udp: dynamically size hash tables at boot time
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
93
94 #include <net/compat.h>
95 #include <net/wext.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
101 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
102 unsigned long nr_segs, loff_t pos);
103 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
104 unsigned long nr_segs, loff_t pos);
105 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
106
107 static int sock_close(struct inode *inode, struct file *file);
108 static unsigned int sock_poll(struct file *file,
109 struct poll_table_struct *wait);
110 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
111 #ifdef CONFIG_COMPAT
112 static long compat_sock_ioctl(struct file *file,
113 unsigned int cmd, unsigned long arg);
114 #endif
115 static int sock_fasync(int fd, struct file *filp, int on);
116 static ssize_t sock_sendpage(struct file *file, struct page *page,
117 int offset, size_t size, loff_t *ppos, int more);
118 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
119 struct pipe_inode_info *pipe, size_t len,
120 unsigned int flags);
121
122 /*
123 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
124 * in the operation structures but are done directly via the socketcall() multiplexor.
125 */
126
127 static const struct file_operations socket_file_ops = {
128 .owner = THIS_MODULE,
129 .llseek = no_llseek,
130 .aio_read = sock_aio_read,
131 .aio_write = sock_aio_write,
132 .poll = sock_poll,
133 .unlocked_ioctl = sock_ioctl,
134 #ifdef CONFIG_COMPAT
135 .compat_ioctl = compat_sock_ioctl,
136 #endif
137 .mmap = sock_mmap,
138 .open = sock_no_open, /* special open code to disallow open via /proc */
139 .release = sock_close,
140 .fasync = sock_fasync,
141 .sendpage = sock_sendpage,
142 .splice_write = generic_splice_sendpage,
143 .splice_read = sock_splice_read,
144 };
145
146 /*
147 * The protocol list. Each protocol is registered in here.
148 */
149
150 static DEFINE_SPINLOCK(net_family_lock);
151 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
152
153 /*
154 * Statistics counters of the socket lists
155 */
156
157 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
158
159 /*
160 * Support routines.
161 * Move socket addresses back and forth across the kernel/user
162 * divide and look after the messy bits.
163 */
164
165 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
166 16 for IP, 16 for IPX,
167 24 for IPv6,
168 about 80 for AX.25
169 must be at least one bigger than
170 the AF_UNIX size (see net/unix/af_unix.c
171 :unix_mkname()).
172 */
173
174 /**
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
179 *
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
183 */
184
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 {
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 return -EINVAL;
189 if (ulen == 0)
190 return 0;
191 if (copy_from_user(kaddr, uaddr, ulen))
192 return -EFAULT;
193 return audit_sockaddr(ulen, kaddr);
194 }
195
196 /**
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
202 *
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
207 * accessible.
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
211 */
212
213 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
214 int __user *ulen)
215 {
216 int err;
217 int len;
218
219 err = get_user(len, ulen);
220 if (err)
221 return err;
222 if (len > klen)
223 len = klen;
224 if (len < 0 || len > sizeof(struct sockaddr_storage))
225 return -EINVAL;
226 if (len) {
227 if (audit_sockaddr(klen, kaddr))
228 return -ENOMEM;
229 if (copy_to_user(uaddr, kaddr, len))
230 return -EFAULT;
231 }
232 /*
233 * "fromlen shall refer to the value before truncation.."
234 * 1003.1g
235 */
236 return __put_user(klen, ulen);
237 }
238
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
240
241 static struct inode *sock_alloc_inode(struct super_block *sb)
242 {
243 struct socket_alloc *ei;
244
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 init_waitqueue_head(&ei->socket.wait);
249
250 ei->socket.fasync_list = NULL;
251 ei->socket.state = SS_UNCONNECTED;
252 ei->socket.flags = 0;
253 ei->socket.ops = NULL;
254 ei->socket.sk = NULL;
255 ei->socket.file = NULL;
256
257 return &ei->vfs_inode;
258 }
259
260 static void sock_destroy_inode(struct inode *inode)
261 {
262 kmem_cache_free(sock_inode_cachep,
263 container_of(inode, struct socket_alloc, vfs_inode));
264 }
265
266 static void init_once(void *foo)
267 {
268 struct socket_alloc *ei = (struct socket_alloc *)foo;
269
270 inode_init_once(&ei->vfs_inode);
271 }
272
273 static int init_inodecache(void)
274 {
275 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
276 sizeof(struct socket_alloc),
277 0,
278 (SLAB_HWCACHE_ALIGN |
279 SLAB_RECLAIM_ACCOUNT |
280 SLAB_MEM_SPREAD),
281 init_once);
282 if (sock_inode_cachep == NULL)
283 return -ENOMEM;
284 return 0;
285 }
286
287 static const struct super_operations sockfs_ops = {
288 .alloc_inode = sock_alloc_inode,
289 .destroy_inode =sock_destroy_inode,
290 .statfs = simple_statfs,
291 };
292
293 static int sockfs_get_sb(struct file_system_type *fs_type,
294 int flags, const char *dev_name, void *data,
295 struct vfsmount *mnt)
296 {
297 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
298 mnt);
299 }
300
301 static struct vfsmount *sock_mnt __read_mostly;
302
303 static struct file_system_type sock_fs_type = {
304 .name = "sockfs",
305 .get_sb = sockfs_get_sb,
306 .kill_sb = kill_anon_super,
307 };
308
309 static int sockfs_delete_dentry(struct dentry *dentry)
310 {
311 /*
312 * At creation time, we pretended this dentry was hashed
313 * (by clearing DCACHE_UNHASHED bit in d_flags)
314 * At delete time, we restore the truth : not hashed.
315 * (so that dput() can proceed correctly)
316 */
317 dentry->d_flags |= DCACHE_UNHASHED;
318 return 0;
319 }
320
321 /*
322 * sockfs_dname() is called from d_path().
323 */
324 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
325 {
326 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
327 dentry->d_inode->i_ino);
328 }
329
330 static const struct dentry_operations sockfs_dentry_operations = {
331 .d_delete = sockfs_delete_dentry,
332 .d_dname = sockfs_dname,
333 };
334
335 /*
336 * Obtains the first available file descriptor and sets it up for use.
337 *
338 * These functions create file structures and maps them to fd space
339 * of the current process. On success it returns file descriptor
340 * and file struct implicitly stored in sock->file.
341 * Note that another thread may close file descriptor before we return
342 * from this function. We use the fact that now we do not refer
343 * to socket after mapping. If one day we will need it, this
344 * function will increment ref. count on file by 1.
345 *
346 * In any case returned fd MAY BE not valid!
347 * This race condition is unavoidable
348 * with shared fd spaces, we cannot solve it inside kernel,
349 * but we take care of internal coherence yet.
350 */
351
352 static int sock_alloc_fd(struct file **filep, int flags)
353 {
354 int fd;
355
356 fd = get_unused_fd_flags(flags);
357 if (likely(fd >= 0)) {
358 struct file *file = get_empty_filp();
359
360 *filep = file;
361 if (unlikely(!file)) {
362 put_unused_fd(fd);
363 return -ENFILE;
364 }
365 } else
366 *filep = NULL;
367 return fd;
368 }
369
370 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
371 {
372 struct dentry *dentry;
373 struct qstr name = { .name = "" };
374
375 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
376 if (unlikely(!dentry))
377 return -ENOMEM;
378
379 dentry->d_op = &sockfs_dentry_operations;
380 /*
381 * We dont want to push this dentry into global dentry hash table.
