Merge tag 'for-linus-2' of git://git.code.sf.net/p/openipmi/linux-ipmi
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
117 unsigned long nr_segs, loff_t pos);
118 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
119 unsigned long nr_segs, loff_t pos);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122 static int sock_close(struct inode *inode, struct file *file);
123 static unsigned int sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_sendpage(struct file *file, struct page *page,
132 int offset, size_t size, loff_t *ppos, int more);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 struct pipe_inode_info *pipe, size_t len,
135 unsigned int flags);
136
137 /*
138 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139 * in the operation structures but are done directly via the socketcall() multiplexor.
140 */
141
142 static const struct file_operations socket_file_ops = {
143 .owner = THIS_MODULE,
144 .llseek = no_llseek,
145 .aio_read = sock_aio_read,
146 .aio_write = sock_aio_write,
147 .poll = sock_poll,
148 .unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 .compat_ioctl = compat_sock_ioctl,
151 #endif
152 .mmap = sock_mmap,
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
158 };
159
160 /*
161 * The protocol list. Each protocol is registered in here.
162 */
163
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166
167 /*
168 * Statistics counters of the socket lists
169 */
170
171 static DEFINE_PER_CPU(int, sockets_in_use);
172
173 /*
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
177 */
178
179 /**
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
184 *
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 */
189
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
199 }
200
201 /**
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
207 *
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
216 */
217
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
220 {
221 int err;
222 int len;
223
224 BUG_ON(klen > sizeof(struct sockaddr_storage));
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0)
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
237 }
238 /*
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
241 */
242 return __put_user(klen, ulen);
243 }
244
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 struct socket_alloc *ei;
250 struct socket_wq *wq;
251
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 if (!wq) {
257 kmem_cache_free(sock_inode_cachep, ei);
258 return NULL;
259 }
260 init_waitqueue_head(&wq->wait);
261 wq->fasync_list = NULL;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
263
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
269
270 return &ei->vfs_inode;
271 }
272
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
277
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
282 }
283
284 static void init_once(void *foo)
285 {
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
287
288 inode_init_once(&ei->vfs_inode);
289 }
290
291 static int init_inodecache(void)
292 {
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
295 0,
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
303 }
304
305 static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
309 };
310
311 /*
312 * sockfs_dname() is called from d_path().
313 */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 dentry->d_inode->i_ino);
318 }
319
320 static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
322 };
323
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 int flags, const char *dev_name, void *data)
326 {
327 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 &sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330
331 static struct vfsmount *sock_mnt __read_mostly;
332
333 static struct file_system_type sock_fs_type = {
334 .name = "sockfs",
335 .mount = sockfs_mount,
336 .kill_sb = kill_anon_super,
337 };
338
339 /*
340 * Obtains the first available file descriptor and sets it up for use.
341 *
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
349 *
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
354 */
355
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 struct qstr name = { .name = "" };
359 struct path path;
360 struct file *file;
361
362 if (dname) {
363 name.name = dname;
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
368 }
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry))
371 return ERR_PTR(-ENOMEM);
372 path.mnt = mntget(sock_mnt);
373
374 d_instantiate(path.dentry, SOCK_INODE(sock));
375
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (unlikely(IS_ERR(file))) {
379 /* drop dentry, keep inode */
380 ihold(path.dentry->d_inode);
381 path_put(&path);
382 return file;
383 }
384
385 sock->file = file;
386 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 file->private_data = sock;
388 return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 struct file *newfile;
395 int fd = get_unused_fd_flags(flags);
396 if (unlikely(fd < 0))
397 return fd;
398
399 newfile = sock_alloc_file(sock, flags, NULL);
400 if (likely(!IS_ERR(newfile))) {
401 fd_install(fd, newfile);
402 return fd;
403 }
404
405 put_unused_fd(fd);
406 return PTR_ERR(newfile);
407 }
408
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 if (file->f_op == &socket_file_ops)
412 return file->private_data; /* set in sock_map_fd */
413
414 *err = -ENOTSOCK;
415 return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418
419 /**
420 * sockfd_lookup - Go from a file number to its socket slot
421 * @fd: file handle
422 * @err: pointer to an error code return
423 *
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
428 *
429 * On a success the socket object pointer is returned.
430 */
431
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 struct file *file;
435 struct socket *sock;
436
437 file = fget(fd);
438 if (!file) {
439 *err = -EBADF;
440 return NULL;
441 }
442
443 sock = sock_from_file(file, err);
444 if (!sock)
445 fput(file);
446 return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 struct fd f = fdget(fd);
453 struct socket *sock;
454
455 *err = -EBADF;
456 if (f.file) {
457 sock = sock_from_file(f.file, err);
458 if (likely(sock)) {
459 *fput_needed = f.flags;
460 return sock;
461 }
462 fdput(f);
463 }
464 return NULL;
465 }
466
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 const char *name, void *value, size_t size)
472 {
473 const char *proto_name;
474 size_t proto_size;
475 int error;
476
477 error = -ENODATA;
478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 proto_name = dentry->d_name.name;
480 proto_size = strlen(proto_name);
481
482 if (value) {
483 error = -ERANGE;
484 if (proto_size + 1 > size)
485 goto out;
486
487 strncpy(value, proto_name, proto_size + 1);
488 }
489 error = proto_size + 1;
490 }
491
492 out:
493 return error;
494 }
495
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 size_t size)
498 {
499 ssize_t len;
500 ssize_t used = 0;
501
502 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 if (len < 0)
504 return len;
505 used += len;
506 if (buffer) {
507 if (size < used)
508 return -ERANGE;
509 buffer += len;
510 }
511
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 used += len;
514 if (buffer) {
515 if (size < used)
516 return -ERANGE;
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 buffer += len;
519 }
520
521 return used;
522 }
523
524 static const struct inode_operations sockfs_inode_ops = {
525 .getxattr = sockfs_getxattr,
526 .listxattr = sockfs_listxattr,
527 };
528
529 /**
530 * sock_alloc - allocate a socket
531 *
532 * Allocate a new inode and socket object. The two are bound together
533 * and initialised. The socket is then returned. If we are out of inodes
534 * NULL is returned.
535 */
536
537 static struct socket *sock_alloc(void)
538 {
539 struct inode *inode;
540 struct socket *sock;
541
542 inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 if (!inode)
544 return NULL;
545
546 sock = SOCKET_I(inode);
547
548 kmemcheck_annotate_bitfield(sock, type);
549 inode->i_ino = get_next_ino();
550 inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 inode->i_uid = current_fsuid();
552 inode->i_gid = current_fsgid();
553 inode->i_op = &sockfs_inode_ops;
554
555 this_cpu_add(sockets_in_use, 1);
556 return sock;
557 }
558
559 /**
560 * sock_release - close a socket
561 * @sock: socket to close
562 *
563 * The socket is released from the protocol stack if it has a release
564 * callback, and the inode is then released if the socket is bound to
565 * an inode not a file.
566 */
567
568 void sock_release(struct socket *sock)
569 {
570 if (sock->ops) {
571 struct module *owner = sock->ops->owner;
572
573 sock->ops->release(sock);
574 sock->ops = NULL;
575 module_put(owner);
576 }
577
578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 pr_err("%s: fasync list not empty!\n", __func__);
580
581 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
582 return;
583
584 this_cpu_sub(sockets_in_use, 1);
585 if (!sock->file) {
586 iput(SOCK_INODE(sock));
587 return;
588 }
589 sock->file = NULL;
590 }
591 EXPORT_SYMBOL(sock_release);
592
593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
594 {
595 u8 flags = *tx_flags;
596
597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
598 flags |= SKBTX_HW_TSTAMP;
599
600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
601 flags |= SKBTX_SW_TSTAMP;
602
603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
604 flags |= SKBTX_SCHED_TSTAMP;
605
606 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
607 flags |= SKBTX_ACK_TSTAMP;
608
609 *tx_flags = flags;
610 }
611 EXPORT_SYMBOL(__sock_tx_timestamp);
612
613 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
614 struct msghdr *msg, size_t size)
615 {
616 struct sock_iocb *si = kiocb_to_siocb(iocb);
617
618 si->sock = sock;
619 si->scm = NULL;
620 si->msg = msg;
621 si->size = size;
622
623 return sock->ops->sendmsg(iocb, sock, msg, size);
624 }
625
626 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
627 struct msghdr *msg, size_t size)
628 {
629 int err = security_socket_sendmsg(sock, msg, size);
630
631 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
632 }
633
634 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg,
635 size_t size, bool nosec)
636 {
637 struct kiocb iocb;
638 struct sock_iocb siocb;
639 int ret;
640
641 init_sync_kiocb(&iocb, NULL);
642 iocb.private = &siocb;
643 ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) :
644 __sock_sendmsg(&iocb, sock, msg, size);
645 if (-EIOCBQUEUED == ret)
646 ret = wait_on_sync_kiocb(&iocb);
647 return ret;
648 }
649
650 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
651 {
652 return do_sock_sendmsg(sock, msg, size, false);
653 }
654 EXPORT_SYMBOL(sock_sendmsg);
655
656 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
657 {
658 return do_sock_sendmsg(sock, msg, size, true);
659 }
660
661 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
662 struct kvec *vec, size_t num, size_t size)
663 {
664 mm_segment_t oldfs = get_fs();
665 int result;
666
667 set_fs(KERNEL_DS);
668 /*
669 * the following is safe, since for compiler definitions of kvec and
670 * iovec are identical, yielding the same in-core layout and alignment
671 */
672 iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
673 result = sock_sendmsg(sock, msg, size);
674 set_fs(oldfs);
675 return result;
676 }
677 EXPORT_SYMBOL(kernel_sendmsg);
678
679 /*
680 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
681 */
682 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
683 struct sk_buff *skb)
684 {
685 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
686 struct scm_timestamping tss;
687 int empty = 1;
688 struct skb_shared_hwtstamps *shhwtstamps =
689 skb_hwtstamps(skb);
690
691 /* Race occurred between timestamp enabling and packet
692 receiving. Fill in the current time for now. */
693 if (need_software_tstamp && skb->tstamp.tv64 == 0)
694 __net_timestamp(skb);
695
696 if (need_software_tstamp) {
697 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
698 struct timeval tv;
699 skb_get_timestamp(skb, &tv);
700 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
701 sizeof(tv), &tv);
702 } else {
703 struct timespec ts;
704 skb_get_timestampns(skb, &ts);
705 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
706 sizeof(ts), &ts);
707 }
708 }
709
710 memset(&tss, 0, sizeof(tss));
711 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
712 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
713 empty = 0;
714 if (shhwtstamps &&
715 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
716 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
717 empty = 0;
718 if (!empty)
719 put_cmsg(msg, SOL_SOCKET,
720 SCM_TIMESTAMPING, sizeof(tss), &tss);
721 }
722 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
723
724 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
725 struct sk_buff *skb)
726 {
727 int ack;
728
729 if (!sock_flag(sk, SOCK_WIFI_STATUS))
730 return;
731 if (!skb->wifi_acked_valid)
732 return;
733
734 ack = skb->wifi_acked;
735
736 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
737 }
738 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
739
740 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
741 struct sk_buff *skb)
742 {
743 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
744 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
745 sizeof(__u32), &skb->dropcount);
746 }
747
748 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
749 struct sk_buff *skb)
750 {
751 sock_recv_timestamp(msg, sk, skb);
752 sock_recv_drops(msg, sk, skb);
753 }
754 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
755
756 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
757 struct msghdr *msg, size_t size, int flags)
758 {
759 struct sock_iocb *si = kiocb_to_siocb(iocb);
760
761 si->sock = sock;
762 si->scm = NULL;
763 si->msg = msg;
764 si->size = size;
765 si->flags = flags;
766
767 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
768 }
769
770 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
771 struct msghdr *msg, size_t size, int flags)
772 {
773 int err = security_socket_recvmsg(sock, msg, size, flags);
774
775 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
776 }
777
778 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
779 size_t size, int flags)
780 {
781 struct kiocb iocb;
782 struct sock_iocb siocb;
783 int ret;
784
785 init_sync_kiocb(&iocb, NULL);
786 iocb.private = &siocb;
787 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
788 if (-EIOCBQUEUED == ret)
789 ret = wait_on_sync_kiocb(&iocb);
790 return ret;
791 }
792 EXPORT_SYMBOL(sock_recvmsg);
793
794 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
795 size_t size, int flags)
796 {
797 struct kiocb iocb;
798 struct sock_iocb siocb;
799 int ret;
800
801 init_sync_kiocb(&iocb, NULL);
802 iocb.private = &siocb;
803 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
804 if (-EIOCBQUEUED == ret)
805 ret = wait_on_sync_kiocb(&iocb);
806 return ret;
807 }
808
809 /**
810 * kernel_recvmsg - Receive a message from a socket (kernel space)
811 * @sock: The socket to receive the message from
812 * @msg: Received message
813 * @vec: Input s/g array for message data
814 * @num: Size of input s/g array
815 * @size: Number of bytes to read
816 * @flags: Message flags (MSG_DONTWAIT, etc...)
