1769
1770 if (level == SOL_SOCKET)
1771 err =
1772 sock_setsockopt(sock, level, optname, optval,
1773 optlen);
1774 else
1775 err =
1776 sock->ops->setsockopt(sock, level, optname, optval,
1777 optlen);
1778 out_put:
1779 fput_light(sock->file, fput_needed);
1780 }
1781 return err;
1782 }
1783
1784 /*
1785 * Get a socket option. Because we don't know the option lengths we have
1786 * to pass a user mode parameter for the protocols to sort out.
1787 */
1788
1789 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1790 char __user *, optval, int __user *, optlen)
1791 {
1792 int err, fput_needed;
1793 struct socket *sock;
1794
1795 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1796 if (sock != NULL) {
1797 err = security_socket_getsockopt(sock, level, optname);
1798 if (err)
1799 goto out_put;
1800
1801 if (level == SOL_SOCKET)
1802 err =
1803 sock_getsockopt(sock, level, optname, optval,
1804 optlen);
1805 else
1806 err =
1807 sock->ops->getsockopt(sock, level, optname, optval,
1808 optlen);
1809 out_put:
1810 fput_light(sock->file, fput_needed);
1811 }
1812 return err;
1813 }
1814
1815 /*
1816 * Shutdown a socket.
1817 */
1818
1819 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1820 {
1821 int err, fput_needed;
1822 struct socket *sock;
1823
1824 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1825 if (sock != NULL) {
1826 err = security_socket_shutdown(sock, how);
1827 if (!err)
1828 err = sock->ops->shutdown(sock, how);
1829 fput_light(sock->file, fput_needed);
1830 }
1831 return err;
1832 }
1833
1834 /* A couple of helpful macros for getting the address of the 32/64 bit
1835 * fields which are the same type (int / unsigned) on our platforms.
1836 */
1837 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1838 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1839 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1840
1841 struct used_address {
1842 struct sockaddr_storage name;
1843 unsigned int name_len;
1844 };
1845
1846 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1847 struct user_msghdr __user *umsg,
1848 struct sockaddr __user **save_addr,
1849 struct iovec **iov)
1850 {
1851 struct sockaddr __user *uaddr;
1852 struct iovec __user *uiov;
1853 size_t nr_segs;
1854 ssize_t err;
1855
1856 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1857 __get_user(uaddr, &umsg->msg_name) ||
1858 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1859 __get_user(uiov, &umsg->msg_iov) ||
1860 __get_user(nr_segs, &umsg->msg_iovlen) ||
1861 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1862 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1863 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1864 return -EFAULT;
1865
1866 if (!uaddr)
1867 kmsg->msg_namelen = 0;
1868
1869 if (kmsg->msg_namelen < 0)
1870 return -EINVAL;
1871
1872 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1873 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1874
1875 if (save_addr)
1876 *save_addr = uaddr;
1877
1878 if (uaddr && kmsg->msg_namelen) {
1879 if (!save_addr) {
1880 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1881 kmsg->msg_name);
1882 if (err < 0)
1883 return err;
1884 }
1885 } else {
1886 kmsg->msg_name = NULL;
1887 kmsg->msg_namelen = 0;
1888 }
1889
1890 if (nr_segs > UIO_MAXIOV)
1891 return -EMSGSIZE;
1892
1893 err = rw_copy_check_uvector(save_addr ? READ : WRITE,
1894 uiov, nr_segs,
1895 UIO_FASTIOV, *iov, iov);
1896 if (err >= 0)
1897 iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
1898 *iov, nr_segs, err);
1899 return err;
1900 }
1901
1902 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1903 struct msghdr *msg_sys, unsigned int flags,
1904 struct used_address *used_address)
1905 {
1906 struct compat_msghdr __user *msg_compat =
1907 (struct compat_msghdr __user *)msg;
1908 struct sockaddr_storage address;
1909 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1910 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1911 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1912 /* 20 is size of ipv6_pktinfo */
1913 unsigned char *ctl_buf = ctl;
1914 int ctl_len, total_len;
1915 ssize_t err;
1916
1917 msg_sys->msg_name = &address;
1918
1919 if (MSG_CMSG_COMPAT & flags)
1920 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1921 else
1922 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1923 if (err < 0)
1924 goto out_freeiov;
1925 total_len = err;
1926
1927 err = -ENOBUFS;
1928
1929 if (msg_sys->msg_controllen > INT_MAX)
1930 goto out_freeiov;
1931 ctl_len = msg_sys->msg_controllen;
1932 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1933 err =
1934 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1935 sizeof(ctl));
1936 if (err)
1937 goto out_freeiov;
1938 ctl_buf = msg_sys->msg_control;
1939 ctl_len = msg_sys->msg_controllen;
1940 } else if (ctl_len) {
1941 if (ctl_len > sizeof(ctl)) {
1942 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1943 if (ctl_buf == NULL)
1944 goto out_freeiov;
1945 }
1946 err = -EFAULT;
1947 /*
1948 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1949 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1950 * checking falls down on this.
1951 */
1952 if (copy_from_user(ctl_buf,
1953 (void __user __force *)msg_sys->msg_control,
1954 ctl_len))
1955 goto out_freectl;
1956 msg_sys->msg_control = ctl_buf;
1957 }
1958 msg_sys->msg_flags = flags;
1959
1960 if (sock->file->f_flags & O_NONBLOCK)
1961 msg_sys->msg_flags |= MSG_DONTWAIT;
1962 /*
1963 * If this is sendmmsg() and current destination address is same as
1964 * previously succeeded address, omit asking LSM's decision.
