ASoC: tegra: add mic detect gpio to tegra_max98090
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 struct pipe_inode_info *pipe, size_t len,
136 unsigned int flags);
137
138 /*
139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140 * in the operation structures but are done directly via the socketcall() multiplexor.
141 */
142
143 static const struct file_operations socket_file_ops = {
144 .owner = THIS_MODULE,
145 .llseek = no_llseek,
146 .aio_read = sock_aio_read,
147 .aio_write = sock_aio_write,
148 .poll = sock_poll,
149 .unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 .compat_ioctl = compat_sock_ioctl,
152 #endif
153 .mmap = sock_mmap,
154 .open = sock_no_open, /* special open code to disallow open via /proc */
155 .release = sock_close,
156 .fasync = sock_fasync,
157 .sendpage = sock_sendpage,
158 .splice_write = generic_splice_sendpage,
159 .splice_read = sock_splice_read,
160 };
161
162 /*
163 * The protocol list. Each protocol is registered in here.
164 */
165
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168
169 /*
170 * Statistics counters of the socket lists
171 */
172
173 static DEFINE_PER_CPU(int, sockets_in_use);
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252 struct socket_wq *wq;
253
254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 if (!ei)
256 return NULL;
257 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 if (!wq) {
259 kmem_cache_free(sock_inode_cachep, ei);
260 return NULL;
261 }
262 init_waitqueue_head(&wq->wait);
263 wq->fasync_list = NULL;
264 RCU_INIT_POINTER(ei->socket.wq, wq);
265
266 ei->socket.state = SS_UNCONNECTED;
267 ei->socket.flags = 0;
268 ei->socket.ops = NULL;
269 ei->socket.sk = NULL;
270 ei->socket.file = NULL;
271
272 return &ei->vfs_inode;
273 }
274
275 static void sock_destroy_inode(struct inode *inode)
276 {
277 struct socket_alloc *ei;
278 struct socket_wq *wq;
279
280 ei = container_of(inode, struct socket_alloc, vfs_inode);
281 wq = rcu_dereference_protected(ei->socket.wq, 1);
282 kfree_rcu(wq, rcu);
283 kmem_cache_free(sock_inode_cachep, ei);
284 }
285
286 static void init_once(void *foo)
287 {
288 struct socket_alloc *ei = (struct socket_alloc *)foo;
289
290 inode_init_once(&ei->vfs_inode);
291 }
292
293 static int init_inodecache(void)
294 {
295 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 sizeof(struct socket_alloc),
297 0,
298 (SLAB_HWCACHE_ALIGN |
299 SLAB_RECLAIM_ACCOUNT |
300 SLAB_MEM_SPREAD),
301 init_once);
302 if (sock_inode_cachep == NULL)
303 return -ENOMEM;
304 return 0;
305 }
306
307 static const struct super_operations sockfs_ops = {
308 .alloc_inode = sock_alloc_inode,
309 .destroy_inode = sock_destroy_inode,
310 .statfs = simple_statfs,
311 };
312
313 /*
314 * sockfs_dname() is called from d_path().
315 */
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 dentry->d_inode->i_ino);
320 }
321
322 static const struct dentry_operations sockfs_dentry_operations = {
323 .d_dname = sockfs_dname,
324 };
325
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 int flags, const char *dev_name, void *data)
328 {
329 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 &sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332
333 static struct vfsmount *sock_mnt __read_mostly;
334
335 static struct file_system_type sock_fs_type = {
336 .name = "sockfs",
337 .mount = sockfs_mount,
338 .kill_sb = kill_anon_super,
339 };
340
341 /*
342 * Obtains the first available file descriptor and sets it up for use.
343 *
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
351 *
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
356 */
357
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359 {
360 struct qstr name = { .name = "" };
361 struct path path;
362 struct file *file;
363
364 if (dname) {
365 name.name = dname;
366 name.len = strlen(name.name);
367 } else if (sock->sk) {
368 name.name = sock->sk->sk_prot_creator->name;
369 name.len = strlen(name.name);
370 }
371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 if (unlikely(!path.dentry))
373 return ERR_PTR(-ENOMEM);
374 path.mnt = mntget(sock_mnt);
375
376 d_instantiate(path.dentry, SOCK_INODE(sock));
377 SOCK_INODE(sock)->i_fop = &socket_file_ops;
378
379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 &socket_file_ops);
381 if (unlikely(IS_ERR(file))) {
382 /* drop dentry, keep inode */
383 ihold(path.dentry->d_inode);
384 path_put(&path);
385 return file;
386 }
387
388 sock->file = file;
389 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 file->private_data = sock;
391 return file;
392 }
393 EXPORT_SYMBOL(sock_alloc_file);
394
395 static int sock_map_fd(struct socket *sock, int flags)
396 {
397 struct file *newfile;
398 int fd = get_unused_fd_flags(flags);
399 if (unlikely(fd < 0))
400 return fd;
401
402 newfile = sock_alloc_file(sock, flags, NULL);
403 if (likely(!IS_ERR(newfile))) {
404 fd_install(fd, newfile);
405 return fd;
406 }
407
408 put_unused_fd(fd);
409 return PTR_ERR(newfile);
410 }
411
412 struct socket *sock_from_file(struct file *file, int *err)
413 {
414 if (file->f_op == &socket_file_ops)
415 return file->private_data; /* set in sock_map_fd */
416
417 *err = -ENOTSOCK;
418 return NULL;
419 }
420 EXPORT_SYMBOL(sock_from_file);
421
422 /**
423 * sockfd_lookup - Go from a file number to its socket slot
424 * @fd: file handle
425 * @err: pointer to an error code return
426 *
427 * The file handle passed in is locked and the socket it is bound
428 * too is returned. If an error occurs the err pointer is overwritten
429 * with a negative errno code and NULL is returned. The function checks
430 * for both invalid handles and passing a handle which is not a socket.
431 *
432 * On a success the socket object pointer is returned.
433 */
434
435 struct socket *sockfd_lookup(int fd, int *err)
436 {
437 struct file *file;
438 struct socket *sock;
439
440 file = fget(fd);
441 if (!file) {
442 *err = -EBADF;
443 return NULL;
444 }
445
446 sock = sock_from_file(file, err);
447 if (!sock)
448 fput(file);
449 return sock;
450 }
451 EXPORT_SYMBOL(sockfd_lookup);
452
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 struct fd f = fdget(fd);
456 struct socket *sock;
457
458 *err = -EBADF;
459 if (f.file) {
460 sock = sock_from_file(f.file, err);
461 if (likely(sock)) {
462 *fput_needed = f.flags;
463 return sock;
464 }
465 fdput(f);
466 }
467 return NULL;
468 }
469
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 const char *name, void *value, size_t size)
475 {
476 const char *proto_name;
477 size_t proto_size;
478 int error;
479
480 error = -ENODATA;
481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 proto_name = dentry->d_name.name;
483 proto_size = strlen(proto_name);
484
485 if (value) {
486 error = -ERANGE;
487 if (proto_size + 1 > size)
488 goto out;
489
490 strncpy(value, proto_name, proto_size + 1);
491 }
492 error = proto_size + 1;
493 }
494
495 out:
496 return error;
497 }
498
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 size_t size)
501 {
502 ssize_t len;
503 ssize_t used = 0;
504
505 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 if (len < 0)
507 return len;
508 used += len;
509 if (buffer) {
510 if (size < used)
511 return -ERANGE;
512 buffer += len;
513 }
514
515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 used += len;
517 if (buffer) {
518 if (size < used)
519 return -ERANGE;
520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 buffer += len;
522 }
523
524 return used;
525 }
526
527 static const struct inode_operations sockfs_inode_ops = {
528 .getxattr = sockfs_getxattr,
529 .listxattr = sockfs_listxattr,
530 };
531
532 /**
533 * sock_alloc - allocate a socket
534 *
535 * Allocate a new inode and socket object. The two are bound together
536 * and initialised. The socket is then returned. If we are out of inodes
537 * NULL is returned.
538 */
539
540 static struct socket *sock_alloc(void)
541 {
542 struct inode *inode;
543 struct socket *sock;
544
545 inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 if (!inode)
547 return NULL;
548
549 sock = SOCKET_I(inode);
550
551 kmemcheck_annotate_bitfield(sock, type);
552 inode->i_ino = get_next_ino();
553 inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 inode->i_uid = current_fsuid();
555 inode->i_gid = current_fsgid();
556 inode->i_op = &sockfs_inode_ops;
557
558 this_cpu_add(sockets_in_use, 1);
559 return sock;
560 }
561
562 /*
563 * In theory you can't get an open on this inode, but /proc provides
564 * a back door. Remember to keep it shut otherwise you'll let the
565 * creepy crawlies in.
566 */
567
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569 {
570 return -ENXIO;
571 }
572
573 const struct file_operations bad_sock_fops = {
574 .owner = THIS_MODULE,
575 .open = sock_no_open,
576 .llseek = noop_llseek,
577 };
578
579 /**
580 * sock_release - close a socket
581 * @sock: socket to close
582 *
583 * The socket is released from the protocol stack if it has a release
584 * callback, and the inode is then released if the socket is bound to
585 * an inode not a file.
