SUNRPC: Move procfs-specific stuff out of the generic sunrpc cache code
[deliverable/linux.git] / net / sunrpc / cache.c
1 /*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2. See COPYING.
10 *
11 */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35
36 #define RPCDBG_FACILITY RPCDBG_CACHE
37
38 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
39 static void cache_revisit_request(struct cache_head *item);
40
41 static void cache_init(struct cache_head *h)
42 {
43 time_t now = get_seconds();
44 h->next = NULL;
45 h->flags = 0;
46 kref_init(&h->ref);
47 h->expiry_time = now + CACHE_NEW_EXPIRY;
48 h->last_refresh = now;
49 }
50
51 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
52 struct cache_head *key, int hash)
53 {
54 struct cache_head **head, **hp;
55 struct cache_head *new = NULL;
56
57 head = &detail->hash_table[hash];
58
59 read_lock(&detail->hash_lock);
60
61 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
62 struct cache_head *tmp = *hp;
63 if (detail->match(tmp, key)) {
64 cache_get(tmp);
65 read_unlock(&detail->hash_lock);
66 return tmp;
67 }
68 }
69 read_unlock(&detail->hash_lock);
70 /* Didn't find anything, insert an empty entry */
71
72 new = detail->alloc();
73 if (!new)
74 return NULL;
75 /* must fully initialise 'new', else
76 * we might get lose if we need to
77 * cache_put it soon.
78 */
79 cache_init(new);
80 detail->init(new, key);
81
82 write_lock(&detail->hash_lock);
83
84 /* check if entry appeared while we slept */
85 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
86 struct cache_head *tmp = *hp;
87 if (detail->match(tmp, key)) {
88 cache_get(tmp);
89 write_unlock(&detail->hash_lock);
90 cache_put(new, detail);
91 return tmp;
92 }
93 }
94 new->next = *head;
95 *head = new;
96 detail->entries++;
97 cache_get(new);
98 write_unlock(&detail->hash_lock);
99
100 return new;
101 }
102 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
103
104
105 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
106
107 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
108 {
109 head->expiry_time = expiry;
110 head->last_refresh = get_seconds();
111 return !test_and_set_bit(CACHE_VALID, &head->flags);
112 }
113
114 static void cache_fresh_unlocked(struct cache_head *head,
115 struct cache_detail *detail, int new)
116 {
117 if (new)
118 cache_revisit_request(head);
119 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
120 cache_revisit_request(head);
121 queue_loose(detail, head);
122 }
123 }
124
125 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
126 struct cache_head *new, struct cache_head *old, int hash)
127 {
128 /* The 'old' entry is to be replaced by 'new'.
129 * If 'old' is not VALID, we update it directly,
130 * otherwise we need to replace it
131 */
132 struct cache_head **head;
133 struct cache_head *tmp;
134 int is_new;
135
136 if (!test_bit(CACHE_VALID, &old->flags)) {
137 write_lock(&detail->hash_lock);
138 if (!test_bit(CACHE_VALID, &old->flags)) {
139 if (test_bit(CACHE_NEGATIVE, &new->flags))
140 set_bit(CACHE_NEGATIVE, &old->flags);
141 else
142 detail->update(old, new);
143 is_new = cache_fresh_locked(old, new->expiry_time);
144 write_unlock(&detail->hash_lock);
145 cache_fresh_unlocked(old, detail, is_new);
146 return old;
147 }
148 write_unlock(&detail->hash_lock);
149 }
150 /* We need to insert a new entry */
151 tmp = detail->alloc();
152 if (!tmp) {
153 cache_put(old, detail);
154 return NULL;
155 }
156 cache_init(tmp);
157 detail->init(tmp, old);
158 head = &detail->hash_table[hash];
159
160 write_lock(&detail->hash_lock);
161 if (test_bit(CACHE_NEGATIVE, &new->flags))
162 set_bit(CACHE_NEGATIVE, &tmp->flags);
163 else
164 detail->update(tmp, new);
165 tmp->next = *head;
166 *head = tmp;
167 detail->entries++;
168 cache_get(tmp);
169 is_new = cache_fresh_locked(tmp, new->expiry_time);
170 cache_fresh_locked(old, 0);
171 write_unlock(&detail->hash_lock);
172 cache_fresh_unlocked(tmp, detail, is_new);
173 cache_fresh_unlocked(old, detail, 0);
174 cache_put(old, detail);
175 return tmp;
176 }
177 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
178
179 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
180 {
181 if (!cd->cache_upcall)
182 return -EINVAL;
183 return cd->cache_upcall(cd, h);
184 }
185
186 /*
187 * This is the generic cache management routine for all
188 * the authentication caches.
189 * It checks the currency of a cache item and will (later)
190 * initiate an upcall to fill it if needed.
