sunrpc/cache: remove races with queuing an upcall.
[deliverable/linux.git] / net / sunrpc / cache.c
1 /*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2. See COPYING.
10 *
11 */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
36 #include "netns.h"
37
38 #define RPCDBG_FACILITY RPCDBG_CACHE
39
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42
43 static void cache_init(struct cache_head *h)
44 {
45 time_t now = seconds_since_boot();
46 h->next = NULL;
47 h->flags = 0;
48 kref_init(&h->ref);
49 h->expiry_time = now + CACHE_NEW_EXPIRY;
50 h->last_refresh = now;
51 }
52
53 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54 {
55 return (h->expiry_time < seconds_since_boot()) ||
56 (detail->flush_time > h->last_refresh);
57 }
58
59 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60 struct cache_head *key, int hash)
61 {
62 struct cache_head **head, **hp;
63 struct cache_head *new = NULL, *freeme = NULL;
64
65 head = &detail->hash_table[hash];
66
67 read_lock(&detail->hash_lock);
68
69 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70 struct cache_head *tmp = *hp;
71 if (detail->match(tmp, key)) {
72 if (cache_is_expired(detail, tmp))
73 /* This entry is expired, we will discard it. */
74 break;
75 cache_get(tmp);
76 read_unlock(&detail->hash_lock);
77 return tmp;
78 }
79 }
80 read_unlock(&detail->hash_lock);
81 /* Didn't find anything, insert an empty entry */
82
83 new = detail->alloc();
84 if (!new)
85 return NULL;
86 /* must fully initialise 'new', else
87 * we might get lose if we need to
88 * cache_put it soon.
89 */
90 cache_init(new);
91 detail->init(new, key);
92
93 write_lock(&detail->hash_lock);
94
95 /* check if entry appeared while we slept */
96 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97 struct cache_head *tmp = *hp;
98 if (detail->match(tmp, key)) {
99 if (cache_is_expired(detail, tmp)) {
100 *hp = tmp->next;
101 tmp->next = NULL;
102 detail->entries --;
103 freeme = tmp;
104 break;
105 }
106 cache_get(tmp);
107 write_unlock(&detail->hash_lock);
108 cache_put(new, detail);
109 return tmp;
110 }
111 }
112 new->next = *head;
113 *head = new;
114 detail->entries++;
115 cache_get(new);
116 write_unlock(&detail->hash_lock);
117
118 if (freeme)
119 cache_put(freeme, detail);
120 return new;
121 }
122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128 {
129 head->expiry_time = expiry;
130 head->last_refresh = seconds_since_boot();
131 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132 set_bit(CACHE_VALID, &head->flags);
133 }
134
135 static void cache_fresh_unlocked(struct cache_head *head,
136 struct cache_detail *detail)
137 {
138 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139 cache_revisit_request(head);
140 cache_dequeue(detail, head);
141 }
142 }
143
144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145 struct cache_head *new, struct cache_head *old, int hash)
146 {
147 /* The 'old' entry is to be replaced by 'new'.
148 * If 'old' is not VALID, we update it directly,
149 * otherwise we need to replace it
150 */
151 struct cache_head **head;
152 struct cache_head *tmp;
153
154 if (!test_bit(CACHE_VALID, &old->flags)) {
155 write_lock(&detail->hash_lock);
156 if (!test_bit(CACHE_VALID, &old->flags)) {
157 if (test_bit(CACHE_NEGATIVE, &new->flags))
158 set_bit(CACHE_NEGATIVE, &old->flags);
159 else
160 detail->update(old, new);
161 cache_fresh_locked(old, new->expiry_time);
162 write_unlock(&detail->hash_lock);
163 cache_fresh_unlocked(old, detail);
164 return old;
165 }
166 write_unlock(&detail->hash_lock);
167 }
168 /* We need to insert a new entry */
169 tmp = detail->alloc();
170 if (!tmp) {
171 cache_put(old, detail);
172 return NULL;
173 }
174 cache_init(tmp);
175 detail->init(tmp, old);
176 head = &detail->hash_table[hash];
177
178 write_lock(&detail->hash_lock);
179 if (test_bit(CACHE_NEGATIVE, &new->flags))
180 set_bit(CACHE_NEGATIVE, &tmp->flags);
181 else
182 detail->update(tmp, new);
183 tmp->next = *head;
184 *head = tmp;
185 detail->entries++;
186 cache_get(tmp);
187 cache_fresh_locked(tmp, new->expiry_time);
188 cache_fresh_locked(old, 0);
189 write_unlock(&detail->hash_lock);
190 cache_fresh_unlocked(tmp, detail);
191 cache_fresh_unlocked(old, detail);
192 cache_put(old, detail);
193 return tmp;
194 }
195 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196
197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198 {
199 if (cd->cache_upcall)
200 return cd->cache_upcall(cd, h);
201 return sunrpc_cache_pipe_upcall(cd, h);
202 }
203
204 static inline int cache_is_valid(struct cache_head *h)
205 {
206 if (!test_bit(CACHE_VALID, &h->flags))
207 return -EAGAIN;
208 else {
209 /* entry is valid */
210 if (test_bit(CACHE_NEGATIVE, &h->flags))
211 return -ENOENT;
212 else {
213 /*
214 * In combination with write barrier in
215 * sunrpc_cache_update, ensures that anyone
216 * using the cache entry after this sees the
217 * updated contents:
218 */
219 smp_rmb();
220 return 0;
221 }
222 }
223 }
224
225 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
226 {
227 int rv;
228
229 write_lock(&detail->hash_lock);
230 rv = cache_is_valid(h);
231 if (rv != -EAGAIN) {
232 write_unlock(&detail->hash_lock);
233 return rv;
234 }
235 set_bit(CACHE_NEGATIVE, &h->flags);
236 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
237 write_unlock(&detail->hash_lock);
238 cache_fresh_unlocked(h, detail);
239 return -ENOENT;
240 }
241
242 /*
243 * This is the generic cache management routine for all
244 * the authentication caches.
245 * It checks the currency of a cache item and will (later)
246 * initiate an upcall to fill it if needed.
247 *
248 *
249 * Returns 0 if the cache_head can be used, or cache_puts it and returns
250 * -EAGAIN if upcall is pending and request has been queued
251 * -ETIMEDOUT if upcall failed or request could not be queue or
252 * upcall completed but item is still invalid (implying that
253 * the cache item has been replaced with a newer one).