817 *
818 * On return the msg structure contains the scatter/gather array passed in the
819 * vec argument. The array is modified so that it consists of the unfilled
820 * portion of the original array.
821 *
822 * The returned value is the total number of bytes received, or an error.
823 */
824 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
825 struct kvec *vec, size_t num, size_t size, int flags)
826 {
827 mm_segment_t oldfs = get_fs();
828 int result;
829
830 set_fs(KERNEL_DS);
831 /*
832 * the following is safe, since for compiler definitions of kvec and
833 * iovec are identical, yielding the same in-core layout and alignment
834 */
835 iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
836 result = sock_recvmsg(sock, msg, size, flags);
837 set_fs(oldfs);
838 return result;
839 }
840 EXPORT_SYMBOL(kernel_recvmsg);
841
842 static ssize_t sock_sendpage(struct file *file, struct page *page,
843 int offset, size_t size, loff_t *ppos, int more)
844 {
845 struct socket *sock;
846 int flags;
847
848 sock = file->private_data;
849
850 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
851 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
852 flags |= more;
853
854 return kernel_sendpage(sock, page, offset, size, flags);
855 }
856
857 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
858 struct pipe_inode_info *pipe, size_t len,
859 unsigned int flags)
860 {
861 struct socket *sock = file->private_data;
862
863 if (unlikely(!sock->ops->splice_read))
864 return -EINVAL;
865
866 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
867 }
868
869 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
870 struct sock_iocb *siocb)
871 {
872 if (!is_sync_kiocb(iocb))
873 BUG();
874
875 siocb->kiocb = iocb;
876 iocb->private = siocb;
877 return siocb;
878 }
879
880 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
881 struct file *file, const struct iovec *iov,
882 unsigned long nr_segs)
883 {
884 struct socket *sock = file->private_data;
885 size_t size = 0;
886 int i;
887
888 for (i = 0; i < nr_segs; i++)
889 size += iov[i].iov_len;
890
891 msg->msg_name = NULL;
892 msg->msg_namelen = 0;
893 msg->msg_control = NULL;
894 msg->msg_controllen = 0;
895 iov_iter_init(&msg->msg_iter, READ, iov, nr_segs, size);
896 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
897
898 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
899 }
900
901 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
902 unsigned long nr_segs, loff_t pos)
903 {
904 struct sock_iocb siocb, *x;
905
906 if (pos != 0)
907 return -ESPIPE;
908
909 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
910 return 0;
911
912
913 x = alloc_sock_iocb(iocb, &siocb);
914 if (!x)
915 return -ENOMEM;
916 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
917 }
918
919 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
920 struct file *file, const struct iovec *iov,
921 unsigned long nr_segs)
922 {
923 struct socket *sock = file->private_data;
924 size_t size = 0;
925 int i;
926
927 for (i = 0; i < nr_segs; i++)
928 size += iov[i].iov_len;
929
930 msg->msg_name = NULL;
931 msg->msg_namelen = 0;
932 msg->msg_control = NULL;
933 msg->msg_controllen = 0;
934 iov_iter_init(&msg->msg_iter, WRITE, iov, nr_segs, size);
935 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
936 if (sock->type == SOCK_SEQPACKET)
937 msg->msg_flags |= MSG_EOR;
938
939 return __sock_sendmsg(iocb, sock, msg, size);
940 }
941
942 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
943 unsigned long nr_segs, loff_t pos)
944 {
945 struct sock_iocb siocb, *x;
946
947 if (pos != 0)
948 return -ESPIPE;
949
950 x = alloc_sock_iocb(iocb, &siocb);
951 if (!x)
952 return -ENOMEM;
953
954 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
955 }
956
957 /*
958 * Atomic setting of ioctl hooks to avoid race
959 * with module unload.
960 */
961
962 static DEFINE_MUTEX(br_ioctl_mutex);
963 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
964
965 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
966 {
967 mutex_lock(&br_ioctl_mutex);
968 br_ioctl_hook = hook;
969 mutex_unlock(&br_ioctl_mutex);
970 }
971 EXPORT_SYMBOL(brioctl_set);
972
973 static DEFINE_MUTEX(vlan_ioctl_mutex);
974 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
975
976 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
977 {
978 mutex_lock(&vlan_ioctl_mutex);
979 vlan_ioctl_hook = hook;
980 mutex_unlock(&vlan_ioctl_mutex);
981 }
982 EXPORT_SYMBOL(vlan_ioctl_set);
983
984 static DEFINE_MUTEX(dlci_ioctl_mutex);
985 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
986
987 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
988 {
989 mutex_lock(&dlci_ioctl_mutex);
990 dlci_ioctl_hook = hook;
991 mutex_unlock(&dlci_ioctl_mutex);
992 }
993 EXPORT_SYMBOL(dlci_ioctl_set);
994
995 static long sock_do_ioctl(struct net *net, struct socket *sock,
996 unsigned int cmd, unsigned long arg)
997 {
998 int err;
999 void __user *argp = (void __user *)arg;
1000
1001 err = sock->ops->ioctl(sock, cmd, arg);
1002
1003 /*
1004 * If this ioctl is unknown try to hand it down
1005 * to the NIC driver.
1006 */
1007 if (err == -ENOIOCTLCMD)
1008 err = dev_ioctl(net, cmd, argp);
1009
1010 return err;
1011 }
1012
1013 /*
1014 * With an ioctl, arg may well be a user mode pointer, but we don't know
1015 * what to do with it - that's up to the protocol still.
1016 */
1017
1018 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1019 {
1020 struct socket *sock;
1021 struct sock *sk;
1022 void __user *argp = (void __user *)arg;
1023 int pid, err;
1024 struct net *net;
1025
1026 sock = file->private_data;
1027 sk = sock->sk;
1028 net = sock_net(sk);
1029 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1030 err = dev_ioctl(net, cmd, argp);
1031 } else
1032 #ifdef CONFIG_WEXT_CORE
1033 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1034 err = dev_ioctl(net, cmd, argp);
1035 } else
1036 #endif
1037 switch (cmd) {
1038 case FIOSETOWN:
1039 case SIOCSPGRP:
1040 err = -EFAULT;
1041 if (get_user(pid, (int __user *)argp))
1042 break;
1043 f_setown(sock->file, pid, 1);
1044 err = 0;
1045 break;
1046 case FIOGETOWN:
1047 case SIOCGPGRP:
1048 err = put_user(f_getown(sock->file),
1049 (int __user *)argp);
1050 break;
1051 case SIOCGIFBR:
1052 case SIOCSIFBR:
1053 case SIOCBRADDBR:
1054 case SIOCBRDELBR:
1055 err = -ENOPKG;
1056 if (!br_ioctl_hook)
1057 request_module("bridge");
1058
1059 mutex_lock(&br_ioctl_mutex);
1060 if (br_ioctl_hook)
1061 err = br_ioctl_hook(net, cmd, argp);
1062 mutex_unlock(&br_ioctl_mutex);
1063 break;
1064 case SIOCGIFVLAN:
1065 case SIOCSIFVLAN:
1066 err = -ENOPKG;
1067 if (!vlan_ioctl_hook)
1068 request_module("8021q");
1069
1070 mutex_lock(&vlan_ioctl_mutex);
1071 if (vlan_ioctl_hook)
1072 err = vlan_ioctl_hook(net, argp);
1073 mutex_unlock(&vlan_ioctl_mutex);
1074 break;
1075 case SIOCADDDLCI:
1076 case SIOCDELDLCI:
1077 err = -ENOPKG;
1078 if (!dlci_ioctl_hook)
1079 request_module("dlci");
1080
1081 mutex_lock(&dlci_ioctl_mutex);
1082 if (dlci_ioctl_hook)
1083 err = dlci_ioctl_hook(cmd, argp);
1084 mutex_unlock(&dlci_ioctl_mutex);
1085 break;
1086 default:
1087 err = sock_do_ioctl(net, sock, cmd, arg);
1088 break;
1089 }
1090 return err;
1091 }
1092
1093 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1094 {
1095 int err;
1096 struct socket *sock = NULL;
1097
1098 err = security_socket_create(family, type, protocol, 1);
1099 if (err)
1100 goto out;
1101
1102 sock = sock_alloc();
1103 if (!sock) {
1104 err = -ENOMEM;
1105 goto out;
1106 }
1107
1108 sock->type = type;
1109 err = security_socket_post_create(sock, family, type, protocol, 1);
1110 if (err)
1111 goto out_release;
1112
1113 out:
1114 *res = sock;
1115 return err;
1116 out_release:
1117 sock_release(sock);
1118 sock = NULL;
1119 goto out;
1120 }
1121 EXPORT_SYMBOL(sock_create_lite);
1122
1123 /* No kernel lock held - perfect */
1124 static unsigned int sock_poll(struct file *file, poll_table *wait)
1125 {
1126 unsigned int busy_flag = 0;
1127 struct socket *sock;
1128
1129 /*
1130 * We can't return errors to poll, so it's either yes or no.