191 *
192 *
193 * Returns 0 if the cache_head can be used, or cache_puts it and returns
194 * -EAGAIN if upcall is pending,
195 * -ETIMEDOUT if upcall failed and should be retried,
196 * -ENOENT if cache entry was negative
197 */
198 int cache_check(struct cache_detail *detail,
199 struct cache_head *h, struct cache_req *rqstp)
200 {
201 int rv;
202 long refresh_age, age;
203
204 /* First decide return status as best we can */
205 if (!test_bit(CACHE_VALID, &h->flags) ||
206 h->expiry_time < get_seconds())
207 rv = -EAGAIN;
208 else if (detail->flush_time > h->last_refresh)
209 rv = -EAGAIN;
210 else {
211 /* entry is valid */
212 if (test_bit(CACHE_NEGATIVE, &h->flags))
213 rv = -ENOENT;
214 else rv = 0;
215 }
216
217 /* now see if we want to start an upcall */
218 refresh_age = (h->expiry_time - h->last_refresh);
219 age = get_seconds() - h->last_refresh;
220
221 if (rqstp == NULL) {
222 if (rv == -EAGAIN)
223 rv = -ENOENT;
224 } else if (rv == -EAGAIN || age > refresh_age/2) {
225 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
226 refresh_age, age);
227 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
228 switch (cache_make_upcall(detail, h)) {
229 case -EINVAL:
230 clear_bit(CACHE_PENDING, &h->flags);
231 if (rv == -EAGAIN) {
232 set_bit(CACHE_NEGATIVE, &h->flags);
233 cache_fresh_unlocked(h, detail,
234 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
235 rv = -ENOENT;
236 }
237 break;
238
239 case -EAGAIN:
240 clear_bit(CACHE_PENDING, &h->flags);
241 cache_revisit_request(h);
242 break;
243 }
244 }
245 }
246
247 if (rv == -EAGAIN)
248 if (cache_defer_req(rqstp, h) != 0)
249 rv = -ETIMEDOUT;
250
251 if (rv)
252 cache_put(h, detail);
253 return rv;
254 }
255 EXPORT_SYMBOL_GPL(cache_check);
256
257 /*
258 * caches need to be periodically cleaned.
259 * For this we maintain a list of cache_detail and
260 * a current pointer into that list and into the table
261 * for that entry.
262 *
263 * Each time clean_cache is called it finds the next non-empty entry
264 * in the current table and walks the list in that entry
265 * looking for entries that can be removed.
266 *
267 * An entry gets removed if:
268 * - The expiry is before current time
269 * - The last_refresh time is before the flush_time for that cache
270 *
271 * later we might drop old entries with non-NEVER expiry if that table
272 * is getting 'full' for some definition of 'full'
273 *
274 * The question of "how often to scan a table" is an interesting one
275 * and is answered in part by the use of the "nextcheck" field in the
276 * cache_detail.
277 * When a scan of a table begins, the nextcheck field is set to a time
278 * that is well into the future.
279 * While scanning, if an expiry time is found that is earlier than the
280 * current nextcheck time, nextcheck is set to that expiry time.
281 * If the flush_time is ever set to a time earlier than the nextcheck
282 * time, the nextcheck time is then set to that flush_time.
283 *
284 * A table is then only scanned if the current time is at least
285 * the nextcheck time.
286 *
287 */
288
289 static LIST_HEAD(cache_list);
290 static DEFINE_SPINLOCK(cache_list_lock);
291 static struct cache_detail *current_detail;
292 static int current_index;
293
294 static void do_cache_clean(struct work_struct *work);
295 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
296
297 static void sunrpc_init_cache_detail(struct cache_detail *cd)
298 {
299 rwlock_init(&cd->hash_lock);
300 INIT_LIST_HEAD(&cd->queue);
301 spin_lock(&cache_list_lock);
302 cd->nextcheck = 0;
303 cd->entries = 0;
304 atomic_set(&cd->readers, 0);
305 cd->last_close = 0;
306 cd->last_warn = -1;
307 list_add(&cd->others, &cache_list);
308 spin_unlock(&cache_list_lock);
309
310 /* start the cleaning process */
311 schedule_delayed_work(&cache_cleaner, 0);
312 }
313
314 static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
315 {
316 cache_purge(cd);
317 spin_lock(&cache_list_lock);
318 write_lock(&cd->hash_lock);
319 if (cd->entries || atomic_read(&cd->inuse)) {
320 write_unlock(&cd->hash_lock);
321 spin_unlock(&cache_list_lock);
322 goto out;
323 }
324 if (current_detail == cd)
325 current_detail = NULL;
326 list_del_init(&cd->others);
327 write_unlock(&cd->hash_lock);
328 spin_unlock(&cache_list_lock);
329 if (list_empty(&cache_list)) {
330 /* module must be being unloaded so its safe to kill the worker */
331 cancel_delayed_work_sync(&cache_cleaner);
332 }
333 return;
334 out:
335 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
336 }
337
338 /* clean cache tries to find something to clean
339 * and cleans it.
340 * It returns 1 if it cleaned something,
341 * 0 if it didn't find anything this time
342 * -1 if it fell off the end of the list.
