Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
108
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113
114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
116 unsigned long nr_segs, loff_t pos);
117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
135
136 /*
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
139 */
140
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .aio_read = sock_aio_read,
145 .aio_write = sock_aio_write,
146 .poll = sock_poll,
147 .unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 .compat_ioctl = compat_sock_ioctl,
150 #endif
151 .mmap = sock_mmap,
152 .open = sock_no_open, /* special open code to disallow open via /proc */
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
158 };
159
160 /*
161 * The protocol list. Each protocol is registered in here.
162 */
163
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166
167 /*
168 * Statistics counters of the socket lists
169 */
170
171 static DEFINE_PER_CPU(int, sockets_in_use);
172
173 /*
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
177 */
178
179 /**
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
184 *
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 */
189
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
199 }
200
201 /**
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
207 *
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
216 */
217
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
220 {
221 int err;
222 int len;
223
224 BUG_ON(klen > sizeof(struct sockaddr_storage));
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0)
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
237 }
238 /*
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
241 */
242 return __put_user(klen, ulen);
243 }
244
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 struct socket_alloc *ei;
250 struct socket_wq *wq;
251
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 if (!wq) {
257 kmem_cache_free(sock_inode_cachep, ei);
258 return NULL;
259 }
260 init_waitqueue_head(&wq->wait);
261 wq->fasync_list = NULL;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
263
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
269
270 return &ei->vfs_inode;
271 }
272
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
277
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
282 }
283
284 static void init_once(void *foo)
285 {
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
287
288 inode_init_once(&ei->vfs_inode);
289 }
290
291 static int init_inodecache(void)
292 {
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
295 0,
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
303 }
304
305 static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
309 };
310
311 /*
312 * sockfs_dname() is called from d_path().
313 */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 dentry->d_inode->i_ino);
318 }
319
320 static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
322 };
323
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 int flags, const char *dev_name, void *data)
326 {
327 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 &sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330
331 static struct vfsmount *sock_mnt __read_mostly;
332
333 static struct file_system_type sock_fs_type = {
334 .name = "sockfs",
335 .mount = sockfs_mount,
336 .kill_sb = kill_anon_super,
337 };
338
339 /*
340 * Obtains the first available file descriptor and sets it up for use.
341 *
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
349 *
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
354 */
355
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 struct qstr name = { .name = "" };
359 struct path path;
360 struct file *file;
361
362 if (dname) {
363 name.name = dname;
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
368 }
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry))
371 return ERR_PTR(-ENOMEM);
372 path.mnt = mntget(sock_mnt);
373
374 d_instantiate(path.dentry, SOCK_INODE(sock));
375 SOCK_INODE(sock)->i_fop = &socket_file_ops;
376
377 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
378 &socket_file_ops);
379 if (unlikely(IS_ERR(file))) {
380 /* drop dentry, keep inode */
381 ihold(path.dentry->d_inode);
382 path_put(&path);
383 return file;
384 }
385
386 sock->file = file;
387 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388 file->private_data = sock;
389 return file;
390 }
391 EXPORT_SYMBOL(sock_alloc_file);
392
393 static int sock_map_fd(struct socket *sock, int flags)
394 {
395 struct file *newfile;
396 int fd = get_unused_fd_flags(flags);
397 if (unlikely(fd < 0))
398 return fd;
399
400 newfile = sock_alloc_file(sock, flags, NULL);
401 if (likely(!IS_ERR(newfile))) {
402 fd_install(fd, newfile);
403 return fd;
404 }
405
406 put_unused_fd(fd);
407 return PTR_ERR(newfile);
408 }
409
410 struct socket *sock_from_file(struct file *file, int *err)
411 {
412 if (file->f_op == &socket_file_ops)
413 return file->private_data; /* set in sock_map_fd */
414
415 *err = -ENOTSOCK;
416 return NULL;
417 }
418 EXPORT_SYMBOL(sock_from_file);
419
420 /**
421 * sockfd_lookup - Go from a file number to its socket slot
422 * @fd: file handle
423 * @err: pointer to an error code return
424 *
425 * The file handle passed in is locked and the socket it is bound
426 * too is returned. If an error occurs the err pointer is overwritten
427 * with a negative errno code and NULL is returned. The function checks
428 * for both invalid handles and passing a handle which is not a socket.
429 *
430 * On a success the socket object pointer is returned.
431 */
432
433 struct socket *sockfd_lookup(int fd, int *err)
434 {
435 struct file *file;
436 struct socket *sock;
437
438 file = fget(fd);
439 if (!file) {
440 *err = -EBADF;
441 return NULL;
442 }
443
444 sock = sock_from_file(file, err);
445 if (!sock)
446 fput(file);
447 return sock;
448 }
449 EXPORT_SYMBOL(sockfd_lookup);
450
451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
452 {
453 struct fd f = fdget(fd);
454 struct socket *sock;
455
456 *err = -EBADF;
457 if (f.file) {
458 sock = sock_from_file(f.file, err);
459 if (likely(sock)) {
460 *fput_needed = f.flags;
461 return sock;
462 }
463 fdput(f);
464 }
465 return NULL;
466 }
467
468 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
469 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
470 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
471 static ssize_t sockfs_getxattr(struct dentry *dentry,
472 const char *name, void *value, size_t size)
473 {
474 const char *proto_name;
475 size_t proto_size;
476 int error;
477
478 error = -ENODATA;
479 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
480 proto_name = dentry->d_name.name;
481 proto_size = strlen(proto_name);
482
483 if (value) {
484 error = -ERANGE;
485 if (proto_size + 1 > size)
486 goto out;
487
488 strncpy(value, proto_name, proto_size + 1);
489 }
490 error = proto_size + 1;
491 }
492
493 out:
494 return error;
495 }
496
497 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
498 size_t size)
499 {
500 ssize_t len;
501 ssize_t used = 0;
502
503 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
504 if (len < 0)
505 return len;
506 used += len;
507 if (buffer) {
508 if (size < used)
509 return -ERANGE;
510 buffer += len;
511 }
512
513 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
514 used += len;
515 if (buffer) {
516 if (size < used)
517 return -ERANGE;
518 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
519 buffer += len;
520 }
521
522 return used;
523 }
524
525 static const struct inode_operations sockfs_inode_ops = {
526 .getxattr = sockfs_getxattr,
527 .listxattr = sockfs_listxattr,
528 };
529
530 /**
531 * sock_alloc - allocate a socket
532 *
533 * Allocate a new inode and socket object. The two are bound together
534 * and initialised. The socket is then returned. If we are out of inodes
535 * NULL is returned.
536 */
537
538 static struct socket *sock_alloc(void)
539 {
540 struct inode *inode;
541 struct socket *sock;
542
543 inode = new_inode_pseudo(sock_mnt->mnt_sb);
544 if (!inode)
545 return NULL;
546
547 sock = SOCKET_I(inode);
548
549 kmemcheck_annotate_bitfield(sock, type);
550 inode->i_ino = get_next_ino();
551 inode->i_mode = S_IFSOCK | S_IRWXUGO;
552 inode->i_uid = current_fsuid();
553 inode->i_gid = current_fsgid();
554 inode->i_op = &sockfs_inode_ops;
555
556 this_cpu_add(sockets_in_use, 1);
557 return sock;
558 }
559
560 /*
561 * In theory you can't get an open on this inode, but /proc provides
562 * a back door. Remember to keep it shut otherwise you'll let the
563 * creepy crawlies in.
564 */
565
566 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
567 {
568 return -ENXIO;
569 }
570
571 const struct file_operations bad_sock_fops = {
572 .owner = THIS_MODULE,
573 .open = sock_no_open,
574 .llseek = noop_llseek,
575 };
576
577 /**
578 * sock_release - close a socket
579 * @sock: socket to close
580 *
581 * The socket is released from the protocol stack if it has a release
582 * callback, and the inode is then released if the socket is bound to
583 * an inode not a file.