1965 * used_address->name_len is initialized to UINT_MAX so that the first
1966 * destination address never matches.
1967 */
1968 if (used_address && msg_sys->msg_name &&
1969 used_address->name_len == msg_sys->msg_namelen &&
1970 !memcmp(&used_address->name, msg_sys->msg_name,
1971 used_address->name_len)) {
1972 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1973 goto out_freectl;
1974 }
1975 err = sock_sendmsg(sock, msg_sys, total_len);
1976 /*
1977 * If this is sendmmsg() and sending to current destination address was
1978 * successful, remember it.
1979 */
1980 if (used_address && err >= 0) {
1981 used_address->name_len = msg_sys->msg_namelen;
1982 if (msg_sys->msg_name)
1983 memcpy(&used_address->name, msg_sys->msg_name,
1984 used_address->name_len);
1985 }
1986
1987 out_freectl:
1988 if (ctl_buf != ctl)
1989 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1990 out_freeiov:
1991 if (iov != iovstack)
1992 kfree(iov);
1993 return err;
1994 }
1995
1996 /*
1997 * BSD sendmsg interface
1998 */
1999
2000 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2001 {
2002 int fput_needed, err;
2003 struct msghdr msg_sys;
2004 struct socket *sock;
2005
2006 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2007 if (!sock)
2008 goto out;
2009
2010 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2011
2012 fput_light(sock->file, fput_needed);
2013 out:
2014 return err;
2015 }
2016
2017 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2018 {
2019 if (flags & MSG_CMSG_COMPAT)
2020 return -EINVAL;
2021 return __sys_sendmsg(fd, msg, flags);
2022 }
2023
2024 /*
2025 * Linux sendmmsg interface
2026 */
2027
2028 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2029 unsigned int flags)
2030 {
2031 int fput_needed, err, datagrams;
2032 struct socket *sock;
2033 struct mmsghdr __user *entry;
2034 struct compat_mmsghdr __user *compat_entry;
2035 struct msghdr msg_sys;
2036 struct used_address used_address;
2037
2038 if (vlen > UIO_MAXIOV)
2039 vlen = UIO_MAXIOV;
2040
2041 datagrams = 0;
2042
2043 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2044 if (!sock)
2045 return err;
2046
2047 used_address.name_len = UINT_MAX;
2048 entry = mmsg;
2049 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2050 err = 0;
2051
2052 while (datagrams < vlen) {
2053 if (MSG_CMSG_COMPAT & flags) {
2054 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2055 &msg_sys, flags, &used_address);
2056 if (err < 0)
2057 break;
2058 err = __put_user(err, &compat_entry->msg_len);
2059 ++compat_entry;
2060 } else {
2061 err = ___sys_sendmsg(sock,
2062 (struct user_msghdr __user *)entry,
2063 &msg_sys, flags, &used_address);
2064 if (err < 0)
2065 break;
2066 err = put_user(err, &entry->msg_len);
2067 ++entry;
2068 }
2069
2070 if (err)
2071 break;
2072 ++datagrams;
2073 }
2074
2075 fput_light(sock->file, fput_needed);
2076
2077 /* We only return an error if no datagrams were able to be sent */
2078 if (datagrams != 0)
2079 return datagrams;
2080
2081 return err;
2082 }
2083
2084 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2085 unsigned int, vlen, unsigned int, flags)
2086 {
2087 if (flags & MSG_CMSG_COMPAT)
2088 return -EINVAL;
2089 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2090 }
2091
2092 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2093 struct msghdr *msg_sys, unsigned int flags, int nosec)
2094 {
2095 struct compat_msghdr __user *msg_compat =
2096 (struct compat_msghdr __user *)msg;
2097 struct iovec iovstack[UIO_FASTIOV];
2098 struct iovec *iov = iovstack;
2099 unsigned long cmsg_ptr;
2100 int total_len, len;
2101 ssize_t err;
2102
2103 /* kernel mode address */
2104 struct sockaddr_storage addr;
2105
2106 /* user mode address pointers */
2107 struct sockaddr __user *uaddr;
2108 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2109
2110 msg_sys->msg_name = &addr;
2111
2112 if (MSG_CMSG_COMPAT & flags)
2113 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2114 else
2115 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2116 if (err < 0)
2117 goto out_freeiov;
2118 total_len = err;
2119
2120 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2121 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2122
2123 /* We assume all kernel code knows the size of sockaddr_storage */
2124 msg_sys->msg_namelen = 0;
2125
2126 if (sock->file->f_flags & O_NONBLOCK)
2127 flags |= MSG_DONTWAIT;
2128 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2129 total_len, flags);
2130 if (err < 0)
2131 goto out_freeiov;
2132 len = err;
2133
2134 if (uaddr != NULL) {
2135 err = move_addr_to_user(&addr,
2136 msg_sys->msg_namelen, uaddr,
2137 uaddr_len);
2138 if (err < 0)
2139 goto out_freeiov;
2140 }
2141 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2142 COMPAT_FLAGS(msg));
2143 if (err)
2144 goto out_freeiov;
2145 if (MSG_CMSG_COMPAT & flags)
2146 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2147 &msg_compat->msg_controllen);
2148 else
2149 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2150 &msg->msg_controllen);
2151 if (err)
2152 goto out_freeiov;
2153 err = len;
2154
2155 out_freeiov:
2156 if (iov != iovstack)
2157 kfree(iov);
2158 return err;
2159 }
2160
2161 /*
2162 * BSD recvmsg interface
2163 */
2164
2165 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2166 {
2167 int fput_needed, err;
2168 struct msghdr msg_sys;
2169 struct socket *sock;
2170
2171 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2172 if (!sock)
2173 goto out;
2174
2175 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2176
2177 fput_light(sock->file, fput_needed);
2178 out:
2179 return err;
2180 }
2181
2182 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2183 unsigned int, flags)
2184 {
2185 if (flags & MSG_CMSG_COMPAT)
2186 return -EINVAL;
2187 return __sys_recvmsg(fd, msg, flags);
2188 }
2189
2190 /*
2191 * Linux recvmmsg interface
2192 */
2193
2194 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2195 unsigned int flags, struct timespec *timeout)
2196 {
2197 int fput_needed, err, datagrams;
2198 struct socket *sock;
2199 struct mmsghdr __user *entry;
2200 struct compat_mmsghdr __user *compat_entry;
2201 struct msghdr msg_sys;
2202 struct timespec end_time;
2203
2204 if (timeout &&
2205 poll_select_set_timeout(&end_time, timeout->tv_sec,
2206 timeout->tv_nsec))
2207 return -EINVAL;
2208
2209 datagrams = 0;
2210
2211 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2212 if (!sock)
2213 return err;
2214
2215 err = sock_error(sock->sk);
2216 if (err)
2217 goto out_put;
2218
2219 entry = mmsg;
2220 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2221
2222 while (datagrams < vlen) {
2223 /*
2224 * No need to ask LSM for more than the first datagram.