1131 */
1132 sock = file->private_data;
1133
1134 if (sk_can_busy_loop(sock->sk)) {
1135 /* this socket can poll_ll so tell the system call */
1136 busy_flag = POLL_BUSY_LOOP;
1137
1138 /* once, only if requested by syscall */
1139 if (wait && (wait->_key & POLL_BUSY_LOOP))
1140 sk_busy_loop(sock->sk, 1);
1141 }
1142
1143 return busy_flag | sock->ops->poll(file, sock, wait);
1144 }
1145
1146 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1147 {
1148 struct socket *sock = file->private_data;
1149
1150 return sock->ops->mmap(file, sock, vma);
1151 }
1152
1153 static int sock_close(struct inode *inode, struct file *filp)
1154 {
1155 sock_release(SOCKET_I(inode));
1156 return 0;
1157 }
1158
1159 /*
1160 * Update the socket async list
1161 *
1162 * Fasync_list locking strategy.
1163 *
1164 * 1. fasync_list is modified only under process context socket lock
1165 * i.e. under semaphore.
1166 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1167 * or under socket lock
1168 */
1169
1170 static int sock_fasync(int fd, struct file *filp, int on)
1171 {
1172 struct socket *sock = filp->private_data;
1173 struct sock *sk = sock->sk;
1174 struct socket_wq *wq;
1175
1176 if (sk == NULL)
1177 return -EINVAL;
1178
1179 lock_sock(sk);
1180 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1181 fasync_helper(fd, filp, on, &wq->fasync_list);
1182
1183 if (!wq->fasync_list)
1184 sock_reset_flag(sk, SOCK_FASYNC);
1185 else
1186 sock_set_flag(sk, SOCK_FASYNC);
1187
1188 release_sock(sk);
1189 return 0;
1190 }
1191
1192 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1193
1194 int sock_wake_async(struct socket *sock, int how, int band)
1195 {
1196 struct socket_wq *wq;
1197
1198 if (!sock)
1199 return -1;
1200 rcu_read_lock();
1201 wq = rcu_dereference(sock->wq);
1202 if (!wq || !wq->fasync_list) {
1203 rcu_read_unlock();
1204 return -1;
1205 }
1206 switch (how) {
1207 case SOCK_WAKE_WAITD:
1208 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1209 break;
1210 goto call_kill;
1211 case SOCK_WAKE_SPACE:
1212 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1213 break;
1214 /* fall through */
1215 case SOCK_WAKE_IO:
1216 call_kill:
1217 kill_fasync(&wq->fasync_list, SIGIO, band);
1218 break;
1219 case SOCK_WAKE_URG:
1220 kill_fasync(&wq->fasync_list, SIGURG, band);
1221 }
1222 rcu_read_unlock();
1223 return 0;
1224 }
1225 EXPORT_SYMBOL(sock_wake_async);
1226
1227 int __sock_create(struct net *net, int family, int type, int protocol,
1228 struct socket **res, int kern)
1229 {
1230 int err;
1231 struct socket *sock;
1232 const struct net_proto_family *pf;
1233
1234 /*
1235 * Check protocol is in range
1236 */
1237 if (family < 0 || family >= NPROTO)
1238 return -EAFNOSUPPORT;
1239 if (type < 0 || type >= SOCK_MAX)
1240 return -EINVAL;
1241
1242 /* Compatibility.
1243
1244 This uglymoron is moved from INET layer to here to avoid
1245 deadlock in module load.
1246 */
1247 if (family == PF_INET && type == SOCK_PACKET) {
1248 static int warned;
1249 if (!warned) {
1250 warned = 1;
1251 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1252 current->comm);
1253 }
1254 family = PF_PACKET;
1255 }
1256
1257 err = security_socket_create(family, type, protocol, kern);
1258 if (err)
1259 return err;
1260
1261 /*
1262 * Allocate the socket and allow the family to set things up. if
1263 * the protocol is 0, the family is instructed to select an appropriate
1264 * default.
1265 */
1266 sock = sock_alloc();
1267 if (!sock) {
1268 net_warn_ratelimited("socket: no more sockets\n");
1269 return -ENFILE; /* Not exactly a match, but its the
1270 closest posix thing */
1271 }
1272
1273 sock->type = type;
1274
1275 #ifdef CONFIG_MODULES
1276 /* Attempt to load a protocol module if the find failed.
1277 *
1278 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1279 * requested real, full-featured networking support upon configuration.
1280 * Otherwise module support will break!
1281 */
1282 if (rcu_access_pointer(net_families[family]) == NULL)
1283 request_module("net-pf-%d", family);
1284 #endif
1285
1286 rcu_read_lock();
1287 pf = rcu_dereference(net_families[family]);
1288 err = -EAFNOSUPPORT;
1289 if (!pf)
1290 goto out_release;
1291
1292 /*
1293 * We will call the ->create function, that possibly is in a loadable
1294 * module, so we have to bump that loadable module refcnt first.
1295 */
1296 if (!try_module_get(pf->owner))
1297 goto out_release;
1298
1299 /* Now protected by module ref count */
1300 rcu_read_unlock();
1301
1302 err = pf->create(net, sock, protocol, kern);
1303 if (err < 0)
1304 goto out_module_put;
1305
1306 /*
1307 * Now to bump the refcnt of the [loadable] module that owns this
1308 * socket at sock_release time we decrement its refcnt.
1309 */
1310 if (!try_module_get(sock->ops->owner))
1311 goto out_module_busy;
1312
1313 /*
1314 * Now that we're done with the ->create function, the [loadable]
1315 * module can have its refcnt decremented
1316 */
1317 module_put(pf->owner);
1318 err = security_socket_post_create(sock, family, type, protocol, kern);
1319 if (err)
1320 goto out_sock_release;
1321 *res = sock;
1322
1323 return 0;
1324
1325 out_module_busy:
1326 err = -EAFNOSUPPORT;
1327 out_module_put:
1328 sock->ops = NULL;
1329 module_put(pf->owner);
1330 out_sock_release:
1331 sock_release(sock);
1332 return err;
1333
1334 out_release:
1335 rcu_read_unlock();
1336 goto out_sock_release;
1337 }
1338 EXPORT_SYMBOL(__sock_create);
1339
1340 int sock_create(int family, int type, int protocol, struct socket **res)
1341 {
1342 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1343 }
1344 EXPORT_SYMBOL(sock_create);
1345
1346 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1347 {
1348 return __sock_create(&init_net, family, type, protocol, res, 1);
1349 }
1350 EXPORT_SYMBOL(sock_create_kern);
1351
1352 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1353 {
1354 int retval;
1355 struct socket *sock;
1356 int flags;
1357
1358 /* Check the SOCK_* constants for consistency. */
1359 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1360 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1361 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1362 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1363
1364 flags = type & ~SOCK_TYPE_MASK;
1365 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1366 return -EINVAL;
1367 type &= SOCK_TYPE_MASK;
1368
1369 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1370 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1371
1372 retval = sock_create(family, type, protocol, &sock);
1373 if (retval < 0)
1374 goto out;
1375
1376 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1377 if (retval < 0)
1378 goto out_release;
1379
1380 out:
1381 /* It may be already another descriptor 8) Not kernel problem. */
1382 return retval;
1383
1384 out_release:
1385 sock_release(sock);
1386 return retval;
1387 }
1388
1389 /*
1390 * Create a pair of connected sockets.
1391 */
1392
1393 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1394 int __user *, usockvec)
1395 {
1396 struct socket *sock1, *sock2;
1397 int fd1, fd2, err;
1398 struct file *newfile1, *newfile2;
1399 int flags;
1400
1401 flags = type & ~SOCK_TYPE_MASK;
1402 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1403 return -EINVAL;
1404 type &= SOCK_TYPE_MASK;
1405
1406 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1407 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1408
1409 /*
1410 * Obtain the first socket and check if the underlying protocol
1411 * supports the socketpair call.
1412 */
1413
1414 err = sock_create(family, type, protocol, &sock1);
1415 if (err < 0)
1416 goto out;
1417
1418 err = sock_create(family, type, protocol, &sock2);
1419 if (err < 0)
1420 goto out_release_1;
1421
1422 err = sock1->ops->socketpair(sock1, sock2);
1423 if (err < 0)
1424 goto out_release_both;
1425
1426 fd1 = get_unused_fd_flags(flags);
1427 if (unlikely(fd1 < 0)) {
1428 err = fd1;
1429 goto out_release_both;
1430 }
1431
1432 fd2 = get_unused_fd_flags(flags);
1433 if (unlikely(fd2 < 0)) {
1434 err = fd2;
1435 goto out_put_unused_1;
1436 }
1437
1438 newfile1 = sock_alloc_file(sock1, flags, NULL);
1439 if (unlikely(IS_ERR(newfile1))) {
1440 err = PTR_ERR(newfile1);
1441 goto out_put_unused_both;
1442 }
1443
1444 newfile2 = sock_alloc_file(sock2, flags, NULL);
1445 if (IS_ERR(newfile2)) {
1446 err = PTR_ERR(newfile2);
1447 goto out_fput_1;
1448 }
1449
1450 err = put_user(fd1, &usockvec[0]);
1451 if (err)
1452 goto out_fput_both;
1453
1454 err = put_user(fd2, &usockvec[1]);
1455 if (err)
1456 goto out_fput_both;
1457
1458 audit_fd_pair(fd1, fd2);
1459
1460 fd_install(fd1, newfile1);
1461 fd_install(fd2, newfile2);
1462 /* fd1 and fd2 may be already another descriptors.
1463 * Not kernel problem.
1464 */
1465
1466 return 0;
1467
1468 out_fput_both:
1469 fput(newfile2);
1470 fput(newfile1);
1471 put_unused_fd(fd2);
1472 put_unused_fd(fd1);
1473 goto out;
1474
1475 out_fput_1:
1476 fput(newfile1);
1477 put_unused_fd(fd2);
1478 put_unused_fd(fd1);
1479 sock_release(sock2);
1480 goto out;
1481
1482 out_put_unused_both:
1483 put_unused_fd(fd2);
1484 out_put_unused_1:
1485 put_unused_fd(fd1);
1486 out_release_both:
1487 sock_release(sock2);
1488 out_release_1:
1489 sock_release(sock1);
1490 out:
1491 return err;
1492 }
1493
1494 /*
1495 * Bind a name to a socket. Nothing much to do here since it's
1496 * the protocol's responsibility to handle the local address.
1497 *
1498 * We move the socket address to kernel space before we call
1499 * the protocol layer (having also checked the address is ok).
