last_radio_log: switch to proc_create()
[deliverable/linux.git] / net / sunrpc / cache.c
1 /*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2. See COPYING.
10 *
11 */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
36 #include "netns.h"
37
38 #define RPCDBG_FACILITY RPCDBG_CACHE
39
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42
43 static void cache_init(struct cache_head *h)
44 {
45 time_t now = seconds_since_boot();
46 h->next = NULL;
47 h->flags = 0;
48 kref_init(&h->ref);
49 h->expiry_time = now + CACHE_NEW_EXPIRY;
50 h->last_refresh = now;
51 }
52
53 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54 {
55 return (h->expiry_time < seconds_since_boot()) ||
56 (detail->flush_time > h->last_refresh);
57 }
58
59 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60 struct cache_head *key, int hash)
61 {
62 struct cache_head **head, **hp;
63 struct cache_head *new = NULL, *freeme = NULL;
64
65 head = &detail->hash_table[hash];
66
67 read_lock(&detail->hash_lock);
68
69 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70 struct cache_head *tmp = *hp;
71 if (detail->match(tmp, key)) {
72 if (cache_is_expired(detail, tmp))
73 /* This entry is expired, we will discard it. */
74 break;
75 cache_get(tmp);
76 read_unlock(&detail->hash_lock);
77 return tmp;
78 }
79 }
80 read_unlock(&detail->hash_lock);
81 /* Didn't find anything, insert an empty entry */
82
83 new = detail->alloc();
84 if (!new)
85 return NULL;
86 /* must fully initialise 'new', else
87 * we might get lose if we need to
88 * cache_put it soon.
89 */
90 cache_init(new);
91 detail->init(new, key);
92
93 write_lock(&detail->hash_lock);
94
95 /* check if entry appeared while we slept */
96 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97 struct cache_head *tmp = *hp;
98 if (detail->match(tmp, key)) {
99 if (cache_is_expired(detail, tmp)) {
100 *hp = tmp->next;
101 tmp->next = NULL;
102 detail->entries --;
103 freeme = tmp;
104 break;
105 }
106 cache_get(tmp);
107 write_unlock(&detail->hash_lock);
108 cache_put(new, detail);
109 return tmp;
110 }
111 }
112 new->next = *head;
113 *head = new;
114 detail->entries++;
115 cache_get(new);
116 write_unlock(&detail->hash_lock);
117
118 if (freeme)
119 cache_put(freeme, detail);
120 return new;
121 }
122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128 {
129 head->expiry_time = expiry;
130 head->last_refresh = seconds_since_boot();
131 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132 set_bit(CACHE_VALID, &head->flags);
133 }
134
135 static void cache_fresh_unlocked(struct cache_head *head,
136 struct cache_detail *detail)
137 {
138 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139 cache_revisit_request(head);
140 cache_dequeue(detail, head);
141 }
142 }
143
144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145 struct cache_head *new, struct cache_head *old, int hash)
146 {
147 /* The 'old' entry is to be replaced by 'new'.
148 * If 'old' is not VALID, we update it directly,
149 * otherwise we need to replace it
150 */
151 struct cache_head **head;
152 struct cache_head *tmp;
153
154 if (!test_bit(CACHE_VALID, &old->flags)) {
155 write_lock(&detail->hash_lock);
156 if (!test_bit(CACHE_VALID, &old->flags)) {
157 if (test_bit(CACHE_NEGATIVE, &new->flags))
158 set_bit(CACHE_NEGATIVE, &old->flags);
159 else
160 detail->update(old, new);
161 cache_fresh_locked(old, new->expiry_time);
162 write_unlock(&detail->hash_lock);
163 cache_fresh_unlocked(old, detail);
164 return old;
165 }
166 write_unlock(&detail->hash_lock);
167 }
168 /* We need to insert a new entry */
169 tmp = detail->alloc();
170 if (!tmp) {
171 cache_put(old, detail);
172 return NULL;
173 }
174 cache_init(tmp);
175 detail->init(tmp, old);
176 head = &detail->hash_table[hash];
177
178 write_lock(&detail->hash_lock);
179 if (test_bit(CACHE_NEGATIVE, &new->flags))
180 set_bit(CACHE_NEGATIVE, &tmp->flags);
181 else
182 detail->update(tmp, new);
183 tmp->next = *head;
184 *head = tmp;
185 detail->entries++;
186 cache_get(tmp);
187 cache_fresh_locked(tmp, new->expiry_time);
188 cache_fresh_locked(old, 0);
189 write_unlock(&detail->hash_lock);
190 cache_fresh_unlocked(tmp, detail);
191 cache_fresh_unlocked(old, detail);
192 cache_put(old, detail);
193 return tmp;
194 }
195 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196
197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198 {
199 if (cd->cache_upcall)
200 return cd->cache_upcall(cd, h);
201 return sunrpc_cache_pipe_upcall(cd, h);
202 }
203
204 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205 {
206 if (!test_bit(CACHE_VALID, &h->flags))
207 return -EAGAIN;
208 else {
209 /* entry is valid */
210 if (test_bit(CACHE_NEGATIVE, &h->flags))
211 return -ENOENT;
212 else {
213 /*
214 * In combination with write barrier in
215 * sunrpc_cache_update, ensures that anyone
216 * using the cache entry after this sees the
217 * updated contents:
218 */
219 smp_rmb();
220 return 0;
221 }
222 }
223 }
224
225 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
226 {
227 int rv;
228
229 write_lock(&detail->hash_lock);
230 rv = cache_is_valid(detail, h);
231 if (rv != -EAGAIN) {
232 write_unlock(&detail->hash_lock);
233 return rv;
234 }
235 set_bit(CACHE_NEGATIVE, &h->flags);
236 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
237 write_unlock(&detail->hash_lock);
238 cache_fresh_unlocked(h, detail);
239 return -ENOENT;
240 }
241
242 /*
243 * This is the generic cache management routine for all
244 * the authentication caches.
245 * It checks the currency of a cache item and will (later)
246 * initiate an upcall to fill it if needed.
247 *
248 *
249 * Returns 0 if the cache_head can be used, or cache_puts it and returns
250 * -EAGAIN if upcall is pending and request has been queued
251 * -ETIMEDOUT if upcall failed or request could not be queue or
252 * upcall completed but item is still invalid (implying that
253 * the cache item has been replaced with a newer one).