2225 */
2226 if (MSG_CMSG_COMPAT & flags) {
2227 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2228 &msg_sys, flags & ~MSG_WAITFORONE,
2229 datagrams);
2230 if (err < 0)
2231 break;
2232 err = __put_user(err, &compat_entry->msg_len);
2233 ++compat_entry;
2234 } else {
2235 err = ___sys_recvmsg(sock,
2236 (struct user_msghdr __user *)entry,
2237 &msg_sys, flags & ~MSG_WAITFORONE,
2238 datagrams);
2239 if (err < 0)
2240 break;
2241 err = put_user(err, &entry->msg_len);
2242 ++entry;
2243 }
2244
2245 if (err)
2246 break;
2247 ++datagrams;
2248
2249 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2250 if (flags & MSG_WAITFORONE)
2251 flags |= MSG_DONTWAIT;
2252
2253 if (timeout) {
2254 ktime_get_ts(timeout);
2255 *timeout = timespec_sub(end_time, *timeout);
2256 if (timeout->tv_sec < 0) {
2257 timeout->tv_sec = timeout->tv_nsec = 0;
2258 break;
2259 }
2260
2261 /* Timeout, return less than vlen datagrams */
2262 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2263 break;
2264 }
2265
2266 /* Out of band data, return right away */
2267 if (msg_sys.msg_flags & MSG_OOB)
2268 break;
2269 }
2270
2271 out_put:
2272 fput_light(sock->file, fput_needed);
2273
2274 if (err == 0)
2275 return datagrams;
2276
2277 if (datagrams != 0) {
2278 /*
2279 * We may return less entries than requested (vlen) if the
2280 * sock is non block and there aren't enough datagrams...
2281 */
2282 if (err != -EAGAIN) {
2283 /*
2284 * ... or if recvmsg returns an error after we
2285 * received some datagrams, where we record the
2286 * error to return on the next call or if the
2287 * app asks about it using getsockopt(SO_ERROR).
2288 */
2289 sock->sk->sk_err = -err;
2290 }
2291
2292 return datagrams;
2293 }
2294
2295 return err;
2296 }
2297
2298 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2299 unsigned int, vlen, unsigned int, flags,
2300 struct timespec __user *, timeout)
2301 {
2302 int datagrams;
2303 struct timespec timeout_sys;
2304
2305 if (flags & MSG_CMSG_COMPAT)
2306 return -EINVAL;
2307
2308 if (!timeout)
2309 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2310
2311 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2312 return -EFAULT;
2313
2314 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2315
2316 if (datagrams > 0 &&
2317 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2318 datagrams = -EFAULT;
2319
2320 return datagrams;
2321 }
2322
2323 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2324 /* Argument list sizes for sys_socketcall */
2325 #define AL(x) ((x) * sizeof(unsigned long))
2326 static const unsigned char nargs[21] = {
2327 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2328 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2329 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2330 AL(4), AL(5), AL(4)
2331 };
2332
2333 #undef AL
2334
2335 /*
2336 * System call vectors.
2337 *
2338 * Argument checking cleaned up. Saved 20% in size.
2339 * This function doesn't need to set the kernel lock because
2340 * it is set by the callees.