584 */
585
586 void sock_release(struct socket *sock)
587 {
588 if (sock->ops) {
589 struct module *owner = sock->ops->owner;
590
591 sock->ops->release(sock);
592 sock->ops = NULL;
593 module_put(owner);
594 }
595
596 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
597 printk(KERN_ERR "sock_release: fasync list not empty!\n");
598
599 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
600 return;
601
602 this_cpu_sub(sockets_in_use, 1);
603 if (!sock->file) {
604 iput(SOCK_INODE(sock));
605 return;
606 }
607 sock->file = NULL;
608 }
609 EXPORT_SYMBOL(sock_release);
610
611 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
612 {
613 *tx_flags = 0;
614 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
615 *tx_flags |= SKBTX_HW_TSTAMP;
616 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
617 *tx_flags |= SKBTX_SW_TSTAMP;
618 if (sock_flag(sk, SOCK_WIFI_STATUS))
619 *tx_flags |= SKBTX_WIFI_STATUS;
620 }
621 EXPORT_SYMBOL(sock_tx_timestamp);
622
623 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
624 struct msghdr *msg, size_t size)
625 {
626 struct sock_iocb *si = kiocb_to_siocb(iocb);
627
628 si->sock = sock;
629 si->scm = NULL;
630 si->msg = msg;
631 si->size = size;
632
633 return sock->ops->sendmsg(iocb, sock, msg, size);
634 }
635
636 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
637 struct msghdr *msg, size_t size)
638 {
639 int err = security_socket_sendmsg(sock, msg, size);
640
641 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
642 }
643
644 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
645 {
646 struct kiocb iocb;
647 struct sock_iocb siocb;
648 int ret;
649
650 init_sync_kiocb(&iocb, NULL);
651 iocb.private = &siocb;
652 ret = __sock_sendmsg(&iocb, sock, msg, size);
653 if (-EIOCBQUEUED == ret)
654 ret = wait_on_sync_kiocb(&iocb);
655 return ret;
656 }
657 EXPORT_SYMBOL(sock_sendmsg);
658
659 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
660 {
661 struct kiocb iocb;
662 struct sock_iocb siocb;
663 int ret;
664
665 init_sync_kiocb(&iocb, NULL);
666 iocb.private = &siocb;
667 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
668 if (-EIOCBQUEUED == ret)
669 ret = wait_on_sync_kiocb(&iocb);
670 return ret;
671 }
672
673 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
674 struct kvec *vec, size_t num, size_t size)
675 {
676 mm_segment_t oldfs = get_fs();
677 int result;
678
679 set_fs(KERNEL_DS);
680 /*
681 * the following is safe, since for compiler definitions of kvec and
682 * iovec are identical, yielding the same in-core layout and alignment
683 */
684 msg->msg_iov = (struct iovec *)vec;
685 msg->msg_iovlen = num;
686 result = sock_sendmsg(sock, msg, size);
687 set_fs(oldfs);
688 return result;
689 }
690 EXPORT_SYMBOL(kernel_sendmsg);
691
692 /*
693 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
694 */
695 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
696 struct sk_buff *skb)
697 {
698 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
699 struct timespec ts[3];
700 int empty = 1;
701 struct skb_shared_hwtstamps *shhwtstamps =
702 skb_hwtstamps(skb);
703
704 /* Race occurred between timestamp enabling and packet
705 receiving. Fill in the current time for now. */
706 if (need_software_tstamp && skb->tstamp.tv64 == 0)
707 __net_timestamp(skb);
708
709 if (need_software_tstamp) {
710 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
711 struct timeval tv;
712 skb_get_timestamp(skb, &tv);
713 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
714 sizeof(tv), &tv);
715 } else {
716 skb_get_timestampns(skb, &ts[0]);
717 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
718 sizeof(ts[0]), &ts[0]);
719 }
720 }
721
722
723 memset(ts, 0, sizeof(ts));
724 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
725 ktime_to_timespec_cond(skb->tstamp, ts + 0))
726 empty = 0;
727 if (shhwtstamps) {
728 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
729 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
730 empty = 0;
731 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
732 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
733 empty = 0;
734 }
735 if (!empty)
736 put_cmsg(msg, SOL_SOCKET,
737 SCM_TIMESTAMPING, sizeof(ts), &ts);
738 }
739 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
740
741 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
742 struct sk_buff *skb)
743 {
744 int ack;
745
746 if (!sock_flag(sk, SOCK_WIFI_STATUS))
747 return;
748 if (!skb->wifi_acked_valid)
749 return;
750
751 ack = skb->wifi_acked;
752
753 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
754 }
755 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
756
757 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
758 struct sk_buff *skb)
759 {
760 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
761 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
762 sizeof(__u32), &skb->dropcount);
763 }
764
765 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
766 struct sk_buff *skb)
767 {
768 sock_recv_timestamp(msg, sk, skb);
769 sock_recv_drops(msg, sk, skb);
770 }
771 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
772
773 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
774 struct msghdr *msg, size_t size, int flags)
775 {
776 struct sock_iocb *si = kiocb_to_siocb(iocb);
777
778 si->sock = sock;
779 si->scm = NULL;
780 si->msg = msg;
781 si->size = size;
782 si->flags = flags;
783
784 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
785 }
786
787 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
788 struct msghdr *msg, size_t size, int flags)
789 {
790 int err = security_socket_recvmsg(sock, msg, size, flags);
791
792 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
793 }
794
795 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
796 size_t size, int flags)
797 {
798 struct kiocb iocb;
799 struct sock_iocb siocb;
800 int ret;
801
802 init_sync_kiocb(&iocb, NULL);
803 iocb.private = &siocb;
804 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
805 if (-EIOCBQUEUED == ret)
806 ret = wait_on_sync_kiocb(&iocb);
807 return ret;
808 }
809 EXPORT_SYMBOL(sock_recvmsg);
810
811 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
812 size_t size, int flags)
813 {
814 struct kiocb iocb;
815 struct sock_iocb siocb;
816 int ret;
817
818 init_sync_kiocb(&iocb, NULL);
819 iocb.private = &siocb;
820 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
821 if (-EIOCBQUEUED == ret)
822 ret = wait_on_sync_kiocb(&iocb);
823 return ret;
824 }
825
826 /**
827 * kernel_recvmsg - Receive a message from a socket (kernel space)
828 * @sock: The socket to receive the message from
829 * @msg: Received message
830 * @vec: Input s/g array for message data
831 * @num: Size of input s/g array
832 * @size: Number of bytes to read
833 * @flags: Message flags (MSG_DONTWAIT, etc...)
834 *
835 * On return the msg structure contains the scatter/gather array passed in the
836 * vec argument. The array is modified so that it consists of the unfilled
837 * portion of the original array.
838 *
839 * The returned value is the total number of bytes received, or an error.
840 */
841 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
842 struct kvec *vec, size_t num, size_t size, int flags)
843 {
844 mm_segment_t oldfs = get_fs();
845 int result;
846
847 set_fs(KERNEL_DS);
848 /*
849 * the following is safe, since for compiler definitions of kvec and
850 * iovec are identical, yielding the same in-core layout and alignment
851 */
852 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
853 result = sock_recvmsg(sock, msg, size, flags);
854 set_fs(oldfs);
855 return result;
856 }
857 EXPORT_SYMBOL(kernel_recvmsg);
858
859 static ssize_t sock_sendpage(struct file *file, struct page *page,
860 int offset, size_t size, loff_t *ppos, int more)
861 {
862 struct socket *sock;
863 int flags;
864
865 sock = file->private_data;
866
867 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
868 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
869 flags |= more;
870
871 return kernel_sendpage(sock, page, offset, size, flags);
872 }
873
874 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
875 struct pipe_inode_info *pipe, size_t len,
876 unsigned int flags)
877 {
878 struct socket *sock = file->private_data;
879
880 if (unlikely(!sock->ops->splice_read))
881 return -EINVAL;
882
883 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
884 }
885
886 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
887 struct sock_iocb *siocb)
888 {
889 if (!is_sync_kiocb(iocb))
890 BUG();
891
892 siocb->kiocb = iocb;
893 iocb->private = siocb;
894 return siocb;
895 }
896
897 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
898 struct file *file, const struct iovec *iov,
899 unsigned long nr_segs)
900 {
901 struct socket *sock = file->private_data;
902 size_t size = 0;
903 int i;
904
905 for (i = 0; i < nr_segs; i++)
906 size += iov[i].iov_len;
907
908 msg->msg_name = NULL;
909 msg->msg_namelen = 0;
910 msg->msg_control = NULL;
911 msg->msg_controllen = 0;
912 msg->msg_iov = (struct iovec *)iov;
913 msg->msg_iovlen = nr_segs;
914 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
915
916 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
917 }
918
919 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
920 unsigned long nr_segs, loff_t pos)
921 {
922 struct sock_iocb siocb, *x;
923
924 if (pos != 0)
925 return -ESPIPE;
926
927 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
928 return 0;
929
930
931 x = alloc_sock_iocb(iocb, &siocb);
932 if (!x)
933 return -ENOMEM;
934 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
935 }
936
937 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
938 struct file *file, const struct iovec *iov,
939 unsigned long nr_segs)
940 {
941 struct socket *sock = file->private_data;
942 size_t size = 0;
943 int i;
944
945 for (i = 0; i < nr_segs; i++)
946 size += iov[i].iov_len;
947
948 msg->msg_name = NULL;
949 msg->msg_namelen = 0;
950 msg->msg_control = NULL;
951 msg->msg_controllen = 0;
952 msg->msg_iov = (struct iovec *)iov;
953 msg->msg_iovlen = nr_segs;
954 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
955 if (sock->type == SOCK_SEQPACKET)
956 msg->msg_flags |= MSG_EOR;
957
958 return __sock_sendmsg(iocb, sock, msg, size);
959 }
960
961 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
962 unsigned long nr_segs, loff_t pos)
963 {
964 struct sock_iocb siocb, *x;
965
966 if (pos != 0)
967 return -ESPIPE;
968
969 x = alloc_sock_iocb(iocb, &siocb);
970 if (!x)
971 return -ENOMEM;
972
973 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
974 }
975
976 /*
977 * Atomic setting of ioctl hooks to avoid race
978 * with module unload.
979 */
980
981 static DEFINE_MUTEX(br_ioctl_mutex);
982 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
983
984 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
985 {
986 mutex_lock(&br_ioctl_mutex);
987 br_ioctl_hook = hook;
988 mutex_unlock(&br_ioctl_mutex);
989 }
990 EXPORT_SYMBOL(brioctl_set);
991
992 static DEFINE_MUTEX(vlan_ioctl_mutex);
993 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
994
995 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
996 {
997 mutex_lock(&vlan_ioctl_mutex);
998 vlan_ioctl_hook = hook;
999 mutex_unlock(&vlan_ioctl_mutex);
1000 }
1001 EXPORT_SYMBOL(vlan_ioctl_set);
1002
1003 static DEFINE_MUTEX(dlci_ioctl_mutex);
1004 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1005
1006 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1007 {
1008 mutex_lock(&dlci_ioctl_mutex);
1009 dlci_ioctl_hook = hook;
1010 mutex_unlock(&dlci_ioctl_mutex);
1011 }
1012 EXPORT_SYMBOL(dlci_ioctl_set);
1013
1014 static long sock_do_ioctl(struct net *net, struct socket *sock,
1015 unsigned int cmd, unsigned long arg)
1016 {
1017 int err;
1018 void __user *argp = (void __user *)arg;
1019
1020 err = sock->ops->ioctl(sock, cmd, arg);
1021
1022 /*
1023 * If this ioctl is unknown try to hand it down
1024 * to the NIC driver.
1025 */
1026 if (err == -ENOIOCTLCMD)
1027 err = dev_ioctl(net, cmd, argp);
1028
1029 return err;
1030 }
1031
1032 /*
1033 * With an ioctl, arg may well be a user mode pointer, but we don't know
1034 * what to do with it - that's up to the protocol still.
1035 */
1036
1037 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1038 {
1039 struct socket *sock;
1040 struct sock *sk;
1041 void __user *argp = (void __user *)arg;
1042 int pid, err;
1043 struct net *net;
1044
1045 sock = file->private_data;
1046 sk = sock->sk;
1047 net = sock_net(sk);
1048 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1049 err = dev_ioctl(net, cmd, argp);
1050 } else
1051 #ifdef CONFIG_WEXT_CORE
1052 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1053 err = dev_ioctl(net, cmd, argp);
1054 } else
1055 #endif
1056 switch (cmd) {
1057 case FIOSETOWN:
1058 case SIOCSPGRP:
1059 err = -EFAULT;
1060 if (get_user(pid, (int __user *)argp))
1061 break;
1062 err = f_setown(sock->file, pid, 1);
1063 break;
1064 case FIOGETOWN:
1065 case SIOCGPGRP:
1066 err = put_user(f_getown(sock->file),
1067 (int __user *)argp);
1068 break;
1069 case SIOCGIFBR:
1070 case SIOCSIFBR:
1071 case SIOCBRADDBR:
1072 case SIOCBRDELBR:
1073 err = -ENOPKG;
1074 if (!br_ioctl_hook)
1075 request_module("bridge");
1076
1077 mutex_lock(&br_ioctl_mutex);
1078 if (br_ioctl_hook)
1079 err = br_ioctl_hook(net, cmd, argp);
1080 mutex_unlock(&br_ioctl_mutex);
1081 break;
1082 case SIOCGIFVLAN:
1083 case SIOCSIFVLAN:
1084 err = -ENOPKG;
1085 if (!vlan_ioctl_hook)
1086 request_module("8021q");
1087
1088 mutex_lock(&vlan_ioctl_mutex);
1089 if (vlan_ioctl_hook)
1090 err = vlan_ioctl_hook(net, argp);
1091 mutex_unlock(&vlan_ioctl_mutex);
1092 break;
1093 case SIOCADDDLCI:
1094 case SIOCDELDLCI:
1095 err = -ENOPKG;
1096 if (!dlci_ioctl_hook)
1097 request_module("dlci");
1098
1099 mutex_lock(&dlci_ioctl_mutex);
1100 if (dlci_ioctl_hook)
1101 err = dlci_ioctl_hook(cmd, argp);
1102 mutex_unlock(&dlci_ioctl_mutex);
1103 break;
1104 default:
1105 err = sock_do_ioctl(net, sock, cmd, arg);
1106 break;
1107 }
1108 return err;
1109 }
1110
1111 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1112 {
1113 int err;
1114 struct socket *sock = NULL;
1115
1116 err = security_socket_create(family, type, protocol, 1);
1117 if (err)
1118 goto out;
1119
1120 sock = sock_alloc();
1121 if (!sock) {
1122 err = -ENOMEM;
1123 goto out;
1124 }
1125
1126 sock->type = type;
1127 err = security_socket_post_create(sock, family, type, protocol, 1);
1128 if (err)
1129 goto out_release;
1130
1131 out:
1132 *res = sock;
1133 return err;
1134 out_release:
1135 sock_release(sock);
1136 sock = NULL;
1137 goto out;
1138 }
1139 EXPORT_SYMBOL(sock_create_lite);
1140
1141 /* No kernel lock held - perfect */
1142 static unsigned int sock_poll(struct file *file, poll_table *wait)
1143 {
1144 unsigned int busy_flag = 0;
1145 struct socket *sock;
1146
1147 /*
1148 * We can't return errors to poll, so it's either yes or no.