586 */
587
588 void sock_release(struct socket *sock)
589 {
590 if (sock->ops) {
591 struct module *owner = sock->ops->owner;
592
593 sock->ops->release(sock);
594 sock->ops = NULL;
595 module_put(owner);
596 }
597
598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 pr_err("%s: fasync list not empty!\n", __func__);
600
601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602 return;
603
604 this_cpu_sub(sockets_in_use, 1);
605 if (!sock->file) {
606 iput(SOCK_INODE(sock));
607 return;
608 }
609 sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612
613 void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
614 {
615 u8 flags = *tx_flags;
616
617 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618 flags |= SKBTX_HW_TSTAMP;
619
620 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621 flags |= SKBTX_SW_TSTAMP;
622
623 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
624 flags |= SKBTX_SCHED_TSTAMP;
625
626 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
627 flags |= SKBTX_ACK_TSTAMP;
628
629 if (sock_flag(sk, SOCK_WIFI_STATUS))
630 flags |= SKBTX_WIFI_STATUS;
631
632 *tx_flags = flags;
633 }
634 EXPORT_SYMBOL(sock_tx_timestamp);
635
636 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
637 struct msghdr *msg, size_t size)
638 {
639 struct sock_iocb *si = kiocb_to_siocb(iocb);
640
641 si->sock = sock;
642 si->scm = NULL;
643 si->msg = msg;
644 si->size = size;
645
646 return sock->ops->sendmsg(iocb, sock, msg, size);
647 }
648
649 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
650 struct msghdr *msg, size_t size)
651 {
652 int err = security_socket_sendmsg(sock, msg, size);
653
654 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
655 }
656
657 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
658 {
659 struct kiocb iocb;
660 struct sock_iocb siocb;
661 int ret;
662
663 init_sync_kiocb(&iocb, NULL);
664 iocb.private = &siocb;
665 ret = __sock_sendmsg(&iocb, sock, msg, size);
666 if (-EIOCBQUEUED == ret)
667 ret = wait_on_sync_kiocb(&iocb);
668 return ret;
669 }
670 EXPORT_SYMBOL(sock_sendmsg);
671
672 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
673 {
674 struct kiocb iocb;
675 struct sock_iocb siocb;
676 int ret;
677
678 init_sync_kiocb(&iocb, NULL);
679 iocb.private = &siocb;
680 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
681 if (-EIOCBQUEUED == ret)
682 ret = wait_on_sync_kiocb(&iocb);
683 return ret;
684 }
685
686 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
687 struct kvec *vec, size_t num, size_t size)
688 {
689 mm_segment_t oldfs = get_fs();
690 int result;
691
692 set_fs(KERNEL_DS);
693 /*
694 * the following is safe, since for compiler definitions of kvec and
695 * iovec are identical, yielding the same in-core layout and alignment
696 */
697 msg->msg_iov = (struct iovec *)vec;
698 msg->msg_iovlen = num;
699 result = sock_sendmsg(sock, msg, size);
700 set_fs(oldfs);
701 return result;
702 }
703 EXPORT_SYMBOL(kernel_sendmsg);
704
705 /*
706 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
707 */
708 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
709 struct sk_buff *skb)
710 {
711 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
712 struct scm_timestamping tss;
713 int empty = 1;
714 struct skb_shared_hwtstamps *shhwtstamps =
715 skb_hwtstamps(skb);
716
717 /* Race occurred between timestamp enabling and packet
718 receiving. Fill in the current time for now. */
719 if (need_software_tstamp && skb->tstamp.tv64 == 0)
720 __net_timestamp(skb);
721
722 if (need_software_tstamp) {
723 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
724 struct timeval tv;
725 skb_get_timestamp(skb, &tv);
726 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
727 sizeof(tv), &tv);
728 } else {
729 struct timespec ts;
730 skb_get_timestampns(skb, &ts);
731 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
732 sizeof(ts), &ts);
733 }
734 }
735
736 memset(&tss, 0, sizeof(tss));
737 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE ||
738 skb_shinfo(skb)->tx_flags & SKBTX_ANY_SW_TSTAMP) &&
739 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
740 empty = 0;
741 if (shhwtstamps &&
742 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
743 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
744 empty = 0;
745 if (!empty)
746 put_cmsg(msg, SOL_SOCKET,
747 SCM_TIMESTAMPING, sizeof(tss), &tss);
748 }
749 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
750
751 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
752 struct sk_buff *skb)
753 {
754 int ack;
755
756 if (!sock_flag(sk, SOCK_WIFI_STATUS))
757 return;
758 if (!skb->wifi_acked_valid)
759 return;
760
761 ack = skb->wifi_acked;
762
763 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
764 }
765 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
766
767 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
768 struct sk_buff *skb)
769 {
770 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
771 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
772 sizeof(__u32), &skb->dropcount);
773 }
774
775 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
776 struct sk_buff *skb)
777 {
778 sock_recv_timestamp(msg, sk, skb);
779 sock_recv_drops(msg, sk, skb);
780 }
781 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
782
783 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
784 struct msghdr *msg, size_t size, int flags)
785 {
786 struct sock_iocb *si = kiocb_to_siocb(iocb);
787
788 si->sock = sock;
789 si->scm = NULL;
790 si->msg = msg;
791 si->size = size;
792 si->flags = flags;
793
794 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
795 }
796
797 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
798 struct msghdr *msg, size_t size, int flags)
799 {
800 int err = security_socket_recvmsg(sock, msg, size, flags);
801
802 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
803 }
804
805 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
806 size_t size, int flags)
807 {
808 struct kiocb iocb;
809 struct sock_iocb siocb;
810 int ret;
811
812 init_sync_kiocb(&iocb, NULL);
813 iocb.private = &siocb;
814 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
815 if (-EIOCBQUEUED == ret)
816 ret = wait_on_sync_kiocb(&iocb);
817 return ret;
818 }
819 EXPORT_SYMBOL(sock_recvmsg);
820
821 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
822 size_t size, int flags)
823 {
824 struct kiocb iocb;
825 struct sock_iocb siocb;
826 int ret;
827
828 init_sync_kiocb(&iocb, NULL);
829 iocb.private = &siocb;
830 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
831 if (-EIOCBQUEUED == ret)
832 ret = wait_on_sync_kiocb(&iocb);
833 return ret;
834 }
835
836 /**
837 * kernel_recvmsg - Receive a message from a socket (kernel space)
838 * @sock: The socket to receive the message from
839 * @msg: Received message
840 * @vec: Input s/g array for message data
841 * @num: Size of input s/g array
842 * @size: Number of bytes to read
843 * @flags: Message flags (MSG_DONTWAIT, etc...)
844 *
845 * On return the msg structure contains the scatter/gather array passed in the
846 * vec argument. The array is modified so that it consists of the unfilled
847 * portion of the original array.
848 *
849 * The returned value is the total number of bytes received, or an error.
850 */
851 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
852 struct kvec *vec, size_t num, size_t size, int flags)
853 {
854 mm_segment_t oldfs = get_fs();
855 int result;
856
857 set_fs(KERNEL_DS);
858 /*
859 * the following is safe, since for compiler definitions of kvec and
860 * iovec are identical, yielding the same in-core layout and alignment
861 */
862 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
863 result = sock_recvmsg(sock, msg, size, flags);
864 set_fs(oldfs);
865 return result;
866 }
867 EXPORT_SYMBOL(kernel_recvmsg);
868
869 static ssize_t sock_sendpage(struct file *file, struct page *page,
870 int offset, size_t size, loff_t *ppos, int more)
871 {
872 struct socket *sock;
873 int flags;
874
875 sock = file->private_data;
876
877 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
878 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
879 flags |= more;
880
881 return kernel_sendpage(sock, page, offset, size, flags);
882 }
883
884 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
885 struct pipe_inode_info *pipe, size_t len,
886 unsigned int flags)
887 {
888 struct socket *sock = file->private_data;
889
890 if (unlikely(!sock->ops->splice_read))
891 return -EINVAL;
892
893 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
894 }
895
896 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
897 struct sock_iocb *siocb)
898 {
899 if (!is_sync_kiocb(iocb))
900 BUG();
901
902 siocb->kiocb = iocb;
903 iocb->private = siocb;
904 return siocb;
905 }
906
907 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
908 struct file *file, const struct iovec *iov,
909 unsigned long nr_segs)
910 {
911 struct socket *sock = file->private_data;
912 size_t size = 0;
913 int i;
914
915 for (i = 0; i < nr_segs; i++)
916 size += iov[i].iov_len;
917
918 msg->msg_name = NULL;
919 msg->msg_namelen = 0;
920 msg->msg_control = NULL;
921 msg->msg_controllen = 0;
922 msg->msg_iov = (struct iovec *)iov;
923 msg->msg_iovlen = nr_segs;
924 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
925
926 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
927 }
928
929 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
930 unsigned long nr_segs, loff_t pos)
931 {
932 struct sock_iocb siocb, *x;
933
934 if (pos != 0)
935 return -ESPIPE;
936
937 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
938 return 0;
939
940
941 x = alloc_sock_iocb(iocb, &siocb);
942 if (!x)
943 return -ENOMEM;
944 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
945 }
946
947 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
948 struct file *file, const struct iovec *iov,
949 unsigned long nr_segs)
950 {
951 struct socket *sock = file->private_data;
952 size_t size = 0;
953 int i;
954
955 for (i = 0; i < nr_segs; i++)
956 size += iov[i].iov_len;
957
958 msg->msg_name = NULL;
959 msg->msg_namelen = 0;
960 msg->msg_control = NULL;
961 msg->msg_controllen = 0;
962 msg->msg_iov = (struct iovec *)iov;
963 msg->msg_iovlen = nr_segs;
964 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
965 if (sock->type == SOCK_SEQPACKET)
966 msg->msg_flags |= MSG_EOR;
967
968 return __sock_sendmsg(iocb, sock, msg, size);
969 }
970
971 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
972 unsigned long nr_segs, loff_t pos)
973 {
974 struct sock_iocb siocb, *x;
975
976 if (pos != 0)
977 return -ESPIPE;
978
979 x = alloc_sock_iocb(iocb, &siocb);
980 if (!x)
981 return -ENOMEM;
982
983 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
984 }
985
986 /*
987 * Atomic setting of ioctl hooks to avoid race
988 * with module unload.
989 */
990
991 static DEFINE_MUTEX(br_ioctl_mutex);
992 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
993
994 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
995 {
996 mutex_lock(&br_ioctl_mutex);
997 br_ioctl_hook = hook;
998 mutex_unlock(&br_ioctl_mutex);
999 }
1000 EXPORT_SYMBOL(brioctl_set);
1001
1002 static DEFINE_MUTEX(vlan_ioctl_mutex);
1003 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1004
1005 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1006 {
1007 mutex_lock(&vlan_ioctl_mutex);
1008 vlan_ioctl_hook = hook;
1009 mutex_unlock(&vlan_ioctl_mutex);
1010 }
1011 EXPORT_SYMBOL(vlan_ioctl_set);
1012
1013 static DEFINE_MUTEX(dlci_ioctl_mutex);
1014 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1015
1016 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1017 {
1018 mutex_lock(&dlci_ioctl_mutex);
1019 dlci_ioctl_hook = hook;
1020 mutex_unlock(&dlci_ioctl_mutex);
1021 }
1022 EXPORT_SYMBOL(dlci_ioctl_set);
1023
1024 static long sock_do_ioctl(struct net *net, struct socket *sock,
1025 unsigned int cmd, unsigned long arg)
1026 {
1027 int err;
1028 void __user *argp = (void __user *)arg;
1029
1030 err = sock->ops->ioctl(sock, cmd, arg);
1031
1032 /*
1033 * If this ioctl is unknown try to hand it down
1034 * to the NIC driver.
1035 */
1036 if (err == -ENOIOCTLCMD)
1037 err = dev_ioctl(net, cmd, argp);
1038
1039 return err;
1040 }
1041
1042 /*
1043 * With an ioctl, arg may well be a user mode pointer, but we don't know
1044 * what to do with it - that's up to the protocol still.