2341 */
2342
2343 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2344 {
2345 unsigned long a[AUDITSC_ARGS];
2346 unsigned long a0, a1;
2347 int err;
2348 unsigned int len;
2349
2350 if (call < 1 || call > SYS_SENDMMSG)
2351 return -EINVAL;
2352
2353 len = nargs[call];
2354 if (len > sizeof(a))
2355 return -EINVAL;
2356
2357 /* copy_from_user should be SMP safe. */
2358 if (copy_from_user(a, args, len))
2359 return -EFAULT;
2360
2361 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2362 if (err)
2363 return err;
2364
2365 a0 = a[0];
2366 a1 = a[1];
2367
2368 switch (call) {
2369 case SYS_SOCKET:
2370 err = sys_socket(a0, a1, a[2]);
2371 break;
2372 case SYS_BIND:
2373 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2374 break;
2375 case SYS_CONNECT:
2376 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2377 break;
2378 case SYS_LISTEN:
2379 err = sys_listen(a0, a1);
2380 break;
2381 case SYS_ACCEPT:
2382 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2383 (int __user *)a[2], 0);
2384 break;
2385 case SYS_GETSOCKNAME:
2386 err =
2387 sys_getsockname(a0, (struct sockaddr __user *)a1,
2388 (int __user *)a[2]);
2389 break;
2390 case SYS_GETPEERNAME:
2391 err =
2392 sys_getpeername(a0, (struct sockaddr __user *)a1,
2393 (int __user *)a[2]);
2394 break;
2395 case SYS_SOCKETPAIR:
2396 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2397 break;
2398 case SYS_SEND:
2399 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2400 break;
2401 case SYS_SENDTO:
2402 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2403 (struct sockaddr __user *)a[4], a[5]);
2404 break;
2405 case SYS_RECV:
2406 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2407 break;
2408 case SYS_RECVFROM:
2409 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2410 (struct sockaddr __user *)a[4],
2411 (int __user *)a[5]);
2412 break;
2413 case SYS_SHUTDOWN:
2414 err = sys_shutdown(a0, a1);
2415 break;
2416 case SYS_SETSOCKOPT:
2417 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2418 break;
2419 case SYS_GETSOCKOPT:
2420 err =
2421 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2422 (int __user *)a[4]);
2423 break;
2424 case SYS_SENDMSG:
2425 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2426 break;
2427 case SYS_SENDMMSG:
2428 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2429 break;
2430 case SYS_RECVMSG:
2431 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2432 break;
2433 case SYS_RECVMMSG:
2434 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2435 (struct timespec __user *)a[4]);
2436 break;
2437 case SYS_ACCEPT4:
2438 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2439 (int __user *)a[2], a[3]);
2440 break;
2441 default:
2442 err = -EINVAL;
2443 break;
2444 }
2445 return err;
2446 }
2447
2448 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2449
2450 /**
2451 * sock_register - add a socket protocol handler
2452 * @ops: description of protocol
2453 *
2454 * This function is called by a protocol handler that wants to
2455 * advertise its address family, and have it linked into the
2456 * socket interface. The value ops->family corresponds to the
2457 * socket system call protocol family.
2458 */
2459 int sock_register(const struct net_proto_family *ops)
2460 {
2461 int err;
2462
2463 if (ops->family >= NPROTO) {
2464 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2465 return -ENOBUFS;
2466 }
2467
2468 spin_lock(&net_family_lock);
2469 if (rcu_dereference_protected(net_families[ops->family],
2470 lockdep_is_held(&net_family_lock)))
2471 err = -EEXIST;
2472 else {
2473 rcu_assign_pointer(net_families[ops->family], ops);
2474 err = 0;
2475 }
2476 spin_unlock(&net_family_lock);
2477
2478 pr_info("NET: Registered protocol family %d\n", ops->family);
2479 return err;
2480 }
2481 EXPORT_SYMBOL(sock_register);
2482
2483 /**
2484 * sock_unregister - remove a protocol handler
2485 * @family: protocol family to remove
2486 *
2487 * This function is called by a protocol handler that wants to
2488 * remove its address family, and have it unlinked from the
2489 * new socket creation.
2490 *
2491 * If protocol handler is a module, then it can use module reference
2492 * counts to protect against new references. If protocol handler is not
2493 * a module then it needs to provide its own protection in
2494 * the ops->create routine.
2495 */
2496 void sock_unregister(int family)
2497 {
2498 BUG_ON(family < 0 || family >= NPROTO);
2499
2500 spin_lock(&net_family_lock);
2501 RCU_INIT_POINTER(net_families[family], NULL);
2502 spin_unlock(&net_family_lock);
2503
2504 synchronize_rcu();
2505
2506 pr_info("NET: Unregistered protocol family %d\n", family);
2507 }
2508 EXPORT_SYMBOL(sock_unregister);
2509
2510 static int __init sock_init(void)
2511 {
2512 int err;
2513 /*
2514 * Initialize the network sysctl infrastructure.
2515 */
2516 err = net_sysctl_init();
2517 if (err)
2518 goto out;
2519
2520 /*
2521 * Initialize skbuff SLAB cache
2522 */
2523 skb_init();
2524
2525 /*
2526 * Initialize the protocols module.
2527 */
2528
2529 init_inodecache();
2530
2531 err = register_filesystem(&sock_fs_type);
2532 if (err)
2533 goto out_fs;
2534 sock_mnt = kern_mount(&sock_fs_type);
2535 if (IS_ERR(sock_mnt)) {
2536 err = PTR_ERR(sock_mnt);
2537 goto out_mount;
2538 }
2539
2540 /* The real protocol initialization is performed in later initcalls.