254 * -ENOENT if cache entry was negative
255 */
256 int cache_check(struct cache_detail *detail,
257 struct cache_head *h, struct cache_req *rqstp)
258 {
259 int rv;
260 long refresh_age, age;
261
262 /* First decide return status as best we can */
263 rv = cache_is_valid(detail, h);
264
265 /* now see if we want to start an upcall */
266 refresh_age = (h->expiry_time - h->last_refresh);
267 age = seconds_since_boot() - h->last_refresh;
268
269 if (rqstp == NULL) {
270 if (rv == -EAGAIN)
271 rv = -ENOENT;
272 } else if (rv == -EAGAIN || age > refresh_age/2) {
273 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
274 refresh_age, age);
275 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
276 switch (cache_make_upcall(detail, h)) {
277 case -EINVAL:
278 clear_bit(CACHE_PENDING, &h->flags);
279 cache_revisit_request(h);
280 rv = try_to_negate_entry(detail, h);
281 break;
282 case -EAGAIN:
283 clear_bit(CACHE_PENDING, &h->flags);
284 cache_revisit_request(h);
285 break;
286 }
287 }
288 }
289
290 if (rv == -EAGAIN) {
291 if (!cache_defer_req(rqstp, h)) {
292 /*
293 * Request was not deferred; handle it as best
294 * we can ourselves:
295 */
296 rv = cache_is_valid(detail, h);
297 if (rv == -EAGAIN)
298 rv = -ETIMEDOUT;
299 }
300 }
301 if (rv)
302 cache_put(h, detail);
303 return rv;
304 }
305 EXPORT_SYMBOL_GPL(cache_check);
306
307 /*
308 * caches need to be periodically cleaned.
309 * For this we maintain a list of cache_detail and
310 * a current pointer into that list and into the table
311 * for that entry.
312 *
313 * Each time clean_cache is called it finds the next non-empty entry
314 * in the current table and walks the list in that entry
315 * looking for entries that can be removed.
316 *
317 * An entry gets removed if:
318 * - The expiry is before current time
319 * - The last_refresh time is before the flush_time for that cache
320 *
321 * later we might drop old entries with non-NEVER expiry if that table
322 * is getting 'full' for some definition of 'full'
323 *
324 * The question of "how often to scan a table" is an interesting one
325 * and is answered in part by the use of the "nextcheck" field in the
326 * cache_detail.
327 * When a scan of a table begins, the nextcheck field is set to a time
328 * that is well into the future.
329 * While scanning, if an expiry time is found that is earlier than the
330 * current nextcheck time, nextcheck is set to that expiry time.
331 * If the flush_time is ever set to a time earlier than the nextcheck
332 * time, the nextcheck time is then set to that flush_time.
333 *
334 * A table is then only scanned if the current time is at least
335 * the nextcheck time.
336 *
337 */
338
339 static LIST_HEAD(cache_list);
340 static DEFINE_SPINLOCK(cache_list_lock);
341 static struct cache_detail *current_detail;
342 static int current_index;
343
344 static void do_cache_clean(struct work_struct *work);
345 static struct delayed_work cache_cleaner;
346
347 void sunrpc_init_cache_detail(struct cache_detail *cd)
348 {
349 rwlock_init(&cd->hash_lock);
350 INIT_LIST_HEAD(&cd->queue);
351 spin_lock(&cache_list_lock);
352 cd->nextcheck = 0;
353 cd->entries = 0;
354 atomic_set(&cd->readers, 0);
355 cd->last_close = 0;
356 cd->last_warn = -1;
357 list_add(&cd->others, &cache_list);
358 spin_unlock(&cache_list_lock);
359
360 /* start the cleaning process */
361 schedule_delayed_work(&cache_cleaner, 0);
362 }
363 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
364
365 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
366 {
367 cache_purge(cd);
368 spin_lock(&cache_list_lock);
369 write_lock(&cd->hash_lock);
370 if (cd->entries || atomic_read(&cd->inuse)) {
371 write_unlock(&cd->hash_lock);
372 spin_unlock(&cache_list_lock);
373 goto out;
374 }
375 if (current_detail == cd)
376 current_detail = NULL;
377 list_del_init(&cd->others);
378 write_unlock(&cd->hash_lock);
379 spin_unlock(&cache_list_lock);
380 if (list_empty(&cache_list)) {
381 /* module must be being unloaded so its safe to kill the worker */
382 cancel_delayed_work_sync(&cache_cleaner);
383 }
384 return;
385 out:
386 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
387 }
388 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
389
390 /* clean cache tries to find something to clean
391 * and cleans it.
392 * It returns 1 if it cleaned something,
393 * 0 if it didn't find anything this time
394 * -1 if it fell off the end of the list.
395 */
396 static int cache_clean(void)
397 {
398 int rv = 0;
399 struct list_head *next;
400
401 spin_lock(&cache_list_lock);
402
403 /* find a suitable table if we don't already have one */
404 while (current_detail == NULL ||
405 current_index >= current_detail->hash_size) {
406 if (current_detail)
407 next = current_detail->others.next;
408 else
409 next = cache_list.next;
410 if (next == &cache_list) {
411 current_detail = NULL;
412 spin_unlock(&cache_list_lock);
413 return -1;
414 }
415 current_detail = list_entry(next, struct cache_detail, others);
416 if (current_detail->nextcheck > seconds_since_boot())
417 current_index = current_detail->hash_size;
418 else {
419 current_index = 0;
420 current_detail->nextcheck = seconds_since_boot()+30*60;
421 }
422 }
423
424 /* find a non-empty bucket in the table */
425 while (current_detail &&
426 current_index < current_detail->hash_size &&
427 current_detail->hash_table[current_index] == NULL)
428 current_index++;
429
430 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
431
432 if (current_detail && current_index < current_detail->hash_size) {
433 struct cache_head *ch, **cp;
434 struct cache_detail *d;
435
436 write_lock(&current_detail->hash_lock);
437
438 /* Ok, now to clean this strand */
439
440 cp = & current_detail->hash_table[current_index];
441 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
442 if (current_detail->nextcheck > ch->expiry_time)
443 current_detail->nextcheck = ch->expiry_time+1;
444 if (!cache_is_expired(current_detail, ch))
445 continue;
446
447 *cp = ch->next;
448 ch->next = NULL;
449 current_detail->entries--;
450 rv = 1;
451 break;
452 }
453
454 write_unlock(&current_detail->hash_lock);
455 d = current_detail;
456 if (!ch)
457 current_index ++;
458 spin_unlock(&cache_list_lock);
459 if (ch) {
460 if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
461 cache_dequeue(current_detail, ch);
462 cache_revisit_request(ch);
463 cache_put(ch, d);
464 }
465 } else
466 spin_unlock(&cache_list_lock);
467
468 return rv;
469 }
470
471 /*
472 * We want to regularly clean the cache, so we need to schedule some work ...