382 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
383 * This permits a working /proc/$pid/fd/XXX on sockets
384 */
385 dentry->d_flags &= ~DCACHE_UNHASHED;
386 d_instantiate(dentry, SOCK_INODE(sock));
387
388 sock->file = file;
389 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
390 &socket_file_ops);
391 SOCK_INODE(sock)->i_fop = &socket_file_ops;
392 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
393 file->f_pos = 0;
394 file->private_data = sock;
395
396 return 0;
397 }
398
399 int sock_map_fd(struct socket *sock, int flags)
400 {
401 struct file *newfile;
402 int fd = sock_alloc_fd(&newfile, flags);
403
404 if (likely(fd >= 0)) {
405 int err = sock_attach_fd(sock, newfile, flags);
406
407 if (unlikely(err < 0)) {
408 put_filp(newfile);
409 put_unused_fd(fd);
410 return err;
411 }
412 fd_install(fd, newfile);
413 }
414 return fd;
415 }
416
417 static struct socket *sock_from_file(struct file *file, int *err)
418 {
419 if (file->f_op == &socket_file_ops)
420 return file->private_data; /* set in sock_map_fd */
421
422 *err = -ENOTSOCK;
423 return NULL;
424 }
425
426 /**
427 * sockfd_lookup - Go from a file number to its socket slot
428 * @fd: file handle
429 * @err: pointer to an error code return
430 *
431 * The file handle passed in is locked and the socket it is bound
432 * too is returned. If an error occurs the err pointer is overwritten
433 * with a negative errno code and NULL is returned. The function checks
434 * for both invalid handles and passing a handle which is not a socket.
435 *
436 * On a success the socket object pointer is returned.
437 */
438
439 struct socket *sockfd_lookup(int fd, int *err)
440 {
441 struct file *file;
442 struct socket *sock;
443
444 file = fget(fd);
445 if (!file) {
446 *err = -EBADF;
447 return NULL;
448 }
449
450 sock = sock_from_file(file, err);
451 if (!sock)
452 fput(file);
453 return sock;
454 }
455
456 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
457 {
458 struct file *file;
459 struct socket *sock;
460
461 *err = -EBADF;
462 file = fget_light(fd, fput_needed);
463 if (file) {
464 sock = sock_from_file(file, err);
465 if (sock)
466 return sock;
467 fput_light(file, *fput_needed);
468 }
469 return NULL;
470 }
471
472 /**
473 * sock_alloc - allocate a socket
474 *
475 * Allocate a new inode and socket object. The two are bound together
476 * and initialised. The socket is then returned. If we are out of inodes
477 * NULL is returned.
478 */
479
480 static struct socket *sock_alloc(void)
481 {
482 struct inode *inode;
483 struct socket *sock;
484
485 inode = new_inode(sock_mnt->mnt_sb);
486 if (!inode)
487 return NULL;
488
489 sock = SOCKET_I(inode);
490
491 kmemcheck_annotate_bitfield(sock, type);
492 inode->i_mode = S_IFSOCK | S_IRWXUGO;
493 inode->i_uid = current_fsuid();
494 inode->i_gid = current_fsgid();
495
496 percpu_add(sockets_in_use, 1);
497 return sock;
498 }
499
500 /*
501 * In theory you can't get an open on this inode, but /proc provides
502 * a back door. Remember to keep it shut otherwise you'll let the
503 * creepy crawlies in.
504 */
505
506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
507 {
508 return -ENXIO;
509 }
510
511 const struct file_operations bad_sock_fops = {
512 .owner = THIS_MODULE,
513 .open = sock_no_open,
514 };
515
516 /**
517 * sock_release - close a socket
518 * @sock: socket to close
519 *
520 * The socket is released from the protocol stack if it has a release
521 * callback, and the inode is then released if the socket is bound to
522 * an inode not a file.
523 */
524
525 void sock_release(struct socket *sock)
526 {
527 if (sock->ops) {
528 struct module *owner = sock->ops->owner;
529
530 sock->ops->release(sock);
531 sock->ops = NULL;
532 module_put(owner);
533 }
534
535 if (sock->fasync_list)
536 printk(KERN_ERR "sock_release: fasync list not empty!\n");
537
538 percpu_sub(sockets_in_use, 1);
539 if (!sock->file) {
540 iput(SOCK_INODE(sock));
541 return;
542 }
543 sock->file = NULL;
544 }
545
546 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
547 union skb_shared_tx *shtx)
548 {
549 shtx->flags = 0;
550 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
551 shtx->hardware = 1;
552 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
553 shtx->software = 1;
554 return 0;
555 }
556 EXPORT_SYMBOL(sock_tx_timestamp);
557
558 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
559 struct msghdr *msg, size_t size)
560 {
561 struct sock_iocb *si = kiocb_to_siocb(iocb);
562 int err;
563
564 si->sock = sock;
565 si->scm = NULL;
566 si->msg = msg;
567 si->size = size;
568
569 err = security_socket_sendmsg(sock, msg, size);
570 if (err)
571 return err;
572
573 return sock->ops->sendmsg(iocb, sock, msg, size);
574 }
575
576 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
577 {
578 struct kiocb iocb;
579 struct sock_iocb siocb;
580 int ret;
581
582 init_sync_kiocb(&iocb, NULL);
583 iocb.private = &siocb;
584 ret = __sock_sendmsg(&iocb, sock, msg, size);
585 if (-EIOCBQUEUED == ret)
586 ret = wait_on_sync_kiocb(&iocb);
587 return ret;
588 }
589
590 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
591 struct kvec *vec, size_t num, size_t size)
592 {
593 mm_segment_t oldfs = get_fs();
594 int result;
595
596 set_fs(KERNEL_DS);
597 /*
598 * the following is safe, since for compiler definitions of kvec and
599 * iovec are identical, yielding the same in-core layout and alignment
600 */
601 msg->msg_iov = (struct iovec *)vec;
602 msg->msg_iovlen = num;
603 result = sock_sendmsg(sock, msg, size);
604 set_fs(oldfs);
605 return result;
606 }
607
608 static int ktime2ts(ktime_t kt, struct timespec *ts)
609 {
610 if (kt.tv64) {
611 *ts = ktime_to_timespec(kt);
612 return 1;
613 } else {
614 return 0;
615 }
616 }
617
618 /*
619 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
620 */
621 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
622 struct sk_buff *skb)
623 {
624 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
625 struct timespec ts[3];
626 int empty = 1;
627 struct skb_shared_hwtstamps *shhwtstamps =
628 skb_hwtstamps(skb);
629
630 /* Race occurred between timestamp enabling and packet
631 receiving. Fill in the current time for now. */
632 if (need_software_tstamp && skb->tstamp.tv64 == 0)
633 __net_timestamp(skb);
634
635 if (need_software_tstamp) {
636 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
637 struct timeval tv;
638 skb_get_timestamp(skb, &tv);
639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
640 sizeof(tv), &tv);
641 } else {
642 struct timespec ts;
643 skb_get_timestampns(skb, &ts);
644 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
645 sizeof(ts), &ts);
646 }
647 }
648
649
650 memset(ts, 0, sizeof(ts));
651 if (skb->tstamp.tv64 &&
652 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
653 skb_get_timestampns(skb, ts + 0);
654 empty = 0;
655 }
656 if (shhwtstamps) {
657 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
658 ktime2ts(shhwtstamps->syststamp, ts + 1))
659 empty = 0;
660 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
661 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
662 empty = 0;
663 }
664 if (!empty)
665 put_cmsg(msg, SOL_SOCKET,
666 SCM_TIMESTAMPING, sizeof(ts), &ts);
667 }
668
669 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
670
671 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
672 struct msghdr *msg, size_t size, int flags)
673 {
674 int err;
675 struct sock_iocb *si = kiocb_to_siocb(iocb);
676
677 si->sock = sock;
678 si->scm = NULL;
679 si->msg = msg;
680 si->size = size;
681 si->flags = flags;
682
683 err = security_socket_recvmsg(sock, msg, size, flags);
684 if (err)
685 return err;
686
687 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
688 }
689
690 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
691 size_t size, int flags)
692 {