343 */
344 static int cache_clean(void)
345 {
346 int rv = 0;
347 struct list_head *next;
348
349 spin_lock(&cache_list_lock);
350
351 /* find a suitable table if we don't already have one */
352 while (current_detail == NULL ||
353 current_index >= current_detail->hash_size) {
354 if (current_detail)
355 next = current_detail->others.next;
356 else
357 next = cache_list.next;
358 if (next == &cache_list) {
359 current_detail = NULL;
360 spin_unlock(&cache_list_lock);
361 return -1;
362 }
363 current_detail = list_entry(next, struct cache_detail, others);
364 if (current_detail->nextcheck > get_seconds())
365 current_index = current_detail->hash_size;
366 else {
367 current_index = 0;
368 current_detail->nextcheck = get_seconds()+30*60;
369 }
370 }
371
372 /* find a non-empty bucket in the table */
373 while (current_detail &&
374 current_index < current_detail->hash_size &&
375 current_detail->hash_table[current_index] == NULL)
376 current_index++;
377
378 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
379
380 if (current_detail && current_index < current_detail->hash_size) {
381 struct cache_head *ch, **cp;
382 struct cache_detail *d;
383
384 write_lock(&current_detail->hash_lock);
385
386 /* Ok, now to clean this strand */
387
388 cp = & current_detail->hash_table[current_index];
389 ch = *cp;
390 for (; ch; cp= & ch->next, ch= *cp) {
391 if (current_detail->nextcheck > ch->expiry_time)
392 current_detail->nextcheck = ch->expiry_time+1;
393 if (ch->expiry_time >= get_seconds()
394 && ch->last_refresh >= current_detail->flush_time
395 )
396 continue;
397 if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
398 queue_loose(current_detail, ch);
399
400 if (atomic_read(&ch->ref.refcount) == 1)
401 break;
402 }
403 if (ch) {
404 *cp = ch->next;
405 ch->next = NULL;
406 current_detail->entries--;
407 rv = 1;
408 }
409 write_unlock(&current_detail->hash_lock);
410 d = current_detail;
411 if (!ch)
412 current_index ++;
413 spin_unlock(&cache_list_lock);
414 if (ch)
415 cache_put(ch, d);
416 } else
417 spin_unlock(&cache_list_lock);
418
419 return rv;
420 }
421
422 /*
423 * We want to regularly clean the cache, so we need to schedule some work ...
424 */
425 static void do_cache_clean(struct work_struct *work)
426 {
427 int delay = 5;
428 if (cache_clean() == -1)
429 delay = round_jiffies_relative(30*HZ);
430
431 if (list_empty(&cache_list))
432 delay = 0;
433
434 if (delay)
435 schedule_delayed_work(&cache_cleaner, delay);
436 }
437
438
439 /*
440 * Clean all caches promptly. This just calls cache_clean
441 * repeatedly until we are sure that every cache has had a chance to
442 * be fully cleaned
443 */
444 void cache_flush(void)
445 {
446 while (cache_clean() != -1)
447 cond_resched();
448 while (cache_clean() != -1)
449 cond_resched();
450 }
451 EXPORT_SYMBOL_GPL(cache_flush);
452
453 void cache_purge(struct cache_detail *detail)
454 {
455 detail->flush_time = LONG_MAX;
456 detail->nextcheck = get_seconds();
457 cache_flush();
458 detail->flush_time = 1;
459 }
460 EXPORT_SYMBOL_GPL(cache_purge);
461
462
463 /*
464 * Deferral and Revisiting of Requests.
465 *
466 * If a cache lookup finds a pending entry, we
467 * need to defer the request and revisit it later.
468 * All deferred requests are stored in a hash table,
469 * indexed by "struct cache_head *".
470 * As it may be wasteful to store a whole request
471 * structure, we allow the request to provide a
472 * deferred form, which must contain a
473 * 'struct cache_deferred_req'
474 * This cache_deferred_req contains a method to allow
475 * it to be revisited when cache info is available
476 */
477
478 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
479 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
480
481 #define DFR_MAX 300 /* ??? */
482
483 static DEFINE_SPINLOCK(cache_defer_lock);
484 static LIST_HEAD(cache_defer_list);
485 static struct list_head cache_defer_hash[DFR_HASHSIZE];
486 static int cache_defer_cnt;
487
488 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
489 {
490 struct cache_deferred_req *dreq;
491 int hash = DFR_HASH(item);
492
493 if (cache_defer_cnt >= DFR_MAX) {
494 /* too much in the cache, randomly drop this one,
495 * or continue and drop the oldest below
496 */
497 if (net_random()&1)
498 return -ETIMEDOUT;
499 }
500 dreq = req->defer(req);
501 if (dreq == NULL)
502 return -ETIMEDOUT;
503
504 dreq->item = item;
505
506 spin_lock(&cache_defer_lock);
507
508 list_add(&dreq->recent, &cache_defer_list);
509
510 if (cache_defer_hash[hash].next == NULL)
511 INIT_LIST_HEAD(&cache_defer_hash[hash]);
512 list_add(&dreq->hash, &cache_defer_hash[hash]);
513
514 /* it is in, now maybe clean up */
515 dreq = NULL;
516 if (++cache_defer_cnt > DFR_MAX) {
517 dreq = list_entry(cache_defer_list.prev,
518 struct cache_deferred_req, recent);
519 list_del(&dreq->recent);
520 list_del(&dreq->hash);
521 cache_defer_cnt--;
522 }
523 spin_unlock(&cache_defer_lock);
524
525 if (dreq) {
526 /* there was one too many */
527 dreq->revisit(dreq, 1);
528 }
529 if (!test_bit(CACHE_PENDING, &item->flags)) {
530 /* must have just been validated... */
531 cache_revisit_request(item);
532 }
533 return 0;
534 }
535
536 static void cache_revisit_request(struct cache_head *item)
537 {
538 struct cache_deferred_req *dreq;
539 struct list_head pending;
540
541 struct list_head *lp;
542 int hash = DFR_HASH(item);
543
544 INIT_LIST_HEAD(&pending);
545 spin_lock(&cache_defer_lock);
546
547 lp = cache_defer_hash[hash].next;
548 if (lp) {
549 while (lp != &cache_defer_hash[hash]) {
550 dreq = list_entry(lp, struct cache_deferred_req, hash);
551 lp = lp->next;
552 if (dreq->item == item) {
553 list_del(&dreq->hash);
554 list_move(&dreq->recent, &pending);
555 cache_defer_cnt--;
556 }
557 }
558 }
559 spin_unlock(&cache_defer_lock);
560
561 while (!list_empty(&pending)) {
562 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
563 list_del_init(&dreq->recent);
564 dreq->revisit(dreq, 0);
565 }
566 }
567
568 void cache_clean_deferred(void *owner)
569 {
570 struct cache_deferred_req *dreq, *tmp;
571 struct list_head pending;
572
573
574 INIT_LIST_HEAD(&pending);
575 spin_lock(&cache_defer_lock);
576
577 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
578 if (dreq->owner == owner) {
579 list_del(&dreq->hash);
580 list_move(&dreq->recent, &pending);
581 cache_defer_cnt--;
582 }
583 }
584 spin_unlock(&cache_defer_lock);
585
586 while (!list_empty(&pending)) {
587 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
588 list_del_init(&dreq->recent);
589 dreq->revisit(dreq, 1);
590 }
591 }
592
593 /*
594 * communicate with user-space
595 *
596 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
597 * On read, you get a full request, or block.