1045 */
1046
1047 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1048 {
1049 struct socket *sock;
1050 struct sock *sk;
1051 void __user *argp = (void __user *)arg;
1052 int pid, err;
1053 struct net *net;
1054
1055 sock = file->private_data;
1056 sk = sock->sk;
1057 net = sock_net(sk);
1058 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1059 err = dev_ioctl(net, cmd, argp);
1060 } else
1061 #ifdef CONFIG_WEXT_CORE
1062 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1063 err = dev_ioctl(net, cmd, argp);
1064 } else
1065 #endif
1066 switch (cmd) {
1067 case FIOSETOWN:
1068 case SIOCSPGRP:
1069 err = -EFAULT;
1070 if (get_user(pid, (int __user *)argp))
1071 break;
1072 err = f_setown(sock->file, pid, 1);
1073 break;
1074 case FIOGETOWN:
1075 case SIOCGPGRP:
1076 err = put_user(f_getown(sock->file),
1077 (int __user *)argp);
1078 break;
1079 case SIOCGIFBR:
1080 case SIOCSIFBR:
1081 case SIOCBRADDBR:
1082 case SIOCBRDELBR:
1083 err = -ENOPKG;
1084 if (!br_ioctl_hook)
1085 request_module("bridge");
1086
1087 mutex_lock(&br_ioctl_mutex);
1088 if (br_ioctl_hook)
1089 err = br_ioctl_hook(net, cmd, argp);
1090 mutex_unlock(&br_ioctl_mutex);
1091 break;
1092 case SIOCGIFVLAN:
1093 case SIOCSIFVLAN:
1094 err = -ENOPKG;
1095 if (!vlan_ioctl_hook)
1096 request_module("8021q");
1097
1098 mutex_lock(&vlan_ioctl_mutex);
1099 if (vlan_ioctl_hook)
1100 err = vlan_ioctl_hook(net, argp);
1101 mutex_unlock(&vlan_ioctl_mutex);
1102 break;
1103 case SIOCADDDLCI:
1104 case SIOCDELDLCI:
1105 err = -ENOPKG;
1106 if (!dlci_ioctl_hook)
1107 request_module("dlci");
1108
1109 mutex_lock(&dlci_ioctl_mutex);
1110 if (dlci_ioctl_hook)
1111 err = dlci_ioctl_hook(cmd, argp);
1112 mutex_unlock(&dlci_ioctl_mutex);
1113 break;
1114 default:
1115 err = sock_do_ioctl(net, sock, cmd, arg);
1116 break;
1117 }
1118 return err;
1119 }
1120
1121 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1122 {
1123 int err;
1124 struct socket *sock = NULL;
1125
1126 err = security_socket_create(family, type, protocol, 1);
1127 if (err)
1128 goto out;
1129
1130 sock = sock_alloc();
1131 if (!sock) {
1132 err = -ENOMEM;
1133 goto out;
1134 }
1135
1136 sock->type = type;
1137 err = security_socket_post_create(sock, family, type, protocol, 1);
1138 if (err)
1139 goto out_release;
1140
1141 out:
1142 *res = sock;
1143 return err;
1144 out_release:
1145 sock_release(sock);
1146 sock = NULL;
1147 goto out;
1148 }
1149 EXPORT_SYMBOL(sock_create_lite);
1150
1151 /* No kernel lock held - perfect */
1152 static unsigned int sock_poll(struct file *file, poll_table *wait)
1153 {
1154 unsigned int busy_flag = 0;
1155 struct socket *sock;
1156
1157 /*
1158 * We can't return errors to poll, so it's either yes or no.
1159 */
1160 sock = file->private_data;
1161
1162 if (sk_can_busy_loop(sock->sk)) {
1163 /* this socket can poll_ll so tell the system call */
1164 busy_flag = POLL_BUSY_LOOP;
1165
1166 /* once, only if requested by syscall */
1167 if (wait && (wait->_key & POLL_BUSY_LOOP))
1168 sk_busy_loop(sock->sk, 1);
1169 }
1170
1171 return busy_flag | sock->ops->poll(file, sock, wait);
1172 }
1173
1174 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1175 {
1176 struct socket *sock = file->private_data;
1177
1178 return sock->ops->mmap(file, sock, vma);
1179 }
1180
1181 static int sock_close(struct inode *inode, struct file *filp)
1182 {
1183 sock_release(SOCKET_I(inode));
1184 return 0;
1185 }
1186
1187 /*
1188 * Update the socket async list
1189 *
1190 * Fasync_list locking strategy.
1191 *
1192 * 1. fasync_list is modified only under process context socket lock
1193 * i.e. under semaphore.
1194 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1195 * or under socket lock
1196 */
1197
1198 static int sock_fasync(int fd, struct file *filp, int on)
1199 {
1200 struct socket *sock = filp->private_data;
1201 struct sock *sk = sock->sk;
1202 struct socket_wq *wq;
1203
1204 if (sk == NULL)
1205 return -EINVAL;
1206
1207 lock_sock(sk);
1208 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1209 fasync_helper(fd, filp, on, &wq->fasync_list);
1210
1211 if (!wq->fasync_list)
1212 sock_reset_flag(sk, SOCK_FASYNC);
1213 else
1214 sock_set_flag(sk, SOCK_FASYNC);
1215
1216 release_sock(sk);
1217 return 0;
1218 }
1219
1220 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1221
1222 int sock_wake_async(struct socket *sock, int how, int band)
1223 {
1224 struct socket_wq *wq;
1225
1226 if (!sock)
1227 return -1;
1228 rcu_read_lock();
1229 wq = rcu_dereference(sock->wq);
1230 if (!wq || !wq->fasync_list) {
1231 rcu_read_unlock();
1232 return -1;
1233 }
1234 switch (how) {
1235 case SOCK_WAKE_WAITD:
1236 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1237 break;
1238 goto call_kill;
1239 case SOCK_WAKE_SPACE:
1240 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1241 break;
1242 /* fall through */
1243 case SOCK_WAKE_IO:
1244 call_kill:
1245 kill_fasync(&wq->fasync_list, SIGIO, band);
1246 break;
1247 case SOCK_WAKE_URG:
1248 kill_fasync(&wq->fasync_list, SIGURG, band);
1249 }
1250 rcu_read_unlock();
1251 return 0;
1252 }
1253 EXPORT_SYMBOL(sock_wake_async);
1254
1255 int __sock_create(struct net *net, int family, int type, int protocol,
1256 struct socket **res, int kern)
1257 {
1258 int err;
1259 struct socket *sock;
1260 const struct net_proto_family *pf;
1261
1262 /*
1263 * Check protocol is in range
1264 */
1265 if (family < 0 || family >= NPROTO)
1266 return -EAFNOSUPPORT;
1267 if (type < 0 || type >= SOCK_MAX)
1268 return -EINVAL;
1269
1270 /* Compatibility.
1271
1272 This uglymoron is moved from INET layer to here to avoid
1273 deadlock in module load.
1274 */
1275 if (family == PF_INET && type == SOCK_PACKET) {
1276 static int warned;
1277 if (!warned) {
1278 warned = 1;
1279 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1280 current->comm);
1281 }
1282 family = PF_PACKET;
1283 }
1284
1285 err = security_socket_create(family, type, protocol, kern);
1286 if (err)
1287 return err;
1288
1289 /*
1290 * Allocate the socket and allow the family to set things up. if
1291 * the protocol is 0, the family is instructed to select an appropriate
1292 * default.
1293 */
1294 sock = sock_alloc();
1295 if (!sock) {
1296 net_warn_ratelimited("socket: no more sockets\n");
1297 return -ENFILE; /* Not exactly a match, but its the
1298 closest posix thing */
1299 }
1300
1301 sock->type = type;
1302
1303 #ifdef CONFIG_MODULES
1304 /* Attempt to load a protocol module if the find failed.
1305 *
1306 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1307 * requested real, full-featured networking support upon configuration.
1308 * Otherwise module support will break!
1309 */
1310 if (rcu_access_pointer(net_families[family]) == NULL)
1311 request_module("net-pf-%d", family);
1312 #endif
1313
1314 rcu_read_lock();
1315 pf = rcu_dereference(net_families[family]);
1316 err = -EAFNOSUPPORT;
1317 if (!pf)
1318 goto out_release;
1319
1320 /*
1321 * We will call the ->create function, that possibly is in a loadable
1322 * module, so we have to bump that loadable module refcnt first.
1323 */
1324 if (!try_module_get(pf->owner))
1325 goto out_release;
1326
1327 /* Now protected by module ref count */
1328 rcu_read_unlock();
1329
1330 err = pf->create(net, sock, protocol, kern);
1331 if (err < 0)
1332 goto out_module_put;
1333
1334 /*
1335 * Now to bump the refcnt of the [loadable] module that owns this
1336 * socket at sock_release time we decrement its refcnt.
1337 */
1338 if (!try_module_get(sock->ops->owner))
1339 goto out_module_busy;
1340
1341 /*
1342 * Now that we're done with the ->create function, the [loadable]
1343 * module can have its refcnt decremented
1344 */
1345 module_put(pf->owner);
1346 err = security_socket_post_create(sock, family, type, protocol, kern);
1347 if (err)
1348 goto out_sock_release;
1349 *res = sock;
1350
1351 return 0;
1352
1353 out_module_busy:
1354 err = -EAFNOSUPPORT;
1355 out_module_put:
1356 sock->ops = NULL;
1357 module_put(pf->owner);
1358 out_sock_release:
1359 sock_release(sock);
1360 return err;
1361
1362 out_release:
1363 rcu_read_unlock();
1364 goto out_sock_release;
1365 }
1366 EXPORT_SYMBOL(__sock_create);
1367
1368 int sock_create(int family, int type, int protocol, struct socket **res)
1369 {
1370 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1371 }
1372 EXPORT_SYMBOL(sock_create);
1373
1374 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1375 {
1376 return __sock_create(&init_net, family, type, protocol, res, 1);
1377 }
1378 EXPORT_SYMBOL(sock_create_kern);
1379
1380 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1381 {
1382 int retval;
1383 struct socket *sock;
1384 int flags;
1385
1386 /* Check the SOCK_* constants for consistency. */
1387 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1388 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1389 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1390 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1391
1392 flags = type & ~SOCK_TYPE_MASK;
1393 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1394 return -EINVAL;
1395 type &= SOCK_TYPE_MASK;
1396
1397 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1398 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1399
1400 retval = sock_create(family, type, protocol, &sock);
1401 if (retval < 0)
1402 goto out;
1403
1404 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1405 if (retval < 0)
1406 goto out_release;
1407
1408 out:
1409 /* It may be already another descriptor 8) Not kernel problem. */
1410 return retval;
1411
1412 out_release:
1413 sock_release(sock);
1414 return retval;
1415 }
1416
1417 /*
1418 * Create a pair of connected sockets.
1419 */
1420
1421 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1422 int __user *, usockvec)
1423 {
1424 struct socket *sock1, *sock2;
1425 int fd1, fd2, err;
1426 struct file *newfile1, *newfile2;
1427 int flags;
1428
1429 flags = type & ~SOCK_TYPE_MASK;
1430 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1431 return -EINVAL;
1432 type &= SOCK_TYPE_MASK;
1433
1434 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1435 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1436
1437 /*
1438 * Obtain the first socket and check if the underlying protocol
1439 * supports the socketpair call.
1440 */
1441
1442 err = sock_create(family, type, protocol, &sock1);
1443 if (err < 0)
1444 goto out;
1445
1446 err = sock_create(family, type, protocol, &sock2);
1447 if (err < 0)
1448 goto out_release_1;
1449
1450 err = sock1->ops->socketpair(sock1, sock2);
1451 if (err < 0)
1452 goto out_release_both;
1453
1454 fd1 = get_unused_fd_flags(flags);
1455 if (unlikely(fd1 < 0)) {
1456 err = fd1;
1457 goto out_release_both;
1458 }
1459
1460 fd2 = get_unused_fd_flags(flags);
1461 if (unlikely(fd2 < 0)) {
1462 err = fd2;
1463 goto out_put_unused_1;
1464 }
1465
1466 newfile1 = sock_alloc_file(sock1, flags, NULL);
1467 if (unlikely(IS_ERR(newfile1))) {
1468 err = PTR_ERR(newfile1);
1469 goto out_put_unused_both;
1470 }
1471
1472 newfile2 = sock_alloc_file(sock2, flags, NULL);
1473 if (IS_ERR(newfile2)) {
1474 err = PTR_ERR(newfile2);
1475 goto out_fput_1;
1476 }
1477
1478 err = put_user(fd1, &usockvec[0]);
1479 if (err)
1480 goto out_fput_both;
1481
1482 err = put_user(fd2, &usockvec[1]);
1483 if (err)
1484 goto out_fput_both;
1485
1486 audit_fd_pair(fd1, fd2);
1487
1488 fd_install(fd1, newfile1);
1489 fd_install(fd2, newfile2);
1490 /* fd1 and fd2 may be already another descriptors.