254 * -ENOENT if cache entry was negative
255 */
256 int cache_check(struct cache_detail *detail,
257 struct cache_head *h, struct cache_req *rqstp)
258 {
259 int rv;
260 long refresh_age, age;
261
262 /* First decide return status as best we can */
263 rv = cache_is_valid(h);
264
265 /* now see if we want to start an upcall */
266 refresh_age = (h->expiry_time - h->last_refresh);
267 age = seconds_since_boot() - h->last_refresh;
268
269 if (rqstp == NULL) {
270 if (rv == -EAGAIN)
271 rv = -ENOENT;
272 } else if (rv == -EAGAIN || age > refresh_age/2) {
273 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
274 refresh_age, age);
275 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
276 switch (cache_make_upcall(detail, h)) {
277 case -EINVAL:
278 clear_bit(CACHE_PENDING, &h->flags);
279 cache_revisit_request(h);
280 rv = try_to_negate_entry(detail, h);
281 break;
282 case -EAGAIN:
283 clear_bit(CACHE_PENDING, &h->flags);
284 cache_revisit_request(h);
285 break;
286 }
287 }
288 }
289
290 if (rv == -EAGAIN) {
291 if (!cache_defer_req(rqstp, h)) {
292 /*
293 * Request was not deferred; handle it as best
294 * we can ourselves:
295 */
296 rv = cache_is_valid(h);
297 if (rv == -EAGAIN)
298 rv = -ETIMEDOUT;
299 }
300 }
301 if (rv)
302 cache_put(h, detail);
303 return rv;
304 }
305 EXPORT_SYMBOL_GPL(cache_check);
306
307 /*
308 * caches need to be periodically cleaned.
309 * For this we maintain a list of cache_detail and
310 * a current pointer into that list and into the table
311 * for that entry.
312 *
313 * Each time clean_cache is called it finds the next non-empty entry
314 * in the current table and walks the list in that entry
315 * looking for entries that can be removed.
316 *
317 * An entry gets removed if:
318 * - The expiry is before current time
319 * - The last_refresh time is before the flush_time for that cache
320 *
321 * later we might drop old entries with non-NEVER expiry if that table
322 * is getting 'full' for some definition of 'full'
323 *
324 * The question of "how often to scan a table" is an interesting one
325 * and is answered in part by the use of the "nextcheck" field in the
326 * cache_detail.
327 * When a scan of a table begins, the nextcheck field is set to a time
328 * that is well into the future.
329 * While scanning, if an expiry time is found that is earlier than the
330 * current nextcheck time, nextcheck is set to that expiry time.
331 * If the flush_time is ever set to a time earlier than the nextcheck
332 * time, the nextcheck time is then set to that flush_time.
333 *
334 * A table is then only scanned if the current time is at least
335 * the nextcheck time.
336 *
337 */
338
339 static LIST_HEAD(cache_list);
340 static DEFINE_SPINLOCK(cache_list_lock);
341 static struct cache_detail *current_detail;
342 static int current_index;
343
344 static void do_cache_clean(struct work_struct *work);
345 static struct delayed_work cache_cleaner;
346
347 void sunrpc_init_cache_detail(struct cache_detail *cd)
348 {
349 rwlock_init(&cd->hash_lock);
350 INIT_LIST_HEAD(&cd->queue);
351 spin_lock(&cache_list_lock);
352 cd->nextcheck = 0;
353 cd->entries = 0;
354 atomic_set(&cd->readers, 0);
355 cd->last_close = 0;
356 cd->last_warn = -1;
357 list_add(&cd->others, &cache_list);
358 spin_unlock(&cache_list_lock);
359
360 /* start the cleaning process */
361 schedule_delayed_work(&cache_cleaner, 0);
362 }
363 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
364
365 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
366 {
367 cache_purge(cd);
368 spin_lock(&cache_list_lock);
369 write_lock(&cd->hash_lock);
370 if (cd->entries || atomic_read(&cd->inuse)) {
371 write_unlock(&cd->hash_lock);
372 spin_unlock(&cache_list_lock);
373 goto out;
374 }
375 if (current_detail == cd)
376 current_detail = NULL;
377 list_del_init(&cd->others);
378 write_unlock(&cd->hash_lock);
379 spin_unlock(&cache_list_lock);
380 if (list_empty(&cache_list)) {
381 /* module must be being unloaded so its safe to kill the worker */
382 cancel_delayed_work_sync(&cache_cleaner);
383 }
384 return;
385 out:
386 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
387 }
388 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
389
390 /* clean cache tries to find something to clean
391 * and cleans it.
392 * It returns 1 if it cleaned something,
393 * 0 if it didn't find anything this time
394 * -1 if it fell off the end of the list.
395 */
396 static int cache_clean(void)
397 {
398 int rv = 0;
399 struct list_head *next;
400
401 spin_lock(&cache_list_lock);
402
403 /* find a suitable table if we don't already have one */
404 while (current_detail == NULL ||
405 current_index >= current_detail->hash_size) {
406 if (current_detail)
407 next = current_detail->others.next;
408 else
409 next = cache_list.next;
410 if (next == &cache_list) {
411 current_detail = NULL;
412 spin_unlock(&cache_list_lock);
413 return -1;
414 }
415 current_detail = list_entry(next, struct cache_detail, others);
416 if (current_detail->nextcheck > seconds_since_boot())
417 current_index = current_detail->hash_size;
418 else {
419 current_index = 0;
420 current_detail->nextcheck = seconds_since_boot()+30*60;
421 }
422 }
423
424 /* find a non-empty bucket in the table */
425 while (current_detail &&
426 current_index < current_detail->hash_size &&
427 current_detail->hash_table[current_index] == NULL)
428 current_index++;
429
430 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
431
432 if (current_detail && current_index < current_detail->hash_size) {
433 struct cache_head *ch, **cp;
434 struct cache_detail *d;
435
436 write_lock(&current_detail->hash_lock);
437
438 /* Ok, now to clean this strand */
439
440 cp = & current_detail->hash_table[current_index];
441 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
442 if (current_detail->nextcheck > ch->expiry_time)
443 current_detail->nextcheck = ch->expiry_time+1;
444 if (!cache_is_expired(current_detail, ch))
445 continue;
446
447 *cp = ch->next;
448 ch->next = NULL;
449 current_detail->entries--;
450 rv = 1;
451 break;
452 }
453
454 write_unlock(&current_detail->hash_lock);
455 d = current_detail;
456 if (!ch)
457 current_index ++;
458 spin_unlock(&cache_list_lock);
459 if (ch) {
460 if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
461 cache_dequeue(current_detail, ch);
462 cache_revisit_request(ch);
463 cache_put(ch, d);
464 }
465 } else
466 spin_unlock(&cache_list_lock);
467
468 return rv;
469 }
470
471 /*
472 * We want to regularly clean the cache, so we need to schedule some work ...