598 * On write, an update request is processed.
599 * Poll works if anything to read, and always allows write.
600 *
601 * Implemented by linked list of requests. Each open file has
602 * a ->private that also exists in this list. New requests are added
603 * to the end and may wakeup and preceding readers.
604 * New readers are added to the head. If, on read, an item is found with
605 * CACHE_UPCALLING clear, we free it from the list.
606 *
607 */
608
609 static DEFINE_SPINLOCK(queue_lock);
610 static DEFINE_MUTEX(queue_io_mutex);
611
612 struct cache_queue {
613 struct list_head list;
614 int reader; /* if 0, then request */
615 };
616 struct cache_request {
617 struct cache_queue q;
618 struct cache_head *item;
619 char * buf;
620 int len;
621 int readers;
622 };
623 struct cache_reader {
624 struct cache_queue q;
625 int offset; /* if non-0, we have a refcnt on next request */
626 };
627
628 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
629 loff_t *ppos, struct cache_detail *cd)
630 {
631 struct cache_reader *rp = filp->private_data;
632 struct cache_request *rq;
633 struct inode *inode = filp->f_path.dentry->d_inode;
634 int err;
635
636 if (count == 0)
637 return 0;
638
639 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
640 * readers on this file */
641 again:
642 spin_lock(&queue_lock);
643 /* need to find next request */
644 while (rp->q.list.next != &cd->queue &&
645 list_entry(rp->q.list.next, struct cache_queue, list)
646 ->reader) {
647 struct list_head *next = rp->q.list.next;
648 list_move(&rp->q.list, next);
649 }
650 if (rp->q.list.next == &cd->queue) {
651 spin_unlock(&queue_lock);
652 mutex_unlock(&inode->i_mutex);
653 BUG_ON(rp->offset);
654 return 0;
655 }
656 rq = container_of(rp->q.list.next, struct cache_request, q.list);
657 BUG_ON(rq->q.reader);
658 if (rp->offset == 0)
659 rq->readers++;
660 spin_unlock(&queue_lock);
661
662 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
663 err = -EAGAIN;
664 spin_lock(&queue_lock);
665 list_move(&rp->q.list, &rq->q.list);
666 spin_unlock(&queue_lock);
667 } else {
668 if (rp->offset + count > rq->len)
669 count = rq->len - rp->offset;
670 err = -EFAULT;
671 if (copy_to_user(buf, rq->buf + rp->offset, count))
672 goto out;
673 rp->offset += count;
674 if (rp->offset >= rq->len) {
675 rp->offset = 0;
676 spin_lock(&queue_lock);
677 list_move(&rp->q.list, &rq->q.list);
678 spin_unlock(&queue_lock);
679 }
680 err = 0;
681 }
682 out:
683 if (rp->offset == 0) {
684 /* need to release rq */
685 spin_lock(&queue_lock);
686 rq->readers--;
687 if (rq->readers == 0 &&
688 !test_bit(CACHE_PENDING, &rq->item->flags)) {
689 list_del(&rq->q.list);
690 spin_unlock(&queue_lock);
691 cache_put(rq->item, cd);
692 kfree(rq->buf);
693 kfree(rq);
694 } else
695 spin_unlock(&queue_lock);
696 }
697 if (err == -EAGAIN)
698 goto again;
699 mutex_unlock(&inode->i_mutex);
700 return err ? err : count;
701 }
702
703 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
704 size_t count, struct cache_detail *cd)
705 {
706 ssize_t ret;
707
708 if (copy_from_user(kaddr, buf, count))
709 return -EFAULT;
710 kaddr[count] = '\0';
711 ret = cd->cache_parse(cd, kaddr, count);
712 if (!ret)
713 ret = count;
714 return ret;
715 }
716
717 static ssize_t cache_slow_downcall(const char __user *buf,
718 size_t count, struct cache_detail *cd)
719 {
720 static char write_buf[8192]; /* protected by queue_io_mutex */
721 ssize_t ret = -EINVAL;
722
723 if (count >= sizeof(write_buf))
724 goto out;
725 mutex_lock(&queue_io_mutex);
726 ret = cache_do_downcall(write_buf, buf, count, cd);
727 mutex_unlock(&queue_io_mutex);
728 out:
729 return ret;
730 }
731
732 static ssize_t cache_downcall(struct address_space *mapping,
733 const char __user *buf,
734 size_t count, struct cache_detail *cd)
735 {
736 struct page *page;
737 char *kaddr;
738 ssize_t ret = -ENOMEM;
739
740 if (count >= PAGE_CACHE_SIZE)
741 goto out_slow;
742
743 page = find_or_create_page(mapping, 0, GFP_KERNEL);
744 if (!page)
745 goto out_slow;