2541 */
2542
2543 #ifdef CONFIG_NETFILTER
2544 err = netfilter_init();
2545 if (err)
2546 goto out;
2547 #endif
2548
2549 ptp_classifier_init();
2550
2551 out:
2552 return err;
2553
2554 out_mount:
2555 unregister_filesystem(&sock_fs_type);
2556 out_fs:
2557 goto out;
2558 }
2559
2560 core_initcall(sock_init); /* early initcall */
2561
2562 #ifdef CONFIG_PROC_FS
2563 void socket_seq_show(struct seq_file *seq)
2564 {
2565 int cpu;
2566 int counter = 0;
2567
2568 for_each_possible_cpu(cpu)
2569 counter += per_cpu(sockets_in_use, cpu);
2570
2571 /* It can be negative, by the way. 8) */
2572 if (counter < 0)
2573 counter = 0;
2574
2575 seq_printf(seq, "sockets: used %d\n", counter);
2576 }
2577 #endif /* CONFIG_PROC_FS */
2578
2579 #ifdef CONFIG_COMPAT
2580 static int do_siocgstamp(struct net *net, struct socket *sock,
2581 unsigned int cmd, void __user *up)
2582 {
2583 mm_segment_t old_fs = get_fs();
2584 struct timeval ktv;
2585 int err;
2586
2587 set_fs(KERNEL_DS);
2588 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2589 set_fs(old_fs);
2590 if (!err)
2591 err = compat_put_timeval(&ktv, up);
2592
2593 return err;
2594 }
2595
2596 static int do_siocgstampns(struct net *net, struct socket *sock,
2597 unsigned int cmd, void __user *up)
2598 {
2599 mm_segment_t old_fs = get_fs();
2600 struct timespec kts;
2601 int err;
2602
2603 set_fs(KERNEL_DS);
2604 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2605 set_fs(old_fs);
2606 if (!err)
2607 err = compat_put_timespec(&kts, up);
2608
2609 return err;
2610 }
2611
2612 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2613 {
2614 struct ifreq __user *uifr;
2615 int err;
2616
2617 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2618 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2619 return -EFAULT;
2620
2621 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2622 if (err)
2623 return err;
2624
2625 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2626 return -EFAULT;
2627
2628 return 0;
2629 }
2630
2631 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2632 {
2633 struct compat_ifconf ifc32;
2634 struct ifconf ifc;
2635 struct ifconf __user *uifc;
2636 struct compat_ifreq __user *ifr32;
2637 struct ifreq __user *ifr;
2638 unsigned int i, j;
2639 int err;
2640
2641 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2642 return -EFAULT;
2643
2644 memset(&ifc, 0, sizeof(ifc));
2645 if (ifc32.ifcbuf == 0) {
2646 ifc32.ifc_len = 0;
2647 ifc.ifc_len = 0;
2648 ifc.ifc_req = NULL;
2649 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2650 } else {
2651 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2652 sizeof(struct ifreq);
2653 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2654 ifc.ifc_len = len;
2655 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2656 ifr32 = compat_ptr(ifc32.ifcbuf);
2657 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2658 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2659 return -EFAULT;
2660 ifr++;
2661 ifr32++;
2662 }
2663 }
2664 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2665 return -EFAULT;
2666
2667 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2668 if (err)
2669 return err;
2670
2671 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2672 return -EFAULT;
2673
2674 ifr = ifc.ifc_req;
2675 ifr32 = compat_ptr(ifc32.ifcbuf);
2676 for (i = 0, j = 0;
2677 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2678 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2679 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2680 return -EFAULT;
2681 ifr32++;
2682 ifr++;
2683 }
2684
2685 if (ifc32.ifcbuf == 0) {
2686 /* Translate from 64-bit structure multiple to
2687 * a 32-bit one.
2688 */
2689 i = ifc.ifc_len;
2690 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2691 ifc32.ifc_len = i;
2692 } else {
2693 ifc32.ifc_len = i;
2694 }
2695 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2696 return -EFAULT;
2697
2698 return 0;
2699 }
2700
2701 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2702 {
2703 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2704 bool convert_in = false, convert_out = false;
2705 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2706 struct ethtool_rxnfc __user *rxnfc;
2707 struct ifreq __user *ifr;
2708 u32 rule_cnt = 0, actual_rule_cnt;
2709 u32 ethcmd;
2710 u32 data;
2711 int ret;
2712
2713 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2714 return -EFAULT;
2715
2716 compat_rxnfc = compat_ptr(data);
2717
2718 if (get_user(ethcmd, &compat_rxnfc->cmd))
2719 return -EFAULT;
2720
2721 /* Most ethtool structures are defined without padding.
2722 * Unfortunately struct ethtool_rxnfc is an exception.
2723 */
2724 switch (ethcmd) {
2725 default:
2726 break;
2727 case ETHTOOL_GRXCLSRLALL:
2728 /* Buffer size is variable */
2729 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2730 return -EFAULT;
2731 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2732 return -ENOMEM;
2733 buf_size += rule_cnt * sizeof(u32);
2734 /* fall through */
2735 case ETHTOOL_GRXRINGS:
2736 case ETHTOOL_GRXCLSRLCNT:
2737 case ETHTOOL_GRXCLSRULE:
2738 case ETHTOOL_SRXCLSRLINS:
2739 convert_out = true;
2740 /* fall through */
2741 case ETHTOOL_SRXCLSRLDEL:
2742 buf_size += sizeof(struct ethtool_rxnfc);
2743 convert_in = true;
2744 break;
2745 }
2746
2747 ifr = compat_alloc_user_space(buf_size);
2748 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2749
2750 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2751 return -EFAULT;
2752
2753 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2754 &ifr->ifr_ifru.ifru_data))
2755 return -EFAULT;
2756
2757 if (convert_in) {
2758 /* We expect there to be holes between fs.m_ext and
2759 * fs.ring_cookie and at the end of fs, but nowhere else.