1149 */
1150 sock = file->private_data;
1151
1152 if (sk_can_busy_loop(sock->sk)) {
1153 /* this socket can poll_ll so tell the system call */
1154 busy_flag = POLL_BUSY_LOOP;
1155
1156 /* once, only if requested by syscall */
1157 if (wait && (wait->_key & POLL_BUSY_LOOP))
1158 sk_busy_loop(sock->sk, 1);
1159 }
1160
1161 return busy_flag | sock->ops->poll(file, sock, wait);
1162 }
1163
1164 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1165 {
1166 struct socket *sock = file->private_data;
1167
1168 return sock->ops->mmap(file, sock, vma);
1169 }
1170
1171 static int sock_close(struct inode *inode, struct file *filp)
1172 {
1173 sock_release(SOCKET_I(inode));
1174 return 0;
1175 }
1176
1177 /*
1178 * Update the socket async list
1179 *
1180 * Fasync_list locking strategy.
1181 *
1182 * 1. fasync_list is modified only under process context socket lock
1183 * i.e. under semaphore.
1184 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1185 * or under socket lock
1186 */
1187
1188 static int sock_fasync(int fd, struct file *filp, int on)
1189 {
1190 struct socket *sock = filp->private_data;
1191 struct sock *sk = sock->sk;
1192 struct socket_wq *wq;
1193
1194 if (sk == NULL)
1195 return -EINVAL;
1196
1197 lock_sock(sk);
1198 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1199 fasync_helper(fd, filp, on, &wq->fasync_list);
1200
1201 if (!wq->fasync_list)
1202 sock_reset_flag(sk, SOCK_FASYNC);
1203 else
1204 sock_set_flag(sk, SOCK_FASYNC);
1205
1206 release_sock(sk);
1207 return 0;
1208 }
1209
1210 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1211
1212 int sock_wake_async(struct socket *sock, int how, int band)
1213 {
1214 struct socket_wq *wq;
1215
1216 if (!sock)
1217 return -1;
1218 rcu_read_lock();
1219 wq = rcu_dereference(sock->wq);
1220 if (!wq || !wq->fasync_list) {
1221 rcu_read_unlock();
1222 return -1;
1223 }
1224 switch (how) {
1225 case SOCK_WAKE_WAITD:
1226 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1227 break;
1228 goto call_kill;
1229 case SOCK_WAKE_SPACE:
1230 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1231 break;
1232 /* fall through */
1233 case SOCK_WAKE_IO:
1234 call_kill:
1235 kill_fasync(&wq->fasync_list, SIGIO, band);
1236 break;
1237 case SOCK_WAKE_URG:
1238 kill_fasync(&wq->fasync_list, SIGURG, band);
1239 }
1240 rcu_read_unlock();
1241 return 0;
1242 }
1243 EXPORT_SYMBOL(sock_wake_async);
1244
1245 int __sock_create(struct net *net, int family, int type, int protocol,
1246 struct socket **res, int kern)
1247 {
1248 int err;
1249 struct socket *sock;
1250 const struct net_proto_family *pf;
1251
1252 /*
1253 * Check protocol is in range
1254 */
1255 if (family < 0 || family >= NPROTO)
1256 return -EAFNOSUPPORT;
1257 if (type < 0 || type >= SOCK_MAX)
1258 return -EINVAL;
1259
1260 /* Compatibility.
1261
1262 This uglymoron is moved from INET layer to here to avoid
1263 deadlock in module load.
1264 */
1265 if (family == PF_INET && type == SOCK_PACKET) {
1266 static int warned;
1267 if (!warned) {
1268 warned = 1;
1269 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1270 current->comm);
1271 }
1272 family = PF_PACKET;
1273 }
1274
1275 err = security_socket_create(family, type, protocol, kern);
1276 if (err)
1277 return err;
1278
1279 /*
1280 * Allocate the socket and allow the family to set things up. if
1281 * the protocol is 0, the family is instructed to select an appropriate
1282 * default.
1283 */
1284 sock = sock_alloc();
1285 if (!sock) {
1286 net_warn_ratelimited("socket: no more sockets\n");
1287 return -ENFILE; /* Not exactly a match, but its the
1288 closest posix thing */
1289 }
1290
1291 sock->type = type;
1292
1293 #ifdef CONFIG_MODULES
1294 /* Attempt to load a protocol module if the find failed.
1295 *
1296 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1297 * requested real, full-featured networking support upon configuration.
1298 * Otherwise module support will break!
1299 */
1300 if (rcu_access_pointer(net_families[family]) == NULL)
1301 request_module("net-pf-%d", family);
1302 #endif
1303
1304 rcu_read_lock();
1305 pf = rcu_dereference(net_families[family]);
1306 err = -EAFNOSUPPORT;
1307 if (!pf)
1308 goto out_release;
1309
1310 /*
1311 * We will call the ->create function, that possibly is in a loadable
1312 * module, so we have to bump that loadable module refcnt first.
1313 */
1314 if (!try_module_get(pf->owner))
1315 goto out_release;
1316
1317 /* Now protected by module ref count */
1318 rcu_read_unlock();
1319
1320 err = pf->create(net, sock, protocol, kern);
1321 if (err < 0)
1322 goto out_module_put;
1323
1324 /*
1325 * Now to bump the refcnt of the [loadable] module that owns this
1326 * socket at sock_release time we decrement its refcnt.
1327 */
1328 if (!try_module_get(sock->ops->owner))
1329 goto out_module_busy;
1330
1331 /*
1332 * Now that we're done with the ->create function, the [loadable]
1333 * module can have its refcnt decremented
1334 */
1335 module_put(pf->owner);
1336 err = security_socket_post_create(sock, family, type, protocol, kern);
1337 if (err)
1338 goto out_sock_release;
1339 *res = sock;
1340
1341 return 0;
1342
1343 out_module_busy:
1344 err = -EAFNOSUPPORT;
1345 out_module_put:
1346 sock->ops = NULL;
1347 module_put(pf->owner);
1348 out_sock_release:
1349 sock_release(sock);
1350 return err;
1351
1352 out_release:
1353 rcu_read_unlock();
1354 goto out_sock_release;
1355 }
1356 EXPORT_SYMBOL(__sock_create);
1357
1358 int sock_create(int family, int type, int protocol, struct socket **res)
1359 {
1360 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1361 }
1362 EXPORT_SYMBOL(sock_create);
1363
1364 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1365 {
1366 return __sock_create(&init_net, family, type, protocol, res, 1);
1367 }
1368 EXPORT_SYMBOL(sock_create_kern);
1369
1370 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1371 {
1372 int retval;
1373 struct socket *sock;
1374 int flags;
1375
1376 /* Check the SOCK_* constants for consistency. */
1377 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1378 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1379 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1380 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1381
1382 flags = type & ~SOCK_TYPE_MASK;
1383 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1384 return -EINVAL;
1385 type &= SOCK_TYPE_MASK;
1386
1387 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1388 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1389
1390 retval = sock_create(family, type, protocol, &sock);
1391 if (retval < 0)
1392 goto out;
1393
1394 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1395 if (retval < 0)
1396 goto out_release;
1397
1398 out:
1399 /* It may be already another descriptor 8) Not kernel problem. */
1400 return retval;
1401
1402 out_release:
1403 sock_release(sock);
1404 return retval;
1405 }
1406
1407 /*
1408 * Create a pair of connected sockets.
1409 */
1410
1411 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1412 int __user *, usockvec)
1413 {
1414 struct socket *sock1, *sock2;
1415 int fd1, fd2, err;
1416 struct file *newfile1, *newfile2;
1417 int flags;
1418
1419 flags = type & ~SOCK_TYPE_MASK;
1420 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1421 return -EINVAL;
1422 type &= SOCK_TYPE_MASK;
1423
1424 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1425 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1426
1427 /*
1428 * Obtain the first socket and check if the underlying protocol
1429 * supports the socketpair call.
1430 */
1431
1432 err = sock_create(family, type, protocol, &sock1);
1433 if (err < 0)
1434 goto out;
1435
1436 err = sock_create(family, type, protocol, &sock2);
1437 if (err < 0)
1438 goto out_release_1;
1439
1440 err = sock1->ops->socketpair(sock1, sock2);
1441 if (err < 0)
1442 goto out_release_both;
1443
1444 fd1 = get_unused_fd_flags(flags);
1445 if (unlikely(fd1 < 0)) {
1446 err = fd1;
1447 goto out_release_both;
1448 }
1449
1450 fd2 = get_unused_fd_flags(flags);
1451 if (unlikely(fd2 < 0)) {
1452 err = fd2;
1453 goto out_put_unused_1;
1454 }
1455
1456 newfile1 = sock_alloc_file(sock1, flags, NULL);
1457 if (unlikely(IS_ERR(newfile1))) {
1458 err = PTR_ERR(newfile1);
1459 goto out_put_unused_both;
1460 }
1461
1462 newfile2 = sock_alloc_file(sock2, flags, NULL);
1463 if (IS_ERR(newfile2)) {
1464 err = PTR_ERR(newfile2);
1465 goto out_fput_1;
1466 }
1467
1468 err = put_user(fd1, &usockvec[0]);
1469 if (err)
1470 goto out_fput_both;
1471
1472 err = put_user(fd2, &usockvec[1]);
1473 if (err)
1474 goto out_fput_both;
1475
1476 audit_fd_pair(fd1, fd2);
1477
1478 fd_install(fd1, newfile1);
1479 fd_install(fd2, newfile2);
1480 /* fd1 and fd2 may be already another descriptors.
1481 * Not kernel problem.