1491 * Not kernel problem.
1492 */
1493
1494 return 0;
1495
1496 out_fput_both:
1497 fput(newfile2);
1498 fput(newfile1);
1499 put_unused_fd(fd2);
1500 put_unused_fd(fd1);
1501 goto out;
1502
1503 out_fput_1:
1504 fput(newfile1);
1505 put_unused_fd(fd2);
1506 put_unused_fd(fd1);
1507 sock_release(sock2);
1508 goto out;
1509
1510 out_put_unused_both:
1511 put_unused_fd(fd2);
1512 out_put_unused_1:
1513 put_unused_fd(fd1);
1514 out_release_both:
1515 sock_release(sock2);
1516 out_release_1:
1517 sock_release(sock1);
1518 out:
1519 return err;
1520 }
1521
1522 /*
1523 * Bind a name to a socket. Nothing much to do here since it's
1524 * the protocol's responsibility to handle the local address.
1525 *
1526 * We move the socket address to kernel space before we call
1527 * the protocol layer (having also checked the address is ok).
1528 */
1529
1530 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1531 {
1532 struct socket *sock;
1533 struct sockaddr_storage address;
1534 int err, fput_needed;
1535
1536 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1537 if (sock) {
1538 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1539 if (err >= 0) {
1540 err = security_socket_bind(sock,
1541 (struct sockaddr *)&address,
1542 addrlen);
1543 if (!err)
1544 err = sock->ops->bind(sock,
1545 (struct sockaddr *)
1546 &address, addrlen);
1547 }
1548 fput_light(sock->file, fput_needed);
1549 }
1550 return err;
1551 }
1552
1553 /*
1554 * Perform a listen. Basically, we allow the protocol to do anything
1555 * necessary for a listen, and if that works, we mark the socket as
1556 * ready for listening.
1557 */
1558
1559 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1560 {
1561 struct socket *sock;
1562 int err, fput_needed;
1563 int somaxconn;
1564
1565 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1566 if (sock) {
1567 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1568 if ((unsigned int)backlog > somaxconn)
1569 backlog = somaxconn;
1570
1571 err = security_socket_listen(sock, backlog);
1572 if (!err)
1573 err = sock->ops->listen(sock, backlog);
1574
1575 fput_light(sock->file, fput_needed);
1576 }
1577 return err;
1578 }
1579
1580 /*
1581 * For accept, we attempt to create a new socket, set up the link
1582 * with the client, wake up the client, then return the new
1583 * connected fd. We collect the address of the connector in kernel
1584 * space and move it to user at the very end. This is unclean because
1585 * we open the socket then return an error.
1586 *
1587 * 1003.1g adds the ability to recvmsg() to query connection pending
1588 * status to recvmsg. We need to add that support in a way thats
1589 * clean when we restucture accept also.
1590 */
1591
1592 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1593 int __user *, upeer_addrlen, int, flags)
1594 {
1595 struct socket *sock, *newsock;
1596 struct file *newfile;
1597 int err, len, newfd, fput_needed;
1598 struct sockaddr_storage address;
1599
1600 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1601 return -EINVAL;
1602
1603 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1604 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1605
1606 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1607 if (!sock)
1608 goto out;
1609
1610 err = -ENFILE;
1611 newsock = sock_alloc();
1612 if (!newsock)
1613 goto out_put;
1614
1615 newsock->type = sock->type;
1616 newsock->ops = sock->ops;
1617
1618 /*
1619 * We don't need try_module_get here, as the listening socket (sock)
1620 * has the protocol module (sock->ops->owner) held.
1621 */
1622 __module_get(newsock->ops->owner);
1623
1624 newfd = get_unused_fd_flags(flags);
1625 if (unlikely(newfd < 0)) {
1626 err = newfd;
1627 sock_release(newsock);
1628 goto out_put;
1629 }
1630 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1631 if (unlikely(IS_ERR(newfile))) {
1632 err = PTR_ERR(newfile);
1633 put_unused_fd(newfd);
1634 sock_release(newsock);
1635 goto out_put;
1636 }
1637
1638 err = security_socket_accept(sock, newsock);
1639 if (err)
1640 goto out_fd;
1641
1642 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1643 if (err < 0)
1644 goto out_fd;
1645
1646 if (upeer_sockaddr) {
1647 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1648 &len, 2) < 0) {
1649 err = -ECONNABORTED;
1650 goto out_fd;
1651 }
1652 err = move_addr_to_user(&address,
1653 len, upeer_sockaddr, upeer_addrlen);
1654 if (err < 0)
1655 goto out_fd;
1656 }
1657
1658 /* File flags are not inherited via accept() unlike another OSes. */
1659
1660 fd_install(newfd, newfile);
1661 err = newfd;
1662
1663 out_put:
1664 fput_light(sock->file, fput_needed);
1665 out:
1666 return err;
1667 out_fd:
1668 fput(newfile);
1669 put_unused_fd(newfd);
1670 goto out_put;
1671 }
1672
1673 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1674 int __user *, upeer_addrlen)
1675 {
1676 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1677 }
1678
1679 /*
1680 * Attempt to connect to a socket with the server address. The address
1681 * is in user space so we verify it is OK and move it to kernel space.
1682 *
1683 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1684 * break bindings
1685 *
1686 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1687 * other SEQPACKET protocols that take time to connect() as it doesn't
1688 * include the -EINPROGRESS status for such sockets.
1689 */
1690
1691 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1692 int, addrlen)
1693 {
1694 struct socket *sock;
1695 struct sockaddr_storage address;
1696 int err, fput_needed;
1697
1698 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1699 if (!sock)
1700 goto out;
1701 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1702 if (err < 0)
1703 goto out_put;
1704
1705 err =
1706 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1707 if (err)
1708 goto out_put;
1709
1710 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1711 sock->file->f_flags);
1712 out_put:
1713 fput_light(sock->file, fput_needed);
1714 out:
1715 return err;
1716 }
1717
1718 /*
1719 * Get the local address ('name') of a socket object. Move the obtained
1720 * name to user space.
1721 */
1722
1723 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1724 int __user *, usockaddr_len)
1725 {
1726 struct socket *sock;
1727 struct sockaddr_storage address;
1728 int len, err, fput_needed;
1729
1730 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1731 if (!sock)
1732 goto out;
1733
1734 err = security_socket_getsockname(sock);
1735 if (err)
1736 goto out_put;
1737
1738 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1739 if (err)
1740 goto out_put;
1741 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1742
1743 out_put:
1744 fput_light(sock->file, fput_needed);
1745 out:
1746 return err;
1747 }
1748
1749 /*
1750 * Get the remote address ('name') of a socket object. Move the obtained
1751 * name to user space.
1752 */
1753
1754 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1755 int __user *, usockaddr_len)
1756 {
1757 struct socket *sock;
1758 struct sockaddr_storage address;
1759 int len, err, fput_needed;
1760
1761 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1762 if (sock != NULL) {
1763 err = security_socket_getpeername(sock);
1764 if (err) {
1765 fput_light(sock->file, fput_needed);
1766 return err;
1767 }
1768
1769 err =
1770 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1771 1);
1772 if (!err)
1773 err = move_addr_to_user(&address, len, usockaddr,
1774 usockaddr_len);
1775 fput_light(sock->file, fput_needed);
1776 }
1777 return err;
1778 }
1779
1780 /*
1781 * Send a datagram to a given address. We move the address into kernel
1782 * space and check the user space data area is readable before invoking
1783 * the protocol.
1784 */
1785
1786 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1787 unsigned int, flags, struct sockaddr __user *, addr,
1788 int, addr_len)
1789 {
1790 struct socket *sock;
1791 struct sockaddr_storage address;
1792 int err;
1793 struct msghdr msg;
1794 struct iovec iov;
1795 int fput_needed;
1796
1797 if (len > INT_MAX)
1798 len = INT_MAX;
1799 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1800 if (!sock)
1801 goto out;
1802
1803 iov.iov_base = buff;
1804 iov.iov_len = len;
1805 msg.msg_name = NULL;
1806 msg.msg_iov = &iov;
1807 msg.msg_iovlen = 1;
1808 msg.msg_control = NULL;
1809 msg.msg_controllen = 0;
1810 msg.msg_namelen = 0;
1811 if (addr) {
1812 err = move_addr_to_kernel(addr, addr_len, &address);
1813 if (err < 0)
1814 goto out_put;
1815 msg.msg_name = (struct sockaddr *)&address;
1816 msg.msg_namelen = addr_len;
1817 }
1818 if (sock->file->f_flags & O_NONBLOCK)
1819 flags |= MSG_DONTWAIT;
1820 msg.msg_flags = flags;
1821 err = sock_sendmsg(sock, &msg, len);
1822
1823 out_put:
1824 fput_light(sock->file, fput_needed);
1825 out:
1826 return err;
1827 }
1828
1829 /*
1830 * Send a datagram down a socket.
1831 */
1832
1833 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1834 unsigned int, flags)
1835 {
1836 return sys_sendto(fd, buff, len, flags, NULL, 0);
1837 }
1838
1839 /*
1840 * Receive a frame from the socket and optionally record the address of the
1841 * sender. We verify the buffers are writable and if needed move the
1842 * sender address from kernel to user space.
1843 */
1844
1845 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1846 unsigned int, flags, struct sockaddr __user *, addr,
1847 int __user *, addr_len)
1848 {
1849 struct socket *sock;
1850 struct iovec iov;
1851 struct msghdr msg;
1852 struct sockaddr_storage address;
1853 int err, err2;
1854 int fput_needed;
1855
1856 if (size > INT_MAX)
1857 size = INT_MAX;
1858 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1859 if (!sock)
1860 goto out;
1861
1862 msg.msg_control = NULL;
1863 msg.msg_controllen = 0;
1864 msg.msg_iovlen = 1;
1865 msg.msg_iov = &iov;
1866 iov.iov_len = size;
1867 iov.iov_base = ubuf;
1868 /* Save some cycles and don't copy the address if not needed */
1869 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1870 /* We assume all kernel code knows the size of sockaddr_storage */
1871 msg.msg_namelen = 0;
1872 if (sock->file->f_flags & O_NONBLOCK)
1873 flags |= MSG_DONTWAIT;
1874 err = sock_recvmsg(sock, &msg, size, flags);
1875
1876 if (err >= 0 && addr != NULL) {
1877 err2 = move_addr_to_user(&address,
1878 msg.msg_namelen, addr, addr_len);
1879 if (err2 < 0)
1880 err = err2;
1881 }
1882
1883 fput_light(sock->file, fput_needed);
1884 out:
1885 return err;
1886 }
1887
1888 /*
1889 * Receive a datagram from a socket.