1500 */
1501
1502 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1503 {
1504 struct socket *sock;
1505 struct sockaddr_storage address;
1506 int err, fput_needed;
1507
1508 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1509 if (sock) {
1510 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1511 if (err >= 0) {
1512 err = security_socket_bind(sock,
1513 (struct sockaddr *)&address,
1514 addrlen);
1515 if (!err)
1516 err = sock->ops->bind(sock,
1517 (struct sockaddr *)
1518 &address, addrlen);
1519 }
1520 fput_light(sock->file, fput_needed);
1521 }
1522 return err;
1523 }
1524
1525 /*
1526 * Perform a listen. Basically, we allow the protocol to do anything
1527 * necessary for a listen, and if that works, we mark the socket as
1528 * ready for listening.
1529 */
1530
1531 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1532 {
1533 struct socket *sock;
1534 int err, fput_needed;
1535 int somaxconn;
1536
1537 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538 if (sock) {
1539 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1540 if ((unsigned int)backlog > somaxconn)
1541 backlog = somaxconn;
1542
1543 err = security_socket_listen(sock, backlog);
1544 if (!err)
1545 err = sock->ops->listen(sock, backlog);
1546
1547 fput_light(sock->file, fput_needed);
1548 }
1549 return err;
1550 }
1551
1552 /*
1553 * For accept, we attempt to create a new socket, set up the link
1554 * with the client, wake up the client, then return the new
1555 * connected fd. We collect the address of the connector in kernel
1556 * space and move it to user at the very end. This is unclean because
1557 * we open the socket then return an error.
1558 *
1559 * 1003.1g adds the ability to recvmsg() to query connection pending
1560 * status to recvmsg. We need to add that support in a way thats
1561 * clean when we restucture accept also.
1562 */
1563
1564 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1565 int __user *, upeer_addrlen, int, flags)
1566 {
1567 struct socket *sock, *newsock;
1568 struct file *newfile;
1569 int err, len, newfd, fput_needed;
1570 struct sockaddr_storage address;
1571
1572 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1573 return -EINVAL;
1574
1575 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1576 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1577
1578 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1579 if (!sock)
1580 goto out;
1581
1582 err = -ENFILE;
1583 newsock = sock_alloc();
1584 if (!newsock)
1585 goto out_put;
1586
1587 newsock->type = sock->type;
1588 newsock->ops = sock->ops;
1589
1590 /*
1591 * We don't need try_module_get here, as the listening socket (sock)
1592 * has the protocol module (sock->ops->owner) held.
1593 */
1594 __module_get(newsock->ops->owner);
1595
1596 newfd = get_unused_fd_flags(flags);
1597 if (unlikely(newfd < 0)) {
1598 err = newfd;
1599 sock_release(newsock);
1600 goto out_put;
1601 }
1602 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1603 if (unlikely(IS_ERR(newfile))) {
1604 err = PTR_ERR(newfile);
1605 put_unused_fd(newfd);
1606 sock_release(newsock);
1607 goto out_put;
1608 }
1609
1610 err = security_socket_accept(sock, newsock);
1611 if (err)
1612 goto out_fd;
1613
1614 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1615 if (err < 0)
1616 goto out_fd;
1617
1618 if (upeer_sockaddr) {
1619 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1620 &len, 2) < 0) {
1621 err = -ECONNABORTED;
1622 goto out_fd;
1623 }
1624 err = move_addr_to_user(&address,
1625 len, upeer_sockaddr, upeer_addrlen);
1626 if (err < 0)
1627 goto out_fd;
1628 }
1629
1630 /* File flags are not inherited via accept() unlike another OSes. */
1631
1632 fd_install(newfd, newfile);
1633 err = newfd;
1634
1635 out_put:
1636 fput_light(sock->file, fput_needed);
1637 out:
1638 return err;
1639 out_fd:
1640 fput(newfile);
1641 put_unused_fd(newfd);
1642 goto out_put;
1643 }
1644
1645 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1646 int __user *, upeer_addrlen)
1647 {
1648 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1649 }
1650
1651 /*
1652 * Attempt to connect to a socket with the server address. The address
1653 * is in user space so we verify it is OK and move it to kernel space.
1654 *
1655 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1656 * break bindings
1657 *
1658 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1659 * other SEQPACKET protocols that take time to connect() as it doesn't
1660 * include the -EINPROGRESS status for such sockets.
1661 */
1662
1663 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1664 int, addrlen)
1665 {
1666 struct socket *sock;
1667 struct sockaddr_storage address;
1668 int err, fput_needed;
1669
1670 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1671 if (!sock)
1672 goto out;
1673 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1674 if (err < 0)
1675 goto out_put;
1676
1677 err =
1678 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1679 if (err)
1680 goto out_put;
1681
1682 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1683 sock->file->f_flags);
1684 out_put:
1685 fput_light(sock->file, fput_needed);
1686 out:
1687 return err;
1688 }
1689
1690 /*
1691 * Get the local address ('name') of a socket object. Move the obtained
1692 * name to user space.
1693 */
1694
1695 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1696 int __user *, usockaddr_len)
1697 {
1698 struct socket *sock;
1699 struct sockaddr_storage address;
1700 int len, err, fput_needed;
1701
1702 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1703 if (!sock)
1704 goto out;
1705
1706 err = security_socket_getsockname(sock);
1707 if (err)
1708 goto out_put;
1709
1710 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1711 if (err)
1712 goto out_put;
1713 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1714
1715 out_put:
1716 fput_light(sock->file, fput_needed);
1717 out:
1718 return err;
1719 }
1720
1721 /*
1722 * Get the remote address ('name') of a socket object. Move the obtained
1723 * name to user space.
1724 */
1725
1726 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1727 int __user *, usockaddr_len)
1728 {
1729 struct socket *sock;
1730 struct sockaddr_storage address;
1731 int len, err, fput_needed;
1732
1733 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1734 if (sock != NULL) {
1735 err = security_socket_getpeername(sock);
1736 if (err) {
1737 fput_light(sock->file, fput_needed);
1738 return err;
1739 }
1740
1741 err =
1742 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1743 1);
1744 if (!err)
1745 err = move_addr_to_user(&address, len, usockaddr,
1746 usockaddr_len);
1747 fput_light(sock->file, fput_needed);
1748 }
1749 return err;
1750 }
1751
1752 /*
1753 * Send a datagram to a given address. We move the address into kernel
1754 * space and check the user space data area is readable before invoking
1755 * the protocol.
1756 */
1757
1758 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1759 unsigned int, flags, struct sockaddr __user *, addr,
1760 int, addr_len)
1761 {
1762 struct socket *sock;
1763 struct sockaddr_storage address;
1764 int err;
1765 struct msghdr msg;
1766 struct iovec iov;
1767 int fput_needed;
1768
1769 if (len > INT_MAX)
1770 len = INT_MAX;
1771 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772 if (!sock)
1773 goto out;
1774
1775 iov.iov_base = buff;
1776 iov.iov_len = len;
1777 msg.msg_name = NULL;
1778 iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1779 msg.msg_control = NULL;
1780 msg.msg_controllen = 0;
1781 msg.msg_namelen = 0;
1782 if (addr) {
1783 err = move_addr_to_kernel(addr, addr_len, &address);
1784 if (err < 0)
1785 goto out_put;
1786 msg.msg_name = (struct sockaddr *)&address;
1787 msg.msg_namelen = addr_len;
1788 }
1789 if (sock->file->f_flags & O_NONBLOCK)
1790 flags |= MSG_DONTWAIT;
1791 msg.msg_flags = flags;
1792 err = sock_sendmsg(sock, &msg, len);
1793
1794 out_put:
1795 fput_light(sock->file, fput_needed);
1796 out:
1797 return err;
1798 }
1799
1800 /*
1801 * Send a datagram down a socket.
1802 */
1803
1804 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1805 unsigned int, flags)
1806 {
1807 return sys_sendto(fd, buff, len, flags, NULL, 0);
1808 }
1809
1810 /*
1811 * Receive a frame from the socket and optionally record the address of the
1812 * sender. We verify the buffers are writable and if needed move the
1813 * sender address from kernel to user space.
1814 */
1815
1816 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1817 unsigned int, flags, struct sockaddr __user *, addr,
1818 int __user *, addr_len)
1819 {
1820 struct socket *sock;
1821 struct iovec iov;
1822 struct msghdr msg;
1823 struct sockaddr_storage address;
1824 int err, err2;
1825 int fput_needed;
1826
1827 if (size > INT_MAX)
1828 size = INT_MAX;
1829 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1830 if (!sock)
1831 goto out;
1832
1833 msg.msg_control = NULL;
1834 msg.msg_controllen = 0;
1835 iov.iov_len = size;
1836 iov.iov_base = ubuf;
1837 iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1838 /* Save some cycles and don't copy the address if not needed */
1839 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1840 /* We assume all kernel code knows the size of sockaddr_storage */
1841 msg.msg_namelen = 0;
1842 if (sock->file->f_flags & O_NONBLOCK)
1843 flags |= MSG_DONTWAIT;
1844 err = sock_recvmsg(sock, &msg, size, flags);
1845
1846 if (err >= 0 && addr != NULL) {
1847 err2 = move_addr_to_user(&address,
1848 msg.msg_namelen, addr, addr_len);
1849 if (err2 < 0)
1850 err = err2;
1851 }
1852
1853 fput_light(sock->file, fput_needed);
1854 out:
1855 return err;
1856 }
1857
1858 /*
1859 * Receive a datagram from a socket.
1860 */
1861
1862 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1863 unsigned int, flags)
1864 {
1865 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1866 }
1867
1868 /*
1869 * Set a socket option. Because we don't know the option lengths we have
1870 * to pass the user mode parameter for the protocols to sort out.
1871 */
1872
1873 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1874 char __user *, optval, int, optlen)
1875 {
1876 int err, fput_needed;
1877 struct socket *sock;
1878
1879 if (optlen < 0)
1880 return -EINVAL;
1881
1882 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1883 if (sock != NULL) {
1884 err = security_socket_setsockopt(sock, level, optname);
1885 if (err)
1886 goto out_put;
1887
1888 if (level == SOL_SOCKET)
1889 err =
1890 sock_setsockopt(sock, level, optname, optval,
1891 optlen);
1892 else
1893 err =
1894 sock->ops->setsockopt(sock, level, optname, optval,
1895 optlen);
1896 out_put:
1897 fput_light(sock->file, fput_needed);
1898 }
1899 return err;
1900 }
1901
1902 /*
1903 * Get a socket option. Because we don't know the option lengths we have
1904 * to pass a user mode parameter for the protocols to sort out.