746
747 kaddr = kmap(page);
748 ret = cache_do_downcall(kaddr, buf, count, cd);
749 kunmap(page);
750 unlock_page(page);
751 page_cache_release(page);
752 return ret;
753 out_slow:
754 return cache_slow_downcall(buf, count, cd);
755 }
756
757 static ssize_t cache_write(struct file *filp, const char __user *buf,
758 size_t count, loff_t *ppos,
759 struct cache_detail *cd)
760 {
761 struct address_space *mapping = filp->f_mapping;
762 struct inode *inode = filp->f_path.dentry->d_inode;
763 ssize_t ret = -EINVAL;
764
765 if (!cd->cache_parse)
766 goto out;
767
768 mutex_lock(&inode->i_mutex);
769 ret = cache_downcall(mapping, buf, count, cd);
770 mutex_unlock(&inode->i_mutex);
771 out:
772 return ret;
773 }
774
775 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
776
777 static unsigned int cache_poll(struct file *filp, poll_table *wait,
778 struct cache_detail *cd)
779 {
780 unsigned int mask;
781 struct cache_reader *rp = filp->private_data;
782 struct cache_queue *cq;
783
784 poll_wait(filp, &queue_wait, wait);
785
786 /* alway allow write */
787 mask = POLL_OUT | POLLWRNORM;
788
789 if (!rp)
790 return mask;
791
792 spin_lock(&queue_lock);
793
794 for (cq= &rp->q; &cq->list != &cd->queue;
795 cq = list_entry(cq->list.next, struct cache_queue, list))
796 if (!cq->reader) {
797 mask |= POLLIN | POLLRDNORM;
798 break;
799 }
800 spin_unlock(&queue_lock);
801 return mask;
802 }
803
804 static int cache_ioctl(struct inode *ino, struct file *filp,
805 unsigned int cmd, unsigned long arg,
806 struct cache_detail *cd)
807 {
808 int len = 0;
809 struct cache_reader *rp = filp->private_data;
810 struct cache_queue *cq;
811
812 if (cmd != FIONREAD || !rp)
813 return -EINVAL;
814
815 spin_lock(&queue_lock);
816
817 /* only find the length remaining in current request,
818 * or the length of the next request
819 */
820 for (cq= &rp->q; &cq->list != &cd->queue;
821 cq = list_entry(cq->list.next, struct cache_queue, list))
822 if (!cq->reader) {
823 struct cache_request *cr =
824 container_of(cq, struct cache_request, q);
825 len = cr->len - rp->offset;
826 break;
827 }
828 spin_unlock(&queue_lock);
829
830 return put_user(len, (int __user *)arg);
831 }
832
833 static int cache_open(struct inode *inode, struct file *filp,
834 struct cache_detail *cd)
835 {
836 struct cache_reader *rp = NULL;
837
838 nonseekable_open(inode, filp);
839 if (filp->f_mode & FMODE_READ) {
840 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
841 if (!rp)
842 return -ENOMEM;
843 rp->offset = 0;
844 rp->q.reader = 1;
845 atomic_inc(&cd->readers);
846 spin_lock(&queue_lock);
847 list_add(&rp->q.list, &cd->queue);
848 spin_unlock(&queue_lock);
849 }
850 filp->private_data = rp;
851 return 0;
852 }
853
854 static int cache_release(struct inode *inode, struct file *filp,
855 struct cache_detail *cd)
856 {
857 struct cache_reader *rp = filp->private_data;
858
859 if (rp) {
860 spin_lock(&queue_lock);
861 if (rp->offset) {
862 struct cache_queue *cq;
863 for (cq= &rp->q; &cq->list != &cd->queue;
864 cq = list_entry(cq->list.next, struct cache_queue, list))
865 if (!cq->reader) {
866 container_of(cq, struct cache_request, q)
867 ->readers--;
868 break;
869 }
870 rp->offset = 0;
871 }
872 list_del(&rp->q.list);
873 spin_unlock(&queue_lock);
874
875 filp->private_data = NULL;
876 kfree(rp);
877
878 cd->last_close = get_seconds();
879 atomic_dec(&cd->readers);
880 }
881 return 0;
882 }
883
884
885
886 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
887 {
888 struct cache_queue *cq;
889 spin_lock(&queue_lock);
890 list_for_each_entry(cq, &detail->queue, list)
891 if (!cq->reader) {
892 struct cache_request *cr = container_of(cq, struct cache_request, q);
893 if (cr->item != ch)
894 continue;
895 if (cr->readers != 0)
896 continue;
897 list_del(&cr->q.list);
898 spin_unlock(&queue_lock);
899 cache_put(cr->item, detail);
900 kfree(cr->buf);
901 kfree(cr);
902 return;
903 }
904 spin_unlock(&queue_lock);
905 }
906
907 /*
908 * Support routines for text-based upcalls.