473 */
474 static void do_cache_clean(struct work_struct *work)
475 {
476 int delay = 5;
477 if (cache_clean() == -1)
478 delay = round_jiffies_relative(30*HZ);
479
480 if (list_empty(&cache_list))
481 delay = 0;
482
483 if (delay)
484 schedule_delayed_work(&cache_cleaner, delay);
485 }
486
487
488 /*
489 * Clean all caches promptly. This just calls cache_clean
490 * repeatedly until we are sure that every cache has had a chance to
491 * be fully cleaned
492 */
493 void cache_flush(void)
494 {
495 while (cache_clean() != -1)
496 cond_resched();
497 while (cache_clean() != -1)
498 cond_resched();
499 }
500 EXPORT_SYMBOL_GPL(cache_flush);
501
502 void cache_purge(struct cache_detail *detail)
503 {
504 detail->flush_time = LONG_MAX;
505 detail->nextcheck = seconds_since_boot();
506 cache_flush();
507 detail->flush_time = 1;
508 }
509 EXPORT_SYMBOL_GPL(cache_purge);
510
511
512 /*
513 * Deferral and Revisiting of Requests.
514 *
515 * If a cache lookup finds a pending entry, we
516 * need to defer the request and revisit it later.
517 * All deferred requests are stored in a hash table,
518 * indexed by "struct cache_head *".
519 * As it may be wasteful to store a whole request
520 * structure, we allow the request to provide a
521 * deferred form, which must contain a
522 * 'struct cache_deferred_req'
523 * This cache_deferred_req contains a method to allow
524 * it to be revisited when cache info is available
525 */
526
527 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
528 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
529
530 #define DFR_MAX 300 /* ??? */
531
532 static DEFINE_SPINLOCK(cache_defer_lock);
533 static LIST_HEAD(cache_defer_list);
534 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
535 static int cache_defer_cnt;
536
537 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
538 {
539 hlist_del_init(&dreq->hash);
540 if (!list_empty(&dreq->recent)) {
541 list_del_init(&dreq->recent);
542 cache_defer_cnt--;
543 }
544 }
545
546 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
547 {
548 int hash = DFR_HASH(item);
549
550 INIT_LIST_HEAD(&dreq->recent);
551 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
552 }
553
554 static void setup_deferral(struct cache_deferred_req *dreq,
555 struct cache_head *item,
556 int count_me)
557 {
558
559 dreq->item = item;
560
561 spin_lock(&cache_defer_lock);
562
563 __hash_deferred_req(dreq, item);
564
565 if (count_me) {
566 cache_defer_cnt++;
567 list_add(&dreq->recent, &cache_defer_list);
568 }
569
570 spin_unlock(&cache_defer_lock);
571
572 }
573
574 struct thread_deferred_req {
575 struct cache_deferred_req handle;
576 struct completion completion;
577 };
578
579 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
580 {
581 struct thread_deferred_req *dr =
582 container_of(dreq, struct thread_deferred_req, handle);
583 complete(&dr->completion);
584 }
585
586 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
587 {
588 struct thread_deferred_req sleeper;
589 struct cache_deferred_req *dreq = &sleeper.handle;
590
591 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
592 dreq->revisit = cache_restart_thread;
593
594 setup_deferral(dreq, item, 0);
595
596 if (!test_bit(CACHE_PENDING, &item->flags) ||
597 wait_for_completion_interruptible_timeout(
598 &sleeper.completion, req->thread_wait) <= 0) {
599 /* The completion wasn't completed, so we need
600 * to clean up
601 */
602 spin_lock(&cache_defer_lock);
603 if (!hlist_unhashed(&sleeper.handle.hash)) {
604 __unhash_deferred_req(&sleeper.handle);
605 spin_unlock(&cache_defer_lock);
606 } else {
607 /* cache_revisit_request already removed
608 * this from the hash table, but hasn't
609 * called ->revisit yet. It will very soon
610 * and we need to wait for it.
611 */
612 spin_unlock(&cache_defer_lock);
613 wait_for_completion(&sleeper.completion);
614 }
615 }
616 }
617
618 static void cache_limit_defers(void)
619 {
620 /* Make sure we haven't exceed the limit of allowed deferred
621 * requests.
622 */
623 struct cache_deferred_req *discard = NULL;
624
625 if (cache_defer_cnt <= DFR_MAX)
626 return;
627
628 spin_lock(&cache_defer_lock);
629
630 /* Consider removing either the first or the last */
631 if (cache_defer_cnt > DFR_MAX) {
632 if (net_random() & 1)
633 discard = list_entry(cache_defer_list.next,
634 struct cache_deferred_req, recent);
635 else
636 discard = list_entry(cache_defer_list.prev,
637 struct cache_deferred_req, recent);
638 __unhash_deferred_req(discard);
639 }
640 spin_unlock(&cache_defer_lock);
641 if (discard)
642 discard->revisit(discard, 1);
643 }
644
645 /* Return true if and only if a deferred request is queued. */
646 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
647 {
648 struct cache_deferred_req *dreq;
649
650 if (req->thread_wait) {
651 cache_wait_req(req, item);
652 if (!test_bit(CACHE_PENDING, &item->flags))
653 return false;
654 }
655 dreq = req->defer(req);
656 if (dreq == NULL)
657 return false;
658 setup_deferral(dreq, item, 1);
659 if (!test_bit(CACHE_PENDING, &item->flags))
660 /* Bit could have been cleared before we managed to
661 * set up the deferral, so need to revisit just in case
662 */
663 cache_revisit_request(item);
664
665 cache_limit_defers();
666 return true;
667 }
668
669 static void cache_revisit_request(struct cache_head *item)
670 {
671 struct cache_deferred_req *dreq;
672 struct list_head pending;
673 struct hlist_node *tmp;
674 int hash = DFR_HASH(item);
675
676 INIT_LIST_HEAD(&pending);
677 spin_lock(&cache_defer_lock);
678
679 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
680 if (dreq->item == item) {
681 __unhash_deferred_req(dreq);
682 list_add(&dreq->recent, &pending);
683 }
684
685 spin_unlock(&cache_defer_lock);
686
687 while (!list_empty(&pending)) {
688 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
689 list_del_init(&dreq->recent);
690 dreq->revisit(dreq, 0);
691 }
692 }
693
694 void cache_clean_deferred(void *owner)
695 {
696 struct cache_deferred_req *dreq, *tmp;
697 struct list_head pending;
698
699
700 INIT_LIST_HEAD(&pending);
701 spin_lock(&cache_defer_lock);
702
703 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
704 if (dreq->owner == owner) {
705 __unhash_deferred_req(dreq);
706 list_add(&dreq->recent, &pending);
707 }
708 }
709 spin_unlock(&cache_defer_lock);
710
711 while (!list_empty(&pending)) {
712 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
713 list_del_init(&dreq->recent);
714 dreq->revisit(dreq, 1);
715 }
716 }
717
718 /*
719 * communicate with user-space
720 *
721 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
722 * On read, you get a full request, or block.