1905 */
1906
1907 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1908 char __user *, optval, int __user *, optlen)
1909 {
1910 int err, fput_needed;
1911 struct socket *sock;
1912
1913 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1914 if (sock != NULL) {
1915 err = security_socket_getsockopt(sock, level, optname);
1916 if (err)
1917 goto out_put;
1918
1919 if (level == SOL_SOCKET)
1920 err =
1921 sock_getsockopt(sock, level, optname, optval,
1922 optlen);
1923 else
1924 err =
1925 sock->ops->getsockopt(sock, level, optname, optval,
1926 optlen);
1927 out_put:
1928 fput_light(sock->file, fput_needed);
1929 }
1930 return err;
1931 }
1932
1933 /*
1934 * Shutdown a socket.
1935 */
1936
1937 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1938 {
1939 int err, fput_needed;
1940 struct socket *sock;
1941
1942 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1943 if (sock != NULL) {
1944 err = security_socket_shutdown(sock, how);
1945 if (!err)
1946 err = sock->ops->shutdown(sock, how);
1947 fput_light(sock->file, fput_needed);
1948 }
1949 return err;
1950 }
1951
1952 /* A couple of helpful macros for getting the address of the 32/64 bit
1953 * fields which are the same type (int / unsigned) on our platforms.
1954 */
1955 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1956 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1957 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1958
1959 struct used_address {
1960 struct sockaddr_storage name;
1961 unsigned int name_len;
1962 };
1963
1964 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1965 struct user_msghdr __user *umsg,
1966 struct sockaddr __user **save_addr,
1967 struct iovec **iov)
1968 {
1969 struct sockaddr __user *uaddr;
1970 struct iovec __user *uiov;
1971 size_t nr_segs;
1972 ssize_t err;
1973
1974 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1975 __get_user(uaddr, &umsg->msg_name) ||
1976 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1977 __get_user(uiov, &umsg->msg_iov) ||
1978 __get_user(nr_segs, &umsg->msg_iovlen) ||
1979 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1980 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1981 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1982 return -EFAULT;
1983
1984 if (!uaddr)
1985 kmsg->msg_namelen = 0;
1986
1987 if (kmsg->msg_namelen < 0)
1988 return -EINVAL;
1989
1990 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1991 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1992
1993 if (save_addr)
1994 *save_addr = uaddr;
1995
1996 if (uaddr && kmsg->msg_namelen) {
1997 if (!save_addr) {
1998 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1999 kmsg->msg_name);
2000 if (err < 0)
2001 return err;
2002 }
2003 } else {
2004 kmsg->msg_name = NULL;
2005 kmsg->msg_namelen = 0;
2006 }
2007
2008 if (nr_segs > UIO_MAXIOV)
2009 return -EMSGSIZE;
2010
2011 err = rw_copy_check_uvector(save_addr ? READ : WRITE,
2012 uiov, nr_segs,
2013 UIO_FASTIOV, *iov, iov);
2014 if (err >= 0)
2015 iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
2016 *iov, nr_segs, err);
2017 return err;
2018 }
2019
2020 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2021 struct msghdr *msg_sys, unsigned int flags,
2022 struct used_address *used_address)
2023 {
2024 struct compat_msghdr __user *msg_compat =
2025 (struct compat_msghdr __user *)msg;
2026 struct sockaddr_storage address;
2027 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2028 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2029 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2030 /* 20 is size of ipv6_pktinfo */
2031 unsigned char *ctl_buf = ctl;
2032 int ctl_len, total_len;
2033 ssize_t err;
2034
2035 msg_sys->msg_name = &address;
2036
2037 if (MSG_CMSG_COMPAT & flags)
2038 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2039 else
2040 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2041 if (err < 0)
2042 goto out_freeiov;
2043 total_len = err;
2044
2045 err = -ENOBUFS;
2046
2047 if (msg_sys->msg_controllen > INT_MAX)
2048 goto out_freeiov;
2049 ctl_len = msg_sys->msg_controllen;
2050 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2051 err =
2052 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2053 sizeof(ctl));
2054 if (err)
2055 goto out_freeiov;
2056 ctl_buf = msg_sys->msg_control;
2057 ctl_len = msg_sys->msg_controllen;
2058 } else if (ctl_len) {
2059 if (ctl_len > sizeof(ctl)) {
2060 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2061 if (ctl_buf == NULL)
2062 goto out_freeiov;
2063 }
2064 err = -EFAULT;
2065 /*
2066 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2067 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2068 * checking falls down on this.
2069 */
2070 if (copy_from_user(ctl_buf,
2071 (void __user __force *)msg_sys->msg_control,
2072 ctl_len))
2073 goto out_freectl;
2074 msg_sys->msg_control = ctl_buf;
2075 }
2076 msg_sys->msg_flags = flags;
2077
2078 if (sock->file->f_flags & O_NONBLOCK)
2079 msg_sys->msg_flags |= MSG_DONTWAIT;
2080 /*
2081 * If this is sendmmsg() and current destination address is same as
2082 * previously succeeded address, omit asking LSM's decision.
2083 * used_address->name_len is initialized to UINT_MAX so that the first
2084 * destination address never matches.
2085 */
2086 if (used_address && msg_sys->msg_name &&
2087 used_address->name_len == msg_sys->msg_namelen &&
2088 !memcmp(&used_address->name, msg_sys->msg_name,
2089 used_address->name_len)) {
2090 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2091 goto out_freectl;
2092 }
2093 err = sock_sendmsg(sock, msg_sys, total_len);
2094 /*
2095 * If this is sendmmsg() and sending to current destination address was
2096 * successful, remember it.
2097 */
2098 if (used_address && err >= 0) {
2099 used_address->name_len = msg_sys->msg_namelen;
2100 if (msg_sys->msg_name)
2101 memcpy(&used_address->name, msg_sys->msg_name,
2102 used_address->name_len);
2103 }
2104
2105 out_freectl:
2106 if (ctl_buf != ctl)
2107 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2108 out_freeiov:
2109 if (iov != iovstack)
2110 kfree(iov);
2111 return err;
2112 }
2113
2114 /*
2115 * BSD sendmsg interface
2116 */
2117
2118 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2119 {
2120 int fput_needed, err;
2121 struct msghdr msg_sys;
2122 struct socket *sock;
2123
2124 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2125 if (!sock)
2126 goto out;
2127
2128 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2129
2130 fput_light(sock->file, fput_needed);
2131 out:
2132 return err;
2133 }
2134
2135 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2136 {
2137 if (flags & MSG_CMSG_COMPAT)
2138 return -EINVAL;
2139 return __sys_sendmsg(fd, msg, flags);
2140 }
2141
2142 /*
2143 * Linux sendmmsg interface
2144 */
2145
2146 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2147 unsigned int flags)
2148 {
2149 int fput_needed, err, datagrams;
2150 struct socket *sock;
2151 struct mmsghdr __user *entry;
2152 struct compat_mmsghdr __user *compat_entry;
2153 struct msghdr msg_sys;
2154 struct used_address used_address;
2155
2156 if (vlen > UIO_MAXIOV)
2157 vlen = UIO_MAXIOV;
2158
2159 datagrams = 0;
2160
2161 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2162 if (!sock)
2163 return err;
2164
2165 used_address.name_len = UINT_MAX;
2166 entry = mmsg;
2167 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2168 err = 0;
2169
2170 while (datagrams < vlen) {
2171 if (MSG_CMSG_COMPAT & flags) {
2172 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2173 &msg_sys, flags, &used_address);
2174 if (err < 0)
2175 break;
2176 err = __put_user(err, &compat_entry->msg_len);
2177 ++compat_entry;
2178 } else {
2179 err = ___sys_sendmsg(sock,
2180 (struct user_msghdr __user *)entry,
2181 &msg_sys, flags, &used_address);
2182 if (err < 0)
2183 break;
2184 err = put_user(err, &entry->msg_len);
2185 ++entry;
2186 }
2187
2188 if (err)
2189 break;
2190 ++datagrams;
2191 }
2192
2193 fput_light(sock->file, fput_needed);
2194
2195 /* We only return an error if no datagrams were able to be sent */
2196 if (datagrams != 0)
2197 return datagrams;
2198
2199 return err;
2200 }
2201
2202 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2203 unsigned int, vlen, unsigned int, flags)
2204 {
2205 if (flags & MSG_CMSG_COMPAT)
2206 return -EINVAL;
2207 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2208 }
2209
2210 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2211 struct msghdr *msg_sys, unsigned int flags, int nosec)
2212 {
2213 struct compat_msghdr __user *msg_compat =
2214 (struct compat_msghdr __user *)msg;
2215 struct iovec iovstack[UIO_FASTIOV];
2216 struct iovec *iov = iovstack;
2217 unsigned long cmsg_ptr;
2218 int total_len, len;
2219 ssize_t err;
2220
2221 /* kernel mode address */
2222 struct sockaddr_storage addr;
2223
2224 /* user mode address pointers */
2225 struct sockaddr __user *uaddr;
2226 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2227
2228 msg_sys->msg_name = &addr;
2229
2230 if (MSG_CMSG_COMPAT & flags)
2231 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2232 else
2233 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2234 if (err < 0)
2235 goto out_freeiov;
2236 total_len = err;
2237
2238 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2239 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2240
2241 /* We assume all kernel code knows the size of sockaddr_storage */
2242 msg_sys->msg_namelen = 0;
2243
2244 if (sock->file->f_flags & O_NONBLOCK)
2245 flags |= MSG_DONTWAIT;
2246 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2247 total_len, flags);
2248 if (err < 0)
2249 goto out_freeiov;
2250 len = err;
2251
2252 if (uaddr != NULL) {
2253 err = move_addr_to_user(&addr,
2254 msg_sys->msg_namelen, uaddr,
2255 uaddr_len);
2256 if (err < 0)
2257 goto out_freeiov;
2258 }
2259 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2260 COMPAT_FLAGS(msg));
2261 if (err)
2262 goto out_freeiov;
2263 if (MSG_CMSG_COMPAT & flags)
2264 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2265 &msg_compat->msg_controllen);
2266 else
2267 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2268 &msg->msg_controllen);
2269 if (err)
2270 goto out_freeiov;
2271 err = len;
2272
2273 out_freeiov:
2274 if (iov != iovstack)
2275 kfree(iov);
2276 return err;
2277 }
2278
2279 /*
2280 * BSD recvmsg interface
2281 */
2282
2283 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2284 {
2285 int fput_needed, err;
2286 struct msghdr msg_sys;
2287 struct socket *sock;
2288
2289 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2290 if (!sock)
2291 goto out;
2292
2293 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2294
2295 fput_light(sock->file, fput_needed);
2296 out:
2297 return err;
2298 }
2299
2300 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2301 unsigned int, flags)
2302 {
2303 if (flags & MSG_CMSG_COMPAT)
2304 return -EINVAL;
2305 return __sys_recvmsg(fd, msg, flags);
2306 }
2307
2308 /*
2309 * Linux recvmmsg interface
2310 */
2311
2312 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2313 unsigned int flags, struct timespec *timeout)
2314 {
2315 int fput_needed, err, datagrams;
2316 struct socket *sock;
2317 struct mmsghdr __user *entry;
2318 struct compat_mmsghdr __user *compat_entry;
2319 struct msghdr msg_sys;
2320 struct timespec end_time;
2321
2322 if (timeout &&
2323 poll_select_set_timeout(&end_time, timeout->tv_sec,
2324 timeout->tv_nsec))
2325 return -EINVAL;
2326
2327 datagrams = 0;
2328
2329 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2330 if (!sock)
2331 return err;
2332
2333 err = sock_error(sock->sk);
2334 if (err)
2335 goto out_put;
2336
2337 entry = mmsg;
2338 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2339
2340 while (datagrams < vlen) {
2341 /*
2342 * No need to ask LSM for more than the first datagram.