909 * Fields are separated by spaces.
910 * Fields are either mangled to quote space tab newline slosh with slosh
911 * or a hexified with a leading \x
912 * Record is terminated with newline.
913 *
914 */
915
916 void qword_add(char **bpp, int *lp, char *str)
917 {
918 char *bp = *bpp;
919 int len = *lp;
920 char c;
921
922 if (len < 0) return;
923
924 while ((c=*str++) && len)
925 switch(c) {
926 case ' ':
927 case '\t':
928 case '\n':
929 case '\\':
930 if (len >= 4) {
931 *bp++ = '\\';
932 *bp++ = '0' + ((c & 0300)>>6);
933 *bp++ = '0' + ((c & 0070)>>3);
934 *bp++ = '0' + ((c & 0007)>>0);
935 }
936 len -= 4;
937 break;
938 default:
939 *bp++ = c;
940 len--;
941 }
942 if (c || len <1) len = -1;
943 else {
944 *bp++ = ' ';
945 len--;
946 }
947 *bpp = bp;
948 *lp = len;
949 }
950 EXPORT_SYMBOL_GPL(qword_add);
951
952 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
953 {
954 char *bp = *bpp;
955 int len = *lp;
956
957 if (len < 0) return;
958
959 if (len > 2) {
960 *bp++ = '\\';
961 *bp++ = 'x';
962 len -= 2;
963 while (blen && len >= 2) {
964 unsigned char c = *buf++;
965 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
966 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
967 len -= 2;
968 blen--;
969 }
970 }
971 if (blen || len<1) len = -1;
972 else {
973 *bp++ = ' ';
974 len--;
975 }
976 *bpp = bp;
977 *lp = len;
978 }
979 EXPORT_SYMBOL_GPL(qword_addhex);
980
981 static void warn_no_listener(struct cache_detail *detail)
982 {
983 if (detail->last_warn != detail->last_close) {
984 detail->last_warn = detail->last_close;
985 if (detail->warn_no_listener)
986 detail->warn_no_listener(detail, detail->last_close != 0);
987 }
988 }
989
990 /*
991 * register an upcall request to user-space and queue it up for read() by the
992 * upcall daemon.
993 *
994 * Each request is at most one page long.
995 */
996 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
997 void (*cache_request)(struct cache_detail *,
998 struct cache_head *,
999 char **,
1000 int *))
1001 {
1002
1003 char *buf;
1004 struct cache_request *crq;
1005 char *bp;
1006 int len;
1007
1008 if (atomic_read(&detail->readers) == 0 &&
1009 detail->last_close < get_seconds() - 30) {
1010 warn_no_listener(detail);
1011 return -EINVAL;
1012 }
1013
1014 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1015 if (!buf)
1016 return -EAGAIN;
1017
1018 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1019 if (!crq) {
1020 kfree(buf);
1021 return -EAGAIN;
1022 }
1023
1024 bp = buf; len = PAGE_SIZE;
1025
1026 cache_request(detail, h, &bp, &len);
1027
1028 if (len < 0) {
1029 kfree(buf);
1030 kfree(crq);
1031 return -EAGAIN;
1032 }
1033 crq->q.reader = 0;
1034 crq->item = cache_get(h);
1035 crq->buf = buf;
1036 crq->len = PAGE_SIZE - len;
1037 crq->readers = 0;
1038 spin_lock(&queue_lock);
1039 list_add_tail(&crq->q.list, &detail->queue);
1040 spin_unlock(&queue_lock);
1041 wake_up(&queue_wait);
1042 return 0;
1043 }
1044 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1045
1046 /*
1047 * parse a message from user-space and pass it
1048 * to an appropriate cache
1049 * Messages are, like requests, separated into fields by
1050 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1051 *
1052 * Message is
1053 * reply cachename expiry key ... content....
1054 *
1055 * key and content are both parsed by cache
1056 */
1057
1058 #define isodigit(c) (isdigit(c) && c <= '7')
1059 int qword_get(char **bpp, char *dest, int bufsize)
1060 {
1061 /* return bytes copied, or -1 on error */
1062 char *bp = *bpp;
1063 int len = 0;
1064
1065 while (*bp == ' ') bp++;
1066
1067 if (bp[0] == '\\' && bp[1] == 'x') {
1068 /* HEX STRING */
1069 bp += 2;
1070 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1071 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1072 bp++;
1073 byte <<= 4;
1074 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1075 *dest++ = byte;
1076 bp++;
1077 len++;
1078 }
1079 } else {
1080 /* text with \nnn octal quoting */
1081 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1082 if (*bp == '\\' &&
1083 isodigit(bp[1]) && (bp[1] <= '3') &&
1084 isodigit(bp[2]) &&
1085 isodigit(bp[3])) {
1086 int byte = (*++bp -'0');
1087 bp++;
1088 byte = (byte << 3) | (*bp++ - '0');
1089 byte = (byte << 3) | (*bp++ - '0');
1090 *dest++ = byte;
1091 len++;
1092 } else {
1093 *dest++ = *bp++;
1094 len++;
1095 }
1096 }
1097 }
1098
1099 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1100 return -1;
1101 while (*bp == ' ') bp++;
1102 *bpp = bp;
1103 *dest = '\0';
1104 return len;
1105 }
1106 EXPORT_SYMBOL_GPL(qword_get);
1107
1108
1109 /*
1110 * support /proc/sunrpc/cache/$CACHENAME/content
1111 * as a seqfile.