1890 */
1891
1892 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1893 unsigned int, flags)
1894 {
1895 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1896 }
1897
1898 /*
1899 * Set a socket option. Because we don't know the option lengths we have
1900 * to pass the user mode parameter for the protocols to sort out.
1901 */
1902
1903 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1904 char __user *, optval, int, optlen)
1905 {
1906 int err, fput_needed;
1907 struct socket *sock;
1908
1909 if (optlen < 0)
1910 return -EINVAL;
1911
1912 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1913 if (sock != NULL) {
1914 err = security_socket_setsockopt(sock, level, optname);
1915 if (err)
1916 goto out_put;
1917
1918 if (level == SOL_SOCKET)
1919 err =
1920 sock_setsockopt(sock, level, optname, optval,
1921 optlen);
1922 else
1923 err =
1924 sock->ops->setsockopt(sock, level, optname, optval,
1925 optlen);
1926 out_put:
1927 fput_light(sock->file, fput_needed);
1928 }
1929 return err;
1930 }
1931
1932 /*
1933 * Get a socket option. Because we don't know the option lengths we have
1934 * to pass a user mode parameter for the protocols to sort out.
1935 */
1936
1937 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1938 char __user *, optval, int __user *, optlen)
1939 {
1940 int err, fput_needed;
1941 struct socket *sock;
1942
1943 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1944 if (sock != NULL) {
1945 err = security_socket_getsockopt(sock, level, optname);
1946 if (err)
1947 goto out_put;
1948
1949 if (level == SOL_SOCKET)
1950 err =
1951 sock_getsockopt(sock, level, optname, optval,
1952 optlen);
1953 else
1954 err =
1955 sock->ops->getsockopt(sock, level, optname, optval,
1956 optlen);
1957 out_put:
1958 fput_light(sock->file, fput_needed);
1959 }
1960 return err;
1961 }
1962
1963 /*
1964 * Shutdown a socket.
1965 */
1966
1967 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1968 {
1969 int err, fput_needed;
1970 struct socket *sock;
1971
1972 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1973 if (sock != NULL) {
1974 err = security_socket_shutdown(sock, how);
1975 if (!err)
1976 err = sock->ops->shutdown(sock, how);
1977 fput_light(sock->file, fput_needed);
1978 }
1979 return err;
1980 }
1981
1982 /* A couple of helpful macros for getting the address of the 32/64 bit
1983 * fields which are the same type (int / unsigned) on our platforms.
1984 */
1985 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1986 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1987 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1988
1989 struct used_address {
1990 struct sockaddr_storage name;
1991 unsigned int name_len;
1992 };
1993
1994 static int copy_msghdr_from_user(struct msghdr *kmsg,
1995 struct msghdr __user *umsg)
1996 {
1997 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1998 return -EFAULT;
1999
2000 if (kmsg->msg_namelen < 0)
2001 return -EINVAL;
2002
2003 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2004 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2005 return 0;
2006 }
2007
2008 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2009 struct msghdr *msg_sys, unsigned int flags,
2010 struct used_address *used_address)
2011 {
2012 struct compat_msghdr __user *msg_compat =
2013 (struct compat_msghdr __user *)msg;
2014 struct sockaddr_storage address;
2015 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2016 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2017 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2018 /* 20 is size of ipv6_pktinfo */
2019 unsigned char *ctl_buf = ctl;
2020 int err, ctl_len, total_len;
2021
2022 err = -EFAULT;
2023 if (MSG_CMSG_COMPAT & flags) {
2024 if (get_compat_msghdr(msg_sys, msg_compat))
2025 return -EFAULT;
2026 } else {
2027 err = copy_msghdr_from_user(msg_sys, msg);
2028 if (err)
2029 return err;
2030 }
2031
2032 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2033 err = -EMSGSIZE;
2034 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2035 goto out;
2036 err = -ENOMEM;
2037 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2038 GFP_KERNEL);
2039 if (!iov)
2040 goto out;
2041 }
2042
2043 /* This will also move the address data into kernel space */
2044 if (MSG_CMSG_COMPAT & flags) {
2045 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2046 } else
2047 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2048 if (err < 0)
2049 goto out_freeiov;
2050 total_len = err;
2051
2052 err = -ENOBUFS;
2053
2054 if (msg_sys->msg_controllen > INT_MAX)
2055 goto out_freeiov;
2056 ctl_len = msg_sys->msg_controllen;
2057 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2058 err =
2059 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2060 sizeof(ctl));
2061 if (err)
2062 goto out_freeiov;
2063 ctl_buf = msg_sys->msg_control;
2064 ctl_len = msg_sys->msg_controllen;
2065 } else if (ctl_len) {
2066 if (ctl_len > sizeof(ctl)) {
2067 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2068 if (ctl_buf == NULL)
2069 goto out_freeiov;
2070 }
2071 err = -EFAULT;
2072 /*
2073 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2074 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2075 * checking falls down on this.
2076 */
2077 if (copy_from_user(ctl_buf,
2078 (void __user __force *)msg_sys->msg_control,
2079 ctl_len))
2080 goto out_freectl;
2081 msg_sys->msg_control = ctl_buf;
2082 }
2083 msg_sys->msg_flags = flags;
2084
2085 if (sock->file->f_flags & O_NONBLOCK)
2086 msg_sys->msg_flags |= MSG_DONTWAIT;
2087 /*
2088 * If this is sendmmsg() and current destination address is same as
2089 * previously succeeded address, omit asking LSM's decision.
2090 * used_address->name_len is initialized to UINT_MAX so that the first
2091 * destination address never matches.
2092 */
2093 if (used_address && msg_sys->msg_name &&
2094 used_address->name_len == msg_sys->msg_namelen &&
2095 !memcmp(&used_address->name, msg_sys->msg_name,
2096 used_address->name_len)) {
2097 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2098 goto out_freectl;
2099 }
2100 err = sock_sendmsg(sock, msg_sys, total_len);
2101 /*
2102 * If this is sendmmsg() and sending to current destination address was
2103 * successful, remember it.
2104 */
2105 if (used_address && err >= 0) {
2106 used_address->name_len = msg_sys->msg_namelen;
2107 if (msg_sys->msg_name)
2108 memcpy(&used_address->name, msg_sys->msg_name,
2109 used_address->name_len);
2110 }
2111
2112 out_freectl:
2113 if (ctl_buf != ctl)
2114 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2115 out_freeiov:
2116 if (iov != iovstack)
2117 kfree(iov);
2118 out:
2119 return err;
2120 }
2121
2122 /*
2123 * BSD sendmsg interface
2124 */
2125
2126 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2127 {
2128 int fput_needed, err;
2129 struct msghdr msg_sys;
2130 struct socket *sock;
2131
2132 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2133 if (!sock)
2134 goto out;
2135
2136 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2137
2138 fput_light(sock->file, fput_needed);
2139 out:
2140 return err;
2141 }
2142
2143 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2144 {
2145 if (flags & MSG_CMSG_COMPAT)
2146 return -EINVAL;
2147 return __sys_sendmsg(fd, msg, flags);
2148 }
2149
2150 /*
2151 * Linux sendmmsg interface
2152 */
2153
2154 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2155 unsigned int flags)
2156 {
2157 int fput_needed, err, datagrams;
2158 struct socket *sock;
2159 struct mmsghdr __user *entry;
2160 struct compat_mmsghdr __user *compat_entry;
2161 struct msghdr msg_sys;
2162 struct used_address used_address;
2163
2164 if (vlen > UIO_MAXIOV)
2165 vlen = UIO_MAXIOV;
2166
2167 datagrams = 0;
2168
2169 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2170 if (!sock)
2171 return err;
2172
2173 used_address.name_len = UINT_MAX;
2174 entry = mmsg;
2175 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2176 err = 0;
2177
2178 while (datagrams < vlen) {
2179 if (MSG_CMSG_COMPAT & flags) {
2180 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2181 &msg_sys, flags, &used_address);
2182 if (err < 0)
2183 break;
2184 err = __put_user(err, &compat_entry->msg_len);
2185 ++compat_entry;
2186 } else {
2187 err = ___sys_sendmsg(sock,
2188 (struct msghdr __user *)entry,
2189 &msg_sys, flags, &used_address);
2190 if (err < 0)
2191 break;
2192 err = put_user(err, &entry->msg_len);
2193 ++entry;
2194 }
2195
2196 if (err)
2197 break;
2198 ++datagrams;
2199 }
2200
2201 fput_light(sock->file, fput_needed);
2202
2203 /* We only return an error if no datagrams were able to be sent */
2204 if (datagrams != 0)
2205 return datagrams;
2206
2207 return err;
2208 }
2209
2210 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2211 unsigned int, vlen, unsigned int, flags)
2212 {
2213 if (flags & MSG_CMSG_COMPAT)
2214 return -EINVAL;
2215 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2216 }
2217
2218 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2219 struct msghdr *msg_sys, unsigned int flags, int nosec)
2220 {
2221 struct compat_msghdr __user *msg_compat =
2222 (struct compat_msghdr __user *)msg;
2223 struct iovec iovstack[UIO_FASTIOV];
2224 struct iovec *iov = iovstack;
2225 unsigned long cmsg_ptr;
2226 int err, total_len, len;
2227
2228 /* kernel mode address */
2229 struct sockaddr_storage addr;
2230
2231 /* user mode address pointers */
2232 struct sockaddr __user *uaddr;
2233 int __user *uaddr_len;
2234
2235 if (MSG_CMSG_COMPAT & flags) {
2236 if (get_compat_msghdr(msg_sys, msg_compat))
2237 return -EFAULT;
2238 } else {
2239 err = copy_msghdr_from_user(msg_sys, msg);
2240 if (err)
2241 return err;
2242 }
2243
2244 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2245 err = -EMSGSIZE;
2246 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2247 goto out;
2248 err = -ENOMEM;
2249 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2250 GFP_KERNEL);
2251 if (!iov)
2252 goto out;
2253 }
2254
2255 /* Save the user-mode address (verify_iovec will change the
2256 * kernel msghdr to use the kernel address space)
2257 */
2258 uaddr = (__force void __user *)msg_sys->msg_name;
2259 uaddr_len = COMPAT_NAMELEN(msg);
2260 if (MSG_CMSG_COMPAT & flags)
2261 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2262 else
2263 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2264 if (err < 0)
2265 goto out_freeiov;
2266 total_len = err;
2267
2268 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2269 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2270
2271 /* We assume all kernel code knows the size of sockaddr_storage */
2272 msg_sys->msg_namelen = 0;
2273
2274 if (sock->file->f_flags & O_NONBLOCK)
2275 flags |= MSG_DONTWAIT;
2276 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2277 total_len, flags);
2278 if (err < 0)
2279 goto out_freeiov;
2280 len = err;
2281
2282 if (uaddr != NULL) {
2283 err = move_addr_to_user(&addr,
2284 msg_sys->msg_namelen, uaddr,
2285 uaddr_len);
2286 if (err < 0)
2287 goto out_freeiov;
2288 }
2289 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2290 COMPAT_FLAGS(msg));
2291 if (err)
2292 goto out_freeiov;
2293 if (MSG_CMSG_COMPAT & flags)
2294 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2295 &msg_compat->msg_controllen);
2296 else
2297 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2298 &msg->msg_controllen);
2299 if (err)
2300 goto out_freeiov;
2301 err = len;
2302
2303 out_freeiov:
2304 if (iov != iovstack)
2305 kfree(iov);
2306 out:
2307 return err;
2308 }
2309
2310 /*
2311 * BSD recvmsg interface
2312 */
2313
2314 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2315 {
2316 int fput_needed, err;
2317 struct msghdr msg_sys;
2318 struct socket *sock;
2319
2320 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2321 if (!sock)
2322 goto out;
2323
2324 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2325
2326 fput_light(sock->file, fput_needed);
2327 out:
2328 return err;
2329 }
2330
2331 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2332 unsigned int, flags)
2333 {
2334 if (flags & MSG_CMSG_COMPAT)
2335 return -EINVAL;
2336 return __sys_recvmsg(fd, msg, flags);
2337 }
2338
2339 /*
2340 * Linux recvmmsg interface
2341 */
2342
2343 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2344 unsigned int flags, struct timespec *timeout)
2345 {
2346 int fput_needed, err, datagrams;
2347 struct socket *sock;
2348 struct mmsghdr __user *entry;
2349 struct compat_mmsghdr __user *compat_entry;
2350 struct msghdr msg_sys;
2351 struct timespec end_time;
2352
2353 if (timeout &&
2354 poll_select_set_timeout(&end_time, timeout->tv_sec,
2355 timeout->tv_nsec))
2356 return -EINVAL;
2357
2358 datagrams = 0;
2359
2360 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2361 if (!sock)
2362 return err;
2363
2364 err = sock_error(sock->sk);
2365 if (err)
2366 goto out_put;
2367
2368 entry = mmsg;
2369 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2370
2371 while (datagrams < vlen) {
2372 /*
2373 * No need to ask LSM for more than the first datagram.