693 struct kiocb iocb;
694 struct sock_iocb siocb;
695 int ret;
696
697 init_sync_kiocb(&iocb, NULL);
698 iocb.private = &siocb;
699 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
700 if (-EIOCBQUEUED == ret)
701 ret = wait_on_sync_kiocb(&iocb);
702 return ret;
703 }
704
705 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
706 struct kvec *vec, size_t num, size_t size, int flags)
707 {
708 mm_segment_t oldfs = get_fs();
709 int result;
710
711 set_fs(KERNEL_DS);
712 /*
713 * the following is safe, since for compiler definitions of kvec and
714 * iovec are identical, yielding the same in-core layout and alignment
715 */
716 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
717 result = sock_recvmsg(sock, msg, size, flags);
718 set_fs(oldfs);
719 return result;
720 }
721
722 static void sock_aio_dtor(struct kiocb *iocb)
723 {
724 kfree(iocb->private);
725 }
726
727 static ssize_t sock_sendpage(struct file *file, struct page *page,
728 int offset, size_t size, loff_t *ppos, int more)
729 {
730 struct socket *sock;
731 int flags;
732
733 sock = file->private_data;
734
735 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
736 if (more)
737 flags |= MSG_MORE;
738
739 return kernel_sendpage(sock, page, offset, size, flags);
740 }
741
742 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
743 struct pipe_inode_info *pipe, size_t len,
744 unsigned int flags)
745 {
746 struct socket *sock = file->private_data;
747
748 if (unlikely(!sock->ops->splice_read))
749 return -EINVAL;
750
751 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
752 }
753
754 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
755 struct sock_iocb *siocb)
756 {
757 if (!is_sync_kiocb(iocb)) {
758 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
759 if (!siocb)
760 return NULL;
761 iocb->ki_dtor = sock_aio_dtor;
762 }
763
764 siocb->kiocb = iocb;
765 iocb->private = siocb;
766 return siocb;
767 }
768
769 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
770 struct file *file, const struct iovec *iov,
771 unsigned long nr_segs)
772 {
773 struct socket *sock = file->private_data;
774 size_t size = 0;
775 int i;
776
777 for (i = 0; i < nr_segs; i++)
778 size += iov[i].iov_len;
779
780 msg->msg_name = NULL;
781 msg->msg_namelen = 0;
782 msg->msg_control = NULL;
783 msg->msg_controllen = 0;
784 msg->msg_iov = (struct iovec *)iov;
785 msg->msg_iovlen = nr_segs;
786 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
787
788 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
789 }
790
791 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
792 unsigned long nr_segs, loff_t pos)
793 {
794 struct sock_iocb siocb, *x;
795
796 if (pos != 0)
797 return -ESPIPE;
798
799 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
800 return 0;
801
802
803 x = alloc_sock_iocb(iocb, &siocb);
804 if (!x)
805 return -ENOMEM;
806 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
807 }
808
809 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
810 struct file *file, const struct iovec *iov,
811 unsigned long nr_segs)
812 {
813 struct socket *sock = file->private_data;
814 size_t size = 0;
815 int i;
816
817 for (i = 0; i < nr_segs; i++)
818 size += iov[i].iov_len;
819
820 msg->msg_name = NULL;
821 msg->msg_namelen = 0;
822 msg->msg_control = NULL;
823 msg->msg_controllen = 0;
824 msg->msg_iov = (struct iovec *)iov;
825 msg->msg_iovlen = nr_segs;
826 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
827 if (sock->type == SOCK_SEQPACKET)
828 msg->msg_flags |= MSG_EOR;
829
830 return __sock_sendmsg(iocb, sock, msg, size);
831 }
832
833 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
834 unsigned long nr_segs, loff_t pos)
835 {
836 struct sock_iocb siocb, *x;
837
838 if (pos != 0)
839 return -ESPIPE;
840
841 x = alloc_sock_iocb(iocb, &siocb);
842 if (!x)
843 return -ENOMEM;
844
845 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
846 }
847
848 /*
849 * Atomic setting of ioctl hooks to avoid race
850 * with module unload.
851 */
852
853 static DEFINE_MUTEX(br_ioctl_mutex);
854 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
855
856 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
857 {
858 mutex_lock(&br_ioctl_mutex);
859 br_ioctl_hook = hook;
860 mutex_unlock(&br_ioctl_mutex);
861 }
862
863 EXPORT_SYMBOL(brioctl_set);
864
865 static DEFINE_MUTEX(vlan_ioctl_mutex);
866 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
867
868 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
869 {
870 mutex_lock(&vlan_ioctl_mutex);
871 vlan_ioctl_hook = hook;
872 mutex_unlock(&vlan_ioctl_mutex);
873 }
874
875 EXPORT_SYMBOL(vlan_ioctl_set);
876
877 static DEFINE_MUTEX(dlci_ioctl_mutex);
878 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
879
880 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
881 {
882 mutex_lock(&dlci_ioctl_mutex);
883 dlci_ioctl_hook = hook;
884 mutex_unlock(&dlci_ioctl_mutex);
885 }
886
887 EXPORT_SYMBOL(dlci_ioctl_set);
888
889 /*
890 * With an ioctl, arg may well be a user mode pointer, but we don't know
891 * what to do with it - that's up to the protocol still.
892 */
893
894 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
895 {
896 struct socket *sock;
897 struct sock *sk;
898 void __user *argp = (void __user *)arg;
899 int pid, err;
900 struct net *net;
901
902 sock = file->private_data;
903 sk = sock->sk;
904 net = sock_net(sk);
905 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
906 err = dev_ioctl(net, cmd, argp);
907 } else
908 #ifdef CONFIG_WIRELESS_EXT
909 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
910 err = dev_ioctl(net, cmd, argp);
911 } else
912 #endif /* CONFIG_WIRELESS_EXT */
913 switch (cmd) {
914 case FIOSETOWN:
915 case SIOCSPGRP:
916 err = -EFAULT;
917 if (get_user(pid, (int __user *)argp))
918 break;
919 err = f_setown(sock->file, pid, 1);
920 break;
921 case FIOGETOWN:
922 case SIOCGPGRP:
923 err = put_user(f_getown(sock->file),
924 (int __user *)argp);
925 break;
926 case SIOCGIFBR:
927 case SIOCSIFBR:
928 case SIOCBRADDBR:
929 case SIOCBRDELBR:
930 err = -ENOPKG;
931 if (!br_ioctl_hook)
932 request_module("bridge");
933
934 mutex_lock(&br_ioctl_mutex);
935 if (br_ioctl_hook)
936 err = br_ioctl_hook(net, cmd, argp);
937 mutex_unlock(&br_ioctl_mutex);
938 break;
939 case SIOCGIFVLAN:
940 case SIOCSIFVLAN:
941 err = -ENOPKG;
942 if (!vlan_ioctl_hook)
943 request_module("8021q");
944
945 mutex_lock(&vlan_ioctl_mutex);
946 if (vlan_ioctl_hook)
947 err = vlan_ioctl_hook(net, argp);
948 mutex_unlock(&vlan_ioctl_mutex);
949 break;
950 case SIOCADDDLCI:
951 case SIOCDELDLCI:
952 err = -ENOPKG;
953 if (!dlci_ioctl_hook)
954 request_module("dlci");
955
956 mutex_lock(&dlci_ioctl_mutex);
957 if (dlci_ioctl_hook)
958 err = dlci_ioctl_hook(cmd, argp);
959 mutex_unlock(&dlci_ioctl_mutex);
960 break;
961 default:
962 err = sock->ops->ioctl(sock, cmd, arg);
963
964 /*
965 * If this ioctl is unknown try to hand it down
966 * to the NIC driver.
967 */
968 if (err == -ENOIOCTLCMD)
969 err = dev_ioctl(net, cmd, argp);
970 break;
971 }
972 return err;
973 }
974
975 int sock_create_lite(int family, int type, int protocol, struct socket **res)
976 {
977 int err;
978 struct socket *sock = NULL;
979
980 err = security_socket_create(family, type, protocol, 1);
981 if (err)
982 goto out;
983
984 sock = sock_alloc();
985 if (!sock) {
986 err = -ENOMEM;
987 goto out;
988 }
989
990 sock->type = type;
991 err = security_socket_post_create(sock, family, type, protocol, 1);
992 if (err)
993 goto out_release;
994
995 out:
996 *res = sock;
997 return err;
998 out_release:
999 sock_release(sock);
1000 sock = NULL;
1001 goto out;
1002 }
1003
1004 /* No kernel lock held - perfect */
1005 static unsigned int sock_poll(struct file *file, poll_table *wait)
1006 {
1007 struct socket *sock;
1008
1009 /*
1010 * We can't return errors to poll, so it's either yes or no.