1112 * We call ->cache_show passing NULL for the item to
1113 * get a header, then pass each real item in the cache
1114 */
1115
1116 struct handle {
1117 struct cache_detail *cd;
1118 };
1119
1120 static void *c_start(struct seq_file *m, loff_t *pos)
1121 __acquires(cd->hash_lock)
1122 {
1123 loff_t n = *pos;
1124 unsigned hash, entry;
1125 struct cache_head *ch;
1126 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1127
1128
1129 read_lock(&cd->hash_lock);
1130 if (!n--)
1131 return SEQ_START_TOKEN;
1132 hash = n >> 32;
1133 entry = n & ((1LL<<32) - 1);
1134
1135 for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1136 if (!entry--)
1137 return ch;
1138 n &= ~((1LL<<32) - 1);
1139 do {
1140 hash++;
1141 n += 1LL<<32;
1142 } while(hash < cd->hash_size &&
1143 cd->hash_table[hash]==NULL);
1144 if (hash >= cd->hash_size)
1145 return NULL;
1146 *pos = n+1;
1147 return cd->hash_table[hash];
1148 }
1149
1150 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1151 {
1152 struct cache_head *ch = p;
1153 int hash = (*pos >> 32);
1154 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1155
1156 if (p == SEQ_START_TOKEN)
1157 hash = 0;
1158 else if (ch->next == NULL) {
1159 hash++;
1160 *pos += 1LL<<32;
1161 } else {
1162 ++*pos;
1163 return ch->next;
1164 }
1165 *pos &= ~((1LL<<32) - 1);
1166 while (hash < cd->hash_size &&
1167 cd->hash_table[hash] == NULL) {
1168 hash++;
1169 *pos += 1LL<<32;
1170 }
1171 if (hash >= cd->hash_size)
1172 return NULL;
1173 ++*pos;
1174 return cd->hash_table[hash];
1175 }
1176
1177 static void c_stop(struct seq_file *m, void *p)
1178 __releases(cd->hash_lock)
1179 {
1180 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1181 read_unlock(&cd->hash_lock);
1182 }
1183
1184 static int c_show(struct seq_file *m, void *p)
1185 {
1186 struct cache_head *cp = p;
1187 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1188
1189 if (p == SEQ_START_TOKEN)
1190 return cd->cache_show(m, cd, NULL);
1191
1192 ifdebug(CACHE)
1193 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1194 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1195 cache_get(cp);
1196 if (cache_check(cd, cp, NULL))
1197 /* cache_check does a cache_put on failure */
1198 seq_printf(m, "# ");
1199 else
1200 cache_put(cp, cd);
1201
1202 return cd->cache_show(m, cd, cp);
1203 }
1204
1205 static const struct seq_operations cache_content_op = {
1206 .start = c_start,
1207 .next = c_next,
1208 .stop = c_stop,
1209 .show = c_show,
1210 };
1211
1212 static int content_open(struct inode *inode, struct file *file,
1213 struct cache_detail *cd)
1214 {
1215 struct handle *han;
1216
1217 han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1218 if (han == NULL)
1219 return -ENOMEM;
1220
1221 han->cd = cd;
1222 return 0;
1223 }
1224
1225 static ssize_t read_flush(struct file *file, char __user *buf,
1226 size_t count, loff_t *ppos,
1227 struct cache_detail *cd)
1228 {
1229 char tbuf[20];
1230 unsigned long p = *ppos;
1231 size_t len;
1232
1233 sprintf(tbuf, "%lu\n", cd->flush_time);
1234 len = strlen(tbuf);
1235 if (p >= len)
1236 return 0;
1237 len -= p;
1238 if (len > count)
1239 len = count;
1240 if (copy_to_user(buf, (void*)(tbuf+p), len))
1241 return -EFAULT;
1242 *ppos += len;
1243 return len;
1244 }
1245
1246 static ssize_t write_flush(struct file *file, const char __user *buf,
1247 size_t count, loff_t *ppos,
1248 struct cache_detail *cd)
1249 {
1250 char tbuf[20];
1251 char *ep;
1252 long flushtime;
1253 if (*ppos || count > sizeof(tbuf)-1)
1254 return -EINVAL;
1255 if (copy_from_user(tbuf, buf, count))
1256 return -EFAULT;
1257 tbuf[count] = 0;
1258 flushtime = simple_strtoul(tbuf, &ep, 0);
1259 if (*ep && *ep != '\n')
1260 return -EINVAL;
1261
1262 cd->flush_time = flushtime;
1263 cd->nextcheck = get_seconds();
1264 cache_flush();
1265
1266 *ppos += count;
1267 return count;
1268 }
1269
1270 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1271 size_t count, loff_t *ppos)
1272 {
1273 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1274
1275 return cache_read(filp, buf, count, ppos, cd);
1276 }
1277
1278 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1279 size_t count, loff_t *ppos)
1280 {
1281 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1282
1283 return cache_write(filp, buf, count, ppos, cd);
1284 }
1285
1286 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1287 {
1288 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1289