2374 */
2375 if (MSG_CMSG_COMPAT & flags) {
2376 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2377 &msg_sys, flags & ~MSG_WAITFORONE,
2378 datagrams);
2379 if (err < 0)
2380 break;
2381 err = __put_user(err, &compat_entry->msg_len);
2382 ++compat_entry;
2383 } else {
2384 err = ___sys_recvmsg(sock,
2385 (struct msghdr __user *)entry,
2386 &msg_sys, flags & ~MSG_WAITFORONE,
2387 datagrams);
2388 if (err < 0)
2389 break;
2390 err = put_user(err, &entry->msg_len);
2391 ++entry;
2392 }
2393
2394 if (err)
2395 break;
2396 ++datagrams;
2397
2398 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2399 if (flags & MSG_WAITFORONE)
2400 flags |= MSG_DONTWAIT;
2401
2402 if (timeout) {
2403 ktime_get_ts(timeout);
2404 *timeout = timespec_sub(end_time, *timeout);
2405 if (timeout->tv_sec < 0) {
2406 timeout->tv_sec = timeout->tv_nsec = 0;
2407 break;
2408 }
2409
2410 /* Timeout, return less than vlen datagrams */
2411 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2412 break;
2413 }
2414
2415 /* Out of band data, return right away */
2416 if (msg_sys.msg_flags & MSG_OOB)
2417 break;
2418 }
2419
2420 out_put:
2421 fput_light(sock->file, fput_needed);
2422
2423 if (err == 0)
2424 return datagrams;
2425
2426 if (datagrams != 0) {
2427 /*
2428 * We may return less entries than requested (vlen) if the
2429 * sock is non block and there aren't enough datagrams...
2430 */
2431 if (err != -EAGAIN) {
2432 /*
2433 * ... or if recvmsg returns an error after we
2434 * received some datagrams, where we record the
2435 * error to return on the next call or if the
2436 * app asks about it using getsockopt(SO_ERROR).
2437 */
2438 sock->sk->sk_err = -err;
2439 }
2440
2441 return datagrams;
2442 }
2443
2444 return err;
2445 }
2446
2447 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2448 unsigned int, vlen, unsigned int, flags,
2449 struct timespec __user *, timeout)
2450 {
2451 int datagrams;
2452 struct timespec timeout_sys;
2453
2454 if (flags & MSG_CMSG_COMPAT)
2455 return -EINVAL;
2456
2457 if (!timeout)
2458 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2459
2460 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2461 return -EFAULT;
2462
2463 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2464
2465 if (datagrams > 0 &&
2466 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2467 datagrams = -EFAULT;
2468
2469 return datagrams;
2470 }
2471
2472 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2473 /* Argument list sizes for sys_socketcall */
2474 #define AL(x) ((x) * sizeof(unsigned long))
2475 static const unsigned char nargs[21] = {
2476 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2477 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2478 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2479 AL(4), AL(5), AL(4)
2480 };
2481
2482 #undef AL
2483
2484 /*
2485 * System call vectors.
2486 *
2487 * Argument checking cleaned up. Saved 20% in size.
2488 * This function doesn't need to set the kernel lock because
2489 * it is set by the callees.
2490 */
2491
2492 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2493 {
2494 unsigned long a[AUDITSC_ARGS];
2495 unsigned long a0, a1;
2496 int err;
2497 unsigned int len;
2498
2499 if (call < 1 || call > SYS_SENDMMSG)
2500 return -EINVAL;
2501
2502 len = nargs[call];
2503 if (len > sizeof(a))
2504 return -EINVAL;
2505
2506 /* copy_from_user should be SMP safe. */
2507 if (copy_from_user(a, args, len))
2508 return -EFAULT;
2509
2510 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2511 if (err)
2512 return err;
2513
2514 a0 = a[0];
2515 a1 = a[1];
2516
2517 switch (call) {
2518 case SYS_SOCKET:
2519 err = sys_socket(a0, a1, a[2]);
2520 break;
2521 case SYS_BIND:
2522 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2523 break;
2524 case SYS_CONNECT:
2525 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2526 break;
2527 case SYS_LISTEN:
2528 err = sys_listen(a0, a1);
2529 break;
2530 case SYS_ACCEPT:
2531 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2532 (int __user *)a[2], 0);
2533 break;
2534 case SYS_GETSOCKNAME:
2535 err =
2536 sys_getsockname(a0, (struct sockaddr __user *)a1,
2537 (int __user *)a[2]);
2538 break;
2539 case SYS_GETPEERNAME:
2540 err =
2541 sys_getpeername(a0, (struct sockaddr __user *)a1,
2542 (int __user *)a[2]);
2543 break;
2544 case SYS_SOCKETPAIR:
2545 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2546 break;
2547 case SYS_SEND:
2548 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2549 break;
2550 case SYS_SENDTO:
2551 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2552 (struct sockaddr __user *)a[4], a[5]);
2553 break;
2554 case SYS_RECV:
2555 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2556 break;
2557 case SYS_RECVFROM:
2558 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2559 (struct sockaddr __user *)a[4],
2560 (int __user *)a[5]);
2561 break;
2562 case SYS_SHUTDOWN:
2563 err = sys_shutdown(a0, a1);
2564 break;
2565 case SYS_SETSOCKOPT:
2566 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2567 break;
2568 case SYS_GETSOCKOPT:
2569 err =
2570 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2571 (int __user *)a[4]);
2572 break;
2573 case SYS_SENDMSG:
2574 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2575 break;
2576 case SYS_SENDMMSG:
2577 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2578 break;
2579 case SYS_RECVMSG:
2580 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2581 break;
2582 case SYS_RECVMMSG:
2583 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2584 (struct timespec __user *)a[4]);
2585 break;
2586 case SYS_ACCEPT4:
2587 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2588 (int __user *)a[2], a[3]);
2589 break;
2590 default:
2591 err = -EINVAL;
2592 break;
2593 }
2594 return err;
2595 }
2596
2597 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2598
2599 /**
2600 * sock_register - add a socket protocol handler
2601 * @ops: description of protocol
2602 *
2603 * This function is called by a protocol handler that wants to
2604 * advertise its address family, and have it linked into the
2605 * socket interface. The value ops->family coresponds to the
2606 * socket system call protocol family.
2607 */
2608 int sock_register(const struct net_proto_family *ops)
2609 {
2610 int err;
2611
2612 if (ops->family >= NPROTO) {
2613 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2614 return -ENOBUFS;
2615 }
2616
2617 spin_lock(&net_family_lock);
2618 if (rcu_dereference_protected(net_families[ops->family],
2619 lockdep_is_held(&net_family_lock)))
2620 err = -EEXIST;
2621 else {
2622 rcu_assign_pointer(net_families[ops->family], ops);
2623 err = 0;
2624 }
2625 spin_unlock(&net_family_lock);
2626
2627 pr_info("NET: Registered protocol family %d\n", ops->family);
2628 return err;
2629 }
2630 EXPORT_SYMBOL(sock_register);
2631
2632 /**
2633 * sock_unregister - remove a protocol handler
2634 * @family: protocol family to remove
2635 *
2636 * This function is called by a protocol handler that wants to
2637 * remove its address family, and have it unlinked from the
2638 * new socket creation.
2639 *
2640 * If protocol handler is a module, then it can use module reference
2641 * counts to protect against new references. If protocol handler is not
2642 * a module then it needs to provide its own protection in
2643 * the ops->create routine.
2644 */
2645 void sock_unregister(int family)
2646 {
2647 BUG_ON(family < 0 || family >= NPROTO);
2648
2649 spin_lock(&net_family_lock);
2650 RCU_INIT_POINTER(net_families[family], NULL);
2651 spin_unlock(&net_family_lock);
2652
2653 synchronize_rcu();
2654
2655 pr_info("NET: Unregistered protocol family %d\n", family);
2656 }
2657 EXPORT_SYMBOL(sock_unregister);
2658
2659 static int __init sock_init(void)
2660 {
2661 int err;
2662 /*
2663 * Initialize the network sysctl infrastructure.
2664 */
2665 err = net_sysctl_init();
2666 if (err)
2667 goto out;
2668
2669 /*
2670 * Initialize skbuff SLAB cache
2671 */
2672 skb_init();
2673
2674 /*
2675 * Initialize the protocols module.
2676 */
2677
2678 init_inodecache();
2679
2680 err = register_filesystem(&sock_fs_type);
2681 if (err)
2682 goto out_fs;
2683 sock_mnt = kern_mount(&sock_fs_type);
2684 if (IS_ERR(sock_mnt)) {
2685 err = PTR_ERR(sock_mnt);
2686 goto out_mount;
2687 }
2688
2689 /* The real protocol initialization is performed in later initcalls.