473 */
474 static void do_cache_clean(struct work_struct *work)
475 {
476 int delay = 5;
477 if (cache_clean() == -1)
478 delay = round_jiffies_relative(30*HZ);
479
480 if (list_empty(&cache_list))
481 delay = 0;
482
483 if (delay)
484 schedule_delayed_work(&cache_cleaner, delay);
485 }
486
487
488 /*
489 * Clean all caches promptly. This just calls cache_clean
490 * repeatedly until we are sure that every cache has had a chance to
491 * be fully cleaned
492 */
493 void cache_flush(void)
494 {
495 while (cache_clean() != -1)
496 cond_resched();
497 while (cache_clean() != -1)
498 cond_resched();
499 }
500 EXPORT_SYMBOL_GPL(cache_flush);
501
502 void cache_purge(struct cache_detail *detail)
503 {
504 detail->flush_time = LONG_MAX;
505 detail->nextcheck = seconds_since_boot();
506 cache_flush();
507 detail->flush_time = 1;
508 }
509 EXPORT_SYMBOL_GPL(cache_purge);
510
511
512 /*
513 * Deferral and Revisiting of Requests.
514 *
515 * If a cache lookup finds a pending entry, we
516 * need to defer the request and revisit it later.
517 * All deferred requests are stored in a hash table,
518 * indexed by "struct cache_head *".
519 * As it may be wasteful to store a whole request
520 * structure, we allow the request to provide a
521 * deferred form, which must contain a
522 * 'struct cache_deferred_req'
523 * This cache_deferred_req contains a method to allow
524 * it to be revisited when cache info is available
525 */
526
527 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
528 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
529
530 #define DFR_MAX 300 /* ??? */
531
532 static DEFINE_SPINLOCK(cache_defer_lock);
533 static LIST_HEAD(cache_defer_list);
534 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
535 static int cache_defer_cnt;
536
537 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
538 {
539 hlist_del_init(&dreq->hash);
540 if (!list_empty(&dreq->recent)) {
541 list_del_init(&dreq->recent);
542 cache_defer_cnt--;
543 }
544 }
545
546 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
547 {
548 int hash = DFR_HASH(item);
549
550 INIT_LIST_HEAD(&dreq->recent);
551 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
552 }
553
554 static void setup_deferral(struct cache_deferred_req *dreq,
555 struct cache_head *item,
556 int count_me)
557 {
558
559 dreq->item = item;
560
561 spin_lock(&cache_defer_lock);
562
563 __hash_deferred_req(dreq, item);
564
565 if (count_me) {
566 cache_defer_cnt++;
567 list_add(&dreq->recent, &cache_defer_list);
568 }
569
570 spin_unlock(&cache_defer_lock);
571
572 }
573
574 struct thread_deferred_req {
575 struct cache_deferred_req handle;
576 struct completion completion;
577 };
578
579 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
580 {
581 struct thread_deferred_req *dr =
582 container_of(dreq, struct thread_deferred_req, handle);
583 complete(&dr->completion);
584 }
585
586 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
587 {
588 struct thread_deferred_req sleeper;
589 struct cache_deferred_req *dreq = &sleeper.handle;
590
591 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
592 dreq->revisit = cache_restart_thread;
593
594 setup_deferral(dreq, item, 0);
595
596 if (!test_bit(CACHE_PENDING, &item->flags) ||
597 wait_for_completion_interruptible_timeout(
598 &sleeper.completion, req->thread_wait) <= 0) {
599 /* The completion wasn't completed, so we need
600 * to clean up
601 */
602 spin_lock(&cache_defer_lock);
603 if (!hlist_unhashed(&sleeper.handle.hash)) {
604 __unhash_deferred_req(&sleeper.handle);
605 spin_unlock(&cache_defer_lock);
606 } else {
607 /* cache_revisit_request already removed
608 * this from the hash table, but hasn't
609 * called ->revisit yet. It will very soon
610 * and we need to wait for it.
611 */
612 spin_unlock(&cache_defer_lock);
613 wait_for_completion(&sleeper.completion);
614 }
615 }
616 }
617
618 static void cache_limit_defers(void)
619 {
620 /* Make sure we haven't exceed the limit of allowed deferred
621 * requests.
622 */
623 struct cache_deferred_req *discard = NULL;
624
625 if (cache_defer_cnt <= DFR_MAX)
626 return;
627
628 spin_lock(&cache_defer_lock);
629
630 /* Consider removing either the first or the last */
631 if (cache_defer_cnt > DFR_MAX) {
632 if (net_random() & 1)
633 discard = list_entry(cache_defer_list.next,
634 struct cache_deferred_req, recent);
635 else
636 discard = list_entry(cache_defer_list.prev,
637 struct cache_deferred_req, recent);
638 __unhash_deferred_req(discard);
639 }
640 spin_unlock(&cache_defer_lock);
641 if (discard)
642 discard->revisit(discard, 1);
643 }
644
645 /* Return true if and only if a deferred request is queued. */
646 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
647 {
648 struct cache_deferred_req *dreq;
649
650 if (req->thread_wait) {
651 cache_wait_req(req, item);
652 if (!test_bit(CACHE_PENDING, &item->flags))
653 return false;
654 }
655 dreq = req->defer(req);
656 if (dreq == NULL)
657 return false;
658 setup_deferral(dreq, item, 1);
659 if (!test_bit(CACHE_PENDING, &item->flags))
660 /* Bit could have been cleared before we managed to
661 * set up the deferral, so need to revisit just in case
662 */
663 cache_revisit_request(item);
664
665 cache_limit_defers();
666 return true;
667 }
668
669 static void cache_revisit_request(struct cache_head *item)
670 {
671 struct cache_deferred_req *dreq;
672 struct list_head pending;
673 struct hlist_node *tmp;
674 int hash = DFR_HASH(item);
675
676 INIT_LIST_HEAD(&pending);
677 spin_lock(&cache_defer_lock);
678
679 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
680 if (dreq->item == item) {
681 __unhash_deferred_req(dreq);
682 list_add(&dreq->recent, &pending);
683 }
684
685 spin_unlock(&cache_defer_lock);
686
687 while (!list_empty(&pending)) {
688 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
689 list_del_init(&dreq->recent);
690 dreq->revisit(dreq, 0);
691 }
692 }
693
694 void cache_clean_deferred(void *owner)
695 {
696 struct cache_deferred_req *dreq, *tmp;
697 struct list_head pending;
698
699
700 INIT_LIST_HEAD(&pending);
701 spin_lock(&cache_defer_lock);
702
703 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
704 if (dreq->owner == owner) {
705 __unhash_deferred_req(dreq);
706 list_add(&dreq->recent, &pending);
707 }
708 }
709 spin_unlock(&cache_defer_lock);
710
711 while (!list_empty(&pending)) {
712 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
713 list_del_init(&dreq->recent);
714 dreq->revisit(dreq, 1);
715 }
716 }
717
718 /*
719 * communicate with user-space
720 *
721 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
722 * On read, you get a full request, or block.