1011 */
1012 sock = file->private_data;
1013 return sock->ops->poll(file, sock, wait);
1014 }
1015
1016 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1017 {
1018 struct socket *sock = file->private_data;
1019
1020 return sock->ops->mmap(file, sock, vma);
1021 }
1022
1023 static int sock_close(struct inode *inode, struct file *filp)
1024 {
1025 /*
1026 * It was possible the inode is NULL we were
1027 * closing an unfinished socket.
1028 */
1029
1030 if (!inode) {
1031 printk(KERN_DEBUG "sock_close: NULL inode\n");
1032 return 0;
1033 }
1034 sock_release(SOCKET_I(inode));
1035 return 0;
1036 }
1037
1038 /*
1039 * Update the socket async list
1040 *
1041 * Fasync_list locking strategy.
1042 *
1043 * 1. fasync_list is modified only under process context socket lock
1044 * i.e. under semaphore.
1045 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1046 * or under socket lock.
1047 * 3. fasync_list can be used from softirq context, so that
1048 * modification under socket lock have to be enhanced with
1049 * write_lock_bh(&sk->sk_callback_lock).
1050 * --ANK (990710)
1051 */
1052
1053 static int sock_fasync(int fd, struct file *filp, int on)
1054 {
1055 struct fasync_struct *fa, *fna = NULL, **prev;
1056 struct socket *sock;
1057 struct sock *sk;
1058
1059 if (on) {
1060 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1061 if (fna == NULL)
1062 return -ENOMEM;
1063 }
1064
1065 sock = filp->private_data;
1066
1067 sk = sock->sk;
1068 if (sk == NULL) {
1069 kfree(fna);
1070 return -EINVAL;
1071 }
1072
1073 lock_sock(sk);
1074
1075 spin_lock(&filp->f_lock);
1076 if (on)
1077 filp->f_flags |= FASYNC;
1078 else
1079 filp->f_flags &= ~FASYNC;
1080 spin_unlock(&filp->f_lock);
1081
1082 prev = &(sock->fasync_list);
1083
1084 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1085 if (fa->fa_file == filp)
1086 break;
1087
1088 if (on) {
1089 if (fa != NULL) {
1090 write_lock_bh(&sk->sk_callback_lock);
1091 fa->fa_fd = fd;
1092 write_unlock_bh(&sk->sk_callback_lock);
1093
1094 kfree(fna);
1095 goto out;
1096 }
1097 fna->fa_file = filp;
1098 fna->fa_fd = fd;
1099 fna->magic = FASYNC_MAGIC;
1100 fna->fa_next = sock->fasync_list;
1101 write_lock_bh(&sk->sk_callback_lock);
1102 sock->fasync_list = fna;
1103 sock_set_flag(sk, SOCK_FASYNC);
1104 write_unlock_bh(&sk->sk_callback_lock);
1105 } else {
1106 if (fa != NULL) {
1107 write_lock_bh(&sk->sk_callback_lock);
1108 *prev = fa->fa_next;
1109 if (!sock->fasync_list)
1110 sock_reset_flag(sk, SOCK_FASYNC);
1111 write_unlock_bh(&sk->sk_callback_lock);
1112 kfree(fa);
1113 }
1114 }
1115
1116 out:
1117 release_sock(sock->sk);
1118 return 0;
1119 }
1120
1121 /* This function may be called only under socket lock or callback_lock */
1122
1123 int sock_wake_async(struct socket *sock, int how, int band)
1124 {
1125 if (!sock || !sock->fasync_list)
1126 return -1;
1127 switch (how) {
1128 case SOCK_WAKE_WAITD:
1129 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1130 break;
1131 goto call_kill;
1132 case SOCK_WAKE_SPACE:
1133 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1134 break;
1135 /* fall through */
1136 case SOCK_WAKE_IO:
1137 call_kill:
1138 __kill_fasync(sock->fasync_list, SIGIO, band);
1139 break;
1140 case SOCK_WAKE_URG:
1141 __kill_fasync(sock->fasync_list, SIGURG, band);
1142 }
1143 return 0;
1144 }
1145
1146 static int __sock_create(struct net *net, int family, int type, int protocol,
1147 struct socket **res, int kern)
1148 {
1149 int err;
1150 struct socket *sock;
1151 const struct net_proto_family *pf;
1152
1153 /*
1154 * Check protocol is in range
1155 */
1156 if (family < 0 || family >= NPROTO)
1157 return -EAFNOSUPPORT;
1158 if (type < 0 || type >= SOCK_MAX)
1159 return -EINVAL;
1160
1161 /* Compatibility.
1162
1163 This uglymoron is moved from INET layer to here to avoid
1164 deadlock in module load.
1165 */
1166 if (family == PF_INET && type == SOCK_PACKET) {
1167 static int warned;
1168 if (!warned) {
1169 warned = 1;
1170 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1171 current->comm);
1172 }
1173 family = PF_PACKET;
1174 }
1175
1176 err = security_socket_create(family, type, protocol, kern);
1177 if (err)
1178 return err;
1179
1180 /*
1181 * Allocate the socket and allow the family to set things up. if
1182 * the protocol is 0, the family is instructed to select an appropriate
1183 * default.
1184 */
1185 sock = sock_alloc();
1186 if (!sock) {
1187 if (net_ratelimit())
1188 printk(KERN_WARNING "socket: no more sockets\n");
1189 return -ENFILE; /* Not exactly a match, but its the
1190 closest posix thing */
1191 }
1192
1193 sock->type = type;
1194
1195 #ifdef CONFIG_MODULES
1196 /* Attempt to load a protocol module if the find failed.
1197 *
1198 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1199 * requested real, full-featured networking support upon configuration.
1200 * Otherwise module support will break!
1201 */
1202 if (net_families[family] == NULL)
1203 request_module("net-pf-%d", family);
1204 #endif
1205
1206 rcu_read_lock();
1207 pf = rcu_dereference(net_families[family]);
1208 err = -EAFNOSUPPORT;
1209 if (!pf)
1210 goto out_release;
1211
1212 /*
1213 * We will call the ->create function, that possibly is in a loadable
1214 * module, so we have to bump that loadable module refcnt first.
1215 */
1216 if (!try_module_get(pf->owner))
1217 goto out_release;
1218
1219 /* Now protected by module ref count */
1220 rcu_read_unlock();
1221
1222 err = pf->create(net, sock, protocol);
1223 if (err < 0)
1224 goto out_module_put;
1225
1226 /*
1227 * Now to bump the refcnt of the [loadable] module that owns this
1228 * socket at sock_release time we decrement its refcnt.
1229 */
1230 if (!try_module_get(sock->ops->owner))
1231 goto out_module_busy;
1232
1233 /*
1234 * Now that we're done with the ->create function, the [loadable]
1235 * module can have its refcnt decremented
1236 */
1237 module_put(pf->owner);
1238 err = security_socket_post_create(sock, family, type, protocol, kern);
1239 if (err)
1240 goto out_sock_release;
1241 *res = sock;
1242
1243 return 0;
1244
1245 out_module_busy:
1246 err = -EAFNOSUPPORT;
1247 out_module_put:
1248 sock->ops = NULL;
1249 module_put(pf->owner);
1250 out_sock_release:
1251 sock_release(sock);
1252 return err;
1253
1254 out_release:
1255 rcu_read_unlock();
1256 goto out_sock_release;
1257 }
1258
1259 int sock_create(int family, int type, int protocol, struct socket **res)
1260 {
1261 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1262 }
1263
1264 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1265 {
1266 return __sock_create(&init_net, family, type, protocol, res, 1);
1267 }
1268
1269 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1270 {
1271 int retval;
1272 struct socket *sock;
1273 int flags;
1274
1275 /* Check the SOCK_* constants for consistency. */
1276 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1277 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1278 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1279 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1280
1281 flags = type & ~SOCK_TYPE_MASK;
1282 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1283 return -EINVAL;
1284 type &= SOCK_TYPE_MASK;
1285
1286 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1287 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1288
1289 retval = sock_create(family, type, protocol, &sock);
1290 if (retval < 0)
1291 goto out;
1292
1293 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1294 if (retval < 0)
1295 goto out_release;
1296
1297 out:
1298 /* It may be already another descriptor 8) Not kernel problem. */
1299 return retval;
1300
1301 out_release:
1302 sock_release(sock);
1303 return retval;
1304 }
1305
1306 /*
1307 * Create a pair of connected sockets.