723 * On write, an update request is processed.
724 * Poll works if anything to read, and always allows write.
725 *
726 * Implemented by linked list of requests. Each open file has
727 * a ->private that also exists in this list. New requests are added
728 * to the end and may wakeup and preceding readers.
729 * New readers are added to the head. If, on read, an item is found with
730 * CACHE_UPCALLING clear, we free it from the list.
731 *
732 */
733
734 static DEFINE_SPINLOCK(queue_lock);
735 static DEFINE_MUTEX(queue_io_mutex);
736
737 struct cache_queue {
738 struct list_head list;
739 int reader; /* if 0, then request */
740 };
741 struct cache_request {
742 struct cache_queue q;
743 struct cache_head *item;
744 char * buf;
745 int len;
746 int readers;
747 };
748 struct cache_reader {
749 struct cache_queue q;
750 int offset; /* if non-0, we have a refcnt on next request */
751 };
752
753 static int cache_request(struct cache_detail *detail,
754 struct cache_request *crq)
755 {
756 char *bp = crq->buf;
757 int len = PAGE_SIZE;
758
759 detail->cache_request(detail, crq->item, &bp, &len);
760 if (len < 0)
761 return -EAGAIN;
762 return PAGE_SIZE - len;
763 }
764
765 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
766 loff_t *ppos, struct cache_detail *cd)
767 {
768 struct cache_reader *rp = filp->private_data;
769 struct cache_request *rq;
770 struct inode *inode = file_inode(filp);
771 int err;
772
773 if (count == 0)
774 return 0;
775
776 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
777 * readers on this file */
778 again:
779 spin_lock(&queue_lock);
780 /* need to find next request */
781 while (rp->q.list.next != &cd->queue &&
782 list_entry(rp->q.list.next, struct cache_queue, list)
783 ->reader) {
784 struct list_head *next = rp->q.list.next;
785 list_move(&rp->q.list, next);
786 }
787 if (rp->q.list.next == &cd->queue) {
788 spin_unlock(&queue_lock);
789 mutex_unlock(&inode->i_mutex);
790 WARN_ON_ONCE(rp->offset);
791 return 0;
792 }
793 rq = container_of(rp->q.list.next, struct cache_request, q.list);
794 WARN_ON_ONCE(rq->q.reader);
795 if (rp->offset == 0)
796 rq->readers++;
797 spin_unlock(&queue_lock);
798
799 if (rq->len == 0) {
800 err = cache_request(cd, rq);
801 if (err < 0)
802 goto out;
803 rq->len = err;
804 }
805
806 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
807 err = -EAGAIN;
808 spin_lock(&queue_lock);
809 list_move(&rp->q.list, &rq->q.list);
810 spin_unlock(&queue_lock);
811 } else {
812 if (rp->offset + count > rq->len)
813 count = rq->len - rp->offset;
814 err = -EFAULT;
815 if (copy_to_user(buf, rq->buf + rp->offset, count))
816 goto out;
817 rp->offset += count;
818 if (rp->offset >= rq->len) {
819 rp->offset = 0;
820 spin_lock(&queue_lock);
821 list_move(&rp->q.list, &rq->q.list);
822 spin_unlock(&queue_lock);
823 }
824 err = 0;
825 }
826 out:
827 if (rp->offset == 0) {
828 /* need to release rq */
829 spin_lock(&queue_lock);
830 rq->readers--;
831 if (rq->readers == 0 &&
832 !test_bit(CACHE_PENDING, &rq->item->flags)) {
833 list_del(&rq->q.list);
834 spin_unlock(&queue_lock);
835 cache_put(rq->item, cd);
836 kfree(rq->buf);
837 kfree(rq);
838 } else
839 spin_unlock(&queue_lock);
840 }
841 if (err == -EAGAIN)
842 goto again;
843 mutex_unlock(&inode->i_mutex);
844 return err ? err : count;
845 }
846
847 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
848 size_t count, struct cache_detail *cd)
849 {
850 ssize_t ret;
851
852 if (count == 0)
853 return -EINVAL;
854 if (copy_from_user(kaddr, buf, count))
855 return -EFAULT;
856 kaddr[count] = '\0';
857 ret = cd->cache_parse(cd, kaddr, count);
858 if (!ret)
859 ret = count;
860 return ret;
861 }
862
863 static ssize_t cache_slow_downcall(const char __user *buf,
864 size_t count, struct cache_detail *cd)
865 {
866 static char write_buf[8192]; /* protected by queue_io_mutex */
867 ssize_t ret = -EINVAL;
868
869 if (count >= sizeof(write_buf))
870 goto out;
871 mutex_lock(&queue_io_mutex);
872 ret = cache_do_downcall(write_buf, buf, count, cd);
873 mutex_unlock(&queue_io_mutex);
874 out:
875 return ret;
876 }
877
878 static ssize_t cache_downcall(struct address_space *mapping,
879 const char __user *buf,
880 size_t count, struct cache_detail *cd)
881 {
882 struct page *page;
883 char *kaddr;
884 ssize_t ret = -ENOMEM;
885
886 if (count >= PAGE_CACHE_SIZE)
887 goto out_slow;
888
889 page = find_or_create_page(mapping, 0, GFP_KERNEL);
890 if (!page)
891 goto out_slow;
892
893 kaddr = kmap(page);
894 ret = cache_do_downcall(kaddr, buf, count, cd);
895 kunmap(page);
896 unlock_page(page);
897 page_cache_release(page);
898 return ret;
899 out_slow:
900 return cache_slow_downcall(buf, count, cd);
901 }
902
903 static ssize_t cache_write(struct file *filp, const char __user *buf,
904 size_t count, loff_t *ppos,
905 struct cache_detail *cd)
906 {
907 struct address_space *mapping = filp->f_mapping;
908 struct inode *inode = file_inode(filp);
909 ssize_t ret = -EINVAL;
910
911 if (!cd->cache_parse)
912 goto out;
913
914 mutex_lock(&inode->i_mutex);
915 ret = cache_downcall(mapping, buf, count, cd);
916 mutex_unlock(&inode->i_mutex);
917 out:
918 return ret;
919 }
920
921 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
922
923 static unsigned int cache_poll(struct file *filp, poll_table *wait,
924 struct cache_detail *cd)
925 {
926 unsigned int mask;
927 struct cache_reader *rp = filp->private_data;
928 struct cache_queue *cq;
929
930 poll_wait(filp, &queue_wait, wait);
931
932 /* alway allow write */
933 mask = POLL_OUT | POLLWRNORM;
934
935 if (!rp)
936 return mask;