1482 */
1483
1484 return 0;
1485
1486 out_fput_both:
1487 fput(newfile2);
1488 fput(newfile1);
1489 put_unused_fd(fd2);
1490 put_unused_fd(fd1);
1491 goto out;
1492
1493 out_fput_1:
1494 fput(newfile1);
1495 put_unused_fd(fd2);
1496 put_unused_fd(fd1);
1497 sock_release(sock2);
1498 goto out;
1499
1500 out_put_unused_both:
1501 put_unused_fd(fd2);
1502 out_put_unused_1:
1503 put_unused_fd(fd1);
1504 out_release_both:
1505 sock_release(sock2);
1506 out_release_1:
1507 sock_release(sock1);
1508 out:
1509 return err;
1510 }
1511
1512 /*
1513 * Bind a name to a socket. Nothing much to do here since it's
1514 * the protocol's responsibility to handle the local address.
1515 *
1516 * We move the socket address to kernel space before we call
1517 * the protocol layer (having also checked the address is ok).
1518 */
1519
1520 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1521 {
1522 struct socket *sock;
1523 struct sockaddr_storage address;
1524 int err, fput_needed;
1525
1526 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1527 if (sock) {
1528 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1529 if (err >= 0) {
1530 err = security_socket_bind(sock,
1531 (struct sockaddr *)&address,
1532 addrlen);
1533 if (!err)
1534 err = sock->ops->bind(sock,
1535 (struct sockaddr *)
1536 &address, addrlen);
1537 }
1538 fput_light(sock->file, fput_needed);
1539 }
1540 return err;
1541 }
1542
1543 /*
1544 * Perform a listen. Basically, we allow the protocol to do anything
1545 * necessary for a listen, and if that works, we mark the socket as
1546 * ready for listening.
1547 */
1548
1549 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1550 {
1551 struct socket *sock;
1552 int err, fput_needed;
1553 int somaxconn;
1554
1555 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1556 if (sock) {
1557 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1558 if ((unsigned int)backlog > somaxconn)
1559 backlog = somaxconn;
1560
1561 err = security_socket_listen(sock, backlog);
1562 if (!err)
1563 err = sock->ops->listen(sock, backlog);
1564
1565 fput_light(sock->file, fput_needed);
1566 }
1567 return err;
1568 }
1569
1570 /*
1571 * For accept, we attempt to create a new socket, set up the link
1572 * with the client, wake up the client, then return the new
1573 * connected fd. We collect the address of the connector in kernel
1574 * space and move it to user at the very end. This is unclean because
1575 * we open the socket then return an error.
1576 *
1577 * 1003.1g adds the ability to recvmsg() to query connection pending
1578 * status to recvmsg. We need to add that support in a way thats
1579 * clean when we restucture accept also.
1580 */
1581
1582 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1583 int __user *, upeer_addrlen, int, flags)
1584 {
1585 struct socket *sock, *newsock;
1586 struct file *newfile;
1587 int err, len, newfd, fput_needed;
1588 struct sockaddr_storage address;
1589
1590 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1591 return -EINVAL;
1592
1593 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1594 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1595
1596 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1597 if (!sock)
1598 goto out;
1599
1600 err = -ENFILE;
1601 newsock = sock_alloc();
1602 if (!newsock)
1603 goto out_put;
1604
1605 newsock->type = sock->type;
1606 newsock->ops = sock->ops;
1607
1608 /*
1609 * We don't need try_module_get here, as the listening socket (sock)
1610 * has the protocol module (sock->ops->owner) held.
1611 */
1612 __module_get(newsock->ops->owner);
1613
1614 newfd = get_unused_fd_flags(flags);
1615 if (unlikely(newfd < 0)) {
1616 err = newfd;
1617 sock_release(newsock);
1618 goto out_put;
1619 }
1620 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1621 if (unlikely(IS_ERR(newfile))) {
1622 err = PTR_ERR(newfile);
1623 put_unused_fd(newfd);
1624 sock_release(newsock);
1625 goto out_put;
1626 }
1627
1628 err = security_socket_accept(sock, newsock);
1629 if (err)
1630 goto out_fd;
1631
1632 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1633 if (err < 0)
1634 goto out_fd;
1635
1636 if (upeer_sockaddr) {
1637 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1638 &len, 2) < 0) {
1639 err = -ECONNABORTED;
1640 goto out_fd;
1641 }
1642 err = move_addr_to_user(&address,
1643 len, upeer_sockaddr, upeer_addrlen);
1644 if (err < 0)
1645 goto out_fd;
1646 }
1647
1648 /* File flags are not inherited via accept() unlike another OSes. */
1649
1650 fd_install(newfd, newfile);
1651 err = newfd;
1652
1653 out_put:
1654 fput_light(sock->file, fput_needed);
1655 out:
1656 return err;
1657 out_fd:
1658 fput(newfile);
1659 put_unused_fd(newfd);
1660 goto out_put;
1661 }
1662
1663 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1664 int __user *, upeer_addrlen)
1665 {
1666 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1667 }
1668
1669 /*
1670 * Attempt to connect to a socket with the server address. The address
1671 * is in user space so we verify it is OK and move it to kernel space.
1672 *
1673 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1674 * break bindings
1675 *
1676 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1677 * other SEQPACKET protocols that take time to connect() as it doesn't
1678 * include the -EINPROGRESS status for such sockets.
1679 */
1680
1681 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1682 int, addrlen)
1683 {
1684 struct socket *sock;
1685 struct sockaddr_storage address;
1686 int err, fput_needed;
1687
1688 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 if (!sock)
1690 goto out;
1691 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1692 if (err < 0)
1693 goto out_put;
1694
1695 err =
1696 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1697 if (err)
1698 goto out_put;
1699
1700 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1701 sock->file->f_flags);
1702 out_put:
1703 fput_light(sock->file, fput_needed);
1704 out:
1705 return err;
1706 }
1707
1708 /*
1709 * Get the local address ('name') of a socket object. Move the obtained
1710 * name to user space.
1711 */
1712
1713 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1714 int __user *, usockaddr_len)
1715 {
1716 struct socket *sock;
1717 struct sockaddr_storage address;
1718 int len, err, fput_needed;
1719
1720 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1721 if (!sock)
1722 goto out;
1723
1724 err = security_socket_getsockname(sock);
1725 if (err)
1726 goto out_put;
1727
1728 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1729 if (err)
1730 goto out_put;
1731 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1732
1733 out_put:
1734 fput_light(sock->file, fput_needed);
1735 out:
1736 return err;
1737 }
1738
1739 /*
1740 * Get the remote address ('name') of a socket object. Move the obtained
1741 * name to user space.
1742 */
1743
1744 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1745 int __user *, usockaddr_len)
1746 {
1747 struct socket *sock;
1748 struct sockaddr_storage address;
1749 int len, err, fput_needed;
1750
1751 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1752 if (sock != NULL) {
1753 err = security_socket_getpeername(sock);
1754 if (err) {
1755 fput_light(sock->file, fput_needed);
1756 return err;
1757 }
1758
1759 err =
1760 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1761 1);
1762 if (!err)
1763 err = move_addr_to_user(&address, len, usockaddr,
1764 usockaddr_len);
1765 fput_light(sock->file, fput_needed);
1766 }
1767 return err;
1768 }
1769
1770 /*
1771 * Send a datagram to a given address. We move the address into kernel
1772 * space and check the user space data area is readable before invoking
1773 * the protocol.
1774 */
1775
1776 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1777 unsigned int, flags, struct sockaddr __user *, addr,
1778 int, addr_len)
1779 {
1780 struct socket *sock;
1781 struct sockaddr_storage address;
1782 int err;
1783 struct msghdr msg;
1784 struct iovec iov;
1785 int fput_needed;
1786
1787 if (len > INT_MAX)
1788 len = INT_MAX;
1789 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1790 if (!sock)
1791 goto out;
1792
1793 iov.iov_base = buff;
1794 iov.iov_len = len;
1795 msg.msg_name = NULL;
1796 msg.msg_iov = &iov;
1797 msg.msg_iovlen = 1;
1798 msg.msg_control = NULL;
1799 msg.msg_controllen = 0;
1800 msg.msg_namelen = 0;
1801 if (addr) {
1802 err = move_addr_to_kernel(addr, addr_len, &address);
1803 if (err < 0)
1804 goto out_put;
1805 msg.msg_name = (struct sockaddr *)&address;
1806 msg.msg_namelen = addr_len;
1807 }
1808 if (sock->file->f_flags & O_NONBLOCK)
1809 flags |= MSG_DONTWAIT;
1810 msg.msg_flags = flags;
1811 err = sock_sendmsg(sock, &msg, len);
1812
1813 out_put:
1814 fput_light(sock->file, fput_needed);
1815 out:
1816 return err;
1817 }
1818
1819 /*
1820 * Send a datagram down a socket.
1821 */
1822
1823 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1824 unsigned int, flags)
1825 {
1826 return sys_sendto(fd, buff, len, flags, NULL, 0);
1827 }
1828
1829 /*
1830 * Receive a frame from the socket and optionally record the address of the
1831 * sender. We verify the buffers are writable and if needed move the
1832 * sender address from kernel to user space.
1833 */
1834
1835 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1836 unsigned int, flags, struct sockaddr __user *, addr,
1837 int __user *, addr_len)
1838 {
1839 struct socket *sock;
1840 struct iovec iov;
1841 struct msghdr msg;
1842 struct sockaddr_storage address;
1843 int err, err2;
1844 int fput_needed;
1845
1846 if (size > INT_MAX)
1847 size = INT_MAX;
1848 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 if (!sock)
1850 goto out;
1851
1852 msg.msg_control = NULL;
1853 msg.msg_controllen = 0;
1854 msg.msg_iovlen = 1;
1855 msg.msg_iov = &iov;
1856 iov.iov_len = size;
1857 iov.iov_base = ubuf;
1858 /* Save some cycles and don't copy the address if not needed */
1859 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1860 /* We assume all kernel code knows the size of sockaddr_storage */
1861 msg.msg_namelen = 0;
1862 if (sock->file->f_flags & O_NONBLOCK)
1863 flags |= MSG_DONTWAIT;
1864 err = sock_recvmsg(sock, &msg, size, flags);
1865
1866 if (err >= 0 && addr != NULL) {
1867 err2 = move_addr_to_user(&address,
1868 msg.msg_namelen, addr, addr_len);
1869 if (err2 < 0)
1870 err = err2;
1871 }
1872
1873 fput_light(sock->file, fput_needed);
1874 out:
1875 return err;
1876 }
1877
1878 /*
1879 * Receive a datagram from a socket.
1880 */
1881
1882 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1883 unsigned int flags)
1884 {
1885 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1886 }
1887
1888 /*
1889 * Set a socket option. Because we don't know the option lengths we have
1890 * to pass the user mode parameter for the protocols to sort out.