2343 */
2344 if (MSG_CMSG_COMPAT & flags) {
2345 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2346 &msg_sys, flags & ~MSG_WAITFORONE,
2347 datagrams);
2348 if (err < 0)
2349 break;
2350 err = __put_user(err, &compat_entry->msg_len);
2351 ++compat_entry;
2352 } else {
2353 err = ___sys_recvmsg(sock,
2354 (struct user_msghdr __user *)entry,
2355 &msg_sys, flags & ~MSG_WAITFORONE,
2356 datagrams);
2357 if (err < 0)
2358 break;
2359 err = put_user(err, &entry->msg_len);
2360 ++entry;
2361 }
2362
2363 if (err)
2364 break;
2365 ++datagrams;
2366
2367 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2368 if (flags & MSG_WAITFORONE)
2369 flags |= MSG_DONTWAIT;
2370
2371 if (timeout) {
2372 ktime_get_ts(timeout);
2373 *timeout = timespec_sub(end_time, *timeout);
2374 if (timeout->tv_sec < 0) {
2375 timeout->tv_sec = timeout->tv_nsec = 0;
2376 break;
2377 }
2378
2379 /* Timeout, return less than vlen datagrams */
2380 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2381 break;
2382 }
2383
2384 /* Out of band data, return right away */
2385 if (msg_sys.msg_flags & MSG_OOB)
2386 break;
2387 }
2388
2389 out_put:
2390 fput_light(sock->file, fput_needed);
2391
2392 if (err == 0)
2393 return datagrams;
2394
2395 if (datagrams != 0) {
2396 /*
2397 * We may return less entries than requested (vlen) if the
2398 * sock is non block and there aren't enough datagrams...
2399 */
2400 if (err != -EAGAIN) {
2401 /*
2402 * ... or if recvmsg returns an error after we
2403 * received some datagrams, where we record the
2404 * error to return on the next call or if the
2405 * app asks about it using getsockopt(SO_ERROR).
2406 */
2407 sock->sk->sk_err = -err;
2408 }
2409
2410 return datagrams;
2411 }
2412
2413 return err;
2414 }
2415
2416 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2417 unsigned int, vlen, unsigned int, flags,
2418 struct timespec __user *, timeout)
2419 {
2420 int datagrams;
2421 struct timespec timeout_sys;
2422
2423 if (flags & MSG_CMSG_COMPAT)
2424 return -EINVAL;
2425
2426 if (!timeout)
2427 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2428
2429 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2430 return -EFAULT;
2431
2432 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2433
2434 if (datagrams > 0 &&
2435 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2436 datagrams = -EFAULT;
2437
2438 return datagrams;
2439 }
2440
2441 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2442 /* Argument list sizes for sys_socketcall */
2443 #define AL(x) ((x) * sizeof(unsigned long))
2444 static const unsigned char nargs[21] = {
2445 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2446 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2447 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2448 AL(4), AL(5), AL(4)
2449 };
2450
2451 #undef AL
2452
2453 /*
2454 * System call vectors.
2455 *
2456 * Argument checking cleaned up. Saved 20% in size.
2457 * This function doesn't need to set the kernel lock because
2458 * it is set by the callees.
2459 */
2460
2461 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2462 {
2463 unsigned long a[AUDITSC_ARGS];
2464 unsigned long a0, a1;
2465 int err;
2466 unsigned int len;
2467
2468 if (call < 1 || call > SYS_SENDMMSG)
2469 return -EINVAL;
2470
2471 len = nargs[call];
2472 if (len > sizeof(a))
2473 return -EINVAL;
2474
2475 /* copy_from_user should be SMP safe. */
2476 if (copy_from_user(a, args, len))
2477 return -EFAULT;
2478
2479 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2480 if (err)
2481 return err;
2482
2483 a0 = a[0];
2484 a1 = a[1];
2485
2486 switch (call) {
2487 case SYS_SOCKET:
2488 err = sys_socket(a0, a1, a[2]);
2489 break;
2490 case SYS_BIND:
2491 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2492 break;
2493 case SYS_CONNECT:
2494 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2495 break;
2496 case SYS_LISTEN:
2497 err = sys_listen(a0, a1);
2498 break;
2499 case SYS_ACCEPT:
2500 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2501 (int __user *)a[2], 0);
2502 break;
2503 case SYS_GETSOCKNAME:
2504 err =
2505 sys_getsockname(a0, (struct sockaddr __user *)a1,
2506 (int __user *)a[2]);
2507 break;
2508 case SYS_GETPEERNAME:
2509 err =
2510 sys_getpeername(a0, (struct sockaddr __user *)a1,
2511 (int __user *)a[2]);
2512 break;
2513 case SYS_SOCKETPAIR:
2514 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2515 break;
2516 case SYS_SEND:
2517 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2518 break;
2519 case SYS_SENDTO:
2520 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2521 (struct sockaddr __user *)a[4], a[5]);
2522 break;
2523 case SYS_RECV:
2524 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2525 break;
2526 case SYS_RECVFROM:
2527 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2528 (struct sockaddr __user *)a[4],
2529 (int __user *)a[5]);
2530 break;
2531 case SYS_SHUTDOWN:
2532 err = sys_shutdown(a0, a1);
2533 break;
2534 case SYS_SETSOCKOPT:
2535 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2536 break;
2537 case SYS_GETSOCKOPT:
2538 err =
2539 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2540 (int __user *)a[4]);
2541 break;
2542 case SYS_SENDMSG:
2543 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2544 break;
2545 case SYS_SENDMMSG:
2546 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2547 break;
2548 case SYS_RECVMSG:
2549 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2550 break;
2551 case SYS_RECVMMSG:
2552 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2553 (struct timespec __user *)a[4]);
2554 break;
2555 case SYS_ACCEPT4:
2556 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2557 (int __user *)a[2], a[3]);
2558 break;
2559 default:
2560 err = -EINVAL;
2561 break;
2562 }
2563 return err;
2564 }
2565
2566 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2567
2568 /**
2569 * sock_register - add a socket protocol handler
2570 * @ops: description of protocol
2571 *
2572 * This function is called by a protocol handler that wants to
2573 * advertise its address family, and have it linked into the
2574 * socket interface. The value ops->family corresponds to the
2575 * socket system call protocol family.
2576 */
2577 int sock_register(const struct net_proto_family *ops)
2578 {
2579 int err;
2580
2581 if (ops->family >= NPROTO) {
2582 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2583 return -ENOBUFS;
2584 }
2585
2586 spin_lock(&net_family_lock);
2587 if (rcu_dereference_protected(net_families[ops->family],
2588 lockdep_is_held(&net_family_lock)))
2589 err = -EEXIST;
2590 else {
2591 rcu_assign_pointer(net_families[ops->family], ops);
2592 err = 0;
2593 }
2594 spin_unlock(&net_family_lock);
2595
2596 pr_info("NET: Registered protocol family %d\n", ops->family);
2597 return err;
2598 }
2599 EXPORT_SYMBOL(sock_register);
2600
2601 /**
2602 * sock_unregister - remove a protocol handler
2603 * @family: protocol family to remove
2604 *
2605 * This function is called by a protocol handler that wants to
2606 * remove its address family, and have it unlinked from the
2607 * new socket creation.
2608 *
2609 * If protocol handler is a module, then it can use module reference
2610 * counts to protect against new references. If protocol handler is not
2611 * a module then it needs to provide its own protection in
2612 * the ops->create routine.
2613 */
2614 void sock_unregister(int family)
2615 {
2616 BUG_ON(family < 0 || family >= NPROTO);
2617
2618 spin_lock(&net_family_lock);
2619 RCU_INIT_POINTER(net_families[family], NULL);
2620 spin_unlock(&net_family_lock);
2621
2622 synchronize_rcu();
2623
2624 pr_info("NET: Unregistered protocol family %d\n", family);
2625 }
2626 EXPORT_SYMBOL(sock_unregister);
2627
2628 static int __init sock_init(void)
2629 {
2630 int err;
2631 /*
2632 * Initialize the network sysctl infrastructure.
2633 */
2634 err = net_sysctl_init();
2635 if (err)
2636 goto out;
2637
2638 /*
2639 * Initialize skbuff SLAB cache
2640 */
2641 skb_init();
2642
2643 /*
2644 * Initialize the protocols module.
2645 */
2646
2647 init_inodecache();
2648
2649 err = register_filesystem(&sock_fs_type);
2650 if (err)
2651 goto out_fs;
2652 sock_mnt = kern_mount(&sock_fs_type);
2653 if (IS_ERR(sock_mnt)) {
2654 err = PTR_ERR(sock_mnt);
2655 goto out_mount;
2656 }
2657
2658 /* The real protocol initialization is performed in later initcalls.