2690 */
2691
2692 #ifdef CONFIG_NETFILTER
2693 err = netfilter_init();
2694 if (err)
2695 goto out;
2696 #endif
2697
2698 ptp_classifier_init();
2699
2700 out:
2701 return err;
2702
2703 out_mount:
2704 unregister_filesystem(&sock_fs_type);
2705 out_fs:
2706 goto out;
2707 }
2708
2709 core_initcall(sock_init); /* early initcall */
2710
2711 #ifdef CONFIG_PROC_FS
2712 void socket_seq_show(struct seq_file *seq)
2713 {
2714 int cpu;
2715 int counter = 0;
2716
2717 for_each_possible_cpu(cpu)
2718 counter += per_cpu(sockets_in_use, cpu);
2719
2720 /* It can be negative, by the way. 8) */
2721 if (counter < 0)
2722 counter = 0;
2723
2724 seq_printf(seq, "sockets: used %d\n", counter);
2725 }
2726 #endif /* CONFIG_PROC_FS */
2727
2728 #ifdef CONFIG_COMPAT
2729 static int do_siocgstamp(struct net *net, struct socket *sock,
2730 unsigned int cmd, void __user *up)
2731 {
2732 mm_segment_t old_fs = get_fs();
2733 struct timeval ktv;
2734 int err;
2735
2736 set_fs(KERNEL_DS);
2737 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2738 set_fs(old_fs);
2739 if (!err)
2740 err = compat_put_timeval(&ktv, up);
2741
2742 return err;
2743 }
2744
2745 static int do_siocgstampns(struct net *net, struct socket *sock,
2746 unsigned int cmd, void __user *up)
2747 {
2748 mm_segment_t old_fs = get_fs();
2749 struct timespec kts;
2750 int err;
2751
2752 set_fs(KERNEL_DS);
2753 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2754 set_fs(old_fs);
2755 if (!err)
2756 err = compat_put_timespec(&kts, up);
2757
2758 return err;
2759 }
2760
2761 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2762 {
2763 struct ifreq __user *uifr;
2764 int err;
2765
2766 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2767 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2768 return -EFAULT;
2769
2770 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2771 if (err)
2772 return err;
2773
2774 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2775 return -EFAULT;
2776
2777 return 0;
2778 }
2779
2780 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2781 {
2782 struct compat_ifconf ifc32;
2783 struct ifconf ifc;
2784 struct ifconf __user *uifc;
2785 struct compat_ifreq __user *ifr32;
2786 struct ifreq __user *ifr;
2787 unsigned int i, j;
2788 int err;
2789
2790 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2791 return -EFAULT;
2792
2793 memset(&ifc, 0, sizeof(ifc));
2794 if (ifc32.ifcbuf == 0) {
2795 ifc32.ifc_len = 0;
2796 ifc.ifc_len = 0;
2797 ifc.ifc_req = NULL;
2798 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2799 } else {
2800 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2801 sizeof(struct ifreq);
2802 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2803 ifc.ifc_len = len;
2804 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2805 ifr32 = compat_ptr(ifc32.ifcbuf);
2806 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2807 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2808 return -EFAULT;
2809 ifr++;
2810 ifr32++;
2811 }
2812 }
2813 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2814 return -EFAULT;
2815
2816 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2817 if (err)
2818 return err;
2819
2820 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2821 return -EFAULT;
2822
2823 ifr = ifc.ifc_req;
2824 ifr32 = compat_ptr(ifc32.ifcbuf);
2825 for (i = 0, j = 0;
2826 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2827 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2828 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2829 return -EFAULT;
2830 ifr32++;
2831 ifr++;
2832 }
2833
2834 if (ifc32.ifcbuf == 0) {
2835 /* Translate from 64-bit structure multiple to
2836 * a 32-bit one.
2837 */
2838 i = ifc.ifc_len;
2839 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2840 ifc32.ifc_len = i;
2841 } else {
2842 ifc32.ifc_len = i;
2843 }
2844 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2845 return -EFAULT;
2846
2847 return 0;
2848 }
2849
2850 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2851 {
2852 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2853 bool convert_in = false, convert_out = false;
2854 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2855 struct ethtool_rxnfc __user *rxnfc;
2856 struct ifreq __user *ifr;
2857 u32 rule_cnt = 0, actual_rule_cnt;
2858 u32 ethcmd;
2859 u32 data;
2860 int ret;
2861
2862 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2863 return -EFAULT;
2864
2865 compat_rxnfc = compat_ptr(data);
2866
2867 if (get_user(ethcmd, &compat_rxnfc->cmd))
2868 return -EFAULT;
2869
2870 /* Most ethtool structures are defined without padding.
2871 * Unfortunately struct ethtool_rxnfc is an exception.
2872 */
2873 switch (ethcmd) {
2874 default:
2875 break;
2876 case ETHTOOL_GRXCLSRLALL:
2877 /* Buffer size is variable */
2878 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2879 return -EFAULT;
2880 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2881 return -ENOMEM;
2882 buf_size += rule_cnt * sizeof(u32);
2883 /* fall through */
2884 case ETHTOOL_GRXRINGS:
2885 case ETHTOOL_GRXCLSRLCNT:
2886 case ETHTOOL_GRXCLSRULE:
2887 case ETHTOOL_SRXCLSRLINS:
2888 convert_out = true;
2889 /* fall through */
2890 case ETHTOOL_SRXCLSRLDEL:
2891 buf_size += sizeof(struct ethtool_rxnfc);
2892 convert_in = true;
2893 break;
2894 }
2895
2896 ifr = compat_alloc_user_space(buf_size);
2897 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2898
2899 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2900 return -EFAULT;
2901
2902 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2903 &ifr->ifr_ifru.ifru_data))
2904 return -EFAULT;
2905
2906 if (convert_in) {
2907 /* We expect there to be holes between fs.m_ext and
2908 * fs.ring_cookie and at the end of fs, but nowhere else.
2909 */
2910 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2911 sizeof(compat_rxnfc->fs.m_ext) !=
2912 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2913 sizeof(rxnfc->fs.m_ext));
2914 BUILD_BUG_ON(
2915 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2916 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2917 offsetof(struct ethtool_rxnfc, fs.location) -
2918 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2919
2920 if (copy_in_user(rxnfc, compat_rxnfc,
2921 (void __user *)(&rxnfc->fs.m_ext + 1) -
2922 (void __user *)rxnfc) ||
2923 copy_in_user(&rxnfc->fs.ring_cookie,
2924 &compat_rxnfc->fs.ring_cookie,
2925 (void __user *)(&rxnfc->fs.location + 1) -
2926 (void __user *)&rxnfc->fs.ring_cookie) ||
2927 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2928 sizeof(rxnfc->rule_cnt)))
2929 return -EFAULT;
2930 }
2931
2932 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2933 if (ret)
2934 return ret;
2935
2936 if (convert_out) {
2937 if (copy_in_user(compat_rxnfc, rxnfc,
2938 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2939 (const void __user *)rxnfc) ||
2940 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2941 &rxnfc->fs.ring_cookie,
2942 (const void __user *)(&rxnfc->fs.location + 1) -
2943 (const void __user *)&rxnfc->fs.ring_cookie) ||
2944 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2945 sizeof(rxnfc->rule_cnt)))
2946 return -EFAULT;
2947
2948 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2949 /* As an optimisation, we only copy the actual
2950 * number of rules that the underlying
2951 * function returned. Since Mallory might
2952 * change the rule count in user memory, we
2953 * check that it is less than the rule count
2954 * originally given (as the user buffer size),
2955 * which has been range-checked.
2956 */
2957 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2958 return -EFAULT;
2959 if (actual_rule_cnt < rule_cnt)
2960 rule_cnt = actual_rule_cnt;
2961 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2962 &rxnfc->rule_locs[0],
2963 rule_cnt * sizeof(u32)))
2964 return -EFAULT;
2965 }
2966 }
2967
2968 return 0;
2969 }
2970
2971 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2972 {
2973 void __user *uptr;
2974 compat_uptr_t uptr32;
2975 struct ifreq __user *uifr;
2976
2977 uifr = compat_alloc_user_space(sizeof(*uifr));
2978 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2979 return -EFAULT;
2980
2981 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2982 return -EFAULT;
2983
2984 uptr = compat_ptr(uptr32);
2985
2986 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2987 return -EFAULT;
2988
2989 return dev_ioctl(net, SIOCWANDEV, uifr);
2990 }
2991
2992 static int bond_ioctl(struct net *net, unsigned int cmd,
2993 struct compat_ifreq __user *ifr32)
2994 {
2995 struct ifreq kifr;
2996 mm_segment_t old_fs;
2997 int err;
2998
2999 switch (cmd) {
3000 case SIOCBONDENSLAVE:
3001 case SIOCBONDRELEASE:
3002 case SIOCBONDSETHWADDR:
3003 case SIOCBONDCHANGEACTIVE:
3004 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
3005 return -EFAULT;
3006
3007 old_fs = get_fs();
3008 set_fs(KERNEL_DS);
3009 err = dev_ioctl(net, cmd,
3010 (struct ifreq __user __force *) &kifr);
3011 set_fs(old_fs);
3012
3013 return err;
3014 default:
3015 return -ENOIOCTLCMD;
3016 }
3017 }
3018
3019 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3020 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3021 struct compat_ifreq __user *u_ifreq32)
3022 {
3023 struct ifreq __user *u_ifreq64;
3024 char tmp_buf[IFNAMSIZ];
3025 void __user *data64;
3026 u32 data32;
3027
3028 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3029 IFNAMSIZ))
3030 return -EFAULT;
3031 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3032 return -EFAULT;
3033 data64 = compat_ptr(data32);
3034
3035 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3036
3037 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3038 IFNAMSIZ))
3039 return -EFAULT;
3040 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3041 return -EFAULT;
3042
3043 return dev_ioctl(net, cmd, u_ifreq64);
3044 }
3045
3046 static int dev_ifsioc(struct net *net, struct socket *sock,
3047 unsigned int cmd, struct compat_ifreq __user *uifr32)
3048 {
3049 struct ifreq __user *uifr;
3050 int err;
3051
3052 uifr = compat_alloc_user_space(sizeof(*uifr));
3053 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3054 return -EFAULT;
3055
3056 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3057
3058 if (!err) {
3059 switch (cmd) {
3060 case SIOCGIFFLAGS:
3061 case SIOCGIFMETRIC:
3062 case SIOCGIFMTU:
3063 case SIOCGIFMEM:
3064 case SIOCGIFHWADDR:
3065 case SIOCGIFINDEX:
3066 case SIOCGIFADDR:
3067 case SIOCGIFBRDADDR:
3068 case SIOCGIFDSTADDR:
3069 case SIOCGIFNETMASK:
3070 case SIOCGIFPFLAGS:
3071 case SIOCGIFTXQLEN:
3072 case SIOCGMIIPHY:
3073 case SIOCGMIIREG:
3074 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3075 err = -EFAULT;
3076 break;
3077 }
3078 }
3079 return err;
3080 }
3081
3082 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3083 struct compat_ifreq __user *uifr32)
3084 {
3085 struct ifreq ifr;
3086 struct compat_ifmap __user *uifmap32;
3087 mm_segment_t old_fs;
3088 int err;