723 * On write, an update request is processed.
724 * Poll works if anything to read, and always allows write.
725 *
726 * Implemented by linked list of requests. Each open file has
727 * a ->private that also exists in this list. New requests are added
728 * to the end and may wakeup and preceding readers.
729 * New readers are added to the head. If, on read, an item is found with
730 * CACHE_UPCALLING clear, we free it from the list.
731 *
732 */
733
734 static DEFINE_SPINLOCK(queue_lock);
735 static DEFINE_MUTEX(queue_io_mutex);
736
737 struct cache_queue {
738 struct list_head list;
739 int reader; /* if 0, then request */
740 };
741 struct cache_request {
742 struct cache_queue q;
743 struct cache_head *item;
744 char * buf;
745 int len;
746 int readers;
747 };
748 struct cache_reader {
749 struct cache_queue q;
750 int offset; /* if non-0, we have a refcnt on next request */
751 };
752
753 static int cache_request(struct cache_detail *detail,
754 struct cache_request *crq)
755 {
756 char *bp = crq->buf;
757 int len = PAGE_SIZE;
758
759 detail->cache_request(detail, crq->item, &bp, &len);
760 if (len < 0)
761 return -EAGAIN;
762 return PAGE_SIZE - len;
763 }
764
765 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
766 loff_t *ppos, struct cache_detail *cd)
767 {
768 struct cache_reader *rp = filp->private_data;
769 struct cache_request *rq;
770 struct inode *inode = file_inode(filp);
771 int err;
772
773 if (count == 0)
774 return 0;
775
776 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
777 * readers on this file */
778 again:
779 spin_lock(&queue_lock);
780 /* need to find next request */
781 while (rp->q.list.next != &cd->queue &&
782 list_entry(rp->q.list.next, struct cache_queue, list)
783 ->reader) {
784 struct list_head *next = rp->q.list.next;
785 list_move(&rp->q.list, next);
786 }
787 if (rp->q.list.next == &cd->queue) {
788 spin_unlock(&queue_lock);
789 mutex_unlock(&inode->i_mutex);
790 WARN_ON_ONCE(rp->offset);
791 return 0;
792 }
793 rq = container_of(rp->q.list.next, struct cache_request, q.list);
794 WARN_ON_ONCE(rq->q.reader);
795 if (rp->offset == 0)
796 rq->readers++;
797 spin_unlock(&queue_lock);
798
799 if (rq->len == 0) {
800 err = cache_request(cd, rq);
801 if (err < 0)
802 goto out;
803 rq->len = err;
804 }
805
806 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
807 err = -EAGAIN;
808 spin_lock(&queue_lock);
809 list_move(&rp->q.list, &rq->q.list);
810 spin_unlock(&queue_lock);
811 } else {
812 if (rp->offset + count > rq->len)
813 count = rq->len - rp->offset;
814 err = -EFAULT;
815 if (copy_to_user(buf, rq->buf + rp->offset, count))
816 goto out;
817 rp->offset += count;
818 if (rp->offset >= rq->len) {
819 rp->offset = 0;
820 spin_lock(&queue_lock);
821 list_move(&rp->q.list, &rq->q.list);
822 spin_unlock(&queue_lock);
823 }
824 err = 0;
825 }
826 out:
827 if (rp->offset == 0) {
828 /* need to release rq */
829 spin_lock(&queue_lock);
830 rq->readers--;
831 if (rq->readers == 0 &&
832 !test_bit(CACHE_PENDING, &rq->item->flags)) {
833 list_del(&rq->q.list);
834 spin_unlock(&queue_lock);
835 cache_put(rq->item, cd);
836 kfree(rq->buf);
837 kfree(rq);
838 } else
839 spin_unlock(&queue_lock);
840 }
841 if (err == -EAGAIN)
842 goto again;
843 mutex_unlock(&inode->i_mutex);
844 return err ? err : count;
845 }
846
847 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
848 size_t count, struct cache_detail *cd)
849 {
850 ssize_t ret;
851
852 if (count == 0)
853 return -EINVAL;
854 if (copy_from_user(kaddr, buf, count))
855 return -EFAULT;
856 kaddr[count] = '\0';
857 ret = cd->cache_parse(cd, kaddr, count);
858 if (!ret)
859 ret = count;
860 return ret;
861 }
862
863 static ssize_t cache_slow_downcall(const char __user *buf,
864 size_t count, struct cache_detail *cd)
865 {
866 static char write_buf[8192]; /* protected by queue_io_mutex */
867 ssize_t ret = -EINVAL;
868
869 if (count >= sizeof(write_buf))
870 goto out;
871 mutex_lock(&queue_io_mutex);
872 ret = cache_do_downcall(write_buf, buf, count, cd);
873 mutex_unlock(&queue_io_mutex);
874 out:
875 return ret;
876 }
877
878 static ssize_t cache_downcall(struct address_space *mapping,
879 const char __user *buf,
880 size_t count, struct cache_detail *cd)
881 {
882 struct page *page;
883 char *kaddr;
884 ssize_t ret = -ENOMEM;
885
886 if (count >= PAGE_CACHE_SIZE)
887 goto out_slow;
888
889 page = find_or_create_page(mapping, 0, GFP_KERNEL);
890 if (!page)
891 goto out_slow;
892
893 kaddr = kmap(page);
894 ret = cache_do_downcall(kaddr, buf, count, cd);
895 kunmap(page);
896 unlock_page(page);
897 page_cache_release(page);
898 return ret;
899 out_slow:
900 return cache_slow_downcall(buf, count, cd);
901 }
902
903 static ssize_t cache_write(struct file *filp, const char __user *buf,
904 size_t count, loff_t *ppos,
905 struct cache_detail *cd)
906 {
907 struct address_space *mapping = filp->f_mapping;
908 struct inode *inode = file_inode(filp);
909 ssize_t ret = -EINVAL;
910
911 if (!cd->cache_parse)
912 goto out;
913
914 mutex_lock(&inode->i_mutex);
915 ret = cache_downcall(mapping, buf, count, cd);
916 mutex_unlock(&inode->i_mutex);
917 out:
918 return ret;
919 }
920
921 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
922
923 static unsigned int cache_poll(struct file *filp, poll_table *wait,
924 struct cache_detail *cd)
925 {
926 unsigned int mask;
927 struct cache_reader *rp = filp->private_data;
928 struct cache_queue *cq;
929
930 poll_wait(filp, &queue_wait, wait);
931
932 /* alway allow write */