1308 */
1309
1310 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1311 int __user *, usockvec)
1312 {
1313 struct socket *sock1, *sock2;
1314 int fd1, fd2, err;
1315 struct file *newfile1, *newfile2;
1316 int flags;
1317
1318 flags = type & ~SOCK_TYPE_MASK;
1319 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1320 return -EINVAL;
1321 type &= SOCK_TYPE_MASK;
1322
1323 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1324 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1325
1326 /*
1327 * Obtain the first socket and check if the underlying protocol
1328 * supports the socketpair call.
1329 */
1330
1331 err = sock_create(family, type, protocol, &sock1);
1332 if (err < 0)
1333 goto out;
1334
1335 err = sock_create(family, type, protocol, &sock2);
1336 if (err < 0)
1337 goto out_release_1;
1338
1339 err = sock1->ops->socketpair(sock1, sock2);
1340 if (err < 0)
1341 goto out_release_both;
1342
1343 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1344 if (unlikely(fd1 < 0)) {
1345 err = fd1;
1346 goto out_release_both;
1347 }
1348
1349 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1350 if (unlikely(fd2 < 0)) {
1351 err = fd2;
1352 put_filp(newfile1);
1353 put_unused_fd(fd1);
1354 goto out_release_both;
1355 }
1356
1357 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1358 if (unlikely(err < 0)) {
1359 goto out_fd2;
1360 }
1361
1362 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1363 if (unlikely(err < 0)) {
1364 fput(newfile1);
1365 goto out_fd1;
1366 }
1367
1368 audit_fd_pair(fd1, fd2);
1369 fd_install(fd1, newfile1);
1370 fd_install(fd2, newfile2);
1371 /* fd1 and fd2 may be already another descriptors.
1372 * Not kernel problem.
1373 */
1374
1375 err = put_user(fd1, &usockvec[0]);
1376 if (!err)
1377 err = put_user(fd2, &usockvec[1]);
1378 if (!err)
1379 return 0;
1380
1381 sys_close(fd2);
1382 sys_close(fd1);
1383 return err;
1384
1385 out_release_both:
1386 sock_release(sock2);
1387 out_release_1:
1388 sock_release(sock1);
1389 out:
1390 return err;
1391
1392 out_fd2:
1393 put_filp(newfile1);
1394 sock_release(sock1);
1395 out_fd1:
1396 put_filp(newfile2);
1397 sock_release(sock2);
1398 put_unused_fd(fd1);
1399 put_unused_fd(fd2);
1400 goto out;
1401 }
1402
1403 /*
1404 * Bind a name to a socket. Nothing much to do here since it's
1405 * the protocol's responsibility to handle the local address.
1406 *
1407 * We move the socket address to kernel space before we call
1408 * the protocol layer (having also checked the address is ok).
1409 */
1410
1411 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1412 {
1413 struct socket *sock;
1414 struct sockaddr_storage address;
1415 int err, fput_needed;
1416
1417 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1418 if (sock) {
1419 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1420 if (err >= 0) {
1421 err = security_socket_bind(sock,
1422 (struct sockaddr *)&address,
1423 addrlen);
1424 if (!err)
1425 err = sock->ops->bind(sock,
1426 (struct sockaddr *)
1427 &address, addrlen);
1428 }
1429 fput_light(sock->file, fput_needed);
1430 }
1431 return err;
1432 }
1433
1434 /*
1435 * Perform a listen. Basically, we allow the protocol to do anything
1436 * necessary for a listen, and if that works, we mark the socket as
1437 * ready for listening.
1438 */
1439
1440 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1441 {
1442 struct socket *sock;
1443 int err, fput_needed;
1444 int somaxconn;
1445
1446 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1447 if (sock) {
1448 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1449 if ((unsigned)backlog > somaxconn)
1450 backlog = somaxconn;
1451
1452 err = security_socket_listen(sock, backlog);
1453 if (!err)
1454 err = sock->ops->listen(sock, backlog);
1455
1456 fput_light(sock->file, fput_needed);
1457 }
1458 return err;
1459 }
1460
1461 /*
1462 * For accept, we attempt to create a new socket, set up the link
1463 * with the client, wake up the client, then return the new
1464 * connected fd. We collect the address of the connector in kernel
1465 * space and move it to user at the very end. This is unclean because
1466 * we open the socket then return an error.
1467 *
1468 * 1003.1g adds the ability to recvmsg() to query connection pending
1469 * status to recvmsg. We need to add that support in a way thats
1470 * clean when we restucture accept also.
1471 */
1472
1473 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1474 int __user *, upeer_addrlen, int, flags)
1475 {
1476 struct socket *sock, *newsock;
1477 struct file *newfile;
1478 int err, len, newfd, fput_needed;
1479 struct sockaddr_storage address;
1480
1481 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1482 return -EINVAL;
1483
1484 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1485 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1486
1487 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1488 if (!sock)
1489 goto out;
1490
1491 err = -ENFILE;
1492 if (!(newsock = sock_alloc()))
1493 goto out_put;
1494
1495 newsock->type = sock->type;
1496 newsock->ops = sock->ops;
1497
1498 /*
1499 * We don't need try_module_get here, as the listening socket (sock)
1500 * has the protocol module (sock->ops->owner) held.
1501 */
1502 __module_get(newsock->ops->owner);
1503
1504 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1505 if (unlikely(newfd < 0)) {
1506 err = newfd;
1507 sock_release(newsock);
1508 goto out_put;
1509 }
1510
1511 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1512 if (err < 0)
1513 goto out_fd_simple;
1514
1515 err = security_socket_accept(sock, newsock);
1516 if (err)
1517 goto out_fd;
1518
1519 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1520 if (err < 0)
1521 goto out_fd;
1522
1523 if (upeer_sockaddr) {
1524 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1525 &len, 2) < 0) {
1526 err = -ECONNABORTED;
1527 goto out_fd;
1528 }
1529 err = move_addr_to_user((struct sockaddr *)&address,
1530 len, upeer_sockaddr, upeer_addrlen);
1531 if (err < 0)
1532 goto out_fd;
1533 }
1534
1535 /* File flags are not inherited via accept() unlike another OSes. */
1536
1537 fd_install(newfd, newfile);
1538 err = newfd;
1539
1540 out_put:
1541 fput_light(sock->file, fput_needed);
1542 out:
1543 return err;
1544 out_fd_simple:
1545 sock_release(newsock);
1546 put_filp(newfile);
1547 put_unused_fd(newfd);
1548 goto out_put;
1549 out_fd:
1550 fput(newfile);
1551 put_unused_fd(newfd);
1552 goto out_put;
1553 }
1554
1555 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1556 int __user *, upeer_addrlen)
1557 {
1558 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1559 }
1560
1561 /*
1562 * Attempt to connect to a socket with the server address. The address
1563 * is in user space so we verify it is OK and move it to kernel space.
1564 *
1565 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1566 * break bindings
1567 *
1568 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1569 * other SEQPACKET protocols that take time to connect() as it doesn't
1570 * include the -EINPROGRESS status for such sockets.
1571 */
1572
1573 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1574 int, addrlen)
1575 {
1576 struct socket *sock;
1577 struct sockaddr_storage address;
1578 int err, fput_needed;
1579
1580 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1581 if (!sock)
1582 goto out;
1583 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1584 if (err < 0)
1585 goto out_put;
1586
1587 err =
1588 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1589 if (err)
1590 goto out_put;
1591
1592 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1593 sock->file->f_flags);
1594 out_put:
1595 fput_light(sock->file, fput_needed);
1596 out:
1597 return err;
1598 }
1599
1600 /*
1601 * Get the local address ('name') of a socket object. Move the obtained
1602 * name to user space.