1891 */
1892
1893 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1894 char __user *, optval, int, optlen)
1895 {
1896 int err, fput_needed;
1897 struct socket *sock;
1898
1899 if (optlen < 0)
1900 return -EINVAL;
1901
1902 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1903 if (sock != NULL) {
1904 err = security_socket_setsockopt(sock, level, optname);
1905 if (err)
1906 goto out_put;
1907
1908 if (level == SOL_SOCKET)
1909 err =
1910 sock_setsockopt(sock, level, optname, optval,
1911 optlen);
1912 else
1913 err =
1914 sock->ops->setsockopt(sock, level, optname, optval,
1915 optlen);
1916 out_put:
1917 fput_light(sock->file, fput_needed);
1918 }
1919 return err;
1920 }
1921
1922 /*
1923 * Get a socket option. Because we don't know the option lengths we have
1924 * to pass a user mode parameter for the protocols to sort out.
1925 */
1926
1927 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1928 char __user *, optval, int __user *, optlen)
1929 {
1930 int err, fput_needed;
1931 struct socket *sock;
1932
1933 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1934 if (sock != NULL) {
1935 err = security_socket_getsockopt(sock, level, optname);
1936 if (err)
1937 goto out_put;
1938
1939 if (level == SOL_SOCKET)
1940 err =
1941 sock_getsockopt(sock, level, optname, optval,
1942 optlen);
1943 else
1944 err =
1945 sock->ops->getsockopt(sock, level, optname, optval,
1946 optlen);
1947 out_put:
1948 fput_light(sock->file, fput_needed);
1949 }
1950 return err;
1951 }
1952
1953 /*
1954 * Shutdown a socket.
1955 */
1956
1957 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1958 {
1959 int err, fput_needed;
1960 struct socket *sock;
1961
1962 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1963 if (sock != NULL) {
1964 err = security_socket_shutdown(sock, how);
1965 if (!err)
1966 err = sock->ops->shutdown(sock, how);
1967 fput_light(sock->file, fput_needed);
1968 }
1969 return err;
1970 }
1971
1972 /* A couple of helpful macros for getting the address of the 32/64 bit
1973 * fields which are the same type (int / unsigned) on our platforms.
1974 */
1975 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1976 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1977 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1978
1979 struct used_address {
1980 struct sockaddr_storage name;
1981 unsigned int name_len;
1982 };
1983
1984 static int copy_msghdr_from_user(struct msghdr *kmsg,
1985 struct msghdr __user *umsg)
1986 {
1987 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1988 return -EFAULT;
1989
1990 if (kmsg->msg_namelen < 0)
1991 return -EINVAL;
1992
1993 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1994 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1995 return 0;
1996 }
1997
1998 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1999 struct msghdr *msg_sys, unsigned int flags,
2000 struct used_address *used_address)
2001 {
2002 struct compat_msghdr __user *msg_compat =
2003 (struct compat_msghdr __user *)msg;
2004 struct sockaddr_storage address;
2005 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2006 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2007 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2008 /* 20 is size of ipv6_pktinfo */
2009 unsigned char *ctl_buf = ctl;
2010 int err, ctl_len, total_len;
2011
2012 err = -EFAULT;
2013 if (MSG_CMSG_COMPAT & flags) {
2014 if (get_compat_msghdr(msg_sys, msg_compat))
2015 return -EFAULT;
2016 } else {
2017 err = copy_msghdr_from_user(msg_sys, msg);
2018 if (err)
2019 return err;
2020 }
2021
2022 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2023 err = -EMSGSIZE;
2024 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2025 goto out;
2026 err = -ENOMEM;
2027 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2028 GFP_KERNEL);
2029 if (!iov)
2030 goto out;
2031 }
2032
2033 /* This will also move the address data into kernel space */
2034 if (MSG_CMSG_COMPAT & flags) {
2035 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2036 } else
2037 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2038 if (err < 0)
2039 goto out_freeiov;
2040 total_len = err;
2041
2042 err = -ENOBUFS;
2043
2044 if (msg_sys->msg_controllen > INT_MAX)
2045 goto out_freeiov;
2046 ctl_len = msg_sys->msg_controllen;
2047 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2048 err =
2049 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2050 sizeof(ctl));
2051 if (err)
2052 goto out_freeiov;
2053 ctl_buf = msg_sys->msg_control;
2054 ctl_len = msg_sys->msg_controllen;
2055 } else if (ctl_len) {
2056 if (ctl_len > sizeof(ctl)) {
2057 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2058 if (ctl_buf == NULL)
2059 goto out_freeiov;
2060 }
2061 err = -EFAULT;
2062 /*
2063 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2064 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2065 * checking falls down on this.
2066 */
2067 if (copy_from_user(ctl_buf,
2068 (void __user __force *)msg_sys->msg_control,
2069 ctl_len))
2070 goto out_freectl;
2071 msg_sys->msg_control = ctl_buf;
2072 }
2073 msg_sys->msg_flags = flags;
2074
2075 if (sock->file->f_flags & O_NONBLOCK)
2076 msg_sys->msg_flags |= MSG_DONTWAIT;
2077 /*
2078 * If this is sendmmsg() and current destination address is same as
2079 * previously succeeded address, omit asking LSM's decision.
2080 * used_address->name_len is initialized to UINT_MAX so that the first
2081 * destination address never matches.
2082 */
2083 if (used_address && msg_sys->msg_name &&
2084 used_address->name_len == msg_sys->msg_namelen &&
2085 !memcmp(&used_address->name, msg_sys->msg_name,
2086 used_address->name_len)) {
2087 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2088 goto out_freectl;
2089 }
2090 err = sock_sendmsg(sock, msg_sys, total_len);
2091 /*
2092 * If this is sendmmsg() and sending to current destination address was
2093 * successful, remember it.
2094 */
2095 if (used_address && err >= 0) {
2096 used_address->name_len = msg_sys->msg_namelen;
2097 if (msg_sys->msg_name)
2098 memcpy(&used_address->name, msg_sys->msg_name,
2099 used_address->name_len);
2100 }
2101
2102 out_freectl:
2103 if (ctl_buf != ctl)
2104 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2105 out_freeiov:
2106 if (iov != iovstack)
2107 kfree(iov);
2108 out:
2109 return err;
2110 }
2111
2112 /*
2113 * BSD sendmsg interface
2114 */
2115
2116 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2117 {
2118 int fput_needed, err;
2119 struct msghdr msg_sys;
2120 struct socket *sock;
2121
2122 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2123 if (!sock)
2124 goto out;
2125
2126 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2127
2128 fput_light(sock->file, fput_needed);
2129 out:
2130 return err;
2131 }
2132
2133 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2134 {
2135 if (flags & MSG_CMSG_COMPAT)
2136 return -EINVAL;
2137 return __sys_sendmsg(fd, msg, flags);
2138 }
2139
2140 /*
2141 * Linux sendmmsg interface
2142 */
2143
2144 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2145 unsigned int flags)
2146 {
2147 int fput_needed, err, datagrams;
2148 struct socket *sock;
2149 struct mmsghdr __user *entry;
2150 struct compat_mmsghdr __user *compat_entry;
2151 struct msghdr msg_sys;
2152 struct used_address used_address;
2153
2154 if (vlen > UIO_MAXIOV)
2155 vlen = UIO_MAXIOV;
2156
2157 datagrams = 0;
2158
2159 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2160 if (!sock)
2161 return err;
2162
2163 used_address.name_len = UINT_MAX;
2164 entry = mmsg;
2165 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2166 err = 0;
2167
2168 while (datagrams < vlen) {
2169 if (MSG_CMSG_COMPAT & flags) {
2170 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2171 &msg_sys, flags, &used_address);
2172 if (err < 0)
2173 break;
2174 err = __put_user(err, &compat_entry->msg_len);
2175 ++compat_entry;
2176 } else {
2177 err = ___sys_sendmsg(sock,
2178 (struct msghdr __user *)entry,
2179 &msg_sys, flags, &used_address);
2180 if (err < 0)
2181 break;
2182 err = put_user(err, &entry->msg_len);
2183 ++entry;
2184 }
2185
2186 if (err)
2187 break;
2188 ++datagrams;
2189 }
2190
2191 fput_light(sock->file, fput_needed);
2192
2193 /* We only return an error if no datagrams were able to be sent */
2194 if (datagrams != 0)
2195 return datagrams;
2196
2197 return err;
2198 }
2199
2200 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2201 unsigned int, vlen, unsigned int, flags)
2202 {
2203 if (flags & MSG_CMSG_COMPAT)
2204 return -EINVAL;
2205 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2206 }
2207
2208 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2209 struct msghdr *msg_sys, unsigned int flags, int nosec)
2210 {
2211 struct compat_msghdr __user *msg_compat =
2212 (struct compat_msghdr __user *)msg;
2213 struct iovec iovstack[UIO_FASTIOV];
2214 struct iovec *iov = iovstack;
2215 unsigned long cmsg_ptr;
2216 int err, total_len, len;
2217
2218 /* kernel mode address */
2219 struct sockaddr_storage addr;
2220
2221 /* user mode address pointers */
2222 struct sockaddr __user *uaddr;
2223 int __user *uaddr_len;
2224
2225 if (MSG_CMSG_COMPAT & flags) {
2226 if (get_compat_msghdr(msg_sys, msg_compat))
2227 return -EFAULT;
2228 } else {
2229 err = copy_msghdr_from_user(msg_sys, msg);
2230 if (err)
2231 return err;
2232 }
2233
2234 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2235 err = -EMSGSIZE;
2236 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2237 goto out;
2238 err = -ENOMEM;
2239 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2240 GFP_KERNEL);
2241 if (!iov)
2242 goto out;
2243 }
2244
2245 /* Save the user-mode address (verify_iovec will change the
2246 * kernel msghdr to use the kernel address space)
2247 */
2248 uaddr = (__force void __user *)msg_sys->msg_name;
2249 uaddr_len = COMPAT_NAMELEN(msg);
2250 if (MSG_CMSG_COMPAT & flags)
2251 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2252 else
2253 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2254 if (err < 0)
2255 goto out_freeiov;
2256 total_len = err;
2257
2258 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2259 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2260
2261 /* We assume all kernel code knows the size of sockaddr_storage */
2262 msg_sys->msg_namelen = 0;
2263
2264 if (sock->file->f_flags & O_NONBLOCK)
2265 flags |= MSG_DONTWAIT;
2266 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2267 total_len, flags);
2268 if (err < 0)
2269 goto out_freeiov;
2270 len = err;
2271
2272 if (uaddr != NULL) {
2273 err = move_addr_to_user(&addr,
2274 msg_sys->msg_namelen, uaddr,
2275 uaddr_len);
2276 if (err < 0)
2277 goto out_freeiov;
2278 }
2279 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2280 COMPAT_FLAGS(msg));
2281 if (err)
2282 goto out_freeiov;
2283 if (MSG_CMSG_COMPAT & flags)
2284 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2285 &msg_compat->msg_controllen);
2286 else
2287 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2288 &msg->msg_controllen);
2289 if (err)
2290 goto out_freeiov;
2291 err = len;
2292
2293 out_freeiov:
2294 if (iov != iovstack)
2295 kfree(iov);
2296 out:
2297 return err;
2298 }
2299
2300 /*
2301 * BSD recvmsg interface
2302 */
2303
2304 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2305 {
2306 int fput_needed, err;
2307 struct msghdr msg_sys;
2308 struct socket *sock;
2309
2310 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2311 if (!sock)
2312 goto out;
2313
2314 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2315
2316 fput_light(sock->file, fput_needed);
2317 out:
2318 return err;
2319 }
2320
2321 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2322 unsigned int, flags)
2323 {
2324 if (flags & MSG_CMSG_COMPAT)
2325 return -EINVAL;
2326 return __sys_recvmsg(fd, msg, flags);
2327 }
2328
2329 /*
2330 * Linux recvmmsg interface
2331 */
2332
2333 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2334 unsigned int flags, struct timespec *timeout)
2335 {
2336 int fput_needed, err, datagrams;
2337 struct socket *sock;
2338 struct mmsghdr __user *entry;
2339 struct compat_mmsghdr __user *compat_entry;
2340 struct msghdr msg_sys;
2341 struct timespec end_time;
2342
2343 if (timeout &&
2344 poll_select_set_timeout(&end_time, timeout->tv_sec,
2345 timeout->tv_nsec))
2346 return -EINVAL;
2347
2348 datagrams = 0;
2349
2350 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2351 if (!sock)
2352 return err;
2353
2354 err = sock_error(sock->sk);
2355 if (err)
2356 goto out_put;
2357
2358 entry = mmsg;
2359 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2360
2361 while (datagrams < vlen) {
2362 /*
2363 * No need to ask LSM for more than the first datagram.