2760 */
2761 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2762 sizeof(compat_rxnfc->fs.m_ext) !=
2763 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2764 sizeof(rxnfc->fs.m_ext));
2765 BUILD_BUG_ON(
2766 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2767 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2768 offsetof(struct ethtool_rxnfc, fs.location) -
2769 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2770
2771 if (copy_in_user(rxnfc, compat_rxnfc,
2772 (void __user *)(&rxnfc->fs.m_ext + 1) -
2773 (void __user *)rxnfc) ||
2774 copy_in_user(&rxnfc->fs.ring_cookie,
2775 &compat_rxnfc->fs.ring_cookie,
2776 (void __user *)(&rxnfc->fs.location + 1) -
2777 (void __user *)&rxnfc->fs.ring_cookie) ||
2778 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2779 sizeof(rxnfc->rule_cnt)))
2780 return -EFAULT;
2781 }
2782
2783 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2784 if (ret)
2785 return ret;
2786
2787 if (convert_out) {
2788 if (copy_in_user(compat_rxnfc, rxnfc,
2789 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2790 (const void __user *)rxnfc) ||
2791 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2792 &rxnfc->fs.ring_cookie,
2793 (const void __user *)(&rxnfc->fs.location + 1) -
2794 (const void __user *)&rxnfc->fs.ring_cookie) ||
2795 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2796 sizeof(rxnfc->rule_cnt)))
2797 return -EFAULT;
2798
2799 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2800 /* As an optimisation, we only copy the actual
2801 * number of rules that the underlying
2802 * function returned. Since Mallory might
2803 * change the rule count in user memory, we
2804 * check that it is less than the rule count
2805 * originally given (as the user buffer size),
2806 * which has been range-checked.
2807 */
2808 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2809 return -EFAULT;
2810 if (actual_rule_cnt < rule_cnt)
2811 rule_cnt = actual_rule_cnt;
2812 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2813 &rxnfc->rule_locs[0],
2814 rule_cnt * sizeof(u32)))
2815 return -EFAULT;
2816 }
2817 }
2818
2819 return 0;
2820 }
2821
2822 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2823 {
2824 void __user *uptr;
2825 compat_uptr_t uptr32;
2826 struct ifreq __user *uifr;
2827
2828 uifr = compat_alloc_user_space(sizeof(*uifr));
2829 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2830 return -EFAULT;
2831
2832 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2833 return -EFAULT;
2834
2835 uptr = compat_ptr(uptr32);
2836
2837 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2838 return -EFAULT;
2839
2840 return dev_ioctl(net, SIOCWANDEV, uifr);
2841 }
2842
2843 static int bond_ioctl(struct net *net, unsigned int cmd,
2844 struct compat_ifreq __user *ifr32)
2845 {
2846 struct ifreq kifr;
2847 mm_segment_t old_fs;
2848 int err;
2849
2850 switch (cmd) {
2851 case SIOCBONDENSLAVE:
2852 case SIOCBONDRELEASE:
2853 case SIOCBONDSETHWADDR:
2854 case SIOCBONDCHANGEACTIVE:
2855 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2856 return -EFAULT;
2857
2858 old_fs = get_fs();
2859 set_fs(KERNEL_DS);
2860 err = dev_ioctl(net, cmd,
2861 (struct ifreq __user __force *) &kifr);
2862 set_fs(old_fs);
2863
2864 return err;
2865 default:
2866 return -ENOIOCTLCMD;
2867 }
2868 }
2869
2870 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2871 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2872 struct compat_ifreq __user *u_ifreq32)
2873 {
2874 struct ifreq __user *u_ifreq64;
2875 char tmp_buf[IFNAMSIZ];
2876 void __user *data64;
2877 u32 data32;
2878
2879 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2880 IFNAMSIZ))
2881 return -EFAULT;
2882 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2883 return -EFAULT;
2884 data64 = compat_ptr(data32);
2885
2886 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2887
2888 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2889 IFNAMSIZ))
2890 return -EFAULT;
2891 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2892 return -EFAULT;
2893
2894 return dev_ioctl(net, cmd, u_ifreq64);
2895 }
2896
2897 static int dev_ifsioc(struct net *net, struct socket *sock,
2898 unsigned int cmd, struct compat_ifreq __user *uifr32)
2899 {
2900 struct ifreq __user *uifr;
2901 int err;
2902
2903 uifr = compat_alloc_user_space(sizeof(*uifr));
2904 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2905 return -EFAULT;
2906
2907 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2908
2909 if (!err) {
2910 switch (cmd) {
2911 case SIOCGIFFLAGS:
2912 case SIOCGIFMETRIC:
2913 case SIOCGIFMTU:
2914 case SIOCGIFMEM:
2915 case SIOCGIFHWADDR:
2916 case SIOCGIFINDEX:
2917 case SIOCGIFADDR:
2918 case SIOCGIFBRDADDR:
2919 case SIOCGIFDSTADDR:
2920 case SIOCGIFNETMASK:
2921 case SIOCGIFPFLAGS:
2922 case SIOCGIFTXQLEN:
2923 case SIOCGMIIPHY:
2924 case SIOCGMIIREG:
2925 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2926 err = -EFAULT;
2927 break;
2928 }
2929 }
2930 return err;
2931 }
2932
2933 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2934 struct compat_ifreq __user *uifr32)
2935 {
2936 struct ifreq ifr;
2937 struct compat_ifmap __user *uifmap32;
2938 mm_segment_t old_fs;
2939 int err;
2940