937
938 spin_lock(&queue_lock);
939
940 for (cq= &rp->q; &cq->list != &cd->queue;
941 cq = list_entry(cq->list.next, struct cache_queue, list))
942 if (!cq->reader) {
943 mask |= POLLIN | POLLRDNORM;
944 break;
945 }
946 spin_unlock(&queue_lock);
947 return mask;
948 }
949
950 static int cache_ioctl(struct inode *ino, struct file *filp,
951 unsigned int cmd, unsigned long arg,
952 struct cache_detail *cd)
953 {
954 int len = 0;
955 struct cache_reader *rp = filp->private_data;
956 struct cache_queue *cq;
957
958 if (cmd != FIONREAD || !rp)
959 return -EINVAL;
960
961 spin_lock(&queue_lock);
962
963 /* only find the length remaining in current request,
964 * or the length of the next request
965 */
966 for (cq= &rp->q; &cq->list != &cd->queue;
967 cq = list_entry(cq->list.next, struct cache_queue, list))
968 if (!cq->reader) {
969 struct cache_request *cr =
970 container_of(cq, struct cache_request, q);
971 len = cr->len - rp->offset;
972 break;
973 }
974 spin_unlock(&queue_lock);
975
976 return put_user(len, (int __user *)arg);
977 }
978
979 static int cache_open(struct inode *inode, struct file *filp,
980 struct cache_detail *cd)
981 {
982 struct cache_reader *rp = NULL;
983
984 if (!cd || !try_module_get(cd->owner))
985 return -EACCES;
986 nonseekable_open(inode, filp);
987 if (filp->f_mode & FMODE_READ) {
988 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
989 if (!rp) {
990 module_put(cd->owner);
991 return -ENOMEM;
992 }
993 rp->offset = 0;
994 rp->q.reader = 1;
995 atomic_inc(&cd->readers);
996 spin_lock(&queue_lock);
997 list_add(&rp->q.list, &cd->queue);
998 spin_unlock(&queue_lock);
999 }
1000 filp->private_data = rp;
1001 return 0;
1002 }
1003
1004 static int cache_release(struct inode *inode, struct file *filp,
1005 struct cache_detail *cd)
1006 {
1007 struct cache_reader *rp = filp->private_data;
1008
1009 if (rp) {
1010 spin_lock(&queue_lock);
1011 if (rp->offset) {
1012 struct cache_queue *cq;
1013 for (cq= &rp->q; &cq->list != &cd->queue;
1014 cq = list_entry(cq->list.next, struct cache_queue, list))
1015 if (!cq->reader) {
1016 container_of(cq, struct cache_request, q)
1017 ->readers--;
1018 break;
1019 }
1020 rp->offset = 0;
1021 }
1022 list_del(&rp->q.list);
1023 spin_unlock(&queue_lock);
1024
1025 filp->private_data = NULL;
1026 kfree(rp);
1027
1028 cd->last_close = seconds_since_boot();
1029 atomic_dec(&cd->readers);
1030 }
1031 module_put(cd->owner);
1032 return 0;
1033 }
1034
1035
1036
1037 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1038 {
1039 struct cache_queue *cq, *tmp;
1040 struct cache_request *cr;
1041 struct list_head dequeued;
1042
1043 INIT_LIST_HEAD(&dequeued);
1044 spin_lock(&queue_lock);
1045 list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1046 if (!cq->reader) {
1047 cr = container_of(cq, struct cache_request, q);
1048 if (cr->item != ch)
1049 continue;
1050 if (test_bit(CACHE_PENDING, &ch->flags))
1051 /* Lost a race and it is pending again */
1052 break;
1053 if (cr->readers != 0)
1054 continue;
1055 list_move(&cr->q.list, &dequeued);
1056 }
1057 spin_unlock(&queue_lock);
1058 while (!list_empty(&dequeued)) {
1059 cr = list_entry(dequeued.next, struct cache_request, q.list);
1060 list_del(&cr->q.list);
1061 cache_put(cr->item, detail);
1062 kfree(cr->buf);
1063 kfree(cr);
1064 }
1065 }
1066
1067 /*
1068 * Support routines for text-based upcalls.
1069 * Fields are separated by spaces.
1070 * Fields are either mangled to quote space tab newline slosh with slosh
1071 * or a hexified with a leading \x
1072 * Record is terminated with newline.
1073 *
1074 */
1075
1076 void qword_add(char **bpp, int *lp, char *str)
1077 {
1078 char *bp = *bpp;
1079 int len = *lp;
1080 char c;
1081
1082 if (len < 0) return;
1083
1084 while ((c=*str++) && len)
1085 switch(c) {
1086 case ' ':
1087 case '\t':
1088 case '\n':
1089 case '\\':
1090 if (len >= 4) {
1091 *bp++ = '\\';
1092 *bp++ = '0' + ((c & 0300)>>6);
1093 *bp++ = '0' + ((c & 0070)>>3);
1094 *bp++ = '0' + ((c & 0007)>>0);
1095 }
1096 len -= 4;
1097 break;
1098 default:
1099 *bp++ = c;
1100 len--;
1101 }
1102 if (c || len <1) len = -1;
1103 else {
1104 *bp++ = ' ';
1105 len--;
1106 }
1107 *bpp = bp;
1108 *lp = len;
1109 }
1110 EXPORT_SYMBOL_GPL(qword_add);
1111
1112 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1113 {
1114 char *bp = *bpp;
1115 int len = *lp;
1116
1117 if (len < 0) return;
1118
1119 if (len > 2) {
1120 *bp++ = '\\';
1121 *bp++ = 'x';
1122 len -= 2;
1123 while (blen && len >= 2) {
1124 unsigned char c = *buf++;
1125 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1126 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1127 len -= 2;
1128 blen--;
1129 }
1130 }
1131 if (blen || len<1) len = -1;
1132 else {
1133 *bp++ = ' ';
1134 len--;
1135 }
1136 *bpp = bp;
1137 *lp = len;
1138 }
1139 EXPORT_SYMBOL_GPL(qword_addhex);
1140
1141 static void warn_no_listener(struct cache_detail *detail)
1142 {
1143 if (detail->last_warn != detail->last_close) {
1144 detail->last_warn = detail->last_close;
1145 if (detail->warn_no_listener)
1146 detail->warn_no_listener(detail, detail->last_close != 0);
1147 }
1148 }
1149
1150 static bool cache_listeners_exist(struct cache_detail *detail)
1151 {
1152 if (atomic_read(&detail->readers))
1153 return true;
1154 if (detail->last_close == 0)
1155 /* This cache was never opened */
1156 return false;
1157 if (detail->last_close < seconds_since_boot() - 30)
1158 /*
1159 * We allow for the possibility that someone might
1160 * restart a userspace daemon without restarting the
1161 * server; but after 30 seconds, we give up.