2364 */
2365 if (MSG_CMSG_COMPAT & flags) {
2366 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2367 &msg_sys, flags & ~MSG_WAITFORONE,
2368 datagrams);
2369 if (err < 0)
2370 break;
2371 err = __put_user(err, &compat_entry->msg_len);
2372 ++compat_entry;
2373 } else {
2374 err = ___sys_recvmsg(sock,
2375 (struct msghdr __user *)entry,
2376 &msg_sys, flags & ~MSG_WAITFORONE,
2377 datagrams);
2378 if (err < 0)
2379 break;
2380 err = put_user(err, &entry->msg_len);
2381 ++entry;
2382 }
2383
2384 if (err)
2385 break;
2386 ++datagrams;
2387
2388 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2389 if (flags & MSG_WAITFORONE)
2390 flags |= MSG_DONTWAIT;
2391
2392 if (timeout) {
2393 ktime_get_ts(timeout);
2394 *timeout = timespec_sub(end_time, *timeout);
2395 if (timeout->tv_sec < 0) {
2396 timeout->tv_sec = timeout->tv_nsec = 0;
2397 break;
2398 }
2399
2400 /* Timeout, return less than vlen datagrams */
2401 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2402 break;
2403 }
2404
2405 /* Out of band data, return right away */
2406 if (msg_sys.msg_flags & MSG_OOB)
2407 break;
2408 }
2409
2410 out_put:
2411 fput_light(sock->file, fput_needed);
2412
2413 if (err == 0)
2414 return datagrams;
2415
2416 if (datagrams != 0) {
2417 /*
2418 * We may return less entries than requested (vlen) if the
2419 * sock is non block and there aren't enough datagrams...
2420 */
2421 if (err != -EAGAIN) {
2422 /*
2423 * ... or if recvmsg returns an error after we
2424 * received some datagrams, where we record the
2425 * error to return on the next call or if the
2426 * app asks about it using getsockopt(SO_ERROR).
2427 */
2428 sock->sk->sk_err = -err;
2429 }
2430
2431 return datagrams;
2432 }
2433
2434 return err;
2435 }
2436
2437 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2438 unsigned int, vlen, unsigned int, flags,
2439 struct timespec __user *, timeout)
2440 {
2441 int datagrams;
2442 struct timespec timeout_sys;
2443
2444 if (flags & MSG_CMSG_COMPAT)
2445 return -EINVAL;
2446
2447 if (!timeout)
2448 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2449
2450 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2451 return -EFAULT;
2452
2453 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2454
2455 if (datagrams > 0 &&
2456 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2457 datagrams = -EFAULT;
2458
2459 return datagrams;
2460 }
2461
2462 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2463 /* Argument list sizes for sys_socketcall */
2464 #define AL(x) ((x) * sizeof(unsigned long))
2465 static const unsigned char nargs[21] = {
2466 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2467 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2468 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2469 AL(4), AL(5), AL(4)
2470 };
2471
2472 #undef AL
2473
2474 /*
2475 * System call vectors.
2476 *
2477 * Argument checking cleaned up. Saved 20% in size.
2478 * This function doesn't need to set the kernel lock because
2479 * it is set by the callees.
2480 */
2481
2482 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2483 {
2484 unsigned long a[AUDITSC_ARGS];
2485 unsigned long a0, a1;
2486 int err;
2487 unsigned int len;
2488
2489 if (call < 1 || call > SYS_SENDMMSG)
2490 return -EINVAL;
2491
2492 len = nargs[call];
2493 if (len > sizeof(a))
2494 return -EINVAL;
2495
2496 /* copy_from_user should be SMP safe. */
2497 if (copy_from_user(a, args, len))
2498 return -EFAULT;
2499
2500 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2501 if (err)
2502 return err;
2503
2504 a0 = a[0];
2505 a1 = a[1];
2506
2507 switch (call) {
2508 case SYS_SOCKET:
2509 err = sys_socket(a0, a1, a[2]);
2510 break;
2511 case SYS_BIND:
2512 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2513 break;
2514 case SYS_CONNECT:
2515 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2516 break;
2517 case SYS_LISTEN:
2518 err = sys_listen(a0, a1);
2519 break;
2520 case SYS_ACCEPT:
2521 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2522 (int __user *)a[2], 0);
2523 break;
2524 case SYS_GETSOCKNAME:
2525 err =
2526 sys_getsockname(a0, (struct sockaddr __user *)a1,
2527 (int __user *)a[2]);
2528 break;
2529 case SYS_GETPEERNAME:
2530 err =
2531 sys_getpeername(a0, (struct sockaddr __user *)a1,
2532 (int __user *)a[2]);
2533 break;
2534 case SYS_SOCKETPAIR:
2535 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2536 break;
2537 case SYS_SEND:
2538 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2539 break;
2540 case SYS_SENDTO:
2541 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2542 (struct sockaddr __user *)a[4], a[5]);
2543 break;
2544 case SYS_RECV:
2545 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2546 break;
2547 case SYS_RECVFROM:
2548 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2549 (struct sockaddr __user *)a[4],
2550 (int __user *)a[5]);
2551 break;
2552 case SYS_SHUTDOWN:
2553 err = sys_shutdown(a0, a1);
2554 break;
2555 case SYS_SETSOCKOPT:
2556 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2557 break;
2558 case SYS_GETSOCKOPT:
2559 err =
2560 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2561 (int __user *)a[4]);
2562 break;
2563 case SYS_SENDMSG:
2564 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2565 break;
2566 case SYS_SENDMMSG:
2567 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2568 break;
2569 case SYS_RECVMSG:
2570 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2571 break;
2572 case SYS_RECVMMSG:
2573 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2574 (struct timespec __user *)a[4]);
2575 break;
2576 case SYS_ACCEPT4:
2577 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2578 (int __user *)a[2], a[3]);
2579 break;
2580 default:
2581 err = -EINVAL;
2582 break;
2583 }
2584 return err;
2585 }
2586
2587 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2588
2589 /**
2590 * sock_register - add a socket protocol handler
2591 * @ops: description of protocol
2592 *
2593 * This function is called by a protocol handler that wants to
2594 * advertise its address family, and have it linked into the
2595 * socket interface. The value ops->family coresponds to the
2596 * socket system call protocol family.
2597 */
2598 int sock_register(const struct net_proto_family *ops)
2599 {
2600 int err;
2601
2602 if (ops->family >= NPROTO) {
2603 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2604 NPROTO);
2605 return -ENOBUFS;
2606 }
2607
2608 spin_lock(&net_family_lock);
2609 if (rcu_dereference_protected(net_families[ops->family],
2610 lockdep_is_held(&net_family_lock)))
2611 err = -EEXIST;
2612 else {
2613 rcu_assign_pointer(net_families[ops->family], ops);
2614 err = 0;
2615 }
2616 spin_unlock(&net_family_lock);
2617
2618 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2619 return err;
2620 }
2621 EXPORT_SYMBOL(sock_register);
2622
2623 /**
2624 * sock_unregister - remove a protocol handler
2625 * @family: protocol family to remove
2626 *
2627 * This function is called by a protocol handler that wants to
2628 * remove its address family, and have it unlinked from the
2629 * new socket creation.
2630 *
2631 * If protocol handler is a module, then it can use module reference
2632 * counts to protect against new references. If protocol handler is not
2633 * a module then it needs to provide its own protection in
2634 * the ops->create routine.
2635 */
2636 void sock_unregister(int family)
2637 {
2638 BUG_ON(family < 0 || family >= NPROTO);
2639
2640 spin_lock(&net_family_lock);
2641 RCU_INIT_POINTER(net_families[family], NULL);
2642 spin_unlock(&net_family_lock);
2643
2644 synchronize_rcu();
2645
2646 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2647 }
2648 EXPORT_SYMBOL(sock_unregister);
2649
2650 static int __init sock_init(void)
2651 {
2652 int err;
2653 /*
2654 * Initialize the network sysctl infrastructure.
2655 */
2656 err = net_sysctl_init();
2657 if (err)
2658 goto out;
2659
2660 /*
2661 * Initialize skbuff SLAB cache
2662 */
2663 skb_init();
2664
2665 /*
2666 * Initialize the protocols module.
2667 */
2668
2669 init_inodecache();
2670
2671 err = register_filesystem(&sock_fs_type);
2672 if (err)
2673 goto out_fs;
2674 sock_mnt = kern_mount(&sock_fs_type);
2675 if (IS_ERR(sock_mnt)) {
2676 err = PTR_ERR(sock_mnt);
2677 goto out_mount;
2678 }
2679
2680 /* The real protocol initialization is performed in later initcalls.