933 mask = POLL_OUT | POLLWRNORM;
934
935 if (!rp)
936 return mask;
937
938 spin_lock(&queue_lock);
939
940 for (cq= &rp->q; &cq->list != &cd->queue;
941 cq = list_entry(cq->list.next, struct cache_queue, list))
942 if (!cq->reader) {
943 mask |= POLLIN | POLLRDNORM;
944 break;
945 }
946 spin_unlock(&queue_lock);
947 return mask;
948 }
949
950 static int cache_ioctl(struct inode *ino, struct file *filp,
951 unsigned int cmd, unsigned long arg,
952 struct cache_detail *cd)
953 {
954 int len = 0;
955 struct cache_reader *rp = filp->private_data;
956 struct cache_queue *cq;
957
958 if (cmd != FIONREAD || !rp)
959 return -EINVAL;
960
961 spin_lock(&queue_lock);
962
963 /* only find the length remaining in current request,
964 * or the length of the next request
965 */
966 for (cq= &rp->q; &cq->list != &cd->queue;
967 cq = list_entry(cq->list.next, struct cache_queue, list))
968 if (!cq->reader) {
969 struct cache_request *cr =
970 container_of(cq, struct cache_request, q);
971 len = cr->len - rp->offset;
972 break;
973 }
974 spin_unlock(&queue_lock);
975
976 return put_user(len, (int __user *)arg);
977 }
978
979 static int cache_open(struct inode *inode, struct file *filp,
980 struct cache_detail *cd)
981 {
982 struct cache_reader *rp = NULL;
983
984 if (!cd || !try_module_get(cd->owner))
985 return -EACCES;
986 nonseekable_open(inode, filp);
987 if (filp->f_mode & FMODE_READ) {
988 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
989 if (!rp)
990 return -ENOMEM;
991 rp->offset = 0;
992 rp->q.reader = 1;
993 atomic_inc(&cd->readers);
994 spin_lock(&queue_lock);
995 list_add(&rp->q.list, &cd->queue);
996 spin_unlock(&queue_lock);
997 }
998 filp->private_data = rp;
999 return 0;
1000 }
1001
1002 static int cache_release(struct inode *inode, struct file *filp,
1003 struct cache_detail *cd)
1004 {
1005 struct cache_reader *rp = filp->private_data;
1006
1007 if (rp) {
1008 spin_lock(&queue_lock);
1009 if (rp->offset) {
1010 struct cache_queue *cq;
1011 for (cq= &rp->q; &cq->list != &cd->queue;
1012 cq = list_entry(cq->list.next, struct cache_queue, list))
1013 if (!cq->reader) {
1014 container_of(cq, struct cache_request, q)
1015 ->readers--;
1016 break;
1017 }
1018 rp->offset = 0;
1019 }
1020 list_del(&rp->q.list);
1021 spin_unlock(&queue_lock);
1022
1023 filp->private_data = NULL;
1024 kfree(rp);
1025
1026 cd->last_close = seconds_since_boot();
1027 atomic_dec(&cd->readers);
1028 }
1029 module_put(cd->owner);
1030 return 0;
1031 }
1032
1033
1034
1035 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1036 {
1037 struct cache_queue *cq;
1038 spin_lock(&queue_lock);
1039 list_for_each_entry(cq, &detail->queue, list)
1040 if (!cq->reader) {
1041 struct cache_request *cr = container_of(cq, struct cache_request, q);
1042 if (cr->item != ch)
1043 continue;
1044 if (cr->readers != 0)
1045 continue;
1046 list_del(&cr->q.list);
1047 spin_unlock(&queue_lock);
1048 cache_put(cr->item, detail);
1049 kfree(cr->buf);
1050 kfree(cr);
1051 return;
1052 }
1053 spin_unlock(&queue_lock);
1054 }
1055
1056 /*
1057 * Support routines for text-based upcalls.
1058 * Fields are separated by spaces.
1059 * Fields are either mangled to quote space tab newline slosh with slosh
1060 * or a hexified with a leading \x
1061 * Record is terminated with newline.
1062 *
1063 */
1064
1065 void qword_add(char **bpp, int *lp, char *str)
1066 {
1067 char *bp = *bpp;
1068 int len = *lp;
1069 char c;
1070
1071 if (len < 0) return;
1072
1073 while ((c=*str++) && len)
1074 switch(c) {
1075 case ' ':
1076 case '\t':
1077 case '\n':
1078 case '\\':
1079 if (len >= 4) {
1080 *bp++ = '\\';
1081 *bp++ = '0' + ((c & 0300)>>6);
1082 *bp++ = '0' + ((c & 0070)>>3);
1083 *bp++ = '0' + ((c & 0007)>>0);
1084 }
1085 len -= 4;
1086 break;
1087 default:
1088 *bp++ = c;
1089 len--;
1090 }
1091 if (c || len <1) len = -1;
1092 else {
1093 *bp++ = ' ';
1094 len--;
1095 }
1096 *bpp = bp;
1097 *lp = len;
1098 }
1099 EXPORT_SYMBOL_GPL(qword_add);
1100
1101 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1102 {
1103 char *bp = *bpp;
1104 int len = *lp;
1105
1106 if (len < 0) return;
1107
1108 if (len > 2) {
1109 *bp++ = '\\';
1110 *bp++ = 'x';
1111 len -= 2;
1112 while (blen && len >= 2) {
1113 unsigned char c = *buf++;
1114 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1115 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1116 len -= 2;
1117 blen--;
1118 }
1119 }
1120 if (blen || len<1) len = -1;
1121 else {
1122 *bp++ = ' ';
1123 len--;
1124 }
1125 *bpp = bp;
1126 *lp = len;
1127 }
1128 EXPORT_SYMBOL_GPL(qword_addhex);
1129
1130 static void warn_no_listener(struct cache_detail *detail)
1131 {
1132 if (detail->last_warn != detail->last_close) {
1133 detail->last_warn = detail->last_close;
1134 if (detail->warn_no_listener)
1135 detail->warn_no_listener(detail, detail->last_close != 0);
1136 }
1137 }
1138
1139 static bool cache_listeners_exist(struct cache_detail *detail)
1140 {
1141 if (atomic_read(&detail->readers))
1142 return true;
1143 if (detail->last_close == 0)
1144 /* This cache was never opened */
1145 return false;
1146 if (detail->last_close < seconds_since_boot() - 30)
1147 /*
1148 * We allow for the possibility that someone might
1149 * restart a userspace daemon without restarting the
1150 * server; but after 30 seconds, we give up.
1151 */
1152 return false;
1153 return true;
1154 }
1155
1156 /*
1157 * register an upcall request to user-space and queue it up for read() by the
1158 * upcall daemon.
1159 *
1160 * Each request is at most one page long.