1162 */
1163 return false;
1164 return true;
1165 }
1166
1167 /*
1168 * register an upcall request to user-space and queue it up for read() by the
1169 * upcall daemon.
1170 *
1171 * Each request is at most one page long.
1172 */
1173 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1174 {
1175
1176 char *buf;
1177 struct cache_request *crq;
1178 int ret = 0;
1179
1180 if (!detail->cache_request)
1181 return -EINVAL;
1182
1183 if (!cache_listeners_exist(detail)) {
1184 warn_no_listener(detail);
1185 return -EINVAL;
1186 }
1187
1188 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1189 if (!buf)
1190 return -EAGAIN;
1191
1192 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1193 if (!crq) {
1194 kfree(buf);
1195 return -EAGAIN;
1196 }
1197
1198 crq->q.reader = 0;
1199 crq->item = cache_get(h);
1200 crq->buf = buf;
1201 crq->len = 0;
1202 crq->readers = 0;
1203 spin_lock(&queue_lock);
1204 if (test_bit(CACHE_PENDING, &h->flags))
1205 list_add_tail(&crq->q.list, &detail->queue);
1206 else
1207 /* Lost a race, no longer PENDING, so don't enqueue */
1208 ret = -EAGAIN;
1209 spin_unlock(&queue_lock);
1210 wake_up(&queue_wait);
1211 if (ret == -EAGAIN) {
1212 kfree(buf);
1213 kfree(crq);
1214 }
1215 return ret;
1216 }
1217 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1218
1219 /*
1220 * parse a message from user-space and pass it
1221 * to an appropriate cache
1222 * Messages are, like requests, separated into fields by
1223 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1224 *
1225 * Message is
1226 * reply cachename expiry key ... content....
1227 *
1228 * key and content are both parsed by cache
1229 */
1230
1231 int qword_get(char **bpp, char *dest, int bufsize)
1232 {
1233 /* return bytes copied, or -1 on error */
1234 char *bp = *bpp;
1235 int len = 0;
1236
1237 while (*bp == ' ') bp++;
1238
1239 if (bp[0] == '\\' && bp[1] == 'x') {
1240 /* HEX STRING */
1241 bp += 2;
1242 while (len < bufsize) {
1243 int h, l;
1244
1245 h = hex_to_bin(bp[0]);
1246 if (h < 0)
1247 break;
1248
1249 l = hex_to_bin(bp[1]);
1250 if (l < 0)
1251 break;
1252
1253 *dest++ = (h << 4) | l;
1254 bp += 2;
1255 len++;
1256 }
1257 } else {
1258 /* text with \nnn octal quoting */
1259 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1260 if (*bp == '\\' &&
1261 isodigit(bp[1]) && (bp[1] <= '3') &&
1262 isodigit(bp[2]) &&
1263 isodigit(bp[3])) {
1264 int byte = (*++bp -'0');
1265 bp++;
1266 byte = (byte << 3) | (*bp++ - '0');
1267 byte = (byte << 3) | (*bp++ - '0');
1268 *dest++ = byte;
1269 len++;
1270 } else {
1271 *dest++ = *bp++;
1272 len++;
1273 }
1274 }
1275 }
1276
1277 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1278 return -1;
1279 while (*bp == ' ') bp++;
1280 *bpp = bp;
1281 *dest = '\0';
1282 return len;
1283 }
1284 EXPORT_SYMBOL_GPL(qword_get);
1285
1286
1287 /*
1288 * support /proc/sunrpc/cache/$CACHENAME/content
1289 * as a seqfile.
1290 * We call ->cache_show passing NULL for the item to
1291 * get a header, then pass each real item in the cache
1292 */
1293
1294 struct handle {
1295 struct cache_detail *cd;
1296 };
1297
1298 static void *c_start(struct seq_file *m, loff_t *pos)
1299 __acquires(cd->hash_lock)
1300 {
1301 loff_t n = *pos;
1302 unsigned int hash, entry;
1303 struct cache_head *ch;
1304 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1305
1306
1307 read_lock(&cd->hash_lock);
1308 if (!n--)
1309 return SEQ_START_TOKEN;
1310 hash = n >> 32;
1311 entry = n & ((1LL<<32) - 1);
1312
1313 for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1314 if (!entry--)
1315 return ch;
1316 n &= ~((1LL<<32) - 1);
1317 do {
1318 hash++;
1319 n += 1LL<<32;
1320 } while(hash < cd->hash_size &&
1321 cd->hash_table[hash]==NULL);
1322 if (hash >= cd->hash_size)
1323 return NULL;
1324 *pos = n+1;
1325 return cd->hash_table[hash];
1326 }
1327
1328 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1329 {
1330 struct cache_head *ch = p;
1331 int hash = (*pos >> 32);
1332 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1333
1334 if (p == SEQ_START_TOKEN)
1335 hash = 0;
1336 else if (ch->next == NULL) {
1337 hash++;
1338 *pos += 1LL<<32;
1339 } else {
1340 ++*pos;
1341 return ch->next;
1342 }
1343 *pos &= ~((1LL<<32) - 1);
1344 while (hash < cd->hash_size &&
1345 cd->hash_table[hash] == NULL) {
1346 hash++;
1347 *pos += 1LL<<32;
1348 }
1349 if (hash >= cd->hash_size)
1350 return NULL;
1351 ++*pos;
1352 return cd->hash_table[hash];
1353 }
1354
1355 static void c_stop(struct seq_file *m, void *p)
1356 __releases(cd->hash_lock)
1357 {
1358 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1359 read_unlock(&cd->hash_lock);
1360 }
1361
1362 static int c_show(struct seq_file *m, void *p)
1363 {
1364 struct cache_head *cp = p;
1365 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1366
1367 if (p == SEQ_START_TOKEN)
1368 return cd->cache_show(m, cd, NULL);
1369
1370 ifdebug(CACHE)
1371 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1372 convert_to_wallclock(cp->expiry_time),
1373 atomic_read(&cp->ref.refcount), cp->flags);
1374 cache_get(cp);
1375 if (cache_check(cd, cp, NULL))
1376 /* cache_check does a cache_put on failure */
1377 seq_printf(m, "# ");
1378 else {
1379 if (cache_is_expired(cd, cp))
1380 seq_printf(m, "# ");
1381 cache_put(cp, cd);
1382 }
1383
1384 return cd->cache_show(m, cd, cp);
1385 }
1386
1387 static const struct seq_operations cache_content_op = {
1388 .start = c_start,
1389 .next = c_next,
1390 .stop = c_stop,
1391 .show = c_show,
1392 };
1393
1394 static int content_open(struct inode *inode, struct file *file,
1395 struct cache_detail *cd)
1396 {
1397 struct handle *han;
1398
1399 if (!cd || !try_module_get(cd->owner))
1400 return -EACCES;
1401 han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1402 if (han == NULL) {
1403 module_put(cd->owner);
1404 return -ENOMEM;
1405 }
1406
1407 han->cd = cd;
1408 return 0;
1409 }
1410
1411 static int content_release(struct inode *inode, struct file *file,
1412 struct cache_detail *cd)
1413 {
1414 int ret = seq_release_private(inode, file);
1415 module_put(cd->owner);