2681 */
2682
2683 #ifdef CONFIG_NETFILTER
2684 err = netfilter_init();
2685 if (err)
2686 goto out;
2687 #endif
2688
2689 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2690 skb_timestamping_init();
2691 #endif
2692
2693 out:
2694 return err;
2695
2696 out_mount:
2697 unregister_filesystem(&sock_fs_type);
2698 out_fs:
2699 goto out;
2700 }
2701
2702 core_initcall(sock_init); /* early initcall */
2703
2704 #ifdef CONFIG_PROC_FS
2705 void socket_seq_show(struct seq_file *seq)
2706 {
2707 int cpu;
2708 int counter = 0;
2709
2710 for_each_possible_cpu(cpu)
2711 counter += per_cpu(sockets_in_use, cpu);
2712
2713 /* It can be negative, by the way. 8) */
2714 if (counter < 0)
2715 counter = 0;
2716
2717 seq_printf(seq, "sockets: used %d\n", counter);
2718 }
2719 #endif /* CONFIG_PROC_FS */
2720
2721 #ifdef CONFIG_COMPAT
2722 static int do_siocgstamp(struct net *net, struct socket *sock,
2723 unsigned int cmd, void __user *up)
2724 {
2725 mm_segment_t old_fs = get_fs();
2726 struct timeval ktv;
2727 int err;
2728
2729 set_fs(KERNEL_DS);
2730 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2731 set_fs(old_fs);
2732 if (!err)
2733 err = compat_put_timeval(&ktv, up);
2734
2735 return err;
2736 }
2737
2738 static int do_siocgstampns(struct net *net, struct socket *sock,
2739 unsigned int cmd, void __user *up)
2740 {
2741 mm_segment_t old_fs = get_fs();
2742 struct timespec kts;
2743 int err;
2744
2745 set_fs(KERNEL_DS);
2746 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2747 set_fs(old_fs);
2748 if (!err)
2749 err = compat_put_timespec(&kts, up);
2750
2751 return err;
2752 }
2753
2754 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2755 {
2756 struct ifreq __user *uifr;
2757 int err;
2758
2759 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2760 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2761 return -EFAULT;
2762
2763 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2764 if (err)
2765 return err;
2766
2767 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2768 return -EFAULT;
2769
2770 return 0;
2771 }
2772
2773 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2774 {
2775 struct compat_ifconf ifc32;
2776 struct ifconf ifc;
2777 struct ifconf __user *uifc;
2778 struct compat_ifreq __user *ifr32;
2779 struct ifreq __user *ifr;
2780 unsigned int i, j;
2781 int err;
2782
2783 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2784 return -EFAULT;
2785
2786 memset(&ifc, 0, sizeof(ifc));
2787 if (ifc32.ifcbuf == 0) {
2788 ifc32.ifc_len = 0;
2789 ifc.ifc_len = 0;
2790 ifc.ifc_req = NULL;
2791 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2792 } else {
2793 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2794 sizeof(struct ifreq);
2795 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2796 ifc.ifc_len = len;
2797 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2798 ifr32 = compat_ptr(ifc32.ifcbuf);
2799 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2800 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2801 return -EFAULT;
2802 ifr++;
2803 ifr32++;
2804 }
2805 }
2806 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2807 return -EFAULT;
2808
2809 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2810 if (err)
2811 return err;
2812
2813 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2814 return -EFAULT;
2815
2816 ifr = ifc.ifc_req;
2817 ifr32 = compat_ptr(ifc32.ifcbuf);
2818 for (i = 0, j = 0;
2819 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2820 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2821 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2822 return -EFAULT;
2823 ifr32++;
2824 ifr++;
2825 }
2826
2827 if (ifc32.ifcbuf == 0) {
2828 /* Translate from 64-bit structure multiple to
2829 * a 32-bit one.
2830 */
2831 i = ifc.ifc_len;
2832 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2833 ifc32.ifc_len = i;
2834 } else {
2835 ifc32.ifc_len = i;
2836 }
2837 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2838 return -EFAULT;
2839
2840 return 0;
2841 }
2842
2843 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2844 {
2845 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2846 bool convert_in = false, convert_out = false;
2847 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2848 struct ethtool_rxnfc __user *rxnfc;
2849 struct ifreq __user *ifr;
2850 u32 rule_cnt = 0, actual_rule_cnt;
2851 u32 ethcmd;
2852 u32 data;
2853 int ret;
2854
2855 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2856 return -EFAULT;
2857
2858 compat_rxnfc = compat_ptr(data);
2859
2860 if (get_user(ethcmd, &compat_rxnfc->cmd))
2861 return -EFAULT;
2862
2863 /* Most ethtool structures are defined without padding.
2864 * Unfortunately struct ethtool_rxnfc is an exception.
2865 */
2866 switch (ethcmd) {
2867 default:
2868 break;
2869 case ETHTOOL_GRXCLSRLALL:
2870 /* Buffer size is variable */
2871 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2872 return -EFAULT;
2873 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2874 return -ENOMEM;
2875 buf_size += rule_cnt * sizeof(u32);
2876 /* fall through */
2877 case ETHTOOL_GRXRINGS:
2878 case ETHTOOL_GRXCLSRLCNT:
2879 case ETHTOOL_GRXCLSRULE:
2880 case ETHTOOL_SRXCLSRLINS:
2881 convert_out = true;
2882 /* fall through */
2883 case ETHTOOL_SRXCLSRLDEL:
2884 buf_size += sizeof(struct ethtool_rxnfc);
2885 convert_in = true;
2886 break;
2887 }
2888
2889 ifr = compat_alloc_user_space(buf_size);
2890 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2891
2892 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2893 return -EFAULT;
2894
2895 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2896 &ifr->ifr_ifru.ifru_data))
2897 return -EFAULT;
2898
2899 if (convert_in) {
2900 /* We expect there to be holes between fs.m_ext and
2901 * fs.ring_cookie and at the end of fs, but nowhere else.
2902 */
2903 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2904 sizeof(compat_rxnfc->fs.m_ext) !=
2905 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2906 sizeof(rxnfc->fs.m_ext));
2907 BUILD_BUG_ON(
2908 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2909 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2910 offsetof(struct ethtool_rxnfc, fs.location) -
2911 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2912
2913 if (copy_in_user(rxnfc, compat_rxnfc,
2914 (void __user *)(&rxnfc->fs.m_ext + 1) -
2915 (void __user *)rxnfc) ||
2916 copy_in_user(&rxnfc->fs.ring_cookie,
2917 &compat_rxnfc->fs.ring_cookie,
2918 (void __user *)(&rxnfc->fs.location + 1) -
2919 (void __user *)&rxnfc->fs.ring_cookie) ||
2920 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2921 sizeof(rxnfc->rule_cnt)))
2922 return -EFAULT;
2923 }
2924
2925 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2926 if (ret)
2927 return ret;
2928
2929 if (convert_out) {
2930 if (copy_in_user(compat_rxnfc, rxnfc,
2931 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2932 (const void __user *)rxnfc) ||
2933 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2934 &rxnfc->fs.ring_cookie,
2935 (const void __user *)(&rxnfc->fs.location + 1) -
2936 (const void __user *)&rxnfc->fs.ring_cookie) ||
2937 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2938 sizeof(rxnfc->rule_cnt)))
2939 return -EFAULT;
2940
2941 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2942 /* As an optimisation, we only copy the actual
2943 * number of rules that the underlying
2944 * function returned. Since Mallory might
2945 * change the rule count in user memory, we
2946 * check that it is less than the rule count
2947 * originally given (as the user buffer size),
2948 * which has been range-checked.
2949 */
2950 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2951 return -EFAULT;
2952 if (actual_rule_cnt < rule_cnt)
2953 rule_cnt = actual_rule_cnt;
2954 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2955 &rxnfc->rule_locs[0],
2956 rule_cnt * sizeof(u32)))
2957 return -EFAULT;
2958 }
2959 }
2960
2961 return 0;
2962 }
2963
2964 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2965 {
2966 void __user *uptr;
2967 compat_uptr_t uptr32;
2968 struct ifreq __user *uifr;
2969
2970 uifr = compat_alloc_user_space(sizeof(*uifr));
2971 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2972 return -EFAULT;
2973
2974 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2975 return -EFAULT;
2976
2977 uptr = compat_ptr(uptr32);
2978
2979 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2980 return -EFAULT;
2981
2982 return dev_ioctl(net, SIOCWANDEV, uifr);
2983 }
2984
2985 static int bond_ioctl(struct net *net, unsigned int cmd,
2986 struct compat_ifreq __user *ifr32)
2987 {
2988 struct ifreq kifr;
2989 mm_segment_t old_fs;
2990 int err;
2991
2992 switch (cmd) {
2993 case SIOCBONDENSLAVE:
2994 case SIOCBONDRELEASE:
2995 case SIOCBONDSETHWADDR:
2996 case SIOCBONDCHANGEACTIVE:
2997 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2998 return -EFAULT;
2999
3000 old_fs = get_fs();
3001 set_fs(KERNEL_DS);
3002 err = dev_ioctl(net, cmd,
3003 (struct ifreq __user __force *) &kifr);
3004 set_fs(old_fs);
3005
3006 return err;
3007 default:
3008 return -ENOIOCTLCMD;
3009 }
3010 }
3011
3012 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3013 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3014 struct compat_ifreq __user *u_ifreq32)
3015 {
3016 struct ifreq __user *u_ifreq64;
3017 char tmp_buf[IFNAMSIZ];
3018 void __user *data64;
3019 u32 data32;
3020
3021 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3022 IFNAMSIZ))
3023 return -EFAULT;
3024 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3025 return -EFAULT;
3026 data64 = compat_ptr(data32);
3027
3028 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3029
3030 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3031 IFNAMSIZ))
3032 return -EFAULT;
3033 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3034 return -EFAULT;
3035
3036 return dev_ioctl(net, cmd, u_ifreq64);
3037 }
3038
3039 static int dev_ifsioc(struct net *net, struct socket *sock,
3040 unsigned int cmd, struct compat_ifreq __user *uifr32)
3041 {
3042 struct ifreq __user *uifr;
3043 int err;
3044
3045 uifr = compat_alloc_user_space(sizeof(*uifr));
3046 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3047 return -EFAULT;
3048
3049 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3050
3051 if (!err) {
3052 switch (cmd) {
3053 case SIOCGIFFLAGS:
3054 case SIOCGIFMETRIC:
3055 case SIOCGIFMTU:
3056 case SIOCGIFMEM:
3057 case SIOCGIFHWADDR:
3058 case SIOCGIFINDEX:
3059 case SIOCGIFADDR:
3060 case SIOCGIFBRDADDR:
3061 case SIOCGIFDSTADDR:
3062 case SIOCGIFNETMASK:
3063 case SIOCGIFPFLAGS:
3064 case SIOCGIFTXQLEN:
3065 case SIOCGMIIPHY:
3066 case SIOCGMIIREG:
3067 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3068 err = -EFAULT;
3069 break;
3070 }
3071 }
3072 return err;
3073 }
3074
3075 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3076 struct compat_ifreq __user *uifr32)
3077 {
3078 struct ifreq ifr;
3079 struct compat_ifmap __user *uifmap32;