1603 */
1604
1605 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1606 int __user *, usockaddr_len)
1607 {
1608 struct socket *sock;
1609 struct sockaddr_storage address;
1610 int len, err, fput_needed;
1611
1612 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1613 if (!sock)
1614 goto out;
1615
1616 err = security_socket_getsockname(sock);
1617 if (err)
1618 goto out_put;
1619
1620 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1621 if (err)
1622 goto out_put;
1623 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1624
1625 out_put:
1626 fput_light(sock->file, fput_needed);
1627 out:
1628 return err;
1629 }
1630
1631 /*
1632 * Get the remote address ('name') of a socket object. Move the obtained
1633 * name to user space.
1634 */
1635
1636 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1637 int __user *, usockaddr_len)
1638 {
1639 struct socket *sock;
1640 struct sockaddr_storage address;
1641 int len, err, fput_needed;
1642
1643 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1644 if (sock != NULL) {
1645 err = security_socket_getpeername(sock);
1646 if (err) {
1647 fput_light(sock->file, fput_needed);
1648 return err;
1649 }
1650
1651 err =
1652 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1653 1);
1654 if (!err)
1655 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1656 usockaddr_len);
1657 fput_light(sock->file, fput_needed);
1658 }
1659 return err;
1660 }
1661
1662 /*
1663 * Send a datagram to a given address. We move the address into kernel
1664 * space and check the user space data area is readable before invoking
1665 * the protocol.
1666 */
1667
1668 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1669 unsigned, flags, struct sockaddr __user *, addr,
1670 int, addr_len)
1671 {
1672 struct socket *sock;
1673 struct sockaddr_storage address;
1674 int err;
1675 struct msghdr msg;
1676 struct iovec iov;
1677 int fput_needed;
1678
1679 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1680 if (!sock)
1681 goto out;
1682
1683 iov.iov_base = buff;
1684 iov.iov_len = len;
1685 msg.msg_name = NULL;
1686 msg.msg_iov = &iov;
1687 msg.msg_iovlen = 1;
1688 msg.msg_control = NULL;
1689 msg.msg_controllen = 0;
1690 msg.msg_namelen = 0;
1691 if (addr) {
1692 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1693 if (err < 0)
1694 goto out_put;
1695 msg.msg_name = (struct sockaddr *)&address;
1696 msg.msg_namelen = addr_len;
1697 }
1698 if (sock->file->f_flags & O_NONBLOCK)
1699 flags |= MSG_DONTWAIT;
1700 msg.msg_flags = flags;
1701 err = sock_sendmsg(sock, &msg, len);
1702
1703 out_put:
1704 fput_light(sock->file, fput_needed);
1705 out:
1706 return err;
1707 }
1708
1709 /*
1710 * Send a datagram down a socket.
1711 */
1712
1713 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1714 unsigned, flags)
1715 {
1716 return sys_sendto(fd, buff, len, flags, NULL, 0);
1717 }
1718
1719 /*
1720 * Receive a frame from the socket and optionally record the address of the
1721 * sender. We verify the buffers are writable and if needed move the
1722 * sender address from kernel to user space.
1723 */
1724
1725 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1726 unsigned, flags, struct sockaddr __user *, addr,
1727 int __user *, addr_len)
1728 {
1729 struct socket *sock;
1730 struct iovec iov;
1731 struct msghdr msg;
1732 struct sockaddr_storage address;
1733 int err, err2;
1734 int fput_needed;
1735
1736 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1737 if (!sock)
1738 goto out;
1739
1740 msg.msg_control = NULL;
1741 msg.msg_controllen = 0;
1742 msg.msg_iovlen = 1;
1743 msg.msg_iov = &iov;
1744 iov.iov_len = size;
1745 iov.iov_base = ubuf;
1746 msg.msg_name = (struct sockaddr *)&address;
1747 msg.msg_namelen = sizeof(address);
1748 if (sock->file->f_flags & O_NONBLOCK)
1749 flags |= MSG_DONTWAIT;
1750 err = sock_recvmsg(sock, &msg, size, flags);
1751
1752 if (err >= 0 && addr != NULL) {
1753 err2 = move_addr_to_user((struct sockaddr *)&address,
1754 msg.msg_namelen, addr, addr_len);
1755 if (err2 < 0)
1756 err = err2;
1757 }
1758
1759 fput_light(sock->file, fput_needed);
1760 out:
1761 return err;
1762 }
1763
1764 /*
1765 * Receive a datagram from a socket.
1766 */
1767
1768 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1769 unsigned flags)
1770 {
1771 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1772 }
1773
1774 /*
1775 * Set a socket option. Because we don't know the option lengths we have
1776 * to pass the user mode parameter for the protocols to sort out.
1777 */
1778
1779 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1780 char __user *, optval, int, optlen)
1781 {
1782 int err, fput_needed;
1783 struct socket *sock;
1784
1785 if (optlen < 0)
1786 return -EINVAL;
1787
1788 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789 if (sock != NULL) {
1790 err = security_socket_setsockopt(sock, level, optname);
1791 if (err)
1792 goto out_put;
1793
1794 if (level == SOL_SOCKET)
1795 err =
1796 sock_setsockopt(sock, level, optname, optval,
1797 optlen);
1798 else
1799 err =
1800 sock->ops->setsockopt(sock, level, optname, optval,
1801 optlen);
1802 out_put:
1803 fput_light(sock->file, fput_needed);
1804 }
1805 return err;
1806 }
1807
1808 /*
1809 * Get a socket option. Because we don't know the option lengths we have
1810 * to pass a user mode parameter for the protocols to sort out.
1811 */
1812
1813 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1814 char __user *, optval, int __user *, optlen)
1815 {
1816 int err, fput_needed;
1817 struct socket *sock;
1818
1819 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1820 if (sock != NULL) {
1821 err = security_socket_getsockopt(sock, level, optname);
1822 if (err)
1823 goto out_put;
1824
1825 if (level == SOL_SOCKET)
1826 err =
1827 sock_getsockopt(sock, level, optname, optval,
1828 optlen);
1829 else
1830 err =
1831 sock->ops->getsockopt(sock, level, optname, optval,
1832 optlen);
1833 out_put:
1834 fput_light(sock->file, fput_needed);
1835 }
1836 return err;
1837 }
1838
1839 /*
1840 * Shutdown a socket.
1841 */
1842
1843 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1844 {
1845 int err, fput_needed;
1846 struct socket *sock;
1847
1848 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 if (sock != NULL) {
1850 err = security_socket_shutdown(sock, how);
1851 if (!err)
1852 err = sock->ops->shutdown(sock, how);
1853 fput_light(sock->file, fput_needed);
1854 }
1855 return err;
1856 }
1857
1858 /* A couple of helpful macros for getting the address of the 32/64 bit
1859 * fields which are the same type (int / unsigned) on our platforms.
1860 */
1861 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1862 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1863 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1864
1865 /*
1866 * BSD sendmsg interface
1867 */
1868
1869 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1870 {
1871 struct compat_msghdr __user *msg_compat =
1872 (struct compat_msghdr __user *)msg;
1873 struct socket *sock;
1874 struct sockaddr_storage address;
1875 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1876 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1877 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1878 /* 20 is size of ipv6_pktinfo */
1879 unsigned char *ctl_buf = ctl;
1880 struct msghdr msg_sys;
1881 int err, ctl_len, iov_size, total_len;
1882 int fput_needed;
1883
1884 err = -EFAULT;
1885 if (MSG_CMSG_COMPAT & flags) {
1886 if (get_compat_msghdr(&msg_sys, msg_compat))
1887 return -EFAULT;
1888 }
1889 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1890 return -EFAULT;
1891
1892 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1893 if (!sock)
1894 goto out;
1895
1896 /* do not move before msg_sys is valid */
1897 err = -EMSGSIZE;
1898 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1899 goto out_put;
1900
1901 /* Check whether to allocate the iovec area */
1902 err = -ENOMEM;
1903 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1904 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1905 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1906 if (!iov)
1907 goto out_put;
1908 }
1909
1910 /* This will also move the address data into kernel space */
1911 if (MSG_CMSG_COMPAT & flags) {
1912 err = verify_compat_iovec(&msg_sys, iov,
1913 (struct sockaddr *)&address,
1914 VERIFY_READ);
1915 } else
1916 err = verify_iovec(&msg_sys, iov,
1917 (struct sockaddr *)&address,
1918 VERIFY_READ);
1919 if (err < 0)
1920 goto out_freeiov;
1921 total_len = err;
1922
1923 err = -ENOBUFS;
1924
1925 if (msg_sys.msg_controllen > INT_MAX)
1926 goto out_freeiov;
1927 ctl_len = msg_sys.msg_controllen;
1928 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1929 err =
1930 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1931 sizeof(ctl));
1932 if (err)
1933 goto out_freeiov;
1934 ctl_buf = msg_sys.msg_control;
1935 ctl_len = msg_sys.msg_controllen;
1936 } else if (ctl_len) {
1937 if (ctl_len > sizeof(ctl)) {
1938 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1939 if (ctl_buf == NULL)
1940 goto out_freeiov;
1941 }
1942 err = -EFAULT;
1943 /*
1944 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1945 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1946 * checking falls down on this.