2659 */
2660
2661 #ifdef CONFIG_NETFILTER
2662 err = netfilter_init();
2663 if (err)
2664 goto out;
2665 #endif
2666
2667 ptp_classifier_init();
2668
2669 out:
2670 return err;
2671
2672 out_mount:
2673 unregister_filesystem(&sock_fs_type);
2674 out_fs:
2675 goto out;
2676 }
2677
2678 core_initcall(sock_init); /* early initcall */
2679
2680 #ifdef CONFIG_PROC_FS
2681 void socket_seq_show(struct seq_file *seq)
2682 {
2683 int cpu;
2684 int counter = 0;
2685
2686 for_each_possible_cpu(cpu)
2687 counter += per_cpu(sockets_in_use, cpu);
2688
2689 /* It can be negative, by the way. 8) */
2690 if (counter < 0)
2691 counter = 0;
2692
2693 seq_printf(seq, "sockets: used %d\n", counter);
2694 }
2695 #endif /* CONFIG_PROC_FS */
2696
2697 #ifdef CONFIG_COMPAT
2698 static int do_siocgstamp(struct net *net, struct socket *sock,
2699 unsigned int cmd, void __user *up)
2700 {
2701 mm_segment_t old_fs = get_fs();
2702 struct timeval ktv;
2703 int err;
2704
2705 set_fs(KERNEL_DS);
2706 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2707 set_fs(old_fs);
2708 if (!err)
2709 err = compat_put_timeval(&ktv, up);
2710
2711 return err;
2712 }
2713
2714 static int do_siocgstampns(struct net *net, struct socket *sock,
2715 unsigned int cmd, void __user *up)
2716 {
2717 mm_segment_t old_fs = get_fs();
2718 struct timespec kts;
2719 int err;
2720
2721 set_fs(KERNEL_DS);
2722 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2723 set_fs(old_fs);
2724 if (!err)
2725 err = compat_put_timespec(&kts, up);
2726
2727 return err;
2728 }
2729
2730 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2731 {
2732 struct ifreq __user *uifr;
2733 int err;
2734
2735 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2736 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2737 return -EFAULT;
2738
2739 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2740 if (err)
2741 return err;
2742
2743 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2744 return -EFAULT;
2745
2746 return 0;
2747 }
2748
2749 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2750 {
2751 struct compat_ifconf ifc32;
2752 struct ifconf ifc;
2753 struct ifconf __user *uifc;
2754 struct compat_ifreq __user *ifr32;
2755 struct ifreq __user *ifr;
2756 unsigned int i, j;
2757 int err;
2758
2759 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2760 return -EFAULT;
2761
2762 memset(&ifc, 0, sizeof(ifc));
2763 if (ifc32.ifcbuf == 0) {
2764 ifc32.ifc_len = 0;
2765 ifc.ifc_len = 0;
2766 ifc.ifc_req = NULL;
2767 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2768 } else {
2769 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2770 sizeof(struct ifreq);
2771 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2772 ifc.ifc_len = len;
2773 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2774 ifr32 = compat_ptr(ifc32.ifcbuf);
2775 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2776 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2777 return -EFAULT;
2778 ifr++;
2779 ifr32++;
2780 }
2781 }
2782 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2783 return -EFAULT;
2784
2785 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2786 if (err)
2787 return err;
2788
2789 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2790 return -EFAULT;
2791
2792 ifr = ifc.ifc_req;
2793 ifr32 = compat_ptr(ifc32.ifcbuf);
2794 for (i = 0, j = 0;
2795 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2796 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2797 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2798 return -EFAULT;
2799 ifr32++;
2800 ifr++;
2801 }
2802
2803 if (ifc32.ifcbuf == 0) {
2804 /* Translate from 64-bit structure multiple to
2805 * a 32-bit one.
2806 */
2807 i = ifc.ifc_len;
2808 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2809 ifc32.ifc_len = i;
2810 } else {
2811 ifc32.ifc_len = i;
2812 }
2813 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2814 return -EFAULT;
2815
2816 return 0;
2817 }
2818
2819 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2820 {
2821 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2822 bool convert_in = false, convert_out = false;
2823 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2824 struct ethtool_rxnfc __user *rxnfc;
2825 struct ifreq __user *ifr;
2826 u32 rule_cnt = 0, actual_rule_cnt;
2827 u32 ethcmd;
2828 u32 data;
2829 int ret;
2830
2831 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2832 return -EFAULT;
2833
2834 compat_rxnfc = compat_ptr(data);
2835
2836 if (get_user(ethcmd, &compat_rxnfc->cmd))
2837 return -EFAULT;
2838
2839 /* Most ethtool structures are defined without padding.
2840 * Unfortunately struct ethtool_rxnfc is an exception.
2841 */
2842 switch (ethcmd) {
2843 default:
2844 break;
2845 case ETHTOOL_GRXCLSRLALL:
2846 /* Buffer size is variable */
2847 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2848 return -EFAULT;
2849 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2850 return -ENOMEM;
2851 buf_size += rule_cnt * sizeof(u32);
2852 /* fall through */
2853 case ETHTOOL_GRXRINGS:
2854 case ETHTOOL_GRXCLSRLCNT:
2855 case ETHTOOL_GRXCLSRULE:
2856 case ETHTOOL_SRXCLSRLINS:
2857 convert_out = true;
2858 /* fall through */
2859 case ETHTOOL_SRXCLSRLDEL:
2860 buf_size += sizeof(struct ethtool_rxnfc);
2861 convert_in = true;
2862 break;
2863 }
2864
2865 ifr = compat_alloc_user_space(buf_size);
2866 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2867
2868 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2869 return -EFAULT;
2870
2871 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2872 &ifr->ifr_ifru.ifru_data))
2873 return -EFAULT;
2874
2875 if (convert_in) {
2876 /* We expect there to be holes between fs.m_ext and
2877 * fs.ring_cookie and at the end of fs, but nowhere else.
2878 */
2879 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2880 sizeof(compat_rxnfc->fs.m_ext) !=
2881 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2882 sizeof(rxnfc->fs.m_ext));
2883 BUILD_BUG_ON(
2884 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2885 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2886 offsetof(struct ethtool_rxnfc, fs.location) -
2887 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2888
2889 if (copy_in_user(rxnfc, compat_rxnfc,
2890 (void __user *)(&rxnfc->fs.m_ext + 1) -
2891 (void __user *)rxnfc) ||
2892 copy_in_user(&rxnfc->fs.ring_cookie,
2893 &compat_rxnfc->fs.ring_cookie,
2894 (void __user *)(&rxnfc->fs.location + 1) -
2895 (void __user *)&rxnfc->fs.ring_cookie) ||
2896 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2897 sizeof(rxnfc->rule_cnt)))
2898 return -EFAULT;
2899 }
2900
2901 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2902 if (ret)
2903 return ret;
2904
2905 if (convert_out) {
2906 if (copy_in_user(compat_rxnfc, rxnfc,
2907 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2908 (const void __user *)rxnfc) ||
2909 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2910 &rxnfc->fs.ring_cookie,
2911 (const void __user *)(&rxnfc->fs.location + 1) -
2912 (const void __user *)&rxnfc->fs.ring_cookie) ||
2913 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2914 sizeof(rxnfc->rule_cnt)))
2915 return -EFAULT;
2916
2917 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2918 /* As an optimisation, we only copy the actual
2919 * number of rules that the underlying
2920 * function returned. Since Mallory might
2921 * change the rule count in user memory, we
2922 * check that it is less than the rule count
2923 * originally given (as the user buffer size),
2924 * which has been range-checked.
2925 */
2926 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2927 return -EFAULT;
2928 if (actual_rule_cnt < rule_cnt)
2929 rule_cnt = actual_rule_cnt;
2930 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2931 &rxnfc->rule_locs[0],
2932 rule_cnt * sizeof(u32)))
2933 return -EFAULT;
2934 }
2935 }
2936
2937 return 0;
2938 }
2939
2940 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2941 {
2942 void __user *uptr;
2943 compat_uptr_t uptr32;
2944 struct ifreq __user *uifr;
2945
2946 uifr = compat_alloc_user_space(sizeof(*uifr));
2947 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2948 return -EFAULT;
2949
2950 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2951 return -EFAULT;
2952
2953 uptr = compat_ptr(uptr32);
2954
2955 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2956 return -EFAULT;
2957
2958 return dev_ioctl(net, SIOCWANDEV, uifr);
2959 }
2960
2961 static int bond_ioctl(struct net *net, unsigned int cmd,
2962 struct compat_ifreq __user *ifr32)
2963 {
2964 struct ifreq kifr;
2965 mm_segment_t old_fs;
2966 int err;
2967
2968 switch (cmd) {
2969 case SIOCBONDENSLAVE:
2970 case SIOCBONDRELEASE:
2971 case SIOCBONDSETHWADDR:
2972 case SIOCBONDCHANGEACTIVE:
2973 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2974 return -EFAULT;
2975
2976 old_fs = get_fs();
2977 set_fs(KERNEL_DS);
2978 err = dev_ioctl(net, cmd,
2979 (struct ifreq __user __force *) &kifr);
2980 set_fs(old_fs);
2981
2982 return err;
2983 default:
2984 return -ENOIOCTLCMD;
2985 }
2986 }
2987
2988 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2989 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2990 struct compat_ifreq __user *u_ifreq32)
2991 {
2992 struct ifreq __user *u_ifreq64;
2993 char tmp_buf[IFNAMSIZ];
2994 void __user *data64;
2995 u32 data32;
2996
2997 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2998 IFNAMSIZ))
2999 return -EFAULT;
3000 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3001 return -EFAULT;
3002 data64 = compat_ptr(data32);
3003
3004 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3005
3006 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3007 IFNAMSIZ))
3008 return -EFAULT;
3009 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3010 return -EFAULT;
3011
3012 return dev_ioctl(net, cmd, u_ifreq64);
3013 }
3014
3015 static int dev_ifsioc(struct net *net, struct socket *sock,
3016 unsigned int cmd, struct compat_ifreq __user *uifr32)
3017 {
3018 struct ifreq __user *uifr;
3019 int err;
3020
3021 uifr = compat_alloc_user_space(sizeof(*uifr));
3022 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3023 return -EFAULT;
3024
3025 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3026
3027 if (!err) {
3028 switch (cmd) {
3029 case SIOCGIFFLAGS:
3030 case SIOCGIFMETRIC:
3031 case SIOCGIFMTU:
3032 case SIOCGIFMEM:
3033 case SIOCGIFHWADDR:
3034 case SIOCGIFINDEX:
3035 case SIOCGIFADDR:
3036 case SIOCGIFBRDADDR:
3037 case SIOCGIFDSTADDR:
3038 case SIOCGIFNETMASK:
3039 case SIOCGIFPFLAGS:
3040 case SIOCGIFTXQLEN:
3041 case SIOCGMIIPHY:
3042 case SIOCGMIIREG:
3043 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3044 err = -EFAULT;
3045 break;
3046 }
3047 }
3048 return err;
3049 }
3050
3051 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3052 struct compat_ifreq __user *uifr32)
3053 {
3054 struct ifreq ifr;
3055 struct compat_ifmap __user *uifmap32;
3056 mm_segment_t old_fs;
3057 int err;