1290 return cache_poll(filp, wait, cd);
1291 }
1292
1293 static int cache_ioctl_procfs(struct inode *inode, struct file *filp,
1294 unsigned int cmd, unsigned long arg)
1295 {
1296 struct cache_detail *cd = PDE(inode)->data;
1297
1298 return cache_ioctl(inode, filp, cmd, arg, cd);
1299 }
1300
1301 static int cache_open_procfs(struct inode *inode, struct file *filp)
1302 {
1303 struct cache_detail *cd = PDE(inode)->data;
1304
1305 return cache_open(inode, filp, cd);
1306 }
1307
1308 static int cache_release_procfs(struct inode *inode, struct file *filp)
1309 {
1310 struct cache_detail *cd = PDE(inode)->data;
1311
1312 return cache_release(inode, filp, cd);
1313 }
1314
1315 static const struct file_operations cache_file_operations_procfs = {
1316 .owner = THIS_MODULE,
1317 .llseek = no_llseek,
1318 .read = cache_read_procfs,
1319 .write = cache_write_procfs,
1320 .poll = cache_poll_procfs,
1321 .ioctl = cache_ioctl_procfs, /* for FIONREAD */
1322 .open = cache_open_procfs,
1323 .release = cache_release_procfs,
1324 };
1325
1326 static int content_open_procfs(struct inode *inode, struct file *filp)
1327 {
1328 struct cache_detail *cd = PDE(inode)->data;
1329
1330 return content_open(inode, filp, cd);
1331 }
1332
1333 static const struct file_operations content_file_operations_procfs = {
1334 .open = content_open_procfs,
1335 .read = seq_read,
1336 .llseek = seq_lseek,
1337 .release = seq_release_private,
1338 };
1339
1340 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1341 size_t count, loff_t *ppos)
1342 {
1343 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1344
1345 return read_flush(filp, buf, count, ppos, cd);
1346 }
1347
1348 static ssize_t write_flush_procfs(struct file *filp,
1349 const char __user *buf,
1350 size_t count, loff_t *ppos)
1351 {
1352 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1353
1354 return write_flush(filp, buf, count, ppos, cd);
1355 }
1356
1357 static const struct file_operations cache_flush_operations_procfs = {
1358 .open = nonseekable_open,
1359 .read = read_flush_procfs,
1360 .write = write_flush_procfs,
1361 };
1362
1363 static void remove_cache_proc_entries(struct cache_detail *cd)
1364 {
1365 if (cd->u.procfs.proc_ent == NULL)
1366 return;
1367 if (cd->u.procfs.flush_ent)
1368 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1369 if (cd->u.procfs.channel_ent)
1370 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1371 if (cd->u.procfs.content_ent)
1372 remove_proc_entry("content", cd->u.procfs.proc_ent);
1373 cd->u.procfs.proc_ent = NULL;
1374 remove_proc_entry(cd->name, proc_net_rpc);
1375 }
1376
1377 #ifdef CONFIG_PROC_FS
1378 static int create_cache_proc_entries(struct cache_detail *cd)
1379 {
1380 struct proc_dir_entry *p;
1381
1382 cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1383 if (cd->u.procfs.proc_ent == NULL)
1384 goto out_nomem;
1385 cd->u.procfs.channel_ent = NULL;
1386 cd->u.procfs.content_ent = NULL;
1387
1388 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1389 cd->u.procfs.proc_ent,
1390 &cache_flush_operations_procfs, cd);
1391 cd->u.procfs.flush_ent = p;
1392 if (p == NULL)
1393 goto out_nomem;
1394
1395 if (cd->cache_upcall || cd->cache_parse) {
1396 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1397 cd->u.procfs.proc_ent,
1398 &cache_file_operations_procfs, cd);
1399 cd->u.procfs.channel_ent = p;
1400 if (p == NULL)
1401 goto out_nomem;
1402 }
1403 if (cd->cache_show) {
1404 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1405 cd->u.procfs.proc_ent,
1406 &content_file_operations_procfs, cd);
1407 cd->u.procfs.content_ent = p;
1408 if (p == NULL)
1409 goto out_nomem;
1410 }
1411 return 0;
1412 out_nomem:
1413 remove_cache_proc_entries(cd);
1414 return -ENOMEM;
1415 }
1416 #else /* CONFIG_PROC_FS */
1417 static int create_cache_proc_entries(struct cache_detail *cd)
1418 {
1419 return 0;
1420 }
1421 #endif
1422
1423 int cache_register(struct cache_detail *cd)
1424 {
1425 int ret;
1426
1427 sunrpc_init_cache_detail(cd);
1428 ret = create_cache_proc_entries(cd);
1429 if (ret)
1430 sunrpc_destroy_cache_detail(cd);
1431 return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(cache_register);
1434
1435 void cache_unregister(struct cache_detail *cd)
1436 {
1437 remove_cache_proc_entries(cd);
1438 sunrpc_destroy_cache_detail(cd);
1439 }
1440 EXPORT_SYMBOL_GPL(cache_unregister);
This page took 0.058775 seconds and 6 git commands to generate.