1161 */
1162 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1163 {
1164
1165 char *buf;
1166 struct cache_request *crq;
1167
1168 if (!detail->cache_request)
1169 return -EINVAL;
1170
1171 if (!cache_listeners_exist(detail)) {
1172 warn_no_listener(detail);
1173 return -EINVAL;
1174 }
1175
1176 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1177 if (!buf)
1178 return -EAGAIN;
1179
1180 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1181 if (!crq) {
1182 kfree(buf);
1183 return -EAGAIN;
1184 }
1185
1186 crq->q.reader = 0;
1187 crq->item = cache_get(h);
1188 crq->buf = buf;
1189 crq->len = 0;
1190 crq->readers = 0;
1191 spin_lock(&queue_lock);
1192 list_add_tail(&crq->q.list, &detail->queue);
1193 spin_unlock(&queue_lock);
1194 wake_up(&queue_wait);
1195 return 0;
1196 }
1197 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1198
1199 /*
1200 * parse a message from user-space and pass it
1201 * to an appropriate cache
1202 * Messages are, like requests, separated into fields by
1203 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1204 *
1205 * Message is
1206 * reply cachename expiry key ... content....
1207 *
1208 * key and content are both parsed by cache
1209 */
1210
1211 #define isodigit(c) (isdigit(c) && c <= '7')
1212 int qword_get(char **bpp, char *dest, int bufsize)
1213 {
1214 /* return bytes copied, or -1 on error */
1215 char *bp = *bpp;
1216 int len = 0;
1217
1218 while (*bp == ' ') bp++;
1219
1220 if (bp[0] == '\\' && bp[1] == 'x') {
1221 /* HEX STRING */
1222 bp += 2;
1223 while (len < bufsize) {
1224 int h, l;
1225
1226 h = hex_to_bin(bp[0]);
1227 if (h < 0)
1228 break;
1229
1230 l = hex_to_bin(bp[1]);
1231 if (l < 0)
1232 break;
1233
1234 *dest++ = (h << 4) | l;
1235 bp += 2;
1236 len++;
1237 }
1238 } else {
1239 /* text with \nnn octal quoting */
1240 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1241 if (*bp == '\\' &&
1242 isodigit(bp[1]) && (bp[1] <= '3') &&
1243 isodigit(bp[2]) &&
1244 isodigit(bp[3])) {
1245 int byte = (*++bp -'0');
1246 bp++;
1247 byte = (byte << 3) | (*bp++ - '0');
1248 byte = (byte << 3) | (*bp++ - '0');
1249 *dest++ = byte;
1250 len++;
1251 } else {
1252 *dest++ = *bp++;
1253 len++;
1254 }
1255 }
1256 }
1257
1258 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1259 return -1;
1260 while (*bp == ' ') bp++;
1261 *bpp = bp;
1262 *dest = '\0';
1263 return len;
1264 }
1265 EXPORT_SYMBOL_GPL(qword_get);
1266
1267
1268 /*
1269 * support /proc/sunrpc/cache/$CACHENAME/content
1270 * as a seqfile.
1271 * We call ->cache_show passing NULL for the item to
1272 * get a header, then pass each real item in the cache
1273 */
1274
1275 struct handle {
1276 struct cache_detail *cd;
1277 };
1278
1279 static void *c_start(struct seq_file *m, loff_t *pos)
1280 __acquires(cd->hash_lock)
1281 {
1282 loff_t n = *pos;
1283 unsigned int hash, entry;
1284 struct cache_head *ch;
1285 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1286
1287
1288 read_lock(&cd->hash_lock);
1289 if (!n--)
1290 return SEQ_START_TOKEN;
1291 hash = n >> 32;
1292 entry = n & ((1LL<<32) - 1);
1293
1294 for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1295 if (!entry--)
1296 return ch;
1297 n &= ~((1LL<<32) - 1);
1298 do {
1299 hash++;
1300 n += 1LL<<32;
1301 } while(hash < cd->hash_size &&
1302 cd->hash_table[hash]==NULL);
1303 if (hash >= cd->hash_size)
1304 return NULL;
1305 *pos = n+1;
1306 return cd->hash_table[hash];
1307 }
1308
1309 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1310 {
1311 struct cache_head *ch = p;
1312 int hash = (*pos >> 32);
1313 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1314
1315 if (p == SEQ_START_TOKEN)
1316 hash = 0;
1317 else if (ch->next == NULL) {
1318 hash++;
1319 *pos += 1LL<<32;
1320 } else {
1321 ++*pos;
1322 return ch->next;
1323 }
1324 *pos &= ~((1LL<<32) - 1);
1325 while (hash < cd->hash_size &&
1326 cd->hash_table[hash] == NULL) {
1327 hash++;
1328 *pos += 1LL<<32;
1329 }
1330 if (hash >= cd->hash_size)
1331 return NULL;
1332 ++*pos;
1333 return cd->hash_table[hash];
1334 }
1335
1336 static void c_stop(struct seq_file *m, void *p)
1337 __releases(cd->hash_lock)
1338 {
1339 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1340 read_unlock(&cd->hash_lock);
1341 }
1342
1343 static int c_show(struct seq_file *m, void *p)
1344 {
1345 struct cache_head *cp = p;
1346 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1347
1348 if (p == SEQ_START_TOKEN)
1349 return cd->cache_show(m, cd, NULL);
1350
1351 ifdebug(CACHE)
1352 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1353 convert_to_wallclock(cp->expiry_time),
1354 atomic_read(&cp->ref.refcount), cp->flags);
1355 cache_get(cp);
1356 if (cache_check(cd, cp, NULL))
1357 /* cache_check does a cache_put on failure */
1358 seq_printf(m, "# ");
1359 else {
1360 if (cache_is_expired(cd, cp))
1361 seq_printf(m, "# ");
1362 cache_put(cp, cd);
1363 }
1364
1365 return cd->cache_show(m, cd, cp);
1366 }
1367
1368 static const struct seq_operations cache_content_op = {
1369 .start = c_start,
1370 .next = c_next,
1371 .stop = c_stop,
1372 .show = c_show,
1373 };
1374
1375 static int content_open(struct inode *inode, struct file *file,
1376 struct cache_detail *cd)
1377 {
1378 struct handle *han;
1379
1380 if (!cd || !try_module_get(cd->owner))
1381 return -EACCES;
1382 han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1383 if (han == NULL) {
1384 module_put(cd->owner);
1385 return -ENOMEM;
1386 }
1387
1388 han->cd = cd;
1389 return 0;
1390 }
1391
1392 static int content_release(struct inode *inode, struct file *file,
1393 struct cache_detail *cd)
1394 {
1395 int ret = seq_release_private(inode, file);
1396 module_put(cd->owner);
1397 return ret;
1398 }
1399
1400 static int open_flush(struct inode *inode, struct file *file,
1401 struct cache_detail *cd)
1402 {
1403 if (!cd || !try_module_get(cd->owner))
1404 return -EACCES;
1405 return nonseekable_open(inode, file);
1406 }
1407