3058
3059 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3060 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3061 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3062 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3063 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3064 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3065 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3066 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3067 if (err)
3068 return -EFAULT;
3069
3070 old_fs = get_fs();
3071 set_fs(KERNEL_DS);
3072 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3073 set_fs(old_fs);
3074
3075 if (cmd == SIOCGIFMAP && !err) {
3076 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3077 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3078 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3079 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3080 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3081 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3082 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3083 if (err)
3084 err = -EFAULT;
3085 }
3086 return err;
3087 }
3088
3089 struct rtentry32 {
3090 u32 rt_pad1;
3091 struct sockaddr rt_dst; /* target address */
3092 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3093 struct sockaddr rt_genmask; /* target network mask (IP) */
3094 unsigned short rt_flags;
3095 short rt_pad2;
3096 u32 rt_pad3;
3097 unsigned char rt_tos;
3098 unsigned char rt_class;
3099 short rt_pad4;
3100 short rt_metric; /* +1 for binary compatibility! */
3101 /* char * */ u32 rt_dev; /* forcing the device at add */
3102 u32 rt_mtu; /* per route MTU/Window */
3103 u32 rt_window; /* Window clamping */
3104 unsigned short rt_irtt; /* Initial RTT */
3105 };
3106
3107 struct in6_rtmsg32 {
3108 struct in6_addr rtmsg_dst;
3109 struct in6_addr rtmsg_src;
3110 struct in6_addr rtmsg_gateway;
3111 u32 rtmsg_type;
3112 u16 rtmsg_dst_len;
3113 u16 rtmsg_src_len;
3114 u32 rtmsg_metric;
3115 u32 rtmsg_info;
3116 u32 rtmsg_flags;
3117 s32 rtmsg_ifindex;
3118 };
3119
3120 static int routing_ioctl(struct net *net, struct socket *sock,
3121 unsigned int cmd, void __user *argp)
3122 {
3123 int ret;
3124 void *r = NULL;
3125 struct in6_rtmsg r6;
3126 struct rtentry r4;
3127 char devname[16];
3128 u32 rtdev;
3129 mm_segment_t old_fs = get_fs();
3130
3131 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3132 struct in6_rtmsg32 __user *ur6 = argp;
3133 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3134 3 * sizeof(struct in6_addr));
3135 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3136 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3137 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3138 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3139 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3140 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3141 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3142
3143 r = (void *) &r6;
3144 } else { /* ipv4 */
3145 struct rtentry32 __user *ur4 = argp;
3146 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3147 3 * sizeof(struct sockaddr));
3148 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3149 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3150 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3151 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3152 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3153 ret |= get_user(rtdev, &(ur4->rt_dev));
3154 if (rtdev) {
3155 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3156 r4.rt_dev = (char __user __force *)devname;
3157 devname[15] = 0;
3158 } else
3159 r4.rt_dev = NULL;
3160
3161 r = (void *) &r4;
3162 }
3163
3164 if (ret) {
3165 ret = -EFAULT;
3166 goto out;
3167 }
3168
3169 set_fs(KERNEL_DS);
3170 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3171 set_fs(old_fs);
3172
3173 out:
3174 return ret;
3175 }
3176
3177 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3178 * for some operations; this forces use of the newer bridge-utils that
3179 * use compatible ioctls
3180 */
3181 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3182 {
3183 compat_ulong_t tmp;
3184
3185 if (get_user(tmp, argp))
3186 return -EFAULT;
3187 if (tmp == BRCTL_GET_VERSION)
3188 return BRCTL_VERSION + 1;
3189 return -EINVAL;
3190 }
3191
3192 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3193 unsigned int cmd, unsigned long arg)
3194 {
3195 void __user *argp = compat_ptr(arg);
3196 struct sock *sk = sock->sk;
3197 struct net *net = sock_net(sk);
3198
3199 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3200 return compat_ifr_data_ioctl(net, cmd, argp);
3201
3202 switch (cmd) {
3203 case SIOCSIFBR:
3204 case SIOCGIFBR:
3205 return old_bridge_ioctl(argp);
3206 case SIOCGIFNAME:
3207 return dev_ifname32(net, argp);
3208 case SIOCGIFCONF:
3209 return dev_ifconf(net, argp);
3210 case SIOCETHTOOL:
3211 return ethtool_ioctl(net, argp);
3212 case SIOCWANDEV:
3213 return compat_siocwandev(net, argp);
3214 case SIOCGIFMAP:
3215 case SIOCSIFMAP:
3216 return compat_sioc_ifmap(net, cmd, argp);
3217 case SIOCBONDENSLAVE:
3218 case SIOCBONDRELEASE:
3219 case SIOCBONDSETHWADDR:
3220 case SIOCBONDCHANGEACTIVE:
3221 return bond_ioctl(net, cmd, argp);
3222 case SIOCADDRT:
3223 case SIOCDELRT:
3224 return routing_ioctl(net, sock, cmd, argp);
3225 case SIOCGSTAMP:
3226 return do_siocgstamp(net, sock, cmd, argp);
3227 case SIOCGSTAMPNS:
3228 return do_siocgstampns(net, sock, cmd, argp);
3229 case SIOCBONDSLAVEINFOQUERY:
3230 case SIOCBONDINFOQUERY:
3231 case SIOCSHWTSTAMP:
3232 case SIOCGHWTSTAMP:
3233 return compat_ifr_data_ioctl(net, cmd, argp);
3234
3235 case FIOSETOWN:
3236 case SIOCSPGRP:
3237 case FIOGETOWN:
3238 case SIOCGPGRP:
3239 case SIOCBRADDBR:
3240 case SIOCBRDELBR:
3241 case SIOCGIFVLAN:
3242 case SIOCSIFVLAN:
3243 case SIOCADDDLCI:
3244 case SIOCDELDLCI:
3245 return sock_ioctl(file, cmd, arg);
3246
3247 case SIOCGIFFLAGS:
3248 case SIOCSIFFLAGS:
3249 case SIOCGIFMETRIC:
3250 case SIOCSIFMETRIC:
3251 case SIOCGIFMTU:
3252 case SIOCSIFMTU:
3253 case SIOCGIFMEM:
3254 case SIOCSIFMEM:
3255 case SIOCGIFHWADDR:
3256 case SIOCSIFHWADDR:
3257 case SIOCADDMULTI:
3258 case SIOCDELMULTI:
3259 case SIOCGIFINDEX:
3260 case SIOCGIFADDR:
3261 case SIOCSIFADDR:
3262 case SIOCSIFHWBROADCAST:
3263 case SIOCDIFADDR:
3264 case SIOCGIFBRDADDR:
3265 case SIOCSIFBRDADDR:
3266 case SIOCGIFDSTADDR:
3267 case SIOCSIFDSTADDR:
3268 case SIOCGIFNETMASK:
3269 case SIOCSIFNETMASK:
3270 case SIOCSIFPFLAGS:
3271 case SIOCGIFPFLAGS:
3272 case SIOCGIFTXQLEN:
3273 case SIOCSIFTXQLEN:
3274 case SIOCBRADDIF:
3275 case SIOCBRDELIF:
3276 case SIOCSIFNAME:
3277 case SIOCGMIIPHY:
3278 case SIOCGMIIREG:
3279 case SIOCSMIIREG:
3280 return dev_ifsioc(net, sock, cmd, argp);
3281
3282 case SIOCSARP:
3283 case SIOCGARP:
3284 case SIOCDARP:
3285 case SIOCATMARK:
3286 return sock_do_ioctl(net, sock, cmd, arg);
3287 }
3288
3289 return -ENOIOCTLCMD;
3290 }
3291
3292 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3293 unsigned long arg)
3294 {
3295 struct socket *sock = file->private_data;
3296 int ret = -ENOIOCTLCMD;
3297 struct sock *sk;
3298 struct net *net;
3299
3300 sk = sock->sk;
3301 net = sock_net(sk);
3302
3303 if (sock->ops->compat_ioctl)
3304 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3305
3306 if (ret == -ENOIOCTLCMD &&
3307 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3308 ret = compat_wext_handle_ioctl(net, cmd, arg);
3309
3310 if (ret == -ENOIOCTLCMD)
3311 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3312
3313 return ret;
3314 }
3315 #endif
3316
3317 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3318 {
3319 return sock->ops->bind(sock, addr, addrlen);
3320 }
3321 EXPORT_SYMBOL(kernel_bind);
3322
3323 int kernel_listen(struct socket *sock, int backlog)
3324 {
3325 return sock->ops->listen(sock, backlog);
3326 }
3327 EXPORT_SYMBOL(kernel_listen);
3328
3329 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3330 {
3331 struct sock *sk = sock->sk;
3332 int err;
3333
3334 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3335 newsock);
3336 if (err < 0)
3337 goto done;
3338
3339 err = sock->ops->accept(sock, *newsock, flags);
3340 if (err < 0) {
3341 sock_release(*newsock);
3342 *newsock = NULL;
3343 goto done;
3344 }
3345
3346 (*newsock)->ops = sock->ops;
3347 __module_get((*newsock)->ops->owner);
3348
3349 done:
3350 return err;
3351 }
3352 EXPORT_SYMBOL(kernel_accept);
3353
3354 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3355 int flags)
3356 {
3357 return sock->ops->connect(sock, addr, addrlen, flags);
3358 }
3359 EXPORT_SYMBOL(kernel_connect);
3360
3361 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3362 int *addrlen)
3363 {
3364 return sock->ops->getname(sock, addr, addrlen, 0);
3365 }
3366 EXPORT_SYMBOL(kernel_getsockname);
3367
3368 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3369 int *addrlen)
3370 {
3371 return sock->ops->getname(sock, addr, addrlen, 1);
3372 }
3373 EXPORT_SYMBOL(kernel_getpeername);
3374
3375 int kernel_getsockopt(struct socket *sock, int level, int optname,
3376 char *optval, int *optlen)
3377 {
3378 mm_segment_t oldfs = get_fs();
3379 char __user *uoptval;
3380 int __user *uoptlen;
3381 int err;
3382
3383 uoptval = (char __user __force *) optval;
3384 uoptlen = (int __user __force *) optlen;
3385
3386 set_fs(KERNEL_DS);
3387 if (level == SOL_SOCKET)
3388 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3389 else
3390 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3391 uoptlen);
3392 set_fs(oldfs);
3393 return err;
3394 }
3395 EXPORT_SYMBOL(kernel_getsockopt);
3396
3397 int kernel_setsockopt(struct socket *sock, int level, int optname,
3398 char *optval, unsigned int optlen)
3399 {
3400 mm_segment_t oldfs = get_fs();
3401 char __user *uoptval;
3402 int err;
3403
3404 uoptval = (char __user __force *) optval;
3405
3406 set_fs(KERNEL_DS);
3407 if (level == SOL_SOCKET)
3408 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3409 else
3410 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3411 optlen);
3412 set_fs(oldfs);
3413 return err;
3414 }
3415 EXPORT_SYMBOL(kernel_setsockopt);
3416
3417 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3418 size_t size, int flags)
3419 {
3420 if (sock->ops->sendpage)
3421 return sock->ops->sendpage(sock, page, offset, size, flags);
3422
3423 return sock_no_sendpage(sock, page, offset, size, flags);
3424 }
3425 EXPORT_SYMBOL(kernel_sendpage);
3426
3427 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3428 {
3429 mm_segment_t oldfs = get_fs();
3430 int err;
3431
3432 set_fs(KERNEL_DS);
3433 err = sock->ops->ioctl(sock, cmd, arg);
3434 set_fs(oldfs);
3435
3436 return err;
3437 }
3438 EXPORT_SYMBOL(kernel_sock_ioctl);
3439
3440 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3441 {
3442 return sock->ops->shutdown(sock, how);
3443 }
3444 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.110152 seconds and 5 git commands to generate.