3080 mm_segment_t old_fs;
3081 int err;
3082
3083 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3084 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3085 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3086 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3087 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3088 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3089 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3090 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3091 if (err)
3092 return -EFAULT;
3093
3094 old_fs = get_fs();
3095 set_fs(KERNEL_DS);
3096 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3097 set_fs(old_fs);
3098
3099 if (cmd == SIOCGIFMAP && !err) {
3100 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3101 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3102 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3103 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3104 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3105 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3106 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3107 if (err)
3108 err = -EFAULT;
3109 }
3110 return err;
3111 }
3112
3113 struct rtentry32 {
3114 u32 rt_pad1;
3115 struct sockaddr rt_dst; /* target address */
3116 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3117 struct sockaddr rt_genmask; /* target network mask (IP) */
3118 unsigned short rt_flags;
3119 short rt_pad2;
3120 u32 rt_pad3;
3121 unsigned char rt_tos;
3122 unsigned char rt_class;
3123 short rt_pad4;
3124 short rt_metric; /* +1 for binary compatibility! */
3125 /* char * */ u32 rt_dev; /* forcing the device at add */
3126 u32 rt_mtu; /* per route MTU/Window */
3127 u32 rt_window; /* Window clamping */
3128 unsigned short rt_irtt; /* Initial RTT */
3129 };
3130
3131 struct in6_rtmsg32 {
3132 struct in6_addr rtmsg_dst;
3133 struct in6_addr rtmsg_src;
3134 struct in6_addr rtmsg_gateway;
3135 u32 rtmsg_type;
3136 u16 rtmsg_dst_len;
3137 u16 rtmsg_src_len;
3138 u32 rtmsg_metric;
3139 u32 rtmsg_info;
3140 u32 rtmsg_flags;
3141 s32 rtmsg_ifindex;
3142 };
3143
3144 static int routing_ioctl(struct net *net, struct socket *sock,
3145 unsigned int cmd, void __user *argp)
3146 {
3147 int ret;
3148 void *r = NULL;
3149 struct in6_rtmsg r6;
3150 struct rtentry r4;
3151 char devname[16];
3152 u32 rtdev;
3153 mm_segment_t old_fs = get_fs();
3154
3155 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3156 struct in6_rtmsg32 __user *ur6 = argp;
3157 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3158 3 * sizeof(struct in6_addr));
3159 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3160 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3161 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3162 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3163 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3164 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3165 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3166
3167 r = (void *) &r6;
3168 } else { /* ipv4 */
3169 struct rtentry32 __user *ur4 = argp;
3170 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3171 3 * sizeof(struct sockaddr));
3172 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3173 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3174 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3175 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3176 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3177 ret |= get_user(rtdev, &(ur4->rt_dev));
3178 if (rtdev) {
3179 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3180 r4.rt_dev = (char __user __force *)devname;
3181 devname[15] = 0;
3182 } else
3183 r4.rt_dev = NULL;
3184
3185 r = (void *) &r4;
3186 }
3187
3188 if (ret) {
3189 ret = -EFAULT;
3190 goto out;
3191 }
3192
3193 set_fs(KERNEL_DS);
3194 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3195 set_fs(old_fs);
3196
3197 out:
3198 return ret;
3199 }
3200
3201 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3202 * for some operations; this forces use of the newer bridge-utils that
3203 * use compatible ioctls
3204 */
3205 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3206 {
3207 compat_ulong_t tmp;
3208
3209 if (get_user(tmp, argp))
3210 return -EFAULT;
3211 if (tmp == BRCTL_GET_VERSION)
3212 return BRCTL_VERSION + 1;
3213 return -EINVAL;
3214 }
3215
3216 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3217 unsigned int cmd, unsigned long arg)
3218 {
3219 void __user *argp = compat_ptr(arg);
3220 struct sock *sk = sock->sk;
3221 struct net *net = sock_net(sk);
3222
3223 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3224 return compat_ifr_data_ioctl(net, cmd, argp);
3225
3226 switch (cmd) {
3227 case SIOCSIFBR:
3228 case SIOCGIFBR:
3229 return old_bridge_ioctl(argp);
3230 case SIOCGIFNAME:
3231 return dev_ifname32(net, argp);
3232 case SIOCGIFCONF:
3233 return dev_ifconf(net, argp);
3234 case SIOCETHTOOL:
3235 return ethtool_ioctl(net, argp);
3236 case SIOCWANDEV:
3237 return compat_siocwandev(net, argp);
3238 case SIOCGIFMAP:
3239 case SIOCSIFMAP:
3240 return compat_sioc_ifmap(net, cmd, argp);
3241 case SIOCBONDENSLAVE:
3242 case SIOCBONDRELEASE:
3243 case SIOCBONDSETHWADDR:
3244 case SIOCBONDCHANGEACTIVE:
3245 return bond_ioctl(net, cmd, argp);
3246 case SIOCADDRT:
3247 case SIOCDELRT:
3248 return routing_ioctl(net, sock, cmd, argp);
3249 case SIOCGSTAMP:
3250 return do_siocgstamp(net, sock, cmd, argp);
3251 case SIOCGSTAMPNS:
3252 return do_siocgstampns(net, sock, cmd, argp);
3253 case SIOCBONDSLAVEINFOQUERY:
3254 case SIOCBONDINFOQUERY:
3255 case SIOCSHWTSTAMP:
3256 case SIOCGHWTSTAMP:
3257 return compat_ifr_data_ioctl(net, cmd, argp);
3258
3259 case FIOSETOWN:
3260 case SIOCSPGRP:
3261 case FIOGETOWN:
3262 case SIOCGPGRP:
3263 case SIOCBRADDBR:
3264 case SIOCBRDELBR:
3265 case SIOCGIFVLAN:
3266 case SIOCSIFVLAN:
3267 case SIOCADDDLCI:
3268 case SIOCDELDLCI:
3269 return sock_ioctl(file, cmd, arg);
3270
3271 case SIOCGIFFLAGS:
3272 case SIOCSIFFLAGS:
3273 case SIOCGIFMETRIC:
3274 case SIOCSIFMETRIC:
3275 case SIOCGIFMTU:
3276 case SIOCSIFMTU:
3277 case SIOCGIFMEM:
3278 case SIOCSIFMEM:
3279 case SIOCGIFHWADDR:
3280 case SIOCSIFHWADDR:
3281 case SIOCADDMULTI:
3282 case SIOCDELMULTI:
3283 case SIOCGIFINDEX:
3284 case SIOCGIFADDR:
3285 case SIOCSIFADDR:
3286 case SIOCSIFHWBROADCAST:
3287 case SIOCDIFADDR:
3288 case SIOCGIFBRDADDR:
3289 case SIOCSIFBRDADDR:
3290 case SIOCGIFDSTADDR:
3291 case SIOCSIFDSTADDR:
3292 case SIOCGIFNETMASK:
3293 case SIOCSIFNETMASK:
3294 case SIOCSIFPFLAGS:
3295 case SIOCGIFPFLAGS:
3296 case SIOCGIFTXQLEN:
3297 case SIOCSIFTXQLEN:
3298 case SIOCBRADDIF:
3299 case SIOCBRDELIF:
3300 case SIOCSIFNAME:
3301 case SIOCGMIIPHY:
3302 case SIOCGMIIREG:
3303 case SIOCSMIIREG:
3304 return dev_ifsioc(net, sock, cmd, argp);
3305
3306 case SIOCSARP:
3307 case SIOCGARP:
3308 case SIOCDARP:
3309 case SIOCATMARK:
3310 return sock_do_ioctl(net, sock, cmd, arg);
3311 }
3312
3313 return -ENOIOCTLCMD;
3314 }
3315
3316 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3317 unsigned long arg)
3318 {
3319 struct socket *sock = file->private_data;
3320 int ret = -ENOIOCTLCMD;
3321 struct sock *sk;
3322 struct net *net;
3323
3324 sk = sock->sk;
3325 net = sock_net(sk);
3326
3327 if (sock->ops->compat_ioctl)
3328 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3329
3330 if (ret == -ENOIOCTLCMD &&
3331 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3332 ret = compat_wext_handle_ioctl(net, cmd, arg);
3333
3334 if (ret == -ENOIOCTLCMD)
3335 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3336
3337 return ret;
3338 }
3339 #endif
3340
3341 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3342 {
3343 return sock->ops->bind(sock, addr, addrlen);
3344 }
3345 EXPORT_SYMBOL(kernel_bind);
3346
3347 int kernel_listen(struct socket *sock, int backlog)
3348 {
3349 return sock->ops->listen(sock, backlog);
3350 }
3351 EXPORT_SYMBOL(kernel_listen);
3352
3353 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3354 {
3355 struct sock *sk = sock->sk;
3356 int err;
3357
3358 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3359 newsock);
3360 if (err < 0)
3361 goto done;
3362
3363 err = sock->ops->accept(sock, *newsock, flags);
3364 if (err < 0) {
3365 sock_release(*newsock);
3366 *newsock = NULL;
3367 goto done;
3368 }
3369
3370 (*newsock)->ops = sock->ops;
3371 __module_get((*newsock)->ops->owner);
3372
3373 done:
3374 return err;
3375 }
3376 EXPORT_SYMBOL(kernel_accept);
3377
3378 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3379 int flags)
3380 {
3381 return sock->ops->connect(sock, addr, addrlen, flags);
3382 }
3383 EXPORT_SYMBOL(kernel_connect);
3384
3385 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3386 int *addrlen)
3387 {
3388 return sock->ops->getname(sock, addr, addrlen, 0);
3389 }
3390 EXPORT_SYMBOL(kernel_getsockname);
3391
3392 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3393 int *addrlen)
3394 {
3395 return sock->ops->getname(sock, addr, addrlen, 1);
3396 }
3397 EXPORT_SYMBOL(kernel_getpeername);
3398
3399 int kernel_getsockopt(struct socket *sock, int level, int optname,
3400 char *optval, int *optlen)
3401 {
3402 mm_segment_t oldfs = get_fs();
3403 char __user *uoptval;
3404 int __user *uoptlen;
3405 int err;
3406
3407 uoptval = (char __user __force *) optval;
3408 uoptlen = (int __user __force *) optlen;
3409
3410 set_fs(KERNEL_DS);
3411 if (level == SOL_SOCKET)
3412 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3413 else
3414 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3415 uoptlen);
3416 set_fs(oldfs);
3417 return err;
3418 }
3419 EXPORT_SYMBOL(kernel_getsockopt);
3420
3421 int kernel_setsockopt(struct socket *sock, int level, int optname,
3422 char *optval, unsigned int optlen)
3423 {
3424 mm_segment_t oldfs = get_fs();
3425 char __user *uoptval;
3426 int err;
3427
3428 uoptval = (char __user __force *) optval;
3429
3430 set_fs(KERNEL_DS);
3431 if (level == SOL_SOCKET)
3432 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3433 else
3434 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3435 optlen);
3436 set_fs(oldfs);
3437 return err;
3438 }
3439 EXPORT_SYMBOL(kernel_setsockopt);
3440
3441 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3442 size_t size, int flags)
3443 {
3444 if (sock->ops->sendpage)
3445 return sock->ops->sendpage(sock, page, offset, size, flags);
3446
3447 return sock_no_sendpage(sock, page, offset, size, flags);
3448 }
3449 EXPORT_SYMBOL(kernel_sendpage);
3450
3451 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3452 {
3453 mm_segment_t oldfs = get_fs();
3454 int err;
3455
3456 set_fs(KERNEL_DS);
3457 err = sock->ops->ioctl(sock, cmd, arg);
3458 set_fs(oldfs);
3459
3460 return err;
3461 }
3462 EXPORT_SYMBOL(kernel_sock_ioctl);
3463
3464 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3465 {
3466 return sock->ops->shutdown(sock, how);
3467 }
3468 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.158905 seconds and 6 git commands to generate.