3089
3090 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3091 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3092 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3093 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3094 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3095 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3096 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3097 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3098 if (err)
3099 return -EFAULT;
3100
3101 old_fs = get_fs();
3102 set_fs(KERNEL_DS);
3103 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3104 set_fs(old_fs);
3105
3106 if (cmd == SIOCGIFMAP && !err) {
3107 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3108 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3109 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3110 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3111 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3112 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3113 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3114 if (err)
3115 err = -EFAULT;
3116 }
3117 return err;
3118 }
3119
3120 struct rtentry32 {
3121 u32 rt_pad1;
3122 struct sockaddr rt_dst; /* target address */
3123 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3124 struct sockaddr rt_genmask; /* target network mask (IP) */
3125 unsigned short rt_flags;
3126 short rt_pad2;
3127 u32 rt_pad3;
3128 unsigned char rt_tos;
3129 unsigned char rt_class;
3130 short rt_pad4;
3131 short rt_metric; /* +1 for binary compatibility! */
3132 /* char * */ u32 rt_dev; /* forcing the device at add */
3133 u32 rt_mtu; /* per route MTU/Window */
3134 u32 rt_window; /* Window clamping */
3135 unsigned short rt_irtt; /* Initial RTT */
3136 };
3137
3138 struct in6_rtmsg32 {
3139 struct in6_addr rtmsg_dst;
3140 struct in6_addr rtmsg_src;
3141 struct in6_addr rtmsg_gateway;
3142 u32 rtmsg_type;
3143 u16 rtmsg_dst_len;
3144 u16 rtmsg_src_len;
3145 u32 rtmsg_metric;
3146 u32 rtmsg_info;
3147 u32 rtmsg_flags;
3148 s32 rtmsg_ifindex;
3149 };
3150
3151 static int routing_ioctl(struct net *net, struct socket *sock,
3152 unsigned int cmd, void __user *argp)
3153 {
3154 int ret;
3155 void *r = NULL;
3156 struct in6_rtmsg r6;
3157 struct rtentry r4;
3158 char devname[16];
3159 u32 rtdev;
3160 mm_segment_t old_fs = get_fs();
3161
3162 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3163 struct in6_rtmsg32 __user *ur6 = argp;
3164 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3165 3 * sizeof(struct in6_addr));
3166 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3167 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3168 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3169 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3170 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3171 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3172 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3173
3174 r = (void *) &r6;
3175 } else { /* ipv4 */
3176 struct rtentry32 __user *ur4 = argp;
3177 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3178 3 * sizeof(struct sockaddr));
3179 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3180 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3181 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3182 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3183 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3184 ret |= get_user(rtdev, &(ur4->rt_dev));
3185 if (rtdev) {
3186 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3187 r4.rt_dev = (char __user __force *)devname;
3188 devname[15] = 0;
3189 } else
3190 r4.rt_dev = NULL;
3191
3192 r = (void *) &r4;
3193 }
3194
3195 if (ret) {
3196 ret = -EFAULT;
3197 goto out;
3198 }
3199
3200 set_fs(KERNEL_DS);
3201 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3202 set_fs(old_fs);
3203
3204 out:
3205 return ret;
3206 }
3207
3208 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3209 * for some operations; this forces use of the newer bridge-utils that
3210 * use compatible ioctls
3211 */
3212 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3213 {
3214 compat_ulong_t tmp;
3215
3216 if (get_user(tmp, argp))
3217 return -EFAULT;
3218 if (tmp == BRCTL_GET_VERSION)
3219 return BRCTL_VERSION + 1;
3220 return -EINVAL;
3221 }
3222
3223 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3224 unsigned int cmd, unsigned long arg)
3225 {
3226 void __user *argp = compat_ptr(arg);
3227 struct sock *sk = sock->sk;
3228 struct net *net = sock_net(sk);
3229
3230 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3231 return compat_ifr_data_ioctl(net, cmd, argp);
3232
3233 switch (cmd) {
3234 case SIOCSIFBR:
3235 case SIOCGIFBR:
3236 return old_bridge_ioctl(argp);
3237 case SIOCGIFNAME:
3238 return dev_ifname32(net, argp);
3239 case SIOCGIFCONF:
3240 return dev_ifconf(net, argp);
3241 case SIOCETHTOOL:
3242 return ethtool_ioctl(net, argp);
3243 case SIOCWANDEV:
3244 return compat_siocwandev(net, argp);
3245 case SIOCGIFMAP:
3246 case SIOCSIFMAP:
3247 return compat_sioc_ifmap(net, cmd, argp);
3248 case SIOCBONDENSLAVE:
3249 case SIOCBONDRELEASE:
3250 case SIOCBONDSETHWADDR:
3251 case SIOCBONDCHANGEACTIVE:
3252 return bond_ioctl(net, cmd, argp);
3253 case SIOCADDRT:
3254 case SIOCDELRT:
3255 return routing_ioctl(net, sock, cmd, argp);
3256 case SIOCGSTAMP:
3257 return do_siocgstamp(net, sock, cmd, argp);
3258 case SIOCGSTAMPNS:
3259 return do_siocgstampns(net, sock, cmd, argp);
3260 case SIOCBONDSLAVEINFOQUERY:
3261 case SIOCBONDINFOQUERY:
3262 case SIOCSHWTSTAMP:
3263 case SIOCGHWTSTAMP:
3264 return compat_ifr_data_ioctl(net, cmd, argp);
3265
3266 case FIOSETOWN:
3267 case SIOCSPGRP:
3268 case FIOGETOWN:
3269 case SIOCGPGRP:
3270 case SIOCBRADDBR:
3271 case SIOCBRDELBR:
3272 case SIOCGIFVLAN:
3273 case SIOCSIFVLAN:
3274 case SIOCADDDLCI:
3275 case SIOCDELDLCI:
3276 return sock_ioctl(file, cmd, arg);
3277
3278 case SIOCGIFFLAGS:
3279 case SIOCSIFFLAGS:
3280 case SIOCGIFMETRIC:
3281 case SIOCSIFMETRIC:
3282 case SIOCGIFMTU:
3283 case SIOCSIFMTU:
3284 case SIOCGIFMEM:
3285 case SIOCSIFMEM:
3286 case SIOCGIFHWADDR:
3287 case SIOCSIFHWADDR:
3288 case SIOCADDMULTI:
3289 case SIOCDELMULTI:
3290 case SIOCGIFINDEX:
3291 case SIOCGIFADDR:
3292 case SIOCSIFADDR:
3293 case SIOCSIFHWBROADCAST:
3294 case SIOCDIFADDR:
3295 case SIOCGIFBRDADDR:
3296 case SIOCSIFBRDADDR:
3297 case SIOCGIFDSTADDR:
3298 case SIOCSIFDSTADDR:
3299 case SIOCGIFNETMASK:
3300 case SIOCSIFNETMASK:
3301 case SIOCSIFPFLAGS:
3302 case SIOCGIFPFLAGS:
3303 case SIOCGIFTXQLEN:
3304 case SIOCSIFTXQLEN:
3305 case SIOCBRADDIF:
3306 case SIOCBRDELIF:
3307 case SIOCSIFNAME:
3308 case SIOCGMIIPHY:
3309 case SIOCGMIIREG:
3310 case SIOCSMIIREG:
3311 return dev_ifsioc(net, sock, cmd, argp);
3312
3313 case SIOCSARP:
3314 case SIOCGARP:
3315 case SIOCDARP:
3316 case SIOCATMARK:
3317 return sock_do_ioctl(net, sock, cmd, arg);
3318 }
3319
3320 return -ENOIOCTLCMD;
3321 }
3322
3323 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3324 unsigned long arg)
3325 {
3326 struct socket *sock = file->private_data;
3327 int ret = -ENOIOCTLCMD;
3328 struct sock *sk;
3329 struct net *net;
3330
3331 sk = sock->sk;
3332 net = sock_net(sk);
3333
3334 if (sock->ops->compat_ioctl)
3335 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3336
3337 if (ret == -ENOIOCTLCMD &&
3338 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3339 ret = compat_wext_handle_ioctl(net, cmd, arg);
3340
3341 if (ret == -ENOIOCTLCMD)
3342 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3343
3344 return ret;
3345 }
3346 #endif
3347
3348 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3349 {
3350 return sock->ops->bind(sock, addr, addrlen);
3351 }
3352 EXPORT_SYMBOL(kernel_bind);
3353
3354 int kernel_listen(struct socket *sock, int backlog)
3355 {
3356 return sock->ops->listen(sock, backlog);
3357 }
3358 EXPORT_SYMBOL(kernel_listen);
3359
3360 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3361 {
3362 struct sock *sk = sock->sk;
3363 int err;
3364
3365 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3366 newsock);
3367 if (err < 0)
3368 goto done;
3369
3370 err = sock->ops->accept(sock, *newsock, flags);
3371 if (err < 0) {
3372 sock_release(*newsock);
3373 *newsock = NULL;
3374 goto done;
3375 }
3376
3377 (*newsock)->ops = sock->ops;
3378 __module_get((*newsock)->ops->owner);
3379
3380 done:
3381 return err;
3382 }
3383 EXPORT_SYMBOL(kernel_accept);
3384
3385 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3386 int flags)
3387 {
3388 return sock->ops->connect(sock, addr, addrlen, flags);
3389 }
3390 EXPORT_SYMBOL(kernel_connect);
3391
3392 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3393 int *addrlen)
3394 {
3395 return sock->ops->getname(sock, addr, addrlen, 0);
3396 }
3397 EXPORT_SYMBOL(kernel_getsockname);
3398
3399 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3400 int *addrlen)
3401 {
3402 return sock->ops->getname(sock, addr, addrlen, 1);
3403 }
3404 EXPORT_SYMBOL(kernel_getpeername);
3405
3406 int kernel_getsockopt(struct socket *sock, int level, int optname,
3407 char *optval, int *optlen)
3408 {
3409 mm_segment_t oldfs = get_fs();
3410 char __user *uoptval;
3411 int __user *uoptlen;
3412 int err;
3413
3414 uoptval = (char __user __force *) optval;
3415 uoptlen = (int __user __force *) optlen;
3416
3417 set_fs(KERNEL_DS);
3418 if (level == SOL_SOCKET)
3419 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3420 else
3421 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3422 uoptlen);
3423 set_fs(oldfs);
3424 return err;
3425 }
3426 EXPORT_SYMBOL(kernel_getsockopt);
3427
3428 int kernel_setsockopt(struct socket *sock, int level, int optname,
3429 char *optval, unsigned int optlen)
3430 {
3431 mm_segment_t oldfs = get_fs();
3432 char __user *uoptval;
3433 int err;
3434
3435 uoptval = (char __user __force *) optval;
3436
3437 set_fs(KERNEL_DS);
3438 if (level == SOL_SOCKET)
3439 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3440 else
3441 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3442 optlen);
3443 set_fs(oldfs);
3444 return err;
3445 }
3446 EXPORT_SYMBOL(kernel_setsockopt);
3447
3448 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3449 size_t size, int flags)
3450 {
3451 if (sock->ops->sendpage)
3452 return sock->ops->sendpage(sock, page, offset, size, flags);
3453
3454 return sock_no_sendpage(sock, page, offset, size, flags);
3455 }
3456 EXPORT_SYMBOL(kernel_sendpage);
3457
3458 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3459 {
3460 mm_segment_t oldfs = get_fs();
3461 int err;
3462
3463 set_fs(KERNEL_DS);
3464 err = sock->ops->ioctl(sock, cmd, arg);
3465 set_fs(oldfs);
3466
3467 return err;
3468 }
3469 EXPORT_SYMBOL(kernel_sock_ioctl);
3470
3471 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3472 {
3473 return sock->ops->shutdown(sock, how);
3474 }
3475 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.162845 seconds and 5 git commands to generate.