2941 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2942 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2943 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2944 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2945 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2946 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2947 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2948 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2949 if (err)
2950 return -EFAULT;
2951
2952 old_fs = get_fs();
2953 set_fs(KERNEL_DS);
2954 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2955 set_fs(old_fs);
2956
2957 if (cmd == SIOCGIFMAP && !err) {
2958 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2959 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2960 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2961 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2962 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2963 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2964 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2965 if (err)
2966 err = -EFAULT;
2967 }
2968 return err;
2969 }
2970
2971 struct rtentry32 {
2972 u32 rt_pad1;
2973 struct sockaddr rt_dst; /* target address */
2974 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2975 struct sockaddr rt_genmask; /* target network mask (IP) */
2976 unsigned short rt_flags;
2977 short rt_pad2;
2978 u32 rt_pad3;
2979 unsigned char rt_tos;
2980 unsigned char rt_class;
2981 short rt_pad4;
2982 short rt_metric; /* +1 for binary compatibility! */
2983 /* char * */ u32 rt_dev; /* forcing the device at add */
2984 u32 rt_mtu; /* per route MTU/Window */
2985 u32 rt_window; /* Window clamping */
2986 unsigned short rt_irtt; /* Initial RTT */
2987 };
2988
2989 struct in6_rtmsg32 {
2990 struct in6_addr rtmsg_dst;
2991 struct in6_addr rtmsg_src;
2992 struct in6_addr rtmsg_gateway;
2993 u32 rtmsg_type;
2994 u16 rtmsg_dst_len;
2995 u16 rtmsg_src_len;
2996 u32 rtmsg_metric;
2997 u32 rtmsg_info;
2998 u32 rtmsg_flags;
2999 s32 rtmsg_ifindex;
3000 };
3001
3002 static int routing_ioctl(struct net *net, struct socket *sock,
3003 unsigned int cmd, void __user *argp)
3004 {
3005 int ret;
3006 void *r = NULL;
3007 struct in6_rtmsg r6;
3008 struct rtentry r4;
3009 char devname[16];
3010 u32 rtdev;
3011 mm_segment_t old_fs = get_fs();
3012
3013 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3014 struct in6_rtmsg32 __user *ur6 = argp;
3015 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3016 3 * sizeof(struct in6_addr));
3017 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3018 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3019 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3020 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3021 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3022 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3023 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3024
3025 r = (void *) &r6;
3026 } else { /* ipv4 */
3027 struct rtentry32 __user *ur4 = argp;
3028 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3029 3 * sizeof(struct sockaddr));
3030 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3031 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3032 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3033 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3034 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3035 ret |= get_user(rtdev, &(ur4->rt_dev));
3036 if (rtdev) {
3037 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3038 r4.rt_dev = (char __user __force *)devname;
3039 devname[15] = 0;
3040 } else
3041 r4.rt_dev = NULL;
3042
3043 r = (void *) &r4;
3044 }
3045
3046 if (ret) {
3047 ret = -EFAULT;
3048 goto out;
3049 }
3050
3051 set_fs(KERNEL_DS);
3052 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3053 set_fs(old_fs);
3054
3055 out:
3056 return ret;
3057 }
3058
3059 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3060 * for some operations; this forces use of the newer bridge-utils that
3061 * use compatible ioctls
3062 */
3063 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3064 {
3065 compat_ulong_t tmp;
3066
3067 if (get_user(tmp, argp))
3068 return -EFAULT;
3069 if (tmp == BRCTL_GET_VERSION)
3070 return BRCTL_VERSION + 1;
3071 return -EINVAL;
3072 }
3073
3074 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3075 unsigned int cmd, unsigned long arg)
3076 {
3077 void __user *argp = compat_ptr(arg);
3078 struct sock *sk = sock->sk;
3079 struct net *net = sock_net(sk);
3080
3081 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3082 return compat_ifr_data_ioctl(net, cmd, argp);
3083
3084 switch (cmd) {
3085 case SIOCSIFBR:
3086 case SIOCGIFBR:
3087 return old_bridge_ioctl(argp);
3088 case SIOCGIFNAME:
3089 return dev_ifname32(net, argp);
3090 case SIOCGIFCONF:
3091 return dev_ifconf(net, argp);
3092 case SIOCETHTOOL:
3093 return ethtool_ioctl(net, argp);
3094 case SIOCWANDEV:
3095 return compat_siocwandev(net, argp);
3096 case SIOCGIFMAP:
3097 case SIOCSIFMAP:
3098 return compat_sioc_ifmap(net, cmd, argp);
3099 case SIOCBONDENSLAVE:
3100 case SIOCBONDRELEASE:
3101 case SIOCBONDSETHWADDR:
3102 case SIOCBONDCHANGEACTIVE:
3103 return bond_ioctl(net, cmd, argp);
3104 case SIOCADDRT:
3105 case SIOCDELRT:
3106 return routing_ioctl(net, sock, cmd, argp);
3107 case SIOCGSTAMP:
3108 return do_siocgstamp(net, sock, cmd, argp);
3109 case SIOCGSTAMPNS:
3110 return do_siocgstampns(net, sock, cmd, argp);
3111 case SIOCBONDSLAVEINFOQUERY:
3112 case SIOCBONDINFOQUERY:
3113 case SIOCSHWTSTAMP:
3114 case SIOCGHWTSTAMP:
3115 return compat_ifr_data_ioctl(net, cmd, argp);
3116
3117 case FIOSETOWN:
3118 case SIOCSPGRP:
3119 case FIOGETOWN:
3120 case SIOCGPGRP:
3121 case SIOCBRADDBR:
3122 case SIOCBRDELBR:
3123 case SIOCGIFVLAN:
3124 case SIOCSIFVLAN:
3125 case SIOCADDDLCI:
3126 case SIOCDELDLCI:
3127 return sock_ioctl(file, cmd, arg);
3128
3129 case SIOCGIFFLAGS:
3130 case SIOCSIFFLAGS:
3131 case SIOCGIFMETRIC:
3132 case SIOCSIFMETRIC:
3133 case SIOCGIFMTU:
3134 case SIOCSIFMTU:
3135 case SIOCGIFMEM:
3136 case SIOCSIFMEM:
3137 case SIOCGIFHWADDR:
3138 case SIOCSIFHWADDR:
3139 case SIOCADDMULTI:
3140 case SIOCDELMULTI:
3141 case SIOCGIFINDEX:
3142 case SIOCGIFADDR:
3143 case SIOCSIFADDR:
3144 case SIOCSIFHWBROADCAST:
3145 case SIOCDIFADDR:
3146 case SIOCGIFBRDADDR:
3147 case SIOCSIFBRDADDR:
3148 case SIOCGIFDSTADDR:
3149 case SIOCSIFDSTADDR:
3150 case SIOCGIFNETMASK:
3151 case SIOCSIFNETMASK:
3152 case SIOCSIFPFLAGS:
3153 case SIOCGIFPFLAGS:
3154 case SIOCGIFTXQLEN:
3155 case SIOCSIFTXQLEN:
3156 case SIOCBRADDIF:
3157 case SIOCBRDELIF:
3158 case SIOCSIFNAME:
3159 case SIOCGMIIPHY:
3160 case SIOCGMIIREG:
3161 case SIOCSMIIREG:
3162 return dev_ifsioc(net, sock, cmd, argp);
3163
3164 case SIOCSARP:
3165 case SIOCGARP:
3166 case SIOCDARP:
3167 case SIOCATMARK:
3168 return sock_do_ioctl(net, sock, cmd, arg);
3169 }
3170
3171 return -ENOIOCTLCMD;
3172 }
3173
3174 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3175 unsigned long arg)
3176 {
3177 struct socket *sock = file->private_data;
3178 int ret = -ENOIOCTLCMD;
3179 struct sock *sk;
3180 struct net *net;
3181
3182 sk = sock->sk;
3183 net = sock_net(sk);
3184
3185 if (sock->ops->compat_ioctl)
3186 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3187
3188 if (ret == -ENOIOCTLCMD &&
3189 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3190 ret = compat_wext_handle_ioctl(net, cmd, arg);
3191
3192 if (ret == -ENOIOCTLCMD)
3193 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3194
3195 return ret;
3196 }
3197 #endif
3198
3199 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3200 {
3201 return sock->ops->bind(sock, addr, addrlen);
3202 }
3203 EXPORT_SYMBOL(kernel_bind);
3204
3205 int kernel_listen(struct socket *sock, int backlog)
3206 {
3207 return sock->ops->listen(sock, backlog);
3208 }
3209 EXPORT_SYMBOL(kernel_listen);
3210
3211 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3212 {
3213 struct sock *sk = sock->sk;
3214 int err;
3215
3216 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3217 newsock);
3218 if (err < 0)
3219 goto done;
3220
3221 err = sock->ops->accept(sock, *newsock, flags);
3222 if (err < 0) {
3223 sock_release(*newsock);
3224 *newsock = NULL;
3225 goto done;
3226 }
3227
3228 (*newsock)->ops = sock->ops;
3229 __module_get((*newsock)->ops->owner);
3230
3231 done:
3232 return err;
3233 }
3234 EXPORT_SYMBOL(kernel_accept);
3235
3236 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3237 int flags)
3238 {
3239 return sock->ops->connect(sock, addr, addrlen, flags);
3240 }
3241 EXPORT_SYMBOL(kernel_connect);
3242
3243 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3244 int *addrlen)
3245 {
3246 return sock->ops->getname(sock, addr, addrlen, 0);
3247 }
3248 EXPORT_SYMBOL(kernel_getsockname);
3249
3250 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3251 int *addrlen)
3252 {
3253 return sock->ops->getname(sock, addr, addrlen, 1);
3254 }
3255 EXPORT_SYMBOL(kernel_getpeername);
3256
3257 int kernel_getsockopt(struct socket *sock, int level, int optname,
3258 char *optval, int *optlen)
3259 {
3260 mm_segment_t oldfs = get_fs();
3261 char __user *uoptval;
3262 int __user *uoptlen;
3263 int err;
3264
3265 uoptval = (char __user __force *) optval;
3266 uoptlen = (int __user __force *) optlen;
3267
3268 set_fs(KERNEL_DS);
3269 if (level == SOL_SOCKET)
3270 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3271 else
3272 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3273 uoptlen);
3274 set_fs(oldfs);
3275 return err;
3276 }
3277 EXPORT_SYMBOL(kernel_getsockopt);
3278
3279 int kernel_setsockopt(struct socket *sock, int level, int optname,
3280 char *optval, unsigned int optlen)
3281 {
3282 mm_segment_t oldfs = get_fs();
3283 char __user *uoptval;
3284 int err;
3285
3286 uoptval = (char __user __force *) optval;
3287
3288 set_fs(KERNEL_DS);
3289 if (level == SOL_SOCKET)
3290 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3291 else
3292 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3293 optlen);
3294 set_fs(oldfs);
3295 return err;
3296 }
3297 EXPORT_SYMBOL(kernel_setsockopt);
3298
3299 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3300 size_t size, int flags)
3301 {
3302 if (sock->ops->sendpage)
3303 return sock->ops->sendpage(sock, page, offset, size, flags);
3304
3305 return sock_no_sendpage(sock, page, offset, size, flags);
3306 }
3307 EXPORT_SYMBOL(kernel_sendpage);
3308
3309 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3310 {
3311 mm_segment_t oldfs = get_fs();
3312 int err;
3313
3314 set_fs(KERNEL_DS);
3315 err = sock->ops->ioctl(sock, cmd, arg);
3316 set_fs(oldfs);
3317
3318 return err;
3319 }
3320 EXPORT_SYMBOL(kernel_sock_ioctl);
3321
3322 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3323 {
3324 return sock->ops->shutdown(sock, how);
3325 }
3326 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.249878 seconds and 5 git commands to generate.