1408 static int release_flush(struct inode *inode, struct file *file,
1409 struct cache_detail *cd)
1410 {
1411 module_put(cd->owner);
1412 return 0;
1413 }
1414
1415 static ssize_t read_flush(struct file *file, char __user *buf,
1416 size_t count, loff_t *ppos,
1417 struct cache_detail *cd)
1418 {
1419 char tbuf[22];
1420 unsigned long p = *ppos;
1421 size_t len;
1422
1423 snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1424 len = strlen(tbuf);
1425 if (p >= len)
1426 return 0;
1427 len -= p;
1428 if (len > count)
1429 len = count;
1430 if (copy_to_user(buf, (void*)(tbuf+p), len))
1431 return -EFAULT;
1432 *ppos += len;
1433 return len;
1434 }
1435
1436 static ssize_t write_flush(struct file *file, const char __user *buf,
1437 size_t count, loff_t *ppos,
1438 struct cache_detail *cd)
1439 {
1440 char tbuf[20];
1441 char *bp, *ep;
1442
1443 if (*ppos || count > sizeof(tbuf)-1)
1444 return -EINVAL;
1445 if (copy_from_user(tbuf, buf, count))
1446 return -EFAULT;
1447 tbuf[count] = 0;
1448 simple_strtoul(tbuf, &ep, 0);
1449 if (*ep && *ep != '\n')
1450 return -EINVAL;
1451
1452 bp = tbuf;
1453 cd->flush_time = get_expiry(&bp);
1454 cd->nextcheck = seconds_since_boot();
1455 cache_flush();
1456
1457 *ppos += count;
1458 return count;
1459 }
1460
1461 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1462 size_t count, loff_t *ppos)
1463 {
1464 struct cache_detail *cd = PDE(file_inode(filp))->data;
1465
1466 return cache_read(filp, buf, count, ppos, cd);
1467 }
1468
1469 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1470 size_t count, loff_t *ppos)
1471 {
1472 struct cache_detail *cd = PDE(file_inode(filp))->data;
1473
1474 return cache_write(filp, buf, count, ppos, cd);
1475 }
1476
1477 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1478 {
1479 struct cache_detail *cd = PDE(file_inode(filp))->data;
1480
1481 return cache_poll(filp, wait, cd);
1482 }
1483
1484 static long cache_ioctl_procfs(struct file *filp,
1485 unsigned int cmd, unsigned long arg)
1486 {
1487 struct inode *inode = file_inode(filp);
1488 struct cache_detail *cd = PDE(inode)->data;
1489
1490 return cache_ioctl(inode, filp, cmd, arg, cd);
1491 }
1492
1493 static int cache_open_procfs(struct inode *inode, struct file *filp)
1494 {
1495 struct cache_detail *cd = PDE(inode)->data;
1496
1497 return cache_open(inode, filp, cd);
1498 }
1499
1500 static int cache_release_procfs(struct inode *inode, struct file *filp)
1501 {
1502 struct cache_detail *cd = PDE(inode)->data;
1503
1504 return cache_release(inode, filp, cd);
1505 }
1506
1507 static const struct file_operations cache_file_operations_procfs = {
1508 .owner = THIS_MODULE,
1509 .llseek = no_llseek,
1510 .read = cache_read_procfs,
1511 .write = cache_write_procfs,
1512 .poll = cache_poll_procfs,
1513 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1514 .open = cache_open_procfs,
1515 .release = cache_release_procfs,
1516 };
1517
1518 static int content_open_procfs(struct inode *inode, struct file *filp)
1519 {
1520 struct cache_detail *cd = PDE(inode)->data;
1521
1522 return content_open(inode, filp, cd);
1523 }
1524
1525 static int content_release_procfs(struct inode *inode, struct file *filp)
1526 {
1527 struct cache_detail *cd = PDE(inode)->data;
1528
1529 return content_release(inode, filp, cd);
1530 }
1531
1532 static const struct file_operations content_file_operations_procfs = {
1533 .open = content_open_procfs,
1534 .read = seq_read,
1535 .llseek = seq_lseek,
1536 .release = content_release_procfs,
1537 };
1538
1539 static int open_flush_procfs(struct inode *inode, struct file *filp)
1540 {
1541 struct cache_detail *cd = PDE(inode)->data;
1542
1543 return open_flush(inode, filp, cd);
1544 }
1545
1546 static int release_flush_procfs(struct inode *inode, struct file *filp)
1547 {
1548 struct cache_detail *cd = PDE(inode)->data;
1549
1550 return release_flush(inode, filp, cd);
1551 }
1552
1553 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1554 size_t count, loff_t *ppos)
1555 {
1556 struct cache_detail *cd = PDE(file_inode(filp))->data;
1557
1558 return read_flush(filp, buf, count, ppos, cd);
1559 }
1560
1561 static ssize_t write_flush_procfs(struct file *filp,
1562 const char __user *buf,
1563 size_t count, loff_t *ppos)
1564 {
1565 struct cache_detail *cd = PDE(file_inode(filp))->data;
1566
1567 return write_flush(filp, buf, count, ppos, cd);
1568 }
1569
1570 static const struct file_operations cache_flush_operations_procfs = {
1571 .open = open_flush_procfs,
1572 .read = read_flush_procfs,
1573 .write = write_flush_procfs,
1574 .release = release_flush_procfs,
1575 .llseek = no_llseek,
1576 };
1577
1578 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1579 {
1580 struct sunrpc_net *sn;
1581
1582 if (cd->u.procfs.proc_ent == NULL)
1583 return;
1584 if (cd->u.procfs.flush_ent)
1585 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1586 if (cd->u.procfs.channel_ent)
1587 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1588 if (cd->u.procfs.content_ent)
1589 remove_proc_entry("content", cd->u.procfs.proc_ent);
1590 cd->u.procfs.proc_ent = NULL;
1591 sn = net_generic(net, sunrpc_net_id);
1592 remove_proc_entry(cd->name, sn->proc_net_rpc);
1593 }
1594
1595 #ifdef CONFIG_PROC_FS
1596 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1597 {
1598 struct proc_dir_entry *p;
1599 struct sunrpc_net *sn;
1600
1601 sn = net_generic(net, sunrpc_net_id);
1602 cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1603 if (cd->u.procfs.proc_ent == NULL)
1604 goto out_nomem;
1605 cd->u.procfs.channel_ent = NULL;
1606 cd->u.procfs.content_ent = NULL;
1607
1608 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1609 cd->u.procfs.proc_ent,
1610 &cache_flush_operations_procfs, cd);
1611 cd->u.procfs.flush_ent = p;
1612 if (p == NULL)
1613 goto out_nomem;
1614
1615 if (cd->cache_request || cd->cache_parse) {
1616 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1617 cd->u.procfs.proc_ent,