1416 return ret;
1417 }
1418
1419 static int open_flush(struct inode *inode, struct file *file,
1420 struct cache_detail *cd)
1421 {
1422 if (!cd || !try_module_get(cd->owner))
1423 return -EACCES;
1424 return nonseekable_open(inode, file);
1425 }
1426
1427 static int release_flush(struct inode *inode, struct file *file,
1428 struct cache_detail *cd)
1429 {
1430 module_put(cd->owner);
1431 return 0;
1432 }
1433
1434 static ssize_t read_flush(struct file *file, char __user *buf,
1435 size_t count, loff_t *ppos,
1436 struct cache_detail *cd)
1437 {
1438 char tbuf[22];
1439 unsigned long p = *ppos;
1440 size_t len;
1441
1442 snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1443 len = strlen(tbuf);
1444 if (p >= len)
1445 return 0;
1446 len -= p;
1447 if (len > count)
1448 len = count;
1449 if (copy_to_user(buf, (void*)(tbuf+p), len))
1450 return -EFAULT;
1451 *ppos += len;
1452 return len;
1453 }
1454
1455 static ssize_t write_flush(struct file *file, const char __user *buf,
1456 size_t count, loff_t *ppos,
1457 struct cache_detail *cd)
1458 {
1459 char tbuf[20];
1460 char *bp, *ep;
1461
1462 if (*ppos || count > sizeof(tbuf)-1)
1463 return -EINVAL;
1464 if (copy_from_user(tbuf, buf, count))
1465 return -EFAULT;
1466 tbuf[count] = 0;
1467 simple_strtoul(tbuf, &ep, 0);
1468 if (*ep && *ep != '\n')
1469 return -EINVAL;
1470
1471 bp = tbuf;
1472 cd->flush_time = get_expiry(&bp);
1473 cd->nextcheck = seconds_since_boot();
1474 cache_flush();
1475
1476 *ppos += count;
1477 return count;
1478 }
1479
1480 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1481 size_t count, loff_t *ppos)
1482 {
1483 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1484
1485 return cache_read(filp, buf, count, ppos, cd);
1486 }
1487
1488 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1489 size_t count, loff_t *ppos)
1490 {
1491 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1492
1493 return cache_write(filp, buf, count, ppos, cd);
1494 }
1495
1496 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1497 {
1498 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1499
1500 return cache_poll(filp, wait, cd);
1501 }
1502
1503 static long cache_ioctl_procfs(struct file *filp,
1504 unsigned int cmd, unsigned long arg)
1505 {
1506 struct inode *inode = file_inode(filp);
1507 struct cache_detail *cd = PDE_DATA(inode);
1508
1509 return cache_ioctl(inode, filp, cmd, arg, cd);
1510 }
1511
1512 static int cache_open_procfs(struct inode *inode, struct file *filp)
1513 {
1514 struct cache_detail *cd = PDE_DATA(inode);
1515
1516 return cache_open(inode, filp, cd);
1517 }
1518
1519 static int cache_release_procfs(struct inode *inode, struct file *filp)
1520 {
1521 struct cache_detail *cd = PDE_DATA(inode);
1522
1523 return cache_release(inode, filp, cd);
1524 }
1525
1526 static const struct file_operations cache_file_operations_procfs = {
1527 .owner = THIS_MODULE,
1528 .llseek = no_llseek,
1529 .read = cache_read_procfs,
1530 .write = cache_write_procfs,
1531 .poll = cache_poll_procfs,
1532 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1533 .open = cache_open_procfs,
1534 .release = cache_release_procfs,
1535 };
1536
1537 static int content_open_procfs(struct inode *inode, struct file *filp)
1538 {
1539 struct cache_detail *cd = PDE_DATA(inode);
1540
1541 return content_open(inode, filp, cd);
1542 }
1543
1544 static int content_release_procfs(struct inode *inode, struct file *filp)
1545 {
1546 struct cache_detail *cd = PDE_DATA(inode);
1547
1548 return content_release(inode, filp, cd);
1549 }
1550
1551 static const struct file_operations content_file_operations_procfs = {
1552 .open = content_open_procfs,
1553 .read = seq_read,
1554 .llseek = seq_lseek,
1555 .release = content_release_procfs,
1556 };
1557
1558 static int open_flush_procfs(struct inode *inode, struct file *filp)
1559 {
1560 struct cache_detail *cd = PDE_DATA(inode);
1561
1562 return open_flush(inode, filp, cd);
1563 }
1564
1565 static int release_flush_procfs(struct inode *inode, struct file *filp)
1566 {
1567 struct cache_detail *cd = PDE_DATA(inode);
1568
1569 return release_flush(inode, filp, cd);
1570 }
1571
1572 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1573 size_t count, loff_t *ppos)
1574 {
1575 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1576
1577 return read_flush(filp, buf, count, ppos, cd);
1578 }
1579
1580 static ssize_t write_flush_procfs(struct file *filp,
1581 const char __user *buf,
1582 size_t count, loff_t *ppos)
1583 {
1584 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1585
1586 return write_flush(filp, buf, count, ppos, cd);
1587 }
1588
1589 static const struct file_operations cache_flush_operations_procfs = {
1590 .open = open_flush_procfs,
1591 .read = read_flush_procfs,
1592 .write = write_flush_procfs,
1593 .release = release_flush_procfs,
1594 .llseek = no_llseek,
1595 };
1596
1597 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1598 {
1599 struct sunrpc_net *sn;
1600
1601 if (cd->u.procfs.proc_ent == NULL)
1602 return;
1603 if (cd->u.procfs.flush_ent)
1604 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1605 if (cd->u.procfs.channel_ent)
1606 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1607 if (cd->u.procfs.content_ent)
1608 remove_proc_entry("content", cd->u.procfs.proc_ent);
1609 cd->u.procfs.proc_ent = NULL;
1610 sn = net_generic(net, sunrpc_net_id);
1611 remove_proc_entry(cd->name, sn->proc_net_rpc);
1612 }
1613
1614 #ifdef CONFIG_PROC_FS
1615 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1616 {
1617 struct proc_dir_entry *p;
1618 struct sunrpc_net *sn;
1619
1620 sn = net_generic(net, sunrpc_net_id);
1621 cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1622 if (cd->u.procfs.proc_ent == NULL)
1623 goto out_nomem;
1624 cd->u.procfs.channel_ent = NULL;
1625 cd->u.procfs.content_ent = NULL;
1626
1627 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1628 cd->u.procfs.proc_ent,
1629 &cache_flush_operations_procfs, cd);
1630 cd->u.procfs.flush_ent = p;
1631 if (p == NULL)
1632 goto out_nomem;
1633