1947 */
1948 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1949 ctl_len))
1950 goto out_freectl;
1951 msg_sys.msg_control = ctl_buf;
1952 }
1953 msg_sys.msg_flags = flags;
1954
1955 if (sock->file->f_flags & O_NONBLOCK)
1956 msg_sys.msg_flags |= MSG_DONTWAIT;
1957 err = sock_sendmsg(sock, &msg_sys, total_len);
1958
1959 out_freectl:
1960 if (ctl_buf != ctl)
1961 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1962 out_freeiov:
1963 if (iov != iovstack)
1964 sock_kfree_s(sock->sk, iov, iov_size);
1965 out_put:
1966 fput_light(sock->file, fput_needed);
1967 out:
1968 return err;
1969 }
1970
1971 /*
1972 * BSD recvmsg interface
1973 */
1974
1975 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
1976 unsigned int, flags)
1977 {
1978 struct compat_msghdr __user *msg_compat =
1979 (struct compat_msghdr __user *)msg;
1980 struct socket *sock;
1981 struct iovec iovstack[UIO_FASTIOV];
1982 struct iovec *iov = iovstack;
1983 struct msghdr msg_sys;
1984 unsigned long cmsg_ptr;
1985 int err, iov_size, total_len, len;
1986 int fput_needed;
1987
1988 /* kernel mode address */
1989 struct sockaddr_storage addr;
1990
1991 /* user mode address pointers */
1992 struct sockaddr __user *uaddr;
1993 int __user *uaddr_len;
1994
1995 if (MSG_CMSG_COMPAT & flags) {
1996 if (get_compat_msghdr(&msg_sys, msg_compat))
1997 return -EFAULT;
1998 }
1999 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
2000 return -EFAULT;
2001
2002 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2003 if (!sock)
2004 goto out;
2005
2006 err = -EMSGSIZE;
2007 if (msg_sys.msg_iovlen > UIO_MAXIOV)
2008 goto out_put;
2009
2010 /* Check whether to allocate the iovec area */
2011 err = -ENOMEM;
2012 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
2013 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
2014 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2015 if (!iov)
2016 goto out_put;
2017 }
2018
2019 /*
2020 * Save the user-mode address (verify_iovec will change the
2021 * kernel msghdr to use the kernel address space)
2022 */
2023
2024 uaddr = (__force void __user *)msg_sys.msg_name;
2025 uaddr_len = COMPAT_NAMELEN(msg);
2026 if (MSG_CMSG_COMPAT & flags) {
2027 err = verify_compat_iovec(&msg_sys, iov,
2028 (struct sockaddr *)&addr,
2029 VERIFY_WRITE);
2030 } else
2031 err = verify_iovec(&msg_sys, iov,
2032 (struct sockaddr *)&addr,
2033 VERIFY_WRITE);
2034 if (err < 0)
2035 goto out_freeiov;
2036 total_len = err;
2037
2038 cmsg_ptr = (unsigned long)msg_sys.msg_control;
2039 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2040
2041 if (sock->file->f_flags & O_NONBLOCK)
2042 flags |= MSG_DONTWAIT;
2043 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2044 if (err < 0)
2045 goto out_freeiov;
2046 len = err;
2047
2048 if (uaddr != NULL) {
2049 err = move_addr_to_user((struct sockaddr *)&addr,
2050 msg_sys.msg_namelen, uaddr,
2051 uaddr_len);
2052 if (err < 0)
2053 goto out_freeiov;
2054 }
2055 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2056 COMPAT_FLAGS(msg));
2057 if (err)
2058 goto out_freeiov;
2059 if (MSG_CMSG_COMPAT & flags)
2060 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2061 &msg_compat->msg_controllen);
2062 else
2063 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2064 &msg->msg_controllen);
2065 if (err)
2066 goto out_freeiov;
2067 err = len;
2068
2069 out_freeiov:
2070 if (iov != iovstack)
2071 sock_kfree_s(sock->sk, iov, iov_size);
2072 out_put:
2073 fput_light(sock->file, fput_needed);
2074 out:
2075 return err;
2076 }
2077
2078 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2079
2080 /* Argument list sizes for sys_socketcall */
2081 #define AL(x) ((x) * sizeof(unsigned long))
2082 static const unsigned char nargs[19]={
2083 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2084 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2085 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2086 AL(4)
2087 };
2088
2089 #undef AL
2090
2091 /*
2092 * System call vectors.
2093 *
2094 * Argument checking cleaned up. Saved 20% in size.
2095 * This function doesn't need to set the kernel lock because
2096 * it is set by the callees.
2097 */
2098
2099 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2100 {
2101 unsigned long a[6];
2102 unsigned long a0, a1;
2103 int err;
2104 unsigned int len;
2105
2106 if (call < 1 || call > SYS_ACCEPT4)
2107 return -EINVAL;
2108
2109 len = nargs[call];
2110 if (len > sizeof(a))
2111 return -EINVAL;
2112
2113 /* copy_from_user should be SMP safe. */
2114 if (copy_from_user(a, args, len))
2115 return -EFAULT;
2116
2117 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2118
2119 a0 = a[0];
2120 a1 = a[1];
2121
2122 switch (call) {
2123 case SYS_SOCKET:
2124 err = sys_socket(a0, a1, a[2]);
2125 break;
2126 case SYS_BIND:
2127 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2128 break;
2129 case SYS_CONNECT:
2130 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2131 break;
2132 case SYS_LISTEN:
2133 err = sys_listen(a0, a1);
2134 break;
2135 case SYS_ACCEPT:
2136 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2137 (int __user *)a[2], 0);
2138 break;
2139 case SYS_GETSOCKNAME:
2140 err =
2141 sys_getsockname(a0, (struct sockaddr __user *)a1,
2142 (int __user *)a[2]);
2143 break;
2144 case SYS_GETPEERNAME:
2145 err =
2146 sys_getpeername(a0, (struct sockaddr __user *)a1,
2147 (int __user *)a[2]);
2148 break;
2149 case SYS_SOCKETPAIR:
2150 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2151 break;
2152 case SYS_SEND:
2153 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2154 break;
2155 case SYS_SENDTO:
2156 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2157 (struct sockaddr __user *)a[4], a[5]);
2158 break;
2159 case SYS_RECV:
2160 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2161 break;
2162 case SYS_RECVFROM:
2163 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2164 (struct sockaddr __user *)a[4],
2165 (int __user *)a[5]);
2166 break;
2167 case SYS_SHUTDOWN:
2168 err = sys_shutdown(a0, a1);
2169 break;
2170 case SYS_SETSOCKOPT:
2171 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2172 break;
2173 case SYS_GETSOCKOPT:
2174 err =
2175 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2176 (int __user *)a[4]);
2177 break;
2178 case SYS_SENDMSG:
2179 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2180 break;
2181 case SYS_RECVMSG:
2182 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2183 break;
2184 case SYS_ACCEPT4:
2185 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2186 (int __user *)a[2], a[3]);
2187 break;
2188 default:
2189 err = -EINVAL;
2190 break;
2191 }
2192 return err;
2193 }
2194
2195 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2196
2197 /**
2198 * sock_register - add a socket protocol handler
2199 * @ops: description of protocol
2200 *
2201 * This function is called by a protocol handler that wants to
2202 * advertise its address family, and have it linked into the
2203 * socket interface. The value ops->family coresponds to the
2204 * socket system call protocol family.