1618 &cache_file_operations_procfs, cd);
1619 cd->u.procfs.channel_ent = p;
1620 if (p == NULL)
1621 goto out_nomem;
1622 }
1623 if (cd->cache_show) {
1624 p = proc_create_data("content", S_IFREG|S_IRUSR,
1625 cd->u.procfs.proc_ent,
1626 &content_file_operations_procfs, cd);
1627 cd->u.procfs.content_ent = p;
1628 if (p == NULL)
1629 goto out_nomem;
1630 }
1631 return 0;
1632 out_nomem:
1633 remove_cache_proc_entries(cd, net);
1634 return -ENOMEM;
1635 }
1636 #else /* CONFIG_PROC_FS */
1637 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1638 {
1639 return 0;
1640 }
1641 #endif
1642
1643 void __init cache_initialize(void)
1644 {
1645 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1646 }
1647
1648 int cache_register_net(struct cache_detail *cd, struct net *net)
1649 {
1650 int ret;
1651
1652 sunrpc_init_cache_detail(cd);
1653 ret = create_cache_proc_entries(cd, net);
1654 if (ret)
1655 sunrpc_destroy_cache_detail(cd);
1656 return ret;
1657 }
1658 EXPORT_SYMBOL_GPL(cache_register_net);
1659
1660 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1661 {
1662 remove_cache_proc_entries(cd, net);
1663 sunrpc_destroy_cache_detail(cd);
1664 }
1665 EXPORT_SYMBOL_GPL(cache_unregister_net);
1666
1667 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1668 {
1669 struct cache_detail *cd;
1670
1671 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1672 if (cd == NULL)
1673 return ERR_PTR(-ENOMEM);
1674
1675 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1676 GFP_KERNEL);
1677 if (cd->hash_table == NULL) {
1678 kfree(cd);
1679 return ERR_PTR(-ENOMEM);
1680 }
1681 cd->net = net;
1682 return cd;
1683 }
1684 EXPORT_SYMBOL_GPL(cache_create_net);
1685
1686 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1687 {
1688 kfree(cd->hash_table);
1689 kfree(cd);
1690 }
1691 EXPORT_SYMBOL_GPL(cache_destroy_net);
1692
1693 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1694 size_t count, loff_t *ppos)
1695 {
1696 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1697
1698 return cache_read(filp, buf, count, ppos, cd);
1699 }
1700
1701 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1702 size_t count, loff_t *ppos)
1703 {
1704 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1705
1706 return cache_write(filp, buf, count, ppos, cd);
1707 }
1708
1709 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1710 {
1711 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1712
1713 return cache_poll(filp, wait, cd);
1714 }
1715
1716 static long cache_ioctl_pipefs(struct file *filp,
1717 unsigned int cmd, unsigned long arg)
1718 {
1719 struct inode *inode = file_inode(filp);
1720 struct cache_detail *cd = RPC_I(inode)->private;
1721
1722 return cache_ioctl(inode, filp, cmd, arg, cd);
1723 }
1724
1725 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1726 {
1727 struct cache_detail *cd = RPC_I(inode)->private;
1728
1729 return cache_open(inode, filp, cd);
1730 }
1731
1732 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1733 {
1734 struct cache_detail *cd = RPC_I(inode)->private;
1735
1736 return cache_release(inode, filp, cd);
1737 }
1738
1739 const struct file_operations cache_file_operations_pipefs = {
1740 .owner = THIS_MODULE,
1741 .llseek = no_llseek,
1742 .read = cache_read_pipefs,
1743 .write = cache_write_pipefs,
1744 .poll = cache_poll_pipefs,
1745 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1746 .open = cache_open_pipefs,
1747 .release = cache_release_pipefs,
1748 };
1749
1750 static int content_open_pipefs(struct inode *inode, struct file *filp)
1751 {
1752 struct cache_detail *cd = RPC_I(inode)->private;
1753
1754 return content_open(inode, filp, cd);
1755 }
1756
1757 static int content_release_pipefs(struct inode *inode, struct file *filp)
1758 {
1759 struct cache_detail *cd = RPC_I(inode)->private;
1760
1761 return content_release(inode, filp, cd);
1762 }
1763
1764 const struct file_operations content_file_operations_pipefs = {
1765 .open = content_open_pipefs,
1766 .read = seq_read,
1767 .llseek = seq_lseek,
1768 .release = content_release_pipefs,
1769 };
1770
1771 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1772 {
1773 struct cache_detail *cd = RPC_I(inode)->private;
1774
1775 return open_flush(inode, filp, cd);
1776 }
1777
1778 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1779 {
1780 struct cache_detail *cd = RPC_I(inode)->private;
1781
1782 return release_flush(inode, filp, cd);
1783 }
1784
1785 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1786 size_t count, loff_t *ppos)
1787 {
1788 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1789
1790 return read_flush(filp, buf, count, ppos, cd);
1791 }
1792
1793 static ssize_t write_flush_pipefs(struct file *filp,
1794 const char __user *buf,
1795 size_t count, loff_t *ppos)
1796 {
1797 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1798
1799 return write_flush(filp, buf, count, ppos, cd);
1800 }
1801
1802 const struct file_operations cache_flush_operations_pipefs = {
1803 .open = open_flush_pipefs,
1804 .read = read_flush_pipefs,
1805 .write = write_flush_pipefs,
1806 .release = release_flush_pipefs,
1807 .llseek = no_llseek,
1808 };
1809
1810 int sunrpc_cache_register_pipefs(struct dentry *parent,
1811 const char *name, umode_t umode,
1812 struct cache_detail *cd)
1813 {
1814 struct qstr q;
1815 struct dentry *dir;
1816 int ret = 0;
1817
1818 q.name = name;
1819 q.len = strlen(name);
1820 q.hash = full_name_hash(q.name, q.len);
1821 dir = rpc_create_cache_dir(parent, &q, umode, cd);
1822 if (!IS_ERR(dir))
1823 cd->u.pipefs.dir = dir;
1824 else
1825 ret = PTR_ERR(dir);
1826 return ret;
1827 }
1828 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1829
1830 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1831 {
1832 rpc_remove_cache_dir(cd->u.pipefs.dir);
1833 cd->u.pipefs.dir = NULL;
1834 }
1835 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1836
This page took 0.095902 seconds and 6 git commands to generate.