1634 if (cd->cache_request || cd->cache_parse) {
1635 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1636 cd->u.procfs.proc_ent,
1637 &cache_file_operations_procfs, cd);
1638 cd->u.procfs.channel_ent = p;
1639 if (p == NULL)
1640 goto out_nomem;
1641 }
1642 if (cd->cache_show) {
1643 p = proc_create_data("content", S_IFREG|S_IRUSR,
1644 cd->u.procfs.proc_ent,
1645 &content_file_operations_procfs, cd);
1646 cd->u.procfs.content_ent = p;
1647 if (p == NULL)
1648 goto out_nomem;
1649 }
1650 return 0;
1651 out_nomem:
1652 remove_cache_proc_entries(cd, net);
1653 return -ENOMEM;
1654 }
1655 #else /* CONFIG_PROC_FS */
1656 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1657 {
1658 return 0;
1659 }
1660 #endif
1661
1662 void __init cache_initialize(void)
1663 {
1664 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1665 }
1666
1667 int cache_register_net(struct cache_detail *cd, struct net *net)
1668 {
1669 int ret;
1670
1671 sunrpc_init_cache_detail(cd);
1672 ret = create_cache_proc_entries(cd, net);
1673 if (ret)
1674 sunrpc_destroy_cache_detail(cd);
1675 return ret;
1676 }
1677 EXPORT_SYMBOL_GPL(cache_register_net);
1678
1679 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1680 {
1681 remove_cache_proc_entries(cd, net);
1682 sunrpc_destroy_cache_detail(cd);
1683 }
1684 EXPORT_SYMBOL_GPL(cache_unregister_net);
1685
1686 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1687 {
1688 struct cache_detail *cd;
1689
1690 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1691 if (cd == NULL)
1692 return ERR_PTR(-ENOMEM);
1693
1694 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1695 GFP_KERNEL);
1696 if (cd->hash_table == NULL) {
1697 kfree(cd);
1698 return ERR_PTR(-ENOMEM);
1699 }
1700 cd->net = net;
1701 return cd;
1702 }
1703 EXPORT_SYMBOL_GPL(cache_create_net);
1704
1705 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1706 {
1707 kfree(cd->hash_table);
1708 kfree(cd);
1709 }
1710 EXPORT_SYMBOL_GPL(cache_destroy_net);
1711
1712 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1713 size_t count, loff_t *ppos)
1714 {
1715 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1716
1717 return cache_read(filp, buf, count, ppos, cd);
1718 }
1719
1720 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1721 size_t count, loff_t *ppos)
1722 {
1723 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1724
1725 return cache_write(filp, buf, count, ppos, cd);
1726 }
1727
1728 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1729 {
1730 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1731
1732 return cache_poll(filp, wait, cd);
1733 }
1734
1735 static long cache_ioctl_pipefs(struct file *filp,
1736 unsigned int cmd, unsigned long arg)
1737 {
1738 struct inode *inode = file_inode(filp);
1739 struct cache_detail *cd = RPC_I(inode)->private;
1740
1741 return cache_ioctl(inode, filp, cmd, arg, cd);
1742 }
1743
1744 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1745 {
1746 struct cache_detail *cd = RPC_I(inode)->private;
1747
1748 return cache_open(inode, filp, cd);
1749 }
1750
1751 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1752 {
1753 struct cache_detail *cd = RPC_I(inode)->private;
1754
1755 return cache_release(inode, filp, cd);
1756 }
1757
1758 const struct file_operations cache_file_operations_pipefs = {
1759 .owner = THIS_MODULE,
1760 .llseek = no_llseek,
1761 .read = cache_read_pipefs,
1762 .write = cache_write_pipefs,
1763 .poll = cache_poll_pipefs,
1764 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1765 .open = cache_open_pipefs,
1766 .release = cache_release_pipefs,
1767 };
1768
1769 static int content_open_pipefs(struct inode *inode, struct file *filp)
1770 {
1771 struct cache_detail *cd = RPC_I(inode)->private;
1772
1773 return content_open(inode, filp, cd);
1774 }
1775
1776 static int content_release_pipefs(struct inode *inode, struct file *filp)
1777 {
1778 struct cache_detail *cd = RPC_I(inode)->private;
1779
1780 return content_release(inode, filp, cd);
1781 }
1782
1783 const struct file_operations content_file_operations_pipefs = {
1784 .open = content_open_pipefs,
1785 .read = seq_read,
1786 .llseek = seq_lseek,
1787 .release = content_release_pipefs,
1788 };
1789
1790 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1791 {
1792 struct cache_detail *cd = RPC_I(inode)->private;
1793
1794 return open_flush(inode, filp, cd);
1795 }
1796
1797 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1798 {
1799 struct cache_detail *cd = RPC_I(inode)->private;
1800
1801 return release_flush(inode, filp, cd);
1802 }
1803
1804 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1805 size_t count, loff_t *ppos)
1806 {
1807 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1808
1809 return read_flush(filp, buf, count, ppos, cd);
1810 }
1811
1812 static ssize_t write_flush_pipefs(struct file *filp,
1813 const char __user *buf,
1814 size_t count, loff_t *ppos)
1815 {
1816 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1817
1818 return write_flush(filp, buf, count, ppos, cd);
1819 }
1820
1821 const struct file_operations cache_flush_operations_pipefs = {
1822 .open = open_flush_pipefs,
1823 .read = read_flush_pipefs,
1824 .write = write_flush_pipefs,
1825 .release = release_flush_pipefs,
1826 .llseek = no_llseek,
1827 };
1828
1829 int sunrpc_cache_register_pipefs(struct dentry *parent,
1830 const char *name, umode_t umode,
1831 struct cache_detail *cd)
1832 {
1833 struct qstr q;
1834 struct dentry *dir;
1835 int ret = 0;
1836
1837 q.name = name;
1838 q.len = strlen(name);
1839 q.hash = full_name_hash(q.name, q.len);
1840 dir = rpc_create_cache_dir(parent, &q, umode, cd);
1841 if (!IS_ERR(dir))
1842 cd->u.pipefs.dir = dir;
1843 else
1844 ret = PTR_ERR(dir);
1845 return ret;
1846 }
1847 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1848
1849 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1850 {
1851 rpc_remove_cache_dir(cd->u.pipefs.dir);
1852 cd->u.pipefs.dir = NULL;
1853 }
1854 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1855
This page took 0.067877 seconds and 6 git commands to generate.