2205 */
2206 int sock_register(const struct net_proto_family *ops)
2207 {
2208 int err;
2209
2210 if (ops->family >= NPROTO) {
2211 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2212 NPROTO);
2213 return -ENOBUFS;
2214 }
2215
2216 spin_lock(&net_family_lock);
2217 if (net_families[ops->family])
2218 err = -EEXIST;
2219 else {
2220 net_families[ops->family] = ops;
2221 err = 0;
2222 }
2223 spin_unlock(&net_family_lock);
2224
2225 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2226 return err;
2227 }
2228
2229 /**
2230 * sock_unregister - remove a protocol handler
2231 * @family: protocol family to remove
2232 *
2233 * This function is called by a protocol handler that wants to
2234 * remove its address family, and have it unlinked from the
2235 * new socket creation.
2236 *
2237 * If protocol handler is a module, then it can use module reference
2238 * counts to protect against new references. If protocol handler is not
2239 * a module then it needs to provide its own protection in
2240 * the ops->create routine.
2241 */
2242 void sock_unregister(int family)
2243 {
2244 BUG_ON(family < 0 || family >= NPROTO);
2245
2246 spin_lock(&net_family_lock);
2247 net_families[family] = NULL;
2248 spin_unlock(&net_family_lock);
2249
2250 synchronize_rcu();
2251
2252 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2253 }
2254
2255 static int __init sock_init(void)
2256 {
2257 /*
2258 * Initialize sock SLAB cache.
2259 */
2260
2261 sk_init();
2262
2263 /*
2264 * Initialize skbuff SLAB cache
2265 */
2266 skb_init();
2267
2268 /*
2269 * Initialize the protocols module.
2270 */
2271
2272 init_inodecache();
2273 register_filesystem(&sock_fs_type);
2274 sock_mnt = kern_mount(&sock_fs_type);
2275
2276 /* The real protocol initialization is performed in later initcalls.
2277 */
2278
2279 #ifdef CONFIG_NETFILTER
2280 netfilter_init();
2281 #endif
2282
2283 return 0;
2284 }
2285
2286 core_initcall(sock_init); /* early initcall */
2287
2288 #ifdef CONFIG_PROC_FS
2289 void socket_seq_show(struct seq_file *seq)
2290 {
2291 int cpu;
2292 int counter = 0;
2293
2294 for_each_possible_cpu(cpu)
2295 counter += per_cpu(sockets_in_use, cpu);
2296
2297 /* It can be negative, by the way. 8) */
2298 if (counter < 0)
2299 counter = 0;
2300
2301 seq_printf(seq, "sockets: used %d\n", counter);
2302 }
2303 #endif /* CONFIG_PROC_FS */
2304
2305 #ifdef CONFIG_COMPAT
2306 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2307 unsigned long arg)
2308 {
2309 struct socket *sock = file->private_data;
2310 int ret = -ENOIOCTLCMD;
2311 struct sock *sk;
2312 struct net *net;
2313
2314 sk = sock->sk;
2315 net = sock_net(sk);
2316
2317 if (sock->ops->compat_ioctl)
2318 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2319
2320 if (ret == -ENOIOCTLCMD &&
2321 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2322 ret = compat_wext_handle_ioctl(net, cmd, arg);
2323
2324 return ret;
2325 }
2326 #endif
2327
2328 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2329 {
2330 return sock->ops->bind(sock, addr, addrlen);
2331 }
2332
2333 int kernel_listen(struct socket *sock, int backlog)
2334 {
2335 return sock->ops->listen(sock, backlog);
2336 }
2337
2338 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2339 {
2340 struct sock *sk = sock->sk;
2341 int err;
2342
2343 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2344 newsock);
2345 if (err < 0)
2346 goto done;
2347
2348 err = sock->ops->accept(sock, *newsock, flags);
2349 if (err < 0) {
2350 sock_release(*newsock);
2351 *newsock = NULL;
2352 goto done;
2353 }
2354
2355 (*newsock)->ops = sock->ops;
2356 __module_get((*newsock)->ops->owner);
2357
2358 done:
2359 return err;
2360 }
2361
2362 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2363 int flags)
2364 {
2365 return sock->ops->connect(sock, addr, addrlen, flags);
2366 }
2367
2368 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2369 int *addrlen)
2370 {
2371 return sock->ops->getname(sock, addr, addrlen, 0);
2372 }
2373
2374 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2375 int *addrlen)
2376 {
2377 return sock->ops->getname(sock, addr, addrlen, 1);
2378 }
2379
2380 int kernel_getsockopt(struct socket *sock, int level, int optname,
2381 char *optval, int *optlen)
2382 {
2383 mm_segment_t oldfs = get_fs();
2384 int err;
2385
2386 set_fs(KERNEL_DS);
2387 if (level == SOL_SOCKET)
2388 err = sock_getsockopt(sock, level, optname, optval, optlen);
2389 else
2390 err = sock->ops->getsockopt(sock, level, optname, optval,
2391 optlen);
2392 set_fs(oldfs);
2393 return err;
2394 }
2395
2396 int kernel_setsockopt(struct socket *sock, int level, int optname,
2397 char *optval, unsigned int optlen)
2398 {
2399 mm_segment_t oldfs = get_fs();
2400 int err;
2401
2402 set_fs(KERNEL_DS);
2403 if (level == SOL_SOCKET)
2404 err = sock_setsockopt(sock, level, optname, optval, optlen);
2405 else
2406 err = sock->ops->setsockopt(sock, level, optname, optval,
2407 optlen);
2408 set_fs(oldfs);
2409 return err;
2410 }
2411
2412 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2413 size_t size, int flags)
2414 {
2415 if (sock->ops->sendpage)
2416 return sock->ops->sendpage(sock, page, offset, size, flags);
2417
2418 return sock_no_sendpage(sock, page, offset, size, flags);
2419 }
2420
2421 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2422 {
2423 mm_segment_t oldfs = get_fs();
2424 int err;
2425
2426 set_fs(KERNEL_DS);
2427 err = sock->ops->ioctl(sock, cmd, arg);
2428 set_fs(oldfs);
2429
2430 return err;
2431 }
2432
2433 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2434 {
2435 return sock->ops->shutdown(sock, how);
2436 }
2437
2438 EXPORT_SYMBOL(sock_create);
2439 EXPORT_SYMBOL(sock_create_kern);
2440 EXPORT_SYMBOL(sock_create_lite);
2441 EXPORT_SYMBOL(sock_map_fd);
2442 EXPORT_SYMBOL(sock_recvmsg);
2443 EXPORT_SYMBOL(sock_register);
2444 EXPORT_SYMBOL(sock_release);
2445 EXPORT_SYMBOL(sock_sendmsg);
2446 EXPORT_SYMBOL(sock_unregister);
2447 EXPORT_SYMBOL(sock_wake_async);
2448 EXPORT_SYMBOL(sockfd_lookup);
2449 EXPORT_SYMBOL(kernel_sendmsg);
2450 EXPORT_SYMBOL(kernel_recvmsg);
2451 EXPORT_SYMBOL(kernel_bind);
2452 EXPORT_SYMBOL(kernel_listen);
2453 EXPORT_SYMBOL(kernel_accept);
2454 EXPORT_SYMBOL(kernel_connect);
2455 EXPORT_SYMBOL(kernel_getsockname);
2456 EXPORT_SYMBOL(kernel_getpeername);
2457 EXPORT_SYMBOL(kernel_getsockopt);
2458 EXPORT_SYMBOL(kernel_setsockopt);
2459 EXPORT_SYMBOL(kernel_sendpage);
2460 EXPORT_SYMBOL(kernel_sock_ioctl);
2461 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.111638 seconds and 5 git commands to generate.